1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullGCScope.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.inline.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1SerialCollector.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1YCTypes.hpp"
  57 #include "gc/g1/heapRegion.inline.hpp"
  58 #include "gc/g1/heapRegionRemSet.hpp"
  59 #include "gc/g1/heapRegionSet.inline.hpp"
  60 #include "gc/g1/suspendibleThreadSet.hpp"
  61 #include "gc/g1/vm_operations_g1.hpp"
  62 #include "gc/shared/gcHeapSummary.hpp"
  63 #include "gc/shared/gcId.hpp"
  64 #include "gc/shared/gcLocker.inline.hpp"
  65 #include "gc/shared/gcTimer.hpp"
  66 #include "gc/shared/gcTrace.hpp"
  67 #include "gc/shared/gcTraceTime.inline.hpp"
  68 #include "gc/shared/generationSpec.hpp"
  69 #include "gc/shared/isGCActiveMark.hpp"
  70 #include "gc/shared/preservedMarks.inline.hpp"
  71 #include "gc/shared/referenceProcessor.inline.hpp"
  72 #include "gc/shared/taskqueue.inline.hpp"
  73 #include "logging/log.hpp"
  74 #include "memory/allocation.hpp"
  75 #include "memory/iterator.hpp"
  76 #include "memory/resourceArea.hpp"
  77 #include "oops/oop.inline.hpp"
  78 #include "prims/resolvedMethodTable.hpp"
  79 #include "runtime/atomic.hpp"
  80 #include "runtime/init.hpp"
  81 #include "runtime/orderAccess.inline.hpp"
  82 #include "runtime/vmThread.hpp"
  83 #include "utilities/globalDefinitions.hpp"
  84 #include "utilities/stack.inline.hpp"
  85 
  86 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  87 
  88 // INVARIANTS/NOTES
  89 //
  90 // All allocation activity covered by the G1CollectedHeap interface is
  91 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  92 // and allocate_new_tlab, which are the "entry" points to the
  93 // allocation code from the rest of the JVM.  (Note that this does not
  94 // apply to TLAB allocation, which is not part of this interface: it
  95 // is done by clients of this interface.)
  96 
  97 // Local to this file.
  98 
  99 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 100   bool _concurrent;
 101 public:
 102   RefineCardTableEntryClosure() : _concurrent(true) { }
 103 
 104   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 105     G1CollectedHeap::heap()->g1_rem_set()->refine_card_concurrently(card_ptr, worker_i);
 106 
 107     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 108       // Caller will actually yield.
 109       return false;
 110     }
 111     // Otherwise, we finished successfully; return true.
 112     return true;
 113   }
 114 
 115   void set_concurrent(bool b) { _concurrent = b; }
 116 };
 117 
 118 
 119 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 120  private:
 121   size_t _num_dirtied;
 122   G1CollectedHeap* _g1h;
 123   G1SATBCardTableLoggingModRefBS* _g1_bs;
 124 
 125   HeapRegion* region_for_card(jbyte* card_ptr) const {
 126     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 127   }
 128 
 129   bool will_become_free(HeapRegion* hr) const {
 130     // A region will be freed by free_collection_set if the region is in the
 131     // collection set and has not had an evacuation failure.
 132     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 133   }
 134 
 135  public:
 136   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 137     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 138 
 139   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 140     HeapRegion* hr = region_for_card(card_ptr);
 141 
 142     // Should only dirty cards in regions that won't be freed.
 143     if (!will_become_free(hr)) {
 144       *card_ptr = CardTableModRefBS::dirty_card_val();
 145       _num_dirtied++;
 146     }
 147 
 148     return true;
 149   }
 150 
 151   size_t num_dirtied()   const { return _num_dirtied; }
 152 };
 153 
 154 
 155 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 156   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 157 }
 158 
 159 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 160   // The from card cache is not the memory that is actually committed. So we cannot
 161   // take advantage of the zero_filled parameter.
 162   reset_from_card_cache(start_idx, num_regions);
 163 }
 164 
 165 // Returns true if the reference points to an object that
 166 // can move in an incremental collection.
 167 bool G1CollectedHeap::is_scavengable(const void* p) {
 168   HeapRegion* hr = heap_region_containing(p);
 169   return !hr->is_pinned();
 170 }
 171 
 172 // Private methods.
 173 
 174 HeapRegion*
 175 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 176   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 177   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 178     if (!_secondary_free_list.is_empty()) {
 179       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 180                                       "secondary_free_list has %u entries",
 181                                       _secondary_free_list.length());
 182       // It looks as if there are free regions available on the
 183       // secondary_free_list. Let's move them to the free_list and try
 184       // again to allocate from it.
 185       append_secondary_free_list();
 186 
 187       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 188              "empty we should have moved at least one entry to the free_list");
 189       HeapRegion* res = _hrm.allocate_free_region(is_old);
 190       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 191                                       "allocated " HR_FORMAT " from secondary_free_list",
 192                                       HR_FORMAT_PARAMS(res));
 193       return res;
 194     }
 195 
 196     // Wait here until we get notified either when (a) there are no
 197     // more free regions coming or (b) some regions have been moved on
 198     // the secondary_free_list.
 199     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 200   }
 201 
 202   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 203                                   "could not allocate from secondary_free_list");
 204   return NULL;
 205 }
 206 
 207 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 208   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 209          "the only time we use this to allocate a humongous region is "
 210          "when we are allocating a single humongous region");
 211 
 212   HeapRegion* res;
 213   if (G1StressConcRegionFreeing) {
 214     if (!_secondary_free_list.is_empty()) {
 215       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 216                                       "forced to look at the secondary_free_list");
 217       res = new_region_try_secondary_free_list(is_old);
 218       if (res != NULL) {
 219         return res;
 220       }
 221     }
 222   }
 223 
 224   res = _hrm.allocate_free_region(is_old);
 225 
 226   if (res == NULL) {
 227     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 228                                     "res == NULL, trying the secondary_free_list");
 229     res = new_region_try_secondary_free_list(is_old);
 230   }
 231   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 232     // Currently, only attempts to allocate GC alloc regions set
 233     // do_expand to true. So, we should only reach here during a
 234     // safepoint. If this assumption changes we might have to
 235     // reconsider the use of _expand_heap_after_alloc_failure.
 236     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 237 
 238     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 239                               word_size * HeapWordSize);
 240 
 241     if (expand(word_size * HeapWordSize)) {
 242       // Given that expand() succeeded in expanding the heap, and we
 243       // always expand the heap by an amount aligned to the heap
 244       // region size, the free list should in theory not be empty.
 245       // In either case allocate_free_region() will check for NULL.
 246       res = _hrm.allocate_free_region(is_old);
 247     } else {
 248       _expand_heap_after_alloc_failure = false;
 249     }
 250   }
 251   return res;
 252 }
 253 
 254 HeapWord*
 255 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 256                                                            uint num_regions,
 257                                                            size_t word_size,
 258                                                            AllocationContext_t context) {
 259   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 260   assert(is_humongous(word_size), "word_size should be humongous");
 261   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 262 
 263   // Index of last region in the series.
 264   uint last = first + num_regions - 1;
 265 
 266   // We need to initialize the region(s) we just discovered. This is
 267   // a bit tricky given that it can happen concurrently with
 268   // refinement threads refining cards on these regions and
 269   // potentially wanting to refine the BOT as they are scanning
 270   // those cards (this can happen shortly after a cleanup; see CR
 271   // 6991377). So we have to set up the region(s) carefully and in
 272   // a specific order.
 273 
 274   // The word size sum of all the regions we will allocate.
 275   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 276   assert(word_size <= word_size_sum, "sanity");
 277 
 278   // This will be the "starts humongous" region.
 279   HeapRegion* first_hr = region_at(first);
 280   // The header of the new object will be placed at the bottom of
 281   // the first region.
 282   HeapWord* new_obj = first_hr->bottom();
 283   // This will be the new top of the new object.
 284   HeapWord* obj_top = new_obj + word_size;
 285 
 286   // First, we need to zero the header of the space that we will be
 287   // allocating. When we update top further down, some refinement
 288   // threads might try to scan the region. By zeroing the header we
 289   // ensure that any thread that will try to scan the region will
 290   // come across the zero klass word and bail out.
 291   //
 292   // NOTE: It would not have been correct to have used
 293   // CollectedHeap::fill_with_object() and make the space look like
 294   // an int array. The thread that is doing the allocation will
 295   // later update the object header to a potentially different array
 296   // type and, for a very short period of time, the klass and length
 297   // fields will be inconsistent. This could cause a refinement
 298   // thread to calculate the object size incorrectly.
 299   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 300 
 301   // Next, pad out the unused tail of the last region with filler
 302   // objects, for improved usage accounting.
 303   // How many words we use for filler objects.
 304   size_t word_fill_size = word_size_sum - word_size;
 305 
 306   // How many words memory we "waste" which cannot hold a filler object.
 307   size_t words_not_fillable = 0;
 308 
 309   if (word_fill_size >= min_fill_size()) {
 310     fill_with_objects(obj_top, word_fill_size);
 311   } else if (word_fill_size > 0) {
 312     // We have space to fill, but we cannot fit an object there.
 313     words_not_fillable = word_fill_size;
 314     word_fill_size = 0;
 315   }
 316 
 317   // We will set up the first region as "starts humongous". This
 318   // will also update the BOT covering all the regions to reflect
 319   // that there is a single object that starts at the bottom of the
 320   // first region.
 321   first_hr->set_starts_humongous(obj_top, word_fill_size);
 322   first_hr->set_allocation_context(context);
 323   // Then, if there are any, we will set up the "continues
 324   // humongous" regions.
 325   HeapRegion* hr = NULL;
 326   for (uint i = first + 1; i <= last; ++i) {
 327     hr = region_at(i);
 328     hr->set_continues_humongous(first_hr);
 329     hr->set_allocation_context(context);
 330   }
 331 
 332   // Up to this point no concurrent thread would have been able to
 333   // do any scanning on any region in this series. All the top
 334   // fields still point to bottom, so the intersection between
 335   // [bottom,top] and [card_start,card_end] will be empty. Before we
 336   // update the top fields, we'll do a storestore to make sure that
 337   // no thread sees the update to top before the zeroing of the
 338   // object header and the BOT initialization.
 339   OrderAccess::storestore();
 340 
 341   // Now, we will update the top fields of the "continues humongous"
 342   // regions except the last one.
 343   for (uint i = first; i < last; ++i) {
 344     hr = region_at(i);
 345     hr->set_top(hr->end());
 346   }
 347 
 348   hr = region_at(last);
 349   // If we cannot fit a filler object, we must set top to the end
 350   // of the humongous object, otherwise we cannot iterate the heap
 351   // and the BOT will not be complete.
 352   hr->set_top(hr->end() - words_not_fillable);
 353 
 354   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 355          "obj_top should be in last region");
 356 
 357   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 358 
 359   assert(words_not_fillable == 0 ||
 360          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 361          "Miscalculation in humongous allocation");
 362 
 363   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 364 
 365   for (uint i = first; i <= last; ++i) {
 366     hr = region_at(i);
 367     _humongous_set.add(hr);
 368     _hr_printer.alloc(hr);
 369   }
 370 
 371   return new_obj;
 372 }
 373 
 374 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 375   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 376   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 377 }
 378 
 379 // If could fit into free regions w/o expansion, try.
 380 // Otherwise, if can expand, do so.
 381 // Otherwise, if using ex regions might help, try with ex given back.
 382 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 383   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 384 
 385   _verifier->verify_region_sets_optional();
 386 
 387   uint first = G1_NO_HRM_INDEX;
 388   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 389 
 390   if (obj_regions == 1) {
 391     // Only one region to allocate, try to use a fast path by directly allocating
 392     // from the free lists. Do not try to expand here, we will potentially do that
 393     // later.
 394     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 395     if (hr != NULL) {
 396       first = hr->hrm_index();
 397     }
 398   } else {
 399     // We can't allocate humongous regions spanning more than one region while
 400     // cleanupComplete() is running, since some of the regions we find to be
 401     // empty might not yet be added to the free list. It is not straightforward
 402     // to know in which list they are on so that we can remove them. We only
 403     // need to do this if we need to allocate more than one region to satisfy the
 404     // current humongous allocation request. If we are only allocating one region
 405     // we use the one-region region allocation code (see above), that already
 406     // potentially waits for regions from the secondary free list.
 407     wait_while_free_regions_coming();
 408     append_secondary_free_list_if_not_empty_with_lock();
 409 
 410     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 411     // are lucky enough to find some.
 412     first = _hrm.find_contiguous_only_empty(obj_regions);
 413     if (first != G1_NO_HRM_INDEX) {
 414       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 415     }
 416   }
 417 
 418   if (first == G1_NO_HRM_INDEX) {
 419     // Policy: We could not find enough regions for the humongous object in the
 420     // free list. Look through the heap to find a mix of free and uncommitted regions.
 421     // If so, try expansion.
 422     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 423     if (first != G1_NO_HRM_INDEX) {
 424       // We found something. Make sure these regions are committed, i.e. expand
 425       // the heap. Alternatively we could do a defragmentation GC.
 426       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 427                                     word_size * HeapWordSize);
 428 
 429       _hrm.expand_at(first, obj_regions, workers());
 430       g1_policy()->record_new_heap_size(num_regions());
 431 
 432 #ifdef ASSERT
 433       for (uint i = first; i < first + obj_regions; ++i) {
 434         HeapRegion* hr = region_at(i);
 435         assert(hr->is_free(), "sanity");
 436         assert(hr->is_empty(), "sanity");
 437         assert(is_on_master_free_list(hr), "sanity");
 438       }
 439 #endif
 440       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 441     } else {
 442       // Policy: Potentially trigger a defragmentation GC.
 443     }
 444   }
 445 
 446   HeapWord* result = NULL;
 447   if (first != G1_NO_HRM_INDEX) {
 448     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 449                                                        word_size, context);
 450     assert(result != NULL, "it should always return a valid result");
 451 
 452     // A successful humongous object allocation changes the used space
 453     // information of the old generation so we need to recalculate the
 454     // sizes and update the jstat counters here.
 455     g1mm()->update_sizes();
 456   }
 457 
 458   _verifier->verify_region_sets_optional();
 459 
 460   return result;
 461 }
 462 
 463 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 464   assert_heap_not_locked_and_not_at_safepoint();
 465   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 466 
 467   uint dummy_gc_count_before;
 468   uint dummy_gclocker_retry_count = 0;
 469   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 470 }
 471 
 472 HeapWord*
 473 G1CollectedHeap::mem_allocate(size_t word_size,
 474                               bool*  gc_overhead_limit_was_exceeded) {
 475   assert_heap_not_locked_and_not_at_safepoint();
 476 
 477   // Loop until the allocation is satisfied, or unsatisfied after GC.
 478   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 479     uint gc_count_before;
 480 
 481     HeapWord* result = NULL;
 482     if (!is_humongous(word_size)) {
 483       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 484     } else {
 485       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 486     }
 487     if (result != NULL) {
 488       return result;
 489     }
 490 
 491     // Create the garbage collection operation...
 492     VM_G1CollectForAllocation op(gc_count_before, word_size);
 493     op.set_allocation_context(AllocationContext::current());
 494 
 495     // ...and get the VM thread to execute it.
 496     VMThread::execute(&op);
 497 
 498     if (op.prologue_succeeded() && op.pause_succeeded()) {
 499       // If the operation was successful we'll return the result even
 500       // if it is NULL. If the allocation attempt failed immediately
 501       // after a Full GC, it's unlikely we'll be able to allocate now.
 502       HeapWord* result = op.result();
 503       if (result != NULL && !is_humongous(word_size)) {
 504         // Allocations that take place on VM operations do not do any
 505         // card dirtying and we have to do it here. We only have to do
 506         // this for non-humongous allocations, though.
 507         dirty_young_block(result, word_size);
 508       }
 509       return result;
 510     } else {
 511       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 512         return NULL;
 513       }
 514       assert(op.result() == NULL,
 515              "the result should be NULL if the VM op did not succeed");
 516     }
 517 
 518     // Give a warning if we seem to be looping forever.
 519     if ((QueuedAllocationWarningCount > 0) &&
 520         (try_count % QueuedAllocationWarningCount == 0)) {
 521       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 522     }
 523   }
 524 
 525   ShouldNotReachHere();
 526   return NULL;
 527 }
 528 
 529 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 530                                                    AllocationContext_t context,
 531                                                    uint* gc_count_before_ret,
 532                                                    uint* gclocker_retry_count_ret) {
 533   // Make sure you read the note in attempt_allocation_humongous().
 534 
 535   assert_heap_not_locked_and_not_at_safepoint();
 536   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 537          "be called for humongous allocation requests");
 538 
 539   // We should only get here after the first-level allocation attempt
 540   // (attempt_allocation()) failed to allocate.
 541 
 542   // We will loop until a) we manage to successfully perform the
 543   // allocation or b) we successfully schedule a collection which
 544   // fails to perform the allocation. b) is the only case when we'll
 545   // return NULL.
 546   HeapWord* result = NULL;
 547   for (int try_count = 1; /* we'll return */; try_count += 1) {
 548     bool should_try_gc;
 549     uint gc_count_before;
 550 
 551     {
 552       MutexLockerEx x(Heap_lock);
 553       result = _allocator->attempt_allocation_locked(word_size, context);
 554       if (result != NULL) {
 555         return result;
 556       }
 557 
 558       if (GCLocker::is_active_and_needs_gc()) {
 559         if (g1_policy()->can_expand_young_list()) {
 560           // No need for an ergo verbose message here,
 561           // can_expand_young_list() does this when it returns true.
 562           result = _allocator->attempt_allocation_force(word_size, context);
 563           if (result != NULL) {
 564             return result;
 565           }
 566         }
 567         should_try_gc = false;
 568       } else {
 569         // The GCLocker may not be active but the GCLocker initiated
 570         // GC may not yet have been performed (GCLocker::needs_gc()
 571         // returns true). In this case we do not try this GC and
 572         // wait until the GCLocker initiated GC is performed, and
 573         // then retry the allocation.
 574         if (GCLocker::needs_gc()) {
 575           should_try_gc = false;
 576         } else {
 577           // Read the GC count while still holding the Heap_lock.
 578           gc_count_before = total_collections();
 579           should_try_gc = true;
 580         }
 581       }
 582     }
 583 
 584     if (should_try_gc) {
 585       bool succeeded;
 586       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 587                                    GCCause::_g1_inc_collection_pause);
 588       if (result != NULL) {
 589         assert(succeeded, "only way to get back a non-NULL result");
 590         return result;
 591       }
 592 
 593       if (succeeded) {
 594         // If we get here we successfully scheduled a collection which
 595         // failed to allocate. No point in trying to allocate
 596         // further. We'll just return NULL.
 597         MutexLockerEx x(Heap_lock);
 598         *gc_count_before_ret = total_collections();
 599         return NULL;
 600       }
 601     } else {
 602       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 603         MutexLockerEx x(Heap_lock);
 604         *gc_count_before_ret = total_collections();
 605         return NULL;
 606       }
 607       // The GCLocker is either active or the GCLocker initiated
 608       // GC has not yet been performed. Stall until it is and
 609       // then retry the allocation.
 610       GCLocker::stall_until_clear();
 611       (*gclocker_retry_count_ret) += 1;
 612     }
 613 
 614     // We can reach here if we were unsuccessful in scheduling a
 615     // collection (because another thread beat us to it) or if we were
 616     // stalled due to the GC locker. In either can we should retry the
 617     // allocation attempt in case another thread successfully
 618     // performed a collection and reclaimed enough space. We do the
 619     // first attempt (without holding the Heap_lock) here and the
 620     // follow-on attempt will be at the start of the next loop
 621     // iteration (after taking the Heap_lock).
 622     result = _allocator->attempt_allocation(word_size, context);
 623     if (result != NULL) {
 624       return result;
 625     }
 626 
 627     // Give a warning if we seem to be looping forever.
 628     if ((QueuedAllocationWarningCount > 0) &&
 629         (try_count % QueuedAllocationWarningCount == 0)) {
 630       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 631                       "retries %d times", try_count);
 632     }
 633   }
 634 
 635   ShouldNotReachHere();
 636   return NULL;
 637 }
 638 
 639 void G1CollectedHeap::begin_archive_alloc_range() {
 640   assert_at_safepoint(true /* should_be_vm_thread */);
 641   if (_archive_allocator == NULL) {
 642     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 643   }
 644 }
 645 
 646 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 647   // Allocations in archive regions cannot be of a size that would be considered
 648   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 649   // may be different at archive-restore time.
 650   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 651 }
 652 
 653 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 654   assert_at_safepoint(true /* should_be_vm_thread */);
 655   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 656   if (is_archive_alloc_too_large(word_size)) {
 657     return NULL;
 658   }
 659   return _archive_allocator->archive_mem_allocate(word_size);
 660 }
 661 
 662 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 663                                               size_t end_alignment_in_bytes) {
 664   assert_at_safepoint(true /* should_be_vm_thread */);
 665   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 666 
 667   // Call complete_archive to do the real work, filling in the MemRegion
 668   // array with the archive regions.
 669   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 670   delete _archive_allocator;
 671   _archive_allocator = NULL;
 672 }
 673 
 674 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 675   assert(ranges != NULL, "MemRegion array NULL");
 676   assert(count != 0, "No MemRegions provided");
 677   MemRegion reserved = _hrm.reserved();
 678   for (size_t i = 0; i < count; i++) {
 679     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 680       return false;
 681     }
 682   }
 683   return true;
 684 }
 685 
 686 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 687   assert(!is_init_completed(), "Expect to be called at JVM init time");
 688   assert(ranges != NULL, "MemRegion array NULL");
 689   assert(count != 0, "No MemRegions provided");
 690   MutexLockerEx x(Heap_lock);
 691 
 692   MemRegion reserved = _hrm.reserved();
 693   HeapWord* prev_last_addr = NULL;
 694   HeapRegion* prev_last_region = NULL;
 695 
 696   // Temporarily disable pretouching of heap pages. This interface is used
 697   // when mmap'ing archived heap data in, so pre-touching is wasted.
 698   FlagSetting fs(AlwaysPreTouch, false);
 699 
 700   // Enable archive object checking used by G1MarkSweep. We have to let it know
 701   // about each archive range, so that objects in those ranges aren't marked.
 702   G1ArchiveAllocator::enable_archive_object_check();
 703 
 704   // For each specified MemRegion range, allocate the corresponding G1
 705   // regions and mark them as archive regions. We expect the ranges in
 706   // ascending starting address order, without overlap.
 707   for (size_t i = 0; i < count; i++) {
 708     MemRegion curr_range = ranges[i];
 709     HeapWord* start_address = curr_range.start();
 710     size_t word_size = curr_range.word_size();
 711     HeapWord* last_address = curr_range.last();
 712     size_t commits = 0;
 713 
 714     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 715               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 716               p2i(start_address), p2i(last_address));
 717     guarantee(start_address > prev_last_addr,
 718               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 719               p2i(start_address), p2i(prev_last_addr));
 720     prev_last_addr = last_address;
 721 
 722     // Check for ranges that start in the same G1 region in which the previous
 723     // range ended, and adjust the start address so we don't try to allocate
 724     // the same region again. If the current range is entirely within that
 725     // region, skip it, just adjusting the recorded top.
 726     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 727     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 728       start_address = start_region->end();
 729       if (start_address > last_address) {
 730         increase_used(word_size * HeapWordSize);
 731         start_region->set_top(last_address + 1);
 732         continue;
 733       }
 734       start_region->set_top(start_address);
 735       curr_range = MemRegion(start_address, last_address + 1);
 736       start_region = _hrm.addr_to_region(start_address);
 737     }
 738 
 739     // Perform the actual region allocation, exiting if it fails.
 740     // Then note how much new space we have allocated.
 741     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 742       return false;
 743     }
 744     increase_used(word_size * HeapWordSize);
 745     if (commits != 0) {
 746       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 747                                 HeapRegion::GrainWords * HeapWordSize * commits);
 748 
 749     }
 750 
 751     // Mark each G1 region touched by the range as archive, add it to the old set,
 752     // and set the allocation context and top.
 753     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 754     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 755     prev_last_region = last_region;
 756 
 757     while (curr_region != NULL) {
 758       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 759              "Region already in use (index %u)", curr_region->hrm_index());
 760       curr_region->set_allocation_context(AllocationContext::system());
 761       curr_region->set_archive();
 762       _hr_printer.alloc(curr_region);
 763       _old_set.add(curr_region);
 764       if (curr_region != last_region) {
 765         curr_region->set_top(curr_region->end());
 766         curr_region = _hrm.next_region_in_heap(curr_region);
 767       } else {
 768         curr_region->set_top(last_address + 1);
 769         curr_region = NULL;
 770       }
 771     }
 772 
 773     // Notify mark-sweep of the archive range.
 774     G1ArchiveAllocator::set_range_archive(curr_range, true);
 775   }
 776   return true;
 777 }
 778 
 779 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 780   assert(!is_init_completed(), "Expect to be called at JVM init time");
 781   assert(ranges != NULL, "MemRegion array NULL");
 782   assert(count != 0, "No MemRegions provided");
 783   MemRegion reserved = _hrm.reserved();
 784   HeapWord *prev_last_addr = NULL;
 785   HeapRegion* prev_last_region = NULL;
 786 
 787   // For each MemRegion, create filler objects, if needed, in the G1 regions
 788   // that contain the address range. The address range actually within the
 789   // MemRegion will not be modified. That is assumed to have been initialized
 790   // elsewhere, probably via an mmap of archived heap data.
 791   MutexLockerEx x(Heap_lock);
 792   for (size_t i = 0; i < count; i++) {
 793     HeapWord* start_address = ranges[i].start();
 794     HeapWord* last_address = ranges[i].last();
 795 
 796     assert(reserved.contains(start_address) && reserved.contains(last_address),
 797            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 798            p2i(start_address), p2i(last_address));
 799     assert(start_address > prev_last_addr,
 800            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 801            p2i(start_address), p2i(prev_last_addr));
 802 
 803     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 804     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 805     HeapWord* bottom_address = start_region->bottom();
 806 
 807     // Check for a range beginning in the same region in which the
 808     // previous one ended.
 809     if (start_region == prev_last_region) {
 810       bottom_address = prev_last_addr + 1;
 811     }
 812 
 813     // Verify that the regions were all marked as archive regions by
 814     // alloc_archive_regions.
 815     HeapRegion* curr_region = start_region;
 816     while (curr_region != NULL) {
 817       guarantee(curr_region->is_archive(),
 818                 "Expected archive region at index %u", curr_region->hrm_index());
 819       if (curr_region != last_region) {
 820         curr_region = _hrm.next_region_in_heap(curr_region);
 821       } else {
 822         curr_region = NULL;
 823       }
 824     }
 825 
 826     prev_last_addr = last_address;
 827     prev_last_region = last_region;
 828 
 829     // Fill the memory below the allocated range with dummy object(s),
 830     // if the region bottom does not match the range start, or if the previous
 831     // range ended within the same G1 region, and there is a gap.
 832     if (start_address != bottom_address) {
 833       size_t fill_size = pointer_delta(start_address, bottom_address);
 834       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 835       increase_used(fill_size * HeapWordSize);
 836     }
 837   }
 838 }
 839 
 840 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 841                                                      uint* gc_count_before_ret,
 842                                                      uint* gclocker_retry_count_ret) {
 843   assert_heap_not_locked_and_not_at_safepoint();
 844   assert(!is_humongous(word_size), "attempt_allocation() should not "
 845          "be called for humongous allocation requests");
 846 
 847   AllocationContext_t context = AllocationContext::current();
 848   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 849 
 850   if (result == NULL) {
 851     result = attempt_allocation_slow(word_size,
 852                                      context,
 853                                      gc_count_before_ret,
 854                                      gclocker_retry_count_ret);
 855   }
 856   assert_heap_not_locked();
 857   if (result != NULL) {
 858     dirty_young_block(result, word_size);
 859   }
 860   return result;
 861 }
 862 
 863 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 864   assert(!is_init_completed(), "Expect to be called at JVM init time");
 865   assert(ranges != NULL, "MemRegion array NULL");
 866   assert(count != 0, "No MemRegions provided");
 867   MemRegion reserved = _hrm.reserved();
 868   HeapWord* prev_last_addr = NULL;
 869   HeapRegion* prev_last_region = NULL;
 870   size_t size_used = 0;
 871   size_t uncommitted_regions = 0;
 872 
 873   // For each Memregion, free the G1 regions that constitute it, and
 874   // notify mark-sweep that the range is no longer to be considered 'archive.'
 875   MutexLockerEx x(Heap_lock);
 876   for (size_t i = 0; i < count; i++) {
 877     HeapWord* start_address = ranges[i].start();
 878     HeapWord* last_address = ranges[i].last();
 879 
 880     assert(reserved.contains(start_address) && reserved.contains(last_address),
 881            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 882            p2i(start_address), p2i(last_address));
 883     assert(start_address > prev_last_addr,
 884            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 885            p2i(start_address), p2i(prev_last_addr));
 886     size_used += ranges[i].byte_size();
 887     prev_last_addr = last_address;
 888 
 889     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 890     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 891 
 892     // Check for ranges that start in the same G1 region in which the previous
 893     // range ended, and adjust the start address so we don't try to free
 894     // the same region again. If the current range is entirely within that
 895     // region, skip it.
 896     if (start_region == prev_last_region) {
 897       start_address = start_region->end();
 898       if (start_address > last_address) {
 899         continue;
 900       }
 901       start_region = _hrm.addr_to_region(start_address);
 902     }
 903     prev_last_region = last_region;
 904 
 905     // After verifying that each region was marked as an archive region by
 906     // alloc_archive_regions, set it free and empty and uncommit it.
 907     HeapRegion* curr_region = start_region;
 908     while (curr_region != NULL) {
 909       guarantee(curr_region->is_archive(),
 910                 "Expected archive region at index %u", curr_region->hrm_index());
 911       uint curr_index = curr_region->hrm_index();
 912       _old_set.remove(curr_region);
 913       curr_region->set_free();
 914       curr_region->set_top(curr_region->bottom());
 915       if (curr_region != last_region) {
 916         curr_region = _hrm.next_region_in_heap(curr_region);
 917       } else {
 918         curr_region = NULL;
 919       }
 920       _hrm.shrink_at(curr_index, 1);
 921       uncommitted_regions++;
 922     }
 923 
 924     // Notify mark-sweep that this is no longer an archive range.
 925     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 926   }
 927 
 928   if (uncommitted_regions != 0) {
 929     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 930                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 931   }
 932   decrease_used(size_used);
 933 }
 934 
 935 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 936                                                         uint* gc_count_before_ret,
 937                                                         uint* gclocker_retry_count_ret) {
 938   // The structure of this method has a lot of similarities to
 939   // attempt_allocation_slow(). The reason these two were not merged
 940   // into a single one is that such a method would require several "if
 941   // allocation is not humongous do this, otherwise do that"
 942   // conditional paths which would obscure its flow. In fact, an early
 943   // version of this code did use a unified method which was harder to
 944   // follow and, as a result, it had subtle bugs that were hard to
 945   // track down. So keeping these two methods separate allows each to
 946   // be more readable. It will be good to keep these two in sync as
 947   // much as possible.
 948 
 949   assert_heap_not_locked_and_not_at_safepoint();
 950   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 951          "should only be called for humongous allocations");
 952 
 953   // Humongous objects can exhaust the heap quickly, so we should check if we
 954   // need to start a marking cycle at each humongous object allocation. We do
 955   // the check before we do the actual allocation. The reason for doing it
 956   // before the allocation is that we avoid having to keep track of the newly
 957   // allocated memory while we do a GC.
 958   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 959                                            word_size)) {
 960     collect(GCCause::_g1_humongous_allocation);
 961   }
 962 
 963   // We will loop until a) we manage to successfully perform the
 964   // allocation or b) we successfully schedule a collection which
 965   // fails to perform the allocation. b) is the only case when we'll
 966   // return NULL.
 967   HeapWord* result = NULL;
 968   for (int try_count = 1; /* we'll return */; try_count += 1) {
 969     bool should_try_gc;
 970     uint gc_count_before;
 971 
 972     {
 973       MutexLockerEx x(Heap_lock);
 974 
 975       // Given that humongous objects are not allocated in young
 976       // regions, we'll first try to do the allocation without doing a
 977       // collection hoping that there's enough space in the heap.
 978       result = humongous_obj_allocate(word_size, AllocationContext::current());
 979       if (result != NULL) {
 980         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 981         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 982         return result;
 983       }
 984 
 985       if (GCLocker::is_active_and_needs_gc()) {
 986         should_try_gc = false;
 987       } else {
 988          // The GCLocker may not be active but the GCLocker initiated
 989         // GC may not yet have been performed (GCLocker::needs_gc()
 990         // returns true). In this case we do not try this GC and
 991         // wait until the GCLocker initiated GC is performed, and
 992         // then retry the allocation.
 993         if (GCLocker::needs_gc()) {
 994           should_try_gc = false;
 995         } else {
 996           // Read the GC count while still holding the Heap_lock.
 997           gc_count_before = total_collections();
 998           should_try_gc = true;
 999         }
1000       }
1001     }
1002 
1003     if (should_try_gc) {
1004       // If we failed to allocate the humongous object, we should try to
1005       // do a collection pause (if we're allowed) in case it reclaims
1006       // enough space for the allocation to succeed after the pause.
1007 
1008       bool succeeded;
1009       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1010                                    GCCause::_g1_humongous_allocation);
1011       if (result != NULL) {
1012         assert(succeeded, "only way to get back a non-NULL result");
1013         return result;
1014       }
1015 
1016       if (succeeded) {
1017         // If we get here we successfully scheduled a collection which
1018         // failed to allocate. No point in trying to allocate
1019         // further. We'll just return NULL.
1020         MutexLockerEx x(Heap_lock);
1021         *gc_count_before_ret = total_collections();
1022         return NULL;
1023       }
1024     } else {
1025       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1026         MutexLockerEx x(Heap_lock);
1027         *gc_count_before_ret = total_collections();
1028         return NULL;
1029       }
1030       // The GCLocker is either active or the GCLocker initiated
1031       // GC has not yet been performed. Stall until it is and
1032       // then retry the allocation.
1033       GCLocker::stall_until_clear();
1034       (*gclocker_retry_count_ret) += 1;
1035     }
1036 
1037     // We can reach here if we were unsuccessful in scheduling a
1038     // collection (because another thread beat us to it) or if we were
1039     // stalled due to the GC locker. In either can we should retry the
1040     // allocation attempt in case another thread successfully
1041     // performed a collection and reclaimed enough space.  Give a
1042     // warning if we seem to be looping forever.
1043 
1044     if ((QueuedAllocationWarningCount > 0) &&
1045         (try_count % QueuedAllocationWarningCount == 0)) {
1046       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1047                       "retries %d times", try_count);
1048     }
1049   }
1050 
1051   ShouldNotReachHere();
1052   return NULL;
1053 }
1054 
1055 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1056                                                            AllocationContext_t context,
1057                                                            bool expect_null_mutator_alloc_region) {
1058   assert_at_safepoint(true /* should_be_vm_thread */);
1059   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1060          "the current alloc region was unexpectedly found to be non-NULL");
1061 
1062   if (!is_humongous(word_size)) {
1063     return _allocator->attempt_allocation_locked(word_size, context);
1064   } else {
1065     HeapWord* result = humongous_obj_allocate(word_size, context);
1066     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1067       collector_state()->set_initiate_conc_mark_if_possible(true);
1068     }
1069     return result;
1070   }
1071 
1072   ShouldNotReachHere();
1073 }
1074 
1075 class PostCompactionPrinterClosure: public HeapRegionClosure {
1076 private:
1077   G1HRPrinter* _hr_printer;
1078 public:
1079   bool doHeapRegion(HeapRegion* hr) {
1080     assert(!hr->is_young(), "not expecting to find young regions");
1081     _hr_printer->post_compaction(hr);
1082     return false;
1083   }
1084 
1085   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1086     : _hr_printer(hr_printer) { }
1087 };
1088 
1089 void G1CollectedHeap::print_hrm_post_compaction() {
1090   if (_hr_printer.is_active()) {
1091     PostCompactionPrinterClosure cl(hr_printer());
1092     heap_region_iterate(&cl);
1093   }
1094 
1095 }
1096 
1097 void G1CollectedHeap::abort_concurrent_cycle() {
1098   // Note: When we have a more flexible GC logging framework that
1099   // allows us to add optional attributes to a GC log record we
1100   // could consider timing and reporting how long we wait in the
1101   // following two methods.
1102   wait_while_free_regions_coming();
1103   // If we start the compaction before the CM threads finish
1104   // scanning the root regions we might trip them over as we'll
1105   // be moving objects / updating references. So let's wait until
1106   // they are done. By telling them to abort, they should complete
1107   // early.
1108   _cm->root_regions()->abort();
1109   _cm->root_regions()->wait_until_scan_finished();
1110   append_secondary_free_list_if_not_empty_with_lock();
1111 
1112   // Disable discovery and empty the discovered lists
1113   // for the CM ref processor.
1114   ref_processor_cm()->disable_discovery();
1115   ref_processor_cm()->abandon_partial_discovery();
1116   ref_processor_cm()->verify_no_references_recorded();
1117 
1118   // Abandon current iterations of concurrent marking and concurrent
1119   // refinement, if any are in progress.
1120   concurrent_mark()->abort();
1121 }
1122 
1123 void G1CollectedHeap::prepare_heap_for_full_collection() {
1124   // Make sure we'll choose a new allocation region afterwards.
1125   _allocator->release_mutator_alloc_region();
1126   _allocator->abandon_gc_alloc_regions();
1127   g1_rem_set()->cleanupHRRS();
1128 
1129   // We may have added regions to the current incremental collection
1130   // set between the last GC or pause and now. We need to clear the
1131   // incremental collection set and then start rebuilding it afresh
1132   // after this full GC.
1133   abandon_collection_set(collection_set());
1134 
1135   tear_down_region_sets(false /* free_list_only */);
1136   collector_state()->set_gcs_are_young(true);
1137 }
1138 
1139 void G1CollectedHeap::reset_card_cache_and_queue() {
1140   if (_hot_card_cache->use_cache()) {
1141     _hot_card_cache->reset_card_counts();
1142     _hot_card_cache->reset_hot_cache();
1143   }
1144 
1145   // Discard all stale remembered set updates.
1146   JavaThread::dirty_card_queue_set().abandon_logs();
1147   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1148 }
1149 
1150 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1151   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1152   assert(used() == recalculate_used(), "Should be equal");
1153   _verifier->verify_region_sets_optional();
1154   _verifier->verify_before_gc();
1155   _verifier->check_bitmaps("Full GC Start");
1156 }
1157 
1158 void G1CollectedHeap::verify_after_full_collection() {
1159   check_gc_time_stamps();
1160   _hrm.verify_optional();
1161   _verifier->verify_region_sets_optional();
1162   _verifier->verify_after_gc();
1163   // Clear the previous marking bitmap, if needed for bitmap verification.
1164   // Note we cannot do this when we clear the next marking bitmap in
1165   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1166   // objects marked during a full GC against the previous bitmap.
1167   // But we need to clear it before calling check_bitmaps below since
1168   // the full GC has compacted objects and updated TAMS but not updated
1169   // the prev bitmap.
1170   if (G1VerifyBitmaps) {
1171     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1172     _cm->clear_prev_bitmap(workers());
1173   }
1174   _verifier->check_bitmaps("Full GC End");
1175 
1176   // At this point there should be no regions in the
1177   // entire heap tagged as young.
1178   assert(check_young_list_empty(), "young list should be empty at this point");
1179 
1180   // Note: since we've just done a full GC, concurrent
1181   // marking is no longer active. Therefore we need not
1182   // re-enable reference discovery for the CM ref processor.
1183   // That will be done at the start of the next marking cycle.
1184   // We also know that the STW processor should no longer
1185   // discover any new references.
1186   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1187   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1188   ref_processor_stw()->verify_no_references_recorded();
1189   ref_processor_cm()->verify_no_references_recorded();
1190 }
1191 
1192 void G1CollectedHeap::do_full_collection_inner(G1FullGCScope* scope) {
1193   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1194   G1HeapTransition heap_transition(this);
1195   g1_policy()->record_full_collection_start();
1196 
1197   print_heap_before_gc();
1198   print_heap_regions();
1199 
1200   abort_concurrent_cycle();
1201   verify_before_full_collection(scope->is_explicit_gc());
1202 
1203   gc_prologue(true);
1204   prepare_heap_for_full_collection();
1205 
1206   G1SerialCollector serial(scope, ref_processor_stw());
1207   serial.prepare_collection();
1208   serial.collect();
1209   serial.complete_collection();
1210 
1211   assert(num_free_regions() == 0, "we should not have added any free regions");
1212   MemoryService::track_memory_usage();
1213 
1214   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1215   ClassLoaderDataGraph::purge();
1216   MetaspaceAux::verify_metrics();
1217 
1218   // Prepare heap for normal collections.
1219   rebuild_region_sets(false /* free_list_only */);
1220   reset_card_cache_and_queue();
1221   resize_if_necessary_after_full_collection();
1222 
1223   // Rebuild the strong code root lists for each region
1224   rebuild_strong_code_roots();
1225 
1226   // Start a new incremental collection set for the next pause
1227   start_new_collection_set();
1228 
1229   _allocator->init_mutator_alloc_region();
1230 
1231   // Post collection state updates.
1232   MetaspaceGC::compute_new_size();
1233   gc_epilogue(true);
1234   g1_policy()->record_full_collection_end();
1235 
1236   // Post collection verification.
1237   verify_after_full_collection();
1238 
1239   // Post collection logging.
1240   // We should do this after we potentially resize the heap so
1241   // that all the COMMIT / UNCOMMIT events are generated before
1242   // the compaction events.
1243   print_hrm_post_compaction();
1244   heap_transition.print();
1245   print_heap_after_gc();
1246   print_heap_regions();
1247 #ifdef TRACESPINNING
1248   ParallelTaskTerminator::print_termination_counts();
1249 #endif
1250 }
1251 
1252 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1253                                          bool clear_all_soft_refs) {
1254   assert_at_safepoint(true /* should_be_vm_thread */);
1255 
1256   if (GCLocker::check_active_before_gc()) {
1257     // Full GC was not completed.
1258     return false;
1259   }
1260 
1261   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1262       collector_policy()->should_clear_all_soft_refs();
1263 
1264   G1FullGCScope scope(explicit_gc, do_clear_all_soft_refs);
1265   do_full_collection_inner(&scope);
1266 
1267   // Full collection was successfully completed.
1268   return true;
1269 }
1270 
1271 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1272   // Currently, there is no facility in the do_full_collection(bool) API to notify
1273   // the caller that the collection did not succeed (e.g., because it was locked
1274   // out by the GC locker). So, right now, we'll ignore the return value.
1275   bool dummy = do_full_collection(true,                /* explicit_gc */
1276                                   clear_all_soft_refs);
1277 }
1278 
1279 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1280   // Include bytes that will be pre-allocated to support collections, as "used".
1281   const size_t used_after_gc = used();
1282   const size_t capacity_after_gc = capacity();
1283   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1284 
1285   // This is enforced in arguments.cpp.
1286   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1287          "otherwise the code below doesn't make sense");
1288 
1289   // We don't have floating point command-line arguments
1290   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1291   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1292   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1293   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1294 
1295   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1296   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1297 
1298   // We have to be careful here as these two calculations can overflow
1299   // 32-bit size_t's.
1300   double used_after_gc_d = (double) used_after_gc;
1301   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1302   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1303 
1304   // Let's make sure that they are both under the max heap size, which
1305   // by default will make them fit into a size_t.
1306   double desired_capacity_upper_bound = (double) max_heap_size;
1307   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1308                                     desired_capacity_upper_bound);
1309   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1310                                     desired_capacity_upper_bound);
1311 
1312   // We can now safely turn them into size_t's.
1313   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1314   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1315 
1316   // This assert only makes sense here, before we adjust them
1317   // with respect to the min and max heap size.
1318   assert(minimum_desired_capacity <= maximum_desired_capacity,
1319          "minimum_desired_capacity = " SIZE_FORMAT ", "
1320          "maximum_desired_capacity = " SIZE_FORMAT,
1321          minimum_desired_capacity, maximum_desired_capacity);
1322 
1323   // Should not be greater than the heap max size. No need to adjust
1324   // it with respect to the heap min size as it's a lower bound (i.e.,
1325   // we'll try to make the capacity larger than it, not smaller).
1326   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1327   // Should not be less than the heap min size. No need to adjust it
1328   // with respect to the heap max size as it's an upper bound (i.e.,
1329   // we'll try to make the capacity smaller than it, not greater).
1330   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1331 
1332   if (capacity_after_gc < minimum_desired_capacity) {
1333     // Don't expand unless it's significant
1334     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1335 
1336     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1337                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1338                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1339 
1340     expand(expand_bytes, _workers);
1341 
1342     // No expansion, now see if we want to shrink
1343   } else if (capacity_after_gc > maximum_desired_capacity) {
1344     // Capacity too large, compute shrinking size
1345     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1346 
1347     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1348                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1349                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1350 
1351     shrink(shrink_bytes);
1352   }
1353 }
1354 
1355 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1356                                                             AllocationContext_t context,
1357                                                             bool do_gc,
1358                                                             bool clear_all_soft_refs,
1359                                                             bool expect_null_mutator_alloc_region,
1360                                                             bool* gc_succeeded) {
1361   *gc_succeeded = true;
1362   // Let's attempt the allocation first.
1363   HeapWord* result =
1364     attempt_allocation_at_safepoint(word_size,
1365                                     context,
1366                                     expect_null_mutator_alloc_region);
1367   if (result != NULL) {
1368     assert(*gc_succeeded, "sanity");
1369     return result;
1370   }
1371 
1372   // In a G1 heap, we're supposed to keep allocation from failing by
1373   // incremental pauses.  Therefore, at least for now, we'll favor
1374   // expansion over collection.  (This might change in the future if we can
1375   // do something smarter than full collection to satisfy a failed alloc.)
1376   result = expand_and_allocate(word_size, context);
1377   if (result != NULL) {
1378     assert(*gc_succeeded, "sanity");
1379     return result;
1380   }
1381 
1382   if (do_gc) {
1383     // Expansion didn't work, we'll try to do a Full GC.
1384     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1385                                        clear_all_soft_refs);
1386   }
1387 
1388   return NULL;
1389 }
1390 
1391 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1392                                                      AllocationContext_t context,
1393                                                      bool* succeeded) {
1394   assert_at_safepoint(true /* should_be_vm_thread */);
1395 
1396   // Attempts to allocate followed by Full GC.
1397   HeapWord* result =
1398     satisfy_failed_allocation_helper(word_size,
1399                                      context,
1400                                      true,  /* do_gc */
1401                                      false, /* clear_all_soft_refs */
1402                                      false, /* expect_null_mutator_alloc_region */
1403                                      succeeded);
1404 
1405   if (result != NULL || !*succeeded) {
1406     return result;
1407   }
1408 
1409   // Attempts to allocate followed by Full GC that will collect all soft references.
1410   result = satisfy_failed_allocation_helper(word_size,
1411                                             context,
1412                                             true, /* do_gc */
1413                                             true, /* clear_all_soft_refs */
1414                                             true, /* expect_null_mutator_alloc_region */
1415                                             succeeded);
1416 
1417   if (result != NULL || !*succeeded) {
1418     return result;
1419   }
1420 
1421   // Attempts to allocate, no GC
1422   result = satisfy_failed_allocation_helper(word_size,
1423                                             context,
1424                                             false, /* do_gc */
1425                                             false, /* clear_all_soft_refs */
1426                                             true,  /* expect_null_mutator_alloc_region */
1427                                             succeeded);
1428 
1429   if (result != NULL) {
1430     assert(*succeeded, "sanity");
1431     return result;
1432   }
1433 
1434   assert(!collector_policy()->should_clear_all_soft_refs(),
1435          "Flag should have been handled and cleared prior to this point");
1436 
1437   // What else?  We might try synchronous finalization later.  If the total
1438   // space available is large enough for the allocation, then a more
1439   // complete compaction phase than we've tried so far might be
1440   // appropriate.
1441   assert(*succeeded, "sanity");
1442   return NULL;
1443 }
1444 
1445 // Attempting to expand the heap sufficiently
1446 // to support an allocation of the given "word_size".  If
1447 // successful, perform the allocation and return the address of the
1448 // allocated block, or else "NULL".
1449 
1450 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1451   assert_at_safepoint(true /* should_be_vm_thread */);
1452 
1453   _verifier->verify_region_sets_optional();
1454 
1455   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1456   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1457                             word_size * HeapWordSize);
1458 
1459 
1460   if (expand(expand_bytes, _workers)) {
1461     _hrm.verify_optional();
1462     _verifier->verify_region_sets_optional();
1463     return attempt_allocation_at_safepoint(word_size,
1464                                            context,
1465                                            false /* expect_null_mutator_alloc_region */);
1466   }
1467   return NULL;
1468 }
1469 
1470 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1471   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1472   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1473                                        HeapRegion::GrainBytes);
1474 
1475   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1476                             expand_bytes, aligned_expand_bytes);
1477 
1478   if (is_maximal_no_gc()) {
1479     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1480     return false;
1481   }
1482 
1483   double expand_heap_start_time_sec = os::elapsedTime();
1484   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1485   assert(regions_to_expand > 0, "Must expand by at least one region");
1486 
1487   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1488   if (expand_time_ms != NULL) {
1489     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1490   }
1491 
1492   if (expanded_by > 0) {
1493     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1494     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1495     g1_policy()->record_new_heap_size(num_regions());
1496   } else {
1497     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1498 
1499     // The expansion of the virtual storage space was unsuccessful.
1500     // Let's see if it was because we ran out of swap.
1501     if (G1ExitOnExpansionFailure &&
1502         _hrm.available() >= regions_to_expand) {
1503       // We had head room...
1504       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1505     }
1506   }
1507   return regions_to_expand > 0;
1508 }
1509 
1510 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1511   size_t aligned_shrink_bytes =
1512     ReservedSpace::page_align_size_down(shrink_bytes);
1513   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1514                                          HeapRegion::GrainBytes);
1515   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1516 
1517   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1518   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1519 
1520 
1521   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1522                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1523   if (num_regions_removed > 0) {
1524     g1_policy()->record_new_heap_size(num_regions());
1525   } else {
1526     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1527   }
1528 }
1529 
1530 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1531   _verifier->verify_region_sets_optional();
1532 
1533   // We should only reach here at the end of a Full GC which means we
1534   // should not not be holding to any GC alloc regions. The method
1535   // below will make sure of that and do any remaining clean up.
1536   _allocator->abandon_gc_alloc_regions();
1537 
1538   // Instead of tearing down / rebuilding the free lists here, we
1539   // could instead use the remove_all_pending() method on free_list to
1540   // remove only the ones that we need to remove.
1541   tear_down_region_sets(true /* free_list_only */);
1542   shrink_helper(shrink_bytes);
1543   rebuild_region_sets(true /* free_list_only */);
1544 
1545   _hrm.verify_optional();
1546   _verifier->verify_region_sets_optional();
1547 }
1548 
1549 // Public methods.
1550 
1551 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1552   CollectedHeap(),
1553   _collector_policy(collector_policy),
1554   _g1_policy(create_g1_policy()),
1555   _collection_set(this, _g1_policy),
1556   _dirty_card_queue_set(false),
1557   _is_alive_closure_cm(this),
1558   _is_alive_closure_stw(this),
1559   _ref_processor_cm(NULL),
1560   _ref_processor_stw(NULL),
1561   _bot(NULL),
1562   _hot_card_cache(NULL),
1563   _g1_rem_set(NULL),
1564   _cg1r(NULL),
1565   _g1mm(NULL),
1566   _refine_cte_cl(NULL),
1567   _preserved_marks_set(true /* in_c_heap */),
1568   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1569   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1570   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1571   _humongous_reclaim_candidates(),
1572   _has_humongous_reclaim_candidates(false),
1573   _archive_allocator(NULL),
1574   _free_regions_coming(false),
1575   _gc_time_stamp(0),
1576   _summary_bytes_used(0),
1577   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1578   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1579   _expand_heap_after_alloc_failure(true),
1580   _old_marking_cycles_started(0),
1581   _old_marking_cycles_completed(0),
1582   _in_cset_fast_test(),
1583   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1584   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1585 
1586   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1587                           /* are_GC_task_threads */true,
1588                           /* are_ConcurrentGC_threads */false);
1589   _workers->initialize_workers();
1590   _verifier = new G1HeapVerifier(this);
1591 
1592   _allocator = G1Allocator::create_allocator(this);
1593 
1594   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1595 
1596   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1597 
1598   // Override the default _filler_array_max_size so that no humongous filler
1599   // objects are created.
1600   _filler_array_max_size = _humongous_object_threshold_in_words;
1601 
1602   uint n_queues = ParallelGCThreads;
1603   _task_queues = new RefToScanQueueSet(n_queues);
1604 
1605   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1606 
1607   for (uint i = 0; i < n_queues; i++) {
1608     RefToScanQueue* q = new RefToScanQueue();
1609     q->initialize();
1610     _task_queues->register_queue(i, q);
1611     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1612   }
1613 
1614   // Initialize the G1EvacuationFailureALot counters and flags.
1615   NOT_PRODUCT(reset_evacuation_should_fail();)
1616 
1617   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1618 }
1619 
1620 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1621                                                                  size_t size,
1622                                                                  size_t translation_factor) {
1623   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1624   // Allocate a new reserved space, preferring to use large pages.
1625   ReservedSpace rs(size, preferred_page_size);
1626   G1RegionToSpaceMapper* result  =
1627     G1RegionToSpaceMapper::create_mapper(rs,
1628                                          size,
1629                                          rs.alignment(),
1630                                          HeapRegion::GrainBytes,
1631                                          translation_factor,
1632                                          mtGC);
1633 
1634   os::trace_page_sizes_for_requested_size(description,
1635                                           size,
1636                                           preferred_page_size,
1637                                           rs.alignment(),
1638                                           rs.base(),
1639                                           rs.size());
1640 
1641   return result;
1642 }
1643 
1644 jint G1CollectedHeap::initialize() {
1645   CollectedHeap::pre_initialize();
1646   os::enable_vtime();
1647 
1648   // Necessary to satisfy locking discipline assertions.
1649 
1650   MutexLocker x(Heap_lock);
1651 
1652   // While there are no constraints in the GC code that HeapWordSize
1653   // be any particular value, there are multiple other areas in the
1654   // system which believe this to be true (e.g. oop->object_size in some
1655   // cases incorrectly returns the size in wordSize units rather than
1656   // HeapWordSize).
1657   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1658 
1659   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1660   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1661   size_t heap_alignment = collector_policy()->heap_alignment();
1662 
1663   // Ensure that the sizes are properly aligned.
1664   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1665   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1666   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1667 
1668   _refine_cte_cl = new RefineCardTableEntryClosure();
1669 
1670   jint ecode = JNI_OK;
1671   _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode);
1672   if (_cg1r == NULL) {
1673     return ecode;
1674   }
1675 
1676   // Reserve the maximum.
1677 
1678   // When compressed oops are enabled, the preferred heap base
1679   // is calculated by subtracting the requested size from the
1680   // 32Gb boundary and using the result as the base address for
1681   // heap reservation. If the requested size is not aligned to
1682   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1683   // into the ReservedHeapSpace constructor) then the actual
1684   // base of the reserved heap may end up differing from the
1685   // address that was requested (i.e. the preferred heap base).
1686   // If this happens then we could end up using a non-optimal
1687   // compressed oops mode.
1688 
1689   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1690                                                  heap_alignment);
1691 
1692   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1693 
1694   // Create the barrier set for the entire reserved region.
1695   G1SATBCardTableLoggingModRefBS* bs
1696     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1697   bs->initialize();
1698   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1699   set_barrier_set(bs);
1700 
1701   // Create the hot card cache.
1702   _hot_card_cache = new G1HotCardCache(this);
1703 
1704   // Also create a G1 rem set.
1705   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1706 
1707   // Carve out the G1 part of the heap.
1708   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1709   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1710   G1RegionToSpaceMapper* heap_storage =
1711     G1RegionToSpaceMapper::create_mapper(g1_rs,
1712                                          g1_rs.size(),
1713                                          page_size,
1714                                          HeapRegion::GrainBytes,
1715                                          1,
1716                                          mtJavaHeap);
1717   os::trace_page_sizes("Heap",
1718                        collector_policy()->min_heap_byte_size(),
1719                        max_byte_size,
1720                        page_size,
1721                        heap_rs.base(),
1722                        heap_rs.size());
1723   heap_storage->set_mapping_changed_listener(&_listener);
1724 
1725   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1726   G1RegionToSpaceMapper* bot_storage =
1727     create_aux_memory_mapper("Block Offset Table",
1728                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1729                              G1BlockOffsetTable::heap_map_factor());
1730 
1731   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1732   G1RegionToSpaceMapper* cardtable_storage =
1733     create_aux_memory_mapper("Card Table",
1734                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1735                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1736 
1737   G1RegionToSpaceMapper* card_counts_storage =
1738     create_aux_memory_mapper("Card Counts Table",
1739                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1740                              G1CardCounts::heap_map_factor());
1741 
1742   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1743   G1RegionToSpaceMapper* prev_bitmap_storage =
1744     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1745   G1RegionToSpaceMapper* next_bitmap_storage =
1746     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1747 
1748   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1749   g1_barrier_set()->initialize(cardtable_storage);
1750   // Do later initialization work for concurrent refinement.
1751   _hot_card_cache->initialize(card_counts_storage);
1752 
1753   // 6843694 - ensure that the maximum region index can fit
1754   // in the remembered set structures.
1755   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1756   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1757 
1758   g1_rem_set()->initialize(max_capacity(), max_regions());
1759 
1760   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1761   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1762   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1763             "too many cards per region");
1764 
1765   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1766 
1767   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1768 
1769   {
1770     HeapWord* start = _hrm.reserved().start();
1771     HeapWord* end = _hrm.reserved().end();
1772     size_t granularity = HeapRegion::GrainBytes;
1773 
1774     _in_cset_fast_test.initialize(start, end, granularity);
1775     _humongous_reclaim_candidates.initialize(start, end, granularity);
1776   }
1777 
1778   // Create the G1ConcurrentMark data structure and thread.
1779   // (Must do this late, so that "max_regions" is defined.)
1780   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1781   if (_cm == NULL || !_cm->completed_initialization()) {
1782     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1783     return JNI_ENOMEM;
1784   }
1785   _cmThread = _cm->cmThread();
1786 
1787   // Now expand into the initial heap size.
1788   if (!expand(init_byte_size, _workers)) {
1789     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1790     return JNI_ENOMEM;
1791   }
1792 
1793   // Perform any initialization actions delegated to the policy.
1794   g1_policy()->init(this, &_collection_set);
1795 
1796   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1797                                                SATB_Q_FL_lock,
1798                                                G1SATBProcessCompletedThreshold,
1799                                                Shared_SATB_Q_lock);
1800 
1801   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1802                                                 DirtyCardQ_CBL_mon,
1803                                                 DirtyCardQ_FL_lock,
1804                                                 (int)concurrent_g1_refine()->yellow_zone(),
1805                                                 (int)concurrent_g1_refine()->red_zone(),
1806                                                 Shared_DirtyCardQ_lock,
1807                                                 NULL,  // fl_owner
1808                                                 true); // init_free_ids
1809 
1810   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1811                                     DirtyCardQ_CBL_mon,
1812                                     DirtyCardQ_FL_lock,
1813                                     -1, // never trigger processing
1814                                     -1, // no limit on length
1815                                     Shared_DirtyCardQ_lock,
1816                                     &JavaThread::dirty_card_queue_set());
1817 
1818   // Here we allocate the dummy HeapRegion that is required by the
1819   // G1AllocRegion class.
1820   HeapRegion* dummy_region = _hrm.get_dummy_region();
1821 
1822   // We'll re-use the same region whether the alloc region will
1823   // require BOT updates or not and, if it doesn't, then a non-young
1824   // region will complain that it cannot support allocations without
1825   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1826   dummy_region->set_eden();
1827   // Make sure it's full.
1828   dummy_region->set_top(dummy_region->end());
1829   G1AllocRegion::setup(this, dummy_region);
1830 
1831   _allocator->init_mutator_alloc_region();
1832 
1833   // Do create of the monitoring and management support so that
1834   // values in the heap have been properly initialized.
1835   _g1mm = new G1MonitoringSupport(this);
1836 
1837   G1StringDedup::initialize();
1838 
1839   _preserved_marks_set.init(ParallelGCThreads);
1840 
1841   _collection_set.initialize(max_regions());
1842 
1843   return JNI_OK;
1844 }
1845 
1846 void G1CollectedHeap::stop() {
1847   // Stop all concurrent threads. We do this to make sure these threads
1848   // do not continue to execute and access resources (e.g. logging)
1849   // that are destroyed during shutdown.
1850   _cg1r->stop();
1851   _cmThread->stop();
1852   if (G1StringDedup::is_enabled()) {
1853     G1StringDedup::stop();
1854   }
1855 }
1856 
1857 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1858   return HeapRegion::max_region_size();
1859 }
1860 
1861 void G1CollectedHeap::post_initialize() {
1862   ref_processing_init();
1863 }
1864 
1865 void G1CollectedHeap::ref_processing_init() {
1866   // Reference processing in G1 currently works as follows:
1867   //
1868   // * There are two reference processor instances. One is
1869   //   used to record and process discovered references
1870   //   during concurrent marking; the other is used to
1871   //   record and process references during STW pauses
1872   //   (both full and incremental).
1873   // * Both ref processors need to 'span' the entire heap as
1874   //   the regions in the collection set may be dotted around.
1875   //
1876   // * For the concurrent marking ref processor:
1877   //   * Reference discovery is enabled at initial marking.
1878   //   * Reference discovery is disabled and the discovered
1879   //     references processed etc during remarking.
1880   //   * Reference discovery is MT (see below).
1881   //   * Reference discovery requires a barrier (see below).
1882   //   * Reference processing may or may not be MT
1883   //     (depending on the value of ParallelRefProcEnabled
1884   //     and ParallelGCThreads).
1885   //   * A full GC disables reference discovery by the CM
1886   //     ref processor and abandons any entries on it's
1887   //     discovered lists.
1888   //
1889   // * For the STW processor:
1890   //   * Non MT discovery is enabled at the start of a full GC.
1891   //   * Processing and enqueueing during a full GC is non-MT.
1892   //   * During a full GC, references are processed after marking.
1893   //
1894   //   * Discovery (may or may not be MT) is enabled at the start
1895   //     of an incremental evacuation pause.
1896   //   * References are processed near the end of a STW evacuation pause.
1897   //   * For both types of GC:
1898   //     * Discovery is atomic - i.e. not concurrent.
1899   //     * Reference discovery will not need a barrier.
1900 
1901   MemRegion mr = reserved_region();
1902 
1903   // Concurrent Mark ref processor
1904   _ref_processor_cm =
1905     new ReferenceProcessor(mr,    // span
1906                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
1907                                 // mt processing
1908                            ParallelGCThreads,
1909                                 // degree of mt processing
1910                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1911                                 // mt discovery
1912                            MAX2(ParallelGCThreads, ConcGCThreads),
1913                                 // degree of mt discovery
1914                            false,
1915                                 // Reference discovery is not atomic
1916                            &_is_alive_closure_cm);
1917                                 // is alive closure
1918                                 // (for efficiency/performance)
1919 
1920   // STW ref processor
1921   _ref_processor_stw =
1922     new ReferenceProcessor(mr,    // span
1923                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
1924                                 // mt processing
1925                            ParallelGCThreads,
1926                                 // degree of mt processing
1927                            (ParallelGCThreads > 1),
1928                                 // mt discovery
1929                            ParallelGCThreads,
1930                                 // degree of mt discovery
1931                            true,
1932                                 // Reference discovery is atomic
1933                            &_is_alive_closure_stw);
1934                                 // is alive closure
1935                                 // (for efficiency/performance)
1936 }
1937 
1938 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1939   return _collector_policy;
1940 }
1941 
1942 size_t G1CollectedHeap::capacity() const {
1943   return _hrm.length() * HeapRegion::GrainBytes;
1944 }
1945 
1946 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
1947   hr->reset_gc_time_stamp();
1948 }
1949 
1950 #ifndef PRODUCT
1951 
1952 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
1953 private:
1954   unsigned _gc_time_stamp;
1955   bool _failures;
1956 
1957 public:
1958   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
1959     _gc_time_stamp(gc_time_stamp), _failures(false) { }
1960 
1961   virtual bool doHeapRegion(HeapRegion* hr) {
1962     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
1963     if (_gc_time_stamp != region_gc_time_stamp) {
1964       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
1965                             region_gc_time_stamp, _gc_time_stamp);
1966       _failures = true;
1967     }
1968     return false;
1969   }
1970 
1971   bool failures() { return _failures; }
1972 };
1973 
1974 void G1CollectedHeap::check_gc_time_stamps() {
1975   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
1976   heap_region_iterate(&cl);
1977   guarantee(!cl.failures(), "all GC time stamps should have been reset");
1978 }
1979 #endif // PRODUCT
1980 
1981 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1982   _hot_card_cache->drain(cl, worker_i);
1983 }
1984 
1985 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1986   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1987   size_t n_completed_buffers = 0;
1988   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
1989     n_completed_buffers++;
1990   }
1991   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
1992   dcqs.clear_n_completed_buffers();
1993   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1994 }
1995 
1996 // Computes the sum of the storage used by the various regions.
1997 size_t G1CollectedHeap::used() const {
1998   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1999   if (_archive_allocator != NULL) {
2000     result += _archive_allocator->used();
2001   }
2002   return result;
2003 }
2004 
2005 size_t G1CollectedHeap::used_unlocked() const {
2006   return _summary_bytes_used;
2007 }
2008 
2009 class SumUsedClosure: public HeapRegionClosure {
2010   size_t _used;
2011 public:
2012   SumUsedClosure() : _used(0) {}
2013   bool doHeapRegion(HeapRegion* r) {
2014     _used += r->used();
2015     return false;
2016   }
2017   size_t result() { return _used; }
2018 };
2019 
2020 size_t G1CollectedHeap::recalculate_used() const {
2021   double recalculate_used_start = os::elapsedTime();
2022 
2023   SumUsedClosure blk;
2024   heap_region_iterate(&blk);
2025 
2026   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2027   return blk.result();
2028 }
2029 
2030 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2031   switch (cause) {
2032     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2033     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2034     case GCCause::_update_allocation_context_stats_inc: return true;
2035     case GCCause::_wb_conc_mark:                        return true;
2036     default :                                           return false;
2037   }
2038 }
2039 
2040 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2041   switch (cause) {
2042     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2043     case GCCause::_g1_humongous_allocation: return true;
2044     default:                                return is_user_requested_concurrent_full_gc(cause);
2045   }
2046 }
2047 
2048 #ifndef PRODUCT
2049 void G1CollectedHeap::allocate_dummy_regions() {
2050   // Let's fill up most of the region
2051   size_t word_size = HeapRegion::GrainWords - 1024;
2052   // And as a result the region we'll allocate will be humongous.
2053   guarantee(is_humongous(word_size), "sanity");
2054 
2055   // _filler_array_max_size is set to humongous object threshold
2056   // but temporarily change it to use CollectedHeap::fill_with_object().
2057   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2058 
2059   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2060     // Let's use the existing mechanism for the allocation
2061     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2062                                                  AllocationContext::system());
2063     if (dummy_obj != NULL) {
2064       MemRegion mr(dummy_obj, word_size);
2065       CollectedHeap::fill_with_object(mr);
2066     } else {
2067       // If we can't allocate once, we probably cannot allocate
2068       // again. Let's get out of the loop.
2069       break;
2070     }
2071   }
2072 }
2073 #endif // !PRODUCT
2074 
2075 void G1CollectedHeap::increment_old_marking_cycles_started() {
2076   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2077          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2078          "Wrong marking cycle count (started: %d, completed: %d)",
2079          _old_marking_cycles_started, _old_marking_cycles_completed);
2080 
2081   _old_marking_cycles_started++;
2082 }
2083 
2084 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2085   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2086 
2087   // We assume that if concurrent == true, then the caller is a
2088   // concurrent thread that was joined the Suspendible Thread
2089   // Set. If there's ever a cheap way to check this, we should add an
2090   // assert here.
2091 
2092   // Given that this method is called at the end of a Full GC or of a
2093   // concurrent cycle, and those can be nested (i.e., a Full GC can
2094   // interrupt a concurrent cycle), the number of full collections
2095   // completed should be either one (in the case where there was no
2096   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2097   // behind the number of full collections started.
2098 
2099   // This is the case for the inner caller, i.e. a Full GC.
2100   assert(concurrent ||
2101          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2102          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2103          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2104          "is inconsistent with _old_marking_cycles_completed = %u",
2105          _old_marking_cycles_started, _old_marking_cycles_completed);
2106 
2107   // This is the case for the outer caller, i.e. the concurrent cycle.
2108   assert(!concurrent ||
2109          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2110          "for outer caller (concurrent cycle): "
2111          "_old_marking_cycles_started = %u "
2112          "is inconsistent with _old_marking_cycles_completed = %u",
2113          _old_marking_cycles_started, _old_marking_cycles_completed);
2114 
2115   _old_marking_cycles_completed += 1;
2116 
2117   // We need to clear the "in_progress" flag in the CM thread before
2118   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2119   // is set) so that if a waiter requests another System.gc() it doesn't
2120   // incorrectly see that a marking cycle is still in progress.
2121   if (concurrent) {
2122     _cmThread->set_idle();
2123   }
2124 
2125   // This notify_all() will ensure that a thread that called
2126   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2127   // and it's waiting for a full GC to finish will be woken up. It is
2128   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2129   FullGCCount_lock->notify_all();
2130 }
2131 
2132 void G1CollectedHeap::collect(GCCause::Cause cause) {
2133   assert_heap_not_locked();
2134 
2135   uint gc_count_before;
2136   uint old_marking_count_before;
2137   uint full_gc_count_before;
2138   bool retry_gc;
2139 
2140   do {
2141     retry_gc = false;
2142 
2143     {
2144       MutexLocker ml(Heap_lock);
2145 
2146       // Read the GC count while holding the Heap_lock
2147       gc_count_before = total_collections();
2148       full_gc_count_before = total_full_collections();
2149       old_marking_count_before = _old_marking_cycles_started;
2150     }
2151 
2152     if (should_do_concurrent_full_gc(cause)) {
2153       // Schedule an initial-mark evacuation pause that will start a
2154       // concurrent cycle. We're setting word_size to 0 which means that
2155       // we are not requesting a post-GC allocation.
2156       VM_G1IncCollectionPause op(gc_count_before,
2157                                  0,     /* word_size */
2158                                  true,  /* should_initiate_conc_mark */
2159                                  g1_policy()->max_pause_time_ms(),
2160                                  cause);
2161       op.set_allocation_context(AllocationContext::current());
2162 
2163       VMThread::execute(&op);
2164       if (!op.pause_succeeded()) {
2165         if (old_marking_count_before == _old_marking_cycles_started) {
2166           retry_gc = op.should_retry_gc();
2167         } else {
2168           // A Full GC happened while we were trying to schedule the
2169           // initial-mark GC. No point in starting a new cycle given
2170           // that the whole heap was collected anyway.
2171         }
2172 
2173         if (retry_gc) {
2174           if (GCLocker::is_active_and_needs_gc()) {
2175             GCLocker::stall_until_clear();
2176           }
2177         }
2178       }
2179     } else {
2180       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2181           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2182 
2183         // Schedule a standard evacuation pause. We're setting word_size
2184         // to 0 which means that we are not requesting a post-GC allocation.
2185         VM_G1IncCollectionPause op(gc_count_before,
2186                                    0,     /* word_size */
2187                                    false, /* should_initiate_conc_mark */
2188                                    g1_policy()->max_pause_time_ms(),
2189                                    cause);
2190         VMThread::execute(&op);
2191       } else {
2192         // Schedule a Full GC.
2193         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2194         VMThread::execute(&op);
2195       }
2196     }
2197   } while (retry_gc);
2198 }
2199 
2200 bool G1CollectedHeap::is_in(const void* p) const {
2201   if (_hrm.reserved().contains(p)) {
2202     // Given that we know that p is in the reserved space,
2203     // heap_region_containing() should successfully
2204     // return the containing region.
2205     HeapRegion* hr = heap_region_containing(p);
2206     return hr->is_in(p);
2207   } else {
2208     return false;
2209   }
2210 }
2211 
2212 #ifdef ASSERT
2213 bool G1CollectedHeap::is_in_exact(const void* p) const {
2214   bool contains = reserved_region().contains(p);
2215   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2216   if (contains && available) {
2217     return true;
2218   } else {
2219     return false;
2220   }
2221 }
2222 #endif
2223 
2224 // Iteration functions.
2225 
2226 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2227 
2228 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2229   ExtendedOopClosure* _cl;
2230 public:
2231   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2232   bool doHeapRegion(HeapRegion* r) {
2233     if (!r->is_continues_humongous()) {
2234       r->oop_iterate(_cl);
2235     }
2236     return false;
2237   }
2238 };
2239 
2240 // Iterates an ObjectClosure over all objects within a HeapRegion.
2241 
2242 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2243   ObjectClosure* _cl;
2244 public:
2245   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2246   bool doHeapRegion(HeapRegion* r) {
2247     if (!r->is_continues_humongous()) {
2248       r->object_iterate(_cl);
2249     }
2250     return false;
2251   }
2252 };
2253 
2254 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2255   IterateObjectClosureRegionClosure blk(cl);
2256   heap_region_iterate(&blk);
2257 }
2258 
2259 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2260   _hrm.iterate(cl);
2261 }
2262 
2263 void
2264 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2265                                          uint worker_id,
2266                                          HeapRegionClaimer *hrclaimer,
2267                                          bool concurrent) const {
2268   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2269 }
2270 
2271 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2272   _collection_set.iterate(cl);
2273 }
2274 
2275 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2276   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2277 }
2278 
2279 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2280   HeapRegion* result = _hrm.next_region_in_heap(from);
2281   while (result != NULL && result->is_pinned()) {
2282     result = _hrm.next_region_in_heap(result);
2283   }
2284   return result;
2285 }
2286 
2287 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2288   HeapRegion* hr = heap_region_containing(addr);
2289   return hr->block_start(addr);
2290 }
2291 
2292 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2293   HeapRegion* hr = heap_region_containing(addr);
2294   return hr->block_size(addr);
2295 }
2296 
2297 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2298   HeapRegion* hr = heap_region_containing(addr);
2299   return hr->block_is_obj(addr);
2300 }
2301 
2302 bool G1CollectedHeap::supports_tlab_allocation() const {
2303   return true;
2304 }
2305 
2306 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2307   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2308 }
2309 
2310 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2311   return _eden.length() * HeapRegion::GrainBytes;
2312 }
2313 
2314 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2315 // must be equal to the humongous object limit.
2316 size_t G1CollectedHeap::max_tlab_size() const {
2317   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2318 }
2319 
2320 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2321   AllocationContext_t context = AllocationContext::current();
2322   return _allocator->unsafe_max_tlab_alloc(context);
2323 }
2324 
2325 size_t G1CollectedHeap::max_capacity() const {
2326   return _hrm.reserved().byte_size();
2327 }
2328 
2329 jlong G1CollectedHeap::millis_since_last_gc() {
2330   // See the notes in GenCollectedHeap::millis_since_last_gc()
2331   // for more information about the implementation.
2332   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2333     _g1_policy->collection_pause_end_millis();
2334   if (ret_val < 0) {
2335     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2336       ". returning zero instead.", ret_val);
2337     return 0;
2338   }
2339   return ret_val;
2340 }
2341 
2342 void G1CollectedHeap::prepare_for_verify() {
2343   _verifier->prepare_for_verify();
2344 }
2345 
2346 void G1CollectedHeap::verify(VerifyOption vo) {
2347   _verifier->verify(vo);
2348 }
2349 
2350 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2351   return true;
2352 }
2353 
2354 const char* const* G1CollectedHeap::concurrent_phases() const {
2355   return _cmThread->concurrent_phases();
2356 }
2357 
2358 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2359   return _cmThread->request_concurrent_phase(phase);
2360 }
2361 
2362 class PrintRegionClosure: public HeapRegionClosure {
2363   outputStream* _st;
2364 public:
2365   PrintRegionClosure(outputStream* st) : _st(st) {}
2366   bool doHeapRegion(HeapRegion* r) {
2367     r->print_on(_st);
2368     return false;
2369   }
2370 };
2371 
2372 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2373                                        const HeapRegion* hr,
2374                                        const VerifyOption vo) const {
2375   switch (vo) {
2376   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2377   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2378   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2379   default:                            ShouldNotReachHere();
2380   }
2381   return false; // keep some compilers happy
2382 }
2383 
2384 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2385                                        const VerifyOption vo) const {
2386   switch (vo) {
2387   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2388   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2389   case VerifyOption_G1UseMarkWord: {
2390     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2391     return !obj->is_gc_marked() && !hr->is_archive();
2392   }
2393   default:                            ShouldNotReachHere();
2394   }
2395   return false; // keep some compilers happy
2396 }
2397 
2398 void G1CollectedHeap::print_heap_regions() const {
2399   Log(gc, heap, region) log;
2400   if (log.is_trace()) {
2401     ResourceMark rm;
2402     print_regions_on(log.trace_stream());
2403   }
2404 }
2405 
2406 void G1CollectedHeap::print_on(outputStream* st) const {
2407   st->print(" %-20s", "garbage-first heap");
2408   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2409             capacity()/K, used_unlocked()/K);
2410   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2411             p2i(_hrm.reserved().start()),
2412             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2413             p2i(_hrm.reserved().end()));
2414   st->cr();
2415   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2416   uint young_regions = young_regions_count();
2417   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2418             (size_t) young_regions * HeapRegion::GrainBytes / K);
2419   uint survivor_regions = survivor_regions_count();
2420   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2421             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2422   st->cr();
2423   MetaspaceAux::print_on(st);
2424 }
2425 
2426 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2427   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2428                "HS=humongous(starts), HC=humongous(continues), "
2429                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2430                "AC=allocation context, "
2431                "TAMS=top-at-mark-start (previous, next)");
2432   PrintRegionClosure blk(st);
2433   heap_region_iterate(&blk);
2434 }
2435 
2436 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2437   print_on(st);
2438 
2439   // Print the per-region information.
2440   print_regions_on(st);
2441 }
2442 
2443 void G1CollectedHeap::print_on_error(outputStream* st) const {
2444   this->CollectedHeap::print_on_error(st);
2445 
2446   if (_cm != NULL) {
2447     st->cr();
2448     _cm->print_on_error(st);
2449   }
2450 }
2451 
2452 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2453   workers()->print_worker_threads_on(st);
2454   _cmThread->print_on(st);
2455   st->cr();
2456   _cm->print_worker_threads_on(st);
2457   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2458   if (G1StringDedup::is_enabled()) {
2459     G1StringDedup::print_worker_threads_on(st);
2460   }
2461 }
2462 
2463 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2464   workers()->threads_do(tc);
2465   tc->do_thread(_cmThread);
2466   _cm->threads_do(tc);
2467   _cg1r->threads_do(tc); // also iterates over the sample thread
2468   if (G1StringDedup::is_enabled()) {
2469     G1StringDedup::threads_do(tc);
2470   }
2471 }
2472 
2473 void G1CollectedHeap::print_tracing_info() const {
2474   g1_rem_set()->print_summary_info();
2475   concurrent_mark()->print_summary_info();
2476 }
2477 
2478 #ifndef PRODUCT
2479 // Helpful for debugging RSet issues.
2480 
2481 class PrintRSetsClosure : public HeapRegionClosure {
2482 private:
2483   const char* _msg;
2484   size_t _occupied_sum;
2485 
2486 public:
2487   bool doHeapRegion(HeapRegion* r) {
2488     HeapRegionRemSet* hrrs = r->rem_set();
2489     size_t occupied = hrrs->occupied();
2490     _occupied_sum += occupied;
2491 
2492     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2493     if (occupied == 0) {
2494       tty->print_cr("  RSet is empty");
2495     } else {
2496       hrrs->print();
2497     }
2498     tty->print_cr("----------");
2499     return false;
2500   }
2501 
2502   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2503     tty->cr();
2504     tty->print_cr("========================================");
2505     tty->print_cr("%s", msg);
2506     tty->cr();
2507   }
2508 
2509   ~PrintRSetsClosure() {
2510     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2511     tty->print_cr("========================================");
2512     tty->cr();
2513   }
2514 };
2515 
2516 void G1CollectedHeap::print_cset_rsets() {
2517   PrintRSetsClosure cl("Printing CSet RSets");
2518   collection_set_iterate(&cl);
2519 }
2520 
2521 void G1CollectedHeap::print_all_rsets() {
2522   PrintRSetsClosure cl("Printing All RSets");;
2523   heap_region_iterate(&cl);
2524 }
2525 #endif // PRODUCT
2526 
2527 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2528 
2529   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2530   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2531   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2532 
2533   size_t eden_capacity_bytes =
2534     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2535 
2536   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2537   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2538                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2539 }
2540 
2541 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2542   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2543                        stats->unused(), stats->used(), stats->region_end_waste(),
2544                        stats->regions_filled(), stats->direct_allocated(),
2545                        stats->failure_used(), stats->failure_waste());
2546 }
2547 
2548 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2549   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2550   gc_tracer->report_gc_heap_summary(when, heap_summary);
2551 
2552   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2553   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2554 }
2555 
2556 G1CollectedHeap* G1CollectedHeap::heap() {
2557   CollectedHeap* heap = Universe::heap();
2558   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2559   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2560   return (G1CollectedHeap*)heap;
2561 }
2562 
2563 void G1CollectedHeap::gc_prologue(bool full) {
2564   // always_do_update_barrier = false;
2565   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2566 
2567   // This summary needs to be printed before incrementing total collections.
2568   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2569 
2570   // Update common counters.
2571   increment_total_collections(full /* full gc */);
2572   if (full) {
2573     increment_old_marking_cycles_started();
2574     reset_gc_time_stamp();
2575   } else {
2576     increment_gc_time_stamp();
2577   }
2578 
2579   // Fill TLAB's and such
2580   double start = os::elapsedTime();
2581   accumulate_statistics_all_tlabs();
2582   ensure_parsability(true);
2583   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2584 }
2585 
2586 void G1CollectedHeap::gc_epilogue(bool full) {
2587   // Update common counters.
2588   if (full) {
2589     // Update the number of full collections that have been completed.
2590     increment_old_marking_cycles_completed(false /* concurrent */);
2591   }
2592 
2593   // We are at the end of the GC. Total collections has already been increased.
2594   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2595 
2596   // FIXME: what is this about?
2597   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2598   // is set.
2599 #if defined(COMPILER2) || INCLUDE_JVMCI
2600   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2601 #endif
2602   // always_do_update_barrier = true;
2603 
2604   double start = os::elapsedTime();
2605   resize_all_tlabs();
2606   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2607 
2608   allocation_context_stats().update(full);
2609 
2610   // We have just completed a GC. Update the soft reference
2611   // policy with the new heap occupancy
2612   Universe::update_heap_info_at_gc();
2613 }
2614 
2615 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2616                                                uint gc_count_before,
2617                                                bool* succeeded,
2618                                                GCCause::Cause gc_cause) {
2619   assert_heap_not_locked_and_not_at_safepoint();
2620   VM_G1IncCollectionPause op(gc_count_before,
2621                              word_size,
2622                              false, /* should_initiate_conc_mark */
2623                              g1_policy()->max_pause_time_ms(),
2624                              gc_cause);
2625 
2626   op.set_allocation_context(AllocationContext::current());
2627   VMThread::execute(&op);
2628 
2629   HeapWord* result = op.result();
2630   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2631   assert(result == NULL || ret_succeeded,
2632          "the result should be NULL if the VM did not succeed");
2633   *succeeded = ret_succeeded;
2634 
2635   assert_heap_not_locked();
2636   return result;
2637 }
2638 
2639 void
2640 G1CollectedHeap::doConcurrentMark() {
2641   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2642   if (!_cmThread->in_progress()) {
2643     _cmThread->set_started();
2644     CGC_lock->notify();
2645   }
2646 }
2647 
2648 size_t G1CollectedHeap::pending_card_num() {
2649   size_t extra_cards = 0;
2650   JavaThread *curr = Threads::first();
2651   while (curr != NULL) {
2652     DirtyCardQueue& dcq = curr->dirty_card_queue();
2653     extra_cards += dcq.size();
2654     curr = curr->next();
2655   }
2656   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2657   size_t buffer_size = dcqs.buffer_size();
2658   size_t buffer_num = dcqs.completed_buffers_num();
2659 
2660   return buffer_size * buffer_num + extra_cards;
2661 }
2662 
2663 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2664  private:
2665   size_t _total_humongous;
2666   size_t _candidate_humongous;
2667 
2668   DirtyCardQueue _dcq;
2669 
2670   // We don't nominate objects with many remembered set entries, on
2671   // the assumption that such objects are likely still live.
2672   bool is_remset_small(HeapRegion* region) const {
2673     HeapRegionRemSet* const rset = region->rem_set();
2674     return G1EagerReclaimHumongousObjectsWithStaleRefs
2675       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2676       : rset->is_empty();
2677   }
2678 
2679   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2680     assert(region->is_starts_humongous(), "Must start a humongous object");
2681 
2682     oop obj = oop(region->bottom());
2683 
2684     // Dead objects cannot be eager reclaim candidates. Due to class
2685     // unloading it is unsafe to query their classes so we return early.
2686     if (heap->is_obj_dead(obj, region)) {
2687       return false;
2688     }
2689 
2690     // Candidate selection must satisfy the following constraints
2691     // while concurrent marking is in progress:
2692     //
2693     // * In order to maintain SATB invariants, an object must not be
2694     // reclaimed if it was allocated before the start of marking and
2695     // has not had its references scanned.  Such an object must have
2696     // its references (including type metadata) scanned to ensure no
2697     // live objects are missed by the marking process.  Objects
2698     // allocated after the start of concurrent marking don't need to
2699     // be scanned.
2700     //
2701     // * An object must not be reclaimed if it is on the concurrent
2702     // mark stack.  Objects allocated after the start of concurrent
2703     // marking are never pushed on the mark stack.
2704     //
2705     // Nominating only objects allocated after the start of concurrent
2706     // marking is sufficient to meet both constraints.  This may miss
2707     // some objects that satisfy the constraints, but the marking data
2708     // structures don't support efficiently performing the needed
2709     // additional tests or scrubbing of the mark stack.
2710     //
2711     // However, we presently only nominate is_typeArray() objects.
2712     // A humongous object containing references induces remembered
2713     // set entries on other regions.  In order to reclaim such an
2714     // object, those remembered sets would need to be cleaned up.
2715     //
2716     // We also treat is_typeArray() objects specially, allowing them
2717     // to be reclaimed even if allocated before the start of
2718     // concurrent mark.  For this we rely on mark stack insertion to
2719     // exclude is_typeArray() objects, preventing reclaiming an object
2720     // that is in the mark stack.  We also rely on the metadata for
2721     // such objects to be built-in and so ensured to be kept live.
2722     // Frequent allocation and drop of large binary blobs is an
2723     // important use case for eager reclaim, and this special handling
2724     // may reduce needed headroom.
2725 
2726     return obj->is_typeArray() && is_remset_small(region);
2727   }
2728 
2729  public:
2730   RegisterHumongousWithInCSetFastTestClosure()
2731   : _total_humongous(0),
2732     _candidate_humongous(0),
2733     _dcq(&JavaThread::dirty_card_queue_set()) {
2734   }
2735 
2736   virtual bool doHeapRegion(HeapRegion* r) {
2737     if (!r->is_starts_humongous()) {
2738       return false;
2739     }
2740     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2741 
2742     bool is_candidate = humongous_region_is_candidate(g1h, r);
2743     uint rindex = r->hrm_index();
2744     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2745     if (is_candidate) {
2746       _candidate_humongous++;
2747       g1h->register_humongous_region_with_cset(rindex);
2748       // Is_candidate already filters out humongous object with large remembered sets.
2749       // If we have a humongous object with a few remembered sets, we simply flush these
2750       // remembered set entries into the DCQS. That will result in automatic
2751       // re-evaluation of their remembered set entries during the following evacuation
2752       // phase.
2753       if (!r->rem_set()->is_empty()) {
2754         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2755                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2756         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2757         HeapRegionRemSetIterator hrrs(r->rem_set());
2758         size_t card_index;
2759         while (hrrs.has_next(card_index)) {
2760           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2761           // The remembered set might contain references to already freed
2762           // regions. Filter out such entries to avoid failing card table
2763           // verification.
2764           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2765             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2766               *card_ptr = CardTableModRefBS::dirty_card_val();
2767               _dcq.enqueue(card_ptr);
2768             }
2769           }
2770         }
2771         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2772                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2773                hrrs.n_yielded(), r->rem_set()->occupied());
2774         r->rem_set()->clear_locked();
2775       }
2776       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2777     }
2778     _total_humongous++;
2779 
2780     return false;
2781   }
2782 
2783   size_t total_humongous() const { return _total_humongous; }
2784   size_t candidate_humongous() const { return _candidate_humongous; }
2785 
2786   void flush_rem_set_entries() { _dcq.flush(); }
2787 };
2788 
2789 void G1CollectedHeap::register_humongous_regions_with_cset() {
2790   if (!G1EagerReclaimHumongousObjects) {
2791     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2792     return;
2793   }
2794   double time = os::elapsed_counter();
2795 
2796   // Collect reclaim candidate information and register candidates with cset.
2797   RegisterHumongousWithInCSetFastTestClosure cl;
2798   heap_region_iterate(&cl);
2799 
2800   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2801   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2802                                                                   cl.total_humongous(),
2803                                                                   cl.candidate_humongous());
2804   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2805 
2806   // Finally flush all remembered set entries to re-check into the global DCQS.
2807   cl.flush_rem_set_entries();
2808 }
2809 
2810 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2811   public:
2812     bool doHeapRegion(HeapRegion* hr) {
2813       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2814         hr->verify_rem_set();
2815       }
2816       return false;
2817     }
2818 };
2819 
2820 uint G1CollectedHeap::num_task_queues() const {
2821   return _task_queues->size();
2822 }
2823 
2824 #if TASKQUEUE_STATS
2825 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2826   st->print_raw_cr("GC Task Stats");
2827   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2828   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2829 }
2830 
2831 void G1CollectedHeap::print_taskqueue_stats() const {
2832   if (!log_is_enabled(Trace, gc, task, stats)) {
2833     return;
2834   }
2835   Log(gc, task, stats) log;
2836   ResourceMark rm;
2837   outputStream* st = log.trace_stream();
2838 
2839   print_taskqueue_stats_hdr(st);
2840 
2841   TaskQueueStats totals;
2842   const uint n = num_task_queues();
2843   for (uint i = 0; i < n; ++i) {
2844     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2845     totals += task_queue(i)->stats;
2846   }
2847   st->print_raw("tot "); totals.print(st); st->cr();
2848 
2849   DEBUG_ONLY(totals.verify());
2850 }
2851 
2852 void G1CollectedHeap::reset_taskqueue_stats() {
2853   const uint n = num_task_queues();
2854   for (uint i = 0; i < n; ++i) {
2855     task_queue(i)->stats.reset();
2856   }
2857 }
2858 #endif // TASKQUEUE_STATS
2859 
2860 void G1CollectedHeap::wait_for_root_region_scanning() {
2861   double scan_wait_start = os::elapsedTime();
2862   // We have to wait until the CM threads finish scanning the
2863   // root regions as it's the only way to ensure that all the
2864   // objects on them have been correctly scanned before we start
2865   // moving them during the GC.
2866   bool waited = _cm->root_regions()->wait_until_scan_finished();
2867   double wait_time_ms = 0.0;
2868   if (waited) {
2869     double scan_wait_end = os::elapsedTime();
2870     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2871   }
2872   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2873 }
2874 
2875 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2876 private:
2877   G1HRPrinter* _hr_printer;
2878 public:
2879   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2880 
2881   virtual bool doHeapRegion(HeapRegion* r) {
2882     _hr_printer->cset(r);
2883     return false;
2884   }
2885 };
2886 
2887 void G1CollectedHeap::start_new_collection_set() {
2888   collection_set()->start_incremental_building();
2889 
2890   clear_cset_fast_test();
2891 
2892   guarantee(_eden.length() == 0, "eden should have been cleared");
2893   g1_policy()->transfer_survivors_to_cset(survivor());
2894 }
2895 
2896 bool
2897 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2898   assert_at_safepoint(true /* should_be_vm_thread */);
2899   guarantee(!is_gc_active(), "collection is not reentrant");
2900 
2901   if (GCLocker::check_active_before_gc()) {
2902     return false;
2903   }
2904 
2905   _gc_timer_stw->register_gc_start();
2906 
2907   GCIdMark gc_id_mark;
2908   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2909 
2910   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2911   ResourceMark rm;
2912 
2913   g1_policy()->note_gc_start();
2914 
2915   wait_for_root_region_scanning();
2916 
2917   print_heap_before_gc();
2918   print_heap_regions();
2919   trace_heap_before_gc(_gc_tracer_stw);
2920 
2921   _verifier->verify_region_sets_optional();
2922   _verifier->verify_dirty_young_regions();
2923 
2924   // We should not be doing initial mark unless the conc mark thread is running
2925   if (!_cmThread->should_terminate()) {
2926     // This call will decide whether this pause is an initial-mark
2927     // pause. If it is, during_initial_mark_pause() will return true
2928     // for the duration of this pause.
2929     g1_policy()->decide_on_conc_mark_initiation();
2930   }
2931 
2932   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2933   assert(!collector_state()->during_initial_mark_pause() ||
2934           collector_state()->gcs_are_young(), "sanity");
2935 
2936   // We also do not allow mixed GCs during marking.
2937   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
2938 
2939   // Record whether this pause is an initial mark. When the current
2940   // thread has completed its logging output and it's safe to signal
2941   // the CM thread, the flag's value in the policy has been reset.
2942   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
2943 
2944   // Inner scope for scope based logging, timers, and stats collection
2945   {
2946     EvacuationInfo evacuation_info;
2947 
2948     if (collector_state()->during_initial_mark_pause()) {
2949       // We are about to start a marking cycle, so we increment the
2950       // full collection counter.
2951       increment_old_marking_cycles_started();
2952       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2953     }
2954 
2955     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2956 
2957     GCTraceCPUTime tcpu;
2958 
2959     FormatBuffer<> gc_string("Pause ");
2960     if (collector_state()->during_initial_mark_pause()) {
2961       gc_string.append("Initial Mark");
2962     } else if (collector_state()->gcs_are_young()) {
2963       gc_string.append("Young");
2964     } else {
2965       gc_string.append("Mixed");
2966     }
2967     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2968 
2969     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2970                                                                   workers()->active_workers(),
2971                                                                   Threads::number_of_non_daemon_threads());
2972     workers()->update_active_workers(active_workers);
2973     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2974 
2975     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2976     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
2977 
2978     // If the secondary_free_list is not empty, append it to the
2979     // free_list. No need to wait for the cleanup operation to finish;
2980     // the region allocation code will check the secondary_free_list
2981     // and wait if necessary. If the G1StressConcRegionFreeing flag is
2982     // set, skip this step so that the region allocation code has to
2983     // get entries from the secondary_free_list.
2984     if (!G1StressConcRegionFreeing) {
2985       append_secondary_free_list_if_not_empty_with_lock();
2986     }
2987 
2988     G1HeapTransition heap_transition(this);
2989     size_t heap_used_bytes_before_gc = used();
2990 
2991     // Don't dynamically change the number of GC threads this early.  A value of
2992     // 0 is used to indicate serial work.  When parallel work is done,
2993     // it will be set.
2994 
2995     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2996       IsGCActiveMark x;
2997 
2998       gc_prologue(false);
2999 
3000       if (VerifyRememberedSets) {
3001         log_info(gc, verify)("[Verifying RemSets before GC]");
3002         VerifyRegionRemSetClosure v_cl;
3003         heap_region_iterate(&v_cl);
3004       }
3005 
3006       _verifier->verify_before_gc();
3007 
3008       _verifier->check_bitmaps("GC Start");
3009 
3010 #if defined(COMPILER2) || INCLUDE_JVMCI
3011       DerivedPointerTable::clear();
3012 #endif
3013 
3014       // Please see comment in g1CollectedHeap.hpp and
3015       // G1CollectedHeap::ref_processing_init() to see how
3016       // reference processing currently works in G1.
3017 
3018       // Enable discovery in the STW reference processor
3019       if (g1_policy()->should_process_references()) {
3020         ref_processor_stw()->enable_discovery();
3021       } else {
3022         ref_processor_stw()->disable_discovery();
3023       }
3024 
3025       {
3026         // We want to temporarily turn off discovery by the
3027         // CM ref processor, if necessary, and turn it back on
3028         // on again later if we do. Using a scoped
3029         // NoRefDiscovery object will do this.
3030         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3031 
3032         // Forget the current alloc region (we might even choose it to be part
3033         // of the collection set!).
3034         _allocator->release_mutator_alloc_region();
3035 
3036         // This timing is only used by the ergonomics to handle our pause target.
3037         // It is unclear why this should not include the full pause. We will
3038         // investigate this in CR 7178365.
3039         //
3040         // Preserving the old comment here if that helps the investigation:
3041         //
3042         // The elapsed time induced by the start time below deliberately elides
3043         // the possible verification above.
3044         double sample_start_time_sec = os::elapsedTime();
3045 
3046         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3047 
3048         if (collector_state()->during_initial_mark_pause()) {
3049           concurrent_mark()->checkpointRootsInitialPre();
3050         }
3051 
3052         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3053 
3054         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3055 
3056         // Make sure the remembered sets are up to date. This needs to be
3057         // done before register_humongous_regions_with_cset(), because the
3058         // remembered sets are used there to choose eager reclaim candidates.
3059         // If the remembered sets are not up to date we might miss some
3060         // entries that need to be handled.
3061         g1_rem_set()->cleanupHRRS();
3062 
3063         register_humongous_regions_with_cset();
3064 
3065         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3066 
3067         // We call this after finalize_cset() to
3068         // ensure that the CSet has been finalized.
3069         _cm->verify_no_cset_oops();
3070 
3071         if (_hr_printer.is_active()) {
3072           G1PrintCollectionSetClosure cl(&_hr_printer);
3073           _collection_set.iterate(&cl);
3074         }
3075 
3076         // Initialize the GC alloc regions.
3077         _allocator->init_gc_alloc_regions(evacuation_info);
3078 
3079         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3080         pre_evacuate_collection_set();
3081 
3082         // Actually do the work...
3083         evacuate_collection_set(evacuation_info, &per_thread_states);
3084 
3085         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3086 
3087         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3088         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3089 
3090         eagerly_reclaim_humongous_regions();
3091 
3092         record_obj_copy_mem_stats();
3093         _survivor_evac_stats.adjust_desired_plab_sz();
3094         _old_evac_stats.adjust_desired_plab_sz();
3095 
3096         double start = os::elapsedTime();
3097         start_new_collection_set();
3098         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3099 
3100         if (evacuation_failed()) {
3101           set_used(recalculate_used());
3102           if (_archive_allocator != NULL) {
3103             _archive_allocator->clear_used();
3104           }
3105           for (uint i = 0; i < ParallelGCThreads; i++) {
3106             if (_evacuation_failed_info_array[i].has_failed()) {
3107               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3108             }
3109           }
3110         } else {
3111           // The "used" of the the collection set have already been subtracted
3112           // when they were freed.  Add in the bytes evacuated.
3113           increase_used(g1_policy()->bytes_copied_during_gc());
3114         }
3115 
3116         if (collector_state()->during_initial_mark_pause()) {
3117           // We have to do this before we notify the CM threads that
3118           // they can start working to make sure that all the
3119           // appropriate initialization is done on the CM object.
3120           concurrent_mark()->checkpointRootsInitialPost();
3121           collector_state()->set_mark_in_progress(true);
3122           // Note that we don't actually trigger the CM thread at
3123           // this point. We do that later when we're sure that
3124           // the current thread has completed its logging output.
3125         }
3126 
3127         allocate_dummy_regions();
3128 
3129         _allocator->init_mutator_alloc_region();
3130 
3131         {
3132           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3133           if (expand_bytes > 0) {
3134             size_t bytes_before = capacity();
3135             // No need for an ergo logging here,
3136             // expansion_amount() does this when it returns a value > 0.
3137             double expand_ms;
3138             if (!expand(expand_bytes, _workers, &expand_ms)) {
3139               // We failed to expand the heap. Cannot do anything about it.
3140             }
3141             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3142           }
3143         }
3144 
3145         // We redo the verification but now wrt to the new CSet which
3146         // has just got initialized after the previous CSet was freed.
3147         _cm->verify_no_cset_oops();
3148 
3149         // This timing is only used by the ergonomics to handle our pause target.
3150         // It is unclear why this should not include the full pause. We will
3151         // investigate this in CR 7178365.
3152         double sample_end_time_sec = os::elapsedTime();
3153         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3154         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3155         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3156 
3157         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3158         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3159 
3160         MemoryService::track_memory_usage();
3161 
3162         // In prepare_for_verify() below we'll need to scan the deferred
3163         // update buffers to bring the RSets up-to-date if
3164         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3165         // the update buffers we'll probably need to scan cards on the
3166         // regions we just allocated to (i.e., the GC alloc
3167         // regions). However, during the last GC we called
3168         // set_saved_mark() on all the GC alloc regions, so card
3169         // scanning might skip the [saved_mark_word()...top()] area of
3170         // those regions (i.e., the area we allocated objects into
3171         // during the last GC). But it shouldn't. Given that
3172         // saved_mark_word() is conditional on whether the GC time stamp
3173         // on the region is current or not, by incrementing the GC time
3174         // stamp here we invalidate all the GC time stamps on all the
3175         // regions and saved_mark_word() will simply return top() for
3176         // all the regions. This is a nicer way of ensuring this rather
3177         // than iterating over the regions and fixing them. In fact, the
3178         // GC time stamp increment here also ensures that
3179         // saved_mark_word() will return top() between pauses, i.e.,
3180         // during concurrent refinement. So we don't need the
3181         // is_gc_active() check to decided which top to use when
3182         // scanning cards (see CR 7039627).
3183         increment_gc_time_stamp();
3184 
3185         if (VerifyRememberedSets) {
3186           log_info(gc, verify)("[Verifying RemSets after GC]");
3187           VerifyRegionRemSetClosure v_cl;
3188           heap_region_iterate(&v_cl);
3189         }
3190 
3191         _verifier->verify_after_gc();
3192         _verifier->check_bitmaps("GC End");
3193 
3194         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3195         ref_processor_stw()->verify_no_references_recorded();
3196 
3197         // CM reference discovery will be re-enabled if necessary.
3198       }
3199 
3200 #ifdef TRACESPINNING
3201       ParallelTaskTerminator::print_termination_counts();
3202 #endif
3203 
3204       gc_epilogue(false);
3205     }
3206 
3207     // Print the remainder of the GC log output.
3208     if (evacuation_failed()) {
3209       log_info(gc)("To-space exhausted");
3210     }
3211 
3212     g1_policy()->print_phases();
3213     heap_transition.print();
3214 
3215     // It is not yet to safe to tell the concurrent mark to
3216     // start as we have some optional output below. We don't want the
3217     // output from the concurrent mark thread interfering with this
3218     // logging output either.
3219 
3220     _hrm.verify_optional();
3221     _verifier->verify_region_sets_optional();
3222 
3223     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3224     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3225 
3226     print_heap_after_gc();
3227     print_heap_regions();
3228     trace_heap_after_gc(_gc_tracer_stw);
3229 
3230     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3231     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3232     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3233     // before any GC notifications are raised.
3234     g1mm()->update_sizes();
3235 
3236     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3237     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3238     _gc_timer_stw->register_gc_end();
3239     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3240   }
3241   // It should now be safe to tell the concurrent mark thread to start
3242   // without its logging output interfering with the logging output
3243   // that came from the pause.
3244 
3245   if (should_start_conc_mark) {
3246     // CAUTION: after the doConcurrentMark() call below,
3247     // the concurrent marking thread(s) could be running
3248     // concurrently with us. Make sure that anything after
3249     // this point does not assume that we are the only GC thread
3250     // running. Note: of course, the actual marking work will
3251     // not start until the safepoint itself is released in
3252     // SuspendibleThreadSet::desynchronize().
3253     doConcurrentMark();
3254   }
3255 
3256   return true;
3257 }
3258 
3259 void G1CollectedHeap::remove_self_forwarding_pointers() {
3260   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3261   workers()->run_task(&rsfp_task);
3262 }
3263 
3264 void G1CollectedHeap::restore_after_evac_failure() {
3265   double remove_self_forwards_start = os::elapsedTime();
3266 
3267   remove_self_forwarding_pointers();
3268   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3269   _preserved_marks_set.restore(&task_executor);
3270 
3271   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3272 }
3273 
3274 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3275   if (!_evacuation_failed) {
3276     _evacuation_failed = true;
3277   }
3278 
3279   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3280   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3281 }
3282 
3283 bool G1ParEvacuateFollowersClosure::offer_termination() {
3284   G1ParScanThreadState* const pss = par_scan_state();
3285   start_term_time();
3286   const bool res = terminator()->offer_termination();
3287   end_term_time();
3288   return res;
3289 }
3290 
3291 void G1ParEvacuateFollowersClosure::do_void() {
3292   G1ParScanThreadState* const pss = par_scan_state();
3293   pss->trim_queue();
3294   do {
3295     pss->steal_and_trim_queue(queues());
3296   } while (!offer_termination());
3297 }
3298 
3299 class G1ParTask : public AbstractGangTask {
3300 protected:
3301   G1CollectedHeap*         _g1h;
3302   G1ParScanThreadStateSet* _pss;
3303   RefToScanQueueSet*       _queues;
3304   G1RootProcessor*         _root_processor;
3305   ParallelTaskTerminator   _terminator;
3306   uint                     _n_workers;
3307 
3308 public:
3309   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3310     : AbstractGangTask("G1 collection"),
3311       _g1h(g1h),
3312       _pss(per_thread_states),
3313       _queues(task_queues),
3314       _root_processor(root_processor),
3315       _terminator(n_workers, _queues),
3316       _n_workers(n_workers)
3317   {}
3318 
3319   void work(uint worker_id) {
3320     if (worker_id >= _n_workers) return;  // no work needed this round
3321 
3322     double start_sec = os::elapsedTime();
3323     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3324 
3325     {
3326       ResourceMark rm;
3327       HandleMark   hm;
3328 
3329       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3330 
3331       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3332       pss->set_ref_processor(rp);
3333 
3334       double start_strong_roots_sec = os::elapsedTime();
3335 
3336       _root_processor->evacuate_roots(pss->closures(), worker_id);
3337 
3338       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
3339 
3340       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3341       // treating the nmethods visited to act as roots for concurrent marking.
3342       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3343       // objects copied by the current evacuation.
3344       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
3345                                                                              pss->closures()->weak_codeblobs(),
3346                                                                              worker_id);
3347 
3348       _pss->add_cards_scanned(worker_id, cards_scanned);
3349 
3350       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3351 
3352       double term_sec = 0.0;
3353       size_t evac_term_attempts = 0;
3354       {
3355         double start = os::elapsedTime();
3356         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3357         evac.do_void();
3358 
3359         evac_term_attempts = evac.term_attempts();
3360         term_sec = evac.term_time();
3361         double elapsed_sec = os::elapsedTime() - start;
3362         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3363         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3364         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3365       }
3366 
3367       assert(pss->queue_is_empty(), "should be empty");
3368 
3369       if (log_is_enabled(Debug, gc, task, stats)) {
3370         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3371         size_t lab_waste;
3372         size_t lab_undo_waste;
3373         pss->waste(lab_waste, lab_undo_waste);
3374         _g1h->print_termination_stats(worker_id,
3375                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3376                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3377                                       term_sec * 1000.0,                          /* evac term time */
3378                                       evac_term_attempts,                         /* evac term attempts */
3379                                       lab_waste,                                  /* alloc buffer waste */
3380                                       lab_undo_waste                              /* undo waste */
3381                                       );
3382       }
3383 
3384       // Close the inner scope so that the ResourceMark and HandleMark
3385       // destructors are executed here and are included as part of the
3386       // "GC Worker Time".
3387     }
3388     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3389   }
3390 };
3391 
3392 void G1CollectedHeap::print_termination_stats_hdr() {
3393   log_debug(gc, task, stats)("GC Termination Stats");
3394   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3395   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3396   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3397 }
3398 
3399 void G1CollectedHeap::print_termination_stats(uint worker_id,
3400                                               double elapsed_ms,
3401                                               double strong_roots_ms,
3402                                               double term_ms,
3403                                               size_t term_attempts,
3404                                               size_t alloc_buffer_waste,
3405                                               size_t undo_waste) const {
3406   log_debug(gc, task, stats)
3407               ("%3d %9.2f %9.2f %6.2f "
3408                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3409                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3410                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3411                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3412                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3413                alloc_buffer_waste * HeapWordSize / K,
3414                undo_waste * HeapWordSize / K);
3415 }
3416 
3417 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3418 private:
3419   BoolObjectClosure* _is_alive;
3420   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3421 
3422   int _initial_string_table_size;
3423   int _initial_symbol_table_size;
3424 
3425   bool  _process_strings;
3426   int _strings_processed;
3427   int _strings_removed;
3428 
3429   bool  _process_symbols;
3430   int _symbols_processed;
3431   int _symbols_removed;
3432 
3433   bool _process_string_dedup;
3434 
3435 public:
3436   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3437     AbstractGangTask("String/Symbol Unlinking"),
3438     _is_alive(is_alive),
3439     _dedup_closure(is_alive, NULL, false),
3440     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3441     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3442     _process_string_dedup(process_string_dedup) {
3443 
3444     _initial_string_table_size = StringTable::the_table()->table_size();
3445     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3446     if (process_strings) {
3447       StringTable::clear_parallel_claimed_index();
3448     }
3449     if (process_symbols) {
3450       SymbolTable::clear_parallel_claimed_index();
3451     }
3452   }
3453 
3454   ~G1StringAndSymbolCleaningTask() {
3455     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3456               "claim value %d after unlink less than initial string table size %d",
3457               StringTable::parallel_claimed_index(), _initial_string_table_size);
3458     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3459               "claim value %d after unlink less than initial symbol table size %d",
3460               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3461 
3462     log_info(gc, stringtable)(
3463         "Cleaned string and symbol table, "
3464         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3465         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3466         strings_processed(), strings_removed(),
3467         symbols_processed(), symbols_removed());
3468   }
3469 
3470   void work(uint worker_id) {
3471     int strings_processed = 0;
3472     int strings_removed = 0;
3473     int symbols_processed = 0;
3474     int symbols_removed = 0;
3475     if (_process_strings) {
3476       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3477       Atomic::add(strings_processed, &_strings_processed);
3478       Atomic::add(strings_removed, &_strings_removed);
3479     }
3480     if (_process_symbols) {
3481       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3482       Atomic::add(symbols_processed, &_symbols_processed);
3483       Atomic::add(symbols_removed, &_symbols_removed);
3484     }
3485     if (_process_string_dedup) {
3486       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3487     }
3488   }
3489 
3490   size_t strings_processed() const { return (size_t)_strings_processed; }
3491   size_t strings_removed()   const { return (size_t)_strings_removed; }
3492 
3493   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3494   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3495 };
3496 
3497 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3498 private:
3499   static Monitor* _lock;
3500 
3501   BoolObjectClosure* const _is_alive;
3502   const bool               _unloading_occurred;
3503   const uint               _num_workers;
3504 
3505   // Variables used to claim nmethods.
3506   CompiledMethod* _first_nmethod;
3507   volatile CompiledMethod* _claimed_nmethod;
3508 
3509   // The list of nmethods that need to be processed by the second pass.
3510   volatile CompiledMethod* _postponed_list;
3511   volatile uint            _num_entered_barrier;
3512 
3513  public:
3514   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3515       _is_alive(is_alive),
3516       _unloading_occurred(unloading_occurred),
3517       _num_workers(num_workers),
3518       _first_nmethod(NULL),
3519       _claimed_nmethod(NULL),
3520       _postponed_list(NULL),
3521       _num_entered_barrier(0)
3522   {
3523     CompiledMethod::increase_unloading_clock();
3524     // Get first alive nmethod
3525     CompiledMethodIterator iter = CompiledMethodIterator();
3526     if(iter.next_alive()) {
3527       _first_nmethod = iter.method();
3528     }
3529     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3530   }
3531 
3532   ~G1CodeCacheUnloadingTask() {
3533     CodeCache::verify_clean_inline_caches();
3534 
3535     CodeCache::set_needs_cache_clean(false);
3536     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3537 
3538     CodeCache::verify_icholder_relocations();
3539   }
3540 
3541  private:
3542   void add_to_postponed_list(CompiledMethod* nm) {
3543       CompiledMethod* old;
3544       do {
3545         old = (CompiledMethod*)_postponed_list;
3546         nm->set_unloading_next(old);
3547       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3548   }
3549 
3550   void clean_nmethod(CompiledMethod* nm) {
3551     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3552 
3553     if (postponed) {
3554       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3555       add_to_postponed_list(nm);
3556     }
3557 
3558     // Mark that this thread has been cleaned/unloaded.
3559     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3560     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3561   }
3562 
3563   void clean_nmethod_postponed(CompiledMethod* nm) {
3564     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3565   }
3566 
3567   static const int MaxClaimNmethods = 16;
3568 
3569   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3570     CompiledMethod* first;
3571     CompiledMethodIterator last;
3572 
3573     do {
3574       *num_claimed_nmethods = 0;
3575 
3576       first = (CompiledMethod*)_claimed_nmethod;
3577       last = CompiledMethodIterator(first);
3578 
3579       if (first != NULL) {
3580 
3581         for (int i = 0; i < MaxClaimNmethods; i++) {
3582           if (!last.next_alive()) {
3583             break;
3584           }
3585           claimed_nmethods[i] = last.method();
3586           (*num_claimed_nmethods)++;
3587         }
3588       }
3589 
3590     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3591   }
3592 
3593   CompiledMethod* claim_postponed_nmethod() {
3594     CompiledMethod* claim;
3595     CompiledMethod* next;
3596 
3597     do {
3598       claim = (CompiledMethod*)_postponed_list;
3599       if (claim == NULL) {
3600         return NULL;
3601       }
3602 
3603       next = claim->unloading_next();
3604 
3605     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3606 
3607     return claim;
3608   }
3609 
3610  public:
3611   // Mark that we're done with the first pass of nmethod cleaning.
3612   void barrier_mark(uint worker_id) {
3613     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3614     _num_entered_barrier++;
3615     if (_num_entered_barrier == _num_workers) {
3616       ml.notify_all();
3617     }
3618   }
3619 
3620   // See if we have to wait for the other workers to
3621   // finish their first-pass nmethod cleaning work.
3622   void barrier_wait(uint worker_id) {
3623     if (_num_entered_barrier < _num_workers) {
3624       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3625       while (_num_entered_barrier < _num_workers) {
3626           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3627       }
3628     }
3629   }
3630 
3631   // Cleaning and unloading of nmethods. Some work has to be postponed
3632   // to the second pass, when we know which nmethods survive.
3633   void work_first_pass(uint worker_id) {
3634     // The first nmethods is claimed by the first worker.
3635     if (worker_id == 0 && _first_nmethod != NULL) {
3636       clean_nmethod(_first_nmethod);
3637       _first_nmethod = NULL;
3638     }
3639 
3640     int num_claimed_nmethods;
3641     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3642 
3643     while (true) {
3644       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3645 
3646       if (num_claimed_nmethods == 0) {
3647         break;
3648       }
3649 
3650       for (int i = 0; i < num_claimed_nmethods; i++) {
3651         clean_nmethod(claimed_nmethods[i]);
3652       }
3653     }
3654   }
3655 
3656   void work_second_pass(uint worker_id) {
3657     CompiledMethod* nm;
3658     // Take care of postponed nmethods.
3659     while ((nm = claim_postponed_nmethod()) != NULL) {
3660       clean_nmethod_postponed(nm);
3661     }
3662   }
3663 };
3664 
3665 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3666 
3667 class G1KlassCleaningTask : public StackObj {
3668   BoolObjectClosure*                      _is_alive;
3669   volatile jint                           _clean_klass_tree_claimed;
3670   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3671 
3672  public:
3673   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3674       _is_alive(is_alive),
3675       _clean_klass_tree_claimed(0),
3676       _klass_iterator() {
3677   }
3678 
3679  private:
3680   bool claim_clean_klass_tree_task() {
3681     if (_clean_klass_tree_claimed) {
3682       return false;
3683     }
3684 
3685     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3686   }
3687 
3688   InstanceKlass* claim_next_klass() {
3689     Klass* klass;
3690     do {
3691       klass =_klass_iterator.next_klass();
3692     } while (klass != NULL && !klass->is_instance_klass());
3693 
3694     // this can be null so don't call InstanceKlass::cast
3695     return static_cast<InstanceKlass*>(klass);
3696   }
3697 
3698 public:
3699 
3700   void clean_klass(InstanceKlass* ik) {
3701     ik->clean_weak_instanceklass_links(_is_alive);
3702   }
3703 
3704   void work() {
3705     ResourceMark rm;
3706 
3707     // One worker will clean the subklass/sibling klass tree.
3708     if (claim_clean_klass_tree_task()) {
3709       Klass::clean_subklass_tree(_is_alive);
3710     }
3711 
3712     // All workers will help cleaning the classes,
3713     InstanceKlass* klass;
3714     while ((klass = claim_next_klass()) != NULL) {
3715       clean_klass(klass);
3716     }
3717   }
3718 };
3719 
3720 class G1ResolvedMethodCleaningTask : public StackObj {
3721   BoolObjectClosure* _is_alive;
3722   volatile jint      _resolved_method_task_claimed;
3723 public:
3724   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3725       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3726 
3727   bool claim_resolved_method_task() {
3728     if (_resolved_method_task_claimed) {
3729       return false;
3730     }
3731     return Atomic::cmpxchg(1, (jint*)&_resolved_method_task_claimed, 0) == 0;
3732   }
3733 
3734   // These aren't big, one thread can do it all.
3735   void work() {
3736     if (claim_resolved_method_task()) {
3737       ResolvedMethodTable::unlink(_is_alive);
3738     }
3739   }
3740 };
3741 
3742 
3743 // To minimize the remark pause times, the tasks below are done in parallel.
3744 class G1ParallelCleaningTask : public AbstractGangTask {
3745 private:
3746   G1StringAndSymbolCleaningTask _string_symbol_task;
3747   G1CodeCacheUnloadingTask      _code_cache_task;
3748   G1KlassCleaningTask           _klass_cleaning_task;
3749   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3750 
3751 public:
3752   // The constructor is run in the VMThread.
3753   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3754       AbstractGangTask("Parallel Cleaning"),
3755       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3756       _code_cache_task(num_workers, is_alive, unloading_occurred),
3757       _klass_cleaning_task(is_alive),
3758       _resolved_method_cleaning_task(is_alive) {
3759   }
3760 
3761   // The parallel work done by all worker threads.
3762   void work(uint worker_id) {
3763     // Do first pass of code cache cleaning.
3764     _code_cache_task.work_first_pass(worker_id);
3765 
3766     // Let the threads mark that the first pass is done.
3767     _code_cache_task.barrier_mark(worker_id);
3768 
3769     // Clean the Strings and Symbols.
3770     _string_symbol_task.work(worker_id);
3771 
3772     // Clean unreferenced things in the ResolvedMethodTable
3773     _resolved_method_cleaning_task.work();
3774 
3775     // Wait for all workers to finish the first code cache cleaning pass.
3776     _code_cache_task.barrier_wait(worker_id);
3777 
3778     // Do the second code cache cleaning work, which realize on
3779     // the liveness information gathered during the first pass.
3780     _code_cache_task.work_second_pass(worker_id);
3781 
3782     // Clean all klasses that were not unloaded.
3783     _klass_cleaning_task.work();
3784   }
3785 };
3786 
3787 
3788 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3789                                         bool class_unloading_occurred) {
3790   uint n_workers = workers()->active_workers();
3791 
3792   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3793   workers()->run_task(&g1_unlink_task);
3794 }
3795 
3796 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3797                                        bool process_strings,
3798                                        bool process_symbols,
3799                                        bool process_string_dedup) {
3800   if (!process_strings && !process_symbols && !process_string_dedup) {
3801     // Nothing to clean.
3802     return;
3803   }
3804 
3805   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3806   workers()->run_task(&g1_unlink_task);
3807 
3808 }
3809 
3810 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3811  private:
3812   DirtyCardQueueSet* _queue;
3813   G1CollectedHeap* _g1h;
3814  public:
3815   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3816     _queue(queue), _g1h(g1h) { }
3817 
3818   virtual void work(uint worker_id) {
3819     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3820     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3821 
3822     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3823     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3824 
3825     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3826   }
3827 };
3828 
3829 void G1CollectedHeap::redirty_logged_cards() {
3830   double redirty_logged_cards_start = os::elapsedTime();
3831 
3832   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3833   dirty_card_queue_set().reset_for_par_iteration();
3834   workers()->run_task(&redirty_task);
3835 
3836   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3837   dcq.merge_bufferlists(&dirty_card_queue_set());
3838   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3839 
3840   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3841 }
3842 
3843 // Weak Reference Processing support
3844 
3845 // An always "is_alive" closure that is used to preserve referents.
3846 // If the object is non-null then it's alive.  Used in the preservation
3847 // of referent objects that are pointed to by reference objects
3848 // discovered by the CM ref processor.
3849 class G1AlwaysAliveClosure: public BoolObjectClosure {
3850   G1CollectedHeap* _g1;
3851 public:
3852   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3853   bool do_object_b(oop p) {
3854     if (p != NULL) {
3855       return true;
3856     }
3857     return false;
3858   }
3859 };
3860 
3861 bool G1STWIsAliveClosure::do_object_b(oop p) {
3862   // An object is reachable if it is outside the collection set,
3863   // or is inside and copied.
3864   return !_g1->is_in_cset(p) || p->is_forwarded();
3865 }
3866 
3867 // Non Copying Keep Alive closure
3868 class G1KeepAliveClosure: public OopClosure {
3869   G1CollectedHeap* _g1;
3870 public:
3871   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3872   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3873   void do_oop(oop* p) {
3874     oop obj = *p;
3875     assert(obj != NULL, "the caller should have filtered out NULL values");
3876 
3877     const InCSetState cset_state = _g1->in_cset_state(obj);
3878     if (!cset_state.is_in_cset_or_humongous()) {
3879       return;
3880     }
3881     if (cset_state.is_in_cset()) {
3882       assert( obj->is_forwarded(), "invariant" );
3883       *p = obj->forwardee();
3884     } else {
3885       assert(!obj->is_forwarded(), "invariant" );
3886       assert(cset_state.is_humongous(),
3887              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3888       _g1->set_humongous_is_live(obj);
3889     }
3890   }
3891 };
3892 
3893 // Copying Keep Alive closure - can be called from both
3894 // serial and parallel code as long as different worker
3895 // threads utilize different G1ParScanThreadState instances
3896 // and different queues.
3897 
3898 class G1CopyingKeepAliveClosure: public OopClosure {
3899   G1CollectedHeap*         _g1h;
3900   OopClosure*              _copy_non_heap_obj_cl;
3901   G1ParScanThreadState*    _par_scan_state;
3902 
3903 public:
3904   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3905                             OopClosure* non_heap_obj_cl,
3906                             G1ParScanThreadState* pss):
3907     _g1h(g1h),
3908     _copy_non_heap_obj_cl(non_heap_obj_cl),
3909     _par_scan_state(pss)
3910   {}
3911 
3912   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3913   virtual void do_oop(      oop* p) { do_oop_work(p); }
3914 
3915   template <class T> void do_oop_work(T* p) {
3916     oop obj = oopDesc::load_decode_heap_oop(p);
3917 
3918     if (_g1h->is_in_cset_or_humongous(obj)) {
3919       // If the referent object has been forwarded (either copied
3920       // to a new location or to itself in the event of an
3921       // evacuation failure) then we need to update the reference
3922       // field and, if both reference and referent are in the G1
3923       // heap, update the RSet for the referent.
3924       //
3925       // If the referent has not been forwarded then we have to keep
3926       // it alive by policy. Therefore we have copy the referent.
3927       //
3928       // If the reference field is in the G1 heap then we can push
3929       // on the PSS queue. When the queue is drained (after each
3930       // phase of reference processing) the object and it's followers
3931       // will be copied, the reference field set to point to the
3932       // new location, and the RSet updated. Otherwise we need to
3933       // use the the non-heap or metadata closures directly to copy
3934       // the referent object and update the pointer, while avoiding
3935       // updating the RSet.
3936 
3937       if (_g1h->is_in_g1_reserved(p)) {
3938         _par_scan_state->push_on_queue(p);
3939       } else {
3940         assert(!Metaspace::contains((const void*)p),
3941                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3942         _copy_non_heap_obj_cl->do_oop(p);
3943       }
3944     }
3945   }
3946 };
3947 
3948 // Serial drain queue closure. Called as the 'complete_gc'
3949 // closure for each discovered list in some of the
3950 // reference processing phases.
3951 
3952 class G1STWDrainQueueClosure: public VoidClosure {
3953 protected:
3954   G1CollectedHeap* _g1h;
3955   G1ParScanThreadState* _par_scan_state;
3956 
3957   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3958 
3959 public:
3960   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3961     _g1h(g1h),
3962     _par_scan_state(pss)
3963   { }
3964 
3965   void do_void() {
3966     G1ParScanThreadState* const pss = par_scan_state();
3967     pss->trim_queue();
3968   }
3969 };
3970 
3971 // Parallel Reference Processing closures
3972 
3973 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3974 // processing during G1 evacuation pauses.
3975 
3976 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3977 private:
3978   G1CollectedHeap*          _g1h;
3979   G1ParScanThreadStateSet*  _pss;
3980   RefToScanQueueSet*        _queues;
3981   WorkGang*                 _workers;
3982   uint                      _active_workers;
3983 
3984 public:
3985   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3986                            G1ParScanThreadStateSet* per_thread_states,
3987                            WorkGang* workers,
3988                            RefToScanQueueSet *task_queues,
3989                            uint n_workers) :
3990     _g1h(g1h),
3991     _pss(per_thread_states),
3992     _queues(task_queues),
3993     _workers(workers),
3994     _active_workers(n_workers)
3995   {
3996     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3997   }
3998 
3999   // Executes the given task using concurrent marking worker threads.
4000   virtual void execute(ProcessTask& task);
4001   virtual void execute(EnqueueTask& task);
4002 };
4003 
4004 // Gang task for possibly parallel reference processing
4005 
4006 class G1STWRefProcTaskProxy: public AbstractGangTask {
4007   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4008   ProcessTask&     _proc_task;
4009   G1CollectedHeap* _g1h;
4010   G1ParScanThreadStateSet* _pss;
4011   RefToScanQueueSet* _task_queues;
4012   ParallelTaskTerminator* _terminator;
4013 
4014 public:
4015   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4016                         G1CollectedHeap* g1h,
4017                         G1ParScanThreadStateSet* per_thread_states,
4018                         RefToScanQueueSet *task_queues,
4019                         ParallelTaskTerminator* terminator) :
4020     AbstractGangTask("Process reference objects in parallel"),
4021     _proc_task(proc_task),
4022     _g1h(g1h),
4023     _pss(per_thread_states),
4024     _task_queues(task_queues),
4025     _terminator(terminator)
4026   {}
4027 
4028   virtual void work(uint worker_id) {
4029     // The reference processing task executed by a single worker.
4030     ResourceMark rm;
4031     HandleMark   hm;
4032 
4033     G1STWIsAliveClosure is_alive(_g1h);
4034 
4035     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4036     pss->set_ref_processor(NULL);
4037 
4038     // Keep alive closure.
4039     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4040 
4041     // Complete GC closure
4042     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4043 
4044     // Call the reference processing task's work routine.
4045     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4046 
4047     // Note we cannot assert that the refs array is empty here as not all
4048     // of the processing tasks (specifically phase2 - pp2_work) execute
4049     // the complete_gc closure (which ordinarily would drain the queue) so
4050     // the queue may not be empty.
4051   }
4052 };
4053 
4054 // Driver routine for parallel reference processing.
4055 // Creates an instance of the ref processing gang
4056 // task and has the worker threads execute it.
4057 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4058   assert(_workers != NULL, "Need parallel worker threads.");
4059 
4060   ParallelTaskTerminator terminator(_active_workers, _queues);
4061   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4062 
4063   _workers->run_task(&proc_task_proxy);
4064 }
4065 
4066 // Gang task for parallel reference enqueueing.
4067 
4068 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4069   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4070   EnqueueTask& _enq_task;
4071 
4072 public:
4073   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4074     AbstractGangTask("Enqueue reference objects in parallel"),
4075     _enq_task(enq_task)
4076   { }
4077 
4078   virtual void work(uint worker_id) {
4079     _enq_task.work(worker_id);
4080   }
4081 };
4082 
4083 // Driver routine for parallel reference enqueueing.
4084 // Creates an instance of the ref enqueueing gang
4085 // task and has the worker threads execute it.
4086 
4087 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4088   assert(_workers != NULL, "Need parallel worker threads.");
4089 
4090   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4091 
4092   _workers->run_task(&enq_task_proxy);
4093 }
4094 
4095 // End of weak reference support closures
4096 
4097 // Abstract task used to preserve (i.e. copy) any referent objects
4098 // that are in the collection set and are pointed to by reference
4099 // objects discovered by the CM ref processor.
4100 
4101 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4102 protected:
4103   G1CollectedHeap*         _g1h;
4104   G1ParScanThreadStateSet* _pss;
4105   RefToScanQueueSet*       _queues;
4106   ParallelTaskTerminator   _terminator;
4107   uint                     _n_workers;
4108 
4109 public:
4110   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4111     AbstractGangTask("ParPreserveCMReferents"),
4112     _g1h(g1h),
4113     _pss(per_thread_states),
4114     _queues(task_queues),
4115     _terminator(workers, _queues),
4116     _n_workers(workers)
4117   {
4118     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4119   }
4120 
4121   void work(uint worker_id) {
4122     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4123 
4124     ResourceMark rm;
4125     HandleMark   hm;
4126 
4127     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4128     pss->set_ref_processor(NULL);
4129     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4130 
4131     // Is alive closure
4132     G1AlwaysAliveClosure always_alive(_g1h);
4133 
4134     // Copying keep alive closure. Applied to referent objects that need
4135     // to be copied.
4136     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4137 
4138     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4139 
4140     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4141     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4142 
4143     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4144     // So this must be true - but assert just in case someone decides to
4145     // change the worker ids.
4146     assert(worker_id < limit, "sanity");
4147     assert(!rp->discovery_is_atomic(), "check this code");
4148 
4149     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4150     for (uint idx = worker_id; idx < limit; idx += stride) {
4151       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4152 
4153       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4154       while (iter.has_next()) {
4155         // Since discovery is not atomic for the CM ref processor, we
4156         // can see some null referent objects.
4157         iter.load_ptrs(DEBUG_ONLY(true));
4158         oop ref = iter.obj();
4159 
4160         // This will filter nulls.
4161         if (iter.is_referent_alive()) {
4162           iter.make_referent_alive();
4163         }
4164         iter.move_to_next();
4165       }
4166     }
4167 
4168     // Drain the queue - which may cause stealing
4169     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4170     drain_queue.do_void();
4171     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4172     assert(pss->queue_is_empty(), "should be");
4173   }
4174 };
4175 
4176 void G1CollectedHeap::process_weak_jni_handles() {
4177   double ref_proc_start = os::elapsedTime();
4178 
4179   G1STWIsAliveClosure is_alive(this);
4180   G1KeepAliveClosure keep_alive(this);
4181   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4182 
4183   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4184   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4185 }
4186 
4187 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4188   // Any reference objects, in the collection set, that were 'discovered'
4189   // by the CM ref processor should have already been copied (either by
4190   // applying the external root copy closure to the discovered lists, or
4191   // by following an RSet entry).
4192   //
4193   // But some of the referents, that are in the collection set, that these
4194   // reference objects point to may not have been copied: the STW ref
4195   // processor would have seen that the reference object had already
4196   // been 'discovered' and would have skipped discovering the reference,
4197   // but would not have treated the reference object as a regular oop.
4198   // As a result the copy closure would not have been applied to the
4199   // referent object.
4200   //
4201   // We need to explicitly copy these referent objects - the references
4202   // will be processed at the end of remarking.
4203   //
4204   // We also need to do this copying before we process the reference
4205   // objects discovered by the STW ref processor in case one of these
4206   // referents points to another object which is also referenced by an
4207   // object discovered by the STW ref processor.
4208   double preserve_cm_referents_time = 0.0;
4209 
4210   // To avoid spawning task when there is no work to do, check that
4211   // a concurrent cycle is active and that some references have been
4212   // discovered.
4213   if (concurrent_mark()->cmThread()->during_cycle() &&
4214       ref_processor_cm()->has_discovered_references()) {
4215     double preserve_cm_referents_start = os::elapsedTime();
4216     uint no_of_gc_workers = workers()->active_workers();
4217     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4218                                                    per_thread_states,
4219                                                    no_of_gc_workers,
4220                                                    _task_queues);
4221     workers()->run_task(&keep_cm_referents);
4222     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4223   }
4224 
4225   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4226 }
4227 
4228 // Weak Reference processing during an evacuation pause (part 1).
4229 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4230   double ref_proc_start = os::elapsedTime();
4231 
4232   ReferenceProcessor* rp = _ref_processor_stw;
4233   assert(rp->discovery_enabled(), "should have been enabled");
4234 
4235   // Closure to test whether a referent is alive.
4236   G1STWIsAliveClosure is_alive(this);
4237 
4238   // Even when parallel reference processing is enabled, the processing
4239   // of JNI refs is serial and performed serially by the current thread
4240   // rather than by a worker. The following PSS will be used for processing
4241   // JNI refs.
4242 
4243   // Use only a single queue for this PSS.
4244   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4245   pss->set_ref_processor(NULL);
4246   assert(pss->queue_is_empty(), "pre-condition");
4247 
4248   // Keep alive closure.
4249   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4250 
4251   // Serial Complete GC closure
4252   G1STWDrainQueueClosure drain_queue(this, pss);
4253 
4254   // Setup the soft refs policy...
4255   rp->setup_policy(false);
4256 
4257   ReferenceProcessorStats stats;
4258   if (!rp->processing_is_mt()) {
4259     // Serial reference processing...
4260     stats = rp->process_discovered_references(&is_alive,
4261                                               &keep_alive,
4262                                               &drain_queue,
4263                                               NULL,
4264                                               _gc_timer_stw);
4265   } else {
4266     uint no_of_gc_workers = workers()->active_workers();
4267 
4268     // Parallel reference processing
4269     assert(no_of_gc_workers <= rp->max_num_q(),
4270            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4271            no_of_gc_workers,  rp->max_num_q());
4272 
4273     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4274     stats = rp->process_discovered_references(&is_alive,
4275                                               &keep_alive,
4276                                               &drain_queue,
4277                                               &par_task_executor,
4278                                               _gc_timer_stw);
4279   }
4280 
4281   _gc_tracer_stw->report_gc_reference_stats(stats);
4282 
4283   // We have completed copying any necessary live referent objects.
4284   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4285 
4286   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4287   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4288 }
4289 
4290 // Weak Reference processing during an evacuation pause (part 2).
4291 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4292   double ref_enq_start = os::elapsedTime();
4293 
4294   ReferenceProcessor* rp = _ref_processor_stw;
4295   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4296 
4297   // Now enqueue any remaining on the discovered lists on to
4298   // the pending list.
4299   if (!rp->processing_is_mt()) {
4300     // Serial reference processing...
4301     rp->enqueue_discovered_references();
4302   } else {
4303     // Parallel reference enqueueing
4304 
4305     uint n_workers = workers()->active_workers();
4306 
4307     assert(n_workers <= rp->max_num_q(),
4308            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4309            n_workers,  rp->max_num_q());
4310 
4311     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4312     rp->enqueue_discovered_references(&par_task_executor);
4313   }
4314 
4315   rp->verify_no_references_recorded();
4316   assert(!rp->discovery_enabled(), "should have been disabled");
4317 
4318   // FIXME
4319   // CM's reference processing also cleans up the string and symbol tables.
4320   // Should we do that here also? We could, but it is a serial operation
4321   // and could significantly increase the pause time.
4322 
4323   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4324   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4325 }
4326 
4327 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4328   double merge_pss_time_start = os::elapsedTime();
4329   per_thread_states->flush();
4330   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4331 }
4332 
4333 void G1CollectedHeap::pre_evacuate_collection_set() {
4334   _expand_heap_after_alloc_failure = true;
4335   _evacuation_failed = false;
4336 
4337   // Disable the hot card cache.
4338   _hot_card_cache->reset_hot_cache_claimed_index();
4339   _hot_card_cache->set_use_cache(false);
4340 
4341   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4342   _preserved_marks_set.assert_empty();
4343 
4344   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4345 
4346   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4347   if (collector_state()->during_initial_mark_pause()) {
4348     double start_clear_claimed_marks = os::elapsedTime();
4349 
4350     ClassLoaderDataGraph::clear_claimed_marks();
4351 
4352     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4353     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4354   }
4355 }
4356 
4357 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4358   // Should G1EvacuationFailureALot be in effect for this GC?
4359   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4360 
4361   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4362 
4363   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4364 
4365   double start_par_time_sec = os::elapsedTime();
4366   double end_par_time_sec;
4367 
4368   {
4369     const uint n_workers = workers()->active_workers();
4370     G1RootProcessor root_processor(this, n_workers);
4371     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4372 
4373     print_termination_stats_hdr();
4374 
4375     workers()->run_task(&g1_par_task);
4376     end_par_time_sec = os::elapsedTime();
4377 
4378     // Closing the inner scope will execute the destructor
4379     // for the G1RootProcessor object. We record the current
4380     // elapsed time before closing the scope so that time
4381     // taken for the destructor is NOT included in the
4382     // reported parallel time.
4383   }
4384 
4385   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4386   phase_times->record_par_time(par_time_ms);
4387 
4388   double code_root_fixup_time_ms =
4389         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4390   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4391 }
4392 
4393 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4394   // Process any discovered reference objects - we have
4395   // to do this _before_ we retire the GC alloc regions
4396   // as we may have to copy some 'reachable' referent
4397   // objects (and their reachable sub-graphs) that were
4398   // not copied during the pause.
4399   if (g1_policy()->should_process_references()) {
4400     preserve_cm_referents(per_thread_states);
4401     process_discovered_references(per_thread_states);
4402   } else {
4403     ref_processor_stw()->verify_no_references_recorded();
4404     process_weak_jni_handles();
4405   }
4406 
4407   if (G1StringDedup::is_enabled()) {
4408     double fixup_start = os::elapsedTime();
4409 
4410     G1STWIsAliveClosure is_alive(this);
4411     G1KeepAliveClosure keep_alive(this);
4412     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4413 
4414     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4415     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4416   }
4417 
4418   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4419 
4420   if (evacuation_failed()) {
4421     restore_after_evac_failure();
4422 
4423     // Reset the G1EvacuationFailureALot counters and flags
4424     // Note: the values are reset only when an actual
4425     // evacuation failure occurs.
4426     NOT_PRODUCT(reset_evacuation_should_fail();)
4427   }
4428 
4429   _preserved_marks_set.assert_empty();
4430 
4431   // Enqueue any remaining references remaining on the STW
4432   // reference processor's discovered lists. We need to do
4433   // this after the card table is cleaned (and verified) as
4434   // the act of enqueueing entries on to the pending list
4435   // will log these updates (and dirty their associated
4436   // cards). We need these updates logged to update any
4437   // RSets.
4438   if (g1_policy()->should_process_references()) {
4439     enqueue_discovered_references(per_thread_states);
4440   } else {
4441     g1_policy()->phase_times()->record_ref_enq_time(0);
4442   }
4443 
4444   _allocator->release_gc_alloc_regions(evacuation_info);
4445 
4446   merge_per_thread_state_info(per_thread_states);
4447 
4448   // Reset and re-enable the hot card cache.
4449   // Note the counts for the cards in the regions in the
4450   // collection set are reset when the collection set is freed.
4451   _hot_card_cache->reset_hot_cache();
4452   _hot_card_cache->set_use_cache(true);
4453 
4454   purge_code_root_memory();
4455 
4456   redirty_logged_cards();
4457 #if defined(COMPILER2) || INCLUDE_JVMCI
4458   double start = os::elapsedTime();
4459   DerivedPointerTable::update_pointers();
4460   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4461 #endif
4462   g1_policy()->print_age_table();
4463 }
4464 
4465 void G1CollectedHeap::record_obj_copy_mem_stats() {
4466   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4467 
4468   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4469                                                create_g1_evac_summary(&_old_evac_stats));
4470 }
4471 
4472 void G1CollectedHeap::free_region(HeapRegion* hr,
4473                                   FreeRegionList* free_list,
4474                                   bool skip_remset,
4475                                   bool skip_hot_card_cache,
4476                                   bool locked) {
4477   assert(!hr->is_free(), "the region should not be free");
4478   assert(!hr->is_empty(), "the region should not be empty");
4479   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4480   assert(free_list != NULL, "pre-condition");
4481 
4482   if (G1VerifyBitmaps) {
4483     MemRegion mr(hr->bottom(), hr->end());
4484     concurrent_mark()->clearRangePrevBitmap(mr);
4485   }
4486 
4487   // Clear the card counts for this region.
4488   // Note: we only need to do this if the region is not young
4489   // (since we don't refine cards in young regions).
4490   if (!skip_hot_card_cache && !hr->is_young()) {
4491     _hot_card_cache->reset_card_counts(hr);
4492   }
4493   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4494   free_list->add_ordered(hr);
4495 }
4496 
4497 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4498                                             FreeRegionList* free_list,
4499                                             bool skip_remset) {
4500   assert(hr->is_humongous(), "this is only for humongous regions");
4501   assert(free_list != NULL, "pre-condition");
4502   hr->clear_humongous();
4503   free_region(hr, free_list, skip_remset);
4504 }
4505 
4506 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4507                                            const uint humongous_regions_removed) {
4508   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4509     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4510     _old_set.bulk_remove(old_regions_removed);
4511     _humongous_set.bulk_remove(humongous_regions_removed);
4512   }
4513 
4514 }
4515 
4516 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4517   assert(list != NULL, "list can't be null");
4518   if (!list->is_empty()) {
4519     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4520     _hrm.insert_list_into_free_list(list);
4521   }
4522 }
4523 
4524 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4525   decrease_used(bytes);
4526 }
4527 
4528 class G1ParScrubRemSetTask: public AbstractGangTask {
4529 protected:
4530   G1RemSet* _g1rs;
4531   HeapRegionClaimer _hrclaimer;
4532 
4533 public:
4534   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4535     AbstractGangTask("G1 ScrubRS"),
4536     _g1rs(g1_rs),
4537     _hrclaimer(num_workers) {
4538   }
4539 
4540   void work(uint worker_id) {
4541     _g1rs->scrub(worker_id, &_hrclaimer);
4542   }
4543 };
4544 
4545 void G1CollectedHeap::scrub_rem_set() {
4546   uint num_workers = workers()->active_workers();
4547   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4548   workers()->run_task(&g1_par_scrub_rs_task);
4549 }
4550 
4551 class G1FreeCollectionSetTask : public AbstractGangTask {
4552 private:
4553 
4554   // Closure applied to all regions in the collection set to do work that needs to
4555   // be done serially in a single thread.
4556   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4557   private:
4558     EvacuationInfo* _evacuation_info;
4559     const size_t* _surviving_young_words;
4560 
4561     // Bytes used in successfully evacuated regions before the evacuation.
4562     size_t _before_used_bytes;
4563     // Bytes used in unsucessfully evacuated regions before the evacuation
4564     size_t _after_used_bytes;
4565 
4566     size_t _bytes_allocated_in_old_since_last_gc;
4567 
4568     size_t _failure_used_words;
4569     size_t _failure_waste_words;
4570 
4571     FreeRegionList _local_free_list;
4572   public:
4573     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4574       HeapRegionClosure(),
4575       _evacuation_info(evacuation_info),
4576       _surviving_young_words(surviving_young_words),
4577       _before_used_bytes(0),
4578       _after_used_bytes(0),
4579       _bytes_allocated_in_old_since_last_gc(0),
4580       _failure_used_words(0),
4581       _failure_waste_words(0),
4582       _local_free_list("Local Region List for CSet Freeing") {
4583     }
4584 
4585     virtual bool doHeapRegion(HeapRegion* r) {
4586       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4587 
4588       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4589       g1h->clear_in_cset(r);
4590 
4591       if (r->is_young()) {
4592         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4593                "Young index %d is wrong for region %u of type %s with %u young regions",
4594                r->young_index_in_cset(),
4595                r->hrm_index(),
4596                r->get_type_str(),
4597                g1h->collection_set()->young_region_length());
4598         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4599         r->record_surv_words_in_group(words_survived);
4600       }
4601 
4602       if (!r->evacuation_failed()) {
4603         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4604         _before_used_bytes += r->used();
4605         g1h->free_region(r,
4606                          &_local_free_list,
4607                          true, /* skip_remset */
4608                          true, /* skip_hot_card_cache */
4609                          true  /* locked */);
4610       } else {
4611         r->uninstall_surv_rate_group();
4612         r->set_young_index_in_cset(-1);
4613         r->set_evacuation_failed(false);
4614         // When moving a young gen region to old gen, we "allocate" that whole region
4615         // there. This is in addition to any already evacuated objects. Notify the
4616         // policy about that.
4617         // Old gen regions do not cause an additional allocation: both the objects
4618         // still in the region and the ones already moved are accounted for elsewhere.
4619         if (r->is_young()) {
4620           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4621         }
4622         // The region is now considered to be old.
4623         r->set_old();
4624         // Do some allocation statistics accounting. Regions that failed evacuation
4625         // are always made old, so there is no need to update anything in the young
4626         // gen statistics, but we need to update old gen statistics.
4627         size_t used_words = r->marked_bytes() / HeapWordSize;
4628 
4629         _failure_used_words += used_words;
4630         _failure_waste_words += HeapRegion::GrainWords - used_words;
4631 
4632         g1h->old_set_add(r);
4633         _after_used_bytes += r->used();
4634       }
4635       return false;
4636     }
4637 
4638     void complete_work() {
4639       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4640 
4641       _evacuation_info->set_regions_freed(_local_free_list.length());
4642       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4643 
4644       g1h->prepend_to_freelist(&_local_free_list);
4645       g1h->decrement_summary_bytes(_before_used_bytes);
4646 
4647       G1Policy* policy = g1h->g1_policy();
4648       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4649 
4650       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4651     }
4652   };
4653 
4654   G1CollectionSet* _collection_set;
4655   G1SerialFreeCollectionSetClosure _cl;
4656   const size_t* _surviving_young_words;
4657 
4658   size_t _rs_lengths;
4659 
4660   volatile jint _serial_work_claim;
4661 
4662   struct WorkItem {
4663     uint region_idx;
4664     bool is_young;
4665     bool evacuation_failed;
4666 
4667     WorkItem(HeapRegion* r) {
4668       region_idx = r->hrm_index();
4669       is_young = r->is_young();
4670       evacuation_failed = r->evacuation_failed();
4671     }
4672   };
4673 
4674   volatile size_t _parallel_work_claim;
4675   size_t _num_work_items;
4676   WorkItem* _work_items;
4677 
4678   void do_serial_work() {
4679     // Need to grab the lock to be allowed to modify the old region list.
4680     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4681     _collection_set->iterate(&_cl);
4682   }
4683 
4684   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4685     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4686 
4687     HeapRegion* r = g1h->region_at(region_idx);
4688     assert(!g1h->is_on_master_free_list(r), "sanity");
4689 
4690     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4691 
4692     if (!is_young) {
4693       g1h->_hot_card_cache->reset_card_counts(r);
4694     }
4695 
4696     if (!evacuation_failed) {
4697       r->rem_set()->clear_locked();
4698     }
4699   }
4700 
4701   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4702   private:
4703     size_t _cur_idx;
4704     WorkItem* _work_items;
4705   public:
4706     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4707 
4708     virtual bool doHeapRegion(HeapRegion* r) {
4709       _work_items[_cur_idx++] = WorkItem(r);
4710       return false;
4711     }
4712   };
4713 
4714   void prepare_work() {
4715     G1PrepareFreeCollectionSetClosure cl(_work_items);
4716     _collection_set->iterate(&cl);
4717   }
4718 
4719   void complete_work() {
4720     _cl.complete_work();
4721 
4722     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4723     policy->record_max_rs_lengths(_rs_lengths);
4724     policy->cset_regions_freed();
4725   }
4726 public:
4727   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4728     AbstractGangTask("G1 Free Collection Set"),
4729     _cl(evacuation_info, surviving_young_words),
4730     _collection_set(collection_set),
4731     _surviving_young_words(surviving_young_words),
4732     _serial_work_claim(0),
4733     _rs_lengths(0),
4734     _parallel_work_claim(0),
4735     _num_work_items(collection_set->region_length()),
4736     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4737     prepare_work();
4738   }
4739 
4740   ~G1FreeCollectionSetTask() {
4741     complete_work();
4742     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4743   }
4744 
4745   // Chunk size for work distribution. The chosen value has been determined experimentally
4746   // to be a good tradeoff between overhead and achievable parallelism.
4747   static uint chunk_size() { return 32; }
4748 
4749   virtual void work(uint worker_id) {
4750     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4751 
4752     // Claim serial work.
4753     if (_serial_work_claim == 0) {
4754       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4755       if (value == 0) {
4756         double serial_time = os::elapsedTime();
4757         do_serial_work();
4758         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4759       }
4760     }
4761 
4762     // Start parallel work.
4763     double young_time = 0.0;
4764     bool has_young_time = false;
4765     double non_young_time = 0.0;
4766     bool has_non_young_time = false;
4767 
4768     while (true) {
4769       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4770       size_t cur = end - chunk_size();
4771 
4772       if (cur >= _num_work_items) {
4773         break;
4774       }
4775 
4776       double start_time = os::elapsedTime();
4777 
4778       end = MIN2(end, _num_work_items);
4779 
4780       for (; cur < end; cur++) {
4781         bool is_young = _work_items[cur].is_young;
4782 
4783         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4784 
4785         double end_time = os::elapsedTime();
4786         double time_taken = end_time - start_time;
4787         if (is_young) {
4788           young_time += time_taken;
4789           has_young_time = true;
4790         } else {
4791           non_young_time += time_taken;
4792           has_non_young_time = true;
4793         }
4794         start_time = end_time;
4795       }
4796     }
4797 
4798     if (has_young_time) {
4799       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4800     }
4801     if (has_non_young_time) {
4802       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4803     }
4804   }
4805 };
4806 
4807 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4808   _eden.clear();
4809 
4810   double free_cset_start_time = os::elapsedTime();
4811 
4812   {
4813     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4814     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4815 
4816     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4817 
4818     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4819                         cl.name(),
4820                         num_workers,
4821                         _collection_set.region_length());
4822     workers()->run_task(&cl, num_workers);
4823   }
4824   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4825 
4826   collection_set->clear();
4827 }
4828 
4829 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4830  private:
4831   FreeRegionList* _free_region_list;
4832   HeapRegionSet* _proxy_set;
4833   uint _humongous_objects_reclaimed;
4834   uint _humongous_regions_reclaimed;
4835   size_t _freed_bytes;
4836  public:
4837 
4838   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4839     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4840   }
4841 
4842   virtual bool doHeapRegion(HeapRegion* r) {
4843     if (!r->is_starts_humongous()) {
4844       return false;
4845     }
4846 
4847     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4848 
4849     oop obj = (oop)r->bottom();
4850     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4851 
4852     // The following checks whether the humongous object is live are sufficient.
4853     // The main additional check (in addition to having a reference from the roots
4854     // or the young gen) is whether the humongous object has a remembered set entry.
4855     //
4856     // A humongous object cannot be live if there is no remembered set for it
4857     // because:
4858     // - there can be no references from within humongous starts regions referencing
4859     // the object because we never allocate other objects into them.
4860     // (I.e. there are no intra-region references that may be missed by the
4861     // remembered set)
4862     // - as soon there is a remembered set entry to the humongous starts region
4863     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4864     // until the end of a concurrent mark.
4865     //
4866     // It is not required to check whether the object has been found dead by marking
4867     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4868     // all objects allocated during that time are considered live.
4869     // SATB marking is even more conservative than the remembered set.
4870     // So if at this point in the collection there is no remembered set entry,
4871     // nobody has a reference to it.
4872     // At the start of collection we flush all refinement logs, and remembered sets
4873     // are completely up-to-date wrt to references to the humongous object.
4874     //
4875     // Other implementation considerations:
4876     // - never consider object arrays at this time because they would pose
4877     // considerable effort for cleaning up the the remembered sets. This is
4878     // required because stale remembered sets might reference locations that
4879     // are currently allocated into.
4880     uint region_idx = r->hrm_index();
4881     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4882         !r->rem_set()->is_empty()) {
4883       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4884                                region_idx,
4885                                (size_t)obj->size() * HeapWordSize,
4886                                p2i(r->bottom()),
4887                                r->rem_set()->occupied(),
4888                                r->rem_set()->strong_code_roots_list_length(),
4889                                next_bitmap->isMarked(r->bottom()),
4890                                g1h->is_humongous_reclaim_candidate(region_idx),
4891                                obj->is_typeArray()
4892                               );
4893       return false;
4894     }
4895 
4896     guarantee(obj->is_typeArray(),
4897               "Only eagerly reclaiming type arrays is supported, but the object "
4898               PTR_FORMAT " is not.", p2i(r->bottom()));
4899 
4900     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4901                              region_idx,
4902                              (size_t)obj->size() * HeapWordSize,
4903                              p2i(r->bottom()),
4904                              r->rem_set()->occupied(),
4905                              r->rem_set()->strong_code_roots_list_length(),
4906                              next_bitmap->isMarked(r->bottom()),
4907                              g1h->is_humongous_reclaim_candidate(region_idx),
4908                              obj->is_typeArray()
4909                             );
4910 
4911     // Need to clear mark bit of the humongous object if already set.
4912     if (next_bitmap->isMarked(r->bottom())) {
4913       next_bitmap->clear(r->bottom());
4914     }
4915     _humongous_objects_reclaimed++;
4916     do {
4917       HeapRegion* next = g1h->next_region_in_humongous(r);
4918       _freed_bytes += r->used();
4919       r->set_containing_set(NULL);
4920       _humongous_regions_reclaimed++;
4921       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4922       r = next;
4923     } while (r != NULL);
4924 
4925     return false;
4926   }
4927 
4928   uint humongous_objects_reclaimed() {
4929     return _humongous_objects_reclaimed;
4930   }
4931 
4932   uint humongous_regions_reclaimed() {
4933     return _humongous_regions_reclaimed;
4934   }
4935 
4936   size_t bytes_freed() const {
4937     return _freed_bytes;
4938   }
4939 };
4940 
4941 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4942   assert_at_safepoint(true);
4943 
4944   if (!G1EagerReclaimHumongousObjects ||
4945       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4946     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4947     return;
4948   }
4949 
4950   double start_time = os::elapsedTime();
4951 
4952   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4953 
4954   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4955   heap_region_iterate(&cl);
4956 
4957   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4958 
4959   G1HRPrinter* hrp = hr_printer();
4960   if (hrp->is_active()) {
4961     FreeRegionListIterator iter(&local_cleanup_list);
4962     while (iter.more_available()) {
4963       HeapRegion* hr = iter.get_next();
4964       hrp->cleanup(hr);
4965     }
4966   }
4967 
4968   prepend_to_freelist(&local_cleanup_list);
4969   decrement_summary_bytes(cl.bytes_freed());
4970 
4971   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4972                                                                     cl.humongous_objects_reclaimed());
4973 }
4974 
4975 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4976 public:
4977   virtual bool doHeapRegion(HeapRegion* r) {
4978     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4979     G1CollectedHeap::heap()->clear_in_cset(r);
4980     r->set_young_index_in_cset(-1);
4981     return false;
4982   }
4983 };
4984 
4985 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4986   G1AbandonCollectionSetClosure cl;
4987   collection_set->iterate(&cl);
4988 
4989   collection_set->clear();
4990   collection_set->stop_incremental_building();
4991 }
4992 
4993 void G1CollectedHeap::set_free_regions_coming() {
4994   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
4995 
4996   assert(!free_regions_coming(), "pre-condition");
4997   _free_regions_coming = true;
4998 }
4999 
5000 void G1CollectedHeap::reset_free_regions_coming() {
5001   assert(free_regions_coming(), "pre-condition");
5002 
5003   {
5004     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5005     _free_regions_coming = false;
5006     SecondaryFreeList_lock->notify_all();
5007   }
5008 
5009   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5010 }
5011 
5012 void G1CollectedHeap::wait_while_free_regions_coming() {
5013   // Most of the time we won't have to wait, so let's do a quick test
5014   // first before we take the lock.
5015   if (!free_regions_coming()) {
5016     return;
5017   }
5018 
5019   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5020 
5021   {
5022     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5023     while (free_regions_coming()) {
5024       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5025     }
5026   }
5027 
5028   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5029 }
5030 
5031 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5032   return _allocator->is_retained_old_region(hr);
5033 }
5034 
5035 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5036   _eden.add(hr);
5037   _g1_policy->set_region_eden(hr);
5038 }
5039 
5040 #ifdef ASSERT
5041 
5042 class NoYoungRegionsClosure: public HeapRegionClosure {
5043 private:
5044   bool _success;
5045 public:
5046   NoYoungRegionsClosure() : _success(true) { }
5047   bool doHeapRegion(HeapRegion* r) {
5048     if (r->is_young()) {
5049       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5050                             p2i(r->bottom()), p2i(r->end()));
5051       _success = false;
5052     }
5053     return false;
5054   }
5055   bool success() { return _success; }
5056 };
5057 
5058 bool G1CollectedHeap::check_young_list_empty() {
5059   bool ret = (young_regions_count() == 0);
5060 
5061   NoYoungRegionsClosure closure;
5062   heap_region_iterate(&closure);
5063   ret = ret && closure.success();
5064 
5065   return ret;
5066 }
5067 
5068 #endif // ASSERT
5069 
5070 class TearDownRegionSetsClosure : public HeapRegionClosure {
5071 private:
5072   HeapRegionSet *_old_set;
5073 
5074 public:
5075   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5076 
5077   bool doHeapRegion(HeapRegion* r) {
5078     if (r->is_old()) {
5079       _old_set->remove(r);
5080     } else if(r->is_young()) {
5081       r->uninstall_surv_rate_group();
5082     } else {
5083       // We ignore free regions, we'll empty the free list afterwards.
5084       // We ignore humongous regions, we're not tearing down the
5085       // humongous regions set.
5086       assert(r->is_free() || r->is_humongous(),
5087              "it cannot be another type");
5088     }
5089     return false;
5090   }
5091 
5092   ~TearDownRegionSetsClosure() {
5093     assert(_old_set->is_empty(), "post-condition");
5094   }
5095 };
5096 
5097 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5098   assert_at_safepoint(true /* should_be_vm_thread */);
5099 
5100   if (!free_list_only) {
5101     TearDownRegionSetsClosure cl(&_old_set);
5102     heap_region_iterate(&cl);
5103 
5104     // Note that emptying the _young_list is postponed and instead done as
5105     // the first step when rebuilding the regions sets again. The reason for
5106     // this is that during a full GC string deduplication needs to know if
5107     // a collected region was young or old when the full GC was initiated.
5108   }
5109   _hrm.remove_all_free_regions();
5110 }
5111 
5112 void G1CollectedHeap::increase_used(size_t bytes) {
5113   _summary_bytes_used += bytes;
5114 }
5115 
5116 void G1CollectedHeap::decrease_used(size_t bytes) {
5117   assert(_summary_bytes_used >= bytes,
5118          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5119          _summary_bytes_used, bytes);
5120   _summary_bytes_used -= bytes;
5121 }
5122 
5123 void G1CollectedHeap::set_used(size_t bytes) {
5124   _summary_bytes_used = bytes;
5125 }
5126 
5127 class RebuildRegionSetsClosure : public HeapRegionClosure {
5128 private:
5129   bool            _free_list_only;
5130   HeapRegionSet*   _old_set;
5131   HeapRegionManager*   _hrm;
5132   size_t          _total_used;
5133 
5134 public:
5135   RebuildRegionSetsClosure(bool free_list_only,
5136                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5137     _free_list_only(free_list_only),
5138     _old_set(old_set), _hrm(hrm), _total_used(0) {
5139     assert(_hrm->num_free_regions() == 0, "pre-condition");
5140     if (!free_list_only) {
5141       assert(_old_set->is_empty(), "pre-condition");
5142     }
5143   }
5144 
5145   bool doHeapRegion(HeapRegion* r) {
5146     if (r->is_empty()) {
5147       // Add free regions to the free list
5148       r->set_free();
5149       r->set_allocation_context(AllocationContext::system());
5150       _hrm->insert_into_free_list(r);
5151     } else if (!_free_list_only) {
5152 
5153       if (r->is_humongous()) {
5154         // We ignore humongous regions. We left the humongous set unchanged.
5155       } else {
5156         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5157         // We now consider all regions old, so register as such. Leave
5158         // archive regions set that way, however, while still adding
5159         // them to the old set.
5160         if (!r->is_archive()) {
5161           r->set_old();
5162         }
5163         _old_set->add(r);
5164       }
5165       _total_used += r->used();
5166     }
5167 
5168     return false;
5169   }
5170 
5171   size_t total_used() {
5172     return _total_used;
5173   }
5174 };
5175 
5176 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5177   assert_at_safepoint(true /* should_be_vm_thread */);
5178 
5179   if (!free_list_only) {
5180     _eden.clear();
5181     _survivor.clear();
5182   }
5183 
5184   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5185   heap_region_iterate(&cl);
5186 
5187   if (!free_list_only) {
5188     set_used(cl.total_used());
5189     if (_archive_allocator != NULL) {
5190       _archive_allocator->clear_used();
5191     }
5192   }
5193   assert(used_unlocked() == recalculate_used(),
5194          "inconsistent used_unlocked(), "
5195          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5196          used_unlocked(), recalculate_used());
5197 }
5198 
5199 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5200   _refine_cte_cl->set_concurrent(concurrent);
5201 }
5202 
5203 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5204   HeapRegion* hr = heap_region_containing(p);
5205   return hr->is_in(p);
5206 }
5207 
5208 // Methods for the mutator alloc region
5209 
5210 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5211                                                       bool force) {
5212   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5213   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5214   if (force || should_allocate) {
5215     HeapRegion* new_alloc_region = new_region(word_size,
5216                                               false /* is_old */,
5217                                               false /* do_expand */);
5218     if (new_alloc_region != NULL) {
5219       set_region_short_lived_locked(new_alloc_region);
5220       _hr_printer.alloc(new_alloc_region, !should_allocate);
5221       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5222       return new_alloc_region;
5223     }
5224   }
5225   return NULL;
5226 }
5227 
5228 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5229                                                   size_t allocated_bytes) {
5230   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5231   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5232 
5233   collection_set()->add_eden_region(alloc_region);
5234   increase_used(allocated_bytes);
5235   _hr_printer.retire(alloc_region);
5236   // We update the eden sizes here, when the region is retired,
5237   // instead of when it's allocated, since this is the point that its
5238   // used space has been recored in _summary_bytes_used.
5239   g1mm()->update_eden_size();
5240 }
5241 
5242 // Methods for the GC alloc regions
5243 
5244 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5245   if (dest.is_old()) {
5246     return true;
5247   } else {
5248     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5249   }
5250 }
5251 
5252 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5253   assert(FreeList_lock->owned_by_self(), "pre-condition");
5254 
5255   if (!has_more_regions(dest)) {
5256     return NULL;
5257   }
5258 
5259   const bool is_survivor = dest.is_young();
5260 
5261   HeapRegion* new_alloc_region = new_region(word_size,
5262                                             !is_survivor,
5263                                             true /* do_expand */);
5264   if (new_alloc_region != NULL) {
5265     // We really only need to do this for old regions given that we
5266     // should never scan survivors. But it doesn't hurt to do it
5267     // for survivors too.
5268     new_alloc_region->record_timestamp();
5269     if (is_survivor) {
5270       new_alloc_region->set_survivor();
5271       _survivor.add(new_alloc_region);
5272       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5273     } else {
5274       new_alloc_region->set_old();
5275       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5276     }
5277     _hr_printer.alloc(new_alloc_region);
5278     bool during_im = collector_state()->during_initial_mark_pause();
5279     new_alloc_region->note_start_of_copying(during_im);
5280     return new_alloc_region;
5281   }
5282   return NULL;
5283 }
5284 
5285 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5286                                              size_t allocated_bytes,
5287                                              InCSetState dest) {
5288   bool during_im = collector_state()->during_initial_mark_pause();
5289   alloc_region->note_end_of_copying(during_im);
5290   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5291   if (dest.is_old()) {
5292     _old_set.add(alloc_region);
5293   }
5294   _hr_printer.retire(alloc_region);
5295 }
5296 
5297 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5298   bool expanded = false;
5299   uint index = _hrm.find_highest_free(&expanded);
5300 
5301   if (index != G1_NO_HRM_INDEX) {
5302     if (expanded) {
5303       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5304                                 HeapRegion::GrainWords * HeapWordSize);
5305     }
5306     _hrm.allocate_free_regions_starting_at(index, 1);
5307     return region_at(index);
5308   }
5309   return NULL;
5310 }
5311 
5312 // Optimized nmethod scanning
5313 
5314 class RegisterNMethodOopClosure: public OopClosure {
5315   G1CollectedHeap* _g1h;
5316   nmethod* _nm;
5317 
5318   template <class T> void do_oop_work(T* p) {
5319     T heap_oop = oopDesc::load_heap_oop(p);
5320     if (!oopDesc::is_null(heap_oop)) {
5321       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5322       HeapRegion* hr = _g1h->heap_region_containing(obj);
5323       assert(!hr->is_continues_humongous(),
5324              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5325              " starting at " HR_FORMAT,
5326              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5327 
5328       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5329       hr->add_strong_code_root_locked(_nm);
5330     }
5331   }
5332 
5333 public:
5334   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5335     _g1h(g1h), _nm(nm) {}
5336 
5337   void do_oop(oop* p)       { do_oop_work(p); }
5338   void do_oop(narrowOop* p) { do_oop_work(p); }
5339 };
5340 
5341 class UnregisterNMethodOopClosure: public OopClosure {
5342   G1CollectedHeap* _g1h;
5343   nmethod* _nm;
5344 
5345   template <class T> void do_oop_work(T* p) {
5346     T heap_oop = oopDesc::load_heap_oop(p);
5347     if (!oopDesc::is_null(heap_oop)) {
5348       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5349       HeapRegion* hr = _g1h->heap_region_containing(obj);
5350       assert(!hr->is_continues_humongous(),
5351              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5352              " starting at " HR_FORMAT,
5353              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5354 
5355       hr->remove_strong_code_root(_nm);
5356     }
5357   }
5358 
5359 public:
5360   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5361     _g1h(g1h), _nm(nm) {}
5362 
5363   void do_oop(oop* p)       { do_oop_work(p); }
5364   void do_oop(narrowOop* p) { do_oop_work(p); }
5365 };
5366 
5367 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5368   CollectedHeap::register_nmethod(nm);
5369 
5370   guarantee(nm != NULL, "sanity");
5371   RegisterNMethodOopClosure reg_cl(this, nm);
5372   nm->oops_do(&reg_cl);
5373 }
5374 
5375 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5376   CollectedHeap::unregister_nmethod(nm);
5377 
5378   guarantee(nm != NULL, "sanity");
5379   UnregisterNMethodOopClosure reg_cl(this, nm);
5380   nm->oops_do(&reg_cl, true);
5381 }
5382 
5383 void G1CollectedHeap::purge_code_root_memory() {
5384   double purge_start = os::elapsedTime();
5385   G1CodeRootSet::purge();
5386   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5387   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5388 }
5389 
5390 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5391   G1CollectedHeap* _g1h;
5392 
5393 public:
5394   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5395     _g1h(g1h) {}
5396 
5397   void do_code_blob(CodeBlob* cb) {
5398     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5399     if (nm == NULL) {
5400       return;
5401     }
5402 
5403     if (ScavengeRootsInCode) {
5404       _g1h->register_nmethod(nm);
5405     }
5406   }
5407 };
5408 
5409 void G1CollectedHeap::rebuild_strong_code_roots() {
5410   RebuildStrongCodeRootClosure blob_cl(this);
5411   CodeCache::blobs_do(&blob_cl);
5412 }