1 /* 2 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/symbolTable.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "code/codeCache.hpp" 29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp" 30 #include "gc_implementation/parallelScavenge/generationSizer.hpp" 31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp" 32 #include "gc_implementation/parallelScavenge/pcTasks.hpp" 33 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp" 34 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp" 35 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp" 36 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp" 37 #include "gc_implementation/parallelScavenge/psOldGen.hpp" 38 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp" 39 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp" 40 #include "gc_implementation/parallelScavenge/psScavenge.hpp" 41 #include "gc_implementation/parallelScavenge/psYoungGen.hpp" 42 #include "gc_implementation/shared/isGCActiveMark.hpp" 43 #include "gc_interface/gcCause.hpp" 44 #include "memory/gcLocker.inline.hpp" 45 #include "memory/referencePolicy.hpp" 46 #include "memory/referenceProcessor.hpp" 47 #include "oops/methodData.hpp" 48 #include "oops/oop.inline.hpp" 49 #include "oops/oop.pcgc.inline.hpp" 50 #include "runtime/fprofiler.hpp" 51 #include "runtime/safepoint.hpp" 52 #include "runtime/vmThread.hpp" 53 #include "services/management.hpp" 54 #include "services/memoryService.hpp" 55 #include "services/memTracker.hpp" 56 #include "utilities/events.hpp" 57 #include "utilities/stack.inline.hpp" 58 59 #include <math.h> 60 61 // All sizes are in HeapWords. 62 const size_t ParallelCompactData::Log2RegionSize = 9; // 512 words 63 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize; 64 const size_t ParallelCompactData::RegionSizeBytes = 65 RegionSize << LogHeapWordSize; 66 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1; 67 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1; 68 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask; 69 70 const ParallelCompactData::RegionData::region_sz_t 71 ParallelCompactData::RegionData::dc_shift = 27; 72 73 const ParallelCompactData::RegionData::region_sz_t 74 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift; 75 76 const ParallelCompactData::RegionData::region_sz_t 77 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift; 78 79 const ParallelCompactData::RegionData::region_sz_t 80 ParallelCompactData::RegionData::los_mask = ~dc_mask; 81 82 const ParallelCompactData::RegionData::region_sz_t 83 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift; 84 85 const ParallelCompactData::RegionData::region_sz_t 86 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift; 87 88 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id]; 89 bool PSParallelCompact::_print_phases = false; 90 91 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL; 92 Klass* PSParallelCompact::_updated_int_array_klass_obj = NULL; 93 94 double PSParallelCompact::_dwl_mean; 95 double PSParallelCompact::_dwl_std_dev; 96 double PSParallelCompact::_dwl_first_term; 97 double PSParallelCompact::_dwl_adjustment; 98 #ifdef ASSERT 99 bool PSParallelCompact::_dwl_initialized = false; 100 #endif // #ifdef ASSERT 101 102 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size, 103 HeapWord* destination) 104 { 105 assert(src_region_idx != 0, "invalid src_region_idx"); 106 assert(partial_obj_size != 0, "invalid partial_obj_size argument"); 107 assert(destination != NULL, "invalid destination argument"); 108 109 _src_region_idx = src_region_idx; 110 _partial_obj_size = partial_obj_size; 111 _destination = destination; 112 113 // These fields may not be updated below, so make sure they're clear. 114 assert(_dest_region_addr == NULL, "should have been cleared"); 115 assert(_first_src_addr == NULL, "should have been cleared"); 116 117 // Determine the number of destination regions for the partial object. 118 HeapWord* const last_word = destination + partial_obj_size - 1; 119 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 120 HeapWord* const beg_region_addr = sd.region_align_down(destination); 121 HeapWord* const end_region_addr = sd.region_align_down(last_word); 122 123 if (beg_region_addr == end_region_addr) { 124 // One destination region. 125 _destination_count = 1; 126 if (end_region_addr == destination) { 127 // The destination falls on a region boundary, thus the first word of the 128 // partial object will be the first word copied to the destination region. 129 _dest_region_addr = end_region_addr; 130 _first_src_addr = sd.region_to_addr(src_region_idx); 131 } 132 } else { 133 // Two destination regions. When copied, the partial object will cross a 134 // destination region boundary, so a word somewhere within the partial 135 // object will be the first word copied to the second destination region. 136 _destination_count = 2; 137 _dest_region_addr = end_region_addr; 138 const size_t ofs = pointer_delta(end_region_addr, destination); 139 assert(ofs < _partial_obj_size, "sanity"); 140 _first_src_addr = sd.region_to_addr(src_region_idx) + ofs; 141 } 142 } 143 144 void SplitInfo::clear() 145 { 146 _src_region_idx = 0; 147 _partial_obj_size = 0; 148 _destination = NULL; 149 _destination_count = 0; 150 _dest_region_addr = NULL; 151 _first_src_addr = NULL; 152 assert(!is_valid(), "sanity"); 153 } 154 155 #ifdef ASSERT 156 void SplitInfo::verify_clear() 157 { 158 assert(_src_region_idx == 0, "not clear"); 159 assert(_partial_obj_size == 0, "not clear"); 160 assert(_destination == NULL, "not clear"); 161 assert(_destination_count == 0, "not clear"); 162 assert(_dest_region_addr == NULL, "not clear"); 163 assert(_first_src_addr == NULL, "not clear"); 164 } 165 #endif // #ifdef ASSERT 166 167 168 void PSParallelCompact::print_on_error(outputStream* st) { 169 _mark_bitmap.print_on_error(st); 170 } 171 172 #ifndef PRODUCT 173 const char* PSParallelCompact::space_names[] = { 174 "old ", "eden", "from", "to " 175 }; 176 177 void PSParallelCompact::print_region_ranges() 178 { 179 tty->print_cr("space bottom top end new_top"); 180 tty->print_cr("------ ---------- ---------- ---------- ----------"); 181 182 for (unsigned int id = 0; id < last_space_id; ++id) { 183 const MutableSpace* space = _space_info[id].space(); 184 tty->print_cr("%u %s " 185 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " " 186 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ", 187 id, space_names[id], 188 summary_data().addr_to_region_idx(space->bottom()), 189 summary_data().addr_to_region_idx(space->top()), 190 summary_data().addr_to_region_idx(space->end()), 191 summary_data().addr_to_region_idx(_space_info[id].new_top())); 192 } 193 } 194 195 void 196 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c) 197 { 198 #define REGION_IDX_FORMAT SIZE_FORMAT_W(7) 199 #define REGION_DATA_FORMAT SIZE_FORMAT_W(5) 200 201 ParallelCompactData& sd = PSParallelCompact::summary_data(); 202 size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0; 203 tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " " 204 REGION_IDX_FORMAT " " PTR_FORMAT " " 205 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " " 206 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d", 207 i, c->data_location(), dci, c->destination(), 208 c->partial_obj_size(), c->live_obj_size(), 209 c->data_size(), c->source_region(), c->destination_count()); 210 211 #undef REGION_IDX_FORMAT 212 #undef REGION_DATA_FORMAT 213 } 214 215 void 216 print_generic_summary_data(ParallelCompactData& summary_data, 217 HeapWord* const beg_addr, 218 HeapWord* const end_addr) 219 { 220 size_t total_words = 0; 221 size_t i = summary_data.addr_to_region_idx(beg_addr); 222 const size_t last = summary_data.addr_to_region_idx(end_addr); 223 HeapWord* pdest = 0; 224 225 while (i <= last) { 226 ParallelCompactData::RegionData* c = summary_data.region(i); 227 if (c->data_size() != 0 || c->destination() != pdest) { 228 print_generic_summary_region(i, c); 229 total_words += c->data_size(); 230 pdest = c->destination(); 231 } 232 ++i; 233 } 234 235 tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize); 236 } 237 238 void 239 print_generic_summary_data(ParallelCompactData& summary_data, 240 SpaceInfo* space_info) 241 { 242 for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) { 243 const MutableSpace* space = space_info[id].space(); 244 print_generic_summary_data(summary_data, space->bottom(), 245 MAX2(space->top(), space_info[id].new_top())); 246 } 247 } 248 249 void 250 print_initial_summary_region(size_t i, 251 const ParallelCompactData::RegionData* c, 252 bool newline = true) 253 { 254 tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " " 255 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " 256 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d", 257 i, c->destination(), 258 c->partial_obj_size(), c->live_obj_size(), 259 c->data_size(), c->source_region(), c->destination_count()); 260 if (newline) tty->cr(); 261 } 262 263 void 264 print_initial_summary_data(ParallelCompactData& summary_data, 265 const MutableSpace* space) { 266 if (space->top() == space->bottom()) { 267 return; 268 } 269 270 const size_t region_size = ParallelCompactData::RegionSize; 271 typedef ParallelCompactData::RegionData RegionData; 272 HeapWord* const top_aligned_up = summary_data.region_align_up(space->top()); 273 const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up); 274 const RegionData* c = summary_data.region(end_region - 1); 275 HeapWord* end_addr = c->destination() + c->data_size(); 276 const size_t live_in_space = pointer_delta(end_addr, space->bottom()); 277 278 // Print (and count) the full regions at the beginning of the space. 279 size_t full_region_count = 0; 280 size_t i = summary_data.addr_to_region_idx(space->bottom()); 281 while (i < end_region && summary_data.region(i)->data_size() == region_size) { 282 print_initial_summary_region(i, summary_data.region(i)); 283 ++full_region_count; 284 ++i; 285 } 286 287 size_t live_to_right = live_in_space - full_region_count * region_size; 288 289 double max_reclaimed_ratio = 0.0; 290 size_t max_reclaimed_ratio_region = 0; 291 size_t max_dead_to_right = 0; 292 size_t max_live_to_right = 0; 293 294 // Print the 'reclaimed ratio' for regions while there is something live in 295 // the region or to the right of it. The remaining regions are empty (and 296 // uninteresting), and computing the ratio will result in division by 0. 297 while (i < end_region && live_to_right > 0) { 298 c = summary_data.region(i); 299 HeapWord* const region_addr = summary_data.region_to_addr(i); 300 const size_t used_to_right = pointer_delta(space->top(), region_addr); 301 const size_t dead_to_right = used_to_right - live_to_right; 302 const double reclaimed_ratio = double(dead_to_right) / live_to_right; 303 304 if (reclaimed_ratio > max_reclaimed_ratio) { 305 max_reclaimed_ratio = reclaimed_ratio; 306 max_reclaimed_ratio_region = i; 307 max_dead_to_right = dead_to_right; 308 max_live_to_right = live_to_right; 309 } 310 311 print_initial_summary_region(i, c, false); 312 tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10), 313 reclaimed_ratio, dead_to_right, live_to_right); 314 315 live_to_right -= c->data_size(); 316 ++i; 317 } 318 319 // Any remaining regions are empty. Print one more if there is one. 320 if (i < end_region) { 321 print_initial_summary_region(i, summary_data.region(i)); 322 } 323 324 tty->print_cr("max: " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " " 325 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f", 326 max_reclaimed_ratio_region, max_dead_to_right, 327 max_live_to_right, max_reclaimed_ratio); 328 } 329 330 void 331 print_initial_summary_data(ParallelCompactData& summary_data, 332 SpaceInfo* space_info) { 333 unsigned int id = PSParallelCompact::old_space_id; 334 const MutableSpace* space; 335 do { 336 space = space_info[id].space(); 337 print_initial_summary_data(summary_data, space); 338 } while (++id < PSParallelCompact::eden_space_id); 339 340 do { 341 space = space_info[id].space(); 342 print_generic_summary_data(summary_data, space->bottom(), space->top()); 343 } while (++id < PSParallelCompact::last_space_id); 344 } 345 #endif // #ifndef PRODUCT 346 347 #ifdef ASSERT 348 size_t add_obj_count; 349 size_t add_obj_size; 350 size_t mark_bitmap_count; 351 size_t mark_bitmap_size; 352 #endif // #ifdef ASSERT 353 354 ParallelCompactData::ParallelCompactData() 355 { 356 _region_start = 0; 357 358 _region_vspace = 0; 359 _reserved_byte_size = 0; 360 _region_data = 0; 361 _region_count = 0; 362 } 363 364 bool ParallelCompactData::initialize(MemRegion covered_region) 365 { 366 _region_start = covered_region.start(); 367 const size_t region_size = covered_region.word_size(); 368 DEBUG_ONLY(_region_end = _region_start + region_size;) 369 370 assert(region_align_down(_region_start) == _region_start, 371 "region start not aligned"); 372 assert((region_size & RegionSizeOffsetMask) == 0, 373 "region size not a multiple of RegionSize"); 374 375 bool result = initialize_region_data(region_size); 376 377 return result; 378 } 379 380 PSVirtualSpace* 381 ParallelCompactData::create_vspace(size_t count, size_t element_size) 382 { 383 const size_t raw_bytes = count * element_size; 384 const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10); 385 const size_t granularity = os::vm_allocation_granularity(); 386 _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity)); 387 388 const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 : 389 MAX2(page_sz, granularity); 390 ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0); 391 os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(), 392 rs.size()); 393 394 MemTracker::record_virtual_memory_type((address)rs.base(), mtGC); 395 396 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz); 397 if (vspace != 0) { 398 if (vspace->expand_by(_reserved_byte_size)) { 399 return vspace; 400 } 401 delete vspace; 402 // Release memory reserved in the space. 403 rs.release(); 404 } 405 406 return 0; 407 } 408 409 bool ParallelCompactData::initialize_region_data(size_t region_size) 410 { 411 const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize; 412 _region_vspace = create_vspace(count, sizeof(RegionData)); 413 if (_region_vspace != 0) { 414 _region_data = (RegionData*)_region_vspace->reserved_low_addr(); 415 _region_count = count; 416 return true; 417 } 418 return false; 419 } 420 421 void ParallelCompactData::clear() 422 { 423 memset(_region_data, 0, _region_vspace->committed_size()); 424 } 425 426 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) { 427 assert(beg_region <= _region_count, "beg_region out of range"); 428 assert(end_region <= _region_count, "end_region out of range"); 429 430 const size_t region_cnt = end_region - beg_region; 431 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData)); 432 } 433 434 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const 435 { 436 const RegionData* cur_cp = region(region_idx); 437 const RegionData* const end_cp = region(region_count() - 1); 438 439 HeapWord* result = region_to_addr(region_idx); 440 if (cur_cp < end_cp) { 441 do { 442 result += cur_cp->partial_obj_size(); 443 } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp); 444 } 445 return result; 446 } 447 448 void ParallelCompactData::add_obj(HeapWord* addr, size_t len) 449 { 450 const size_t obj_ofs = pointer_delta(addr, _region_start); 451 const size_t beg_region = obj_ofs >> Log2RegionSize; 452 const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize; 453 454 DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);) 455 DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);) 456 457 if (beg_region == end_region) { 458 // All in one region. 459 _region_data[beg_region].add_live_obj(len); 460 return; 461 } 462 463 // First region. 464 const size_t beg_ofs = region_offset(addr); 465 _region_data[beg_region].add_live_obj(RegionSize - beg_ofs); 466 467 Klass* klass = ((oop)addr)->klass(); 468 // Middle regions--completely spanned by this object. 469 for (size_t region = beg_region + 1; region < end_region; ++region) { 470 _region_data[region].set_partial_obj_size(RegionSize); 471 _region_data[region].set_partial_obj_addr(addr); 472 } 473 474 // Last region. 475 const size_t end_ofs = region_offset(addr + len - 1); 476 _region_data[end_region].set_partial_obj_size(end_ofs + 1); 477 _region_data[end_region].set_partial_obj_addr(addr); 478 } 479 480 void 481 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end) 482 { 483 assert(region_offset(beg) == 0, "not RegionSize aligned"); 484 assert(region_offset(end) == 0, "not RegionSize aligned"); 485 486 size_t cur_region = addr_to_region_idx(beg); 487 const size_t end_region = addr_to_region_idx(end); 488 HeapWord* addr = beg; 489 while (cur_region < end_region) { 490 _region_data[cur_region].set_destination(addr); 491 _region_data[cur_region].set_destination_count(0); 492 _region_data[cur_region].set_source_region(cur_region); 493 _region_data[cur_region].set_data_location(addr); 494 495 // Update live_obj_size so the region appears completely full. 496 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size(); 497 _region_data[cur_region].set_live_obj_size(live_size); 498 499 ++cur_region; 500 addr += RegionSize; 501 } 502 } 503 504 // Find the point at which a space can be split and, if necessary, record the 505 // split point. 506 // 507 // If the current src region (which overflowed the destination space) doesn't 508 // have a partial object, the split point is at the beginning of the current src 509 // region (an "easy" split, no extra bookkeeping required). 510 // 511 // If the current src region has a partial object, the split point is in the 512 // region where that partial object starts (call it the split_region). If 513 // split_region has a partial object, then the split point is just after that 514 // partial object (a "hard" split where we have to record the split data and 515 // zero the partial_obj_size field). With a "hard" split, we know that the 516 // partial_obj ends within split_region because the partial object that caused 517 // the overflow starts in split_region. If split_region doesn't have a partial 518 // obj, then the split is at the beginning of split_region (another "easy" 519 // split). 520 HeapWord* 521 ParallelCompactData::summarize_split_space(size_t src_region, 522 SplitInfo& split_info, 523 HeapWord* destination, 524 HeapWord* target_end, 525 HeapWord** target_next) 526 { 527 assert(destination <= target_end, "sanity"); 528 assert(destination + _region_data[src_region].data_size() > target_end, 529 "region should not fit into target space"); 530 assert(is_region_aligned(target_end), "sanity"); 531 532 size_t split_region = src_region; 533 HeapWord* split_destination = destination; 534 size_t partial_obj_size = _region_data[src_region].partial_obj_size(); 535 536 if (destination + partial_obj_size > target_end) { 537 // The split point is just after the partial object (if any) in the 538 // src_region that contains the start of the object that overflowed the 539 // destination space. 540 // 541 // Find the start of the "overflow" object and set split_region to the 542 // region containing it. 543 HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr(); 544 split_region = addr_to_region_idx(overflow_obj); 545 546 // Clear the source_region field of all destination regions whose first word 547 // came from data after the split point (a non-null source_region field 548 // implies a region must be filled). 549 // 550 // An alternative to the simple loop below: clear during post_compact(), 551 // which uses memcpy instead of individual stores, and is easy to 552 // parallelize. (The downside is that it clears the entire RegionData 553 // object as opposed to just one field.) 554 // 555 // post_compact() would have to clear the summary data up to the highest 556 // address that was written during the summary phase, which would be 557 // 558 // max(top, max(new_top, clear_top)) 559 // 560 // where clear_top is a new field in SpaceInfo. Would have to set clear_top 561 // to target_end. 562 const RegionData* const sr = region(split_region); 563 const size_t beg_idx = 564 addr_to_region_idx(region_align_up(sr->destination() + 565 sr->partial_obj_size())); 566 const size_t end_idx = addr_to_region_idx(target_end); 567 568 if (TraceParallelOldGCSummaryPhase) { 569 gclog_or_tty->print_cr("split: clearing source_region field in [" 570 SIZE_FORMAT ", " SIZE_FORMAT ")", 571 beg_idx, end_idx); 572 } 573 for (size_t idx = beg_idx; idx < end_idx; ++idx) { 574 _region_data[idx].set_source_region(0); 575 } 576 577 // Set split_destination and partial_obj_size to reflect the split region. 578 split_destination = sr->destination(); 579 partial_obj_size = sr->partial_obj_size(); 580 } 581 582 // The split is recorded only if a partial object extends onto the region. 583 if (partial_obj_size != 0) { 584 _region_data[split_region].set_partial_obj_size(0); 585 split_info.record(split_region, partial_obj_size, split_destination); 586 } 587 588 // Setup the continuation addresses. 589 *target_next = split_destination + partial_obj_size; 590 HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size; 591 592 if (TraceParallelOldGCSummaryPhase) { 593 const char * split_type = partial_obj_size == 0 ? "easy" : "hard"; 594 gclog_or_tty->print_cr("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT 595 " pos=" SIZE_FORMAT, 596 split_type, source_next, split_region, 597 partial_obj_size); 598 gclog_or_tty->print_cr("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT 599 " tn=" PTR_FORMAT, 600 split_type, split_destination, 601 addr_to_region_idx(split_destination), 602 *target_next); 603 604 if (partial_obj_size != 0) { 605 HeapWord* const po_beg = split_info.destination(); 606 HeapWord* const po_end = po_beg + split_info.partial_obj_size(); 607 gclog_or_tty->print_cr("%s split: " 608 "po_beg=" PTR_FORMAT " " SIZE_FORMAT " " 609 "po_end=" PTR_FORMAT " " SIZE_FORMAT, 610 split_type, 611 po_beg, addr_to_region_idx(po_beg), 612 po_end, addr_to_region_idx(po_end)); 613 } 614 } 615 616 return source_next; 617 } 618 619 bool ParallelCompactData::summarize(SplitInfo& split_info, 620 HeapWord* source_beg, HeapWord* source_end, 621 HeapWord** source_next, 622 HeapWord* target_beg, HeapWord* target_end, 623 HeapWord** target_next) 624 { 625 if (TraceParallelOldGCSummaryPhase) { 626 HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next; 627 tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT 628 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT, 629 source_beg, source_end, source_next_val, 630 target_beg, target_end, *target_next); 631 } 632 633 size_t cur_region = addr_to_region_idx(source_beg); 634 const size_t end_region = addr_to_region_idx(region_align_up(source_end)); 635 636 HeapWord *dest_addr = target_beg; 637 while (cur_region < end_region) { 638 // The destination must be set even if the region has no data. 639 _region_data[cur_region].set_destination(dest_addr); 640 641 size_t words = _region_data[cur_region].data_size(); 642 if (words > 0) { 643 // If cur_region does not fit entirely into the target space, find a point 644 // at which the source space can be 'split' so that part is copied to the 645 // target space and the rest is copied elsewhere. 646 if (dest_addr + words > target_end) { 647 assert(source_next != NULL, "source_next is NULL when splitting"); 648 *source_next = summarize_split_space(cur_region, split_info, dest_addr, 649 target_end, target_next); 650 return false; 651 } 652 653 // Compute the destination_count for cur_region, and if necessary, update 654 // source_region for a destination region. The source_region field is 655 // updated if cur_region is the first (left-most) region to be copied to a 656 // destination region. 657 // 658 // The destination_count calculation is a bit subtle. A region that has 659 // data that compacts into itself does not count itself as a destination. 660 // This maintains the invariant that a zero count means the region is 661 // available and can be claimed and then filled. 662 uint destination_count = 0; 663 if (split_info.is_split(cur_region)) { 664 // The current region has been split: the partial object will be copied 665 // to one destination space and the remaining data will be copied to 666 // another destination space. Adjust the initial destination_count and, 667 // if necessary, set the source_region field if the partial object will 668 // cross a destination region boundary. 669 destination_count = split_info.destination_count(); 670 if (destination_count == 2) { 671 size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr()); 672 _region_data[dest_idx].set_source_region(cur_region); 673 } 674 } 675 676 HeapWord* const last_addr = dest_addr + words - 1; 677 const size_t dest_region_1 = addr_to_region_idx(dest_addr); 678 const size_t dest_region_2 = addr_to_region_idx(last_addr); 679 680 // Initially assume that the destination regions will be the same and 681 // adjust the value below if necessary. Under this assumption, if 682 // cur_region == dest_region_2, then cur_region will be compacted 683 // completely into itself. 684 destination_count += cur_region == dest_region_2 ? 0 : 1; 685 if (dest_region_1 != dest_region_2) { 686 // Destination regions differ; adjust destination_count. 687 destination_count += 1; 688 // Data from cur_region will be copied to the start of dest_region_2. 689 _region_data[dest_region_2].set_source_region(cur_region); 690 } else if (region_offset(dest_addr) == 0) { 691 // Data from cur_region will be copied to the start of the destination 692 // region. 693 _region_data[dest_region_1].set_source_region(cur_region); 694 } 695 696 _region_data[cur_region].set_destination_count(destination_count); 697 _region_data[cur_region].set_data_location(region_to_addr(cur_region)); 698 dest_addr += words; 699 } 700 701 ++cur_region; 702 } 703 704 *target_next = dest_addr; 705 return true; 706 } 707 708 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) { 709 assert(addr != NULL, "Should detect NULL oop earlier"); 710 assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap"); 711 #ifdef ASSERT 712 if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) { 713 gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr); 714 } 715 #endif 716 assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked"); 717 718 // Region covering the object. 719 size_t region_index = addr_to_region_idx(addr); 720 const RegionData* const region_ptr = region(region_index); 721 HeapWord* const region_addr = region_align_down(addr); 722 723 assert(addr < region_addr + RegionSize, "Region does not cover object"); 724 assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check"); 725 726 HeapWord* result = region_ptr->destination(); 727 728 // If all the data in the region is live, then the new location of the object 729 // can be calculated from the destination of the region plus the offset of the 730 // object in the region. 731 if (region_ptr->data_size() == RegionSize) { 732 result += pointer_delta(addr, region_addr); 733 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);) 734 return result; 735 } 736 737 // The new location of the object is 738 // region destination + 739 // size of the partial object extending onto the region + 740 // sizes of the live objects in the Region that are to the left of addr 741 const size_t partial_obj_size = region_ptr->partial_obj_size(); 742 HeapWord* const search_start = region_addr + partial_obj_size; 743 744 const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap(); 745 size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr)); 746 747 result += partial_obj_size + live_to_left; 748 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);) 749 return result; 750 } 751 752 #ifdef ASSERT 753 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace) 754 { 755 const size_t* const beg = (const size_t*)vspace->committed_low_addr(); 756 const size_t* const end = (const size_t*)vspace->committed_high_addr(); 757 for (const size_t* p = beg; p < end; ++p) { 758 assert(*p == 0, "not zero"); 759 } 760 } 761 762 void ParallelCompactData::verify_clear() 763 { 764 verify_clear(_region_vspace); 765 } 766 #endif // #ifdef ASSERT 767 768 #ifdef NOT_PRODUCT 769 ParallelCompactData::RegionData* debug_region(size_t region_index) { 770 ParallelCompactData& sd = PSParallelCompact::summary_data(); 771 return sd.region(region_index); 772 } 773 #endif 774 775 elapsedTimer PSParallelCompact::_accumulated_time; 776 unsigned int PSParallelCompact::_total_invocations = 0; 777 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0; 778 jlong PSParallelCompact::_time_of_last_gc = 0; 779 CollectorCounters* PSParallelCompact::_counters = NULL; 780 ParMarkBitMap PSParallelCompact::_mark_bitmap; 781 ParallelCompactData PSParallelCompact::_summary_data; 782 783 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure; 784 785 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); } 786 787 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); } 788 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); } 789 790 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure; 791 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure; 792 793 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p) { adjust_pointer(p); } 794 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p); } 795 796 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); } 797 798 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p) { 799 mark_and_push(_compaction_manager, p); 800 } 801 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); } 802 803 void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) { 804 klass->oops_do(_mark_and_push_closure); 805 } 806 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) { 807 klass->oops_do(&PSParallelCompact::_adjust_pointer_closure); 808 } 809 810 void PSParallelCompact::post_initialize() { 811 ParallelScavengeHeap* heap = gc_heap(); 812 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); 813 814 MemRegion mr = heap->reserved_region(); 815 _ref_processor = 816 new ReferenceProcessor(mr, // span 817 ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing 818 (int) ParallelGCThreads, // mt processing degree 819 true, // mt discovery 820 (int) ParallelGCThreads, // mt discovery degree 821 true, // atomic_discovery 822 &_is_alive_closure, // non-header is alive closure 823 false); // write barrier for next field updates 824 _counters = new CollectorCounters("PSParallelCompact", 1); 825 826 // Initialize static fields in ParCompactionManager. 827 ParCompactionManager::initialize(mark_bitmap()); 828 } 829 830 bool PSParallelCompact::initialize() { 831 ParallelScavengeHeap* heap = gc_heap(); 832 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); 833 MemRegion mr = heap->reserved_region(); 834 835 // Was the old gen get allocated successfully? 836 if (!heap->old_gen()->is_allocated()) { 837 return false; 838 } 839 840 initialize_space_info(); 841 initialize_dead_wood_limiter(); 842 843 if (!_mark_bitmap.initialize(mr)) { 844 vm_shutdown_during_initialization( 845 err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel " 846 "garbage collection for the requested " SIZE_FORMAT "KB heap.", 847 _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K)); 848 return false; 849 } 850 851 if (!_summary_data.initialize(mr)) { 852 vm_shutdown_during_initialization( 853 err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel " 854 "garbage collection for the requested " SIZE_FORMAT "KB heap.", 855 _summary_data.reserved_byte_size()/K, mr.byte_size()/K)); 856 return false; 857 } 858 859 return true; 860 } 861 862 void PSParallelCompact::initialize_space_info() 863 { 864 memset(&_space_info, 0, sizeof(_space_info)); 865 866 ParallelScavengeHeap* heap = gc_heap(); 867 PSYoungGen* young_gen = heap->young_gen(); 868 869 _space_info[old_space_id].set_space(heap->old_gen()->object_space()); 870 _space_info[eden_space_id].set_space(young_gen->eden_space()); 871 _space_info[from_space_id].set_space(young_gen->from_space()); 872 _space_info[to_space_id].set_space(young_gen->to_space()); 873 874 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array()); 875 } 876 877 void PSParallelCompact::initialize_dead_wood_limiter() 878 { 879 const size_t max = 100; 880 _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0; 881 _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0; 882 _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev); 883 DEBUG_ONLY(_dwl_initialized = true;) 884 _dwl_adjustment = normal_distribution(1.0); 885 } 886 887 // Simple class for storing info about the heap at the start of GC, to be used 888 // after GC for comparison/printing. 889 class PreGCValues { 890 public: 891 PreGCValues() { } 892 PreGCValues(ParallelScavengeHeap* heap) { fill(heap); } 893 894 void fill(ParallelScavengeHeap* heap) { 895 _heap_used = heap->used(); 896 _young_gen_used = heap->young_gen()->used_in_bytes(); 897 _old_gen_used = heap->old_gen()->used_in_bytes(); 898 _metadata_used = MetaspaceAux::allocated_used_bytes(); 899 }; 900 901 size_t heap_used() const { return _heap_used; } 902 size_t young_gen_used() const { return _young_gen_used; } 903 size_t old_gen_used() const { return _old_gen_used; } 904 size_t metadata_used() const { return _metadata_used; } 905 906 private: 907 size_t _heap_used; 908 size_t _young_gen_used; 909 size_t _old_gen_used; 910 size_t _metadata_used; 911 }; 912 913 void 914 PSParallelCompact::clear_data_covering_space(SpaceId id) 915 { 916 // At this point, top is the value before GC, new_top() is the value that will 917 // be set at the end of GC. The marking bitmap is cleared to top; nothing 918 // should be marked above top. The summary data is cleared to the larger of 919 // top & new_top. 920 MutableSpace* const space = _space_info[id].space(); 921 HeapWord* const bot = space->bottom(); 922 HeapWord* const top = space->top(); 923 HeapWord* const max_top = MAX2(top, _space_info[id].new_top()); 924 925 const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot); 926 const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top)); 927 _mark_bitmap.clear_range(beg_bit, end_bit); 928 929 const size_t beg_region = _summary_data.addr_to_region_idx(bot); 930 const size_t end_region = 931 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top)); 932 _summary_data.clear_range(beg_region, end_region); 933 934 // Clear the data used to 'split' regions. 935 SplitInfo& split_info = _space_info[id].split_info(); 936 if (split_info.is_valid()) { 937 split_info.clear(); 938 } 939 DEBUG_ONLY(split_info.verify_clear();) 940 } 941 942 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values) 943 { 944 // Update the from & to space pointers in space_info, since they are swapped 945 // at each young gen gc. Do the update unconditionally (even though a 946 // promotion failure does not swap spaces) because an unknown number of minor 947 // collections will have swapped the spaces an unknown number of times. 948 TraceTime tm("pre compact", print_phases(), true, gclog_or_tty); 949 ParallelScavengeHeap* heap = gc_heap(); 950 _space_info[from_space_id].set_space(heap->young_gen()->from_space()); 951 _space_info[to_space_id].set_space(heap->young_gen()->to_space()); 952 953 pre_gc_values->fill(heap); 954 955 DEBUG_ONLY(add_obj_count = add_obj_size = 0;) 956 DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;) 957 958 // Increment the invocation count 959 heap->increment_total_collections(true); 960 961 // We need to track unique mark sweep invocations as well. 962 _total_invocations++; 963 964 heap->print_heap_before_gc(); 965 966 // Fill in TLABs 967 heap->accumulate_statistics_all_tlabs(); 968 heap->ensure_parsability(true); // retire TLABs 969 970 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) { 971 HandleMark hm; // Discard invalid handles created during verification 972 Universe::verify(" VerifyBeforeGC:"); 973 } 974 975 // Verify object start arrays 976 if (VerifyObjectStartArray && 977 VerifyBeforeGC) { 978 heap->old_gen()->verify_object_start_array(); 979 } 980 981 DEBUG_ONLY(mark_bitmap()->verify_clear();) 982 DEBUG_ONLY(summary_data().verify_clear();) 983 984 // Have worker threads release resources the next time they run a task. 985 gc_task_manager()->release_all_resources(); 986 } 987 988 void PSParallelCompact::post_compact() 989 { 990 TraceTime tm("post compact", print_phases(), true, gclog_or_tty); 991 992 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 993 // Clear the marking bitmap, summary data and split info. 994 clear_data_covering_space(SpaceId(id)); 995 // Update top(). Must be done after clearing the bitmap and summary data. 996 _space_info[id].publish_new_top(); 997 } 998 999 MutableSpace* const eden_space = _space_info[eden_space_id].space(); 1000 MutableSpace* const from_space = _space_info[from_space_id].space(); 1001 MutableSpace* const to_space = _space_info[to_space_id].space(); 1002 1003 ParallelScavengeHeap* heap = gc_heap(); 1004 bool eden_empty = eden_space->is_empty(); 1005 if (!eden_empty) { 1006 eden_empty = absorb_live_data_from_eden(heap->size_policy(), 1007 heap->young_gen(), heap->old_gen()); 1008 } 1009 1010 // Update heap occupancy information which is used as input to the soft ref 1011 // clearing policy at the next gc. 1012 Universe::update_heap_info_at_gc(); 1013 1014 bool young_gen_empty = eden_empty && from_space->is_empty() && 1015 to_space->is_empty(); 1016 1017 BarrierSet* bs = heap->barrier_set(); 1018 if (bs->is_a(BarrierSet::ModRef)) { 1019 ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs; 1020 MemRegion old_mr = heap->old_gen()->reserved(); 1021 1022 if (young_gen_empty) { 1023 modBS->clear(MemRegion(old_mr.start(), old_mr.end())); 1024 } else { 1025 modBS->invalidate(MemRegion(old_mr.start(), old_mr.end())); 1026 } 1027 } 1028 1029 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1030 ClassLoaderDataGraph::purge(); 1031 MetaspaceAux::verify_metrics(); 1032 1033 Threads::gc_epilogue(); 1034 CodeCache::gc_epilogue(); 1035 JvmtiExport::gc_epilogue(); 1036 1037 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 1038 1039 ref_processor()->enqueue_discovered_references(NULL); 1040 1041 if (ZapUnusedHeapArea) { 1042 heap->gen_mangle_unused_area(); 1043 } 1044 1045 // Update time of last GC 1046 reset_millis_since_last_gc(); 1047 } 1048 1049 HeapWord* 1050 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id, 1051 bool maximum_compaction) 1052 { 1053 const size_t region_size = ParallelCompactData::RegionSize; 1054 const ParallelCompactData& sd = summary_data(); 1055 1056 const MutableSpace* const space = _space_info[id].space(); 1057 HeapWord* const top_aligned_up = sd.region_align_up(space->top()); 1058 const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom()); 1059 const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up); 1060 1061 // Skip full regions at the beginning of the space--they are necessarily part 1062 // of the dense prefix. 1063 size_t full_count = 0; 1064 const RegionData* cp; 1065 for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) { 1066 ++full_count; 1067 } 1068 1069 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity"); 1070 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num; 1071 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval; 1072 if (maximum_compaction || cp == end_cp || interval_ended) { 1073 _maximum_compaction_gc_num = total_invocations(); 1074 return sd.region_to_addr(cp); 1075 } 1076 1077 HeapWord* const new_top = _space_info[id].new_top(); 1078 const size_t space_live = pointer_delta(new_top, space->bottom()); 1079 const size_t space_used = space->used_in_words(); 1080 const size_t space_capacity = space->capacity_in_words(); 1081 1082 const double cur_density = double(space_live) / space_capacity; 1083 const double deadwood_density = 1084 (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density; 1085 const size_t deadwood_goal = size_t(space_capacity * deadwood_density); 1086 1087 if (TraceParallelOldGCDensePrefix) { 1088 tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT, 1089 cur_density, deadwood_density, deadwood_goal); 1090 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " " 1091 "space_cap=" SIZE_FORMAT, 1092 space_live, space_used, 1093 space_capacity); 1094 } 1095 1096 // XXX - Use binary search? 1097 HeapWord* dense_prefix = sd.region_to_addr(cp); 1098 const RegionData* full_cp = cp; 1099 const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1); 1100 while (cp < end_cp) { 1101 HeapWord* region_destination = cp->destination(); 1102 const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination); 1103 if (TraceParallelOldGCDensePrefix && Verbose) { 1104 tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " " 1105 "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8), 1106 sd.region(cp), region_destination, 1107 dense_prefix, cur_deadwood); 1108 } 1109 1110 if (cur_deadwood >= deadwood_goal) { 1111 // Found the region that has the correct amount of deadwood to the left. 1112 // This typically occurs after crossing a fairly sparse set of regions, so 1113 // iterate backwards over those sparse regions, looking for the region 1114 // that has the lowest density of live objects 'to the right.' 1115 size_t space_to_left = sd.region(cp) * region_size; 1116 size_t live_to_left = space_to_left - cur_deadwood; 1117 size_t space_to_right = space_capacity - space_to_left; 1118 size_t live_to_right = space_live - live_to_left; 1119 double density_to_right = double(live_to_right) / space_to_right; 1120 while (cp > full_cp) { 1121 --cp; 1122 const size_t prev_region_live_to_right = live_to_right - 1123 cp->data_size(); 1124 const size_t prev_region_space_to_right = space_to_right + region_size; 1125 double prev_region_density_to_right = 1126 double(prev_region_live_to_right) / prev_region_space_to_right; 1127 if (density_to_right <= prev_region_density_to_right) { 1128 return dense_prefix; 1129 } 1130 if (TraceParallelOldGCDensePrefix && Verbose) { 1131 tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f " 1132 "pc_d2r=%10.8f", sd.region(cp), density_to_right, 1133 prev_region_density_to_right); 1134 } 1135 dense_prefix -= region_size; 1136 live_to_right = prev_region_live_to_right; 1137 space_to_right = prev_region_space_to_right; 1138 density_to_right = prev_region_density_to_right; 1139 } 1140 return dense_prefix; 1141 } 1142 1143 dense_prefix += region_size; 1144 ++cp; 1145 } 1146 1147 return dense_prefix; 1148 } 1149 1150 #ifndef PRODUCT 1151 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm, 1152 const SpaceId id, 1153 const bool maximum_compaction, 1154 HeapWord* const addr) 1155 { 1156 const size_t region_idx = summary_data().addr_to_region_idx(addr); 1157 RegionData* const cp = summary_data().region(region_idx); 1158 const MutableSpace* const space = _space_info[id].space(); 1159 HeapWord* const new_top = _space_info[id].new_top(); 1160 1161 const size_t space_live = pointer_delta(new_top, space->bottom()); 1162 const size_t dead_to_left = pointer_delta(addr, cp->destination()); 1163 const size_t space_cap = space->capacity_in_words(); 1164 const double dead_to_left_pct = double(dead_to_left) / space_cap; 1165 const size_t live_to_right = new_top - cp->destination(); 1166 const size_t dead_to_right = space->top() - addr - live_to_right; 1167 1168 tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " " 1169 "spl=" SIZE_FORMAT " " 1170 "d2l=" SIZE_FORMAT " d2l%%=%6.4f " 1171 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT 1172 " ratio=%10.8f", 1173 algorithm, addr, region_idx, 1174 space_live, 1175 dead_to_left, dead_to_left_pct, 1176 dead_to_right, live_to_right, 1177 double(dead_to_right) / live_to_right); 1178 } 1179 #endif // #ifndef PRODUCT 1180 1181 // Return a fraction indicating how much of the generation can be treated as 1182 // "dead wood" (i.e., not reclaimed). The function uses a normal distribution 1183 // based on the density of live objects in the generation to determine a limit, 1184 // which is then adjusted so the return value is min_percent when the density is 1185 // 1. 1186 // 1187 // The following table shows some return values for a different values of the 1188 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and 1189 // min_percent is 1. 1190 // 1191 // fraction allowed as dead wood 1192 // ----------------------------------------------------------------- 1193 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95 1194 // ------- ---------- ---------- ---------- ---------- ---------- ---------- 1195 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 1196 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941 1197 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272 1198 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066 1199 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975 1200 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313 1201 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132 1202 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289 1203 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500 1204 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386 1205 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510 1206 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386 1207 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500 1208 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289 1209 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132 1210 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313 1211 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975 1212 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066 1213 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272 1214 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941 1215 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 1216 1217 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent) 1218 { 1219 assert(_dwl_initialized, "uninitialized"); 1220 1221 // The raw limit is the value of the normal distribution at x = density. 1222 const double raw_limit = normal_distribution(density); 1223 1224 // Adjust the raw limit so it becomes the minimum when the density is 1. 1225 // 1226 // First subtract the adjustment value (which is simply the precomputed value 1227 // normal_distribution(1.0)); this yields a value of 0 when the density is 1. 1228 // Then add the minimum value, so the minimum is returned when the density is 1229 // 1. Finally, prevent negative values, which occur when the mean is not 0.5. 1230 const double min = double(min_percent) / 100.0; 1231 const double limit = raw_limit - _dwl_adjustment + min; 1232 return MAX2(limit, 0.0); 1233 } 1234 1235 ParallelCompactData::RegionData* 1236 PSParallelCompact::first_dead_space_region(const RegionData* beg, 1237 const RegionData* end) 1238 { 1239 const size_t region_size = ParallelCompactData::RegionSize; 1240 ParallelCompactData& sd = summary_data(); 1241 size_t left = sd.region(beg); 1242 size_t right = end > beg ? sd.region(end) - 1 : left; 1243 1244 // Binary search. 1245 while (left < right) { 1246 // Equivalent to (left + right) / 2, but does not overflow. 1247 const size_t middle = left + (right - left) / 2; 1248 RegionData* const middle_ptr = sd.region(middle); 1249 HeapWord* const dest = middle_ptr->destination(); 1250 HeapWord* const addr = sd.region_to_addr(middle); 1251 assert(dest != NULL, "sanity"); 1252 assert(dest <= addr, "must move left"); 1253 1254 if (middle > left && dest < addr) { 1255 right = middle - 1; 1256 } else if (middle < right && middle_ptr->data_size() == region_size) { 1257 left = middle + 1; 1258 } else { 1259 return middle_ptr; 1260 } 1261 } 1262 return sd.region(left); 1263 } 1264 1265 ParallelCompactData::RegionData* 1266 PSParallelCompact::dead_wood_limit_region(const RegionData* beg, 1267 const RegionData* end, 1268 size_t dead_words) 1269 { 1270 ParallelCompactData& sd = summary_data(); 1271 size_t left = sd.region(beg); 1272 size_t right = end > beg ? sd.region(end) - 1 : left; 1273 1274 // Binary search. 1275 while (left < right) { 1276 // Equivalent to (left + right) / 2, but does not overflow. 1277 const size_t middle = left + (right - left) / 2; 1278 RegionData* const middle_ptr = sd.region(middle); 1279 HeapWord* const dest = middle_ptr->destination(); 1280 HeapWord* const addr = sd.region_to_addr(middle); 1281 assert(dest != NULL, "sanity"); 1282 assert(dest <= addr, "must move left"); 1283 1284 const size_t dead_to_left = pointer_delta(addr, dest); 1285 if (middle > left && dead_to_left > dead_words) { 1286 right = middle - 1; 1287 } else if (middle < right && dead_to_left < dead_words) { 1288 left = middle + 1; 1289 } else { 1290 return middle_ptr; 1291 } 1292 } 1293 return sd.region(left); 1294 } 1295 1296 // The result is valid during the summary phase, after the initial summarization 1297 // of each space into itself, and before final summarization. 1298 inline double 1299 PSParallelCompact::reclaimed_ratio(const RegionData* const cp, 1300 HeapWord* const bottom, 1301 HeapWord* const top, 1302 HeapWord* const new_top) 1303 { 1304 ParallelCompactData& sd = summary_data(); 1305 1306 assert(cp != NULL, "sanity"); 1307 assert(bottom != NULL, "sanity"); 1308 assert(top != NULL, "sanity"); 1309 assert(new_top != NULL, "sanity"); 1310 assert(top >= new_top, "summary data problem?"); 1311 assert(new_top > bottom, "space is empty; should not be here"); 1312 assert(new_top >= cp->destination(), "sanity"); 1313 assert(top >= sd.region_to_addr(cp), "sanity"); 1314 1315 HeapWord* const destination = cp->destination(); 1316 const size_t dense_prefix_live = pointer_delta(destination, bottom); 1317 const size_t compacted_region_live = pointer_delta(new_top, destination); 1318 const size_t compacted_region_used = pointer_delta(top, 1319 sd.region_to_addr(cp)); 1320 const size_t reclaimable = compacted_region_used - compacted_region_live; 1321 1322 const double divisor = dense_prefix_live + 1.25 * compacted_region_live; 1323 return double(reclaimable) / divisor; 1324 } 1325 1326 // Return the address of the end of the dense prefix, a.k.a. the start of the 1327 // compacted region. The address is always on a region boundary. 1328 // 1329 // Completely full regions at the left are skipped, since no compaction can 1330 // occur in those regions. Then the maximum amount of dead wood to allow is 1331 // computed, based on the density (amount live / capacity) of the generation; 1332 // the region with approximately that amount of dead space to the left is 1333 // identified as the limit region. Regions between the last completely full 1334 // region and the limit region are scanned and the one that has the best 1335 // (maximum) reclaimed_ratio() is selected. 1336 HeapWord* 1337 PSParallelCompact::compute_dense_prefix(const SpaceId id, 1338 bool maximum_compaction) 1339 { 1340 if (ParallelOldGCSplitALot) { 1341 if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) { 1342 // The value was chosen to provoke splitting a young gen space; use it. 1343 return _space_info[id].dense_prefix(); 1344 } 1345 } 1346 1347 const size_t region_size = ParallelCompactData::RegionSize; 1348 const ParallelCompactData& sd = summary_data(); 1349 1350 const MutableSpace* const space = _space_info[id].space(); 1351 HeapWord* const top = space->top(); 1352 HeapWord* const top_aligned_up = sd.region_align_up(top); 1353 HeapWord* const new_top = _space_info[id].new_top(); 1354 HeapWord* const new_top_aligned_up = sd.region_align_up(new_top); 1355 HeapWord* const bottom = space->bottom(); 1356 const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom); 1357 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); 1358 const RegionData* const new_top_cp = 1359 sd.addr_to_region_ptr(new_top_aligned_up); 1360 1361 // Skip full regions at the beginning of the space--they are necessarily part 1362 // of the dense prefix. 1363 const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp); 1364 assert(full_cp->destination() == sd.region_to_addr(full_cp) || 1365 space->is_empty(), "no dead space allowed to the left"); 1366 assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1, 1367 "region must have dead space"); 1368 1369 // The gc number is saved whenever a maximum compaction is done, and used to 1370 // determine when the maximum compaction interval has expired. This avoids 1371 // successive max compactions for different reasons. 1372 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity"); 1373 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num; 1374 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval || 1375 total_invocations() == HeapFirstMaximumCompactionCount; 1376 if (maximum_compaction || full_cp == top_cp || interval_ended) { 1377 _maximum_compaction_gc_num = total_invocations(); 1378 return sd.region_to_addr(full_cp); 1379 } 1380 1381 const size_t space_live = pointer_delta(new_top, bottom); 1382 const size_t space_used = space->used_in_words(); 1383 const size_t space_capacity = space->capacity_in_words(); 1384 1385 const double density = double(space_live) / double(space_capacity); 1386 const size_t min_percent_free = MarkSweepDeadRatio; 1387 const double limiter = dead_wood_limiter(density, min_percent_free); 1388 const size_t dead_wood_max = space_used - space_live; 1389 const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter), 1390 dead_wood_max); 1391 1392 if (TraceParallelOldGCDensePrefix) { 1393 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " " 1394 "space_cap=" SIZE_FORMAT, 1395 space_live, space_used, 1396 space_capacity); 1397 tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f " 1398 "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT, 1399 density, min_percent_free, limiter, 1400 dead_wood_max, dead_wood_limit); 1401 } 1402 1403 // Locate the region with the desired amount of dead space to the left. 1404 const RegionData* const limit_cp = 1405 dead_wood_limit_region(full_cp, top_cp, dead_wood_limit); 1406 1407 // Scan from the first region with dead space to the limit region and find the 1408 // one with the best (largest) reclaimed ratio. 1409 double best_ratio = 0.0; 1410 const RegionData* best_cp = full_cp; 1411 for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) { 1412 double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top); 1413 if (tmp_ratio > best_ratio) { 1414 best_cp = cp; 1415 best_ratio = tmp_ratio; 1416 } 1417 } 1418 1419 #if 0 1420 // Something to consider: if the region with the best ratio is 'close to' the 1421 // first region w/free space, choose the first region with free space 1422 // ("first-free"). The first-free region is usually near the start of the 1423 // heap, which means we are copying most of the heap already, so copy a bit 1424 // more to get complete compaction. 1425 if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) { 1426 _maximum_compaction_gc_num = total_invocations(); 1427 best_cp = full_cp; 1428 } 1429 #endif // #if 0 1430 1431 return sd.region_to_addr(best_cp); 1432 } 1433 1434 #ifndef PRODUCT 1435 void 1436 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start, 1437 size_t words) 1438 { 1439 if (TraceParallelOldGCSummaryPhase) { 1440 tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") " 1441 SIZE_FORMAT, start, start + words, words); 1442 } 1443 1444 ObjectStartArray* const start_array = _space_info[id].start_array(); 1445 CollectedHeap::fill_with_objects(start, words); 1446 for (HeapWord* p = start; p < start + words; p += oop(p)->size()) { 1447 _mark_bitmap.mark_obj(p, words); 1448 _summary_data.add_obj(p, words); 1449 start_array->allocate_block(p); 1450 } 1451 } 1452 1453 void 1454 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start) 1455 { 1456 ParallelCompactData& sd = summary_data(); 1457 MutableSpace* space = _space_info[id].space(); 1458 1459 // Find the source and destination start addresses. 1460 HeapWord* const src_addr = sd.region_align_down(start); 1461 HeapWord* dst_addr; 1462 if (src_addr < start) { 1463 dst_addr = sd.addr_to_region_ptr(src_addr)->destination(); 1464 } else if (src_addr > space->bottom()) { 1465 // The start (the original top() value) is aligned to a region boundary so 1466 // the associated region does not have a destination. Compute the 1467 // destination from the previous region. 1468 RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1; 1469 dst_addr = cp->destination() + cp->data_size(); 1470 } else { 1471 // Filling the entire space. 1472 dst_addr = space->bottom(); 1473 } 1474 assert(dst_addr != NULL, "sanity"); 1475 1476 // Update the summary data. 1477 bool result = _summary_data.summarize(_space_info[id].split_info(), 1478 src_addr, space->top(), NULL, 1479 dst_addr, space->end(), 1480 _space_info[id].new_top_addr()); 1481 assert(result, "should not fail: bad filler object size"); 1482 } 1483 1484 void 1485 PSParallelCompact::provoke_split_fill_survivor(SpaceId id) 1486 { 1487 if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) { 1488 return; 1489 } 1490 1491 MutableSpace* const space = _space_info[id].space(); 1492 if (space->is_empty()) { 1493 HeapWord* b = space->bottom(); 1494 HeapWord* t = b + space->capacity_in_words() / 2; 1495 space->set_top(t); 1496 if (ZapUnusedHeapArea) { 1497 space->set_top_for_allocations(); 1498 } 1499 1500 size_t min_size = CollectedHeap::min_fill_size(); 1501 size_t obj_len = min_size; 1502 while (b + obj_len <= t) { 1503 CollectedHeap::fill_with_object(b, obj_len); 1504 mark_bitmap()->mark_obj(b, obj_len); 1505 summary_data().add_obj(b, obj_len); 1506 b += obj_len; 1507 obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ... 1508 } 1509 if (b < t) { 1510 // The loop didn't completely fill to t (top); adjust top downward. 1511 space->set_top(b); 1512 if (ZapUnusedHeapArea) { 1513 space->set_top_for_allocations(); 1514 } 1515 } 1516 1517 HeapWord** nta = _space_info[id].new_top_addr(); 1518 bool result = summary_data().summarize(_space_info[id].split_info(), 1519 space->bottom(), space->top(), NULL, 1520 space->bottom(), space->end(), nta); 1521 assert(result, "space must fit into itself"); 1522 } 1523 } 1524 1525 void 1526 PSParallelCompact::provoke_split(bool & max_compaction) 1527 { 1528 if (total_invocations() % ParallelOldGCSplitInterval != 0) { 1529 return; 1530 } 1531 1532 const size_t region_size = ParallelCompactData::RegionSize; 1533 ParallelCompactData& sd = summary_data(); 1534 1535 MutableSpace* const eden_space = _space_info[eden_space_id].space(); 1536 MutableSpace* const from_space = _space_info[from_space_id].space(); 1537 const size_t eden_live = pointer_delta(eden_space->top(), 1538 _space_info[eden_space_id].new_top()); 1539 const size_t from_live = pointer_delta(from_space->top(), 1540 _space_info[from_space_id].new_top()); 1541 1542 const size_t min_fill_size = CollectedHeap::min_fill_size(); 1543 const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top()); 1544 const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0; 1545 const size_t from_free = pointer_delta(from_space->end(), from_space->top()); 1546 const size_t from_fillable = from_free >= min_fill_size ? from_free : 0; 1547 1548 // Choose the space to split; need at least 2 regions live (or fillable). 1549 SpaceId id; 1550 MutableSpace* space; 1551 size_t live_words; 1552 size_t fill_words; 1553 if (eden_live + eden_fillable >= region_size * 2) { 1554 id = eden_space_id; 1555 space = eden_space; 1556 live_words = eden_live; 1557 fill_words = eden_fillable; 1558 } else if (from_live + from_fillable >= region_size * 2) { 1559 id = from_space_id; 1560 space = from_space; 1561 live_words = from_live; 1562 fill_words = from_fillable; 1563 } else { 1564 return; // Give up. 1565 } 1566 assert(fill_words == 0 || fill_words >= min_fill_size, "sanity"); 1567 1568 if (live_words < region_size * 2) { 1569 // Fill from top() to end() w/live objects of mixed sizes. 1570 HeapWord* const fill_start = space->top(); 1571 live_words += fill_words; 1572 1573 space->set_top(fill_start + fill_words); 1574 if (ZapUnusedHeapArea) { 1575 space->set_top_for_allocations(); 1576 } 1577 1578 HeapWord* cur_addr = fill_start; 1579 while (fill_words > 0) { 1580 const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size; 1581 size_t cur_size = MIN2(align_object_size_(r), fill_words); 1582 if (fill_words - cur_size < min_fill_size) { 1583 cur_size = fill_words; // Avoid leaving a fragment too small to fill. 1584 } 1585 1586 CollectedHeap::fill_with_object(cur_addr, cur_size); 1587 mark_bitmap()->mark_obj(cur_addr, cur_size); 1588 sd.add_obj(cur_addr, cur_size); 1589 1590 cur_addr += cur_size; 1591 fill_words -= cur_size; 1592 } 1593 1594 summarize_new_objects(id, fill_start); 1595 } 1596 1597 max_compaction = false; 1598 1599 // Manipulate the old gen so that it has room for about half of the live data 1600 // in the target young gen space (live_words / 2). 1601 id = old_space_id; 1602 space = _space_info[id].space(); 1603 const size_t free_at_end = space->free_in_words(); 1604 const size_t free_target = align_object_size(live_words / 2); 1605 const size_t dead = pointer_delta(space->top(), _space_info[id].new_top()); 1606 1607 if (free_at_end >= free_target + min_fill_size) { 1608 // Fill space above top() and set the dense prefix so everything survives. 1609 HeapWord* const fill_start = space->top(); 1610 const size_t fill_size = free_at_end - free_target; 1611 space->set_top(space->top() + fill_size); 1612 if (ZapUnusedHeapArea) { 1613 space->set_top_for_allocations(); 1614 } 1615 fill_with_live_objects(id, fill_start, fill_size); 1616 summarize_new_objects(id, fill_start); 1617 _space_info[id].set_dense_prefix(sd.region_align_down(space->top())); 1618 } else if (dead + free_at_end > free_target) { 1619 // Find a dense prefix that makes the right amount of space available. 1620 HeapWord* cur = sd.region_align_down(space->top()); 1621 HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination(); 1622 size_t dead_to_right = pointer_delta(space->end(), cur_destination); 1623 while (dead_to_right < free_target) { 1624 cur -= region_size; 1625 cur_destination = sd.addr_to_region_ptr(cur)->destination(); 1626 dead_to_right = pointer_delta(space->end(), cur_destination); 1627 } 1628 _space_info[id].set_dense_prefix(cur); 1629 } 1630 } 1631 #endif // #ifndef PRODUCT 1632 1633 void PSParallelCompact::summarize_spaces_quick() 1634 { 1635 for (unsigned int i = 0; i < last_space_id; ++i) { 1636 const MutableSpace* space = _space_info[i].space(); 1637 HeapWord** nta = _space_info[i].new_top_addr(); 1638 bool result = _summary_data.summarize(_space_info[i].split_info(), 1639 space->bottom(), space->top(), NULL, 1640 space->bottom(), space->end(), nta); 1641 assert(result, "space must fit into itself"); 1642 _space_info[i].set_dense_prefix(space->bottom()); 1643 } 1644 1645 #ifndef PRODUCT 1646 if (ParallelOldGCSplitALot) { 1647 provoke_split_fill_survivor(to_space_id); 1648 } 1649 #endif // #ifndef PRODUCT 1650 } 1651 1652 void PSParallelCompact::fill_dense_prefix_end(SpaceId id) 1653 { 1654 HeapWord* const dense_prefix_end = dense_prefix(id); 1655 const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end); 1656 const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end); 1657 if (dead_space_crosses_boundary(region, dense_prefix_bit)) { 1658 // Only enough dead space is filled so that any remaining dead space to the 1659 // left is larger than the minimum filler object. (The remainder is filled 1660 // during the copy/update phase.) 1661 // 1662 // The size of the dead space to the right of the boundary is not a 1663 // concern, since compaction will be able to use whatever space is 1664 // available. 1665 // 1666 // Here '||' is the boundary, 'x' represents a don't care bit and a box 1667 // surrounds the space to be filled with an object. 1668 // 1669 // In the 32-bit VM, each bit represents two 32-bit words: 1670 // +---+ 1671 // a) beg_bits: ... x x x | 0 | || 0 x x ... 1672 // end_bits: ... x x x | 0 | || 0 x x ... 1673 // +---+ 1674 // 1675 // In the 64-bit VM, each bit represents one 64-bit word: 1676 // +------------+ 1677 // b) beg_bits: ... x x x | 0 || 0 | x x ... 1678 // end_bits: ... x x 1 | 0 || 0 | x x ... 1679 // +------------+ 1680 // +-------+ 1681 // c) beg_bits: ... x x | 0 0 | || 0 x x ... 1682 // end_bits: ... x 1 | 0 0 | || 0 x x ... 1683 // +-------+ 1684 // +-----------+ 1685 // d) beg_bits: ... x | 0 0 0 | || 0 x x ... 1686 // end_bits: ... 1 | 0 0 0 | || 0 x x ... 1687 // +-----------+ 1688 // +-------+ 1689 // e) beg_bits: ... 0 0 | 0 0 | || 0 x x ... 1690 // end_bits: ... 0 0 | 0 0 | || 0 x x ... 1691 // +-------+ 1692 1693 // Initially assume case a, c or e will apply. 1694 size_t obj_len = CollectedHeap::min_fill_size(); 1695 HeapWord* obj_beg = dense_prefix_end - obj_len; 1696 1697 #ifdef _LP64 1698 if (MinObjAlignment > 1) { // object alignment > heap word size 1699 // Cases a, c or e. 1700 } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) { 1701 // Case b above. 1702 obj_beg = dense_prefix_end - 1; 1703 } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) && 1704 _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) { 1705 // Case d above. 1706 obj_beg = dense_prefix_end - 3; 1707 obj_len = 3; 1708 } 1709 #endif // #ifdef _LP64 1710 1711 CollectedHeap::fill_with_object(obj_beg, obj_len); 1712 _mark_bitmap.mark_obj(obj_beg, obj_len); 1713 _summary_data.add_obj(obj_beg, obj_len); 1714 assert(start_array(id) != NULL, "sanity"); 1715 start_array(id)->allocate_block(obj_beg); 1716 } 1717 } 1718 1719 void 1720 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr) 1721 { 1722 RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr); 1723 HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr); 1724 RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up); 1725 for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) { 1726 cur->set_source_region(0); 1727 } 1728 } 1729 1730 void 1731 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction) 1732 { 1733 assert(id < last_space_id, "id out of range"); 1734 assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() || 1735 ParallelOldGCSplitALot && id == old_space_id, 1736 "should have been reset in summarize_spaces_quick()"); 1737 1738 const MutableSpace* space = _space_info[id].space(); 1739 if (_space_info[id].new_top() != space->bottom()) { 1740 HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction); 1741 _space_info[id].set_dense_prefix(dense_prefix_end); 1742 1743 #ifndef PRODUCT 1744 if (TraceParallelOldGCDensePrefix) { 1745 print_dense_prefix_stats("ratio", id, maximum_compaction, 1746 dense_prefix_end); 1747 HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction); 1748 print_dense_prefix_stats("density", id, maximum_compaction, addr); 1749 } 1750 #endif // #ifndef PRODUCT 1751 1752 // Recompute the summary data, taking into account the dense prefix. If 1753 // every last byte will be reclaimed, then the existing summary data which 1754 // compacts everything can be left in place. 1755 if (!maximum_compaction && dense_prefix_end != space->bottom()) { 1756 // If dead space crosses the dense prefix boundary, it is (at least 1757 // partially) filled with a dummy object, marked live and added to the 1758 // summary data. This simplifies the copy/update phase and must be done 1759 // before the final locations of objects are determined, to prevent 1760 // leaving a fragment of dead space that is too small to fill. 1761 fill_dense_prefix_end(id); 1762 1763 // Compute the destination of each Region, and thus each object. 1764 _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end); 1765 _summary_data.summarize(_space_info[id].split_info(), 1766 dense_prefix_end, space->top(), NULL, 1767 dense_prefix_end, space->end(), 1768 _space_info[id].new_top_addr()); 1769 } 1770 } 1771 1772 if (TraceParallelOldGCSummaryPhase) { 1773 const size_t region_size = ParallelCompactData::RegionSize; 1774 HeapWord* const dense_prefix_end = _space_info[id].dense_prefix(); 1775 const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end); 1776 const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom()); 1777 HeapWord* const new_top = _space_info[id].new_top(); 1778 const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top); 1779 const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end); 1780 tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " " 1781 "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " " 1782 "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT, 1783 id, space->capacity_in_words(), dense_prefix_end, 1784 dp_region, dp_words / region_size, 1785 cr_words / region_size, new_top); 1786 } 1787 } 1788 1789 #ifndef PRODUCT 1790 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id, 1791 HeapWord* dst_beg, HeapWord* dst_end, 1792 SpaceId src_space_id, 1793 HeapWord* src_beg, HeapWord* src_end) 1794 { 1795 if (TraceParallelOldGCSummaryPhase) { 1796 tty->print_cr("summarizing %d [%s] into %d [%s]: " 1797 "src=" PTR_FORMAT "-" PTR_FORMAT " " 1798 SIZE_FORMAT "-" SIZE_FORMAT " " 1799 "dst=" PTR_FORMAT "-" PTR_FORMAT " " 1800 SIZE_FORMAT "-" SIZE_FORMAT, 1801 src_space_id, space_names[src_space_id], 1802 dst_space_id, space_names[dst_space_id], 1803 src_beg, src_end, 1804 _summary_data.addr_to_region_idx(src_beg), 1805 _summary_data.addr_to_region_idx(src_end), 1806 dst_beg, dst_end, 1807 _summary_data.addr_to_region_idx(dst_beg), 1808 _summary_data.addr_to_region_idx(dst_end)); 1809 } 1810 } 1811 #endif // #ifndef PRODUCT 1812 1813 void PSParallelCompact::summary_phase(ParCompactionManager* cm, 1814 bool maximum_compaction) 1815 { 1816 TraceTime tm("summary phase", print_phases(), true, gclog_or_tty); 1817 // trace("2"); 1818 1819 #ifdef ASSERT 1820 if (TraceParallelOldGCMarkingPhase) { 1821 tty->print_cr("add_obj_count=" SIZE_FORMAT " " 1822 "add_obj_bytes=" SIZE_FORMAT, 1823 add_obj_count, add_obj_size * HeapWordSize); 1824 tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " " 1825 "mark_bitmap_bytes=" SIZE_FORMAT, 1826 mark_bitmap_count, mark_bitmap_size * HeapWordSize); 1827 } 1828 #endif // #ifdef ASSERT 1829 1830 // Quick summarization of each space into itself, to see how much is live. 1831 summarize_spaces_quick(); 1832 1833 if (TraceParallelOldGCSummaryPhase) { 1834 tty->print_cr("summary_phase: after summarizing each space to self"); 1835 Universe::print(); 1836 NOT_PRODUCT(print_region_ranges()); 1837 if (Verbose) { 1838 NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info)); 1839 } 1840 } 1841 1842 // The amount of live data that will end up in old space (assuming it fits). 1843 size_t old_space_total_live = 0; 1844 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 1845 old_space_total_live += pointer_delta(_space_info[id].new_top(), 1846 _space_info[id].space()->bottom()); 1847 } 1848 1849 MutableSpace* const old_space = _space_info[old_space_id].space(); 1850 const size_t old_capacity = old_space->capacity_in_words(); 1851 if (old_space_total_live > old_capacity) { 1852 // XXX - should also try to expand 1853 maximum_compaction = true; 1854 } 1855 #ifndef PRODUCT 1856 if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) { 1857 provoke_split(maximum_compaction); 1858 } 1859 #endif // #ifndef PRODUCT 1860 1861 // Old generations. 1862 summarize_space(old_space_id, maximum_compaction); 1863 1864 // Summarize the remaining spaces in the young gen. The initial target space 1865 // is the old gen. If a space does not fit entirely into the target, then the 1866 // remainder is compacted into the space itself and that space becomes the new 1867 // target. 1868 SpaceId dst_space_id = old_space_id; 1869 HeapWord* dst_space_end = old_space->end(); 1870 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr(); 1871 for (unsigned int id = eden_space_id; id < last_space_id; ++id) { 1872 const MutableSpace* space = _space_info[id].space(); 1873 const size_t live = pointer_delta(_space_info[id].new_top(), 1874 space->bottom()); 1875 const size_t available = pointer_delta(dst_space_end, *new_top_addr); 1876 1877 NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end, 1878 SpaceId(id), space->bottom(), space->top());) 1879 if (live > 0 && live <= available) { 1880 // All the live data will fit. 1881 bool done = _summary_data.summarize(_space_info[id].split_info(), 1882 space->bottom(), space->top(), 1883 NULL, 1884 *new_top_addr, dst_space_end, 1885 new_top_addr); 1886 assert(done, "space must fit into old gen"); 1887 1888 // Reset the new_top value for the space. 1889 _space_info[id].set_new_top(space->bottom()); 1890 } else if (live > 0) { 1891 // Attempt to fit part of the source space into the target space. 1892 HeapWord* next_src_addr = NULL; 1893 bool done = _summary_data.summarize(_space_info[id].split_info(), 1894 space->bottom(), space->top(), 1895 &next_src_addr, 1896 *new_top_addr, dst_space_end, 1897 new_top_addr); 1898 assert(!done, "space should not fit into old gen"); 1899 assert(next_src_addr != NULL, "sanity"); 1900 1901 // The source space becomes the new target, so the remainder is compacted 1902 // within the space itself. 1903 dst_space_id = SpaceId(id); 1904 dst_space_end = space->end(); 1905 new_top_addr = _space_info[id].new_top_addr(); 1906 NOT_PRODUCT(summary_phase_msg(dst_space_id, 1907 space->bottom(), dst_space_end, 1908 SpaceId(id), next_src_addr, space->top());) 1909 done = _summary_data.summarize(_space_info[id].split_info(), 1910 next_src_addr, space->top(), 1911 NULL, 1912 space->bottom(), dst_space_end, 1913 new_top_addr); 1914 assert(done, "space must fit when compacted into itself"); 1915 assert(*new_top_addr <= space->top(), "usage should not grow"); 1916 } 1917 } 1918 1919 if (TraceParallelOldGCSummaryPhase) { 1920 tty->print_cr("summary_phase: after final summarization"); 1921 Universe::print(); 1922 NOT_PRODUCT(print_region_ranges()); 1923 if (Verbose) { 1924 NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info)); 1925 } 1926 } 1927 } 1928 1929 // This method should contain all heap-specific policy for invoking a full 1930 // collection. invoke_no_policy() will only attempt to compact the heap; it 1931 // will do nothing further. If we need to bail out for policy reasons, scavenge 1932 // before full gc, or any other specialized behavior, it needs to be added here. 1933 // 1934 // Note that this method should only be called from the vm_thread while at a 1935 // safepoint. 1936 // 1937 // Note that the all_soft_refs_clear flag in the collector policy 1938 // may be true because this method can be called without intervening 1939 // activity. For example when the heap space is tight and full measure 1940 // are being taken to free space. 1941 void PSParallelCompact::invoke(bool maximum_heap_compaction) { 1942 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 1943 assert(Thread::current() == (Thread*)VMThread::vm_thread(), 1944 "should be in vm thread"); 1945 1946 ParallelScavengeHeap* heap = gc_heap(); 1947 GCCause::Cause gc_cause = heap->gc_cause(); 1948 assert(!heap->is_gc_active(), "not reentrant"); 1949 1950 PSAdaptiveSizePolicy* policy = heap->size_policy(); 1951 IsGCActiveMark mark; 1952 1953 if (ScavengeBeforeFullGC) { 1954 PSScavenge::invoke_no_policy(); 1955 } 1956 1957 const bool clear_all_soft_refs = 1958 heap->collector_policy()->should_clear_all_soft_refs(); 1959 1960 PSParallelCompact::invoke_no_policy(clear_all_soft_refs || 1961 maximum_heap_compaction); 1962 } 1963 1964 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) { 1965 size_t addr_region_index = addr_to_region_idx(addr); 1966 return region_index == addr_region_index; 1967 } 1968 1969 // This method contains no policy. You should probably 1970 // be calling invoke() instead. 1971 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) { 1972 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); 1973 assert(ref_processor() != NULL, "Sanity"); 1974 1975 if (GC_locker::check_active_before_gc()) { 1976 return false; 1977 } 1978 1979 TimeStamp marking_start; 1980 TimeStamp compaction_start; 1981 TimeStamp collection_exit; 1982 1983 ParallelScavengeHeap* heap = gc_heap(); 1984 GCCause::Cause gc_cause = heap->gc_cause(); 1985 PSYoungGen* young_gen = heap->young_gen(); 1986 PSOldGen* old_gen = heap->old_gen(); 1987 PSAdaptiveSizePolicy* size_policy = heap->size_policy(); 1988 1989 // The scope of casr should end after code that can change 1990 // CollectorPolicy::_should_clear_all_soft_refs. 1991 ClearedAllSoftRefs casr(maximum_heap_compaction, 1992 heap->collector_policy()); 1993 1994 if (ZapUnusedHeapArea) { 1995 // Save information needed to minimize mangling 1996 heap->record_gen_tops_before_GC(); 1997 } 1998 1999 heap->pre_full_gc_dump(); 2000 2001 _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes; 2002 2003 // Make sure data structures are sane, make the heap parsable, and do other 2004 // miscellaneous bookkeeping. 2005 PreGCValues pre_gc_values; 2006 pre_compact(&pre_gc_values); 2007 2008 // Get the compaction manager reserved for the VM thread. 2009 ParCompactionManager* const vmthread_cm = 2010 ParCompactionManager::manager_array(gc_task_manager()->workers()); 2011 2012 // Place after pre_compact() where the number of invocations is incremented. 2013 AdaptiveSizePolicyOutput(size_policy, heap->total_collections()); 2014 2015 { 2016 ResourceMark rm; 2017 HandleMark hm; 2018 2019 // Set the number of GC threads to be used in this collection 2020 gc_task_manager()->set_active_gang(); 2021 gc_task_manager()->task_idle_workers(); 2022 heap->set_par_threads(gc_task_manager()->active_workers()); 2023 2024 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps); 2025 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 2026 TraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty); 2027 TraceCollectorStats tcs(counters()); 2028 TraceMemoryManagerStats tms(true /* Full GC */,gc_cause); 2029 2030 if (TraceGen1Time) accumulated_time()->start(); 2031 2032 // Let the size policy know we're starting 2033 size_policy->major_collection_begin(); 2034 2035 CodeCache::gc_prologue(); 2036 Threads::gc_prologue(); 2037 2038 COMPILER2_PRESENT(DerivedPointerTable::clear()); 2039 2040 ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/); 2041 ref_processor()->setup_policy(maximum_heap_compaction); 2042 2043 bool marked_for_unloading = false; 2044 2045 marking_start.update(); 2046 marking_phase(vmthread_cm, maximum_heap_compaction); 2047 2048 bool max_on_system_gc = UseMaximumCompactionOnSystemGC 2049 && gc_cause == GCCause::_java_lang_system_gc; 2050 summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc); 2051 2052 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity")); 2053 COMPILER2_PRESENT(DerivedPointerTable::set_active(false)); 2054 2055 // adjust_roots() updates Universe::_intArrayKlassObj which is 2056 // needed by the compaction for filling holes in the dense prefix. 2057 adjust_roots(); 2058 2059 compaction_start.update(); 2060 compact(); 2061 2062 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be 2063 // done before resizing. 2064 post_compact(); 2065 2066 // Let the size policy know we're done 2067 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause); 2068 2069 if (UseAdaptiveSizePolicy) { 2070 if (PrintAdaptiveSizePolicy) { 2071 gclog_or_tty->print("AdaptiveSizeStart: "); 2072 gclog_or_tty->stamp(); 2073 gclog_or_tty->print_cr(" collection: %d ", 2074 heap->total_collections()); 2075 if (Verbose) { 2076 gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d", 2077 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes()); 2078 } 2079 } 2080 2081 // Don't check if the size_policy is ready here. Let 2082 // the size_policy check that internally. 2083 if (UseAdaptiveGenerationSizePolicyAtMajorCollection && 2084 ((gc_cause != GCCause::_java_lang_system_gc) || 2085 UseAdaptiveSizePolicyWithSystemGC)) { 2086 // Calculate optimal free space amounts 2087 assert(young_gen->max_size() > 2088 young_gen->from_space()->capacity_in_bytes() + 2089 young_gen->to_space()->capacity_in_bytes(), 2090 "Sizes of space in young gen are out-of-bounds"); 2091 2092 size_t young_live = young_gen->used_in_bytes(); 2093 size_t eden_live = young_gen->eden_space()->used_in_bytes(); 2094 size_t old_live = old_gen->used_in_bytes(); 2095 size_t cur_eden = young_gen->eden_space()->capacity_in_bytes(); 2096 size_t max_old_gen_size = old_gen->max_gen_size(); 2097 size_t max_eden_size = young_gen->max_size() - 2098 young_gen->from_space()->capacity_in_bytes() - 2099 young_gen->to_space()->capacity_in_bytes(); 2100 2101 // Used for diagnostics 2102 size_policy->clear_generation_free_space_flags(); 2103 2104 size_policy->compute_generation_free_space(young_live, 2105 eden_live, 2106 old_live, 2107 cur_eden, 2108 max_old_gen_size, 2109 max_eden_size, 2110 true /* full gc*/); 2111 2112 size_policy->check_gc_overhead_limit(young_live, 2113 eden_live, 2114 max_old_gen_size, 2115 max_eden_size, 2116 true /* full gc*/, 2117 gc_cause, 2118 heap->collector_policy()); 2119 2120 size_policy->decay_supplemental_growth(true /* full gc*/); 2121 2122 heap->resize_old_gen( 2123 size_policy->calculated_old_free_size_in_bytes()); 2124 2125 // Don't resize the young generation at an major collection. A 2126 // desired young generation size may have been calculated but 2127 // resizing the young generation complicates the code because the 2128 // resizing of the old generation may have moved the boundary 2129 // between the young generation and the old generation. Let the 2130 // young generation resizing happen at the minor collections. 2131 } 2132 if (PrintAdaptiveSizePolicy) { 2133 gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ", 2134 heap->total_collections()); 2135 } 2136 } 2137 2138 if (UsePerfData) { 2139 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters(); 2140 counters->update_counters(); 2141 counters->update_old_capacity(old_gen->capacity_in_bytes()); 2142 counters->update_young_capacity(young_gen->capacity_in_bytes()); 2143 } 2144 2145 heap->resize_all_tlabs(); 2146 2147 // Resize the metaspace capactiy after a collection 2148 MetaspaceGC::compute_new_size(); 2149 2150 if (TraceGen1Time) accumulated_time()->stop(); 2151 2152 if (PrintGC) { 2153 if (PrintGCDetails) { 2154 // No GC timestamp here. This is after GC so it would be confusing. 2155 young_gen->print_used_change(pre_gc_values.young_gen_used()); 2156 old_gen->print_used_change(pre_gc_values.old_gen_used()); 2157 heap->print_heap_change(pre_gc_values.heap_used()); 2158 MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used()); 2159 } else { 2160 heap->print_heap_change(pre_gc_values.heap_used()); 2161 } 2162 } 2163 2164 // Track memory usage and detect low memory 2165 MemoryService::track_memory_usage(); 2166 heap->update_counters(); 2167 gc_task_manager()->release_idle_workers(); 2168 } 2169 2170 #ifdef ASSERT 2171 for (size_t i = 0; i < ParallelGCThreads + 1; ++i) { 2172 ParCompactionManager* const cm = 2173 ParCompactionManager::manager_array(int(i)); 2174 assert(cm->marking_stack()->is_empty(), "should be empty"); 2175 assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty"); 2176 } 2177 #endif // ASSERT 2178 2179 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { 2180 HandleMark hm; // Discard invalid handles created during verification 2181 Universe::verify(" VerifyAfterGC:"); 2182 } 2183 2184 // Re-verify object start arrays 2185 if (VerifyObjectStartArray && 2186 VerifyAfterGC) { 2187 old_gen->verify_object_start_array(); 2188 } 2189 2190 if (ZapUnusedHeapArea) { 2191 old_gen->object_space()->check_mangled_unused_area_complete(); 2192 } 2193 2194 NOT_PRODUCT(ref_processor()->verify_no_references_recorded()); 2195 2196 collection_exit.update(); 2197 2198 heap->print_heap_after_gc(); 2199 if (PrintGCTaskTimeStamps) { 2200 gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " " 2201 INT64_FORMAT, 2202 marking_start.ticks(), compaction_start.ticks(), 2203 collection_exit.ticks()); 2204 gc_task_manager()->print_task_time_stamps(); 2205 } 2206 2207 heap->post_full_gc_dump(); 2208 2209 #ifdef TRACESPINNING 2210 ParallelTaskTerminator::print_termination_counts(); 2211 #endif 2212 2213 return true; 2214 } 2215 2216 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy, 2217 PSYoungGen* young_gen, 2218 PSOldGen* old_gen) { 2219 MutableSpace* const eden_space = young_gen->eden_space(); 2220 assert(!eden_space->is_empty(), "eden must be non-empty"); 2221 assert(young_gen->virtual_space()->alignment() == 2222 old_gen->virtual_space()->alignment(), "alignments do not match"); 2223 2224 if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) { 2225 return false; 2226 } 2227 2228 // Both generations must be completely committed. 2229 if (young_gen->virtual_space()->uncommitted_size() != 0) { 2230 return false; 2231 } 2232 if (old_gen->virtual_space()->uncommitted_size() != 0) { 2233 return false; 2234 } 2235 2236 // Figure out how much to take from eden. Include the average amount promoted 2237 // in the total; otherwise the next young gen GC will simply bail out to a 2238 // full GC. 2239 const size_t alignment = old_gen->virtual_space()->alignment(); 2240 const size_t eden_used = eden_space->used_in_bytes(); 2241 const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average(); 2242 const size_t absorb_size = align_size_up(eden_used + promoted, alignment); 2243 const size_t eden_capacity = eden_space->capacity_in_bytes(); 2244 2245 if (absorb_size >= eden_capacity) { 2246 return false; // Must leave some space in eden. 2247 } 2248 2249 const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size; 2250 if (new_young_size < young_gen->min_gen_size()) { 2251 return false; // Respect young gen minimum size. 2252 } 2253 2254 if (TraceAdaptiveGCBoundary && Verbose) { 2255 gclog_or_tty->print(" absorbing " SIZE_FORMAT "K: " 2256 "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K " 2257 "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K " 2258 "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ", 2259 absorb_size / K, 2260 eden_capacity / K, (eden_capacity - absorb_size) / K, 2261 young_gen->from_space()->used_in_bytes() / K, 2262 young_gen->to_space()->used_in_bytes() / K, 2263 young_gen->capacity_in_bytes() / K, new_young_size / K); 2264 } 2265 2266 // Fill the unused part of the old gen. 2267 MutableSpace* const old_space = old_gen->object_space(); 2268 HeapWord* const unused_start = old_space->top(); 2269 size_t const unused_words = pointer_delta(old_space->end(), unused_start); 2270 2271 if (unused_words > 0) { 2272 if (unused_words < CollectedHeap::min_fill_size()) { 2273 return false; // If the old gen cannot be filled, must give up. 2274 } 2275 CollectedHeap::fill_with_objects(unused_start, unused_words); 2276 } 2277 2278 // Take the live data from eden and set both top and end in the old gen to 2279 // eden top. (Need to set end because reset_after_change() mangles the region 2280 // from end to virtual_space->high() in debug builds). 2281 HeapWord* const new_top = eden_space->top(); 2282 old_gen->virtual_space()->expand_into(young_gen->virtual_space(), 2283 absorb_size); 2284 young_gen->reset_after_change(); 2285 old_space->set_top(new_top); 2286 old_space->set_end(new_top); 2287 old_gen->reset_after_change(); 2288 2289 // Update the object start array for the filler object and the data from eden. 2290 ObjectStartArray* const start_array = old_gen->start_array(); 2291 for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) { 2292 start_array->allocate_block(p); 2293 } 2294 2295 // Could update the promoted average here, but it is not typically updated at 2296 // full GCs and the value to use is unclear. Something like 2297 // 2298 // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc. 2299 2300 size_policy->set_bytes_absorbed_from_eden(absorb_size); 2301 return true; 2302 } 2303 2304 GCTaskManager* const PSParallelCompact::gc_task_manager() { 2305 assert(ParallelScavengeHeap::gc_task_manager() != NULL, 2306 "shouldn't return NULL"); 2307 return ParallelScavengeHeap::gc_task_manager(); 2308 } 2309 2310 void PSParallelCompact::marking_phase(ParCompactionManager* cm, 2311 bool maximum_heap_compaction) { 2312 // Recursively traverse all live objects and mark them 2313 TraceTime tm("marking phase", print_phases(), true, gclog_or_tty); 2314 2315 ParallelScavengeHeap* heap = gc_heap(); 2316 uint parallel_gc_threads = heap->gc_task_manager()->workers(); 2317 uint active_gc_threads = heap->gc_task_manager()->active_workers(); 2318 TaskQueueSetSuper* qset = ParCompactionManager::region_array(); 2319 ParallelTaskTerminator terminator(active_gc_threads, qset); 2320 2321 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm); 2322 PSParallelCompact::FollowStackClosure follow_stack_closure(cm); 2323 2324 // Need new claim bits before marking starts. 2325 ClassLoaderDataGraph::clear_claimed_marks(); 2326 2327 { 2328 TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty); 2329 ParallelScavengeHeap::ParStrongRootsScope psrs; 2330 2331 GCTaskQueue* q = GCTaskQueue::create(); 2332 2333 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe)); 2334 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles)); 2335 // We scan the thread roots in parallel 2336 Threads::create_thread_roots_marking_tasks(q); 2337 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer)); 2338 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler)); 2339 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management)); 2340 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary)); 2341 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data)); 2342 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti)); 2343 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache)); 2344 2345 if (active_gc_threads > 1) { 2346 for (uint j = 0; j < active_gc_threads; j++) { 2347 q->enqueue(new StealMarkingTask(&terminator)); 2348 } 2349 } 2350 2351 gc_task_manager()->execute_and_wait(q); 2352 } 2353 2354 // Process reference objects found during marking 2355 { 2356 TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty); 2357 if (ref_processor()->processing_is_mt()) { 2358 RefProcTaskExecutor task_executor; 2359 ref_processor()->process_discovered_references( 2360 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, 2361 &task_executor); 2362 } else { 2363 ref_processor()->process_discovered_references( 2364 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL); 2365 } 2366 } 2367 2368 TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty); 2369 2370 // This is the point where the entire marking should have completed. 2371 assert(cm->marking_stacks_empty(), "Marking should have completed"); 2372 2373 // Follow system dictionary roots and unload classes. 2374 bool purged_class = SystemDictionary::do_unloading(is_alive_closure()); 2375 2376 // Unload nmethods. 2377 CodeCache::do_unloading(is_alive_closure(), purged_class); 2378 2379 // Prune dead klasses from subklass/sibling/implementor lists. 2380 Klass::clean_weak_klass_links(is_alive_closure()); 2381 2382 // Delete entries for dead interned strings. 2383 StringTable::unlink(is_alive_closure()); 2384 2385 // Clean up unreferenced symbols in symbol table. 2386 SymbolTable::unlink(); 2387 } 2388 2389 void PSParallelCompact::follow_klass(ParCompactionManager* cm, Klass* klass) { 2390 ClassLoaderData* cld = klass->class_loader_data(); 2391 // The actual processing of the klass is done when we 2392 // traverse the list of Klasses in the class loader data. 2393 PSParallelCompact::follow_class_loader(cm, cld); 2394 } 2395 2396 void PSParallelCompact::adjust_klass(ParCompactionManager* cm, Klass* klass) { 2397 ClassLoaderData* cld = klass->class_loader_data(); 2398 // The actual processing of the klass is done when we 2399 // traverse the list of Klasses in the class loader data. 2400 PSParallelCompact::adjust_class_loader(cm, cld); 2401 } 2402 2403 void PSParallelCompact::follow_class_loader(ParCompactionManager* cm, 2404 ClassLoaderData* cld) { 2405 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm); 2406 PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure); 2407 2408 cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true); 2409 } 2410 2411 void PSParallelCompact::adjust_class_loader(ParCompactionManager* cm, 2412 ClassLoaderData* cld) { 2413 cld->oops_do(PSParallelCompact::adjust_pointer_closure(), 2414 PSParallelCompact::adjust_klass_closure(), 2415 true); 2416 } 2417 2418 // This should be moved to the shared markSweep code! 2419 class PSAlwaysTrueClosure: public BoolObjectClosure { 2420 public: 2421 bool do_object_b(oop p) { return true; } 2422 }; 2423 static PSAlwaysTrueClosure always_true; 2424 2425 void PSParallelCompact::adjust_roots() { 2426 // Adjust the pointers to reflect the new locations 2427 TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty); 2428 2429 // Need new claim bits when tracing through and adjusting pointers. 2430 ClassLoaderDataGraph::clear_claimed_marks(); 2431 2432 // General strong roots. 2433 Universe::oops_do(adjust_pointer_closure()); 2434 JNIHandles::oops_do(adjust_pointer_closure()); // Global (strong) JNI handles 2435 CLDToOopClosure adjust_from_cld(adjust_pointer_closure()); 2436 Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL); 2437 ObjectSynchronizer::oops_do(adjust_pointer_closure()); 2438 FlatProfiler::oops_do(adjust_pointer_closure()); 2439 Management::oops_do(adjust_pointer_closure()); 2440 JvmtiExport::oops_do(adjust_pointer_closure()); 2441 // SO_AllClasses 2442 SystemDictionary::oops_do(adjust_pointer_closure()); 2443 ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true); 2444 2445 // Now adjust pointers in remaining weak roots. (All of which should 2446 // have been cleared if they pointed to non-surviving objects.) 2447 // Global (weak) JNI handles 2448 JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure()); 2449 2450 CodeCache::oops_do(adjust_pointer_closure()); 2451 StringTable::oops_do(adjust_pointer_closure()); 2452 ref_processor()->weak_oops_do(adjust_pointer_closure()); 2453 // Roots were visited so references into the young gen in roots 2454 // may have been scanned. Process them also. 2455 // Should the reference processor have a span that excludes 2456 // young gen objects? 2457 PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure()); 2458 } 2459 2460 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q, 2461 uint parallel_gc_threads) 2462 { 2463 TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty); 2464 2465 // Find the threads that are active 2466 unsigned int which = 0; 2467 2468 const uint task_count = MAX2(parallel_gc_threads, 1U); 2469 for (uint j = 0; j < task_count; j++) { 2470 q->enqueue(new DrainStacksCompactionTask(j)); 2471 ParCompactionManager::verify_region_list_empty(j); 2472 // Set the region stacks variables to "no" region stack values 2473 // so that they will be recognized and needing a region stack 2474 // in the stealing tasks if they do not get one by executing 2475 // a draining stack. 2476 ParCompactionManager* cm = ParCompactionManager::manager_array(j); 2477 cm->set_region_stack(NULL); 2478 cm->set_region_stack_index((uint)max_uintx); 2479 } 2480 ParCompactionManager::reset_recycled_stack_index(); 2481 2482 // Find all regions that are available (can be filled immediately) and 2483 // distribute them to the thread stacks. The iteration is done in reverse 2484 // order (high to low) so the regions will be removed in ascending order. 2485 2486 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 2487 2488 size_t fillable_regions = 0; // A count for diagnostic purposes. 2489 // A region index which corresponds to the tasks created above. 2490 // "which" must be 0 <= which < task_count 2491 2492 which = 0; 2493 // id + 1 is used to test termination so unsigned can 2494 // be used with an old_space_id == 0. 2495 for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) { 2496 SpaceInfo* const space_info = _space_info + id; 2497 MutableSpace* const space = space_info->space(); 2498 HeapWord* const new_top = space_info->new_top(); 2499 2500 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix()); 2501 const size_t end_region = 2502 sd.addr_to_region_idx(sd.region_align_up(new_top)); 2503 2504 for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) { 2505 if (sd.region(cur)->claim_unsafe()) { 2506 ParCompactionManager::region_list_push(which, cur); 2507 2508 if (TraceParallelOldGCCompactionPhase && Verbose) { 2509 const size_t count_mod_8 = fillable_regions & 7; 2510 if (count_mod_8 == 0) gclog_or_tty->print("fillable: "); 2511 gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur); 2512 if (count_mod_8 == 7) gclog_or_tty->cr(); 2513 } 2514 2515 NOT_PRODUCT(++fillable_regions;) 2516 2517 // Assign regions to tasks in round-robin fashion. 2518 if (++which == task_count) { 2519 assert(which <= parallel_gc_threads, 2520 "Inconsistent number of workers"); 2521 which = 0; 2522 } 2523 } 2524 } 2525 } 2526 2527 if (TraceParallelOldGCCompactionPhase) { 2528 if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr(); 2529 gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions); 2530 } 2531 } 2532 2533 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4 2534 2535 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q, 2536 uint parallel_gc_threads) { 2537 TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty); 2538 2539 ParallelCompactData& sd = PSParallelCompact::summary_data(); 2540 2541 // Iterate over all the spaces adding tasks for updating 2542 // regions in the dense prefix. Assume that 1 gc thread 2543 // will work on opening the gaps and the remaining gc threads 2544 // will work on the dense prefix. 2545 unsigned int space_id; 2546 for (space_id = old_space_id; space_id < last_space_id; ++ space_id) { 2547 HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix(); 2548 const MutableSpace* const space = _space_info[space_id].space(); 2549 2550 if (dense_prefix_end == space->bottom()) { 2551 // There is no dense prefix for this space. 2552 continue; 2553 } 2554 2555 // The dense prefix is before this region. 2556 size_t region_index_end_dense_prefix = 2557 sd.addr_to_region_idx(dense_prefix_end); 2558 RegionData* const dense_prefix_cp = 2559 sd.region(region_index_end_dense_prefix); 2560 assert(dense_prefix_end == space->end() || 2561 dense_prefix_cp->available() || 2562 dense_prefix_cp->claimed(), 2563 "The region after the dense prefix should always be ready to fill"); 2564 2565 size_t region_index_start = sd.addr_to_region_idx(space->bottom()); 2566 2567 // Is there dense prefix work? 2568 size_t total_dense_prefix_regions = 2569 region_index_end_dense_prefix - region_index_start; 2570 // How many regions of the dense prefix should be given to 2571 // each thread? 2572 if (total_dense_prefix_regions > 0) { 2573 uint tasks_for_dense_prefix = 1; 2574 if (total_dense_prefix_regions <= 2575 (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) { 2576 // Don't over partition. This assumes that 2577 // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value 2578 // so there are not many regions to process. 2579 tasks_for_dense_prefix = parallel_gc_threads; 2580 } else { 2581 // Over partition 2582 tasks_for_dense_prefix = parallel_gc_threads * 2583 PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING; 2584 } 2585 size_t regions_per_thread = total_dense_prefix_regions / 2586 tasks_for_dense_prefix; 2587 // Give each thread at least 1 region. 2588 if (regions_per_thread == 0) { 2589 regions_per_thread = 1; 2590 } 2591 2592 for (uint k = 0; k < tasks_for_dense_prefix; k++) { 2593 if (region_index_start >= region_index_end_dense_prefix) { 2594 break; 2595 } 2596 // region_index_end is not processed 2597 size_t region_index_end = MIN2(region_index_start + regions_per_thread, 2598 region_index_end_dense_prefix); 2599 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id), 2600 region_index_start, 2601 region_index_end)); 2602 region_index_start = region_index_end; 2603 } 2604 } 2605 // This gets any part of the dense prefix that did not 2606 // fit evenly. 2607 if (region_index_start < region_index_end_dense_prefix) { 2608 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id), 2609 region_index_start, 2610 region_index_end_dense_prefix)); 2611 } 2612 } 2613 } 2614 2615 void PSParallelCompact::enqueue_region_stealing_tasks( 2616 GCTaskQueue* q, 2617 ParallelTaskTerminator* terminator_ptr, 2618 uint parallel_gc_threads) { 2619 TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty); 2620 2621 // Once a thread has drained it's stack, it should try to steal regions from 2622 // other threads. 2623 if (parallel_gc_threads > 1) { 2624 for (uint j = 0; j < parallel_gc_threads; j++) { 2625 q->enqueue(new StealRegionCompactionTask(terminator_ptr)); 2626 } 2627 } 2628 } 2629 2630 void PSParallelCompact::compact() { 2631 // trace("5"); 2632 TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty); 2633 2634 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); 2635 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); 2636 PSOldGen* old_gen = heap->old_gen(); 2637 old_gen->start_array()->reset(); 2638 uint parallel_gc_threads = heap->gc_task_manager()->workers(); 2639 uint active_gc_threads = heap->gc_task_manager()->active_workers(); 2640 TaskQueueSetSuper* qset = ParCompactionManager::region_array(); 2641 ParallelTaskTerminator terminator(active_gc_threads, qset); 2642 2643 GCTaskQueue* q = GCTaskQueue::create(); 2644 enqueue_region_draining_tasks(q, active_gc_threads); 2645 enqueue_dense_prefix_tasks(q, active_gc_threads); 2646 enqueue_region_stealing_tasks(q, &terminator, active_gc_threads); 2647 2648 { 2649 TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty); 2650 2651 gc_task_manager()->execute_and_wait(q); 2652 2653 #ifdef ASSERT 2654 // Verify that all regions have been processed before the deferred updates. 2655 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2656 verify_complete(SpaceId(id)); 2657 } 2658 #endif 2659 } 2660 2661 { 2662 // Update the deferred objects, if any. Any compaction manager can be used. 2663 TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty); 2664 ParCompactionManager* cm = ParCompactionManager::manager_array(0); 2665 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2666 update_deferred_objects(cm, SpaceId(id)); 2667 } 2668 } 2669 } 2670 2671 #ifdef ASSERT 2672 void PSParallelCompact::verify_complete(SpaceId space_id) { 2673 // All Regions between space bottom() to new_top() should be marked as filled 2674 // and all Regions between new_top() and top() should be available (i.e., 2675 // should have been emptied). 2676 ParallelCompactData& sd = summary_data(); 2677 SpaceInfo si = _space_info[space_id]; 2678 HeapWord* new_top_addr = sd.region_align_up(si.new_top()); 2679 HeapWord* old_top_addr = sd.region_align_up(si.space()->top()); 2680 const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom()); 2681 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr); 2682 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr); 2683 2684 bool issued_a_warning = false; 2685 2686 size_t cur_region; 2687 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) { 2688 const RegionData* const c = sd.region(cur_region); 2689 if (!c->completed()) { 2690 warning("region " SIZE_FORMAT " not filled: " 2691 "destination_count=" SIZE_FORMAT, 2692 cur_region, c->destination_count()); 2693 issued_a_warning = true; 2694 } 2695 } 2696 2697 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) { 2698 const RegionData* const c = sd.region(cur_region); 2699 if (!c->available()) { 2700 warning("region " SIZE_FORMAT " not empty: " 2701 "destination_count=" SIZE_FORMAT, 2702 cur_region, c->destination_count()); 2703 issued_a_warning = true; 2704 } 2705 } 2706 2707 if (issued_a_warning) { 2708 print_region_ranges(); 2709 } 2710 } 2711 #endif // #ifdef ASSERT 2712 2713 // Update interior oops in the ranges of regions [beg_region, end_region). 2714 void 2715 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm, 2716 SpaceId space_id, 2717 size_t beg_region, 2718 size_t end_region) { 2719 ParallelCompactData& sd = summary_data(); 2720 ParMarkBitMap* const mbm = mark_bitmap(); 2721 2722 HeapWord* beg_addr = sd.region_to_addr(beg_region); 2723 HeapWord* const end_addr = sd.region_to_addr(end_region); 2724 assert(beg_region <= end_region, "bad region range"); 2725 assert(end_addr <= dense_prefix(space_id), "not in the dense prefix"); 2726 2727 #ifdef ASSERT 2728 // Claim the regions to avoid triggering an assert when they are marked as 2729 // filled. 2730 for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) { 2731 assert(sd.region(claim_region)->claim_unsafe(), "claim() failed"); 2732 } 2733 #endif // #ifdef ASSERT 2734 2735 if (beg_addr != space(space_id)->bottom()) { 2736 // Find the first live object or block of dead space that *starts* in this 2737 // range of regions. If a partial object crosses onto the region, skip it; 2738 // it will be marked for 'deferred update' when the object head is 2739 // processed. If dead space crosses onto the region, it is also skipped; it 2740 // will be filled when the prior region is processed. If neither of those 2741 // apply, the first word in the region is the start of a live object or dead 2742 // space. 2743 assert(beg_addr > space(space_id)->bottom(), "sanity"); 2744 const RegionData* const cp = sd.region(beg_region); 2745 if (cp->partial_obj_size() != 0) { 2746 beg_addr = sd.partial_obj_end(beg_region); 2747 } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) { 2748 beg_addr = mbm->find_obj_beg(beg_addr, end_addr); 2749 } 2750 } 2751 2752 if (beg_addr < end_addr) { 2753 // A live object or block of dead space starts in this range of Regions. 2754 HeapWord* const dense_prefix_end = dense_prefix(space_id); 2755 2756 // Create closures and iterate. 2757 UpdateOnlyClosure update_closure(mbm, cm, space_id); 2758 FillClosure fill_closure(cm, space_id); 2759 ParMarkBitMap::IterationStatus status; 2760 status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr, 2761 dense_prefix_end); 2762 if (status == ParMarkBitMap::incomplete) { 2763 update_closure.do_addr(update_closure.source()); 2764 } 2765 } 2766 2767 // Mark the regions as filled. 2768 RegionData* const beg_cp = sd.region(beg_region); 2769 RegionData* const end_cp = sd.region(end_region); 2770 for (RegionData* cp = beg_cp; cp < end_cp; ++cp) { 2771 cp->set_completed(); 2772 } 2773 } 2774 2775 // Return the SpaceId for the space containing addr. If addr is not in the 2776 // heap, last_space_id is returned. In debug mode it expects the address to be 2777 // in the heap and asserts such. 2778 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) { 2779 assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap"); 2780 2781 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2782 if (_space_info[id].space()->contains(addr)) { 2783 return SpaceId(id); 2784 } 2785 } 2786 2787 assert(false, "no space contains the addr"); 2788 return last_space_id; 2789 } 2790 2791 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm, 2792 SpaceId id) { 2793 assert(id < last_space_id, "bad space id"); 2794 2795 ParallelCompactData& sd = summary_data(); 2796 const SpaceInfo* const space_info = _space_info + id; 2797 ObjectStartArray* const start_array = space_info->start_array(); 2798 2799 const MutableSpace* const space = space_info->space(); 2800 assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set"); 2801 HeapWord* const beg_addr = space_info->dense_prefix(); 2802 HeapWord* const end_addr = sd.region_align_up(space_info->new_top()); 2803 2804 const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr); 2805 const RegionData* const end_region = sd.addr_to_region_ptr(end_addr); 2806 const RegionData* cur_region; 2807 for (cur_region = beg_region; cur_region < end_region; ++cur_region) { 2808 HeapWord* const addr = cur_region->deferred_obj_addr(); 2809 if (addr != NULL) { 2810 if (start_array != NULL) { 2811 start_array->allocate_block(addr); 2812 } 2813 oop(addr)->update_contents(cm); 2814 assert(oop(addr)->is_oop_or_null(), "should be an oop now"); 2815 } 2816 } 2817 } 2818 2819 // Skip over count live words starting from beg, and return the address of the 2820 // next live word. Unless marked, the word corresponding to beg is assumed to 2821 // be dead. Callers must either ensure beg does not correspond to the middle of 2822 // an object, or account for those live words in some other way. Callers must 2823 // also ensure that there are enough live words in the range [beg, end) to skip. 2824 HeapWord* 2825 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count) 2826 { 2827 assert(count > 0, "sanity"); 2828 2829 ParMarkBitMap* m = mark_bitmap(); 2830 idx_t bits_to_skip = m->words_to_bits(count); 2831 idx_t cur_beg = m->addr_to_bit(beg); 2832 const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end)); 2833 2834 do { 2835 cur_beg = m->find_obj_beg(cur_beg, search_end); 2836 idx_t cur_end = m->find_obj_end(cur_beg, search_end); 2837 const size_t obj_bits = cur_end - cur_beg + 1; 2838 if (obj_bits > bits_to_skip) { 2839 return m->bit_to_addr(cur_beg + bits_to_skip); 2840 } 2841 bits_to_skip -= obj_bits; 2842 cur_beg = cur_end + 1; 2843 } while (bits_to_skip > 0); 2844 2845 // Skipping the desired number of words landed just past the end of an object. 2846 // Find the start of the next object. 2847 cur_beg = m->find_obj_beg(cur_beg, search_end); 2848 assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip"); 2849 return m->bit_to_addr(cur_beg); 2850 } 2851 2852 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr, 2853 SpaceId src_space_id, 2854 size_t src_region_idx) 2855 { 2856 assert(summary_data().is_region_aligned(dest_addr), "not aligned"); 2857 2858 const SplitInfo& split_info = _space_info[src_space_id].split_info(); 2859 if (split_info.dest_region_addr() == dest_addr) { 2860 // The partial object ending at the split point contains the first word to 2861 // be copied to dest_addr. 2862 return split_info.first_src_addr(); 2863 } 2864 2865 const ParallelCompactData& sd = summary_data(); 2866 ParMarkBitMap* const bitmap = mark_bitmap(); 2867 const size_t RegionSize = ParallelCompactData::RegionSize; 2868 2869 assert(sd.is_region_aligned(dest_addr), "not aligned"); 2870 const RegionData* const src_region_ptr = sd.region(src_region_idx); 2871 const size_t partial_obj_size = src_region_ptr->partial_obj_size(); 2872 HeapWord* const src_region_destination = src_region_ptr->destination(); 2873 2874 assert(dest_addr >= src_region_destination, "wrong src region"); 2875 assert(src_region_ptr->data_size() > 0, "src region cannot be empty"); 2876 2877 HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx); 2878 HeapWord* const src_region_end = src_region_beg + RegionSize; 2879 2880 HeapWord* addr = src_region_beg; 2881 if (dest_addr == src_region_destination) { 2882 // Return the first live word in the source region. 2883 if (partial_obj_size == 0) { 2884 addr = bitmap->find_obj_beg(addr, src_region_end); 2885 assert(addr < src_region_end, "no objects start in src region"); 2886 } 2887 return addr; 2888 } 2889 2890 // Must skip some live data. 2891 size_t words_to_skip = dest_addr - src_region_destination; 2892 assert(src_region_ptr->data_size() > words_to_skip, "wrong src region"); 2893 2894 if (partial_obj_size >= words_to_skip) { 2895 // All the live words to skip are part of the partial object. 2896 addr += words_to_skip; 2897 if (partial_obj_size == words_to_skip) { 2898 // Find the first live word past the partial object. 2899 addr = bitmap->find_obj_beg(addr, src_region_end); 2900 assert(addr < src_region_end, "wrong src region"); 2901 } 2902 return addr; 2903 } 2904 2905 // Skip over the partial object (if any). 2906 if (partial_obj_size != 0) { 2907 words_to_skip -= partial_obj_size; 2908 addr += partial_obj_size; 2909 } 2910 2911 // Skip over live words due to objects that start in the region. 2912 addr = skip_live_words(addr, src_region_end, words_to_skip); 2913 assert(addr < src_region_end, "wrong src region"); 2914 return addr; 2915 } 2916 2917 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm, 2918 SpaceId src_space_id, 2919 size_t beg_region, 2920 HeapWord* end_addr) 2921 { 2922 ParallelCompactData& sd = summary_data(); 2923 2924 #ifdef ASSERT 2925 MutableSpace* const src_space = _space_info[src_space_id].space(); 2926 HeapWord* const beg_addr = sd.region_to_addr(beg_region); 2927 assert(src_space->contains(beg_addr) || beg_addr == src_space->end(), 2928 "src_space_id does not match beg_addr"); 2929 assert(src_space->contains(end_addr) || end_addr == src_space->end(), 2930 "src_space_id does not match end_addr"); 2931 #endif // #ifdef ASSERT 2932 2933 RegionData* const beg = sd.region(beg_region); 2934 RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr)); 2935 2936 // Regions up to new_top() are enqueued if they become available. 2937 HeapWord* const new_top = _space_info[src_space_id].new_top(); 2938 RegionData* const enqueue_end = 2939 sd.addr_to_region_ptr(sd.region_align_up(new_top)); 2940 2941 for (RegionData* cur = beg; cur < end; ++cur) { 2942 assert(cur->data_size() > 0, "region must have live data"); 2943 cur->decrement_destination_count(); 2944 if (cur < enqueue_end && cur->available() && cur->claim()) { 2945 cm->push_region(sd.region(cur)); 2946 } 2947 } 2948 } 2949 2950 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure, 2951 SpaceId& src_space_id, 2952 HeapWord*& src_space_top, 2953 HeapWord* end_addr) 2954 { 2955 typedef ParallelCompactData::RegionData RegionData; 2956 2957 ParallelCompactData& sd = PSParallelCompact::summary_data(); 2958 const size_t region_size = ParallelCompactData::RegionSize; 2959 2960 size_t src_region_idx = 0; 2961 2962 // Skip empty regions (if any) up to the top of the space. 2963 HeapWord* const src_aligned_up = sd.region_align_up(end_addr); 2964 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up); 2965 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top); 2966 const RegionData* const top_region_ptr = 2967 sd.addr_to_region_ptr(top_aligned_up); 2968 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) { 2969 ++src_region_ptr; 2970 } 2971 2972 if (src_region_ptr < top_region_ptr) { 2973 // The next source region is in the current space. Update src_region_idx 2974 // and the source address to match src_region_ptr. 2975 src_region_idx = sd.region(src_region_ptr); 2976 HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx); 2977 if (src_region_addr > closure.source()) { 2978 closure.set_source(src_region_addr); 2979 } 2980 return src_region_idx; 2981 } 2982 2983 // Switch to a new source space and find the first non-empty region. 2984 unsigned int space_id = src_space_id + 1; 2985 assert(space_id < last_space_id, "not enough spaces"); 2986 2987 HeapWord* const destination = closure.destination(); 2988 2989 do { 2990 MutableSpace* space = _space_info[space_id].space(); 2991 HeapWord* const bottom = space->bottom(); 2992 const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom); 2993 2994 // Iterate over the spaces that do not compact into themselves. 2995 if (bottom_cp->destination() != bottom) { 2996 HeapWord* const top_aligned_up = sd.region_align_up(space->top()); 2997 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); 2998 2999 for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) { 3000 if (src_cp->live_obj_size() > 0) { 3001 // Found it. 3002 assert(src_cp->destination() == destination, 3003 "first live obj in the space must match the destination"); 3004 assert(src_cp->partial_obj_size() == 0, 3005 "a space cannot begin with a partial obj"); 3006 3007 src_space_id = SpaceId(space_id); 3008 src_space_top = space->top(); 3009 const size_t src_region_idx = sd.region(src_cp); 3010 closure.set_source(sd.region_to_addr(src_region_idx)); 3011 return src_region_idx; 3012 } else { 3013 assert(src_cp->data_size() == 0, "sanity"); 3014 } 3015 } 3016 } 3017 } while (++space_id < last_space_id); 3018 3019 assert(false, "no source region was found"); 3020 return 0; 3021 } 3022 3023 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx) 3024 { 3025 typedef ParMarkBitMap::IterationStatus IterationStatus; 3026 const size_t RegionSize = ParallelCompactData::RegionSize; 3027 ParMarkBitMap* const bitmap = mark_bitmap(); 3028 ParallelCompactData& sd = summary_data(); 3029 RegionData* const region_ptr = sd.region(region_idx); 3030 3031 // Get the items needed to construct the closure. 3032 HeapWord* dest_addr = sd.region_to_addr(region_idx); 3033 SpaceId dest_space_id = space_id(dest_addr); 3034 ObjectStartArray* start_array = _space_info[dest_space_id].start_array(); 3035 HeapWord* new_top = _space_info[dest_space_id].new_top(); 3036 assert(dest_addr < new_top, "sanity"); 3037 const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize); 3038 3039 // Get the source region and related info. 3040 size_t src_region_idx = region_ptr->source_region(); 3041 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx)); 3042 HeapWord* src_space_top = _space_info[src_space_id].space()->top(); 3043 3044 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words); 3045 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx)); 3046 3047 // Adjust src_region_idx to prepare for decrementing destination counts (the 3048 // destination count is not decremented when a region is copied to itself). 3049 if (src_region_idx == region_idx) { 3050 src_region_idx += 1; 3051 } 3052 3053 if (bitmap->is_unmarked(closure.source())) { 3054 // The first source word is in the middle of an object; copy the remainder 3055 // of the object or as much as will fit. The fact that pointer updates were 3056 // deferred will be noted when the object header is processed. 3057 HeapWord* const old_src_addr = closure.source(); 3058 closure.copy_partial_obj(); 3059 if (closure.is_full()) { 3060 decrement_destination_counts(cm, src_space_id, src_region_idx, 3061 closure.source()); 3062 region_ptr->set_deferred_obj_addr(NULL); 3063 region_ptr->set_completed(); 3064 return; 3065 } 3066 3067 HeapWord* const end_addr = sd.region_align_down(closure.source()); 3068 if (sd.region_align_down(old_src_addr) != end_addr) { 3069 // The partial object was copied from more than one source region. 3070 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 3071 3072 // Move to the next source region, possibly switching spaces as well. All 3073 // args except end_addr may be modified. 3074 src_region_idx = next_src_region(closure, src_space_id, src_space_top, 3075 end_addr); 3076 } 3077 } 3078 3079 do { 3080 HeapWord* const cur_addr = closure.source(); 3081 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1), 3082 src_space_top); 3083 IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr); 3084 3085 if (status == ParMarkBitMap::incomplete) { 3086 // The last obj that starts in the source region does not end in the 3087 // region. 3088 assert(closure.source() < end_addr, "sanity"); 3089 HeapWord* const obj_beg = closure.source(); 3090 HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(), 3091 src_space_top); 3092 HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end); 3093 if (obj_end < range_end) { 3094 // The end was found; the entire object will fit. 3095 status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end)); 3096 assert(status != ParMarkBitMap::would_overflow, "sanity"); 3097 } else { 3098 // The end was not found; the object will not fit. 3099 assert(range_end < src_space_top, "obj cannot cross space boundary"); 3100 status = ParMarkBitMap::would_overflow; 3101 } 3102 } 3103 3104 if (status == ParMarkBitMap::would_overflow) { 3105 // The last object did not fit. Note that interior oop updates were 3106 // deferred, then copy enough of the object to fill the region. 3107 region_ptr->set_deferred_obj_addr(closure.destination()); 3108 status = closure.copy_until_full(); // copies from closure.source() 3109 3110 decrement_destination_counts(cm, src_space_id, src_region_idx, 3111 closure.source()); 3112 region_ptr->set_completed(); 3113 return; 3114 } 3115 3116 if (status == ParMarkBitMap::full) { 3117 decrement_destination_counts(cm, src_space_id, src_region_idx, 3118 closure.source()); 3119 region_ptr->set_deferred_obj_addr(NULL); 3120 region_ptr->set_completed(); 3121 return; 3122 } 3123 3124 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 3125 3126 // Move to the next source region, possibly switching spaces as well. All 3127 // args except end_addr may be modified. 3128 src_region_idx = next_src_region(closure, src_space_id, src_space_top, 3129 end_addr); 3130 } while (true); 3131 } 3132 3133 void 3134 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) { 3135 const MutableSpace* sp = space(space_id); 3136 if (sp->is_empty()) { 3137 return; 3138 } 3139 3140 ParallelCompactData& sd = PSParallelCompact::summary_data(); 3141 ParMarkBitMap* const bitmap = mark_bitmap(); 3142 HeapWord* const dp_addr = dense_prefix(space_id); 3143 HeapWord* beg_addr = sp->bottom(); 3144 HeapWord* end_addr = sp->top(); 3145 3146 assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix"); 3147 3148 const size_t beg_region = sd.addr_to_region_idx(beg_addr); 3149 const size_t dp_region = sd.addr_to_region_idx(dp_addr); 3150 if (beg_region < dp_region) { 3151 update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region); 3152 } 3153 3154 // The destination of the first live object that starts in the region is one 3155 // past the end of the partial object entering the region (if any). 3156 HeapWord* const dest_addr = sd.partial_obj_end(dp_region); 3157 HeapWord* const new_top = _space_info[space_id].new_top(); 3158 assert(new_top >= dest_addr, "bad new_top value"); 3159 const size_t words = pointer_delta(new_top, dest_addr); 3160 3161 if (words > 0) { 3162 ObjectStartArray* start_array = _space_info[space_id].start_array(); 3163 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words); 3164 3165 ParMarkBitMap::IterationStatus status; 3166 status = bitmap->iterate(&closure, dest_addr, end_addr); 3167 assert(status == ParMarkBitMap::full, "iteration not complete"); 3168 assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr, 3169 "live objects skipped because closure is full"); 3170 } 3171 } 3172 3173 jlong PSParallelCompact::millis_since_last_gc() { 3174 // We need a monotonically non-deccreasing time in ms but 3175 // os::javaTimeMillis() does not guarantee monotonicity. 3176 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 3177 jlong ret_val = now - _time_of_last_gc; 3178 // XXX See note in genCollectedHeap::millis_since_last_gc(). 3179 if (ret_val < 0) { 3180 NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);) 3181 return 0; 3182 } 3183 return ret_val; 3184 } 3185 3186 void PSParallelCompact::reset_millis_since_last_gc() { 3187 // We need a monotonically non-deccreasing time in ms but 3188 // os::javaTimeMillis() does not guarantee monotonicity. 3189 _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 3190 } 3191 3192 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full() 3193 { 3194 if (source() != destination()) { 3195 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 3196 Copy::aligned_conjoint_words(source(), destination(), words_remaining()); 3197 } 3198 update_state(words_remaining()); 3199 assert(is_full(), "sanity"); 3200 return ParMarkBitMap::full; 3201 } 3202 3203 void MoveAndUpdateClosure::copy_partial_obj() 3204 { 3205 size_t words = words_remaining(); 3206 3207 HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end()); 3208 HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end); 3209 if (end_addr < range_end) { 3210 words = bitmap()->obj_size(source(), end_addr); 3211 } 3212 3213 // This test is necessary; if omitted, the pointer updates to a partial object 3214 // that crosses the dense prefix boundary could be overwritten. 3215 if (source() != destination()) { 3216 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 3217 Copy::aligned_conjoint_words(source(), destination(), words); 3218 } 3219 update_state(words); 3220 } 3221 3222 ParMarkBitMapClosure::IterationStatus 3223 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) { 3224 assert(destination() != NULL, "sanity"); 3225 assert(bitmap()->obj_size(addr) == words, "bad size"); 3226 3227 _source = addr; 3228 assert(PSParallelCompact::summary_data().calc_new_pointer(source()) == 3229 destination(), "wrong destination"); 3230 3231 if (words > words_remaining()) { 3232 return ParMarkBitMap::would_overflow; 3233 } 3234 3235 // The start_array must be updated even if the object is not moving. 3236 if (_start_array != NULL) { 3237 _start_array->allocate_block(destination()); 3238 } 3239 3240 if (destination() != source()) { 3241 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 3242 Copy::aligned_conjoint_words(source(), destination(), words); 3243 } 3244 3245 oop moved_oop = (oop) destination(); 3246 moved_oop->update_contents(compaction_manager()); 3247 assert(moved_oop->is_oop_or_null(), "Object should be whole at this point"); 3248 3249 update_state(words); 3250 assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity"); 3251 return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete; 3252 } 3253 3254 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm, 3255 ParCompactionManager* cm, 3256 PSParallelCompact::SpaceId space_id) : 3257 ParMarkBitMapClosure(mbm, cm), 3258 _space_id(space_id), 3259 _start_array(PSParallelCompact::start_array(space_id)) 3260 { 3261 } 3262 3263 // Updates the references in the object to their new values. 3264 ParMarkBitMapClosure::IterationStatus 3265 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) { 3266 do_addr(addr); 3267 return ParMarkBitMap::incomplete; 3268 }