1 /* 2 * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/metadataOnStackMark.hpp" 27 #include "classfile/stringTable.hpp" 28 #include "classfile/symbolTable.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/icBuffer.hpp" 31 #include "gc/g1/bufferingOopClosure.hpp" 32 #include "gc/g1/concurrentG1Refine.hpp" 33 #include "gc/g1/concurrentG1RefineThread.hpp" 34 #include "gc/g1/concurrentMarkThread.inline.hpp" 35 #include "gc/g1/g1Allocator.inline.hpp" 36 #include "gc/g1/g1CollectedHeap.inline.hpp" 37 #include "gc/g1/g1CollectionSet.hpp" 38 #include "gc/g1/g1CollectorPolicy.hpp" 39 #include "gc/g1/g1CollectorState.hpp" 40 #include "gc/g1/g1EvacStats.inline.hpp" 41 #include "gc/g1/g1FullGCScope.hpp" 42 #include "gc/g1/g1GCPhaseTimes.hpp" 43 #include "gc/g1/g1HeapSizingPolicy.hpp" 44 #include "gc/g1/g1HeapTransition.hpp" 45 #include "gc/g1/g1HeapVerifier.hpp" 46 #include "gc/g1/g1HotCardCache.hpp" 47 #include "gc/g1/g1OopClosures.inline.hpp" 48 #include "gc/g1/g1ParScanThreadState.inline.hpp" 49 #include "gc/g1/g1Policy.hpp" 50 #include "gc/g1/g1RegionToSpaceMapper.hpp" 51 #include "gc/g1/g1RemSet.inline.hpp" 52 #include "gc/g1/g1RootClosures.hpp" 53 #include "gc/g1/g1RootProcessor.hpp" 54 #include "gc/g1/g1SerialCollector.hpp" 55 #include "gc/g1/g1StringDedup.hpp" 56 #include "gc/g1/g1YCTypes.hpp" 57 #include "gc/g1/heapRegion.inline.hpp" 58 #include "gc/g1/heapRegionRemSet.hpp" 59 #include "gc/g1/heapRegionSet.inline.hpp" 60 #include "gc/g1/suspendibleThreadSet.hpp" 61 #include "gc/g1/vm_operations_g1.hpp" 62 #include "gc/shared/gcHeapSummary.hpp" 63 #include "gc/shared/gcId.hpp" 64 #include "gc/shared/gcLocker.inline.hpp" 65 #include "gc/shared/gcTimer.hpp" 66 #include "gc/shared/gcTrace.hpp" 67 #include "gc/shared/gcTraceTime.inline.hpp" 68 #include "gc/shared/generationSpec.hpp" 69 #include "gc/shared/isGCActiveMark.hpp" 70 #include "gc/shared/preservedMarks.inline.hpp" 71 #include "gc/shared/referenceProcessor.inline.hpp" 72 #include "gc/shared/taskqueue.inline.hpp" 73 #include "logging/log.hpp" 74 #include "memory/allocation.hpp" 75 #include "memory/iterator.hpp" 76 #include "memory/resourceArea.hpp" 77 #include "oops/oop.inline.hpp" 78 #include "prims/resolvedMethodTable.hpp" 79 #include "runtime/atomic.hpp" 80 #include "runtime/init.hpp" 81 #include "runtime/orderAccess.inline.hpp" 82 #include "runtime/vmThread.hpp" 83 #include "utilities/globalDefinitions.hpp" 84 #include "utilities/stack.inline.hpp" 85 86 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; 87 88 // INVARIANTS/NOTES 89 // 90 // All allocation activity covered by the G1CollectedHeap interface is 91 // serialized by acquiring the HeapLock. This happens in mem_allocate 92 // and allocate_new_tlab, which are the "entry" points to the 93 // allocation code from the rest of the JVM. (Note that this does not 94 // apply to TLAB allocation, which is not part of this interface: it 95 // is done by clients of this interface.) 96 97 // Local to this file. 98 99 class RefineCardTableEntryClosure: public CardTableEntryClosure { 100 bool _concurrent; 101 public: 102 RefineCardTableEntryClosure() : _concurrent(true) { } 103 104 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 105 G1CollectedHeap::heap()->g1_rem_set()->refine_card_concurrently(card_ptr, worker_i); 106 107 if (_concurrent && SuspendibleThreadSet::should_yield()) { 108 // Caller will actually yield. 109 return false; 110 } 111 // Otherwise, we finished successfully; return true. 112 return true; 113 } 114 115 void set_concurrent(bool b) { _concurrent = b; } 116 }; 117 118 119 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure { 120 private: 121 size_t _num_dirtied; 122 G1CollectedHeap* _g1h; 123 G1SATBCardTableLoggingModRefBS* _g1_bs; 124 125 HeapRegion* region_for_card(jbyte* card_ptr) const { 126 return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr)); 127 } 128 129 bool will_become_free(HeapRegion* hr) const { 130 // A region will be freed by free_collection_set if the region is in the 131 // collection set and has not had an evacuation failure. 132 return _g1h->is_in_cset(hr) && !hr->evacuation_failed(); 133 } 134 135 public: 136 RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(), 137 _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { } 138 139 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 140 HeapRegion* hr = region_for_card(card_ptr); 141 142 // Should only dirty cards in regions that won't be freed. 143 if (!will_become_free(hr)) { 144 *card_ptr = CardTableModRefBS::dirty_card_val(); 145 _num_dirtied++; 146 } 147 148 return true; 149 } 150 151 size_t num_dirtied() const { return _num_dirtied; } 152 }; 153 154 155 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) { 156 HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions); 157 } 158 159 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) { 160 // The from card cache is not the memory that is actually committed. So we cannot 161 // take advantage of the zero_filled parameter. 162 reset_from_card_cache(start_idx, num_regions); 163 } 164 165 // Returns true if the reference points to an object that 166 // can move in an incremental collection. 167 bool G1CollectedHeap::is_scavengable(const void* p) { 168 HeapRegion* hr = heap_region_containing(p); 169 return !hr->is_pinned(); 170 } 171 172 // Private methods. 173 174 HeapRegion* 175 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) { 176 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 177 while (!_secondary_free_list.is_empty() || free_regions_coming()) { 178 if (!_secondary_free_list.is_empty()) { 179 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : " 180 "secondary_free_list has %u entries", 181 _secondary_free_list.length()); 182 // It looks as if there are free regions available on the 183 // secondary_free_list. Let's move them to the free_list and try 184 // again to allocate from it. 185 append_secondary_free_list(); 186 187 assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not " 188 "empty we should have moved at least one entry to the free_list"); 189 HeapRegion* res = _hrm.allocate_free_region(is_old); 190 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : " 191 "allocated " HR_FORMAT " from secondary_free_list", 192 HR_FORMAT_PARAMS(res)); 193 return res; 194 } 195 196 // Wait here until we get notified either when (a) there are no 197 // more free regions coming or (b) some regions have been moved on 198 // the secondary_free_list. 199 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 200 } 201 202 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : " 203 "could not allocate from secondary_free_list"); 204 return NULL; 205 } 206 207 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) { 208 assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords, 209 "the only time we use this to allocate a humongous region is " 210 "when we are allocating a single humongous region"); 211 212 HeapRegion* res; 213 if (G1StressConcRegionFreeing) { 214 if (!_secondary_free_list.is_empty()) { 215 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : " 216 "forced to look at the secondary_free_list"); 217 res = new_region_try_secondary_free_list(is_old); 218 if (res != NULL) { 219 return res; 220 } 221 } 222 } 223 224 res = _hrm.allocate_free_region(is_old); 225 226 if (res == NULL) { 227 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : " 228 "res == NULL, trying the secondary_free_list"); 229 res = new_region_try_secondary_free_list(is_old); 230 } 231 if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { 232 // Currently, only attempts to allocate GC alloc regions set 233 // do_expand to true. So, we should only reach here during a 234 // safepoint. If this assumption changes we might have to 235 // reconsider the use of _expand_heap_after_alloc_failure. 236 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 237 238 log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B", 239 word_size * HeapWordSize); 240 241 if (expand(word_size * HeapWordSize)) { 242 // Given that expand() succeeded in expanding the heap, and we 243 // always expand the heap by an amount aligned to the heap 244 // region size, the free list should in theory not be empty. 245 // In either case allocate_free_region() will check for NULL. 246 res = _hrm.allocate_free_region(is_old); 247 } else { 248 _expand_heap_after_alloc_failure = false; 249 } 250 } 251 return res; 252 } 253 254 HeapWord* 255 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first, 256 uint num_regions, 257 size_t word_size, 258 AllocationContext_t context) { 259 assert(first != G1_NO_HRM_INDEX, "pre-condition"); 260 assert(is_humongous(word_size), "word_size should be humongous"); 261 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 262 263 // Index of last region in the series. 264 uint last = first + num_regions - 1; 265 266 // We need to initialize the region(s) we just discovered. This is 267 // a bit tricky given that it can happen concurrently with 268 // refinement threads refining cards on these regions and 269 // potentially wanting to refine the BOT as they are scanning 270 // those cards (this can happen shortly after a cleanup; see CR 271 // 6991377). So we have to set up the region(s) carefully and in 272 // a specific order. 273 274 // The word size sum of all the regions we will allocate. 275 size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords; 276 assert(word_size <= word_size_sum, "sanity"); 277 278 // This will be the "starts humongous" region. 279 HeapRegion* first_hr = region_at(first); 280 // The header of the new object will be placed at the bottom of 281 // the first region. 282 HeapWord* new_obj = first_hr->bottom(); 283 // This will be the new top of the new object. 284 HeapWord* obj_top = new_obj + word_size; 285 286 // First, we need to zero the header of the space that we will be 287 // allocating. When we update top further down, some refinement 288 // threads might try to scan the region. By zeroing the header we 289 // ensure that any thread that will try to scan the region will 290 // come across the zero klass word and bail out. 291 // 292 // NOTE: It would not have been correct to have used 293 // CollectedHeap::fill_with_object() and make the space look like 294 // an int array. The thread that is doing the allocation will 295 // later update the object header to a potentially different array 296 // type and, for a very short period of time, the klass and length 297 // fields will be inconsistent. This could cause a refinement 298 // thread to calculate the object size incorrectly. 299 Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); 300 301 // Next, pad out the unused tail of the last region with filler 302 // objects, for improved usage accounting. 303 // How many words we use for filler objects. 304 size_t word_fill_size = word_size_sum - word_size; 305 306 // How many words memory we "waste" which cannot hold a filler object. 307 size_t words_not_fillable = 0; 308 309 if (word_fill_size >= min_fill_size()) { 310 fill_with_objects(obj_top, word_fill_size); 311 } else if (word_fill_size > 0) { 312 // We have space to fill, but we cannot fit an object there. 313 words_not_fillable = word_fill_size; 314 word_fill_size = 0; 315 } 316 317 // We will set up the first region as "starts humongous". This 318 // will also update the BOT covering all the regions to reflect 319 // that there is a single object that starts at the bottom of the 320 // first region. 321 first_hr->set_starts_humongous(obj_top, word_fill_size); 322 first_hr->set_allocation_context(context); 323 // Then, if there are any, we will set up the "continues 324 // humongous" regions. 325 HeapRegion* hr = NULL; 326 for (uint i = first + 1; i <= last; ++i) { 327 hr = region_at(i); 328 hr->set_continues_humongous(first_hr); 329 hr->set_allocation_context(context); 330 } 331 332 // Up to this point no concurrent thread would have been able to 333 // do any scanning on any region in this series. All the top 334 // fields still point to bottom, so the intersection between 335 // [bottom,top] and [card_start,card_end] will be empty. Before we 336 // update the top fields, we'll do a storestore to make sure that 337 // no thread sees the update to top before the zeroing of the 338 // object header and the BOT initialization. 339 OrderAccess::storestore(); 340 341 // Now, we will update the top fields of the "continues humongous" 342 // regions except the last one. 343 for (uint i = first; i < last; ++i) { 344 hr = region_at(i); 345 hr->set_top(hr->end()); 346 } 347 348 hr = region_at(last); 349 // If we cannot fit a filler object, we must set top to the end 350 // of the humongous object, otherwise we cannot iterate the heap 351 // and the BOT will not be complete. 352 hr->set_top(hr->end() - words_not_fillable); 353 354 assert(hr->bottom() < obj_top && obj_top <= hr->end(), 355 "obj_top should be in last region"); 356 357 _verifier->check_bitmaps("Humongous Region Allocation", first_hr); 358 359 assert(words_not_fillable == 0 || 360 first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(), 361 "Miscalculation in humongous allocation"); 362 363 increase_used((word_size_sum - words_not_fillable) * HeapWordSize); 364 365 for (uint i = first; i <= last; ++i) { 366 hr = region_at(i); 367 _humongous_set.add(hr); 368 _hr_printer.alloc(hr); 369 } 370 371 return new_obj; 372 } 373 374 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) { 375 assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size); 376 return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords; 377 } 378 379 // If could fit into free regions w/o expansion, try. 380 // Otherwise, if can expand, do so. 381 // Otherwise, if using ex regions might help, try with ex given back. 382 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) { 383 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 384 385 _verifier->verify_region_sets_optional(); 386 387 uint first = G1_NO_HRM_INDEX; 388 uint obj_regions = (uint) humongous_obj_size_in_regions(word_size); 389 390 if (obj_regions == 1) { 391 // Only one region to allocate, try to use a fast path by directly allocating 392 // from the free lists. Do not try to expand here, we will potentially do that 393 // later. 394 HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */); 395 if (hr != NULL) { 396 first = hr->hrm_index(); 397 } 398 } else { 399 // We can't allocate humongous regions spanning more than one region while 400 // cleanupComplete() is running, since some of the regions we find to be 401 // empty might not yet be added to the free list. It is not straightforward 402 // to know in which list they are on so that we can remove them. We only 403 // need to do this if we need to allocate more than one region to satisfy the 404 // current humongous allocation request. If we are only allocating one region 405 // we use the one-region region allocation code (see above), that already 406 // potentially waits for regions from the secondary free list. 407 wait_while_free_regions_coming(); 408 append_secondary_free_list_if_not_empty_with_lock(); 409 410 // Policy: Try only empty regions (i.e. already committed first). Maybe we 411 // are lucky enough to find some. 412 first = _hrm.find_contiguous_only_empty(obj_regions); 413 if (first != G1_NO_HRM_INDEX) { 414 _hrm.allocate_free_regions_starting_at(first, obj_regions); 415 } 416 } 417 418 if (first == G1_NO_HRM_INDEX) { 419 // Policy: We could not find enough regions for the humongous object in the 420 // free list. Look through the heap to find a mix of free and uncommitted regions. 421 // If so, try expansion. 422 first = _hrm.find_contiguous_empty_or_unavailable(obj_regions); 423 if (first != G1_NO_HRM_INDEX) { 424 // We found something. Make sure these regions are committed, i.e. expand 425 // the heap. Alternatively we could do a defragmentation GC. 426 log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B", 427 word_size * HeapWordSize); 428 429 _hrm.expand_at(first, obj_regions, workers()); 430 g1_policy()->record_new_heap_size(num_regions()); 431 432 #ifdef ASSERT 433 for (uint i = first; i < first + obj_regions; ++i) { 434 HeapRegion* hr = region_at(i); 435 assert(hr->is_free(), "sanity"); 436 assert(hr->is_empty(), "sanity"); 437 assert(is_on_master_free_list(hr), "sanity"); 438 } 439 #endif 440 _hrm.allocate_free_regions_starting_at(first, obj_regions); 441 } else { 442 // Policy: Potentially trigger a defragmentation GC. 443 } 444 } 445 446 HeapWord* result = NULL; 447 if (first != G1_NO_HRM_INDEX) { 448 result = humongous_obj_allocate_initialize_regions(first, obj_regions, 449 word_size, context); 450 assert(result != NULL, "it should always return a valid result"); 451 452 // A successful humongous object allocation changes the used space 453 // information of the old generation so we need to recalculate the 454 // sizes and update the jstat counters here. 455 g1mm()->update_sizes(); 456 } 457 458 _verifier->verify_region_sets_optional(); 459 460 return result; 461 } 462 463 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) { 464 assert_heap_not_locked_and_not_at_safepoint(); 465 assert(!is_humongous(word_size), "we do not allow humongous TLABs"); 466 467 uint dummy_gc_count_before; 468 uint dummy_gclocker_retry_count = 0; 469 return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count); 470 } 471 472 HeapWord* 473 G1CollectedHeap::mem_allocate(size_t word_size, 474 bool* gc_overhead_limit_was_exceeded) { 475 assert_heap_not_locked_and_not_at_safepoint(); 476 477 // Loop until the allocation is satisfied, or unsatisfied after GC. 478 for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { 479 uint gc_count_before; 480 481 HeapWord* result = NULL; 482 if (!is_humongous(word_size)) { 483 result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count); 484 } else { 485 result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count); 486 } 487 if (result != NULL) { 488 return result; 489 } 490 491 // Create the garbage collection operation... 492 VM_G1CollectForAllocation op(gc_count_before, word_size); 493 op.set_allocation_context(AllocationContext::current()); 494 495 // ...and get the VM thread to execute it. 496 VMThread::execute(&op); 497 498 if (op.prologue_succeeded() && op.pause_succeeded()) { 499 // If the operation was successful we'll return the result even 500 // if it is NULL. If the allocation attempt failed immediately 501 // after a Full GC, it's unlikely we'll be able to allocate now. 502 HeapWord* result = op.result(); 503 if (result != NULL && !is_humongous(word_size)) { 504 // Allocations that take place on VM operations do not do any 505 // card dirtying and we have to do it here. We only have to do 506 // this for non-humongous allocations, though. 507 dirty_young_block(result, word_size); 508 } 509 return result; 510 } else { 511 if (gclocker_retry_count > GCLockerRetryAllocationCount) { 512 return NULL; 513 } 514 assert(op.result() == NULL, 515 "the result should be NULL if the VM op did not succeed"); 516 } 517 518 // Give a warning if we seem to be looping forever. 519 if ((QueuedAllocationWarningCount > 0) && 520 (try_count % QueuedAllocationWarningCount == 0)) { 521 log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count); 522 } 523 } 524 525 ShouldNotReachHere(); 526 return NULL; 527 } 528 529 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size, 530 AllocationContext_t context, 531 uint* gc_count_before_ret, 532 uint* gclocker_retry_count_ret) { 533 // Make sure you read the note in attempt_allocation_humongous(). 534 535 assert_heap_not_locked_and_not_at_safepoint(); 536 assert(!is_humongous(word_size), "attempt_allocation_slow() should not " 537 "be called for humongous allocation requests"); 538 539 // We should only get here after the first-level allocation attempt 540 // (attempt_allocation()) failed to allocate. 541 542 // We will loop until a) we manage to successfully perform the 543 // allocation or b) we successfully schedule a collection which 544 // fails to perform the allocation. b) is the only case when we'll 545 // return NULL. 546 HeapWord* result = NULL; 547 for (int try_count = 1; /* we'll return */; try_count += 1) { 548 bool should_try_gc; 549 uint gc_count_before; 550 551 { 552 MutexLockerEx x(Heap_lock); 553 result = _allocator->attempt_allocation_locked(word_size, context); 554 if (result != NULL) { 555 return result; 556 } 557 558 if (GCLocker::is_active_and_needs_gc()) { 559 if (g1_policy()->can_expand_young_list()) { 560 // No need for an ergo verbose message here, 561 // can_expand_young_list() does this when it returns true. 562 result = _allocator->attempt_allocation_force(word_size, context); 563 if (result != NULL) { 564 return result; 565 } 566 } 567 should_try_gc = false; 568 } else { 569 // The GCLocker may not be active but the GCLocker initiated 570 // GC may not yet have been performed (GCLocker::needs_gc() 571 // returns true). In this case we do not try this GC and 572 // wait until the GCLocker initiated GC is performed, and 573 // then retry the allocation. 574 if (GCLocker::needs_gc()) { 575 should_try_gc = false; 576 } else { 577 // Read the GC count while still holding the Heap_lock. 578 gc_count_before = total_collections(); 579 should_try_gc = true; 580 } 581 } 582 } 583 584 if (should_try_gc) { 585 bool succeeded; 586 result = do_collection_pause(word_size, gc_count_before, &succeeded, 587 GCCause::_g1_inc_collection_pause); 588 if (result != NULL) { 589 assert(succeeded, "only way to get back a non-NULL result"); 590 return result; 591 } 592 593 if (succeeded) { 594 // If we get here we successfully scheduled a collection which 595 // failed to allocate. No point in trying to allocate 596 // further. We'll just return NULL. 597 MutexLockerEx x(Heap_lock); 598 *gc_count_before_ret = total_collections(); 599 return NULL; 600 } 601 } else { 602 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 603 MutexLockerEx x(Heap_lock); 604 *gc_count_before_ret = total_collections(); 605 return NULL; 606 } 607 // The GCLocker is either active or the GCLocker initiated 608 // GC has not yet been performed. Stall until it is and 609 // then retry the allocation. 610 GCLocker::stall_until_clear(); 611 (*gclocker_retry_count_ret) += 1; 612 } 613 614 // We can reach here if we were unsuccessful in scheduling a 615 // collection (because another thread beat us to it) or if we were 616 // stalled due to the GC locker. In either can we should retry the 617 // allocation attempt in case another thread successfully 618 // performed a collection and reclaimed enough space. We do the 619 // first attempt (without holding the Heap_lock) here and the 620 // follow-on attempt will be at the start of the next loop 621 // iteration (after taking the Heap_lock). 622 result = _allocator->attempt_allocation(word_size, context); 623 if (result != NULL) { 624 return result; 625 } 626 627 // Give a warning if we seem to be looping forever. 628 if ((QueuedAllocationWarningCount > 0) && 629 (try_count % QueuedAllocationWarningCount == 0)) { 630 log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() " 631 "retries %d times", try_count); 632 } 633 } 634 635 ShouldNotReachHere(); 636 return NULL; 637 } 638 639 void G1CollectedHeap::begin_archive_alloc_range() { 640 assert_at_safepoint(true /* should_be_vm_thread */); 641 if (_archive_allocator == NULL) { 642 _archive_allocator = G1ArchiveAllocator::create_allocator(this); 643 } 644 } 645 646 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) { 647 // Allocations in archive regions cannot be of a size that would be considered 648 // humongous even for a minimum-sized region, because G1 region sizes/boundaries 649 // may be different at archive-restore time. 650 return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words()); 651 } 652 653 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) { 654 assert_at_safepoint(true /* should_be_vm_thread */); 655 assert(_archive_allocator != NULL, "_archive_allocator not initialized"); 656 if (is_archive_alloc_too_large(word_size)) { 657 return NULL; 658 } 659 return _archive_allocator->archive_mem_allocate(word_size); 660 } 661 662 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges, 663 size_t end_alignment_in_bytes) { 664 assert_at_safepoint(true /* should_be_vm_thread */); 665 assert(_archive_allocator != NULL, "_archive_allocator not initialized"); 666 667 // Call complete_archive to do the real work, filling in the MemRegion 668 // array with the archive regions. 669 _archive_allocator->complete_archive(ranges, end_alignment_in_bytes); 670 delete _archive_allocator; 671 _archive_allocator = NULL; 672 } 673 674 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) { 675 assert(ranges != NULL, "MemRegion array NULL"); 676 assert(count != 0, "No MemRegions provided"); 677 MemRegion reserved = _hrm.reserved(); 678 for (size_t i = 0; i < count; i++) { 679 if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) { 680 return false; 681 } 682 } 683 return true; 684 } 685 686 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) { 687 assert(!is_init_completed(), "Expect to be called at JVM init time"); 688 assert(ranges != NULL, "MemRegion array NULL"); 689 assert(count != 0, "No MemRegions provided"); 690 MutexLockerEx x(Heap_lock); 691 692 MemRegion reserved = _hrm.reserved(); 693 HeapWord* prev_last_addr = NULL; 694 HeapRegion* prev_last_region = NULL; 695 696 // Temporarily disable pretouching of heap pages. This interface is used 697 // when mmap'ing archived heap data in, so pre-touching is wasted. 698 FlagSetting fs(AlwaysPreTouch, false); 699 700 // Enable archive object checking used by G1MarkSweep. We have to let it know 701 // about each archive range, so that objects in those ranges aren't marked. 702 G1ArchiveAllocator::enable_archive_object_check(); 703 704 // For each specified MemRegion range, allocate the corresponding G1 705 // regions and mark them as archive regions. We expect the ranges in 706 // ascending starting address order, without overlap. 707 for (size_t i = 0; i < count; i++) { 708 MemRegion curr_range = ranges[i]; 709 HeapWord* start_address = curr_range.start(); 710 size_t word_size = curr_range.word_size(); 711 HeapWord* last_address = curr_range.last(); 712 size_t commits = 0; 713 714 guarantee(reserved.contains(start_address) && reserved.contains(last_address), 715 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 716 p2i(start_address), p2i(last_address)); 717 guarantee(start_address > prev_last_addr, 718 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 719 p2i(start_address), p2i(prev_last_addr)); 720 prev_last_addr = last_address; 721 722 // Check for ranges that start in the same G1 region in which the previous 723 // range ended, and adjust the start address so we don't try to allocate 724 // the same region again. If the current range is entirely within that 725 // region, skip it, just adjusting the recorded top. 726 HeapRegion* start_region = _hrm.addr_to_region(start_address); 727 if ((prev_last_region != NULL) && (start_region == prev_last_region)) { 728 start_address = start_region->end(); 729 if (start_address > last_address) { 730 increase_used(word_size * HeapWordSize); 731 start_region->set_top(last_address + 1); 732 continue; 733 } 734 start_region->set_top(start_address); 735 curr_range = MemRegion(start_address, last_address + 1); 736 start_region = _hrm.addr_to_region(start_address); 737 } 738 739 // Perform the actual region allocation, exiting if it fails. 740 // Then note how much new space we have allocated. 741 if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) { 742 return false; 743 } 744 increase_used(word_size * HeapWordSize); 745 if (commits != 0) { 746 log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B", 747 HeapRegion::GrainWords * HeapWordSize * commits); 748 749 } 750 751 // Mark each G1 region touched by the range as archive, add it to the old set, 752 // and set the allocation context and top. 753 HeapRegion* curr_region = _hrm.addr_to_region(start_address); 754 HeapRegion* last_region = _hrm.addr_to_region(last_address); 755 prev_last_region = last_region; 756 757 while (curr_region != NULL) { 758 assert(curr_region->is_empty() && !curr_region->is_pinned(), 759 "Region already in use (index %u)", curr_region->hrm_index()); 760 curr_region->set_allocation_context(AllocationContext::system()); 761 curr_region->set_archive(); 762 _hr_printer.alloc(curr_region); 763 _old_set.add(curr_region); 764 if (curr_region != last_region) { 765 curr_region->set_top(curr_region->end()); 766 curr_region = _hrm.next_region_in_heap(curr_region); 767 } else { 768 curr_region->set_top(last_address + 1); 769 curr_region = NULL; 770 } 771 } 772 773 // Notify mark-sweep of the archive range. 774 G1ArchiveAllocator::set_range_archive(curr_range, true); 775 } 776 return true; 777 } 778 779 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) { 780 assert(!is_init_completed(), "Expect to be called at JVM init time"); 781 assert(ranges != NULL, "MemRegion array NULL"); 782 assert(count != 0, "No MemRegions provided"); 783 MemRegion reserved = _hrm.reserved(); 784 HeapWord *prev_last_addr = NULL; 785 HeapRegion* prev_last_region = NULL; 786 787 // For each MemRegion, create filler objects, if needed, in the G1 regions 788 // that contain the address range. The address range actually within the 789 // MemRegion will not be modified. That is assumed to have been initialized 790 // elsewhere, probably via an mmap of archived heap data. 791 MutexLockerEx x(Heap_lock); 792 for (size_t i = 0; i < count; i++) { 793 HeapWord* start_address = ranges[i].start(); 794 HeapWord* last_address = ranges[i].last(); 795 796 assert(reserved.contains(start_address) && reserved.contains(last_address), 797 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 798 p2i(start_address), p2i(last_address)); 799 assert(start_address > prev_last_addr, 800 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 801 p2i(start_address), p2i(prev_last_addr)); 802 803 HeapRegion* start_region = _hrm.addr_to_region(start_address); 804 HeapRegion* last_region = _hrm.addr_to_region(last_address); 805 HeapWord* bottom_address = start_region->bottom(); 806 807 // Check for a range beginning in the same region in which the 808 // previous one ended. 809 if (start_region == prev_last_region) { 810 bottom_address = prev_last_addr + 1; 811 } 812 813 // Verify that the regions were all marked as archive regions by 814 // alloc_archive_regions. 815 HeapRegion* curr_region = start_region; 816 while (curr_region != NULL) { 817 guarantee(curr_region->is_archive(), 818 "Expected archive region at index %u", curr_region->hrm_index()); 819 if (curr_region != last_region) { 820 curr_region = _hrm.next_region_in_heap(curr_region); 821 } else { 822 curr_region = NULL; 823 } 824 } 825 826 prev_last_addr = last_address; 827 prev_last_region = last_region; 828 829 // Fill the memory below the allocated range with dummy object(s), 830 // if the region bottom does not match the range start, or if the previous 831 // range ended within the same G1 region, and there is a gap. 832 if (start_address != bottom_address) { 833 size_t fill_size = pointer_delta(start_address, bottom_address); 834 G1CollectedHeap::fill_with_objects(bottom_address, fill_size); 835 increase_used(fill_size * HeapWordSize); 836 } 837 } 838 } 839 840 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size, 841 uint* gc_count_before_ret, 842 uint* gclocker_retry_count_ret) { 843 assert_heap_not_locked_and_not_at_safepoint(); 844 assert(!is_humongous(word_size), "attempt_allocation() should not " 845 "be called for humongous allocation requests"); 846 847 AllocationContext_t context = AllocationContext::current(); 848 HeapWord* result = _allocator->attempt_allocation(word_size, context); 849 850 if (result == NULL) { 851 result = attempt_allocation_slow(word_size, 852 context, 853 gc_count_before_ret, 854 gclocker_retry_count_ret); 855 } 856 assert_heap_not_locked(); 857 if (result != NULL) { 858 dirty_young_block(result, word_size); 859 } 860 return result; 861 } 862 863 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) { 864 assert(!is_init_completed(), "Expect to be called at JVM init time"); 865 assert(ranges != NULL, "MemRegion array NULL"); 866 assert(count != 0, "No MemRegions provided"); 867 MemRegion reserved = _hrm.reserved(); 868 HeapWord* prev_last_addr = NULL; 869 HeapRegion* prev_last_region = NULL; 870 size_t size_used = 0; 871 size_t uncommitted_regions = 0; 872 873 // For each Memregion, free the G1 regions that constitute it, and 874 // notify mark-sweep that the range is no longer to be considered 'archive.' 875 MutexLockerEx x(Heap_lock); 876 for (size_t i = 0; i < count; i++) { 877 HeapWord* start_address = ranges[i].start(); 878 HeapWord* last_address = ranges[i].last(); 879 880 assert(reserved.contains(start_address) && reserved.contains(last_address), 881 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 882 p2i(start_address), p2i(last_address)); 883 assert(start_address > prev_last_addr, 884 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 885 p2i(start_address), p2i(prev_last_addr)); 886 size_used += ranges[i].byte_size(); 887 prev_last_addr = last_address; 888 889 HeapRegion* start_region = _hrm.addr_to_region(start_address); 890 HeapRegion* last_region = _hrm.addr_to_region(last_address); 891 892 // Check for ranges that start in the same G1 region in which the previous 893 // range ended, and adjust the start address so we don't try to free 894 // the same region again. If the current range is entirely within that 895 // region, skip it. 896 if (start_region == prev_last_region) { 897 start_address = start_region->end(); 898 if (start_address > last_address) { 899 continue; 900 } 901 start_region = _hrm.addr_to_region(start_address); 902 } 903 prev_last_region = last_region; 904 905 // After verifying that each region was marked as an archive region by 906 // alloc_archive_regions, set it free and empty and uncommit it. 907 HeapRegion* curr_region = start_region; 908 while (curr_region != NULL) { 909 guarantee(curr_region->is_archive(), 910 "Expected archive region at index %u", curr_region->hrm_index()); 911 uint curr_index = curr_region->hrm_index(); 912 _old_set.remove(curr_region); 913 curr_region->set_free(); 914 curr_region->set_top(curr_region->bottom()); 915 if (curr_region != last_region) { 916 curr_region = _hrm.next_region_in_heap(curr_region); 917 } else { 918 curr_region = NULL; 919 } 920 _hrm.shrink_at(curr_index, 1); 921 uncommitted_regions++; 922 } 923 924 // Notify mark-sweep that this is no longer an archive range. 925 G1ArchiveAllocator::set_range_archive(ranges[i], false); 926 } 927 928 if (uncommitted_regions != 0) { 929 log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B", 930 HeapRegion::GrainWords * HeapWordSize * uncommitted_regions); 931 } 932 decrease_used(size_used); 933 } 934 935 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size, 936 uint* gc_count_before_ret, 937 uint* gclocker_retry_count_ret) { 938 // The structure of this method has a lot of similarities to 939 // attempt_allocation_slow(). The reason these two were not merged 940 // into a single one is that such a method would require several "if 941 // allocation is not humongous do this, otherwise do that" 942 // conditional paths which would obscure its flow. In fact, an early 943 // version of this code did use a unified method which was harder to 944 // follow and, as a result, it had subtle bugs that were hard to 945 // track down. So keeping these two methods separate allows each to 946 // be more readable. It will be good to keep these two in sync as 947 // much as possible. 948 949 assert_heap_not_locked_and_not_at_safepoint(); 950 assert(is_humongous(word_size), "attempt_allocation_humongous() " 951 "should only be called for humongous allocations"); 952 953 // Humongous objects can exhaust the heap quickly, so we should check if we 954 // need to start a marking cycle at each humongous object allocation. We do 955 // the check before we do the actual allocation. The reason for doing it 956 // before the allocation is that we avoid having to keep track of the newly 957 // allocated memory while we do a GC. 958 if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation", 959 word_size)) { 960 collect(GCCause::_g1_humongous_allocation); 961 } 962 963 // We will loop until a) we manage to successfully perform the 964 // allocation or b) we successfully schedule a collection which 965 // fails to perform the allocation. b) is the only case when we'll 966 // return NULL. 967 HeapWord* result = NULL; 968 for (int try_count = 1; /* we'll return */; try_count += 1) { 969 bool should_try_gc; 970 uint gc_count_before; 971 972 { 973 MutexLockerEx x(Heap_lock); 974 975 // Given that humongous objects are not allocated in young 976 // regions, we'll first try to do the allocation without doing a 977 // collection hoping that there's enough space in the heap. 978 result = humongous_obj_allocate(word_size, AllocationContext::current()); 979 if (result != NULL) { 980 size_t size_in_regions = humongous_obj_size_in_regions(word_size); 981 g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes); 982 return result; 983 } 984 985 if (GCLocker::is_active_and_needs_gc()) { 986 should_try_gc = false; 987 } else { 988 // The GCLocker may not be active but the GCLocker initiated 989 // GC may not yet have been performed (GCLocker::needs_gc() 990 // returns true). In this case we do not try this GC and 991 // wait until the GCLocker initiated GC is performed, and 992 // then retry the allocation. 993 if (GCLocker::needs_gc()) { 994 should_try_gc = false; 995 } else { 996 // Read the GC count while still holding the Heap_lock. 997 gc_count_before = total_collections(); 998 should_try_gc = true; 999 } 1000 } 1001 } 1002 1003 if (should_try_gc) { 1004 // If we failed to allocate the humongous object, we should try to 1005 // do a collection pause (if we're allowed) in case it reclaims 1006 // enough space for the allocation to succeed after the pause. 1007 1008 bool succeeded; 1009 result = do_collection_pause(word_size, gc_count_before, &succeeded, 1010 GCCause::_g1_humongous_allocation); 1011 if (result != NULL) { 1012 assert(succeeded, "only way to get back a non-NULL result"); 1013 return result; 1014 } 1015 1016 if (succeeded) { 1017 // If we get here we successfully scheduled a collection which 1018 // failed to allocate. No point in trying to allocate 1019 // further. We'll just return NULL. 1020 MutexLockerEx x(Heap_lock); 1021 *gc_count_before_ret = total_collections(); 1022 return NULL; 1023 } 1024 } else { 1025 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 1026 MutexLockerEx x(Heap_lock); 1027 *gc_count_before_ret = total_collections(); 1028 return NULL; 1029 } 1030 // The GCLocker is either active or the GCLocker initiated 1031 // GC has not yet been performed. Stall until it is and 1032 // then retry the allocation. 1033 GCLocker::stall_until_clear(); 1034 (*gclocker_retry_count_ret) += 1; 1035 } 1036 1037 // We can reach here if we were unsuccessful in scheduling a 1038 // collection (because another thread beat us to it) or if we were 1039 // stalled due to the GC locker. In either can we should retry the 1040 // allocation attempt in case another thread successfully 1041 // performed a collection and reclaimed enough space. Give a 1042 // warning if we seem to be looping forever. 1043 1044 if ((QueuedAllocationWarningCount > 0) && 1045 (try_count % QueuedAllocationWarningCount == 0)) { 1046 log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() " 1047 "retries %d times", try_count); 1048 } 1049 } 1050 1051 ShouldNotReachHere(); 1052 return NULL; 1053 } 1054 1055 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, 1056 AllocationContext_t context, 1057 bool expect_null_mutator_alloc_region) { 1058 assert_at_safepoint(true /* should_be_vm_thread */); 1059 assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region, 1060 "the current alloc region was unexpectedly found to be non-NULL"); 1061 1062 if (!is_humongous(word_size)) { 1063 return _allocator->attempt_allocation_locked(word_size, context); 1064 } else { 1065 HeapWord* result = humongous_obj_allocate(word_size, context); 1066 if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) { 1067 collector_state()->set_initiate_conc_mark_if_possible(true); 1068 } 1069 return result; 1070 } 1071 1072 ShouldNotReachHere(); 1073 } 1074 1075 class PostCompactionPrinterClosure: public HeapRegionClosure { 1076 private: 1077 G1HRPrinter* _hr_printer; 1078 public: 1079 bool doHeapRegion(HeapRegion* hr) { 1080 assert(!hr->is_young(), "not expecting to find young regions"); 1081 _hr_printer->post_compaction(hr); 1082 return false; 1083 } 1084 1085 PostCompactionPrinterClosure(G1HRPrinter* hr_printer) 1086 : _hr_printer(hr_printer) { } 1087 }; 1088 1089 void G1CollectedHeap::print_hrm_post_compaction() { 1090 if (_hr_printer.is_active()) { 1091 PostCompactionPrinterClosure cl(hr_printer()); 1092 heap_region_iterate(&cl); 1093 } 1094 1095 } 1096 1097 void G1CollectedHeap::abort_concurrent_cycle() { 1098 // Note: When we have a more flexible GC logging framework that 1099 // allows us to add optional attributes to a GC log record we 1100 // could consider timing and reporting how long we wait in the 1101 // following two methods. 1102 wait_while_free_regions_coming(); 1103 // If we start the compaction before the CM threads finish 1104 // scanning the root regions we might trip them over as we'll 1105 // be moving objects / updating references. So let's wait until 1106 // they are done. By telling them to abort, they should complete 1107 // early. 1108 _cm->root_regions()->abort(); 1109 _cm->root_regions()->wait_until_scan_finished(); 1110 append_secondary_free_list_if_not_empty_with_lock(); 1111 1112 // Disable discovery and empty the discovered lists 1113 // for the CM ref processor. 1114 ref_processor_cm()->disable_discovery(); 1115 ref_processor_cm()->abandon_partial_discovery(); 1116 ref_processor_cm()->verify_no_references_recorded(); 1117 1118 // Abandon current iterations of concurrent marking and concurrent 1119 // refinement, if any are in progress. 1120 concurrent_mark()->abort(); 1121 } 1122 1123 void G1CollectedHeap::prepare_heap_for_full_collection() { 1124 // Make sure we'll choose a new allocation region afterwards. 1125 _allocator->release_mutator_alloc_region(); 1126 _allocator->abandon_gc_alloc_regions(); 1127 g1_rem_set()->cleanupHRRS(); 1128 1129 // We may have added regions to the current incremental collection 1130 // set between the last GC or pause and now. We need to clear the 1131 // incremental collection set and then start rebuilding it afresh 1132 // after this full GC. 1133 abandon_collection_set(collection_set()); 1134 1135 tear_down_region_sets(false /* free_list_only */); 1136 collector_state()->set_gcs_are_young(true); 1137 } 1138 1139 void G1CollectedHeap::reset_card_cache_and_queue() { 1140 if (_hot_card_cache->use_cache()) { 1141 _hot_card_cache->reset_card_counts(); 1142 _hot_card_cache->reset_hot_cache(); 1143 } 1144 1145 // Discard all stale remembered set updates. 1146 JavaThread::dirty_card_queue_set().abandon_logs(); 1147 assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty"); 1148 } 1149 1150 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) { 1151 assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant"); 1152 assert(used() == recalculate_used(), "Should be equal"); 1153 _verifier->verify_region_sets_optional(); 1154 _verifier->verify_before_gc(); 1155 _verifier->check_bitmaps("Full GC Start"); 1156 } 1157 1158 void G1CollectedHeap::verify_after_full_collection() { 1159 check_gc_time_stamps(); 1160 _hrm.verify_optional(); 1161 _verifier->verify_region_sets_optional(); 1162 _verifier->verify_after_gc(); 1163 // Clear the previous marking bitmap, if needed for bitmap verification. 1164 // Note we cannot do this when we clear the next marking bitmap in 1165 // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the 1166 // objects marked during a full GC against the previous bitmap. 1167 // But we need to clear it before calling check_bitmaps below since 1168 // the full GC has compacted objects and updated TAMS but not updated 1169 // the prev bitmap. 1170 if (G1VerifyBitmaps) { 1171 GCTraceTime(Debug, gc)("Clear Bitmap for Verification"); 1172 _cm->clear_prev_bitmap(workers()); 1173 } 1174 _verifier->check_bitmaps("Full GC End"); 1175 1176 // At this point there should be no regions in the 1177 // entire heap tagged as young. 1178 assert(check_young_list_empty(), "young list should be empty at this point"); 1179 1180 // Note: since we've just done a full GC, concurrent 1181 // marking is no longer active. Therefore we need not 1182 // re-enable reference discovery for the CM ref processor. 1183 // That will be done at the start of the next marking cycle. 1184 // We also know that the STW processor should no longer 1185 // discover any new references. 1186 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 1187 assert(!ref_processor_cm()->discovery_enabled(), "Postcondition"); 1188 ref_processor_stw()->verify_no_references_recorded(); 1189 ref_processor_cm()->verify_no_references_recorded(); 1190 } 1191 1192 void G1CollectedHeap::do_full_collection_inner(G1FullGCScope* scope) { 1193 GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true); 1194 G1HeapTransition heap_transition(this); 1195 g1_policy()->record_full_collection_start(); 1196 1197 print_heap_before_gc(); 1198 print_heap_regions(); 1199 1200 abort_concurrent_cycle(); 1201 verify_before_full_collection(scope->is_explicit_gc()); 1202 1203 gc_prologue(true); 1204 prepare_heap_for_full_collection(); 1205 1206 G1SerialCollector serial(scope, ref_processor_stw()); 1207 serial.prepare_collection(); 1208 serial.collect(); 1209 serial.complete_collection(); 1210 1211 assert(num_free_regions() == 0, "we should not have added any free regions"); 1212 MemoryService::track_memory_usage(); 1213 1214 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1215 ClassLoaderDataGraph::purge(); 1216 MetaspaceAux::verify_metrics(); 1217 1218 // Prepare heap for normal collections. 1219 rebuild_region_sets(false /* free_list_only */); 1220 reset_card_cache_and_queue(); 1221 resize_if_necessary_after_full_collection(); 1222 1223 // Rebuild the strong code root lists for each region 1224 rebuild_strong_code_roots(); 1225 1226 // Start a new incremental collection set for the next pause 1227 start_new_collection_set(); 1228 1229 _allocator->init_mutator_alloc_region(); 1230 1231 // Post collection state updates. 1232 MetaspaceGC::compute_new_size(); 1233 gc_epilogue(true); 1234 g1_policy()->record_full_collection_end(); 1235 1236 // Post collection verification. 1237 verify_after_full_collection(); 1238 1239 // Post collection logging. 1240 // We should do this after we potentially resize the heap so 1241 // that all the COMMIT / UNCOMMIT events are generated before 1242 // the compaction events. 1243 print_hrm_post_compaction(); 1244 heap_transition.print(); 1245 print_heap_after_gc(); 1246 print_heap_regions(); 1247 #ifdef TRACESPINNING 1248 ParallelTaskTerminator::print_termination_counts(); 1249 #endif 1250 } 1251 1252 bool G1CollectedHeap::do_full_collection(bool explicit_gc, 1253 bool clear_all_soft_refs) { 1254 assert_at_safepoint(true /* should_be_vm_thread */); 1255 1256 if (GCLocker::check_active_before_gc()) { 1257 // Full GC was not completed. 1258 return false; 1259 } 1260 1261 const bool do_clear_all_soft_refs = clear_all_soft_refs || 1262 collector_policy()->should_clear_all_soft_refs(); 1263 1264 G1FullGCScope scope(explicit_gc, do_clear_all_soft_refs); 1265 do_full_collection_inner(&scope); 1266 1267 // Full collection was successfully completed. 1268 return true; 1269 } 1270 1271 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { 1272 // Currently, there is no facility in the do_full_collection(bool) API to notify 1273 // the caller that the collection did not succeed (e.g., because it was locked 1274 // out by the GC locker). So, right now, we'll ignore the return value. 1275 bool dummy = do_full_collection(true, /* explicit_gc */ 1276 clear_all_soft_refs); 1277 } 1278 1279 void G1CollectedHeap::resize_if_necessary_after_full_collection() { 1280 // Include bytes that will be pre-allocated to support collections, as "used". 1281 const size_t used_after_gc = used(); 1282 const size_t capacity_after_gc = capacity(); 1283 const size_t free_after_gc = capacity_after_gc - used_after_gc; 1284 1285 // This is enforced in arguments.cpp. 1286 assert(MinHeapFreeRatio <= MaxHeapFreeRatio, 1287 "otherwise the code below doesn't make sense"); 1288 1289 // We don't have floating point command-line arguments 1290 const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0; 1291 const double maximum_used_percentage = 1.0 - minimum_free_percentage; 1292 const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0; 1293 const double minimum_used_percentage = 1.0 - maximum_free_percentage; 1294 1295 const size_t min_heap_size = collector_policy()->min_heap_byte_size(); 1296 const size_t max_heap_size = collector_policy()->max_heap_byte_size(); 1297 1298 // We have to be careful here as these two calculations can overflow 1299 // 32-bit size_t's. 1300 double used_after_gc_d = (double) used_after_gc; 1301 double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage; 1302 double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage; 1303 1304 // Let's make sure that they are both under the max heap size, which 1305 // by default will make them fit into a size_t. 1306 double desired_capacity_upper_bound = (double) max_heap_size; 1307 minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d, 1308 desired_capacity_upper_bound); 1309 maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d, 1310 desired_capacity_upper_bound); 1311 1312 // We can now safely turn them into size_t's. 1313 size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d; 1314 size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d; 1315 1316 // This assert only makes sense here, before we adjust them 1317 // with respect to the min and max heap size. 1318 assert(minimum_desired_capacity <= maximum_desired_capacity, 1319 "minimum_desired_capacity = " SIZE_FORMAT ", " 1320 "maximum_desired_capacity = " SIZE_FORMAT, 1321 minimum_desired_capacity, maximum_desired_capacity); 1322 1323 // Should not be greater than the heap max size. No need to adjust 1324 // it with respect to the heap min size as it's a lower bound (i.e., 1325 // we'll try to make the capacity larger than it, not smaller). 1326 minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size); 1327 // Should not be less than the heap min size. No need to adjust it 1328 // with respect to the heap max size as it's an upper bound (i.e., 1329 // we'll try to make the capacity smaller than it, not greater). 1330 maximum_desired_capacity = MAX2(maximum_desired_capacity, min_heap_size); 1331 1332 if (capacity_after_gc < minimum_desired_capacity) { 1333 // Don't expand unless it's significant 1334 size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; 1335 1336 log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). " 1337 "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)", 1338 capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio); 1339 1340 expand(expand_bytes, _workers); 1341 1342 // No expansion, now see if we want to shrink 1343 } else if (capacity_after_gc > maximum_desired_capacity) { 1344 // Capacity too large, compute shrinking size 1345 size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity; 1346 1347 log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). " 1348 "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)", 1349 capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio); 1350 1351 shrink(shrink_bytes); 1352 } 1353 } 1354 1355 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size, 1356 AllocationContext_t context, 1357 bool do_gc, 1358 bool clear_all_soft_refs, 1359 bool expect_null_mutator_alloc_region, 1360 bool* gc_succeeded) { 1361 *gc_succeeded = true; 1362 // Let's attempt the allocation first. 1363 HeapWord* result = 1364 attempt_allocation_at_safepoint(word_size, 1365 context, 1366 expect_null_mutator_alloc_region); 1367 if (result != NULL) { 1368 assert(*gc_succeeded, "sanity"); 1369 return result; 1370 } 1371 1372 // In a G1 heap, we're supposed to keep allocation from failing by 1373 // incremental pauses. Therefore, at least for now, we'll favor 1374 // expansion over collection. (This might change in the future if we can 1375 // do something smarter than full collection to satisfy a failed alloc.) 1376 result = expand_and_allocate(word_size, context); 1377 if (result != NULL) { 1378 assert(*gc_succeeded, "sanity"); 1379 return result; 1380 } 1381 1382 if (do_gc) { 1383 // Expansion didn't work, we'll try to do a Full GC. 1384 *gc_succeeded = do_full_collection(false, /* explicit_gc */ 1385 clear_all_soft_refs); 1386 } 1387 1388 return NULL; 1389 } 1390 1391 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size, 1392 AllocationContext_t context, 1393 bool* succeeded) { 1394 assert_at_safepoint(true /* should_be_vm_thread */); 1395 1396 // Attempts to allocate followed by Full GC. 1397 HeapWord* result = 1398 satisfy_failed_allocation_helper(word_size, 1399 context, 1400 true, /* do_gc */ 1401 false, /* clear_all_soft_refs */ 1402 false, /* expect_null_mutator_alloc_region */ 1403 succeeded); 1404 1405 if (result != NULL || !*succeeded) { 1406 return result; 1407 } 1408 1409 // Attempts to allocate followed by Full GC that will collect all soft references. 1410 result = satisfy_failed_allocation_helper(word_size, 1411 context, 1412 true, /* do_gc */ 1413 true, /* clear_all_soft_refs */ 1414 true, /* expect_null_mutator_alloc_region */ 1415 succeeded); 1416 1417 if (result != NULL || !*succeeded) { 1418 return result; 1419 } 1420 1421 // Attempts to allocate, no GC 1422 result = satisfy_failed_allocation_helper(word_size, 1423 context, 1424 false, /* do_gc */ 1425 false, /* clear_all_soft_refs */ 1426 true, /* expect_null_mutator_alloc_region */ 1427 succeeded); 1428 1429 if (result != NULL) { 1430 assert(*succeeded, "sanity"); 1431 return result; 1432 } 1433 1434 assert(!collector_policy()->should_clear_all_soft_refs(), 1435 "Flag should have been handled and cleared prior to this point"); 1436 1437 // What else? We might try synchronous finalization later. If the total 1438 // space available is large enough for the allocation, then a more 1439 // complete compaction phase than we've tried so far might be 1440 // appropriate. 1441 assert(*succeeded, "sanity"); 1442 return NULL; 1443 } 1444 1445 // Attempting to expand the heap sufficiently 1446 // to support an allocation of the given "word_size". If 1447 // successful, perform the allocation and return the address of the 1448 // allocated block, or else "NULL". 1449 1450 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) { 1451 assert_at_safepoint(true /* should_be_vm_thread */); 1452 1453 _verifier->verify_region_sets_optional(); 1454 1455 size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); 1456 log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B", 1457 word_size * HeapWordSize); 1458 1459 1460 if (expand(expand_bytes, _workers)) { 1461 _hrm.verify_optional(); 1462 _verifier->verify_region_sets_optional(); 1463 return attempt_allocation_at_safepoint(word_size, 1464 context, 1465 false /* expect_null_mutator_alloc_region */); 1466 } 1467 return NULL; 1468 } 1469 1470 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) { 1471 size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); 1472 aligned_expand_bytes = align_size_up(aligned_expand_bytes, 1473 HeapRegion::GrainBytes); 1474 1475 log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B", 1476 expand_bytes, aligned_expand_bytes); 1477 1478 if (is_maximal_no_gc()) { 1479 log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)"); 1480 return false; 1481 } 1482 1483 double expand_heap_start_time_sec = os::elapsedTime(); 1484 uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes); 1485 assert(regions_to_expand > 0, "Must expand by at least one region"); 1486 1487 uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers); 1488 if (expand_time_ms != NULL) { 1489 *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS; 1490 } 1491 1492 if (expanded_by > 0) { 1493 size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes; 1494 assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); 1495 g1_policy()->record_new_heap_size(num_regions()); 1496 } else { 1497 log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)"); 1498 1499 // The expansion of the virtual storage space was unsuccessful. 1500 // Let's see if it was because we ran out of swap. 1501 if (G1ExitOnExpansionFailure && 1502 _hrm.available() >= regions_to_expand) { 1503 // We had head room... 1504 vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion"); 1505 } 1506 } 1507 return regions_to_expand > 0; 1508 } 1509 1510 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { 1511 size_t aligned_shrink_bytes = 1512 ReservedSpace::page_align_size_down(shrink_bytes); 1513 aligned_shrink_bytes = align_size_down(aligned_shrink_bytes, 1514 HeapRegion::GrainBytes); 1515 uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes); 1516 1517 uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove); 1518 size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes; 1519 1520 1521 log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B", 1522 shrink_bytes, aligned_shrink_bytes, shrunk_bytes); 1523 if (num_regions_removed > 0) { 1524 g1_policy()->record_new_heap_size(num_regions()); 1525 } else { 1526 log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)"); 1527 } 1528 } 1529 1530 void G1CollectedHeap::shrink(size_t shrink_bytes) { 1531 _verifier->verify_region_sets_optional(); 1532 1533 // We should only reach here at the end of a Full GC which means we 1534 // should not not be holding to any GC alloc regions. The method 1535 // below will make sure of that and do any remaining clean up. 1536 _allocator->abandon_gc_alloc_regions(); 1537 1538 // Instead of tearing down / rebuilding the free lists here, we 1539 // could instead use the remove_all_pending() method on free_list to 1540 // remove only the ones that we need to remove. 1541 tear_down_region_sets(true /* free_list_only */); 1542 shrink_helper(shrink_bytes); 1543 rebuild_region_sets(true /* free_list_only */); 1544 1545 _hrm.verify_optional(); 1546 _verifier->verify_region_sets_optional(); 1547 } 1548 1549 // Public methods. 1550 1551 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) : 1552 CollectedHeap(), 1553 _collector_policy(collector_policy), 1554 _g1_policy(create_g1_policy()), 1555 _collection_set(this, _g1_policy), 1556 _dirty_card_queue_set(false), 1557 _is_alive_closure_cm(this), 1558 _is_alive_closure_stw(this), 1559 _ref_processor_cm(NULL), 1560 _ref_processor_stw(NULL), 1561 _bot(NULL), 1562 _hot_card_cache(NULL), 1563 _g1_rem_set(NULL), 1564 _cg1r(NULL), 1565 _g1mm(NULL), 1566 _refine_cte_cl(NULL), 1567 _preserved_marks_set(true /* in_c_heap */), 1568 _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()), 1569 _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()), 1570 _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()), 1571 _humongous_reclaim_candidates(), 1572 _has_humongous_reclaim_candidates(false), 1573 _archive_allocator(NULL), 1574 _free_regions_coming(false), 1575 _gc_time_stamp(0), 1576 _summary_bytes_used(0), 1577 _survivor_evac_stats("Young", YoungPLABSize, PLABWeight), 1578 _old_evac_stats("Old", OldPLABSize, PLABWeight), 1579 _expand_heap_after_alloc_failure(true), 1580 _old_marking_cycles_started(0), 1581 _old_marking_cycles_completed(0), 1582 _in_cset_fast_test(), 1583 _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()), 1584 _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) { 1585 1586 _workers = new WorkGang("GC Thread", ParallelGCThreads, 1587 /* are_GC_task_threads */true, 1588 /* are_ConcurrentGC_threads */false); 1589 _workers->initialize_workers(); 1590 _verifier = new G1HeapVerifier(this); 1591 1592 _allocator = G1Allocator::create_allocator(this); 1593 1594 _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics()); 1595 1596 _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords); 1597 1598 // Override the default _filler_array_max_size so that no humongous filler 1599 // objects are created. 1600 _filler_array_max_size = _humongous_object_threshold_in_words; 1601 1602 uint n_queues = ParallelGCThreads; 1603 _task_queues = new RefToScanQueueSet(n_queues); 1604 1605 _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC); 1606 1607 for (uint i = 0; i < n_queues; i++) { 1608 RefToScanQueue* q = new RefToScanQueue(); 1609 q->initialize(); 1610 _task_queues->register_queue(i, q); 1611 ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo(); 1612 } 1613 1614 // Initialize the G1EvacuationFailureALot counters and flags. 1615 NOT_PRODUCT(reset_evacuation_should_fail();) 1616 1617 guarantee(_task_queues != NULL, "task_queues allocation failure."); 1618 } 1619 1620 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description, 1621 size_t size, 1622 size_t translation_factor) { 1623 size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1); 1624 // Allocate a new reserved space, preferring to use large pages. 1625 ReservedSpace rs(size, preferred_page_size); 1626 G1RegionToSpaceMapper* result = 1627 G1RegionToSpaceMapper::create_mapper(rs, 1628 size, 1629 rs.alignment(), 1630 HeapRegion::GrainBytes, 1631 translation_factor, 1632 mtGC); 1633 1634 os::trace_page_sizes_for_requested_size(description, 1635 size, 1636 preferred_page_size, 1637 rs.alignment(), 1638 rs.base(), 1639 rs.size()); 1640 1641 return result; 1642 } 1643 1644 jint G1CollectedHeap::initialize() { 1645 CollectedHeap::pre_initialize(); 1646 os::enable_vtime(); 1647 1648 // Necessary to satisfy locking discipline assertions. 1649 1650 MutexLocker x(Heap_lock); 1651 1652 // While there are no constraints in the GC code that HeapWordSize 1653 // be any particular value, there are multiple other areas in the 1654 // system which believe this to be true (e.g. oop->object_size in some 1655 // cases incorrectly returns the size in wordSize units rather than 1656 // HeapWordSize). 1657 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); 1658 1659 size_t init_byte_size = collector_policy()->initial_heap_byte_size(); 1660 size_t max_byte_size = collector_policy()->max_heap_byte_size(); 1661 size_t heap_alignment = collector_policy()->heap_alignment(); 1662 1663 // Ensure that the sizes are properly aligned. 1664 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1665 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1666 Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap"); 1667 1668 _refine_cte_cl = new RefineCardTableEntryClosure(); 1669 1670 jint ecode = JNI_OK; 1671 _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode); 1672 if (_cg1r == NULL) { 1673 return ecode; 1674 } 1675 1676 // Reserve the maximum. 1677 1678 // When compressed oops are enabled, the preferred heap base 1679 // is calculated by subtracting the requested size from the 1680 // 32Gb boundary and using the result as the base address for 1681 // heap reservation. If the requested size is not aligned to 1682 // HeapRegion::GrainBytes (i.e. the alignment that is passed 1683 // into the ReservedHeapSpace constructor) then the actual 1684 // base of the reserved heap may end up differing from the 1685 // address that was requested (i.e. the preferred heap base). 1686 // If this happens then we could end up using a non-optimal 1687 // compressed oops mode. 1688 1689 ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, 1690 heap_alignment); 1691 1692 initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size())); 1693 1694 // Create the barrier set for the entire reserved region. 1695 G1SATBCardTableLoggingModRefBS* bs 1696 = new G1SATBCardTableLoggingModRefBS(reserved_region()); 1697 bs->initialize(); 1698 assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity"); 1699 set_barrier_set(bs); 1700 1701 // Create the hot card cache. 1702 _hot_card_cache = new G1HotCardCache(this); 1703 1704 // Also create a G1 rem set. 1705 _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache); 1706 1707 // Carve out the G1 part of the heap. 1708 ReservedSpace g1_rs = heap_rs.first_part(max_byte_size); 1709 size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 1710 G1RegionToSpaceMapper* heap_storage = 1711 G1RegionToSpaceMapper::create_mapper(g1_rs, 1712 g1_rs.size(), 1713 page_size, 1714 HeapRegion::GrainBytes, 1715 1, 1716 mtJavaHeap); 1717 os::trace_page_sizes("Heap", 1718 collector_policy()->min_heap_byte_size(), 1719 max_byte_size, 1720 page_size, 1721 heap_rs.base(), 1722 heap_rs.size()); 1723 heap_storage->set_mapping_changed_listener(&_listener); 1724 1725 // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps. 1726 G1RegionToSpaceMapper* bot_storage = 1727 create_aux_memory_mapper("Block Offset Table", 1728 G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize), 1729 G1BlockOffsetTable::heap_map_factor()); 1730 1731 ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize)); 1732 G1RegionToSpaceMapper* cardtable_storage = 1733 create_aux_memory_mapper("Card Table", 1734 G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize), 1735 G1SATBCardTableLoggingModRefBS::heap_map_factor()); 1736 1737 G1RegionToSpaceMapper* card_counts_storage = 1738 create_aux_memory_mapper("Card Counts Table", 1739 G1CardCounts::compute_size(g1_rs.size() / HeapWordSize), 1740 G1CardCounts::heap_map_factor()); 1741 1742 size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size()); 1743 G1RegionToSpaceMapper* prev_bitmap_storage = 1744 create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor()); 1745 G1RegionToSpaceMapper* next_bitmap_storage = 1746 create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor()); 1747 1748 _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage); 1749 g1_barrier_set()->initialize(cardtable_storage); 1750 // Do later initialization work for concurrent refinement. 1751 _hot_card_cache->initialize(card_counts_storage); 1752 1753 // 6843694 - ensure that the maximum region index can fit 1754 // in the remembered set structures. 1755 const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; 1756 guarantee((max_regions() - 1) <= max_region_idx, "too many regions"); 1757 1758 g1_rem_set()->initialize(max_capacity(), max_regions()); 1759 1760 size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; 1761 guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); 1762 guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, 1763 "too many cards per region"); 1764 1765 FreeRegionList::set_unrealistically_long_length(max_regions() + 1); 1766 1767 _bot = new G1BlockOffsetTable(reserved_region(), bot_storage); 1768 1769 { 1770 HeapWord* start = _hrm.reserved().start(); 1771 HeapWord* end = _hrm.reserved().end(); 1772 size_t granularity = HeapRegion::GrainBytes; 1773 1774 _in_cset_fast_test.initialize(start, end, granularity); 1775 _humongous_reclaim_candidates.initialize(start, end, granularity); 1776 } 1777 1778 // Create the G1ConcurrentMark data structure and thread. 1779 // (Must do this late, so that "max_regions" is defined.) 1780 _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage); 1781 if (_cm == NULL || !_cm->completed_initialization()) { 1782 vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark"); 1783 return JNI_ENOMEM; 1784 } 1785 _cmThread = _cm->cmThread(); 1786 1787 // Now expand into the initial heap size. 1788 if (!expand(init_byte_size, _workers)) { 1789 vm_shutdown_during_initialization("Failed to allocate initial heap."); 1790 return JNI_ENOMEM; 1791 } 1792 1793 // Perform any initialization actions delegated to the policy. 1794 g1_policy()->init(this, &_collection_set); 1795 1796 JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon, 1797 SATB_Q_FL_lock, 1798 G1SATBProcessCompletedThreshold, 1799 Shared_SATB_Q_lock); 1800 1801 JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl, 1802 DirtyCardQ_CBL_mon, 1803 DirtyCardQ_FL_lock, 1804 (int)concurrent_g1_refine()->yellow_zone(), 1805 (int)concurrent_g1_refine()->red_zone(), 1806 Shared_DirtyCardQ_lock, 1807 NULL, // fl_owner 1808 true); // init_free_ids 1809 1810 dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code 1811 DirtyCardQ_CBL_mon, 1812 DirtyCardQ_FL_lock, 1813 -1, // never trigger processing 1814 -1, // no limit on length 1815 Shared_DirtyCardQ_lock, 1816 &JavaThread::dirty_card_queue_set()); 1817 1818 // Here we allocate the dummy HeapRegion that is required by the 1819 // G1AllocRegion class. 1820 HeapRegion* dummy_region = _hrm.get_dummy_region(); 1821 1822 // We'll re-use the same region whether the alloc region will 1823 // require BOT updates or not and, if it doesn't, then a non-young 1824 // region will complain that it cannot support allocations without 1825 // BOT updates. So we'll tag the dummy region as eden to avoid that. 1826 dummy_region->set_eden(); 1827 // Make sure it's full. 1828 dummy_region->set_top(dummy_region->end()); 1829 G1AllocRegion::setup(this, dummy_region); 1830 1831 _allocator->init_mutator_alloc_region(); 1832 1833 // Do create of the monitoring and management support so that 1834 // values in the heap have been properly initialized. 1835 _g1mm = new G1MonitoringSupport(this); 1836 1837 G1StringDedup::initialize(); 1838 1839 _preserved_marks_set.init(ParallelGCThreads); 1840 1841 _collection_set.initialize(max_regions()); 1842 1843 return JNI_OK; 1844 } 1845 1846 void G1CollectedHeap::stop() { 1847 // Stop all concurrent threads. We do this to make sure these threads 1848 // do not continue to execute and access resources (e.g. logging) 1849 // that are destroyed during shutdown. 1850 _cg1r->stop(); 1851 _cmThread->stop(); 1852 if (G1StringDedup::is_enabled()) { 1853 G1StringDedup::stop(); 1854 } 1855 } 1856 1857 size_t G1CollectedHeap::conservative_max_heap_alignment() { 1858 return HeapRegion::max_region_size(); 1859 } 1860 1861 void G1CollectedHeap::post_initialize() { 1862 ref_processing_init(); 1863 } 1864 1865 void G1CollectedHeap::ref_processing_init() { 1866 // Reference processing in G1 currently works as follows: 1867 // 1868 // * There are two reference processor instances. One is 1869 // used to record and process discovered references 1870 // during concurrent marking; the other is used to 1871 // record and process references during STW pauses 1872 // (both full and incremental). 1873 // * Both ref processors need to 'span' the entire heap as 1874 // the regions in the collection set may be dotted around. 1875 // 1876 // * For the concurrent marking ref processor: 1877 // * Reference discovery is enabled at initial marking. 1878 // * Reference discovery is disabled and the discovered 1879 // references processed etc during remarking. 1880 // * Reference discovery is MT (see below). 1881 // * Reference discovery requires a barrier (see below). 1882 // * Reference processing may or may not be MT 1883 // (depending on the value of ParallelRefProcEnabled 1884 // and ParallelGCThreads). 1885 // * A full GC disables reference discovery by the CM 1886 // ref processor and abandons any entries on it's 1887 // discovered lists. 1888 // 1889 // * For the STW processor: 1890 // * Non MT discovery is enabled at the start of a full GC. 1891 // * Processing and enqueueing during a full GC is non-MT. 1892 // * During a full GC, references are processed after marking. 1893 // 1894 // * Discovery (may or may not be MT) is enabled at the start 1895 // of an incremental evacuation pause. 1896 // * References are processed near the end of a STW evacuation pause. 1897 // * For both types of GC: 1898 // * Discovery is atomic - i.e. not concurrent. 1899 // * Reference discovery will not need a barrier. 1900 1901 MemRegion mr = reserved_region(); 1902 1903 // Concurrent Mark ref processor 1904 _ref_processor_cm = 1905 new ReferenceProcessor(mr, // span 1906 ParallelRefProcEnabled && (ParallelGCThreads > 1), 1907 // mt processing 1908 ParallelGCThreads, 1909 // degree of mt processing 1910 (ParallelGCThreads > 1) || (ConcGCThreads > 1), 1911 // mt discovery 1912 MAX2(ParallelGCThreads, ConcGCThreads), 1913 // degree of mt discovery 1914 false, 1915 // Reference discovery is not atomic 1916 &_is_alive_closure_cm); 1917 // is alive closure 1918 // (for efficiency/performance) 1919 1920 // STW ref processor 1921 _ref_processor_stw = 1922 new ReferenceProcessor(mr, // span 1923 ParallelRefProcEnabled && (ParallelGCThreads > 1), 1924 // mt processing 1925 ParallelGCThreads, 1926 // degree of mt processing 1927 (ParallelGCThreads > 1), 1928 // mt discovery 1929 ParallelGCThreads, 1930 // degree of mt discovery 1931 true, 1932 // Reference discovery is atomic 1933 &_is_alive_closure_stw); 1934 // is alive closure 1935 // (for efficiency/performance) 1936 } 1937 1938 CollectorPolicy* G1CollectedHeap::collector_policy() const { 1939 return _collector_policy; 1940 } 1941 1942 size_t G1CollectedHeap::capacity() const { 1943 return _hrm.length() * HeapRegion::GrainBytes; 1944 } 1945 1946 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) { 1947 hr->reset_gc_time_stamp(); 1948 } 1949 1950 #ifndef PRODUCT 1951 1952 class CheckGCTimeStampsHRClosure : public HeapRegionClosure { 1953 private: 1954 unsigned _gc_time_stamp; 1955 bool _failures; 1956 1957 public: 1958 CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) : 1959 _gc_time_stamp(gc_time_stamp), _failures(false) { } 1960 1961 virtual bool doHeapRegion(HeapRegion* hr) { 1962 unsigned region_gc_time_stamp = hr->get_gc_time_stamp(); 1963 if (_gc_time_stamp != region_gc_time_stamp) { 1964 log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr), 1965 region_gc_time_stamp, _gc_time_stamp); 1966 _failures = true; 1967 } 1968 return false; 1969 } 1970 1971 bool failures() { return _failures; } 1972 }; 1973 1974 void G1CollectedHeap::check_gc_time_stamps() { 1975 CheckGCTimeStampsHRClosure cl(_gc_time_stamp); 1976 heap_region_iterate(&cl); 1977 guarantee(!cl.failures(), "all GC time stamps should have been reset"); 1978 } 1979 #endif // PRODUCT 1980 1981 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) { 1982 _hot_card_cache->drain(cl, worker_i); 1983 } 1984 1985 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) { 1986 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 1987 size_t n_completed_buffers = 0; 1988 while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) { 1989 n_completed_buffers++; 1990 } 1991 g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers); 1992 dcqs.clear_n_completed_buffers(); 1993 assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!"); 1994 } 1995 1996 // Computes the sum of the storage used by the various regions. 1997 size_t G1CollectedHeap::used() const { 1998 size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions(); 1999 if (_archive_allocator != NULL) { 2000 result += _archive_allocator->used(); 2001 } 2002 return result; 2003 } 2004 2005 size_t G1CollectedHeap::used_unlocked() const { 2006 return _summary_bytes_used; 2007 } 2008 2009 class SumUsedClosure: public HeapRegionClosure { 2010 size_t _used; 2011 public: 2012 SumUsedClosure() : _used(0) {} 2013 bool doHeapRegion(HeapRegion* r) { 2014 _used += r->used(); 2015 return false; 2016 } 2017 size_t result() { return _used; } 2018 }; 2019 2020 size_t G1CollectedHeap::recalculate_used() const { 2021 double recalculate_used_start = os::elapsedTime(); 2022 2023 SumUsedClosure blk; 2024 heap_region_iterate(&blk); 2025 2026 g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0); 2027 return blk.result(); 2028 } 2029 2030 bool G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) { 2031 switch (cause) { 2032 case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent; 2033 case GCCause::_dcmd_gc_run: return ExplicitGCInvokesConcurrent; 2034 case GCCause::_update_allocation_context_stats_inc: return true; 2035 case GCCause::_wb_conc_mark: return true; 2036 default : return false; 2037 } 2038 } 2039 2040 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { 2041 switch (cause) { 2042 case GCCause::_gc_locker: return GCLockerInvokesConcurrent; 2043 case GCCause::_g1_humongous_allocation: return true; 2044 default: return is_user_requested_concurrent_full_gc(cause); 2045 } 2046 } 2047 2048 #ifndef PRODUCT 2049 void G1CollectedHeap::allocate_dummy_regions() { 2050 // Let's fill up most of the region 2051 size_t word_size = HeapRegion::GrainWords - 1024; 2052 // And as a result the region we'll allocate will be humongous. 2053 guarantee(is_humongous(word_size), "sanity"); 2054 2055 // _filler_array_max_size is set to humongous object threshold 2056 // but temporarily change it to use CollectedHeap::fill_with_object(). 2057 SizeTFlagSetting fs(_filler_array_max_size, word_size); 2058 2059 for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { 2060 // Let's use the existing mechanism for the allocation 2061 HeapWord* dummy_obj = humongous_obj_allocate(word_size, 2062 AllocationContext::system()); 2063 if (dummy_obj != NULL) { 2064 MemRegion mr(dummy_obj, word_size); 2065 CollectedHeap::fill_with_object(mr); 2066 } else { 2067 // If we can't allocate once, we probably cannot allocate 2068 // again. Let's get out of the loop. 2069 break; 2070 } 2071 } 2072 } 2073 #endif // !PRODUCT 2074 2075 void G1CollectedHeap::increment_old_marking_cycles_started() { 2076 assert(_old_marking_cycles_started == _old_marking_cycles_completed || 2077 _old_marking_cycles_started == _old_marking_cycles_completed + 1, 2078 "Wrong marking cycle count (started: %d, completed: %d)", 2079 _old_marking_cycles_started, _old_marking_cycles_completed); 2080 2081 _old_marking_cycles_started++; 2082 } 2083 2084 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) { 2085 MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag); 2086 2087 // We assume that if concurrent == true, then the caller is a 2088 // concurrent thread that was joined the Suspendible Thread 2089 // Set. If there's ever a cheap way to check this, we should add an 2090 // assert here. 2091 2092 // Given that this method is called at the end of a Full GC or of a 2093 // concurrent cycle, and those can be nested (i.e., a Full GC can 2094 // interrupt a concurrent cycle), the number of full collections 2095 // completed should be either one (in the case where there was no 2096 // nesting) or two (when a Full GC interrupted a concurrent cycle) 2097 // behind the number of full collections started. 2098 2099 // This is the case for the inner caller, i.e. a Full GC. 2100 assert(concurrent || 2101 (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || 2102 (_old_marking_cycles_started == _old_marking_cycles_completed + 2), 2103 "for inner caller (Full GC): _old_marking_cycles_started = %u " 2104 "is inconsistent with _old_marking_cycles_completed = %u", 2105 _old_marking_cycles_started, _old_marking_cycles_completed); 2106 2107 // This is the case for the outer caller, i.e. the concurrent cycle. 2108 assert(!concurrent || 2109 (_old_marking_cycles_started == _old_marking_cycles_completed + 1), 2110 "for outer caller (concurrent cycle): " 2111 "_old_marking_cycles_started = %u " 2112 "is inconsistent with _old_marking_cycles_completed = %u", 2113 _old_marking_cycles_started, _old_marking_cycles_completed); 2114 2115 _old_marking_cycles_completed += 1; 2116 2117 // We need to clear the "in_progress" flag in the CM thread before 2118 // we wake up any waiters (especially when ExplicitInvokesConcurrent 2119 // is set) so that if a waiter requests another System.gc() it doesn't 2120 // incorrectly see that a marking cycle is still in progress. 2121 if (concurrent) { 2122 _cmThread->set_idle(); 2123 } 2124 2125 // This notify_all() will ensure that a thread that called 2126 // System.gc() with (with ExplicitGCInvokesConcurrent set or not) 2127 // and it's waiting for a full GC to finish will be woken up. It is 2128 // waiting in VM_G1IncCollectionPause::doit_epilogue(). 2129 FullGCCount_lock->notify_all(); 2130 } 2131 2132 void G1CollectedHeap::collect(GCCause::Cause cause) { 2133 assert_heap_not_locked(); 2134 2135 uint gc_count_before; 2136 uint old_marking_count_before; 2137 uint full_gc_count_before; 2138 bool retry_gc; 2139 2140 do { 2141 retry_gc = false; 2142 2143 { 2144 MutexLocker ml(Heap_lock); 2145 2146 // Read the GC count while holding the Heap_lock 2147 gc_count_before = total_collections(); 2148 full_gc_count_before = total_full_collections(); 2149 old_marking_count_before = _old_marking_cycles_started; 2150 } 2151 2152 if (should_do_concurrent_full_gc(cause)) { 2153 // Schedule an initial-mark evacuation pause that will start a 2154 // concurrent cycle. We're setting word_size to 0 which means that 2155 // we are not requesting a post-GC allocation. 2156 VM_G1IncCollectionPause op(gc_count_before, 2157 0, /* word_size */ 2158 true, /* should_initiate_conc_mark */ 2159 g1_policy()->max_pause_time_ms(), 2160 cause); 2161 op.set_allocation_context(AllocationContext::current()); 2162 2163 VMThread::execute(&op); 2164 if (!op.pause_succeeded()) { 2165 if (old_marking_count_before == _old_marking_cycles_started) { 2166 retry_gc = op.should_retry_gc(); 2167 } else { 2168 // A Full GC happened while we were trying to schedule the 2169 // initial-mark GC. No point in starting a new cycle given 2170 // that the whole heap was collected anyway. 2171 } 2172 2173 if (retry_gc) { 2174 if (GCLocker::is_active_and_needs_gc()) { 2175 GCLocker::stall_until_clear(); 2176 } 2177 } 2178 } 2179 } else { 2180 if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc 2181 DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { 2182 2183 // Schedule a standard evacuation pause. We're setting word_size 2184 // to 0 which means that we are not requesting a post-GC allocation. 2185 VM_G1IncCollectionPause op(gc_count_before, 2186 0, /* word_size */ 2187 false, /* should_initiate_conc_mark */ 2188 g1_policy()->max_pause_time_ms(), 2189 cause); 2190 VMThread::execute(&op); 2191 } else { 2192 // Schedule a Full GC. 2193 VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause); 2194 VMThread::execute(&op); 2195 } 2196 } 2197 } while (retry_gc); 2198 } 2199 2200 bool G1CollectedHeap::is_in(const void* p) const { 2201 if (_hrm.reserved().contains(p)) { 2202 // Given that we know that p is in the reserved space, 2203 // heap_region_containing() should successfully 2204 // return the containing region. 2205 HeapRegion* hr = heap_region_containing(p); 2206 return hr->is_in(p); 2207 } else { 2208 return false; 2209 } 2210 } 2211 2212 #ifdef ASSERT 2213 bool G1CollectedHeap::is_in_exact(const void* p) const { 2214 bool contains = reserved_region().contains(p); 2215 bool available = _hrm.is_available(addr_to_region((HeapWord*)p)); 2216 if (contains && available) { 2217 return true; 2218 } else { 2219 return false; 2220 } 2221 } 2222 #endif 2223 2224 // Iteration functions. 2225 2226 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion. 2227 2228 class IterateOopClosureRegionClosure: public HeapRegionClosure { 2229 ExtendedOopClosure* _cl; 2230 public: 2231 IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {} 2232 bool doHeapRegion(HeapRegion* r) { 2233 if (!r->is_continues_humongous()) { 2234 r->oop_iterate(_cl); 2235 } 2236 return false; 2237 } 2238 }; 2239 2240 // Iterates an ObjectClosure over all objects within a HeapRegion. 2241 2242 class IterateObjectClosureRegionClosure: public HeapRegionClosure { 2243 ObjectClosure* _cl; 2244 public: 2245 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} 2246 bool doHeapRegion(HeapRegion* r) { 2247 if (!r->is_continues_humongous()) { 2248 r->object_iterate(_cl); 2249 } 2250 return false; 2251 } 2252 }; 2253 2254 void G1CollectedHeap::object_iterate(ObjectClosure* cl) { 2255 IterateObjectClosureRegionClosure blk(cl); 2256 heap_region_iterate(&blk); 2257 } 2258 2259 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { 2260 _hrm.iterate(cl); 2261 } 2262 2263 void 2264 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl, 2265 uint worker_id, 2266 HeapRegionClaimer *hrclaimer, 2267 bool concurrent) const { 2268 _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent); 2269 } 2270 2271 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) { 2272 _collection_set.iterate(cl); 2273 } 2274 2275 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) { 2276 _collection_set.iterate_from(cl, worker_id, workers()->active_workers()); 2277 } 2278 2279 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const { 2280 HeapRegion* result = _hrm.next_region_in_heap(from); 2281 while (result != NULL && result->is_pinned()) { 2282 result = _hrm.next_region_in_heap(result); 2283 } 2284 return result; 2285 } 2286 2287 HeapWord* G1CollectedHeap::block_start(const void* addr) const { 2288 HeapRegion* hr = heap_region_containing(addr); 2289 return hr->block_start(addr); 2290 } 2291 2292 size_t G1CollectedHeap::block_size(const HeapWord* addr) const { 2293 HeapRegion* hr = heap_region_containing(addr); 2294 return hr->block_size(addr); 2295 } 2296 2297 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { 2298 HeapRegion* hr = heap_region_containing(addr); 2299 return hr->block_is_obj(addr); 2300 } 2301 2302 bool G1CollectedHeap::supports_tlab_allocation() const { 2303 return true; 2304 } 2305 2306 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { 2307 return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes; 2308 } 2309 2310 size_t G1CollectedHeap::tlab_used(Thread* ignored) const { 2311 return _eden.length() * HeapRegion::GrainBytes; 2312 } 2313 2314 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size 2315 // must be equal to the humongous object limit. 2316 size_t G1CollectedHeap::max_tlab_size() const { 2317 return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment); 2318 } 2319 2320 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { 2321 AllocationContext_t context = AllocationContext::current(); 2322 return _allocator->unsafe_max_tlab_alloc(context); 2323 } 2324 2325 size_t G1CollectedHeap::max_capacity() const { 2326 return _hrm.reserved().byte_size(); 2327 } 2328 2329 jlong G1CollectedHeap::millis_since_last_gc() { 2330 // See the notes in GenCollectedHeap::millis_since_last_gc() 2331 // for more information about the implementation. 2332 jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) - 2333 _g1_policy->collection_pause_end_millis(); 2334 if (ret_val < 0) { 2335 log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT 2336 ". returning zero instead.", ret_val); 2337 return 0; 2338 } 2339 return ret_val; 2340 } 2341 2342 void G1CollectedHeap::prepare_for_verify() { 2343 _verifier->prepare_for_verify(); 2344 } 2345 2346 void G1CollectedHeap::verify(VerifyOption vo) { 2347 _verifier->verify(vo); 2348 } 2349 2350 bool G1CollectedHeap::supports_concurrent_phase_control() const { 2351 return true; 2352 } 2353 2354 const char* const* G1CollectedHeap::concurrent_phases() const { 2355 return _cmThread->concurrent_phases(); 2356 } 2357 2358 bool G1CollectedHeap::request_concurrent_phase(const char* phase) { 2359 return _cmThread->request_concurrent_phase(phase); 2360 } 2361 2362 class PrintRegionClosure: public HeapRegionClosure { 2363 outputStream* _st; 2364 public: 2365 PrintRegionClosure(outputStream* st) : _st(st) {} 2366 bool doHeapRegion(HeapRegion* r) { 2367 r->print_on(_st); 2368 return false; 2369 } 2370 }; 2371 2372 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 2373 const HeapRegion* hr, 2374 const VerifyOption vo) const { 2375 switch (vo) { 2376 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr); 2377 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr); 2378 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked() && !hr->is_archive(); 2379 default: ShouldNotReachHere(); 2380 } 2381 return false; // keep some compilers happy 2382 } 2383 2384 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 2385 const VerifyOption vo) const { 2386 switch (vo) { 2387 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj); 2388 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj); 2389 case VerifyOption_G1UseMarkWord: { 2390 HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj); 2391 return !obj->is_gc_marked() && !hr->is_archive(); 2392 } 2393 default: ShouldNotReachHere(); 2394 } 2395 return false; // keep some compilers happy 2396 } 2397 2398 void G1CollectedHeap::print_heap_regions() const { 2399 Log(gc, heap, region) log; 2400 if (log.is_trace()) { 2401 ResourceMark rm; 2402 print_regions_on(log.trace_stream()); 2403 } 2404 } 2405 2406 void G1CollectedHeap::print_on(outputStream* st) const { 2407 st->print(" %-20s", "garbage-first heap"); 2408 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", 2409 capacity()/K, used_unlocked()/K); 2410 st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")", 2411 p2i(_hrm.reserved().start()), 2412 p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords), 2413 p2i(_hrm.reserved().end())); 2414 st->cr(); 2415 st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); 2416 uint young_regions = young_regions_count(); 2417 st->print("%u young (" SIZE_FORMAT "K), ", young_regions, 2418 (size_t) young_regions * HeapRegion::GrainBytes / K); 2419 uint survivor_regions = survivor_regions_count(); 2420 st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, 2421 (size_t) survivor_regions * HeapRegion::GrainBytes / K); 2422 st->cr(); 2423 MetaspaceAux::print_on(st); 2424 } 2425 2426 void G1CollectedHeap::print_regions_on(outputStream* st) const { 2427 st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, " 2428 "HS=humongous(starts), HC=humongous(continues), " 2429 "CS=collection set, F=free, A=archive, TS=gc time stamp, " 2430 "AC=allocation context, " 2431 "TAMS=top-at-mark-start (previous, next)"); 2432 PrintRegionClosure blk(st); 2433 heap_region_iterate(&blk); 2434 } 2435 2436 void G1CollectedHeap::print_extended_on(outputStream* st) const { 2437 print_on(st); 2438 2439 // Print the per-region information. 2440 print_regions_on(st); 2441 } 2442 2443 void G1CollectedHeap::print_on_error(outputStream* st) const { 2444 this->CollectedHeap::print_on_error(st); 2445 2446 if (_cm != NULL) { 2447 st->cr(); 2448 _cm->print_on_error(st); 2449 } 2450 } 2451 2452 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const { 2453 workers()->print_worker_threads_on(st); 2454 _cmThread->print_on(st); 2455 st->cr(); 2456 _cm->print_worker_threads_on(st); 2457 _cg1r->print_worker_threads_on(st); // also prints the sample thread 2458 if (G1StringDedup::is_enabled()) { 2459 G1StringDedup::print_worker_threads_on(st); 2460 } 2461 } 2462 2463 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { 2464 workers()->threads_do(tc); 2465 tc->do_thread(_cmThread); 2466 _cm->threads_do(tc); 2467 _cg1r->threads_do(tc); // also iterates over the sample thread 2468 if (G1StringDedup::is_enabled()) { 2469 G1StringDedup::threads_do(tc); 2470 } 2471 } 2472 2473 void G1CollectedHeap::print_tracing_info() const { 2474 g1_rem_set()->print_summary_info(); 2475 concurrent_mark()->print_summary_info(); 2476 } 2477 2478 #ifndef PRODUCT 2479 // Helpful for debugging RSet issues. 2480 2481 class PrintRSetsClosure : public HeapRegionClosure { 2482 private: 2483 const char* _msg; 2484 size_t _occupied_sum; 2485 2486 public: 2487 bool doHeapRegion(HeapRegion* r) { 2488 HeapRegionRemSet* hrrs = r->rem_set(); 2489 size_t occupied = hrrs->occupied(); 2490 _occupied_sum += occupied; 2491 2492 tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r)); 2493 if (occupied == 0) { 2494 tty->print_cr(" RSet is empty"); 2495 } else { 2496 hrrs->print(); 2497 } 2498 tty->print_cr("----------"); 2499 return false; 2500 } 2501 2502 PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) { 2503 tty->cr(); 2504 tty->print_cr("========================================"); 2505 tty->print_cr("%s", msg); 2506 tty->cr(); 2507 } 2508 2509 ~PrintRSetsClosure() { 2510 tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum); 2511 tty->print_cr("========================================"); 2512 tty->cr(); 2513 } 2514 }; 2515 2516 void G1CollectedHeap::print_cset_rsets() { 2517 PrintRSetsClosure cl("Printing CSet RSets"); 2518 collection_set_iterate(&cl); 2519 } 2520 2521 void G1CollectedHeap::print_all_rsets() { 2522 PrintRSetsClosure cl("Printing All RSets");; 2523 heap_region_iterate(&cl); 2524 } 2525 #endif // PRODUCT 2526 2527 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() { 2528 2529 size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes; 2530 size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes; 2531 size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked(); 2532 2533 size_t eden_capacity_bytes = 2534 (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes; 2535 2536 VirtualSpaceSummary heap_summary = create_heap_space_summary(); 2537 return G1HeapSummary(heap_summary, heap_used, eden_used_bytes, 2538 eden_capacity_bytes, survivor_used_bytes, num_regions()); 2539 } 2540 2541 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) { 2542 return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(), 2543 stats->unused(), stats->used(), stats->region_end_waste(), 2544 stats->regions_filled(), stats->direct_allocated(), 2545 stats->failure_used(), stats->failure_waste()); 2546 } 2547 2548 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { 2549 const G1HeapSummary& heap_summary = create_g1_heap_summary(); 2550 gc_tracer->report_gc_heap_summary(when, heap_summary); 2551 2552 const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); 2553 gc_tracer->report_metaspace_summary(when, metaspace_summary); 2554 } 2555 2556 G1CollectedHeap* G1CollectedHeap::heap() { 2557 CollectedHeap* heap = Universe::heap(); 2558 assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()"); 2559 assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap"); 2560 return (G1CollectedHeap*)heap; 2561 } 2562 2563 void G1CollectedHeap::gc_prologue(bool full) { 2564 // always_do_update_barrier = false; 2565 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); 2566 2567 // This summary needs to be printed before incrementing total collections. 2568 g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections()); 2569 2570 // Update common counters. 2571 increment_total_collections(full /* full gc */); 2572 if (full) { 2573 increment_old_marking_cycles_started(); 2574 reset_gc_time_stamp(); 2575 } else { 2576 increment_gc_time_stamp(); 2577 } 2578 2579 // Fill TLAB's and such 2580 double start = os::elapsedTime(); 2581 accumulate_statistics_all_tlabs(); 2582 ensure_parsability(true); 2583 g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0); 2584 } 2585 2586 void G1CollectedHeap::gc_epilogue(bool full) { 2587 // Update common counters. 2588 if (full) { 2589 // Update the number of full collections that have been completed. 2590 increment_old_marking_cycles_completed(false /* concurrent */); 2591 } 2592 2593 // We are at the end of the GC. Total collections has already been increased. 2594 g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1); 2595 2596 // FIXME: what is this about? 2597 // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" 2598 // is set. 2599 #if defined(COMPILER2) || INCLUDE_JVMCI 2600 assert(DerivedPointerTable::is_empty(), "derived pointer present"); 2601 #endif 2602 // always_do_update_barrier = true; 2603 2604 double start = os::elapsedTime(); 2605 resize_all_tlabs(); 2606 g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0); 2607 2608 allocation_context_stats().update(full); 2609 2610 // We have just completed a GC. Update the soft reference 2611 // policy with the new heap occupancy 2612 Universe::update_heap_info_at_gc(); 2613 } 2614 2615 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, 2616 uint gc_count_before, 2617 bool* succeeded, 2618 GCCause::Cause gc_cause) { 2619 assert_heap_not_locked_and_not_at_safepoint(); 2620 VM_G1IncCollectionPause op(gc_count_before, 2621 word_size, 2622 false, /* should_initiate_conc_mark */ 2623 g1_policy()->max_pause_time_ms(), 2624 gc_cause); 2625 2626 op.set_allocation_context(AllocationContext::current()); 2627 VMThread::execute(&op); 2628 2629 HeapWord* result = op.result(); 2630 bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded(); 2631 assert(result == NULL || ret_succeeded, 2632 "the result should be NULL if the VM did not succeed"); 2633 *succeeded = ret_succeeded; 2634 2635 assert_heap_not_locked(); 2636 return result; 2637 } 2638 2639 void 2640 G1CollectedHeap::doConcurrentMark() { 2641 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2642 if (!_cmThread->in_progress()) { 2643 _cmThread->set_started(); 2644 CGC_lock->notify(); 2645 } 2646 } 2647 2648 size_t G1CollectedHeap::pending_card_num() { 2649 size_t extra_cards = 0; 2650 JavaThread *curr = Threads::first(); 2651 while (curr != NULL) { 2652 DirtyCardQueue& dcq = curr->dirty_card_queue(); 2653 extra_cards += dcq.size(); 2654 curr = curr->next(); 2655 } 2656 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 2657 size_t buffer_size = dcqs.buffer_size(); 2658 size_t buffer_num = dcqs.completed_buffers_num(); 2659 2660 return buffer_size * buffer_num + extra_cards; 2661 } 2662 2663 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure { 2664 private: 2665 size_t _total_humongous; 2666 size_t _candidate_humongous; 2667 2668 DirtyCardQueue _dcq; 2669 2670 // We don't nominate objects with many remembered set entries, on 2671 // the assumption that such objects are likely still live. 2672 bool is_remset_small(HeapRegion* region) const { 2673 HeapRegionRemSet* const rset = region->rem_set(); 2674 return G1EagerReclaimHumongousObjectsWithStaleRefs 2675 ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) 2676 : rset->is_empty(); 2677 } 2678 2679 bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const { 2680 assert(region->is_starts_humongous(), "Must start a humongous object"); 2681 2682 oop obj = oop(region->bottom()); 2683 2684 // Dead objects cannot be eager reclaim candidates. Due to class 2685 // unloading it is unsafe to query their classes so we return early. 2686 if (heap->is_obj_dead(obj, region)) { 2687 return false; 2688 } 2689 2690 // Candidate selection must satisfy the following constraints 2691 // while concurrent marking is in progress: 2692 // 2693 // * In order to maintain SATB invariants, an object must not be 2694 // reclaimed if it was allocated before the start of marking and 2695 // has not had its references scanned. Such an object must have 2696 // its references (including type metadata) scanned to ensure no 2697 // live objects are missed by the marking process. Objects 2698 // allocated after the start of concurrent marking don't need to 2699 // be scanned. 2700 // 2701 // * An object must not be reclaimed if it is on the concurrent 2702 // mark stack. Objects allocated after the start of concurrent 2703 // marking are never pushed on the mark stack. 2704 // 2705 // Nominating only objects allocated after the start of concurrent 2706 // marking is sufficient to meet both constraints. This may miss 2707 // some objects that satisfy the constraints, but the marking data 2708 // structures don't support efficiently performing the needed 2709 // additional tests or scrubbing of the mark stack. 2710 // 2711 // However, we presently only nominate is_typeArray() objects. 2712 // A humongous object containing references induces remembered 2713 // set entries on other regions. In order to reclaim such an 2714 // object, those remembered sets would need to be cleaned up. 2715 // 2716 // We also treat is_typeArray() objects specially, allowing them 2717 // to be reclaimed even if allocated before the start of 2718 // concurrent mark. For this we rely on mark stack insertion to 2719 // exclude is_typeArray() objects, preventing reclaiming an object 2720 // that is in the mark stack. We also rely on the metadata for 2721 // such objects to be built-in and so ensured to be kept live. 2722 // Frequent allocation and drop of large binary blobs is an 2723 // important use case for eager reclaim, and this special handling 2724 // may reduce needed headroom. 2725 2726 return obj->is_typeArray() && is_remset_small(region); 2727 } 2728 2729 public: 2730 RegisterHumongousWithInCSetFastTestClosure() 2731 : _total_humongous(0), 2732 _candidate_humongous(0), 2733 _dcq(&JavaThread::dirty_card_queue_set()) { 2734 } 2735 2736 virtual bool doHeapRegion(HeapRegion* r) { 2737 if (!r->is_starts_humongous()) { 2738 return false; 2739 } 2740 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 2741 2742 bool is_candidate = humongous_region_is_candidate(g1h, r); 2743 uint rindex = r->hrm_index(); 2744 g1h->set_humongous_reclaim_candidate(rindex, is_candidate); 2745 if (is_candidate) { 2746 _candidate_humongous++; 2747 g1h->register_humongous_region_with_cset(rindex); 2748 // Is_candidate already filters out humongous object with large remembered sets. 2749 // If we have a humongous object with a few remembered sets, we simply flush these 2750 // remembered set entries into the DCQS. That will result in automatic 2751 // re-evaluation of their remembered set entries during the following evacuation 2752 // phase. 2753 if (!r->rem_set()->is_empty()) { 2754 guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries), 2755 "Found a not-small remembered set here. This is inconsistent with previous assumptions."); 2756 G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set(); 2757 HeapRegionRemSetIterator hrrs(r->rem_set()); 2758 size_t card_index; 2759 while (hrrs.has_next(card_index)) { 2760 jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index); 2761 // The remembered set might contain references to already freed 2762 // regions. Filter out such entries to avoid failing card table 2763 // verification. 2764 if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) { 2765 if (*card_ptr != CardTableModRefBS::dirty_card_val()) { 2766 *card_ptr = CardTableModRefBS::dirty_card_val(); 2767 _dcq.enqueue(card_ptr); 2768 } 2769 } 2770 } 2771 assert(hrrs.n_yielded() == r->rem_set()->occupied(), 2772 "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries", 2773 hrrs.n_yielded(), r->rem_set()->occupied()); 2774 r->rem_set()->clear_locked(); 2775 } 2776 assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty."); 2777 } 2778 _total_humongous++; 2779 2780 return false; 2781 } 2782 2783 size_t total_humongous() const { return _total_humongous; } 2784 size_t candidate_humongous() const { return _candidate_humongous; } 2785 2786 void flush_rem_set_entries() { _dcq.flush(); } 2787 }; 2788 2789 void G1CollectedHeap::register_humongous_regions_with_cset() { 2790 if (!G1EagerReclaimHumongousObjects) { 2791 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0); 2792 return; 2793 } 2794 double time = os::elapsed_counter(); 2795 2796 // Collect reclaim candidate information and register candidates with cset. 2797 RegisterHumongousWithInCSetFastTestClosure cl; 2798 heap_region_iterate(&cl); 2799 2800 time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0; 2801 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time, 2802 cl.total_humongous(), 2803 cl.candidate_humongous()); 2804 _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0; 2805 2806 // Finally flush all remembered set entries to re-check into the global DCQS. 2807 cl.flush_rem_set_entries(); 2808 } 2809 2810 class VerifyRegionRemSetClosure : public HeapRegionClosure { 2811 public: 2812 bool doHeapRegion(HeapRegion* hr) { 2813 if (!hr->is_archive() && !hr->is_continues_humongous()) { 2814 hr->verify_rem_set(); 2815 } 2816 return false; 2817 } 2818 }; 2819 2820 uint G1CollectedHeap::num_task_queues() const { 2821 return _task_queues->size(); 2822 } 2823 2824 #if TASKQUEUE_STATS 2825 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { 2826 st->print_raw_cr("GC Task Stats"); 2827 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr(); 2828 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr(); 2829 } 2830 2831 void G1CollectedHeap::print_taskqueue_stats() const { 2832 if (!log_is_enabled(Trace, gc, task, stats)) { 2833 return; 2834 } 2835 Log(gc, task, stats) log; 2836 ResourceMark rm; 2837 outputStream* st = log.trace_stream(); 2838 2839 print_taskqueue_stats_hdr(st); 2840 2841 TaskQueueStats totals; 2842 const uint n = num_task_queues(); 2843 for (uint i = 0; i < n; ++i) { 2844 st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr(); 2845 totals += task_queue(i)->stats; 2846 } 2847 st->print_raw("tot "); totals.print(st); st->cr(); 2848 2849 DEBUG_ONLY(totals.verify()); 2850 } 2851 2852 void G1CollectedHeap::reset_taskqueue_stats() { 2853 const uint n = num_task_queues(); 2854 for (uint i = 0; i < n; ++i) { 2855 task_queue(i)->stats.reset(); 2856 } 2857 } 2858 #endif // TASKQUEUE_STATS 2859 2860 void G1CollectedHeap::wait_for_root_region_scanning() { 2861 double scan_wait_start = os::elapsedTime(); 2862 // We have to wait until the CM threads finish scanning the 2863 // root regions as it's the only way to ensure that all the 2864 // objects on them have been correctly scanned before we start 2865 // moving them during the GC. 2866 bool waited = _cm->root_regions()->wait_until_scan_finished(); 2867 double wait_time_ms = 0.0; 2868 if (waited) { 2869 double scan_wait_end = os::elapsedTime(); 2870 wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0; 2871 } 2872 g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms); 2873 } 2874 2875 class G1PrintCollectionSetClosure : public HeapRegionClosure { 2876 private: 2877 G1HRPrinter* _hr_printer; 2878 public: 2879 G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { } 2880 2881 virtual bool doHeapRegion(HeapRegion* r) { 2882 _hr_printer->cset(r); 2883 return false; 2884 } 2885 }; 2886 2887 void G1CollectedHeap::start_new_collection_set() { 2888 collection_set()->start_incremental_building(); 2889 2890 clear_cset_fast_test(); 2891 2892 guarantee(_eden.length() == 0, "eden should have been cleared"); 2893 g1_policy()->transfer_survivors_to_cset(survivor()); 2894 } 2895 2896 bool 2897 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { 2898 assert_at_safepoint(true /* should_be_vm_thread */); 2899 guarantee(!is_gc_active(), "collection is not reentrant"); 2900 2901 if (GCLocker::check_active_before_gc()) { 2902 return false; 2903 } 2904 2905 _gc_timer_stw->register_gc_start(); 2906 2907 GCIdMark gc_id_mark; 2908 _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start()); 2909 2910 SvcGCMarker sgcm(SvcGCMarker::MINOR); 2911 ResourceMark rm; 2912 2913 g1_policy()->note_gc_start(); 2914 2915 wait_for_root_region_scanning(); 2916 2917 print_heap_before_gc(); 2918 print_heap_regions(); 2919 trace_heap_before_gc(_gc_tracer_stw); 2920 2921 _verifier->verify_region_sets_optional(); 2922 _verifier->verify_dirty_young_regions(); 2923 2924 // We should not be doing initial mark unless the conc mark thread is running 2925 if (!_cmThread->should_terminate()) { 2926 // This call will decide whether this pause is an initial-mark 2927 // pause. If it is, during_initial_mark_pause() will return true 2928 // for the duration of this pause. 2929 g1_policy()->decide_on_conc_mark_initiation(); 2930 } 2931 2932 // We do not allow initial-mark to be piggy-backed on a mixed GC. 2933 assert(!collector_state()->during_initial_mark_pause() || 2934 collector_state()->gcs_are_young(), "sanity"); 2935 2936 // We also do not allow mixed GCs during marking. 2937 assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity"); 2938 2939 // Record whether this pause is an initial mark. When the current 2940 // thread has completed its logging output and it's safe to signal 2941 // the CM thread, the flag's value in the policy has been reset. 2942 bool should_start_conc_mark = collector_state()->during_initial_mark_pause(); 2943 2944 // Inner scope for scope based logging, timers, and stats collection 2945 { 2946 EvacuationInfo evacuation_info; 2947 2948 if (collector_state()->during_initial_mark_pause()) { 2949 // We are about to start a marking cycle, so we increment the 2950 // full collection counter. 2951 increment_old_marking_cycles_started(); 2952 _cm->gc_tracer_cm()->set_gc_cause(gc_cause()); 2953 } 2954 2955 _gc_tracer_stw->report_yc_type(collector_state()->yc_type()); 2956 2957 GCTraceCPUTime tcpu; 2958 2959 FormatBuffer<> gc_string("Pause "); 2960 if (collector_state()->during_initial_mark_pause()) { 2961 gc_string.append("Initial Mark"); 2962 } else if (collector_state()->gcs_are_young()) { 2963 gc_string.append("Young"); 2964 } else { 2965 gc_string.append("Mixed"); 2966 } 2967 GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true); 2968 2969 uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 2970 workers()->active_workers(), 2971 Threads::number_of_non_daemon_threads()); 2972 workers()->update_active_workers(active_workers); 2973 log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers()); 2974 2975 TraceCollectorStats tcs(g1mm()->incremental_collection_counters()); 2976 TraceMemoryManagerStats tms(false /* fullGC */, gc_cause()); 2977 2978 // If the secondary_free_list is not empty, append it to the 2979 // free_list. No need to wait for the cleanup operation to finish; 2980 // the region allocation code will check the secondary_free_list 2981 // and wait if necessary. If the G1StressConcRegionFreeing flag is 2982 // set, skip this step so that the region allocation code has to 2983 // get entries from the secondary_free_list. 2984 if (!G1StressConcRegionFreeing) { 2985 append_secondary_free_list_if_not_empty_with_lock(); 2986 } 2987 2988 G1HeapTransition heap_transition(this); 2989 size_t heap_used_bytes_before_gc = used(); 2990 2991 // Don't dynamically change the number of GC threads this early. A value of 2992 // 0 is used to indicate serial work. When parallel work is done, 2993 // it will be set. 2994 2995 { // Call to jvmpi::post_class_unload_events must occur outside of active GC 2996 IsGCActiveMark x; 2997 2998 gc_prologue(false); 2999 3000 if (VerifyRememberedSets) { 3001 log_info(gc, verify)("[Verifying RemSets before GC]"); 3002 VerifyRegionRemSetClosure v_cl; 3003 heap_region_iterate(&v_cl); 3004 } 3005 3006 _verifier->verify_before_gc(); 3007 3008 _verifier->check_bitmaps("GC Start"); 3009 3010 #if defined(COMPILER2) || INCLUDE_JVMCI 3011 DerivedPointerTable::clear(); 3012 #endif 3013 3014 // Please see comment in g1CollectedHeap.hpp and 3015 // G1CollectedHeap::ref_processing_init() to see how 3016 // reference processing currently works in G1. 3017 3018 // Enable discovery in the STW reference processor 3019 if (g1_policy()->should_process_references()) { 3020 ref_processor_stw()->enable_discovery(); 3021 } else { 3022 ref_processor_stw()->disable_discovery(); 3023 } 3024 3025 { 3026 // We want to temporarily turn off discovery by the 3027 // CM ref processor, if necessary, and turn it back on 3028 // on again later if we do. Using a scoped 3029 // NoRefDiscovery object will do this. 3030 NoRefDiscovery no_cm_discovery(ref_processor_cm()); 3031 3032 // Forget the current alloc region (we might even choose it to be part 3033 // of the collection set!). 3034 _allocator->release_mutator_alloc_region(); 3035 3036 // This timing is only used by the ergonomics to handle our pause target. 3037 // It is unclear why this should not include the full pause. We will 3038 // investigate this in CR 7178365. 3039 // 3040 // Preserving the old comment here if that helps the investigation: 3041 // 3042 // The elapsed time induced by the start time below deliberately elides 3043 // the possible verification above. 3044 double sample_start_time_sec = os::elapsedTime(); 3045 3046 g1_policy()->record_collection_pause_start(sample_start_time_sec); 3047 3048 if (collector_state()->during_initial_mark_pause()) { 3049 concurrent_mark()->checkpointRootsInitialPre(); 3050 } 3051 3052 g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor); 3053 3054 evacuation_info.set_collectionset_regions(collection_set()->region_length()); 3055 3056 // Make sure the remembered sets are up to date. This needs to be 3057 // done before register_humongous_regions_with_cset(), because the 3058 // remembered sets are used there to choose eager reclaim candidates. 3059 // If the remembered sets are not up to date we might miss some 3060 // entries that need to be handled. 3061 g1_rem_set()->cleanupHRRS(); 3062 3063 register_humongous_regions_with_cset(); 3064 3065 assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table."); 3066 3067 // We call this after finalize_cset() to 3068 // ensure that the CSet has been finalized. 3069 _cm->verify_no_cset_oops(); 3070 3071 if (_hr_printer.is_active()) { 3072 G1PrintCollectionSetClosure cl(&_hr_printer); 3073 _collection_set.iterate(&cl); 3074 } 3075 3076 // Initialize the GC alloc regions. 3077 _allocator->init_gc_alloc_regions(evacuation_info); 3078 3079 G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length()); 3080 pre_evacuate_collection_set(); 3081 3082 // Actually do the work... 3083 evacuate_collection_set(evacuation_info, &per_thread_states); 3084 3085 post_evacuate_collection_set(evacuation_info, &per_thread_states); 3086 3087 const size_t* surviving_young_words = per_thread_states.surviving_young_words(); 3088 free_collection_set(&_collection_set, evacuation_info, surviving_young_words); 3089 3090 eagerly_reclaim_humongous_regions(); 3091 3092 record_obj_copy_mem_stats(); 3093 _survivor_evac_stats.adjust_desired_plab_sz(); 3094 _old_evac_stats.adjust_desired_plab_sz(); 3095 3096 double start = os::elapsedTime(); 3097 start_new_collection_set(); 3098 g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0); 3099 3100 if (evacuation_failed()) { 3101 set_used(recalculate_used()); 3102 if (_archive_allocator != NULL) { 3103 _archive_allocator->clear_used(); 3104 } 3105 for (uint i = 0; i < ParallelGCThreads; i++) { 3106 if (_evacuation_failed_info_array[i].has_failed()) { 3107 _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]); 3108 } 3109 } 3110 } else { 3111 // The "used" of the the collection set have already been subtracted 3112 // when they were freed. Add in the bytes evacuated. 3113 increase_used(g1_policy()->bytes_copied_during_gc()); 3114 } 3115 3116 if (collector_state()->during_initial_mark_pause()) { 3117 // We have to do this before we notify the CM threads that 3118 // they can start working to make sure that all the 3119 // appropriate initialization is done on the CM object. 3120 concurrent_mark()->checkpointRootsInitialPost(); 3121 collector_state()->set_mark_in_progress(true); 3122 // Note that we don't actually trigger the CM thread at 3123 // this point. We do that later when we're sure that 3124 // the current thread has completed its logging output. 3125 } 3126 3127 allocate_dummy_regions(); 3128 3129 _allocator->init_mutator_alloc_region(); 3130 3131 { 3132 size_t expand_bytes = _heap_sizing_policy->expansion_amount(); 3133 if (expand_bytes > 0) { 3134 size_t bytes_before = capacity(); 3135 // No need for an ergo logging here, 3136 // expansion_amount() does this when it returns a value > 0. 3137 double expand_ms; 3138 if (!expand(expand_bytes, _workers, &expand_ms)) { 3139 // We failed to expand the heap. Cannot do anything about it. 3140 } 3141 g1_policy()->phase_times()->record_expand_heap_time(expand_ms); 3142 } 3143 } 3144 3145 // We redo the verification but now wrt to the new CSet which 3146 // has just got initialized after the previous CSet was freed. 3147 _cm->verify_no_cset_oops(); 3148 3149 // This timing is only used by the ergonomics to handle our pause target. 3150 // It is unclear why this should not include the full pause. We will 3151 // investigate this in CR 7178365. 3152 double sample_end_time_sec = os::elapsedTime(); 3153 double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS; 3154 size_t total_cards_scanned = per_thread_states.total_cards_scanned(); 3155 g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc); 3156 3157 evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before()); 3158 evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc()); 3159 3160 MemoryService::track_memory_usage(); 3161 3162 // In prepare_for_verify() below we'll need to scan the deferred 3163 // update buffers to bring the RSets up-to-date if 3164 // G1HRRSFlushLogBuffersOnVerify has been set. While scanning 3165 // the update buffers we'll probably need to scan cards on the 3166 // regions we just allocated to (i.e., the GC alloc 3167 // regions). However, during the last GC we called 3168 // set_saved_mark() on all the GC alloc regions, so card 3169 // scanning might skip the [saved_mark_word()...top()] area of 3170 // those regions (i.e., the area we allocated objects into 3171 // during the last GC). But it shouldn't. Given that 3172 // saved_mark_word() is conditional on whether the GC time stamp 3173 // on the region is current or not, by incrementing the GC time 3174 // stamp here we invalidate all the GC time stamps on all the 3175 // regions and saved_mark_word() will simply return top() for 3176 // all the regions. This is a nicer way of ensuring this rather 3177 // than iterating over the regions and fixing them. In fact, the 3178 // GC time stamp increment here also ensures that 3179 // saved_mark_word() will return top() between pauses, i.e., 3180 // during concurrent refinement. So we don't need the 3181 // is_gc_active() check to decided which top to use when 3182 // scanning cards (see CR 7039627). 3183 increment_gc_time_stamp(); 3184 3185 if (VerifyRememberedSets) { 3186 log_info(gc, verify)("[Verifying RemSets after GC]"); 3187 VerifyRegionRemSetClosure v_cl; 3188 heap_region_iterate(&v_cl); 3189 } 3190 3191 _verifier->verify_after_gc(); 3192 _verifier->check_bitmaps("GC End"); 3193 3194 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 3195 ref_processor_stw()->verify_no_references_recorded(); 3196 3197 // CM reference discovery will be re-enabled if necessary. 3198 } 3199 3200 #ifdef TRACESPINNING 3201 ParallelTaskTerminator::print_termination_counts(); 3202 #endif 3203 3204 gc_epilogue(false); 3205 } 3206 3207 // Print the remainder of the GC log output. 3208 if (evacuation_failed()) { 3209 log_info(gc)("To-space exhausted"); 3210 } 3211 3212 g1_policy()->print_phases(); 3213 heap_transition.print(); 3214 3215 // It is not yet to safe to tell the concurrent mark to 3216 // start as we have some optional output below. We don't want the 3217 // output from the concurrent mark thread interfering with this 3218 // logging output either. 3219 3220 _hrm.verify_optional(); 3221 _verifier->verify_region_sets_optional(); 3222 3223 TASKQUEUE_STATS_ONLY(print_taskqueue_stats()); 3224 TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); 3225 3226 print_heap_after_gc(); 3227 print_heap_regions(); 3228 trace_heap_after_gc(_gc_tracer_stw); 3229 3230 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 3231 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 3232 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 3233 // before any GC notifications are raised. 3234 g1mm()->update_sizes(); 3235 3236 _gc_tracer_stw->report_evacuation_info(&evacuation_info); 3237 _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold()); 3238 _gc_timer_stw->register_gc_end(); 3239 _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions()); 3240 } 3241 // It should now be safe to tell the concurrent mark thread to start 3242 // without its logging output interfering with the logging output 3243 // that came from the pause. 3244 3245 if (should_start_conc_mark) { 3246 // CAUTION: after the doConcurrentMark() call below, 3247 // the concurrent marking thread(s) could be running 3248 // concurrently with us. Make sure that anything after 3249 // this point does not assume that we are the only GC thread 3250 // running. Note: of course, the actual marking work will 3251 // not start until the safepoint itself is released in 3252 // SuspendibleThreadSet::desynchronize(). 3253 doConcurrentMark(); 3254 } 3255 3256 return true; 3257 } 3258 3259 void G1CollectedHeap::remove_self_forwarding_pointers() { 3260 G1ParRemoveSelfForwardPtrsTask rsfp_task; 3261 workers()->run_task(&rsfp_task); 3262 } 3263 3264 void G1CollectedHeap::restore_after_evac_failure() { 3265 double remove_self_forwards_start = os::elapsedTime(); 3266 3267 remove_self_forwarding_pointers(); 3268 SharedRestorePreservedMarksTaskExecutor task_executor(workers()); 3269 _preserved_marks_set.restore(&task_executor); 3270 3271 g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0); 3272 } 3273 3274 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) { 3275 if (!_evacuation_failed) { 3276 _evacuation_failed = true; 3277 } 3278 3279 _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size()); 3280 _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m); 3281 } 3282 3283 bool G1ParEvacuateFollowersClosure::offer_termination() { 3284 G1ParScanThreadState* const pss = par_scan_state(); 3285 start_term_time(); 3286 const bool res = terminator()->offer_termination(); 3287 end_term_time(); 3288 return res; 3289 } 3290 3291 void G1ParEvacuateFollowersClosure::do_void() { 3292 G1ParScanThreadState* const pss = par_scan_state(); 3293 pss->trim_queue(); 3294 do { 3295 pss->steal_and_trim_queue(queues()); 3296 } while (!offer_termination()); 3297 } 3298 3299 class G1ParTask : public AbstractGangTask { 3300 protected: 3301 G1CollectedHeap* _g1h; 3302 G1ParScanThreadStateSet* _pss; 3303 RefToScanQueueSet* _queues; 3304 G1RootProcessor* _root_processor; 3305 ParallelTaskTerminator _terminator; 3306 uint _n_workers; 3307 3308 public: 3309 G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers) 3310 : AbstractGangTask("G1 collection"), 3311 _g1h(g1h), 3312 _pss(per_thread_states), 3313 _queues(task_queues), 3314 _root_processor(root_processor), 3315 _terminator(n_workers, _queues), 3316 _n_workers(n_workers) 3317 {} 3318 3319 void work(uint worker_id) { 3320 if (worker_id >= _n_workers) return; // no work needed this round 3321 3322 double start_sec = os::elapsedTime(); 3323 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec); 3324 3325 { 3326 ResourceMark rm; 3327 HandleMark hm; 3328 3329 ReferenceProcessor* rp = _g1h->ref_processor_stw(); 3330 3331 G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); 3332 pss->set_ref_processor(rp); 3333 3334 double start_strong_roots_sec = os::elapsedTime(); 3335 3336 _root_processor->evacuate_roots(pss->closures(), worker_id); 3337 3338 G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss); 3339 3340 // We pass a weak code blobs closure to the remembered set scanning because we want to avoid 3341 // treating the nmethods visited to act as roots for concurrent marking. 3342 // We only want to make sure that the oops in the nmethods are adjusted with regard to the 3343 // objects copied by the current evacuation. 3344 size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl, 3345 pss->closures()->weak_codeblobs(), 3346 worker_id); 3347 3348 _pss->add_cards_scanned(worker_id, cards_scanned); 3349 3350 double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec; 3351 3352 double term_sec = 0.0; 3353 size_t evac_term_attempts = 0; 3354 { 3355 double start = os::elapsedTime(); 3356 G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator); 3357 evac.do_void(); 3358 3359 evac_term_attempts = evac.term_attempts(); 3360 term_sec = evac.term_time(); 3361 double elapsed_sec = os::elapsedTime() - start; 3362 _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec); 3363 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec); 3364 _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts); 3365 } 3366 3367 assert(pss->queue_is_empty(), "should be empty"); 3368 3369 if (log_is_enabled(Debug, gc, task, stats)) { 3370 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 3371 size_t lab_waste; 3372 size_t lab_undo_waste; 3373 pss->waste(lab_waste, lab_undo_waste); 3374 _g1h->print_termination_stats(worker_id, 3375 (os::elapsedTime() - start_sec) * 1000.0, /* elapsed time */ 3376 strong_roots_sec * 1000.0, /* strong roots time */ 3377 term_sec * 1000.0, /* evac term time */ 3378 evac_term_attempts, /* evac term attempts */ 3379 lab_waste, /* alloc buffer waste */ 3380 lab_undo_waste /* undo waste */ 3381 ); 3382 } 3383 3384 // Close the inner scope so that the ResourceMark and HandleMark 3385 // destructors are executed here and are included as part of the 3386 // "GC Worker Time". 3387 } 3388 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime()); 3389 } 3390 }; 3391 3392 void G1CollectedHeap::print_termination_stats_hdr() { 3393 log_debug(gc, task, stats)("GC Termination Stats"); 3394 log_debug(gc, task, stats)(" elapsed --strong roots-- -------termination------- ------waste (KiB)------"); 3395 log_debug(gc, task, stats)("thr ms ms %% ms %% attempts total alloc undo"); 3396 log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------"); 3397 } 3398 3399 void G1CollectedHeap::print_termination_stats(uint worker_id, 3400 double elapsed_ms, 3401 double strong_roots_ms, 3402 double term_ms, 3403 size_t term_attempts, 3404 size_t alloc_buffer_waste, 3405 size_t undo_waste) const { 3406 log_debug(gc, task, stats) 3407 ("%3d %9.2f %9.2f %6.2f " 3408 "%9.2f %6.2f " SIZE_FORMAT_W(8) " " 3409 SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7), 3410 worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms, 3411 term_ms, term_ms * 100 / elapsed_ms, term_attempts, 3412 (alloc_buffer_waste + undo_waste) * HeapWordSize / K, 3413 alloc_buffer_waste * HeapWordSize / K, 3414 undo_waste * HeapWordSize / K); 3415 } 3416 3417 class G1StringAndSymbolCleaningTask : public AbstractGangTask { 3418 private: 3419 BoolObjectClosure* _is_alive; 3420 G1StringDedupUnlinkOrOopsDoClosure _dedup_closure; 3421 3422 int _initial_string_table_size; 3423 int _initial_symbol_table_size; 3424 3425 bool _process_strings; 3426 int _strings_processed; 3427 int _strings_removed; 3428 3429 bool _process_symbols; 3430 int _symbols_processed; 3431 int _symbols_removed; 3432 3433 bool _process_string_dedup; 3434 3435 public: 3436 G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) : 3437 AbstractGangTask("String/Symbol Unlinking"), 3438 _is_alive(is_alive), 3439 _dedup_closure(is_alive, NULL, false), 3440 _process_strings(process_strings), _strings_processed(0), _strings_removed(0), 3441 _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0), 3442 _process_string_dedup(process_string_dedup) { 3443 3444 _initial_string_table_size = StringTable::the_table()->table_size(); 3445 _initial_symbol_table_size = SymbolTable::the_table()->table_size(); 3446 if (process_strings) { 3447 StringTable::clear_parallel_claimed_index(); 3448 } 3449 if (process_symbols) { 3450 SymbolTable::clear_parallel_claimed_index(); 3451 } 3452 } 3453 3454 ~G1StringAndSymbolCleaningTask() { 3455 guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size, 3456 "claim value %d after unlink less than initial string table size %d", 3457 StringTable::parallel_claimed_index(), _initial_string_table_size); 3458 guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size, 3459 "claim value %d after unlink less than initial symbol table size %d", 3460 SymbolTable::parallel_claimed_index(), _initial_symbol_table_size); 3461 3462 log_info(gc, stringtable)( 3463 "Cleaned string and symbol table, " 3464 "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, " 3465 "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed", 3466 strings_processed(), strings_removed(), 3467 symbols_processed(), symbols_removed()); 3468 } 3469 3470 void work(uint worker_id) { 3471 int strings_processed = 0; 3472 int strings_removed = 0; 3473 int symbols_processed = 0; 3474 int symbols_removed = 0; 3475 if (_process_strings) { 3476 StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed); 3477 Atomic::add(strings_processed, &_strings_processed); 3478 Atomic::add(strings_removed, &_strings_removed); 3479 } 3480 if (_process_symbols) { 3481 SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed); 3482 Atomic::add(symbols_processed, &_symbols_processed); 3483 Atomic::add(symbols_removed, &_symbols_removed); 3484 } 3485 if (_process_string_dedup) { 3486 G1StringDedup::parallel_unlink(&_dedup_closure, worker_id); 3487 } 3488 } 3489 3490 size_t strings_processed() const { return (size_t)_strings_processed; } 3491 size_t strings_removed() const { return (size_t)_strings_removed; } 3492 3493 size_t symbols_processed() const { return (size_t)_symbols_processed; } 3494 size_t symbols_removed() const { return (size_t)_symbols_removed; } 3495 }; 3496 3497 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC { 3498 private: 3499 static Monitor* _lock; 3500 3501 BoolObjectClosure* const _is_alive; 3502 const bool _unloading_occurred; 3503 const uint _num_workers; 3504 3505 // Variables used to claim nmethods. 3506 CompiledMethod* _first_nmethod; 3507 volatile CompiledMethod* _claimed_nmethod; 3508 3509 // The list of nmethods that need to be processed by the second pass. 3510 volatile CompiledMethod* _postponed_list; 3511 volatile uint _num_entered_barrier; 3512 3513 public: 3514 G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) : 3515 _is_alive(is_alive), 3516 _unloading_occurred(unloading_occurred), 3517 _num_workers(num_workers), 3518 _first_nmethod(NULL), 3519 _claimed_nmethod(NULL), 3520 _postponed_list(NULL), 3521 _num_entered_barrier(0) 3522 { 3523 CompiledMethod::increase_unloading_clock(); 3524 // Get first alive nmethod 3525 CompiledMethodIterator iter = CompiledMethodIterator(); 3526 if(iter.next_alive()) { 3527 _first_nmethod = iter.method(); 3528 } 3529 _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod; 3530 } 3531 3532 ~G1CodeCacheUnloadingTask() { 3533 CodeCache::verify_clean_inline_caches(); 3534 3535 CodeCache::set_needs_cache_clean(false); 3536 guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be"); 3537 3538 CodeCache::verify_icholder_relocations(); 3539 } 3540 3541 private: 3542 void add_to_postponed_list(CompiledMethod* nm) { 3543 CompiledMethod* old; 3544 do { 3545 old = (CompiledMethod*)_postponed_list; 3546 nm->set_unloading_next(old); 3547 } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old); 3548 } 3549 3550 void clean_nmethod(CompiledMethod* nm) { 3551 bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred); 3552 3553 if (postponed) { 3554 // This nmethod referred to an nmethod that has not been cleaned/unloaded yet. 3555 add_to_postponed_list(nm); 3556 } 3557 3558 // Mark that this thread has been cleaned/unloaded. 3559 // After this call, it will be safe to ask if this nmethod was unloaded or not. 3560 nm->set_unloading_clock(CompiledMethod::global_unloading_clock()); 3561 } 3562 3563 void clean_nmethod_postponed(CompiledMethod* nm) { 3564 nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred); 3565 } 3566 3567 static const int MaxClaimNmethods = 16; 3568 3569 void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) { 3570 CompiledMethod* first; 3571 CompiledMethodIterator last; 3572 3573 do { 3574 *num_claimed_nmethods = 0; 3575 3576 first = (CompiledMethod*)_claimed_nmethod; 3577 last = CompiledMethodIterator(first); 3578 3579 if (first != NULL) { 3580 3581 for (int i = 0; i < MaxClaimNmethods; i++) { 3582 if (!last.next_alive()) { 3583 break; 3584 } 3585 claimed_nmethods[i] = last.method(); 3586 (*num_claimed_nmethods)++; 3587 } 3588 } 3589 3590 } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first); 3591 } 3592 3593 CompiledMethod* claim_postponed_nmethod() { 3594 CompiledMethod* claim; 3595 CompiledMethod* next; 3596 3597 do { 3598 claim = (CompiledMethod*)_postponed_list; 3599 if (claim == NULL) { 3600 return NULL; 3601 } 3602 3603 next = claim->unloading_next(); 3604 3605 } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim); 3606 3607 return claim; 3608 } 3609 3610 public: 3611 // Mark that we're done with the first pass of nmethod cleaning. 3612 void barrier_mark(uint worker_id) { 3613 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); 3614 _num_entered_barrier++; 3615 if (_num_entered_barrier == _num_workers) { 3616 ml.notify_all(); 3617 } 3618 } 3619 3620 // See if we have to wait for the other workers to 3621 // finish their first-pass nmethod cleaning work. 3622 void barrier_wait(uint worker_id) { 3623 if (_num_entered_barrier < _num_workers) { 3624 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); 3625 while (_num_entered_barrier < _num_workers) { 3626 ml.wait(Mutex::_no_safepoint_check_flag, 0, false); 3627 } 3628 } 3629 } 3630 3631 // Cleaning and unloading of nmethods. Some work has to be postponed 3632 // to the second pass, when we know which nmethods survive. 3633 void work_first_pass(uint worker_id) { 3634 // The first nmethods is claimed by the first worker. 3635 if (worker_id == 0 && _first_nmethod != NULL) { 3636 clean_nmethod(_first_nmethod); 3637 _first_nmethod = NULL; 3638 } 3639 3640 int num_claimed_nmethods; 3641 CompiledMethod* claimed_nmethods[MaxClaimNmethods]; 3642 3643 while (true) { 3644 claim_nmethods(claimed_nmethods, &num_claimed_nmethods); 3645 3646 if (num_claimed_nmethods == 0) { 3647 break; 3648 } 3649 3650 for (int i = 0; i < num_claimed_nmethods; i++) { 3651 clean_nmethod(claimed_nmethods[i]); 3652 } 3653 } 3654 } 3655 3656 void work_second_pass(uint worker_id) { 3657 CompiledMethod* nm; 3658 // Take care of postponed nmethods. 3659 while ((nm = claim_postponed_nmethod()) != NULL) { 3660 clean_nmethod_postponed(nm); 3661 } 3662 } 3663 }; 3664 3665 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never); 3666 3667 class G1KlassCleaningTask : public StackObj { 3668 BoolObjectClosure* _is_alive; 3669 volatile jint _clean_klass_tree_claimed; 3670 ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator; 3671 3672 public: 3673 G1KlassCleaningTask(BoolObjectClosure* is_alive) : 3674 _is_alive(is_alive), 3675 _clean_klass_tree_claimed(0), 3676 _klass_iterator() { 3677 } 3678 3679 private: 3680 bool claim_clean_klass_tree_task() { 3681 if (_clean_klass_tree_claimed) { 3682 return false; 3683 } 3684 3685 return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0; 3686 } 3687 3688 InstanceKlass* claim_next_klass() { 3689 Klass* klass; 3690 do { 3691 klass =_klass_iterator.next_klass(); 3692 } while (klass != NULL && !klass->is_instance_klass()); 3693 3694 // this can be null so don't call InstanceKlass::cast 3695 return static_cast<InstanceKlass*>(klass); 3696 } 3697 3698 public: 3699 3700 void clean_klass(InstanceKlass* ik) { 3701 ik->clean_weak_instanceklass_links(_is_alive); 3702 } 3703 3704 void work() { 3705 ResourceMark rm; 3706 3707 // One worker will clean the subklass/sibling klass tree. 3708 if (claim_clean_klass_tree_task()) { 3709 Klass::clean_subklass_tree(_is_alive); 3710 } 3711 3712 // All workers will help cleaning the classes, 3713 InstanceKlass* klass; 3714 while ((klass = claim_next_klass()) != NULL) { 3715 clean_klass(klass); 3716 } 3717 } 3718 }; 3719 3720 class G1ResolvedMethodCleaningTask : public StackObj { 3721 BoolObjectClosure* _is_alive; 3722 volatile jint _resolved_method_task_claimed; 3723 public: 3724 G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) : 3725 _is_alive(is_alive), _resolved_method_task_claimed(0) {} 3726 3727 bool claim_resolved_method_task() { 3728 if (_resolved_method_task_claimed) { 3729 return false; 3730 } 3731 return Atomic::cmpxchg(1, (jint*)&_resolved_method_task_claimed, 0) == 0; 3732 } 3733 3734 // These aren't big, one thread can do it all. 3735 void work() { 3736 if (claim_resolved_method_task()) { 3737 ResolvedMethodTable::unlink(_is_alive); 3738 } 3739 } 3740 }; 3741 3742 3743 // To minimize the remark pause times, the tasks below are done in parallel. 3744 class G1ParallelCleaningTask : public AbstractGangTask { 3745 private: 3746 G1StringAndSymbolCleaningTask _string_symbol_task; 3747 G1CodeCacheUnloadingTask _code_cache_task; 3748 G1KlassCleaningTask _klass_cleaning_task; 3749 G1ResolvedMethodCleaningTask _resolved_method_cleaning_task; 3750 3751 public: 3752 // The constructor is run in the VMThread. 3753 G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) : 3754 AbstractGangTask("Parallel Cleaning"), 3755 _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()), 3756 _code_cache_task(num_workers, is_alive, unloading_occurred), 3757 _klass_cleaning_task(is_alive), 3758 _resolved_method_cleaning_task(is_alive) { 3759 } 3760 3761 // The parallel work done by all worker threads. 3762 void work(uint worker_id) { 3763 // Do first pass of code cache cleaning. 3764 _code_cache_task.work_first_pass(worker_id); 3765 3766 // Let the threads mark that the first pass is done. 3767 _code_cache_task.barrier_mark(worker_id); 3768 3769 // Clean the Strings and Symbols. 3770 _string_symbol_task.work(worker_id); 3771 3772 // Clean unreferenced things in the ResolvedMethodTable 3773 _resolved_method_cleaning_task.work(); 3774 3775 // Wait for all workers to finish the first code cache cleaning pass. 3776 _code_cache_task.barrier_wait(worker_id); 3777 3778 // Do the second code cache cleaning work, which realize on 3779 // the liveness information gathered during the first pass. 3780 _code_cache_task.work_second_pass(worker_id); 3781 3782 // Clean all klasses that were not unloaded. 3783 _klass_cleaning_task.work(); 3784 } 3785 }; 3786 3787 3788 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive, 3789 bool class_unloading_occurred) { 3790 uint n_workers = workers()->active_workers(); 3791 3792 G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred); 3793 workers()->run_task(&g1_unlink_task); 3794 } 3795 3796 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive, 3797 bool process_strings, 3798 bool process_symbols, 3799 bool process_string_dedup) { 3800 if (!process_strings && !process_symbols && !process_string_dedup) { 3801 // Nothing to clean. 3802 return; 3803 } 3804 3805 G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup); 3806 workers()->run_task(&g1_unlink_task); 3807 3808 } 3809 3810 class G1RedirtyLoggedCardsTask : public AbstractGangTask { 3811 private: 3812 DirtyCardQueueSet* _queue; 3813 G1CollectedHeap* _g1h; 3814 public: 3815 G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"), 3816 _queue(queue), _g1h(g1h) { } 3817 3818 virtual void work(uint worker_id) { 3819 G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times(); 3820 G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id); 3821 3822 RedirtyLoggedCardTableEntryClosure cl(_g1h); 3823 _queue->par_apply_closure_to_all_completed_buffers(&cl); 3824 3825 phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied()); 3826 } 3827 }; 3828 3829 void G1CollectedHeap::redirty_logged_cards() { 3830 double redirty_logged_cards_start = os::elapsedTime(); 3831 3832 G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this); 3833 dirty_card_queue_set().reset_for_par_iteration(); 3834 workers()->run_task(&redirty_task); 3835 3836 DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set(); 3837 dcq.merge_bufferlists(&dirty_card_queue_set()); 3838 assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed"); 3839 3840 g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0); 3841 } 3842 3843 // Weak Reference Processing support 3844 3845 // An always "is_alive" closure that is used to preserve referents. 3846 // If the object is non-null then it's alive. Used in the preservation 3847 // of referent objects that are pointed to by reference objects 3848 // discovered by the CM ref processor. 3849 class G1AlwaysAliveClosure: public BoolObjectClosure { 3850 G1CollectedHeap* _g1; 3851 public: 3852 G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 3853 bool do_object_b(oop p) { 3854 if (p != NULL) { 3855 return true; 3856 } 3857 return false; 3858 } 3859 }; 3860 3861 bool G1STWIsAliveClosure::do_object_b(oop p) { 3862 // An object is reachable if it is outside the collection set, 3863 // or is inside and copied. 3864 return !_g1->is_in_cset(p) || p->is_forwarded(); 3865 } 3866 3867 // Non Copying Keep Alive closure 3868 class G1KeepAliveClosure: public OopClosure { 3869 G1CollectedHeap* _g1; 3870 public: 3871 G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 3872 void do_oop(narrowOop* p) { guarantee(false, "Not needed"); } 3873 void do_oop(oop* p) { 3874 oop obj = *p; 3875 assert(obj != NULL, "the caller should have filtered out NULL values"); 3876 3877 const InCSetState cset_state = _g1->in_cset_state(obj); 3878 if (!cset_state.is_in_cset_or_humongous()) { 3879 return; 3880 } 3881 if (cset_state.is_in_cset()) { 3882 assert( obj->is_forwarded(), "invariant" ); 3883 *p = obj->forwardee(); 3884 } else { 3885 assert(!obj->is_forwarded(), "invariant" ); 3886 assert(cset_state.is_humongous(), 3887 "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()); 3888 _g1->set_humongous_is_live(obj); 3889 } 3890 } 3891 }; 3892 3893 // Copying Keep Alive closure - can be called from both 3894 // serial and parallel code as long as different worker 3895 // threads utilize different G1ParScanThreadState instances 3896 // and different queues. 3897 3898 class G1CopyingKeepAliveClosure: public OopClosure { 3899 G1CollectedHeap* _g1h; 3900 OopClosure* _copy_non_heap_obj_cl; 3901 G1ParScanThreadState* _par_scan_state; 3902 3903 public: 3904 G1CopyingKeepAliveClosure(G1CollectedHeap* g1h, 3905 OopClosure* non_heap_obj_cl, 3906 G1ParScanThreadState* pss): 3907 _g1h(g1h), 3908 _copy_non_heap_obj_cl(non_heap_obj_cl), 3909 _par_scan_state(pss) 3910 {} 3911 3912 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 3913 virtual void do_oop( oop* p) { do_oop_work(p); } 3914 3915 template <class T> void do_oop_work(T* p) { 3916 oop obj = oopDesc::load_decode_heap_oop(p); 3917 3918 if (_g1h->is_in_cset_or_humongous(obj)) { 3919 // If the referent object has been forwarded (either copied 3920 // to a new location or to itself in the event of an 3921 // evacuation failure) then we need to update the reference 3922 // field and, if both reference and referent are in the G1 3923 // heap, update the RSet for the referent. 3924 // 3925 // If the referent has not been forwarded then we have to keep 3926 // it alive by policy. Therefore we have copy the referent. 3927 // 3928 // If the reference field is in the G1 heap then we can push 3929 // on the PSS queue. When the queue is drained (after each 3930 // phase of reference processing) the object and it's followers 3931 // will be copied, the reference field set to point to the 3932 // new location, and the RSet updated. Otherwise we need to 3933 // use the the non-heap or metadata closures directly to copy 3934 // the referent object and update the pointer, while avoiding 3935 // updating the RSet. 3936 3937 if (_g1h->is_in_g1_reserved(p)) { 3938 _par_scan_state->push_on_queue(p); 3939 } else { 3940 assert(!Metaspace::contains((const void*)p), 3941 "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)); 3942 _copy_non_heap_obj_cl->do_oop(p); 3943 } 3944 } 3945 } 3946 }; 3947 3948 // Serial drain queue closure. Called as the 'complete_gc' 3949 // closure for each discovered list in some of the 3950 // reference processing phases. 3951 3952 class G1STWDrainQueueClosure: public VoidClosure { 3953 protected: 3954 G1CollectedHeap* _g1h; 3955 G1ParScanThreadState* _par_scan_state; 3956 3957 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 3958 3959 public: 3960 G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : 3961 _g1h(g1h), 3962 _par_scan_state(pss) 3963 { } 3964 3965 void do_void() { 3966 G1ParScanThreadState* const pss = par_scan_state(); 3967 pss->trim_queue(); 3968 } 3969 }; 3970 3971 // Parallel Reference Processing closures 3972 3973 // Implementation of AbstractRefProcTaskExecutor for parallel reference 3974 // processing during G1 evacuation pauses. 3975 3976 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor { 3977 private: 3978 G1CollectedHeap* _g1h; 3979 G1ParScanThreadStateSet* _pss; 3980 RefToScanQueueSet* _queues; 3981 WorkGang* _workers; 3982 uint _active_workers; 3983 3984 public: 3985 G1STWRefProcTaskExecutor(G1CollectedHeap* g1h, 3986 G1ParScanThreadStateSet* per_thread_states, 3987 WorkGang* workers, 3988 RefToScanQueueSet *task_queues, 3989 uint n_workers) : 3990 _g1h(g1h), 3991 _pss(per_thread_states), 3992 _queues(task_queues), 3993 _workers(workers), 3994 _active_workers(n_workers) 3995 { 3996 g1h->ref_processor_stw()->set_active_mt_degree(n_workers); 3997 } 3998 3999 // Executes the given task using concurrent marking worker threads. 4000 virtual void execute(ProcessTask& task); 4001 virtual void execute(EnqueueTask& task); 4002 }; 4003 4004 // Gang task for possibly parallel reference processing 4005 4006 class G1STWRefProcTaskProxy: public AbstractGangTask { 4007 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 4008 ProcessTask& _proc_task; 4009 G1CollectedHeap* _g1h; 4010 G1ParScanThreadStateSet* _pss; 4011 RefToScanQueueSet* _task_queues; 4012 ParallelTaskTerminator* _terminator; 4013 4014 public: 4015 G1STWRefProcTaskProxy(ProcessTask& proc_task, 4016 G1CollectedHeap* g1h, 4017 G1ParScanThreadStateSet* per_thread_states, 4018 RefToScanQueueSet *task_queues, 4019 ParallelTaskTerminator* terminator) : 4020 AbstractGangTask("Process reference objects in parallel"), 4021 _proc_task(proc_task), 4022 _g1h(g1h), 4023 _pss(per_thread_states), 4024 _task_queues(task_queues), 4025 _terminator(terminator) 4026 {} 4027 4028 virtual void work(uint worker_id) { 4029 // The reference processing task executed by a single worker. 4030 ResourceMark rm; 4031 HandleMark hm; 4032 4033 G1STWIsAliveClosure is_alive(_g1h); 4034 4035 G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); 4036 pss->set_ref_processor(NULL); 4037 4038 // Keep alive closure. 4039 G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss); 4040 4041 // Complete GC closure 4042 G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator); 4043 4044 // Call the reference processing task's work routine. 4045 _proc_task.work(worker_id, is_alive, keep_alive, drain_queue); 4046 4047 // Note we cannot assert that the refs array is empty here as not all 4048 // of the processing tasks (specifically phase2 - pp2_work) execute 4049 // the complete_gc closure (which ordinarily would drain the queue) so 4050 // the queue may not be empty. 4051 } 4052 }; 4053 4054 // Driver routine for parallel reference processing. 4055 // Creates an instance of the ref processing gang 4056 // task and has the worker threads execute it. 4057 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) { 4058 assert(_workers != NULL, "Need parallel worker threads."); 4059 4060 ParallelTaskTerminator terminator(_active_workers, _queues); 4061 G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator); 4062 4063 _workers->run_task(&proc_task_proxy); 4064 } 4065 4066 // Gang task for parallel reference enqueueing. 4067 4068 class G1STWRefEnqueueTaskProxy: public AbstractGangTask { 4069 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 4070 EnqueueTask& _enq_task; 4071 4072 public: 4073 G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) : 4074 AbstractGangTask("Enqueue reference objects in parallel"), 4075 _enq_task(enq_task) 4076 { } 4077 4078 virtual void work(uint worker_id) { 4079 _enq_task.work(worker_id); 4080 } 4081 }; 4082 4083 // Driver routine for parallel reference enqueueing. 4084 // Creates an instance of the ref enqueueing gang 4085 // task and has the worker threads execute it. 4086 4087 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) { 4088 assert(_workers != NULL, "Need parallel worker threads."); 4089 4090 G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task); 4091 4092 _workers->run_task(&enq_task_proxy); 4093 } 4094 4095 // End of weak reference support closures 4096 4097 // Abstract task used to preserve (i.e. copy) any referent objects 4098 // that are in the collection set and are pointed to by reference 4099 // objects discovered by the CM ref processor. 4100 4101 class G1ParPreserveCMReferentsTask: public AbstractGangTask { 4102 protected: 4103 G1CollectedHeap* _g1h; 4104 G1ParScanThreadStateSet* _pss; 4105 RefToScanQueueSet* _queues; 4106 ParallelTaskTerminator _terminator; 4107 uint _n_workers; 4108 4109 public: 4110 G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) : 4111 AbstractGangTask("ParPreserveCMReferents"), 4112 _g1h(g1h), 4113 _pss(per_thread_states), 4114 _queues(task_queues), 4115 _terminator(workers, _queues), 4116 _n_workers(workers) 4117 { 4118 g1h->ref_processor_cm()->set_active_mt_degree(workers); 4119 } 4120 4121 void work(uint worker_id) { 4122 G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id); 4123 4124 ResourceMark rm; 4125 HandleMark hm; 4126 4127 G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); 4128 pss->set_ref_processor(NULL); 4129 assert(pss->queue_is_empty(), "both queue and overflow should be empty"); 4130 4131 // Is alive closure 4132 G1AlwaysAliveClosure always_alive(_g1h); 4133 4134 // Copying keep alive closure. Applied to referent objects that need 4135 // to be copied. 4136 G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss); 4137 4138 ReferenceProcessor* rp = _g1h->ref_processor_cm(); 4139 4140 uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q(); 4141 uint stride = MIN2(MAX2(_n_workers, 1U), limit); 4142 4143 // limit is set using max_num_q() - which was set using ParallelGCThreads. 4144 // So this must be true - but assert just in case someone decides to 4145 // change the worker ids. 4146 assert(worker_id < limit, "sanity"); 4147 assert(!rp->discovery_is_atomic(), "check this code"); 4148 4149 // Select discovered lists [i, i+stride, i+2*stride,...,limit) 4150 for (uint idx = worker_id; idx < limit; idx += stride) { 4151 DiscoveredList& ref_list = rp->discovered_refs()[idx]; 4152 4153 DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive); 4154 while (iter.has_next()) { 4155 // Since discovery is not atomic for the CM ref processor, we 4156 // can see some null referent objects. 4157 iter.load_ptrs(DEBUG_ONLY(true)); 4158 oop ref = iter.obj(); 4159 4160 // This will filter nulls. 4161 if (iter.is_referent_alive()) { 4162 iter.make_referent_alive(); 4163 } 4164 iter.move_to_next(); 4165 } 4166 } 4167 4168 // Drain the queue - which may cause stealing 4169 G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator); 4170 drain_queue.do_void(); 4171 // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure 4172 assert(pss->queue_is_empty(), "should be"); 4173 } 4174 }; 4175 4176 void G1CollectedHeap::process_weak_jni_handles() { 4177 double ref_proc_start = os::elapsedTime(); 4178 4179 G1STWIsAliveClosure is_alive(this); 4180 G1KeepAliveClosure keep_alive(this); 4181 JNIHandles::weak_oops_do(&is_alive, &keep_alive); 4182 4183 double ref_proc_time = os::elapsedTime() - ref_proc_start; 4184 g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 4185 } 4186 4187 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) { 4188 // Any reference objects, in the collection set, that were 'discovered' 4189 // by the CM ref processor should have already been copied (either by 4190 // applying the external root copy closure to the discovered lists, or 4191 // by following an RSet entry). 4192 // 4193 // But some of the referents, that are in the collection set, that these 4194 // reference objects point to may not have been copied: the STW ref 4195 // processor would have seen that the reference object had already 4196 // been 'discovered' and would have skipped discovering the reference, 4197 // but would not have treated the reference object as a regular oop. 4198 // As a result the copy closure would not have been applied to the 4199 // referent object. 4200 // 4201 // We need to explicitly copy these referent objects - the references 4202 // will be processed at the end of remarking. 4203 // 4204 // We also need to do this copying before we process the reference 4205 // objects discovered by the STW ref processor in case one of these 4206 // referents points to another object which is also referenced by an 4207 // object discovered by the STW ref processor. 4208 double preserve_cm_referents_time = 0.0; 4209 4210 // To avoid spawning task when there is no work to do, check that 4211 // a concurrent cycle is active and that some references have been 4212 // discovered. 4213 if (concurrent_mark()->cmThread()->during_cycle() && 4214 ref_processor_cm()->has_discovered_references()) { 4215 double preserve_cm_referents_start = os::elapsedTime(); 4216 uint no_of_gc_workers = workers()->active_workers(); 4217 G1ParPreserveCMReferentsTask keep_cm_referents(this, 4218 per_thread_states, 4219 no_of_gc_workers, 4220 _task_queues); 4221 workers()->run_task(&keep_cm_referents); 4222 preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start; 4223 } 4224 4225 g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0); 4226 } 4227 4228 // Weak Reference processing during an evacuation pause (part 1). 4229 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) { 4230 double ref_proc_start = os::elapsedTime(); 4231 4232 ReferenceProcessor* rp = _ref_processor_stw; 4233 assert(rp->discovery_enabled(), "should have been enabled"); 4234 4235 // Closure to test whether a referent is alive. 4236 G1STWIsAliveClosure is_alive(this); 4237 4238 // Even when parallel reference processing is enabled, the processing 4239 // of JNI refs is serial and performed serially by the current thread 4240 // rather than by a worker. The following PSS will be used for processing 4241 // JNI refs. 4242 4243 // Use only a single queue for this PSS. 4244 G1ParScanThreadState* pss = per_thread_states->state_for_worker(0); 4245 pss->set_ref_processor(NULL); 4246 assert(pss->queue_is_empty(), "pre-condition"); 4247 4248 // Keep alive closure. 4249 G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss); 4250 4251 // Serial Complete GC closure 4252 G1STWDrainQueueClosure drain_queue(this, pss); 4253 4254 // Setup the soft refs policy... 4255 rp->setup_policy(false); 4256 4257 ReferenceProcessorStats stats; 4258 if (!rp->processing_is_mt()) { 4259 // Serial reference processing... 4260 stats = rp->process_discovered_references(&is_alive, 4261 &keep_alive, 4262 &drain_queue, 4263 NULL, 4264 _gc_timer_stw); 4265 } else { 4266 uint no_of_gc_workers = workers()->active_workers(); 4267 4268 // Parallel reference processing 4269 assert(no_of_gc_workers <= rp->max_num_q(), 4270 "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u", 4271 no_of_gc_workers, rp->max_num_q()); 4272 4273 G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers); 4274 stats = rp->process_discovered_references(&is_alive, 4275 &keep_alive, 4276 &drain_queue, 4277 &par_task_executor, 4278 _gc_timer_stw); 4279 } 4280 4281 _gc_tracer_stw->report_gc_reference_stats(stats); 4282 4283 // We have completed copying any necessary live referent objects. 4284 assert(pss->queue_is_empty(), "both queue and overflow should be empty"); 4285 4286 double ref_proc_time = os::elapsedTime() - ref_proc_start; 4287 g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 4288 } 4289 4290 // Weak Reference processing during an evacuation pause (part 2). 4291 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) { 4292 double ref_enq_start = os::elapsedTime(); 4293 4294 ReferenceProcessor* rp = _ref_processor_stw; 4295 assert(!rp->discovery_enabled(), "should have been disabled as part of processing"); 4296 4297 // Now enqueue any remaining on the discovered lists on to 4298 // the pending list. 4299 if (!rp->processing_is_mt()) { 4300 // Serial reference processing... 4301 rp->enqueue_discovered_references(); 4302 } else { 4303 // Parallel reference enqueueing 4304 4305 uint n_workers = workers()->active_workers(); 4306 4307 assert(n_workers <= rp->max_num_q(), 4308 "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u", 4309 n_workers, rp->max_num_q()); 4310 4311 G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers); 4312 rp->enqueue_discovered_references(&par_task_executor); 4313 } 4314 4315 rp->verify_no_references_recorded(); 4316 assert(!rp->discovery_enabled(), "should have been disabled"); 4317 4318 // FIXME 4319 // CM's reference processing also cleans up the string and symbol tables. 4320 // Should we do that here also? We could, but it is a serial operation 4321 // and could significantly increase the pause time. 4322 4323 double ref_enq_time = os::elapsedTime() - ref_enq_start; 4324 g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0); 4325 } 4326 4327 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) { 4328 double merge_pss_time_start = os::elapsedTime(); 4329 per_thread_states->flush(); 4330 g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0); 4331 } 4332 4333 void G1CollectedHeap::pre_evacuate_collection_set() { 4334 _expand_heap_after_alloc_failure = true; 4335 _evacuation_failed = false; 4336 4337 // Disable the hot card cache. 4338 _hot_card_cache->reset_hot_cache_claimed_index(); 4339 _hot_card_cache->set_use_cache(false); 4340 4341 g1_rem_set()->prepare_for_oops_into_collection_set_do(); 4342 _preserved_marks_set.assert_empty(); 4343 4344 G1GCPhaseTimes* phase_times = g1_policy()->phase_times(); 4345 4346 // InitialMark needs claim bits to keep track of the marked-through CLDs. 4347 if (collector_state()->during_initial_mark_pause()) { 4348 double start_clear_claimed_marks = os::elapsedTime(); 4349 4350 ClassLoaderDataGraph::clear_claimed_marks(); 4351 4352 double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0; 4353 phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms); 4354 } 4355 } 4356 4357 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) { 4358 // Should G1EvacuationFailureALot be in effect for this GC? 4359 NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();) 4360 4361 assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty"); 4362 4363 G1GCPhaseTimes* phase_times = g1_policy()->phase_times(); 4364 4365 double start_par_time_sec = os::elapsedTime(); 4366 double end_par_time_sec; 4367 4368 { 4369 const uint n_workers = workers()->active_workers(); 4370 G1RootProcessor root_processor(this, n_workers); 4371 G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers); 4372 4373 print_termination_stats_hdr(); 4374 4375 workers()->run_task(&g1_par_task); 4376 end_par_time_sec = os::elapsedTime(); 4377 4378 // Closing the inner scope will execute the destructor 4379 // for the G1RootProcessor object. We record the current 4380 // elapsed time before closing the scope so that time 4381 // taken for the destructor is NOT included in the 4382 // reported parallel time. 4383 } 4384 4385 double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0; 4386 phase_times->record_par_time(par_time_ms); 4387 4388 double code_root_fixup_time_ms = 4389 (os::elapsedTime() - end_par_time_sec) * 1000.0; 4390 phase_times->record_code_root_fixup_time(code_root_fixup_time_ms); 4391 } 4392 4393 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) { 4394 // Process any discovered reference objects - we have 4395 // to do this _before_ we retire the GC alloc regions 4396 // as we may have to copy some 'reachable' referent 4397 // objects (and their reachable sub-graphs) that were 4398 // not copied during the pause. 4399 if (g1_policy()->should_process_references()) { 4400 preserve_cm_referents(per_thread_states); 4401 process_discovered_references(per_thread_states); 4402 } else { 4403 ref_processor_stw()->verify_no_references_recorded(); 4404 process_weak_jni_handles(); 4405 } 4406 4407 if (G1StringDedup::is_enabled()) { 4408 double fixup_start = os::elapsedTime(); 4409 4410 G1STWIsAliveClosure is_alive(this); 4411 G1KeepAliveClosure keep_alive(this); 4412 G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times()); 4413 4414 double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0; 4415 g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms); 4416 } 4417 4418 g1_rem_set()->cleanup_after_oops_into_collection_set_do(); 4419 4420 if (evacuation_failed()) { 4421 restore_after_evac_failure(); 4422 4423 // Reset the G1EvacuationFailureALot counters and flags 4424 // Note: the values are reset only when an actual 4425 // evacuation failure occurs. 4426 NOT_PRODUCT(reset_evacuation_should_fail();) 4427 } 4428 4429 _preserved_marks_set.assert_empty(); 4430 4431 // Enqueue any remaining references remaining on the STW 4432 // reference processor's discovered lists. We need to do 4433 // this after the card table is cleaned (and verified) as 4434 // the act of enqueueing entries on to the pending list 4435 // will log these updates (and dirty their associated 4436 // cards). We need these updates logged to update any 4437 // RSets. 4438 if (g1_policy()->should_process_references()) { 4439 enqueue_discovered_references(per_thread_states); 4440 } else { 4441 g1_policy()->phase_times()->record_ref_enq_time(0); 4442 } 4443 4444 _allocator->release_gc_alloc_regions(evacuation_info); 4445 4446 merge_per_thread_state_info(per_thread_states); 4447 4448 // Reset and re-enable the hot card cache. 4449 // Note the counts for the cards in the regions in the 4450 // collection set are reset when the collection set is freed. 4451 _hot_card_cache->reset_hot_cache(); 4452 _hot_card_cache->set_use_cache(true); 4453 4454 purge_code_root_memory(); 4455 4456 redirty_logged_cards(); 4457 #if defined(COMPILER2) || INCLUDE_JVMCI 4458 double start = os::elapsedTime(); 4459 DerivedPointerTable::update_pointers(); 4460 g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0); 4461 #endif 4462 g1_policy()->print_age_table(); 4463 } 4464 4465 void G1CollectedHeap::record_obj_copy_mem_stats() { 4466 g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize); 4467 4468 _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats), 4469 create_g1_evac_summary(&_old_evac_stats)); 4470 } 4471 4472 void G1CollectedHeap::free_region(HeapRegion* hr, 4473 FreeRegionList* free_list, 4474 bool skip_remset, 4475 bool skip_hot_card_cache, 4476 bool locked) { 4477 assert(!hr->is_free(), "the region should not be free"); 4478 assert(!hr->is_empty(), "the region should not be empty"); 4479 assert(_hrm.is_available(hr->hrm_index()), "region should be committed"); 4480 assert(free_list != NULL, "pre-condition"); 4481 4482 if (G1VerifyBitmaps) { 4483 MemRegion mr(hr->bottom(), hr->end()); 4484 concurrent_mark()->clearRangePrevBitmap(mr); 4485 } 4486 4487 // Clear the card counts for this region. 4488 // Note: we only need to do this if the region is not young 4489 // (since we don't refine cards in young regions). 4490 if (!skip_hot_card_cache && !hr->is_young()) { 4491 _hot_card_cache->reset_card_counts(hr); 4492 } 4493 hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */); 4494 free_list->add_ordered(hr); 4495 } 4496 4497 void G1CollectedHeap::free_humongous_region(HeapRegion* hr, 4498 FreeRegionList* free_list, 4499 bool skip_remset) { 4500 assert(hr->is_humongous(), "this is only for humongous regions"); 4501 assert(free_list != NULL, "pre-condition"); 4502 hr->clear_humongous(); 4503 free_region(hr, free_list, skip_remset); 4504 } 4505 4506 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed, 4507 const uint humongous_regions_removed) { 4508 if (old_regions_removed > 0 || humongous_regions_removed > 0) { 4509 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 4510 _old_set.bulk_remove(old_regions_removed); 4511 _humongous_set.bulk_remove(humongous_regions_removed); 4512 } 4513 4514 } 4515 4516 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) { 4517 assert(list != NULL, "list can't be null"); 4518 if (!list->is_empty()) { 4519 MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); 4520 _hrm.insert_list_into_free_list(list); 4521 } 4522 } 4523 4524 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) { 4525 decrease_used(bytes); 4526 } 4527 4528 class G1ParScrubRemSetTask: public AbstractGangTask { 4529 protected: 4530 G1RemSet* _g1rs; 4531 HeapRegionClaimer _hrclaimer; 4532 4533 public: 4534 G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) : 4535 AbstractGangTask("G1 ScrubRS"), 4536 _g1rs(g1_rs), 4537 _hrclaimer(num_workers) { 4538 } 4539 4540 void work(uint worker_id) { 4541 _g1rs->scrub(worker_id, &_hrclaimer); 4542 } 4543 }; 4544 4545 void G1CollectedHeap::scrub_rem_set() { 4546 uint num_workers = workers()->active_workers(); 4547 G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers); 4548 workers()->run_task(&g1_par_scrub_rs_task); 4549 } 4550 4551 class G1FreeCollectionSetTask : public AbstractGangTask { 4552 private: 4553 4554 // Closure applied to all regions in the collection set to do work that needs to 4555 // be done serially in a single thread. 4556 class G1SerialFreeCollectionSetClosure : public HeapRegionClosure { 4557 private: 4558 EvacuationInfo* _evacuation_info; 4559 const size_t* _surviving_young_words; 4560 4561 // Bytes used in successfully evacuated regions before the evacuation. 4562 size_t _before_used_bytes; 4563 // Bytes used in unsucessfully evacuated regions before the evacuation 4564 size_t _after_used_bytes; 4565 4566 size_t _bytes_allocated_in_old_since_last_gc; 4567 4568 size_t _failure_used_words; 4569 size_t _failure_waste_words; 4570 4571 FreeRegionList _local_free_list; 4572 public: 4573 G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) : 4574 HeapRegionClosure(), 4575 _evacuation_info(evacuation_info), 4576 _surviving_young_words(surviving_young_words), 4577 _before_used_bytes(0), 4578 _after_used_bytes(0), 4579 _bytes_allocated_in_old_since_last_gc(0), 4580 _failure_used_words(0), 4581 _failure_waste_words(0), 4582 _local_free_list("Local Region List for CSet Freeing") { 4583 } 4584 4585 virtual bool doHeapRegion(HeapRegion* r) { 4586 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 4587 4588 assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index()); 4589 g1h->clear_in_cset(r); 4590 4591 if (r->is_young()) { 4592 assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(), 4593 "Young index %d is wrong for region %u of type %s with %u young regions", 4594 r->young_index_in_cset(), 4595 r->hrm_index(), 4596 r->get_type_str(), 4597 g1h->collection_set()->young_region_length()); 4598 size_t words_survived = _surviving_young_words[r->young_index_in_cset()]; 4599 r->record_surv_words_in_group(words_survived); 4600 } 4601 4602 if (!r->evacuation_failed()) { 4603 assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index()); 4604 _before_used_bytes += r->used(); 4605 g1h->free_region(r, 4606 &_local_free_list, 4607 true, /* skip_remset */ 4608 true, /* skip_hot_card_cache */ 4609 true /* locked */); 4610 } else { 4611 r->uninstall_surv_rate_group(); 4612 r->set_young_index_in_cset(-1); 4613 r->set_evacuation_failed(false); 4614 // When moving a young gen region to old gen, we "allocate" that whole region 4615 // there. This is in addition to any already evacuated objects. Notify the 4616 // policy about that. 4617 // Old gen regions do not cause an additional allocation: both the objects 4618 // still in the region and the ones already moved are accounted for elsewhere. 4619 if (r->is_young()) { 4620 _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes; 4621 } 4622 // The region is now considered to be old. 4623 r->set_old(); 4624 // Do some allocation statistics accounting. Regions that failed evacuation 4625 // are always made old, so there is no need to update anything in the young 4626 // gen statistics, but we need to update old gen statistics. 4627 size_t used_words = r->marked_bytes() / HeapWordSize; 4628 4629 _failure_used_words += used_words; 4630 _failure_waste_words += HeapRegion::GrainWords - used_words; 4631 4632 g1h->old_set_add(r); 4633 _after_used_bytes += r->used(); 4634 } 4635 return false; 4636 } 4637 4638 void complete_work() { 4639 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 4640 4641 _evacuation_info->set_regions_freed(_local_free_list.length()); 4642 _evacuation_info->increment_collectionset_used_after(_after_used_bytes); 4643 4644 g1h->prepend_to_freelist(&_local_free_list); 4645 g1h->decrement_summary_bytes(_before_used_bytes); 4646 4647 G1Policy* policy = g1h->g1_policy(); 4648 policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc); 4649 4650 g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words); 4651 } 4652 }; 4653 4654 G1CollectionSet* _collection_set; 4655 G1SerialFreeCollectionSetClosure _cl; 4656 const size_t* _surviving_young_words; 4657 4658 size_t _rs_lengths; 4659 4660 volatile jint _serial_work_claim; 4661 4662 struct WorkItem { 4663 uint region_idx; 4664 bool is_young; 4665 bool evacuation_failed; 4666 4667 WorkItem(HeapRegion* r) { 4668 region_idx = r->hrm_index(); 4669 is_young = r->is_young(); 4670 evacuation_failed = r->evacuation_failed(); 4671 } 4672 }; 4673 4674 volatile size_t _parallel_work_claim; 4675 size_t _num_work_items; 4676 WorkItem* _work_items; 4677 4678 void do_serial_work() { 4679 // Need to grab the lock to be allowed to modify the old region list. 4680 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 4681 _collection_set->iterate(&_cl); 4682 } 4683 4684 void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) { 4685 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 4686 4687 HeapRegion* r = g1h->region_at(region_idx); 4688 assert(!g1h->is_on_master_free_list(r), "sanity"); 4689 4690 Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths); 4691 4692 if (!is_young) { 4693 g1h->_hot_card_cache->reset_card_counts(r); 4694 } 4695 4696 if (!evacuation_failed) { 4697 r->rem_set()->clear_locked(); 4698 } 4699 } 4700 4701 class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure { 4702 private: 4703 size_t _cur_idx; 4704 WorkItem* _work_items; 4705 public: 4706 G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { } 4707 4708 virtual bool doHeapRegion(HeapRegion* r) { 4709 _work_items[_cur_idx++] = WorkItem(r); 4710 return false; 4711 } 4712 }; 4713 4714 void prepare_work() { 4715 G1PrepareFreeCollectionSetClosure cl(_work_items); 4716 _collection_set->iterate(&cl); 4717 } 4718 4719 void complete_work() { 4720 _cl.complete_work(); 4721 4722 G1Policy* policy = G1CollectedHeap::heap()->g1_policy(); 4723 policy->record_max_rs_lengths(_rs_lengths); 4724 policy->cset_regions_freed(); 4725 } 4726 public: 4727 G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) : 4728 AbstractGangTask("G1 Free Collection Set"), 4729 _cl(evacuation_info, surviving_young_words), 4730 _collection_set(collection_set), 4731 _surviving_young_words(surviving_young_words), 4732 _serial_work_claim(0), 4733 _rs_lengths(0), 4734 _parallel_work_claim(0), 4735 _num_work_items(collection_set->region_length()), 4736 _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) { 4737 prepare_work(); 4738 } 4739 4740 ~G1FreeCollectionSetTask() { 4741 complete_work(); 4742 FREE_C_HEAP_ARRAY(WorkItem, _work_items); 4743 } 4744 4745 // Chunk size for work distribution. The chosen value has been determined experimentally 4746 // to be a good tradeoff between overhead and achievable parallelism. 4747 static uint chunk_size() { return 32; } 4748 4749 virtual void work(uint worker_id) { 4750 G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times(); 4751 4752 // Claim serial work. 4753 if (_serial_work_claim == 0) { 4754 jint value = Atomic::add(1, &_serial_work_claim) - 1; 4755 if (value == 0) { 4756 double serial_time = os::elapsedTime(); 4757 do_serial_work(); 4758 timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0); 4759 } 4760 } 4761 4762 // Start parallel work. 4763 double young_time = 0.0; 4764 bool has_young_time = false; 4765 double non_young_time = 0.0; 4766 bool has_non_young_time = false; 4767 4768 while (true) { 4769 size_t end = Atomic::add(chunk_size(), &_parallel_work_claim); 4770 size_t cur = end - chunk_size(); 4771 4772 if (cur >= _num_work_items) { 4773 break; 4774 } 4775 4776 double start_time = os::elapsedTime(); 4777 4778 end = MIN2(end, _num_work_items); 4779 4780 for (; cur < end; cur++) { 4781 bool is_young = _work_items[cur].is_young; 4782 4783 do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed); 4784 4785 double end_time = os::elapsedTime(); 4786 double time_taken = end_time - start_time; 4787 if (is_young) { 4788 young_time += time_taken; 4789 has_young_time = true; 4790 } else { 4791 non_young_time += time_taken; 4792 has_non_young_time = true; 4793 } 4794 start_time = end_time; 4795 } 4796 } 4797 4798 if (has_young_time) { 4799 timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time); 4800 } 4801 if (has_non_young_time) { 4802 timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time); 4803 } 4804 } 4805 }; 4806 4807 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) { 4808 _eden.clear(); 4809 4810 double free_cset_start_time = os::elapsedTime(); 4811 4812 { 4813 uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U); 4814 uint const num_workers = MIN2(workers()->active_workers(), num_chunks); 4815 4816 G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words); 4817 4818 log_debug(gc, ergo)("Running %s using %u workers for collection set length %u", 4819 cl.name(), 4820 num_workers, 4821 _collection_set.region_length()); 4822 workers()->run_task(&cl, num_workers); 4823 } 4824 g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0); 4825 4826 collection_set->clear(); 4827 } 4828 4829 class G1FreeHumongousRegionClosure : public HeapRegionClosure { 4830 private: 4831 FreeRegionList* _free_region_list; 4832 HeapRegionSet* _proxy_set; 4833 uint _humongous_objects_reclaimed; 4834 uint _humongous_regions_reclaimed; 4835 size_t _freed_bytes; 4836 public: 4837 4838 G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) : 4839 _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) { 4840 } 4841 4842 virtual bool doHeapRegion(HeapRegion* r) { 4843 if (!r->is_starts_humongous()) { 4844 return false; 4845 } 4846 4847 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 4848 4849 oop obj = (oop)r->bottom(); 4850 G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap(); 4851 4852 // The following checks whether the humongous object is live are sufficient. 4853 // The main additional check (in addition to having a reference from the roots 4854 // or the young gen) is whether the humongous object has a remembered set entry. 4855 // 4856 // A humongous object cannot be live if there is no remembered set for it 4857 // because: 4858 // - there can be no references from within humongous starts regions referencing 4859 // the object because we never allocate other objects into them. 4860 // (I.e. there are no intra-region references that may be missed by the 4861 // remembered set) 4862 // - as soon there is a remembered set entry to the humongous starts region 4863 // (i.e. it has "escaped" to an old object) this remembered set entry will stay 4864 // until the end of a concurrent mark. 4865 // 4866 // It is not required to check whether the object has been found dead by marking 4867 // or not, in fact it would prevent reclamation within a concurrent cycle, as 4868 // all objects allocated during that time are considered live. 4869 // SATB marking is even more conservative than the remembered set. 4870 // So if at this point in the collection there is no remembered set entry, 4871 // nobody has a reference to it. 4872 // At the start of collection we flush all refinement logs, and remembered sets 4873 // are completely up-to-date wrt to references to the humongous object. 4874 // 4875 // Other implementation considerations: 4876 // - never consider object arrays at this time because they would pose 4877 // considerable effort for cleaning up the the remembered sets. This is 4878 // required because stale remembered sets might reference locations that 4879 // are currently allocated into. 4880 uint region_idx = r->hrm_index(); 4881 if (!g1h->is_humongous_reclaim_candidate(region_idx) || 4882 !r->rem_set()->is_empty()) { 4883 log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d", 4884 region_idx, 4885 (size_t)obj->size() * HeapWordSize, 4886 p2i(r->bottom()), 4887 r->rem_set()->occupied(), 4888 r->rem_set()->strong_code_roots_list_length(), 4889 next_bitmap->isMarked(r->bottom()), 4890 g1h->is_humongous_reclaim_candidate(region_idx), 4891 obj->is_typeArray() 4892 ); 4893 return false; 4894 } 4895 4896 guarantee(obj->is_typeArray(), 4897 "Only eagerly reclaiming type arrays is supported, but the object " 4898 PTR_FORMAT " is not.", p2i(r->bottom())); 4899 4900 log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d", 4901 region_idx, 4902 (size_t)obj->size() * HeapWordSize, 4903 p2i(r->bottom()), 4904 r->rem_set()->occupied(), 4905 r->rem_set()->strong_code_roots_list_length(), 4906 next_bitmap->isMarked(r->bottom()), 4907 g1h->is_humongous_reclaim_candidate(region_idx), 4908 obj->is_typeArray() 4909 ); 4910 4911 // Need to clear mark bit of the humongous object if already set. 4912 if (next_bitmap->isMarked(r->bottom())) { 4913 next_bitmap->clear(r->bottom()); 4914 } 4915 _humongous_objects_reclaimed++; 4916 do { 4917 HeapRegion* next = g1h->next_region_in_humongous(r); 4918 _freed_bytes += r->used(); 4919 r->set_containing_set(NULL); 4920 _humongous_regions_reclaimed++; 4921 g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ ); 4922 r = next; 4923 } while (r != NULL); 4924 4925 return false; 4926 } 4927 4928 uint humongous_objects_reclaimed() { 4929 return _humongous_objects_reclaimed; 4930 } 4931 4932 uint humongous_regions_reclaimed() { 4933 return _humongous_regions_reclaimed; 4934 } 4935 4936 size_t bytes_freed() const { 4937 return _freed_bytes; 4938 } 4939 }; 4940 4941 void G1CollectedHeap::eagerly_reclaim_humongous_regions() { 4942 assert_at_safepoint(true); 4943 4944 if (!G1EagerReclaimHumongousObjects || 4945 (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) { 4946 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0); 4947 return; 4948 } 4949 4950 double start_time = os::elapsedTime(); 4951 4952 FreeRegionList local_cleanup_list("Local Humongous Cleanup List"); 4953 4954 G1FreeHumongousRegionClosure cl(&local_cleanup_list); 4955 heap_region_iterate(&cl); 4956 4957 remove_from_old_sets(0, cl.humongous_regions_reclaimed()); 4958 4959 G1HRPrinter* hrp = hr_printer(); 4960 if (hrp->is_active()) { 4961 FreeRegionListIterator iter(&local_cleanup_list); 4962 while (iter.more_available()) { 4963 HeapRegion* hr = iter.get_next(); 4964 hrp->cleanup(hr); 4965 } 4966 } 4967 4968 prepend_to_freelist(&local_cleanup_list); 4969 decrement_summary_bytes(cl.bytes_freed()); 4970 4971 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0, 4972 cl.humongous_objects_reclaimed()); 4973 } 4974 4975 class G1AbandonCollectionSetClosure : public HeapRegionClosure { 4976 public: 4977 virtual bool doHeapRegion(HeapRegion* r) { 4978 assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index()); 4979 G1CollectedHeap::heap()->clear_in_cset(r); 4980 r->set_young_index_in_cset(-1); 4981 return false; 4982 } 4983 }; 4984 4985 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) { 4986 G1AbandonCollectionSetClosure cl; 4987 collection_set->iterate(&cl); 4988 4989 collection_set->clear(); 4990 collection_set->stop_incremental_building(); 4991 } 4992 4993 void G1CollectedHeap::set_free_regions_coming() { 4994 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming"); 4995 4996 assert(!free_regions_coming(), "pre-condition"); 4997 _free_regions_coming = true; 4998 } 4999 5000 void G1CollectedHeap::reset_free_regions_coming() { 5001 assert(free_regions_coming(), "pre-condition"); 5002 5003 { 5004 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 5005 _free_regions_coming = false; 5006 SecondaryFreeList_lock->notify_all(); 5007 } 5008 5009 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming"); 5010 } 5011 5012 void G1CollectedHeap::wait_while_free_regions_coming() { 5013 // Most of the time we won't have to wait, so let's do a quick test 5014 // first before we take the lock. 5015 if (!free_regions_coming()) { 5016 return; 5017 } 5018 5019 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions"); 5020 5021 { 5022 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 5023 while (free_regions_coming()) { 5024 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 5025 } 5026 } 5027 5028 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions"); 5029 } 5030 5031 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) { 5032 return _allocator->is_retained_old_region(hr); 5033 } 5034 5035 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { 5036 _eden.add(hr); 5037 _g1_policy->set_region_eden(hr); 5038 } 5039 5040 #ifdef ASSERT 5041 5042 class NoYoungRegionsClosure: public HeapRegionClosure { 5043 private: 5044 bool _success; 5045 public: 5046 NoYoungRegionsClosure() : _success(true) { } 5047 bool doHeapRegion(HeapRegion* r) { 5048 if (r->is_young()) { 5049 log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young", 5050 p2i(r->bottom()), p2i(r->end())); 5051 _success = false; 5052 } 5053 return false; 5054 } 5055 bool success() { return _success; } 5056 }; 5057 5058 bool G1CollectedHeap::check_young_list_empty() { 5059 bool ret = (young_regions_count() == 0); 5060 5061 NoYoungRegionsClosure closure; 5062 heap_region_iterate(&closure); 5063 ret = ret && closure.success(); 5064 5065 return ret; 5066 } 5067 5068 #endif // ASSERT 5069 5070 class TearDownRegionSetsClosure : public HeapRegionClosure { 5071 private: 5072 HeapRegionSet *_old_set; 5073 5074 public: 5075 TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { } 5076 5077 bool doHeapRegion(HeapRegion* r) { 5078 if (r->is_old()) { 5079 _old_set->remove(r); 5080 } else if(r->is_young()) { 5081 r->uninstall_surv_rate_group(); 5082 } else { 5083 // We ignore free regions, we'll empty the free list afterwards. 5084 // We ignore humongous regions, we're not tearing down the 5085 // humongous regions set. 5086 assert(r->is_free() || r->is_humongous(), 5087 "it cannot be another type"); 5088 } 5089 return false; 5090 } 5091 5092 ~TearDownRegionSetsClosure() { 5093 assert(_old_set->is_empty(), "post-condition"); 5094 } 5095 }; 5096 5097 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) { 5098 assert_at_safepoint(true /* should_be_vm_thread */); 5099 5100 if (!free_list_only) { 5101 TearDownRegionSetsClosure cl(&_old_set); 5102 heap_region_iterate(&cl); 5103 5104 // Note that emptying the _young_list is postponed and instead done as 5105 // the first step when rebuilding the regions sets again. The reason for 5106 // this is that during a full GC string deduplication needs to know if 5107 // a collected region was young or old when the full GC was initiated. 5108 } 5109 _hrm.remove_all_free_regions(); 5110 } 5111 5112 void G1CollectedHeap::increase_used(size_t bytes) { 5113 _summary_bytes_used += bytes; 5114 } 5115 5116 void G1CollectedHeap::decrease_used(size_t bytes) { 5117 assert(_summary_bytes_used >= bytes, 5118 "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT, 5119 _summary_bytes_used, bytes); 5120 _summary_bytes_used -= bytes; 5121 } 5122 5123 void G1CollectedHeap::set_used(size_t bytes) { 5124 _summary_bytes_used = bytes; 5125 } 5126 5127 class RebuildRegionSetsClosure : public HeapRegionClosure { 5128 private: 5129 bool _free_list_only; 5130 HeapRegionSet* _old_set; 5131 HeapRegionManager* _hrm; 5132 size_t _total_used; 5133 5134 public: 5135 RebuildRegionSetsClosure(bool free_list_only, 5136 HeapRegionSet* old_set, HeapRegionManager* hrm) : 5137 _free_list_only(free_list_only), 5138 _old_set(old_set), _hrm(hrm), _total_used(0) { 5139 assert(_hrm->num_free_regions() == 0, "pre-condition"); 5140 if (!free_list_only) { 5141 assert(_old_set->is_empty(), "pre-condition"); 5142 } 5143 } 5144 5145 bool doHeapRegion(HeapRegion* r) { 5146 if (r->is_empty()) { 5147 // Add free regions to the free list 5148 r->set_free(); 5149 r->set_allocation_context(AllocationContext::system()); 5150 _hrm->insert_into_free_list(r); 5151 } else if (!_free_list_only) { 5152 5153 if (r->is_humongous()) { 5154 // We ignore humongous regions. We left the humongous set unchanged. 5155 } else { 5156 assert(r->is_young() || r->is_free() || r->is_old(), "invariant"); 5157 // We now consider all regions old, so register as such. Leave 5158 // archive regions set that way, however, while still adding 5159 // them to the old set. 5160 if (!r->is_archive()) { 5161 r->set_old(); 5162 } 5163 _old_set->add(r); 5164 } 5165 _total_used += r->used(); 5166 } 5167 5168 return false; 5169 } 5170 5171 size_t total_used() { 5172 return _total_used; 5173 } 5174 }; 5175 5176 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { 5177 assert_at_safepoint(true /* should_be_vm_thread */); 5178 5179 if (!free_list_only) { 5180 _eden.clear(); 5181 _survivor.clear(); 5182 } 5183 5184 RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm); 5185 heap_region_iterate(&cl); 5186 5187 if (!free_list_only) { 5188 set_used(cl.total_used()); 5189 if (_archive_allocator != NULL) { 5190 _archive_allocator->clear_used(); 5191 } 5192 } 5193 assert(used_unlocked() == recalculate_used(), 5194 "inconsistent used_unlocked(), " 5195 "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT, 5196 used_unlocked(), recalculate_used()); 5197 } 5198 5199 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) { 5200 _refine_cte_cl->set_concurrent(concurrent); 5201 } 5202 5203 bool G1CollectedHeap::is_in_closed_subset(const void* p) const { 5204 HeapRegion* hr = heap_region_containing(p); 5205 return hr->is_in(p); 5206 } 5207 5208 // Methods for the mutator alloc region 5209 5210 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, 5211 bool force) { 5212 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 5213 bool should_allocate = g1_policy()->should_allocate_mutator_region(); 5214 if (force || should_allocate) { 5215 HeapRegion* new_alloc_region = new_region(word_size, 5216 false /* is_old */, 5217 false /* do_expand */); 5218 if (new_alloc_region != NULL) { 5219 set_region_short_lived_locked(new_alloc_region); 5220 _hr_printer.alloc(new_alloc_region, !should_allocate); 5221 _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region); 5222 return new_alloc_region; 5223 } 5224 } 5225 return NULL; 5226 } 5227 5228 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, 5229 size_t allocated_bytes) { 5230 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 5231 assert(alloc_region->is_eden(), "all mutator alloc regions should be eden"); 5232 5233 collection_set()->add_eden_region(alloc_region); 5234 increase_used(allocated_bytes); 5235 _hr_printer.retire(alloc_region); 5236 // We update the eden sizes here, when the region is retired, 5237 // instead of when it's allocated, since this is the point that its 5238 // used space has been recored in _summary_bytes_used. 5239 g1mm()->update_eden_size(); 5240 } 5241 5242 // Methods for the GC alloc regions 5243 5244 bool G1CollectedHeap::has_more_regions(InCSetState dest) { 5245 if (dest.is_old()) { 5246 return true; 5247 } else { 5248 return survivor_regions_count() < g1_policy()->max_survivor_regions(); 5249 } 5250 } 5251 5252 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) { 5253 assert(FreeList_lock->owned_by_self(), "pre-condition"); 5254 5255 if (!has_more_regions(dest)) { 5256 return NULL; 5257 } 5258 5259 const bool is_survivor = dest.is_young(); 5260 5261 HeapRegion* new_alloc_region = new_region(word_size, 5262 !is_survivor, 5263 true /* do_expand */); 5264 if (new_alloc_region != NULL) { 5265 // We really only need to do this for old regions given that we 5266 // should never scan survivors. But it doesn't hurt to do it 5267 // for survivors too. 5268 new_alloc_region->record_timestamp(); 5269 if (is_survivor) { 5270 new_alloc_region->set_survivor(); 5271 _survivor.add(new_alloc_region); 5272 _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region); 5273 } else { 5274 new_alloc_region->set_old(); 5275 _verifier->check_bitmaps("Old Region Allocation", new_alloc_region); 5276 } 5277 _hr_printer.alloc(new_alloc_region); 5278 bool during_im = collector_state()->during_initial_mark_pause(); 5279 new_alloc_region->note_start_of_copying(during_im); 5280 return new_alloc_region; 5281 } 5282 return NULL; 5283 } 5284 5285 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, 5286 size_t allocated_bytes, 5287 InCSetState dest) { 5288 bool during_im = collector_state()->during_initial_mark_pause(); 5289 alloc_region->note_end_of_copying(during_im); 5290 g1_policy()->record_bytes_copied_during_gc(allocated_bytes); 5291 if (dest.is_old()) { 5292 _old_set.add(alloc_region); 5293 } 5294 _hr_printer.retire(alloc_region); 5295 } 5296 5297 HeapRegion* G1CollectedHeap::alloc_highest_free_region() { 5298 bool expanded = false; 5299 uint index = _hrm.find_highest_free(&expanded); 5300 5301 if (index != G1_NO_HRM_INDEX) { 5302 if (expanded) { 5303 log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B", 5304 HeapRegion::GrainWords * HeapWordSize); 5305 } 5306 _hrm.allocate_free_regions_starting_at(index, 1); 5307 return region_at(index); 5308 } 5309 return NULL; 5310 } 5311 5312 // Optimized nmethod scanning 5313 5314 class RegisterNMethodOopClosure: public OopClosure { 5315 G1CollectedHeap* _g1h; 5316 nmethod* _nm; 5317 5318 template <class T> void do_oop_work(T* p) { 5319 T heap_oop = oopDesc::load_heap_oop(p); 5320 if (!oopDesc::is_null(heap_oop)) { 5321 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 5322 HeapRegion* hr = _g1h->heap_region_containing(obj); 5323 assert(!hr->is_continues_humongous(), 5324 "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT 5325 " starting at " HR_FORMAT, 5326 p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); 5327 5328 // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries. 5329 hr->add_strong_code_root_locked(_nm); 5330 } 5331 } 5332 5333 public: 5334 RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 5335 _g1h(g1h), _nm(nm) {} 5336 5337 void do_oop(oop* p) { do_oop_work(p); } 5338 void do_oop(narrowOop* p) { do_oop_work(p); } 5339 }; 5340 5341 class UnregisterNMethodOopClosure: public OopClosure { 5342 G1CollectedHeap* _g1h; 5343 nmethod* _nm; 5344 5345 template <class T> void do_oop_work(T* p) { 5346 T heap_oop = oopDesc::load_heap_oop(p); 5347 if (!oopDesc::is_null(heap_oop)) { 5348 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 5349 HeapRegion* hr = _g1h->heap_region_containing(obj); 5350 assert(!hr->is_continues_humongous(), 5351 "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT 5352 " starting at " HR_FORMAT, 5353 p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); 5354 5355 hr->remove_strong_code_root(_nm); 5356 } 5357 } 5358 5359 public: 5360 UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 5361 _g1h(g1h), _nm(nm) {} 5362 5363 void do_oop(oop* p) { do_oop_work(p); } 5364 void do_oop(narrowOop* p) { do_oop_work(p); } 5365 }; 5366 5367 void G1CollectedHeap::register_nmethod(nmethod* nm) { 5368 CollectedHeap::register_nmethod(nm); 5369 5370 guarantee(nm != NULL, "sanity"); 5371 RegisterNMethodOopClosure reg_cl(this, nm); 5372 nm->oops_do(®_cl); 5373 } 5374 5375 void G1CollectedHeap::unregister_nmethod(nmethod* nm) { 5376 CollectedHeap::unregister_nmethod(nm); 5377 5378 guarantee(nm != NULL, "sanity"); 5379 UnregisterNMethodOopClosure reg_cl(this, nm); 5380 nm->oops_do(®_cl, true); 5381 } 5382 5383 void G1CollectedHeap::purge_code_root_memory() { 5384 double purge_start = os::elapsedTime(); 5385 G1CodeRootSet::purge(); 5386 double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0; 5387 g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms); 5388 } 5389 5390 class RebuildStrongCodeRootClosure: public CodeBlobClosure { 5391 G1CollectedHeap* _g1h; 5392 5393 public: 5394 RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) : 5395 _g1h(g1h) {} 5396 5397 void do_code_blob(CodeBlob* cb) { 5398 nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL; 5399 if (nm == NULL) { 5400 return; 5401 } 5402 5403 if (ScavengeRootsInCode) { 5404 _g1h->register_nmethod(nm); 5405 } 5406 } 5407 }; 5408 5409 void G1CollectedHeap::rebuild_strong_code_roots() { 5410 RebuildStrongCodeRootClosure blob_cl(this); 5411 CodeCache::blobs_do(&blob_cl); 5412 }