1 /* 2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "ci/ciReplay.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compileLog.hpp" 34 #include "compiler/disassembler.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shenandoah/brooksPointer.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "opto/addnode.hpp" 39 #include "opto/block.hpp" 40 #include "opto/c2compiler.hpp" 41 #include "opto/callGenerator.hpp" 42 #include "opto/callnode.hpp" 43 #include "opto/castnode.hpp" 44 #include "opto/cfgnode.hpp" 45 #include "opto/chaitin.hpp" 46 #include "opto/compile.hpp" 47 #include "opto/connode.hpp" 48 #include "opto/convertnode.hpp" 49 #include "opto/divnode.hpp" 50 #include "opto/escape.hpp" 51 #include "opto/idealGraphPrinter.hpp" 52 #include "opto/loopnode.hpp" 53 #include "opto/machnode.hpp" 54 #include "opto/macro.hpp" 55 #include "opto/matcher.hpp" 56 #include "opto/mathexactnode.hpp" 57 #include "opto/memnode.hpp" 58 #include "opto/mulnode.hpp" 59 #include "opto/narrowptrnode.hpp" 60 #include "opto/node.hpp" 61 #include "opto/opcodes.hpp" 62 #include "opto/output.hpp" 63 #include "opto/parse.hpp" 64 #include "opto/phaseX.hpp" 65 #include "opto/rootnode.hpp" 66 #include "opto/runtime.hpp" 67 #include "opto/shenandoahSupport.hpp" 68 #include "opto/stringopts.hpp" 69 #include "opto/type.hpp" 70 #include "opto/vectornode.hpp" 71 #include "runtime/arguments.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/signature.hpp" 74 #include "runtime/stubRoutines.hpp" 75 #include "runtime/timer.hpp" 76 #include "utilities/align.hpp" 77 #include "utilities/copy.hpp" 78 79 80 // -------------------- Compile::mach_constant_base_node ----------------------- 81 // Constant table base node singleton. 82 MachConstantBaseNode* Compile::mach_constant_base_node() { 83 if (_mach_constant_base_node == NULL) { 84 _mach_constant_base_node = new MachConstantBaseNode(); 85 _mach_constant_base_node->add_req(C->root()); 86 } 87 return _mach_constant_base_node; 88 } 89 90 91 /// Support for intrinsics. 92 93 // Return the index at which m must be inserted (or already exists). 94 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 95 class IntrinsicDescPair { 96 private: 97 ciMethod* _m; 98 bool _is_virtual; 99 public: 100 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 101 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 102 ciMethod* m= elt->method(); 103 ciMethod* key_m = key->_m; 104 if (key_m < m) return -1; 105 else if (key_m > m) return 1; 106 else { 107 bool is_virtual = elt->is_virtual(); 108 bool key_virtual = key->_is_virtual; 109 if (key_virtual < is_virtual) return -1; 110 else if (key_virtual > is_virtual) return 1; 111 else return 0; 112 } 113 } 114 }; 115 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 116 #ifdef ASSERT 117 for (int i = 1; i < _intrinsics->length(); i++) { 118 CallGenerator* cg1 = _intrinsics->at(i-1); 119 CallGenerator* cg2 = _intrinsics->at(i); 120 assert(cg1->method() != cg2->method() 121 ? cg1->method() < cg2->method() 122 : cg1->is_virtual() < cg2->is_virtual(), 123 "compiler intrinsics list must stay sorted"); 124 } 125 #endif 126 IntrinsicDescPair pair(m, is_virtual); 127 return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 128 } 129 130 void Compile::register_intrinsic(CallGenerator* cg) { 131 if (_intrinsics == NULL) { 132 _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL); 133 } 134 int len = _intrinsics->length(); 135 bool found = false; 136 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 137 assert(!found, "registering twice"); 138 _intrinsics->insert_before(index, cg); 139 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 140 } 141 142 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 143 assert(m->is_loaded(), "don't try this on unloaded methods"); 144 if (_intrinsics != NULL) { 145 bool found = false; 146 int index = intrinsic_insertion_index(m, is_virtual, found); 147 if (found) { 148 return _intrinsics->at(index); 149 } 150 } 151 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 152 if (m->intrinsic_id() != vmIntrinsics::_none && 153 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 154 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 155 if (cg != NULL) { 156 // Save it for next time: 157 register_intrinsic(cg); 158 return cg; 159 } else { 160 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 161 } 162 } 163 return NULL; 164 } 165 166 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined 167 // in library_call.cpp. 168 169 170 #ifndef PRODUCT 171 // statistics gathering... 172 173 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0}; 174 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0}; 175 176 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 177 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 178 int oflags = _intrinsic_hist_flags[id]; 179 assert(flags != 0, "what happened?"); 180 if (is_virtual) { 181 flags |= _intrinsic_virtual; 182 } 183 bool changed = (flags != oflags); 184 if ((flags & _intrinsic_worked) != 0) { 185 juint count = (_intrinsic_hist_count[id] += 1); 186 if (count == 1) { 187 changed = true; // first time 188 } 189 // increment the overall count also: 190 _intrinsic_hist_count[vmIntrinsics::_none] += 1; 191 } 192 if (changed) { 193 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 194 // Something changed about the intrinsic's virtuality. 195 if ((flags & _intrinsic_virtual) != 0) { 196 // This is the first use of this intrinsic as a virtual call. 197 if (oflags != 0) { 198 // We already saw it as a non-virtual, so note both cases. 199 flags |= _intrinsic_both; 200 } 201 } else if ((oflags & _intrinsic_both) == 0) { 202 // This is the first use of this intrinsic as a non-virtual 203 flags |= _intrinsic_both; 204 } 205 } 206 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags); 207 } 208 // update the overall flags also: 209 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags; 210 return changed; 211 } 212 213 static char* format_flags(int flags, char* buf) { 214 buf[0] = 0; 215 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 216 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 217 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 218 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 219 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 220 if (buf[0] == 0) strcat(buf, ","); 221 assert(buf[0] == ',', "must be"); 222 return &buf[1]; 223 } 224 225 void Compile::print_intrinsic_statistics() { 226 char flagsbuf[100]; 227 ttyLocker ttyl; 228 if (xtty != NULL) xtty->head("statistics type='intrinsic'"); 229 tty->print_cr("Compiler intrinsic usage:"); 230 juint total = _intrinsic_hist_count[vmIntrinsics::_none]; 231 if (total == 0) total = 1; // avoid div0 in case of no successes 232 #define PRINT_STAT_LINE(name, c, f) \ 233 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 234 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) { 235 vmIntrinsics::ID id = (vmIntrinsics::ID) index; 236 int flags = _intrinsic_hist_flags[id]; 237 juint count = _intrinsic_hist_count[id]; 238 if ((flags | count) != 0) { 239 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 240 } 241 } 242 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf)); 243 if (xtty != NULL) xtty->tail("statistics"); 244 } 245 246 void Compile::print_statistics() { 247 { ttyLocker ttyl; 248 if (xtty != NULL) xtty->head("statistics type='opto'"); 249 Parse::print_statistics(); 250 PhaseCCP::print_statistics(); 251 PhaseRegAlloc::print_statistics(); 252 Scheduling::print_statistics(); 253 PhasePeephole::print_statistics(); 254 PhaseIdealLoop::print_statistics(); 255 if (xtty != NULL) xtty->tail("statistics"); 256 } 257 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) { 258 // put this under its own <statistics> element. 259 print_intrinsic_statistics(); 260 } 261 } 262 #endif //PRODUCT 263 264 // Support for bundling info 265 Bundle* Compile::node_bundling(const Node *n) { 266 assert(valid_bundle_info(n), "oob"); 267 return &_node_bundling_base[n->_idx]; 268 } 269 270 bool Compile::valid_bundle_info(const Node *n) { 271 return (_node_bundling_limit > n->_idx); 272 } 273 274 275 void Compile::gvn_replace_by(Node* n, Node* nn) { 276 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 277 Node* use = n->last_out(i); 278 bool is_in_table = initial_gvn()->hash_delete(use); 279 uint uses_found = 0; 280 for (uint j = 0; j < use->len(); j++) { 281 if (use->in(j) == n) { 282 if (j < use->req()) 283 use->set_req(j, nn); 284 else 285 use->set_prec(j, nn); 286 uses_found++; 287 } 288 } 289 if (is_in_table) { 290 // reinsert into table 291 initial_gvn()->hash_find_insert(use); 292 } 293 record_for_igvn(use); 294 i -= uses_found; // we deleted 1 or more copies of this edge 295 } 296 } 297 298 299 static inline bool not_a_node(const Node* n) { 300 if (n == NULL) return true; 301 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 302 if (*(address*)n == badAddress) return true; // kill by Node::destruct 303 return false; 304 } 305 306 // Identify all nodes that are reachable from below, useful. 307 // Use breadth-first pass that records state in a Unique_Node_List, 308 // recursive traversal is slower. 309 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 310 int estimated_worklist_size = live_nodes(); 311 useful.map( estimated_worklist_size, NULL ); // preallocate space 312 313 // Initialize worklist 314 if (root() != NULL) { useful.push(root()); } 315 // If 'top' is cached, declare it useful to preserve cached node 316 if( cached_top_node() ) { useful.push(cached_top_node()); } 317 318 // Push all useful nodes onto the list, breadthfirst 319 for( uint next = 0; next < useful.size(); ++next ) { 320 assert( next < unique(), "Unique useful nodes < total nodes"); 321 Node *n = useful.at(next); 322 uint max = n->len(); 323 for( uint i = 0; i < max; ++i ) { 324 Node *m = n->in(i); 325 if (not_a_node(m)) continue; 326 useful.push(m); 327 } 328 } 329 } 330 331 // Update dead_node_list with any missing dead nodes using useful 332 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 333 void Compile::update_dead_node_list(Unique_Node_List &useful) { 334 uint max_idx = unique(); 335 VectorSet& useful_node_set = useful.member_set(); 336 337 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 338 // If node with index node_idx is not in useful set, 339 // mark it as dead in dead node list. 340 if (! useful_node_set.test(node_idx) ) { 341 record_dead_node(node_idx); 342 } 343 } 344 } 345 346 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 347 int shift = 0; 348 for (int i = 0; i < inlines->length(); i++) { 349 CallGenerator* cg = inlines->at(i); 350 CallNode* call = cg->call_node(); 351 if (shift > 0) { 352 inlines->at_put(i-shift, cg); 353 } 354 if (!useful.member(call)) { 355 shift++; 356 } 357 } 358 inlines->trunc_to(inlines->length()-shift); 359 } 360 361 // Disconnect all useless nodes by disconnecting those at the boundary. 362 void Compile::remove_useless_nodes(Unique_Node_List &useful) { 363 uint next = 0; 364 while (next < useful.size()) { 365 Node *n = useful.at(next++); 366 if (n->is_SafePoint()) { 367 // We're done with a parsing phase. Replaced nodes are not valid 368 // beyond that point. 369 n->as_SafePoint()->delete_replaced_nodes(); 370 } 371 // Use raw traversal of out edges since this code removes out edges 372 int max = n->outcnt(); 373 for (int j = 0; j < max; ++j) { 374 Node* child = n->raw_out(j); 375 if (! useful.member(child)) { 376 assert(!child->is_top() || child != top(), 377 "If top is cached in Compile object it is in useful list"); 378 // Only need to remove this out-edge to the useless node 379 n->raw_del_out(j); 380 --j; 381 --max; 382 } 383 } 384 if (n->outcnt() == 1 && n->has_special_unique_user()) { 385 record_for_igvn(n->unique_out()); 386 } 387 if (n->Opcode() == Op_AddP && CallLeafNode::has_only_g1_wb_pre_uses(n)) { 388 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 389 record_for_igvn(n->fast_out(i)); 390 } 391 } 392 } 393 // Remove useless macro and predicate opaq nodes 394 for (int i = C->macro_count()-1; i >= 0; i--) { 395 Node* n = C->macro_node(i); 396 if (!useful.member(n)) { 397 remove_macro_node(n); 398 } 399 } 400 // Remove useless CastII nodes with range check dependency 401 for (int i = range_check_cast_count() - 1; i >= 0; i--) { 402 Node* cast = range_check_cast_node(i); 403 if (!useful.member(cast)) { 404 remove_range_check_cast(cast); 405 } 406 } 407 // Remove useless expensive node 408 for (int i = C->expensive_count()-1; i >= 0; i--) { 409 Node* n = C->expensive_node(i); 410 if (!useful.member(n)) { 411 remove_expensive_node(n); 412 } 413 } 414 for (int i = C->shenandoah_barriers_count()-1; i >= 0; i--) { 415 ShenandoahWriteBarrierNode* n = C->shenandoah_barrier(i); 416 if (!useful.member(n)) { 417 remove_shenandoah_barrier(n); 418 } 419 } 420 // clean up the late inline lists 421 remove_useless_late_inlines(&_string_late_inlines, useful); 422 remove_useless_late_inlines(&_boxing_late_inlines, useful); 423 remove_useless_late_inlines(&_late_inlines, useful); 424 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 425 } 426 427 //------------------------------frame_size_in_words----------------------------- 428 // frame_slots in units of words 429 int Compile::frame_size_in_words() const { 430 // shift is 0 in LP32 and 1 in LP64 431 const int shift = (LogBytesPerWord - LogBytesPerInt); 432 int words = _frame_slots >> shift; 433 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" ); 434 return words; 435 } 436 437 // To bang the stack of this compiled method we use the stack size 438 // that the interpreter would need in case of a deoptimization. This 439 // removes the need to bang the stack in the deoptimization blob which 440 // in turn simplifies stack overflow handling. 441 int Compile::bang_size_in_bytes() const { 442 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size); 443 } 444 445 // ============================================================================ 446 //------------------------------CompileWrapper--------------------------------- 447 class CompileWrapper : public StackObj { 448 Compile *const _compile; 449 public: 450 CompileWrapper(Compile* compile); 451 452 ~CompileWrapper(); 453 }; 454 455 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 456 // the Compile* pointer is stored in the current ciEnv: 457 ciEnv* env = compile->env(); 458 assert(env == ciEnv::current(), "must already be a ciEnv active"); 459 assert(env->compiler_data() == NULL, "compile already active?"); 460 env->set_compiler_data(compile); 461 assert(compile == Compile::current(), "sanity"); 462 463 compile->set_type_dict(NULL); 464 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 465 compile->clone_map().set_clone_idx(0); 466 compile->set_type_hwm(NULL); 467 compile->set_type_last_size(0); 468 compile->set_last_tf(NULL, NULL); 469 compile->set_indexSet_arena(NULL); 470 compile->set_indexSet_free_block_list(NULL); 471 compile->init_type_arena(); 472 Type::Initialize(compile); 473 _compile->set_scratch_buffer_blob(NULL); 474 _compile->begin_method(); 475 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 476 } 477 CompileWrapper::~CompileWrapper() { 478 _compile->end_method(); 479 if (_compile->scratch_buffer_blob() != NULL) 480 BufferBlob::free(_compile->scratch_buffer_blob()); 481 _compile->env()->set_compiler_data(NULL); 482 } 483 484 485 //----------------------------print_compile_messages--------------------------- 486 void Compile::print_compile_messages() { 487 #ifndef PRODUCT 488 // Check if recompiling 489 if (_subsume_loads == false && PrintOpto) { 490 // Recompiling without allowing machine instructions to subsume loads 491 tty->print_cr("*********************************************************"); 492 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 493 tty->print_cr("*********************************************************"); 494 } 495 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) { 496 // Recompiling without escape analysis 497 tty->print_cr("*********************************************************"); 498 tty->print_cr("** Bailout: Recompile without escape analysis **"); 499 tty->print_cr("*********************************************************"); 500 } 501 if (_eliminate_boxing != EliminateAutoBox && PrintOpto) { 502 // Recompiling without boxing elimination 503 tty->print_cr("*********************************************************"); 504 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 505 tty->print_cr("*********************************************************"); 506 } 507 if (C->directive()->BreakAtCompileOption) { 508 // Open the debugger when compiling this method. 509 tty->print("### Breaking when compiling: "); 510 method()->print_short_name(); 511 tty->cr(); 512 BREAKPOINT; 513 } 514 515 if( PrintOpto ) { 516 if (is_osr_compilation()) { 517 tty->print("[OSR]%3d", _compile_id); 518 } else { 519 tty->print("%3d", _compile_id); 520 } 521 } 522 #endif 523 } 524 525 526 //-----------------------init_scratch_buffer_blob------------------------------ 527 // Construct a temporary BufferBlob and cache it for this compile. 528 void Compile::init_scratch_buffer_blob(int const_size) { 529 // If there is already a scratch buffer blob allocated and the 530 // constant section is big enough, use it. Otherwise free the 531 // current and allocate a new one. 532 BufferBlob* blob = scratch_buffer_blob(); 533 if ((blob != NULL) && (const_size <= _scratch_const_size)) { 534 // Use the current blob. 535 } else { 536 if (blob != NULL) { 537 BufferBlob::free(blob); 538 } 539 540 ResourceMark rm; 541 _scratch_const_size = const_size; 542 int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size); 543 blob = BufferBlob::create("Compile::scratch_buffer", size); 544 // Record the buffer blob for next time. 545 set_scratch_buffer_blob(blob); 546 // Have we run out of code space? 547 if (scratch_buffer_blob() == NULL) { 548 // Let CompilerBroker disable further compilations. 549 record_failure("Not enough space for scratch buffer in CodeCache"); 550 return; 551 } 552 } 553 554 // Initialize the relocation buffers 555 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size; 556 set_scratch_locs_memory(locs_buf); 557 } 558 559 560 //-----------------------scratch_emit_size------------------------------------- 561 // Helper function that computes size by emitting code 562 uint Compile::scratch_emit_size(const Node* n) { 563 // Start scratch_emit_size section. 564 set_in_scratch_emit_size(true); 565 566 // Emit into a trash buffer and count bytes emitted. 567 // This is a pretty expensive way to compute a size, 568 // but it works well enough if seldom used. 569 // All common fixed-size instructions are given a size 570 // method by the AD file. 571 // Note that the scratch buffer blob and locs memory are 572 // allocated at the beginning of the compile task, and 573 // may be shared by several calls to scratch_emit_size. 574 // The allocation of the scratch buffer blob is particularly 575 // expensive, since it has to grab the code cache lock. 576 BufferBlob* blob = this->scratch_buffer_blob(); 577 assert(blob != NULL, "Initialize BufferBlob at start"); 578 assert(blob->size() > MAX_inst_size, "sanity"); 579 relocInfo* locs_buf = scratch_locs_memory(); 580 address blob_begin = blob->content_begin(); 581 address blob_end = (address)locs_buf; 582 assert(blob->contains(blob_end), "sanity"); 583 CodeBuffer buf(blob_begin, blob_end - blob_begin); 584 buf.initialize_consts_size(_scratch_const_size); 585 buf.initialize_stubs_size(MAX_stubs_size); 586 assert(locs_buf != NULL, "sanity"); 587 int lsize = MAX_locs_size / 3; 588 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize); 589 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize); 590 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize); 591 // Mark as scratch buffer. 592 buf.consts()->set_scratch_emit(); 593 buf.insts()->set_scratch_emit(); 594 buf.stubs()->set_scratch_emit(); 595 596 // Do the emission. 597 598 Label fakeL; // Fake label for branch instructions. 599 Label* saveL = NULL; 600 uint save_bnum = 0; 601 bool is_branch = n->is_MachBranch(); 602 if (is_branch) { 603 MacroAssembler masm(&buf); 604 masm.bind(fakeL); 605 n->as_MachBranch()->save_label(&saveL, &save_bnum); 606 n->as_MachBranch()->label_set(&fakeL, 0); 607 } 608 n->emit(buf, this->regalloc()); 609 610 // Emitting into the scratch buffer should not fail 611 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason()); 612 613 if (is_branch) // Restore label. 614 n->as_MachBranch()->label_set(saveL, save_bnum); 615 616 // End scratch_emit_size section. 617 set_in_scratch_emit_size(false); 618 619 return buf.insts_size(); 620 } 621 622 623 // ============================================================================ 624 //------------------------------Compile standard------------------------------- 625 debug_only( int Compile::_debug_idx = 100000; ) 626 627 // Compile a method. entry_bci is -1 for normal compilations and indicates 628 // the continuation bci for on stack replacement. 629 630 631 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, 632 bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive) 633 : Phase(Compiler), 634 _env(ci_env), 635 _directive(directive), 636 _log(ci_env->log()), 637 _compile_id(ci_env->compile_id()), 638 _save_argument_registers(false), 639 _stub_name(NULL), 640 _stub_function(NULL), 641 _stub_entry_point(NULL), 642 _method(target), 643 _entry_bci(osr_bci), 644 _initial_gvn(NULL), 645 _for_igvn(NULL), 646 _warm_calls(NULL), 647 _subsume_loads(subsume_loads), 648 _do_escape_analysis(do_escape_analysis), 649 _eliminate_boxing(eliminate_boxing), 650 _failure_reason(NULL), 651 _code_buffer("Compile::Fill_buffer"), 652 _orig_pc_slot(0), 653 _orig_pc_slot_offset_in_bytes(0), 654 _has_method_handle_invokes(false), 655 _mach_constant_base_node(NULL), 656 _node_bundling_limit(0), 657 _node_bundling_base(NULL), 658 _java_calls(0), 659 _inner_loops(0), 660 _scratch_const_size(-1), 661 _in_scratch_emit_size(false), 662 _dead_node_list(comp_arena()), 663 _dead_node_count(0), 664 #ifndef PRODUCT 665 _trace_opto_output(directive->TraceOptoOutputOption), 666 _in_dump_cnt(0), 667 _printer(IdealGraphPrinter::printer()), 668 #endif 669 _congraph(NULL), 670 _comp_arena(mtCompiler), 671 _node_arena(mtCompiler), 672 _old_arena(mtCompiler), 673 _Compile_types(mtCompiler), 674 _replay_inline_data(NULL), 675 _late_inlines(comp_arena(), 2, 0, NULL), 676 _string_late_inlines(comp_arena(), 2, 0, NULL), 677 _boxing_late_inlines(comp_arena(), 2, 0, NULL), 678 _late_inlines_pos(0), 679 _number_of_mh_late_inlines(0), 680 _inlining_progress(false), 681 _inlining_incrementally(false), 682 _print_inlining_list(NULL), 683 _print_inlining_stream(NULL), 684 _print_inlining_idx(0), 685 _print_inlining_output(NULL), 686 _interpreter_frame_size(0), 687 _max_node_limit(MaxNodeLimit), 688 _has_reserved_stack_access(target->has_reserved_stack_access()) { 689 C = this; 690 #ifndef PRODUCT 691 if (_printer != NULL) { 692 _printer->set_compile(this); 693 } 694 #endif 695 CompileWrapper cw(this); 696 697 if (CITimeVerbose) { 698 tty->print(" "); 699 target->holder()->name()->print(); 700 tty->print("."); 701 target->print_short_name(); 702 tty->print(" "); 703 } 704 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 705 TraceTime t2(NULL, &_t_methodCompilation, CITime, false); 706 707 #ifndef PRODUCT 708 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 709 if (!print_opto_assembly) { 710 bool print_assembly = directive->PrintAssemblyOption; 711 if (print_assembly && !Disassembler::can_decode()) { 712 tty->print_cr("PrintAssembly request changed to PrintOptoAssembly"); 713 print_opto_assembly = true; 714 } 715 } 716 set_print_assembly(print_opto_assembly); 717 set_parsed_irreducible_loop(false); 718 719 if (directive->ReplayInlineOption) { 720 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 721 } 722 #endif 723 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 724 set_print_intrinsics(directive->PrintIntrinsicsOption); 725 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 726 727 if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) { 728 // Make sure the method being compiled gets its own MDO, 729 // so we can at least track the decompile_count(). 730 // Need MDO to record RTM code generation state. 731 method()->ensure_method_data(); 732 } 733 734 Init(::AliasLevel); 735 736 737 print_compile_messages(); 738 739 _ilt = InlineTree::build_inline_tree_root(); 740 741 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 742 assert(num_alias_types() >= AliasIdxRaw, ""); 743 744 #define MINIMUM_NODE_HASH 1023 745 // Node list that Iterative GVN will start with 746 Unique_Node_List for_igvn(comp_arena()); 747 set_for_igvn(&for_igvn); 748 749 // GVN that will be run immediately on new nodes 750 uint estimated_size = method()->code_size()*4+64; 751 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 752 PhaseGVN gvn(node_arena(), estimated_size); 753 set_initial_gvn(&gvn); 754 755 print_inlining_init(); 756 { // Scope for timing the parser 757 TracePhase tp("parse", &timers[_t_parser]); 758 759 // Put top into the hash table ASAP. 760 initial_gvn()->transform_no_reclaim(top()); 761 762 // Set up tf(), start(), and find a CallGenerator. 763 CallGenerator* cg = NULL; 764 if (is_osr_compilation()) { 765 const TypeTuple *domain = StartOSRNode::osr_domain(); 766 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 767 init_tf(TypeFunc::make(domain, range)); 768 StartNode* s = new StartOSRNode(root(), domain); 769 initial_gvn()->set_type_bottom(s); 770 init_start(s); 771 cg = CallGenerator::for_osr(method(), entry_bci()); 772 } else { 773 // Normal case. 774 init_tf(TypeFunc::make(method())); 775 StartNode* s = new StartNode(root(), tf()->domain()); 776 initial_gvn()->set_type_bottom(s); 777 init_start(s); 778 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && (UseG1GC || UseShenandoahGC)) { 779 // With java.lang.ref.reference.get() we must go through the 780 // intrinsic when G1 is enabled - even when get() is the root 781 // method of the compile - so that, if necessary, the value in 782 // the referent field of the reference object gets recorded by 783 // the pre-barrier code. 784 // Specifically, if G1 is enabled, the value in the referent 785 // field is recorded by the G1 SATB pre barrier. This will 786 // result in the referent being marked live and the reference 787 // object removed from the list of discovered references during 788 // reference processing. 789 cg = find_intrinsic(method(), false); 790 } 791 if (cg == NULL) { 792 float past_uses = method()->interpreter_invocation_count(); 793 float expected_uses = past_uses; 794 cg = CallGenerator::for_inline(method(), expected_uses); 795 } 796 } 797 if (failing()) return; 798 if (cg == NULL) { 799 record_method_not_compilable("cannot parse method"); 800 return; 801 } 802 JVMState* jvms = build_start_state(start(), tf()); 803 if ((jvms = cg->generate(jvms)) == NULL) { 804 if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) { 805 record_method_not_compilable("method parse failed"); 806 } 807 return; 808 } 809 GraphKit kit(jvms); 810 811 if (!kit.stopped()) { 812 // Accept return values, and transfer control we know not where. 813 // This is done by a special, unique ReturnNode bound to root. 814 return_values(kit.jvms()); 815 } 816 817 if (kit.has_exceptions()) { 818 // Any exceptions that escape from this call must be rethrown 819 // to whatever caller is dynamically above us on the stack. 820 // This is done by a special, unique RethrowNode bound to root. 821 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 822 } 823 824 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 825 826 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 827 inline_string_calls(true); 828 } 829 830 if (failing()) return; 831 832 print_method(PHASE_BEFORE_REMOVEUSELESS, 3); 833 834 // Remove clutter produced by parsing. 835 if (!failing()) { 836 ResourceMark rm; 837 PhaseRemoveUseless pru(initial_gvn(), &for_igvn); 838 } 839 } 840 841 // Note: Large methods are capped off in do_one_bytecode(). 842 if (failing()) return; 843 844 // After parsing, node notes are no longer automagic. 845 // They must be propagated by register_new_node_with_optimizer(), 846 // clone(), or the like. 847 set_default_node_notes(NULL); 848 849 for (;;) { 850 int successes = Inline_Warm(); 851 if (failing()) return; 852 if (successes == 0) break; 853 } 854 855 // Drain the list. 856 Finish_Warm(); 857 #ifndef PRODUCT 858 if (_printer && _printer->should_print(1)) { 859 _printer->print_inlining(); 860 } 861 #endif 862 863 if (failing()) return; 864 NOT_PRODUCT( verify_graph_edges(); ) 865 866 // Now optimize 867 Optimize(); 868 if (failing()) return; 869 NOT_PRODUCT( verify_graph_edges(); ) 870 871 #ifndef PRODUCT 872 if (PrintIdeal) { 873 ttyLocker ttyl; // keep the following output all in one block 874 // This output goes directly to the tty, not the compiler log. 875 // To enable tools to match it up with the compilation activity, 876 // be sure to tag this tty output with the compile ID. 877 if (xtty != NULL) { 878 xtty->head("ideal compile_id='%d'%s", compile_id(), 879 is_osr_compilation() ? " compile_kind='osr'" : 880 ""); 881 } 882 root()->dump(9999); 883 if (xtty != NULL) { 884 xtty->tail("ideal"); 885 } 886 } 887 #endif 888 889 NOT_PRODUCT( verify_barriers(); ) 890 891 // Dump compilation data to replay it. 892 if (directive->DumpReplayOption) { 893 env()->dump_replay_data(_compile_id); 894 } 895 if (directive->DumpInlineOption && (ilt() != NULL)) { 896 env()->dump_inline_data(_compile_id); 897 } 898 899 // Now that we know the size of all the monitors we can add a fixed slot 900 // for the original deopt pc. 901 902 _orig_pc_slot = fixed_slots(); 903 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size); 904 set_fixed_slots(next_slot); 905 906 // Compute when to use implicit null checks. Used by matching trap based 907 // nodes and NullCheck optimization. 908 set_allowed_deopt_reasons(); 909 910 // Now generate code 911 Code_Gen(); 912 if (failing()) return; 913 914 // Check if we want to skip execution of all compiled code. 915 { 916 #ifndef PRODUCT 917 if (OptoNoExecute) { 918 record_method_not_compilable("+OptoNoExecute"); // Flag as failed 919 return; 920 } 921 #endif 922 TracePhase tp("install_code", &timers[_t_registerMethod]); 923 924 if (is_osr_compilation()) { 925 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0); 926 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size); 927 } else { 928 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size); 929 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0); 930 } 931 932 env()->register_method(_method, _entry_bci, 933 &_code_offsets, 934 _orig_pc_slot_offset_in_bytes, 935 code_buffer(), 936 frame_size_in_words(), _oop_map_set, 937 &_handler_table, &_inc_table, 938 compiler, 939 has_unsafe_access(), 940 SharedRuntime::is_wide_vector(max_vector_size()), 941 rtm_state() 942 ); 943 944 if (log() != NULL) // Print code cache state into compiler log 945 log()->code_cache_state(); 946 } 947 } 948 949 //------------------------------Compile---------------------------------------- 950 // Compile a runtime stub 951 Compile::Compile( ciEnv* ci_env, 952 TypeFunc_generator generator, 953 address stub_function, 954 const char *stub_name, 955 int is_fancy_jump, 956 bool pass_tls, 957 bool save_arg_registers, 958 bool return_pc, 959 DirectiveSet* directive) 960 : Phase(Compiler), 961 _env(ci_env), 962 _directive(directive), 963 _log(ci_env->log()), 964 _compile_id(0), 965 _save_argument_registers(save_arg_registers), 966 _method(NULL), 967 _stub_name(stub_name), 968 _stub_function(stub_function), 969 _stub_entry_point(NULL), 970 _entry_bci(InvocationEntryBci), 971 _initial_gvn(NULL), 972 _for_igvn(NULL), 973 _warm_calls(NULL), 974 _orig_pc_slot(0), 975 _orig_pc_slot_offset_in_bytes(0), 976 _subsume_loads(true), 977 _do_escape_analysis(false), 978 _eliminate_boxing(false), 979 _failure_reason(NULL), 980 _code_buffer("Compile::Fill_buffer"), 981 _has_method_handle_invokes(false), 982 _mach_constant_base_node(NULL), 983 _node_bundling_limit(0), 984 _node_bundling_base(NULL), 985 _java_calls(0), 986 _inner_loops(0), 987 #ifndef PRODUCT 988 _trace_opto_output(directive->TraceOptoOutputOption), 989 _in_dump_cnt(0), 990 _printer(NULL), 991 #endif 992 _comp_arena(mtCompiler), 993 _node_arena(mtCompiler), 994 _old_arena(mtCompiler), 995 _Compile_types(mtCompiler), 996 _dead_node_list(comp_arena()), 997 _dead_node_count(0), 998 _congraph(NULL), 999 _replay_inline_data(NULL), 1000 _number_of_mh_late_inlines(0), 1001 _inlining_progress(false), 1002 _inlining_incrementally(false), 1003 _print_inlining_list(NULL), 1004 _print_inlining_stream(NULL), 1005 _print_inlining_idx(0), 1006 _print_inlining_output(NULL), 1007 _allowed_reasons(0), 1008 _interpreter_frame_size(0), 1009 _max_node_limit(MaxNodeLimit), 1010 _has_reserved_stack_access(false) { 1011 C = this; 1012 1013 TraceTime t1(NULL, &_t_totalCompilation, CITime, false); 1014 TraceTime t2(NULL, &_t_stubCompilation, CITime, false); 1015 1016 #ifndef PRODUCT 1017 set_print_assembly(PrintFrameConverterAssembly); 1018 set_parsed_irreducible_loop(false); 1019 #endif 1020 set_has_irreducible_loop(false); // no loops 1021 1022 CompileWrapper cw(this); 1023 Init(/*AliasLevel=*/ 0); 1024 init_tf((*generator)()); 1025 1026 { 1027 // The following is a dummy for the sake of GraphKit::gen_stub 1028 Unique_Node_List for_igvn(comp_arena()); 1029 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this 1030 PhaseGVN gvn(Thread::current()->resource_area(),255); 1031 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 1032 gvn.transform_no_reclaim(top()); 1033 1034 GraphKit kit; 1035 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 1036 } 1037 1038 NOT_PRODUCT( verify_graph_edges(); ) 1039 Code_Gen(); 1040 if (failing()) return; 1041 1042 1043 // Entry point will be accessed using compile->stub_entry_point(); 1044 if (code_buffer() == NULL) { 1045 Matcher::soft_match_failure(); 1046 } else { 1047 if (PrintAssembly && (WizardMode || Verbose)) 1048 tty->print_cr("### Stub::%s", stub_name); 1049 1050 if (!failing()) { 1051 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs"); 1052 1053 // Make the NMethod 1054 // For now we mark the frame as never safe for profile stackwalking 1055 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name, 1056 code_buffer(), 1057 CodeOffsets::frame_never_safe, 1058 // _code_offsets.value(CodeOffsets::Frame_Complete), 1059 frame_size_in_words(), 1060 _oop_map_set, 1061 save_arg_registers); 1062 assert(rs != NULL && rs->is_runtime_stub(), "sanity check"); 1063 1064 _stub_entry_point = rs->entry_point(); 1065 } 1066 } 1067 } 1068 1069 //------------------------------Init------------------------------------------- 1070 // Prepare for a single compilation 1071 void Compile::Init(int aliaslevel) { 1072 _unique = 0; 1073 _regalloc = NULL; 1074 1075 _tf = NULL; // filled in later 1076 _top = NULL; // cached later 1077 _matcher = NULL; // filled in later 1078 _cfg = NULL; // filled in later 1079 1080 set_24_bit_selection_and_mode(Use24BitFP, false); 1081 1082 _node_note_array = NULL; 1083 _default_node_notes = NULL; 1084 DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize() 1085 1086 _immutable_memory = NULL; // filled in at first inquiry 1087 1088 // Globally visible Nodes 1089 // First set TOP to NULL to give safe behavior during creation of RootNode 1090 set_cached_top_node(NULL); 1091 set_root(new RootNode()); 1092 // Now that you have a Root to point to, create the real TOP 1093 set_cached_top_node( new ConNode(Type::TOP) ); 1094 set_recent_alloc(NULL, NULL); 1095 1096 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1097 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1098 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1099 env()->set_dependencies(new Dependencies(env())); 1100 1101 _fixed_slots = 0; 1102 set_has_split_ifs(false); 1103 set_has_loops(has_method() && method()->has_loops()); // first approximation 1104 set_has_stringbuilder(false); 1105 set_has_boxed_value(false); 1106 _trap_can_recompile = false; // no traps emitted yet 1107 _major_progress = true; // start out assuming good things will happen 1108 set_has_unsafe_access(false); 1109 set_max_vector_size(0); 1110 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1111 set_decompile_count(0); 1112 1113 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1114 set_num_loop_opts(LoopOptsCount); 1115 set_do_inlining(Inline); 1116 set_max_inline_size(MaxInlineSize); 1117 set_freq_inline_size(FreqInlineSize); 1118 set_do_scheduling(OptoScheduling); 1119 set_do_count_invocations(false); 1120 set_do_method_data_update(false); 1121 1122 set_do_vector_loop(false); 1123 1124 if (AllowVectorizeOnDemand) { 1125 if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) { 1126 set_do_vector_loop(true); 1127 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1128 } else if (has_method() && method()->name() != 0 && 1129 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1130 set_do_vector_loop(true); 1131 } 1132 } 1133 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1134 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1135 1136 set_age_code(has_method() && method()->profile_aging()); 1137 set_rtm_state(NoRTM); // No RTM lock eliding by default 1138 _max_node_limit = _directive->MaxNodeLimitOption; 1139 1140 #if INCLUDE_RTM_OPT 1141 if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) { 1142 int rtm_state = method()->method_data()->rtm_state(); 1143 if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) { 1144 // Don't generate RTM lock eliding code. 1145 set_rtm_state(NoRTM); 1146 } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) { 1147 // Generate RTM lock eliding code without abort ratio calculation code. 1148 set_rtm_state(UseRTM); 1149 } else if (UseRTMDeopt) { 1150 // Generate RTM lock eliding code and include abort ratio calculation 1151 // code if UseRTMDeopt is on. 1152 set_rtm_state(ProfileRTM); 1153 } 1154 } 1155 #endif 1156 if (debug_info()->recording_non_safepoints()) { 1157 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1158 (comp_arena(), 8, 0, NULL)); 1159 set_default_node_notes(Node_Notes::make(this)); 1160 } 1161 1162 // // -- Initialize types before each compile -- 1163 // // Update cached type information 1164 // if( _method && _method->constants() ) 1165 // Type::update_loaded_types(_method, _method->constants()); 1166 1167 // Init alias_type map. 1168 if (!_do_escape_analysis && aliaslevel == 3) 1169 aliaslevel = 2; // No unique types without escape analysis 1170 _AliasLevel = aliaslevel; 1171 const int grow_ats = 16; 1172 _max_alias_types = grow_ats; 1173 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1174 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1175 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1176 { 1177 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1178 } 1179 // Initialize the first few types. 1180 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL); 1181 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1182 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1183 _num_alias_types = AliasIdxRaw+1; 1184 // Zero out the alias type cache. 1185 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1186 // A NULL adr_type hits in the cache right away. Preload the right answer. 1187 probe_alias_cache(NULL)->_index = AliasIdxTop; 1188 1189 _intrinsics = NULL; 1190 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1191 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1192 _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1193 _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1194 _shenandoah_barriers = new(comp_arena()) GrowableArray<ShenandoahWriteBarrierNode*>(comp_arena(), 8, 0, NULL); 1195 register_library_intrinsics(); 1196 } 1197 1198 //---------------------------init_start---------------------------------------- 1199 // Install the StartNode on this compile object. 1200 void Compile::init_start(StartNode* s) { 1201 if (failing()) 1202 return; // already failing 1203 assert(s == start(), ""); 1204 } 1205 1206 /** 1207 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1208 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1209 * the ideal graph. 1210 */ 1211 StartNode* Compile::start() const { 1212 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason()); 1213 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1214 Node* start = root()->fast_out(i); 1215 if (start->is_Start()) { 1216 return start->as_Start(); 1217 } 1218 } 1219 fatal("Did not find Start node!"); 1220 return NULL; 1221 } 1222 1223 //-------------------------------immutable_memory------------------------------------- 1224 // Access immutable memory 1225 Node* Compile::immutable_memory() { 1226 if (_immutable_memory != NULL) { 1227 return _immutable_memory; 1228 } 1229 StartNode* s = start(); 1230 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1231 Node *p = s->fast_out(i); 1232 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1233 _immutable_memory = p; 1234 return _immutable_memory; 1235 } 1236 } 1237 ShouldNotReachHere(); 1238 return NULL; 1239 } 1240 1241 //----------------------set_cached_top_node------------------------------------ 1242 // Install the cached top node, and make sure Node::is_top works correctly. 1243 void Compile::set_cached_top_node(Node* tn) { 1244 if (tn != NULL) verify_top(tn); 1245 Node* old_top = _top; 1246 _top = tn; 1247 // Calling Node::setup_is_top allows the nodes the chance to adjust 1248 // their _out arrays. 1249 if (_top != NULL) _top->setup_is_top(); 1250 if (old_top != NULL) old_top->setup_is_top(); 1251 assert(_top == NULL || top()->is_top(), ""); 1252 } 1253 1254 #ifdef ASSERT 1255 uint Compile::count_live_nodes_by_graph_walk() { 1256 Unique_Node_List useful(comp_arena()); 1257 // Get useful node list by walking the graph. 1258 identify_useful_nodes(useful); 1259 return useful.size(); 1260 } 1261 1262 void Compile::print_missing_nodes() { 1263 1264 // Return if CompileLog is NULL and PrintIdealNodeCount is false. 1265 if ((_log == NULL) && (! PrintIdealNodeCount)) { 1266 return; 1267 } 1268 1269 // This is an expensive function. It is executed only when the user 1270 // specifies VerifyIdealNodeCount option or otherwise knows the 1271 // additional work that needs to be done to identify reachable nodes 1272 // by walking the flow graph and find the missing ones using 1273 // _dead_node_list. 1274 1275 Unique_Node_List useful(comp_arena()); 1276 // Get useful node list by walking the graph. 1277 identify_useful_nodes(useful); 1278 1279 uint l_nodes = C->live_nodes(); 1280 uint l_nodes_by_walk = useful.size(); 1281 1282 if (l_nodes != l_nodes_by_walk) { 1283 if (_log != NULL) { 1284 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1285 _log->stamp(); 1286 _log->end_head(); 1287 } 1288 VectorSet& useful_member_set = useful.member_set(); 1289 int last_idx = l_nodes_by_walk; 1290 for (int i = 0; i < last_idx; i++) { 1291 if (useful_member_set.test(i)) { 1292 if (_dead_node_list.test(i)) { 1293 if (_log != NULL) { 1294 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1295 } 1296 if (PrintIdealNodeCount) { 1297 // Print the log message to tty 1298 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1299 useful.at(i)->dump(); 1300 } 1301 } 1302 } 1303 else if (! _dead_node_list.test(i)) { 1304 if (_log != NULL) { 1305 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1306 } 1307 if (PrintIdealNodeCount) { 1308 // Print the log message to tty 1309 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1310 } 1311 } 1312 } 1313 if (_log != NULL) { 1314 _log->tail("mismatched_nodes"); 1315 } 1316 } 1317 } 1318 void Compile::record_modified_node(Node* n) { 1319 if (_modified_nodes != NULL && !_inlining_incrementally && 1320 n->outcnt() != 0 && !n->is_Con()) { 1321 _modified_nodes->push(n); 1322 } 1323 } 1324 1325 void Compile::remove_modified_node(Node* n) { 1326 if (_modified_nodes != NULL) { 1327 _modified_nodes->remove(n); 1328 } 1329 } 1330 #endif 1331 1332 #ifndef PRODUCT 1333 void Compile::verify_top(Node* tn) const { 1334 if (tn != NULL) { 1335 assert(tn->is_Con(), "top node must be a constant"); 1336 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1337 assert(tn->in(0) != NULL, "must have live top node"); 1338 } 1339 } 1340 #endif 1341 1342 1343 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1344 1345 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1346 guarantee(arr != NULL, ""); 1347 int num_blocks = arr->length(); 1348 if (grow_by < num_blocks) grow_by = num_blocks; 1349 int num_notes = grow_by * _node_notes_block_size; 1350 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1351 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1352 while (num_notes > 0) { 1353 arr->append(notes); 1354 notes += _node_notes_block_size; 1355 num_notes -= _node_notes_block_size; 1356 } 1357 assert(num_notes == 0, "exact multiple, please"); 1358 } 1359 1360 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1361 if (source == NULL || dest == NULL) return false; 1362 1363 if (dest->is_Con()) 1364 return false; // Do not push debug info onto constants. 1365 1366 #ifdef ASSERT 1367 // Leave a bread crumb trail pointing to the original node: 1368 if (dest != NULL && dest != source && dest->debug_orig() == NULL) { 1369 dest->set_debug_orig(source); 1370 } 1371 #endif 1372 1373 if (node_note_array() == NULL) 1374 return false; // Not collecting any notes now. 1375 1376 // This is a copy onto a pre-existing node, which may already have notes. 1377 // If both nodes have notes, do not overwrite any pre-existing notes. 1378 Node_Notes* source_notes = node_notes_at(source->_idx); 1379 if (source_notes == NULL || source_notes->is_clear()) return false; 1380 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1381 if (dest_notes == NULL || dest_notes->is_clear()) { 1382 return set_node_notes_at(dest->_idx, source_notes); 1383 } 1384 1385 Node_Notes merged_notes = (*source_notes); 1386 // The order of operations here ensures that dest notes will win... 1387 merged_notes.update_from(dest_notes); 1388 return set_node_notes_at(dest->_idx, &merged_notes); 1389 } 1390 1391 1392 //--------------------------allow_range_check_smearing------------------------- 1393 // Gating condition for coalescing similar range checks. 1394 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1395 // single covering check that is at least as strong as any of them. 1396 // If the optimization succeeds, the simplified (strengthened) range check 1397 // will always succeed. If it fails, we will deopt, and then give up 1398 // on the optimization. 1399 bool Compile::allow_range_check_smearing() const { 1400 // If this method has already thrown a range-check, 1401 // assume it was because we already tried range smearing 1402 // and it failed. 1403 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1404 return !already_trapped; 1405 } 1406 1407 1408 //------------------------------flatten_alias_type----------------------------- 1409 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1410 int offset = tj->offset(); 1411 TypePtr::PTR ptr = tj->ptr(); 1412 1413 // Known instance (scalarizable allocation) alias only with itself. 1414 bool is_known_inst = tj->isa_oopptr() != NULL && 1415 tj->is_oopptr()->is_known_instance(); 1416 1417 // Process weird unsafe references. 1418 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1419 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops"); 1420 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1421 tj = TypeOopPtr::BOTTOM; 1422 ptr = tj->ptr(); 1423 offset = tj->offset(); 1424 } 1425 1426 // Array pointers need some flattening 1427 const TypeAryPtr *ta = tj->isa_aryptr(); 1428 if (ta && ta->is_stable()) { 1429 // Erase stability property for alias analysis. 1430 tj = ta = ta->cast_to_stable(false); 1431 } 1432 if( ta && is_known_inst ) { 1433 if ( offset != Type::OffsetBot && 1434 offset > arrayOopDesc::length_offset_in_bytes() ) { 1435 offset = Type::OffsetBot; // Flatten constant access into array body only 1436 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id()); 1437 } 1438 } else if( ta && _AliasLevel >= 2 ) { 1439 // For arrays indexed by constant indices, we flatten the alias 1440 // space to include all of the array body. Only the header, klass 1441 // and array length can be accessed un-aliased. 1442 if( offset != Type::OffsetBot ) { 1443 if( ta->const_oop() ) { // MethodData* or Method* 1444 offset = Type::OffsetBot; // Flatten constant access into array body 1445 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset); 1446 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1447 // range is OK as-is. 1448 tj = ta = TypeAryPtr::RANGE; 1449 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1450 tj = TypeInstPtr::KLASS; // all klass loads look alike 1451 ta = TypeAryPtr::RANGE; // generic ignored junk 1452 ptr = TypePtr::BotPTR; 1453 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1454 tj = TypeInstPtr::MARK; 1455 ta = TypeAryPtr::RANGE; // generic ignored junk 1456 ptr = TypePtr::BotPTR; 1457 } else if (offset == BrooksPointer::byte_offset() && UseShenandoahGC) { 1458 // Need to distinguish brooks ptr as is. 1459 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset); 1460 } else { // Random constant offset into array body 1461 offset = Type::OffsetBot; // Flatten constant access into array body 1462 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset); 1463 } 1464 } 1465 // Arrays of fixed size alias with arrays of unknown size. 1466 if (ta->size() != TypeInt::POS) { 1467 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1468 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset); 1469 } 1470 // Arrays of known objects become arrays of unknown objects. 1471 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1472 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1473 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset); 1474 } 1475 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1476 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1477 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset); 1478 } 1479 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1480 // cannot be distinguished by bytecode alone. 1481 if (ta->elem() == TypeInt::BOOL) { 1482 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1483 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1484 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1485 } 1486 // During the 2nd round of IterGVN, NotNull castings are removed. 1487 // Make sure the Bottom and NotNull variants alias the same. 1488 // Also, make sure exact and non-exact variants alias the same. 1489 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) { 1490 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset); 1491 } 1492 } 1493 1494 // Oop pointers need some flattening 1495 const TypeInstPtr *to = tj->isa_instptr(); 1496 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) { 1497 ciInstanceKlass *k = to->klass()->as_instance_klass(); 1498 if( ptr == TypePtr::Constant ) { 1499 if (to->klass() != ciEnv::current()->Class_klass() || 1500 offset < k->size_helper() * wordSize) { 1501 // No constant oop pointers (such as Strings); they alias with 1502 // unknown strings. 1503 assert(!is_known_inst, "not scalarizable allocation"); 1504 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset); 1505 } 1506 } else if( is_known_inst ) { 1507 tj = to; // Keep NotNull and klass_is_exact for instance type 1508 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1509 // During the 2nd round of IterGVN, NotNull castings are removed. 1510 // Make sure the Bottom and NotNull variants alias the same. 1511 // Also, make sure exact and non-exact variants alias the same. 1512 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset); 1513 } 1514 if (to->speculative() != NULL) { 1515 tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id()); 1516 } 1517 // Canonicalize the holder of this field 1518 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1519 // First handle header references such as a LoadKlassNode, even if the 1520 // object's klass is unloaded at compile time (4965979). 1521 if (!is_known_inst) { // Do it only for non-instance types 1522 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset); 1523 } 1524 } else if ((offset != BrooksPointer::byte_offset() || !UseShenandoahGC) && (offset < 0 || offset >= k->size_helper() * wordSize)) { 1525 // Static fields are in the space above the normal instance 1526 // fields in the java.lang.Class instance. 1527 if (to->klass() != ciEnv::current()->Class_klass()) { 1528 to = NULL; 1529 tj = TypeOopPtr::BOTTOM; 1530 offset = tj->offset(); 1531 } 1532 } else { 1533 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset); 1534 if (!k->equals(canonical_holder) || tj->offset() != offset) { 1535 if( is_known_inst ) { 1536 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id()); 1537 } else { 1538 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset); 1539 } 1540 } 1541 } 1542 } 1543 1544 // Klass pointers to object array klasses need some flattening 1545 const TypeKlassPtr *tk = tj->isa_klassptr(); 1546 if( tk ) { 1547 // If we are referencing a field within a Klass, we need 1548 // to assume the worst case of an Object. Both exact and 1549 // inexact types must flatten to the same alias class so 1550 // use NotNull as the PTR. 1551 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1552 1553 tj = tk = TypeKlassPtr::make(TypePtr::NotNull, 1554 TypeKlassPtr::OBJECT->klass(), 1555 offset); 1556 } 1557 1558 ciKlass* klass = tk->klass(); 1559 if( klass->is_obj_array_klass() ) { 1560 ciKlass* k = TypeAryPtr::OOPS->klass(); 1561 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs 1562 k = TypeInstPtr::BOTTOM->klass(); 1563 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset ); 1564 } 1565 1566 // Check for precise loads from the primary supertype array and force them 1567 // to the supertype cache alias index. Check for generic array loads from 1568 // the primary supertype array and also force them to the supertype cache 1569 // alias index. Since the same load can reach both, we need to merge 1570 // these 2 disparate memories into the same alias class. Since the 1571 // primary supertype array is read-only, there's no chance of confusion 1572 // where we bypass an array load and an array store. 1573 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1574 if (offset == Type::OffsetBot || 1575 (offset >= primary_supers_offset && 1576 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1577 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1578 offset = in_bytes(Klass::secondary_super_cache_offset()); 1579 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset ); 1580 } 1581 } 1582 1583 // Flatten all Raw pointers together. 1584 if (tj->base() == Type::RawPtr) 1585 tj = TypeRawPtr::BOTTOM; 1586 1587 if (tj->base() == Type::AnyPtr) 1588 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1589 1590 // Flatten all to bottom for now 1591 switch( _AliasLevel ) { 1592 case 0: 1593 tj = TypePtr::BOTTOM; 1594 break; 1595 case 1: // Flatten to: oop, static, field or array 1596 switch (tj->base()) { 1597 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break; 1598 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break; 1599 case Type::AryPtr: // do not distinguish arrays at all 1600 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break; 1601 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break; 1602 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it 1603 default: ShouldNotReachHere(); 1604 } 1605 break; 1606 case 2: // No collapsing at level 2; keep all splits 1607 case 3: // No collapsing at level 3; keep all splits 1608 break; 1609 default: 1610 Unimplemented(); 1611 } 1612 1613 offset = tj->offset(); 1614 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1615 1616 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1617 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1618 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1619 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1620 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1621 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1622 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) || 1623 (offset == BrooksPointer::byte_offset() && tj->base() == Type::AryPtr && UseShenandoahGC), 1624 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1625 assert( tj->ptr() != TypePtr::TopPTR && 1626 tj->ptr() != TypePtr::AnyNull && 1627 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1628 // assert( tj->ptr() != TypePtr::Constant || 1629 // tj->base() == Type::RawPtr || 1630 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1631 1632 return tj; 1633 } 1634 1635 void Compile::AliasType::Init(int i, const TypePtr* at) { 1636 _index = i; 1637 _adr_type = at; 1638 _field = NULL; 1639 _element = NULL; 1640 _is_rewritable = true; // default 1641 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL; 1642 if (atoop != NULL && atoop->is_known_instance()) { 1643 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1644 _general_index = Compile::current()->get_alias_index(gt); 1645 } else { 1646 _general_index = 0; 1647 } 1648 } 1649 1650 BasicType Compile::AliasType::basic_type() const { 1651 if (element() != NULL) { 1652 const Type* element = adr_type()->is_aryptr()->elem(); 1653 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1654 } if (field() != NULL) { 1655 return field()->layout_type(); 1656 } else { 1657 return T_ILLEGAL; // unknown 1658 } 1659 } 1660 1661 //---------------------------------print_on------------------------------------ 1662 #ifndef PRODUCT 1663 void Compile::AliasType::print_on(outputStream* st) { 1664 if (index() < 10) 1665 st->print("@ <%d> ", index()); 1666 else st->print("@ <%d>", index()); 1667 st->print(is_rewritable() ? " " : " RO"); 1668 int offset = adr_type()->offset(); 1669 if (offset == Type::OffsetBot) 1670 st->print(" +any"); 1671 else st->print(" +%-3d", offset); 1672 st->print(" in "); 1673 adr_type()->dump_on(st); 1674 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1675 if (field() != NULL && tjp) { 1676 if (tjp->klass() != field()->holder() || 1677 tjp->offset() != field()->offset_in_bytes()) { 1678 st->print(" != "); 1679 field()->print(); 1680 st->print(" ***"); 1681 } 1682 } 1683 } 1684 1685 void print_alias_types() { 1686 Compile* C = Compile::current(); 1687 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1688 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1689 C->alias_type(idx)->print_on(tty); 1690 tty->cr(); 1691 } 1692 } 1693 #endif 1694 1695 1696 //----------------------------probe_alias_cache-------------------------------- 1697 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1698 intptr_t key = (intptr_t) adr_type; 1699 key ^= key >> logAliasCacheSize; 1700 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1701 } 1702 1703 1704 //-----------------------------grow_alias_types-------------------------------- 1705 void Compile::grow_alias_types() { 1706 const int old_ats = _max_alias_types; // how many before? 1707 const int new_ats = old_ats; // how many more? 1708 const int grow_ats = old_ats+new_ats; // how many now? 1709 _max_alias_types = grow_ats; 1710 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1711 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1712 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1713 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1714 } 1715 1716 1717 //--------------------------------find_alias_type------------------------------ 1718 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1719 if (_AliasLevel == 0) 1720 return alias_type(AliasIdxBot); 1721 1722 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1723 if (ace->_adr_type == adr_type) { 1724 return alias_type(ace->_index); 1725 } 1726 1727 // Handle special cases. 1728 if (adr_type == NULL) return alias_type(AliasIdxTop); 1729 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1730 1731 // Do it the slow way. 1732 const TypePtr* flat = flatten_alias_type(adr_type); 1733 1734 #ifdef ASSERT 1735 { 1736 ResourceMark rm; 1737 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1738 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1739 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1740 Type::str(adr_type)); 1741 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1742 const TypeOopPtr* foop = flat->is_oopptr(); 1743 // Scalarizable allocations have exact klass always. 1744 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1745 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1746 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1747 Type::str(foop), Type::str(xoop)); 1748 } 1749 } 1750 #endif 1751 1752 int idx = AliasIdxTop; 1753 for (int i = 0; i < num_alias_types(); i++) { 1754 if (alias_type(i)->adr_type() == flat) { 1755 idx = i; 1756 break; 1757 } 1758 } 1759 1760 if (idx == AliasIdxTop) { 1761 if (no_create) return NULL; 1762 // Grow the array if necessary. 1763 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1764 // Add a new alias type. 1765 idx = _num_alias_types++; 1766 _alias_types[idx]->Init(idx, flat); 1767 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1768 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1769 if (flat->isa_instptr()) { 1770 if (flat->offset() == java_lang_Class::klass_offset_in_bytes() 1771 && flat->is_instptr()->klass() == env()->Class_klass()) 1772 alias_type(idx)->set_rewritable(false); 1773 } 1774 if (flat->isa_aryptr()) { 1775 #ifdef ASSERT 1776 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1777 // (T_BYTE has the weakest alignment and size restrictions...) 1778 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1779 #endif 1780 if (flat->offset() == TypePtr::OffsetBot) { 1781 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1782 } 1783 } 1784 if (flat->isa_klassptr()) { 1785 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1786 alias_type(idx)->set_rewritable(false); 1787 if (flat->offset() == in_bytes(Klass::modifier_flags_offset())) 1788 alias_type(idx)->set_rewritable(false); 1789 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1790 alias_type(idx)->set_rewritable(false); 1791 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1792 alias_type(idx)->set_rewritable(false); 1793 } 1794 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1795 // but the base pointer type is not distinctive enough to identify 1796 // references into JavaThread.) 1797 1798 // Check for final fields. 1799 const TypeInstPtr* tinst = flat->isa_instptr(); 1800 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1801 ciField* field; 1802 if (tinst->const_oop() != NULL && 1803 tinst->klass() == ciEnv::current()->Class_klass() && 1804 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) { 1805 // static field 1806 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1807 field = k->get_field_by_offset(tinst->offset(), true); 1808 } else { 1809 ciInstanceKlass *k = tinst->klass()->as_instance_klass(); 1810 field = k->get_field_by_offset(tinst->offset(), false); 1811 } 1812 assert(field == NULL || 1813 original_field == NULL || 1814 (field->holder() == original_field->holder() && 1815 field->offset() == original_field->offset() && 1816 field->is_static() == original_field->is_static()), "wrong field?"); 1817 // Set field() and is_rewritable() attributes. 1818 if (field != NULL) alias_type(idx)->set_field(field); 1819 } 1820 } 1821 1822 // Fill the cache for next time. 1823 ace->_adr_type = adr_type; 1824 ace->_index = idx; 1825 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1826 1827 // Might as well try to fill the cache for the flattened version, too. 1828 AliasCacheEntry* face = probe_alias_cache(flat); 1829 if (face->_adr_type == NULL) { 1830 face->_adr_type = flat; 1831 face->_index = idx; 1832 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1833 } 1834 1835 return alias_type(idx); 1836 } 1837 1838 1839 Compile::AliasType* Compile::alias_type(ciField* field) { 1840 const TypeOopPtr* t; 1841 if (field->is_static()) 1842 t = TypeInstPtr::make(field->holder()->java_mirror()); 1843 else 1844 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1845 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1846 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1847 return atp; 1848 } 1849 1850 1851 //------------------------------have_alias_type-------------------------------- 1852 bool Compile::have_alias_type(const TypePtr* adr_type) { 1853 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1854 if (ace->_adr_type == adr_type) { 1855 return true; 1856 } 1857 1858 // Handle special cases. 1859 if (adr_type == NULL) return true; 1860 if (adr_type == TypePtr::BOTTOM) return true; 1861 1862 return find_alias_type(adr_type, true, NULL) != NULL; 1863 } 1864 1865 //-----------------------------must_alias-------------------------------------- 1866 // True if all values of the given address type are in the given alias category. 1867 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1868 if (alias_idx == AliasIdxBot) return true; // the universal category 1869 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP 1870 if (alias_idx == AliasIdxTop) return false; // the empty category 1871 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1872 1873 // the only remaining possible overlap is identity 1874 int adr_idx = get_alias_index(adr_type); 1875 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1876 assert(adr_idx == alias_idx || 1877 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1878 && adr_type != TypeOopPtr::BOTTOM), 1879 "should not be testing for overlap with an unsafe pointer"); 1880 return adr_idx == alias_idx; 1881 } 1882 1883 //------------------------------can_alias-------------------------------------- 1884 // True if any values of the given address type are in the given alias category. 1885 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1886 if (alias_idx == AliasIdxTop) return false; // the empty category 1887 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP 1888 if (alias_idx == AliasIdxBot) return true; // the universal category 1889 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins 1890 1891 // the only remaining possible overlap is identity 1892 int adr_idx = get_alias_index(adr_type); 1893 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1894 return adr_idx == alias_idx; 1895 } 1896 1897 1898 1899 //---------------------------pop_warm_call------------------------------------- 1900 WarmCallInfo* Compile::pop_warm_call() { 1901 WarmCallInfo* wci = _warm_calls; 1902 if (wci != NULL) _warm_calls = wci->remove_from(wci); 1903 return wci; 1904 } 1905 1906 //----------------------------Inline_Warm-------------------------------------- 1907 int Compile::Inline_Warm() { 1908 // If there is room, try to inline some more warm call sites. 1909 // %%% Do a graph index compaction pass when we think we're out of space? 1910 if (!InlineWarmCalls) return 0; 1911 1912 int calls_made_hot = 0; 1913 int room_to_grow = NodeCountInliningCutoff - unique(); 1914 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep); 1915 int amount_grown = 0; 1916 WarmCallInfo* call; 1917 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) { 1918 int est_size = (int)call->size(); 1919 if (est_size > (room_to_grow - amount_grown)) { 1920 // This one won't fit anyway. Get rid of it. 1921 call->make_cold(); 1922 continue; 1923 } 1924 call->make_hot(); 1925 calls_made_hot++; 1926 amount_grown += est_size; 1927 amount_to_grow -= est_size; 1928 } 1929 1930 if (calls_made_hot > 0) set_major_progress(); 1931 return calls_made_hot; 1932 } 1933 1934 1935 //----------------------------Finish_Warm-------------------------------------- 1936 void Compile::Finish_Warm() { 1937 if (!InlineWarmCalls) return; 1938 if (failing()) return; 1939 if (warm_calls() == NULL) return; 1940 1941 // Clean up loose ends, if we are out of space for inlining. 1942 WarmCallInfo* call; 1943 while ((call = pop_warm_call()) != NULL) { 1944 call->make_cold(); 1945 } 1946 } 1947 1948 //---------------------cleanup_loop_predicates----------------------- 1949 // Remove the opaque nodes that protect the predicates so that all unused 1950 // checks and uncommon_traps will be eliminated from the ideal graph 1951 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) { 1952 if (predicate_count()==0) return; 1953 for (int i = predicate_count(); i > 0; i--) { 1954 Node * n = predicate_opaque1_node(i-1); 1955 assert(n->Opcode() == Op_Opaque1, "must be"); 1956 igvn.replace_node(n, n->in(1)); 1957 } 1958 assert(predicate_count()==0, "should be clean!"); 1959 } 1960 1961 void Compile::add_range_check_cast(Node* n) { 1962 assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency"); 1963 assert(!_range_check_casts->contains(n), "duplicate entry in range check casts"); 1964 _range_check_casts->append(n); 1965 } 1966 1967 // Remove all range check dependent CastIINodes. 1968 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) { 1969 for (int i = range_check_cast_count(); i > 0; i--) { 1970 Node* cast = range_check_cast_node(i-1); 1971 assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency"); 1972 igvn.replace_node(cast, cast->in(1)); 1973 } 1974 assert(range_check_cast_count() == 0, "should be empty"); 1975 } 1976 1977 // StringOpts and late inlining of string methods 1978 void Compile::inline_string_calls(bool parse_time) { 1979 { 1980 // remove useless nodes to make the usage analysis simpler 1981 ResourceMark rm; 1982 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 1983 } 1984 1985 { 1986 ResourceMark rm; 1987 print_method(PHASE_BEFORE_STRINGOPTS, 3); 1988 PhaseStringOpts pso(initial_gvn(), for_igvn()); 1989 print_method(PHASE_AFTER_STRINGOPTS, 3); 1990 } 1991 1992 // now inline anything that we skipped the first time around 1993 if (!parse_time) { 1994 _late_inlines_pos = _late_inlines.length(); 1995 } 1996 1997 while (_string_late_inlines.length() > 0) { 1998 CallGenerator* cg = _string_late_inlines.pop(); 1999 cg->do_late_inline(); 2000 if (failing()) return; 2001 } 2002 _string_late_inlines.trunc_to(0); 2003 } 2004 2005 // Late inlining of boxing methods 2006 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2007 if (_boxing_late_inlines.length() > 0) { 2008 assert(has_boxed_value(), "inconsistent"); 2009 2010 PhaseGVN* gvn = initial_gvn(); 2011 set_inlining_incrementally(true); 2012 2013 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 2014 for_igvn()->clear(); 2015 gvn->replace_with(&igvn); 2016 2017 _late_inlines_pos = _late_inlines.length(); 2018 2019 while (_boxing_late_inlines.length() > 0) { 2020 CallGenerator* cg = _boxing_late_inlines.pop(); 2021 cg->do_late_inline(); 2022 if (failing()) return; 2023 } 2024 _boxing_late_inlines.trunc_to(0); 2025 2026 { 2027 ResourceMark rm; 2028 PhaseRemoveUseless pru(gvn, for_igvn()); 2029 } 2030 2031 igvn = PhaseIterGVN(gvn); 2032 igvn.optimize(); 2033 2034 set_inlining_progress(false); 2035 set_inlining_incrementally(false); 2036 } 2037 } 2038 2039 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) { 2040 assert(IncrementalInline, "incremental inlining should be on"); 2041 PhaseGVN* gvn = initial_gvn(); 2042 2043 set_inlining_progress(false); 2044 for_igvn()->clear(); 2045 gvn->replace_with(&igvn); 2046 2047 { 2048 TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]); 2049 int i = 0; 2050 for (; i <_late_inlines.length() && !inlining_progress(); i++) { 2051 CallGenerator* cg = _late_inlines.at(i); 2052 _late_inlines_pos = i+1; 2053 cg->do_late_inline(); 2054 if (failing()) return; 2055 } 2056 int j = 0; 2057 for (; i < _late_inlines.length(); i++, j++) { 2058 _late_inlines.at_put(j, _late_inlines.at(i)); 2059 } 2060 _late_inlines.trunc_to(j); 2061 } 2062 2063 { 2064 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]); 2065 ResourceMark rm; 2066 PhaseRemoveUseless pru(gvn, for_igvn()); 2067 } 2068 2069 { 2070 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]); 2071 igvn = PhaseIterGVN(gvn); 2072 } 2073 } 2074 2075 // Perform incremental inlining until bound on number of live nodes is reached 2076 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2077 TracePhase tp("incrementalInline", &timers[_t_incrInline]); 2078 2079 PhaseGVN* gvn = initial_gvn(); 2080 2081 set_inlining_incrementally(true); 2082 set_inlining_progress(true); 2083 uint low_live_nodes = 0; 2084 2085 while(inlining_progress() && _late_inlines.length() > 0) { 2086 2087 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2088 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2089 TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]); 2090 // PhaseIdealLoop is expensive so we only try it once we are 2091 // out of live nodes and we only try it again if the previous 2092 // helped got the number of nodes down significantly 2093 PhaseIdealLoop ideal_loop(igvn, LoopOptsNone); 2094 if (failing()) return; 2095 low_live_nodes = live_nodes(); 2096 _major_progress = true; 2097 } 2098 2099 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2100 break; 2101 } 2102 } 2103 2104 inline_incrementally_one(igvn); 2105 2106 if (failing()) return; 2107 2108 { 2109 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]); 2110 igvn.optimize(); 2111 } 2112 2113 if (failing()) return; 2114 } 2115 2116 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 2117 2118 if (_string_late_inlines.length() > 0) { 2119 assert(has_stringbuilder(), "inconsistent"); 2120 for_igvn()->clear(); 2121 initial_gvn()->replace_with(&igvn); 2122 2123 inline_string_calls(false); 2124 2125 if (failing()) return; 2126 2127 { 2128 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]); 2129 ResourceMark rm; 2130 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 2131 } 2132 2133 { 2134 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]); 2135 igvn = PhaseIterGVN(gvn); 2136 igvn.optimize(); 2137 } 2138 } 2139 2140 set_inlining_incrementally(false); 2141 } 2142 2143 2144 bool Compile::optimize_loops(int& loop_opts_cnt, PhaseIterGVN& igvn, LoopOptsMode mode) { 2145 if(loop_opts_cnt > 0) { 2146 debug_only( int cnt = 0; ); 2147 while(major_progress() && (loop_opts_cnt > 0)) { 2148 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2149 assert( cnt++ < 40, "infinite cycle in loop optimization" ); 2150 PhaseIdealLoop ideal_loop(igvn, mode); 2151 loop_opts_cnt--; 2152 if (failing()) return false; 2153 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2154 } 2155 } 2156 return true; 2157 } 2158 2159 //------------------------------Optimize--------------------------------------- 2160 // Given a graph, optimize it. 2161 void Compile::Optimize() { 2162 TracePhase tp("optimizer", &timers[_t_optimizer]); 2163 2164 #ifndef PRODUCT 2165 if (_directive->BreakAtCompileOption) { 2166 BREAKPOINT; 2167 } 2168 2169 #endif 2170 2171 ResourceMark rm; 2172 int loop_opts_cnt; 2173 2174 print_inlining_reinit(); 2175 2176 NOT_PRODUCT( verify_graph_edges(); ) 2177 2178 print_method(PHASE_AFTER_PARSING); 2179 2180 { 2181 // Iterative Global Value Numbering, including ideal transforms 2182 // Initialize IterGVN with types and values from parse-time GVN 2183 PhaseIterGVN igvn(initial_gvn()); 2184 #ifdef ASSERT 2185 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2186 #endif 2187 { 2188 TracePhase tp("iterGVN", &timers[_t_iterGVN]); 2189 igvn.optimize(); 2190 } 2191 2192 print_method(PHASE_ITER_GVN1, 2); 2193 2194 if (failing()) return; 2195 2196 inline_incrementally(igvn); 2197 2198 print_method(PHASE_INCREMENTAL_INLINE, 2); 2199 2200 if (failing()) return; 2201 2202 if (eliminate_boxing()) { 2203 // Inline valueOf() methods now. 2204 inline_boxing_calls(igvn); 2205 2206 if (AlwaysIncrementalInline) { 2207 inline_incrementally(igvn); 2208 } 2209 2210 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2211 2212 if (failing()) return; 2213 } 2214 2215 // Remove the speculative part of types and clean up the graph from 2216 // the extra CastPP nodes whose only purpose is to carry them. Do 2217 // that early so that optimizations are not disrupted by the extra 2218 // CastPP nodes. 2219 remove_speculative_types(igvn); 2220 2221 // No more new expensive nodes will be added to the list from here 2222 // so keep only the actual candidates for optimizations. 2223 cleanup_expensive_nodes(igvn); 2224 2225 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2226 Compile::TracePhase tp("", &timers[_t_renumberLive]); 2227 initial_gvn()->replace_with(&igvn); 2228 for_igvn()->clear(); 2229 Unique_Node_List new_worklist(C->comp_arena()); 2230 { 2231 ResourceMark rm; 2232 PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist); 2233 } 2234 set_for_igvn(&new_worklist); 2235 igvn = PhaseIterGVN(initial_gvn()); 2236 igvn.optimize(); 2237 } 2238 2239 // Perform escape analysis 2240 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) { 2241 if (has_loops()) { 2242 // Cleanup graph (remove dead nodes). 2243 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2244 PhaseIdealLoop ideal_loop(igvn, LoopOptsNone); 2245 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2246 if (failing()) return; 2247 } 2248 ConnectionGraph::do_analysis(this, &igvn); 2249 2250 if (failing()) return; 2251 2252 // Optimize out fields loads from scalar replaceable allocations. 2253 igvn.optimize(); 2254 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2255 2256 if (failing()) return; 2257 2258 if (congraph() != NULL && macro_count() > 0) { 2259 TracePhase tp("macroEliminate", &timers[_t_macroEliminate]); 2260 PhaseMacroExpand mexp(igvn); 2261 mexp.eliminate_macro_nodes(); 2262 igvn.set_delay_transform(false); 2263 2264 igvn.optimize(); 2265 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2266 2267 if (failing()) return; 2268 } 2269 } 2270 2271 // Loop transforms on the ideal graph. Range Check Elimination, 2272 // peeling, unrolling, etc. 2273 2274 // Set loop opts counter 2275 loop_opts_cnt = num_loop_opts(); 2276 if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2277 { 2278 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2279 PhaseIdealLoop ideal_loop(igvn, LoopOptsDefault); 2280 loop_opts_cnt--; 2281 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2282 if (failing()) return; 2283 } 2284 // Loop opts pass if partial peeling occurred in previous pass 2285 if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) { 2286 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2287 PhaseIdealLoop ideal_loop(igvn, LoopOptsSkipSplitIf); 2288 loop_opts_cnt--; 2289 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2290 if (failing()) return; 2291 } 2292 // Loop opts pass for loop-unrolling before CCP 2293 if(major_progress() && (loop_opts_cnt > 0)) { 2294 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2295 PhaseIdealLoop ideal_loop(igvn, LoopOptsSkipSplitIf); 2296 loop_opts_cnt--; 2297 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2298 } 2299 if (!failing()) { 2300 // Verify that last round of loop opts produced a valid graph 2301 TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]); 2302 PhaseIdealLoop::verify(igvn); 2303 } 2304 } 2305 if (failing()) return; 2306 2307 // Conditional Constant Propagation; 2308 PhaseCCP ccp( &igvn ); 2309 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2310 { 2311 TracePhase tp("ccp", &timers[_t_ccp]); 2312 ccp.do_transform(); 2313 } 2314 print_method(PHASE_CPP1, 2); 2315 2316 assert( true, "Break here to ccp.dump_old2new_map()"); 2317 2318 // Iterative Global Value Numbering, including ideal transforms 2319 { 2320 TracePhase tp("iterGVN2", &timers[_t_iterGVN2]); 2321 igvn = ccp; 2322 igvn.optimize(); 2323 } 2324 2325 print_method(PHASE_ITER_GVN2, 2); 2326 2327 if (failing()) return; 2328 2329 // Loop transforms on the ideal graph. Range Check Elimination, 2330 // peeling, unrolling, etc. 2331 if (!optimize_loops(loop_opts_cnt, igvn, LoopOptsDefault)) { 2332 return; 2333 } 2334 // Ensure that major progress is now clear 2335 C->clear_major_progress(); 2336 2337 { 2338 // Verify that all previous optimizations produced a valid graph 2339 // at least to this point, even if no loop optimizations were done. 2340 TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]); 2341 PhaseIdealLoop::verify(igvn); 2342 } 2343 2344 if (range_check_cast_count() > 0) { 2345 // No more loop optimizations. Remove all range check dependent CastIINodes. 2346 C->remove_range_check_casts(igvn); 2347 igvn.optimize(); 2348 } 2349 2350 #ifdef ASSERT 2351 if (UseShenandoahGC && ShenandoahVerifyOptoBarriers) { 2352 ShenandoahBarrierNode::verify(C->root()); 2353 } 2354 #endif 2355 2356 { 2357 TracePhase tp("macroExpand", &timers[_t_macroExpand]); 2358 PhaseMacroExpand mex(igvn); 2359 if (mex.expand_macro_nodes()) { 2360 assert(failing(), "must bail out w/ explicit message"); 2361 return; 2362 } 2363 } 2364 2365 if (!ShenandoahWriteBarrierNode::expand(this, igvn, loop_opts_cnt)) { 2366 assert(failing(), "must bail out w/ explicit message"); 2367 return; 2368 } 2369 2370 DEBUG_ONLY( _modified_nodes = NULL; ) 2371 } // (End scope of igvn; run destructor if necessary for asserts.) 2372 2373 process_print_inlining(); 2374 // A method with only infinite loops has no edges entering loops from root 2375 { 2376 TracePhase tp("graphReshape", &timers[_t_graphReshaping]); 2377 if (final_graph_reshaping()) { 2378 assert(failing(), "must bail out w/ explicit message"); 2379 return; 2380 } 2381 } 2382 2383 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2384 } 2385 2386 2387 //------------------------------Code_Gen--------------------------------------- 2388 // Given a graph, generate code for it 2389 void Compile::Code_Gen() { 2390 if (failing()) { 2391 return; 2392 } 2393 2394 // Perform instruction selection. You might think we could reclaim Matcher 2395 // memory PDQ, but actually the Matcher is used in generating spill code. 2396 // Internals of the Matcher (including some VectorSets) must remain live 2397 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2398 // set a bit in reclaimed memory. 2399 2400 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2401 // nodes. Mapping is only valid at the root of each matched subtree. 2402 NOT_PRODUCT( verify_graph_edges(); ) 2403 2404 Matcher matcher; 2405 _matcher = &matcher; 2406 { 2407 TracePhase tp("matcher", &timers[_t_matcher]); 2408 matcher.match(); 2409 } 2410 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2411 // nodes. Mapping is only valid at the root of each matched subtree. 2412 NOT_PRODUCT( verify_graph_edges(); ) 2413 2414 // If you have too many nodes, or if matching has failed, bail out 2415 check_node_count(0, "out of nodes matching instructions"); 2416 if (failing()) { 2417 return; 2418 } 2419 2420 // Build a proper-looking CFG 2421 PhaseCFG cfg(node_arena(), root(), matcher); 2422 _cfg = &cfg; 2423 { 2424 TracePhase tp("scheduler", &timers[_t_scheduler]); 2425 bool success = cfg.do_global_code_motion(); 2426 if (!success) { 2427 return; 2428 } 2429 2430 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 2431 NOT_PRODUCT( verify_graph_edges(); ) 2432 debug_only( cfg.verify(); ) 2433 } 2434 2435 PhaseChaitin regalloc(unique(), cfg, matcher, false); 2436 _regalloc = ®alloc; 2437 { 2438 TracePhase tp("regalloc", &timers[_t_registerAllocation]); 2439 // Perform register allocation. After Chaitin, use-def chains are 2440 // no longer accurate (at spill code) and so must be ignored. 2441 // Node->LRG->reg mappings are still accurate. 2442 _regalloc->Register_Allocate(); 2443 2444 // Bail out if the allocator builds too many nodes 2445 if (failing()) { 2446 return; 2447 } 2448 } 2449 2450 // Prior to register allocation we kept empty basic blocks in case the 2451 // the allocator needed a place to spill. After register allocation we 2452 // are not adding any new instructions. If any basic block is empty, we 2453 // can now safely remove it. 2454 { 2455 TracePhase tp("blockOrdering", &timers[_t_blockOrdering]); 2456 cfg.remove_empty_blocks(); 2457 if (do_freq_based_layout()) { 2458 PhaseBlockLayout layout(cfg); 2459 } else { 2460 cfg.set_loop_alignment(); 2461 } 2462 cfg.fixup_flow(); 2463 } 2464 2465 // Apply peephole optimizations 2466 if( OptoPeephole ) { 2467 TracePhase tp("peephole", &timers[_t_peephole]); 2468 PhasePeephole peep( _regalloc, cfg); 2469 peep.do_transform(); 2470 } 2471 2472 // Do late expand if CPU requires this. 2473 if (Matcher::require_postalloc_expand) { 2474 TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]); 2475 cfg.postalloc_expand(_regalloc); 2476 } 2477 2478 // Convert Nodes to instruction bits in a buffer 2479 { 2480 TraceTime tp("output", &timers[_t_output], CITime); 2481 Output(); 2482 } 2483 2484 print_method(PHASE_FINAL_CODE); 2485 2486 // He's dead, Jim. 2487 _cfg = (PhaseCFG*)0xdeadbeef; 2488 _regalloc = (PhaseChaitin*)0xdeadbeef; 2489 } 2490 2491 2492 //------------------------------dump_asm--------------------------------------- 2493 // Dump formatted assembly 2494 #ifndef PRODUCT 2495 void Compile::dump_asm(int *pcs, uint pc_limit) { 2496 bool cut_short = false; 2497 tty->print_cr("#"); 2498 tty->print("# "); _tf->dump(); tty->cr(); 2499 tty->print_cr("#"); 2500 2501 // For all blocks 2502 int pc = 0x0; // Program counter 2503 char starts_bundle = ' '; 2504 _regalloc->dump_frame(); 2505 2506 Node *n = NULL; 2507 for (uint i = 0; i < _cfg->number_of_blocks(); i++) { 2508 if (VMThread::should_terminate()) { 2509 cut_short = true; 2510 break; 2511 } 2512 Block* block = _cfg->get_block(i); 2513 if (block->is_connector() && !Verbose) { 2514 continue; 2515 } 2516 n = block->head(); 2517 if (pcs && n->_idx < pc_limit) { 2518 tty->print("%3.3x ", pcs[n->_idx]); 2519 } else { 2520 tty->print(" "); 2521 } 2522 block->dump_head(_cfg); 2523 if (block->is_connector()) { 2524 tty->print_cr(" # Empty connector block"); 2525 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) { 2526 tty->print_cr(" # Block is sole successor of call"); 2527 } 2528 2529 // For all instructions 2530 Node *delay = NULL; 2531 for (uint j = 0; j < block->number_of_nodes(); j++) { 2532 if (VMThread::should_terminate()) { 2533 cut_short = true; 2534 break; 2535 } 2536 n = block->get_node(j); 2537 if (valid_bundle_info(n)) { 2538 Bundle* bundle = node_bundling(n); 2539 if (bundle->used_in_unconditional_delay()) { 2540 delay = n; 2541 continue; 2542 } 2543 if (bundle->starts_bundle()) { 2544 starts_bundle = '+'; 2545 } 2546 } 2547 2548 if (WizardMode) { 2549 n->dump(); 2550 } 2551 2552 if( !n->is_Region() && // Dont print in the Assembly 2553 !n->is_Phi() && // a few noisely useless nodes 2554 !n->is_Proj() && 2555 !n->is_MachTemp() && 2556 !n->is_SafePointScalarObject() && 2557 !n->is_Catch() && // Would be nice to print exception table targets 2558 !n->is_MergeMem() && // Not very interesting 2559 !n->is_top() && // Debug info table constants 2560 !(n->is_Con() && !n->is_Mach())// Debug info table constants 2561 ) { 2562 if (pcs && n->_idx < pc_limit) 2563 tty->print("%3.3x", pcs[n->_idx]); 2564 else 2565 tty->print(" "); 2566 tty->print(" %c ", starts_bundle); 2567 starts_bundle = ' '; 2568 tty->print("\t"); 2569 n->format(_regalloc, tty); 2570 tty->cr(); 2571 } 2572 2573 // If we have an instruction with a delay slot, and have seen a delay, 2574 // then back up and print it 2575 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 2576 assert(delay != NULL, "no unconditional delay instruction"); 2577 if (WizardMode) delay->dump(); 2578 2579 if (node_bundling(delay)->starts_bundle()) 2580 starts_bundle = '+'; 2581 if (pcs && n->_idx < pc_limit) 2582 tty->print("%3.3x", pcs[n->_idx]); 2583 else 2584 tty->print(" "); 2585 tty->print(" %c ", starts_bundle); 2586 starts_bundle = ' '; 2587 tty->print("\t"); 2588 delay->format(_regalloc, tty); 2589 tty->cr(); 2590 delay = NULL; 2591 } 2592 2593 // Dump the exception table as well 2594 if( n->is_Catch() && (Verbose || WizardMode) ) { 2595 // Print the exception table for this offset 2596 _handler_table.print_subtable_for(pc); 2597 } 2598 } 2599 2600 if (pcs && n->_idx < pc_limit) 2601 tty->print_cr("%3.3x", pcs[n->_idx]); 2602 else 2603 tty->cr(); 2604 2605 assert(cut_short || delay == NULL, "no unconditional delay branch"); 2606 2607 } // End of per-block dump 2608 tty->cr(); 2609 2610 if (cut_short) tty->print_cr("*** disassembly is cut short ***"); 2611 } 2612 #endif 2613 2614 //------------------------------Final_Reshape_Counts--------------------------- 2615 // This class defines counters to help identify when a method 2616 // may/must be executed using hardware with only 24-bit precision. 2617 struct Final_Reshape_Counts : public StackObj { 2618 int _call_count; // count non-inlined 'common' calls 2619 int _float_count; // count float ops requiring 24-bit precision 2620 int _double_count; // count double ops requiring more precision 2621 int _java_call_count; // count non-inlined 'java' calls 2622 int _inner_loop_count; // count loops which need alignment 2623 VectorSet _visited; // Visitation flags 2624 Node_List _tests; // Set of IfNodes & PCTableNodes 2625 2626 Final_Reshape_Counts() : 2627 _call_count(0), _float_count(0), _double_count(0), 2628 _java_call_count(0), _inner_loop_count(0), 2629 _visited( Thread::current()->resource_area() ) { } 2630 2631 void inc_call_count () { _call_count ++; } 2632 void inc_float_count () { _float_count ++; } 2633 void inc_double_count() { _double_count++; } 2634 void inc_java_call_count() { _java_call_count++; } 2635 void inc_inner_loop_count() { _inner_loop_count++; } 2636 2637 int get_call_count () const { return _call_count ; } 2638 int get_float_count () const { return _float_count ; } 2639 int get_double_count() const { return _double_count; } 2640 int get_java_call_count() const { return _java_call_count; } 2641 int get_inner_loop_count() const { return _inner_loop_count; } 2642 }; 2643 2644 #ifdef ASSERT 2645 static bool oop_offset_is_sane(const TypeInstPtr* tp) { 2646 ciInstanceKlass *k = tp->klass()->as_instance_klass(); 2647 // Make sure the offset goes inside the instance layout. 2648 return k->contains_field_offset(tp->offset()); 2649 // Note that OffsetBot and OffsetTop are very negative. 2650 } 2651 #endif 2652 2653 // Eliminate trivially redundant StoreCMs and accumulate their 2654 // precedence edges. 2655 void Compile::eliminate_redundant_card_marks(Node* n) { 2656 assert(n->Opcode() == Op_StoreCM, "expected StoreCM"); 2657 if (n->in(MemNode::Address)->outcnt() > 1) { 2658 // There are multiple users of the same address so it might be 2659 // possible to eliminate some of the StoreCMs 2660 Node* mem = n->in(MemNode::Memory); 2661 Node* adr = n->in(MemNode::Address); 2662 Node* val = n->in(MemNode::ValueIn); 2663 Node* prev = n; 2664 bool done = false; 2665 // Walk the chain of StoreCMs eliminating ones that match. As 2666 // long as it's a chain of single users then the optimization is 2667 // safe. Eliminating partially redundant StoreCMs would require 2668 // cloning copies down the other paths. 2669 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) { 2670 if (adr == mem->in(MemNode::Address) && 2671 val == mem->in(MemNode::ValueIn)) { 2672 // redundant StoreCM 2673 if (mem->req() > MemNode::OopStore) { 2674 // Hasn't been processed by this code yet. 2675 n->add_prec(mem->in(MemNode::OopStore)); 2676 } else { 2677 // Already converted to precedence edge 2678 for (uint i = mem->req(); i < mem->len(); i++) { 2679 // Accumulate any precedence edges 2680 if (mem->in(i) != NULL) { 2681 n->add_prec(mem->in(i)); 2682 } 2683 } 2684 // Everything above this point has been processed. 2685 done = true; 2686 } 2687 // Eliminate the previous StoreCM 2688 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory)); 2689 assert(mem->outcnt() == 0, "should be dead"); 2690 mem->disconnect_inputs(NULL, this); 2691 } else { 2692 prev = mem; 2693 } 2694 mem = prev->in(MemNode::Memory); 2695 } 2696 } 2697 } 2698 2699 //------------------------------final_graph_reshaping_impl---------------------- 2700 // Implement items 1-5 from final_graph_reshaping below. 2701 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) { 2702 2703 if ( n->outcnt() == 0 ) return; // dead node 2704 uint nop = n->Opcode(); 2705 2706 // Check for 2-input instruction with "last use" on right input. 2707 // Swap to left input. Implements item (2). 2708 if( n->req() == 3 && // two-input instruction 2709 n->in(1)->outcnt() > 1 && // left use is NOT a last use 2710 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 2711 n->in(2)->outcnt() == 1 &&// right use IS a last use 2712 !n->in(2)->is_Con() ) { // right use is not a constant 2713 // Check for commutative opcode 2714 switch( nop ) { 2715 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 2716 case Op_MaxI: case Op_MinI: 2717 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 2718 case Op_AndL: case Op_XorL: case Op_OrL: 2719 case Op_AndI: case Op_XorI: case Op_OrI: { 2720 // Move "last use" input to left by swapping inputs 2721 n->swap_edges(1, 2); 2722 break; 2723 } 2724 default: 2725 break; 2726 } 2727 } 2728 2729 #ifdef ASSERT 2730 if( n->is_Mem() ) { 2731 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 2732 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw || 2733 // oop will be recorded in oop map if load crosses safepoint 2734 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 2735 LoadNode::is_immutable_value(n->in(MemNode::Address))), 2736 "raw memory operations should have control edge"); 2737 } 2738 #endif 2739 // Count FPU ops and common calls, implements item (3) 2740 switch( nop ) { 2741 // Count all float operations that may use FPU 2742 case Op_AddF: 2743 case Op_SubF: 2744 case Op_MulF: 2745 case Op_DivF: 2746 case Op_NegF: 2747 case Op_ModF: 2748 case Op_ConvI2F: 2749 case Op_ConF: 2750 case Op_CmpF: 2751 case Op_CmpF3: 2752 // case Op_ConvL2F: // longs are split into 32-bit halves 2753 frc.inc_float_count(); 2754 break; 2755 2756 case Op_ConvF2D: 2757 case Op_ConvD2F: 2758 frc.inc_float_count(); 2759 frc.inc_double_count(); 2760 break; 2761 2762 // Count all double operations that may use FPU 2763 case Op_AddD: 2764 case Op_SubD: 2765 case Op_MulD: 2766 case Op_DivD: 2767 case Op_NegD: 2768 case Op_ModD: 2769 case Op_ConvI2D: 2770 case Op_ConvD2I: 2771 // case Op_ConvL2D: // handled by leaf call 2772 // case Op_ConvD2L: // handled by leaf call 2773 case Op_ConD: 2774 case Op_CmpD: 2775 case Op_CmpD3: 2776 frc.inc_double_count(); 2777 break; 2778 case Op_Opaque1: // Remove Opaque Nodes before matching 2779 case Op_Opaque2: // Remove Opaque Nodes before matching 2780 case Op_Opaque3: 2781 n->subsume_by(n->in(1), this); 2782 break; 2783 case Op_CallStaticJava: 2784 case Op_CallJava: 2785 case Op_CallDynamicJava: 2786 frc.inc_java_call_count(); // Count java call site; 2787 case Op_CallRuntime: 2788 case Op_CallLeaf: 2789 case Op_CallLeafNoFP: { 2790 assert( n->is_Call(), "" ); 2791 CallNode *call = n->as_Call(); 2792 if (UseShenandoahGC && call->is_g1_wb_pre_call()) { 2793 uint cnt = OptoRuntime::g1_wb_pre_Type()->domain()->cnt(); 2794 if (call->req() > cnt) { 2795 assert(call->req() == cnt+1, "only one extra input"); 2796 Node* addp = call->in(cnt); 2797 assert(!CallLeafNode::has_only_g1_wb_pre_uses(addp), "useless address computation?"); 2798 call->del_req(cnt); 2799 } 2800 } 2801 // Count call sites where the FP mode bit would have to be flipped. 2802 // Do not count uncommon runtime calls: 2803 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 2804 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 2805 if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) { 2806 frc.inc_call_count(); // Count the call site 2807 } else { // See if uncommon argument is shared 2808 Node *n = call->in(TypeFunc::Parms); 2809 int nop = n->Opcode(); 2810 // Clone shared simple arguments to uncommon calls, item (1). 2811 if( n->outcnt() > 1 && 2812 !n->is_Proj() && 2813 nop != Op_CreateEx && 2814 nop != Op_CheckCastPP && 2815 nop != Op_DecodeN && 2816 nop != Op_DecodeNKlass && 2817 !n->is_Mem() ) { 2818 Node *x = n->clone(); 2819 call->set_req( TypeFunc::Parms, x ); 2820 } 2821 } 2822 break; 2823 } 2824 2825 case Op_StoreD: 2826 case Op_LoadD: 2827 case Op_LoadD_unaligned: 2828 frc.inc_double_count(); 2829 goto handle_mem; 2830 case Op_StoreF: 2831 case Op_LoadF: 2832 frc.inc_float_count(); 2833 goto handle_mem; 2834 2835 case Op_StoreCM: 2836 { 2837 // Convert OopStore dependence into precedence edge 2838 Node* prec = n->in(MemNode::OopStore); 2839 n->del_req(MemNode::OopStore); 2840 n->add_prec(prec); 2841 eliminate_redundant_card_marks(n); 2842 } 2843 2844 // fall through 2845 2846 case Op_StoreB: 2847 case Op_StoreC: 2848 case Op_StorePConditional: 2849 case Op_StoreI: 2850 case Op_StoreL: 2851 case Op_StoreIConditional: 2852 case Op_StoreLConditional: 2853 case Op_CompareAndSwapB: 2854 case Op_CompareAndSwapS: 2855 case Op_CompareAndSwapI: 2856 case Op_CompareAndSwapL: 2857 case Op_CompareAndSwapP: 2858 case Op_CompareAndSwapN: 2859 case Op_WeakCompareAndSwapB: 2860 case Op_WeakCompareAndSwapS: 2861 case Op_WeakCompareAndSwapI: 2862 case Op_WeakCompareAndSwapL: 2863 case Op_WeakCompareAndSwapP: 2864 case Op_WeakCompareAndSwapN: 2865 case Op_CompareAndExchangeB: 2866 case Op_CompareAndExchangeS: 2867 case Op_CompareAndExchangeI: 2868 case Op_CompareAndExchangeL: 2869 case Op_CompareAndExchangeP: 2870 case Op_CompareAndExchangeN: 2871 case Op_GetAndAddS: 2872 case Op_GetAndAddB: 2873 case Op_GetAndAddI: 2874 case Op_GetAndAddL: 2875 case Op_GetAndSetS: 2876 case Op_GetAndSetB: 2877 case Op_GetAndSetI: 2878 case Op_GetAndSetL: 2879 case Op_GetAndSetP: 2880 case Op_GetAndSetN: 2881 case Op_StoreP: 2882 case Op_StoreN: 2883 case Op_StoreNKlass: 2884 case Op_LoadB: 2885 case Op_LoadUB: 2886 case Op_LoadUS: 2887 case Op_LoadI: 2888 case Op_LoadKlass: 2889 case Op_LoadNKlass: 2890 case Op_LoadL: 2891 case Op_LoadL_unaligned: 2892 case Op_LoadPLocked: 2893 case Op_LoadP: 2894 case Op_LoadN: 2895 case Op_LoadRange: 2896 case Op_LoadS: { 2897 handle_mem: 2898 #ifdef ASSERT 2899 if( VerifyOptoOopOffsets ) { 2900 assert( n->is_Mem(), "" ); 2901 MemNode *mem = (MemNode*)n; 2902 // Check to see if address types have grounded out somehow. 2903 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr(); 2904 assert( !tp || oop_offset_is_sane(tp), "" ); 2905 } 2906 #endif 2907 break; 2908 } 2909 2910 case Op_AddP: { // Assert sane base pointers 2911 Node *addp = n->in(AddPNode::Address); 2912 assert( !addp->is_AddP() || 2913 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 2914 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 2915 "Base pointers must match (addp %u)", addp->_idx ); 2916 #ifdef _LP64 2917 if ((UseCompressedOops || UseCompressedClassPointers) && 2918 addp->Opcode() == Op_ConP && 2919 addp == n->in(AddPNode::Base) && 2920 n->in(AddPNode::Offset)->is_Con()) { 2921 // If the transformation of ConP to ConN+DecodeN is beneficial depends 2922 // on the platform and on the compressed oops mode. 2923 // Use addressing with narrow klass to load with offset on x86. 2924 // Some platforms can use the constant pool to load ConP. 2925 // Do this transformation here since IGVN will convert ConN back to ConP. 2926 const Type* t = addp->bottom_type(); 2927 bool is_oop = t->isa_oopptr() != NULL; 2928 bool is_klass = t->isa_klassptr() != NULL; 2929 2930 if ((is_oop && Matcher::const_oop_prefer_decode() ) || 2931 (is_klass && Matcher::const_klass_prefer_decode())) { 2932 Node* nn = NULL; 2933 2934 int op = is_oop ? Op_ConN : Op_ConNKlass; 2935 2936 // Look for existing ConN node of the same exact type. 2937 Node* r = root(); 2938 uint cnt = r->outcnt(); 2939 for (uint i = 0; i < cnt; i++) { 2940 Node* m = r->raw_out(i); 2941 if (m!= NULL && m->Opcode() == op && 2942 m->bottom_type()->make_ptr() == t) { 2943 nn = m; 2944 break; 2945 } 2946 } 2947 if (nn != NULL) { 2948 // Decode a narrow oop to match address 2949 // [R12 + narrow_oop_reg<<3 + offset] 2950 if (is_oop) { 2951 nn = new DecodeNNode(nn, t); 2952 } else { 2953 nn = new DecodeNKlassNode(nn, t); 2954 } 2955 // Check for succeeding AddP which uses the same Base. 2956 // Otherwise we will run into the assertion above when visiting that guy. 2957 for (uint i = 0; i < n->outcnt(); ++i) { 2958 Node *out_i = n->raw_out(i); 2959 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 2960 out_i->set_req(AddPNode::Base, nn); 2961 #ifdef ASSERT 2962 for (uint j = 0; j < out_i->outcnt(); ++j) { 2963 Node *out_j = out_i->raw_out(j); 2964 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 2965 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 2966 } 2967 #endif 2968 } 2969 } 2970 n->set_req(AddPNode::Base, nn); 2971 n->set_req(AddPNode::Address, nn); 2972 if (addp->outcnt() == 0) { 2973 addp->disconnect_inputs(NULL, this); 2974 } 2975 } 2976 } 2977 } 2978 #endif 2979 // platform dependent reshaping of the address expression 2980 reshape_address(n->as_AddP()); 2981 break; 2982 } 2983 2984 case Op_CastPP: { 2985 // Remove CastPP nodes to gain more freedom during scheduling but 2986 // keep the dependency they encode as control or precedence edges 2987 // (if control is set already) on memory operations. Some CastPP 2988 // nodes don't have a control (don't carry a dependency): skip 2989 // those. 2990 if (n->in(0) != NULL) { 2991 ResourceMark rm; 2992 Unique_Node_List wq; 2993 wq.push(n); 2994 for (uint next = 0; next < wq.size(); ++next) { 2995 Node *m = wq.at(next); 2996 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 2997 Node* use = m->fast_out(i); 2998 if (use->is_Mem() || use->is_EncodeNarrowPtr() || use->is_ShenandoahBarrier()) { 2999 use->ensure_control_or_add_prec(n->in(0)); 3000 } else { 3001 switch(use->Opcode()) { 3002 case Op_AddP: 3003 case Op_DecodeN: 3004 case Op_DecodeNKlass: 3005 case Op_CheckCastPP: 3006 case Op_CastPP: 3007 wq.push(use); 3008 break; 3009 } 3010 } 3011 } 3012 } 3013 } 3014 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3015 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3016 Node* in1 = n->in(1); 3017 const Type* t = n->bottom_type(); 3018 Node* new_in1 = in1->clone(); 3019 new_in1->as_DecodeN()->set_type(t); 3020 3021 if (!Matcher::narrow_oop_use_complex_address()) { 3022 // 3023 // x86, ARM and friends can handle 2 adds in addressing mode 3024 // and Matcher can fold a DecodeN node into address by using 3025 // a narrow oop directly and do implicit NULL check in address: 3026 // 3027 // [R12 + narrow_oop_reg<<3 + offset] 3028 // NullCheck narrow_oop_reg 3029 // 3030 // On other platforms (Sparc) we have to keep new DecodeN node and 3031 // use it to do implicit NULL check in address: 3032 // 3033 // decode_not_null narrow_oop_reg, base_reg 3034 // [base_reg + offset] 3035 // NullCheck base_reg 3036 // 3037 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3038 // to keep the information to which NULL check the new DecodeN node 3039 // corresponds to use it as value in implicit_null_check(). 3040 // 3041 new_in1->set_req(0, n->in(0)); 3042 } 3043 3044 n->subsume_by(new_in1, this); 3045 if (in1->outcnt() == 0) { 3046 in1->disconnect_inputs(NULL, this); 3047 } 3048 } else { 3049 n->subsume_by(n->in(1), this); 3050 if (n->outcnt() == 0) { 3051 n->disconnect_inputs(NULL, this); 3052 } 3053 } 3054 break; 3055 } 3056 #ifdef _LP64 3057 case Op_CmpP: 3058 // Do this transformation here to preserve CmpPNode::sub() and 3059 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3060 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3061 Node* in1 = n->in(1); 3062 Node* in2 = n->in(2); 3063 if (!in1->is_DecodeNarrowPtr()) { 3064 in2 = in1; 3065 in1 = n->in(2); 3066 } 3067 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3068 3069 Node* new_in2 = NULL; 3070 if (in2->is_DecodeNarrowPtr()) { 3071 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3072 new_in2 = in2->in(1); 3073 } else if (in2->Opcode() == Op_ConP) { 3074 const Type* t = in2->bottom_type(); 3075 if (t == TypePtr::NULL_PTR) { 3076 assert(in1->is_DecodeN(), "compare klass to null?"); 3077 // Don't convert CmpP null check into CmpN if compressed 3078 // oops implicit null check is not generated. 3079 // This will allow to generate normal oop implicit null check. 3080 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3081 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3082 // 3083 // This transformation together with CastPP transformation above 3084 // will generated code for implicit NULL checks for compressed oops. 3085 // 3086 // The original code after Optimize() 3087 // 3088 // LoadN memory, narrow_oop_reg 3089 // decode narrow_oop_reg, base_reg 3090 // CmpP base_reg, NULL 3091 // CastPP base_reg // NotNull 3092 // Load [base_reg + offset], val_reg 3093 // 3094 // after these transformations will be 3095 // 3096 // LoadN memory, narrow_oop_reg 3097 // CmpN narrow_oop_reg, NULL 3098 // decode_not_null narrow_oop_reg, base_reg 3099 // Load [base_reg + offset], val_reg 3100 // 3101 // and the uncommon path (== NULL) will use narrow_oop_reg directly 3102 // since narrow oops can be used in debug info now (see the code in 3103 // final_graph_reshaping_walk()). 3104 // 3105 // At the end the code will be matched to 3106 // on x86: 3107 // 3108 // Load_narrow_oop memory, narrow_oop_reg 3109 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3110 // NullCheck narrow_oop_reg 3111 // 3112 // and on sparc: 3113 // 3114 // Load_narrow_oop memory, narrow_oop_reg 3115 // decode_not_null narrow_oop_reg, base_reg 3116 // Load [base_reg + offset], val_reg 3117 // NullCheck base_reg 3118 // 3119 } else if (t->isa_oopptr()) { 3120 new_in2 = ConNode::make(t->make_narrowoop()); 3121 } else if (t->isa_klassptr()) { 3122 new_in2 = ConNode::make(t->make_narrowklass()); 3123 } 3124 } 3125 if (new_in2 != NULL) { 3126 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3127 n->subsume_by(cmpN, this); 3128 if (in1->outcnt() == 0) { 3129 in1->disconnect_inputs(NULL, this); 3130 } 3131 if (in2->outcnt() == 0) { 3132 in2->disconnect_inputs(NULL, this); 3133 } 3134 } 3135 } 3136 break; 3137 3138 case Op_DecodeN: 3139 case Op_DecodeNKlass: 3140 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3141 // DecodeN could be pinned when it can't be fold into 3142 // an address expression, see the code for Op_CastPP above. 3143 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3144 break; 3145 3146 case Op_EncodeP: 3147 case Op_EncodePKlass: { 3148 Node* in1 = n->in(1); 3149 if (in1->is_DecodeNarrowPtr()) { 3150 n->subsume_by(in1->in(1), this); 3151 } else if (in1->Opcode() == Op_ConP) { 3152 const Type* t = in1->bottom_type(); 3153 if (t == TypePtr::NULL_PTR) { 3154 assert(t->isa_oopptr(), "null klass?"); 3155 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3156 } else if (t->isa_oopptr()) { 3157 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3158 } else if (t->isa_klassptr()) { 3159 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3160 } 3161 } 3162 if (in1->outcnt() == 0) { 3163 in1->disconnect_inputs(NULL, this); 3164 } 3165 break; 3166 } 3167 3168 case Op_Proj: { 3169 if (OptimizeStringConcat) { 3170 ProjNode* p = n->as_Proj(); 3171 if (p->_is_io_use) { 3172 // Separate projections were used for the exception path which 3173 // are normally removed by a late inline. If it wasn't inlined 3174 // then they will hang around and should just be replaced with 3175 // the original one. 3176 Node* proj = NULL; 3177 // Replace with just one 3178 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) { 3179 Node *use = i.get(); 3180 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) { 3181 proj = use; 3182 break; 3183 } 3184 } 3185 assert(proj != NULL, "must be found"); 3186 p->subsume_by(proj, this); 3187 } 3188 } 3189 break; 3190 } 3191 3192 case Op_Phi: 3193 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3194 // The EncodeP optimization may create Phi with the same edges 3195 // for all paths. It is not handled well by Register Allocator. 3196 Node* unique_in = n->in(1); 3197 assert(unique_in != NULL, ""); 3198 uint cnt = n->req(); 3199 for (uint i = 2; i < cnt; i++) { 3200 Node* m = n->in(i); 3201 assert(m != NULL, ""); 3202 if (unique_in != m) 3203 unique_in = NULL; 3204 } 3205 if (unique_in != NULL) { 3206 n->subsume_by(unique_in, this); 3207 } 3208 } 3209 break; 3210 3211 #endif 3212 3213 #ifdef ASSERT 3214 case Op_CastII: 3215 // Verify that all range check dependent CastII nodes were removed. 3216 if (n->isa_CastII()->has_range_check()) { 3217 n->dump(3); 3218 assert(false, "Range check dependent CastII node was not removed"); 3219 } 3220 break; 3221 #endif 3222 3223 case Op_ModI: 3224 if (UseDivMod) { 3225 // Check if a%b and a/b both exist 3226 Node* d = n->find_similar(Op_DivI); 3227 if (d) { 3228 // Replace them with a fused divmod if supported 3229 if (Matcher::has_match_rule(Op_DivModI)) { 3230 DivModINode* divmod = DivModINode::make(n); 3231 d->subsume_by(divmod->div_proj(), this); 3232 n->subsume_by(divmod->mod_proj(), this); 3233 } else { 3234 // replace a%b with a-((a/b)*b) 3235 Node* mult = new MulINode(d, d->in(2)); 3236 Node* sub = new SubINode(d->in(1), mult); 3237 n->subsume_by(sub, this); 3238 } 3239 } 3240 } 3241 break; 3242 3243 case Op_ModL: 3244 if (UseDivMod) { 3245 // Check if a%b and a/b both exist 3246 Node* d = n->find_similar(Op_DivL); 3247 if (d) { 3248 // Replace them with a fused divmod if supported 3249 if (Matcher::has_match_rule(Op_DivModL)) { 3250 DivModLNode* divmod = DivModLNode::make(n); 3251 d->subsume_by(divmod->div_proj(), this); 3252 n->subsume_by(divmod->mod_proj(), this); 3253 } else { 3254 // replace a%b with a-((a/b)*b) 3255 Node* mult = new MulLNode(d, d->in(2)); 3256 Node* sub = new SubLNode(d->in(1), mult); 3257 n->subsume_by(sub, this); 3258 } 3259 } 3260 } 3261 break; 3262 3263 case Op_LoadVector: 3264 case Op_StoreVector: 3265 break; 3266 3267 case Op_AddReductionVI: 3268 case Op_AddReductionVL: 3269 case Op_AddReductionVF: 3270 case Op_AddReductionVD: 3271 case Op_MulReductionVI: 3272 case Op_MulReductionVL: 3273 case Op_MulReductionVF: 3274 case Op_MulReductionVD: 3275 break; 3276 3277 case Op_PackB: 3278 case Op_PackS: 3279 case Op_PackI: 3280 case Op_PackF: 3281 case Op_PackL: 3282 case Op_PackD: 3283 if (n->req()-1 > 2) { 3284 // Replace many operand PackNodes with a binary tree for matching 3285 PackNode* p = (PackNode*) n; 3286 Node* btp = p->binary_tree_pack(1, n->req()); 3287 n->subsume_by(btp, this); 3288 } 3289 break; 3290 case Op_Loop: 3291 case Op_CountedLoop: 3292 if (n->as_Loop()->is_inner_loop()) { 3293 frc.inc_inner_loop_count(); 3294 } 3295 n->as_Loop()->verify_strip_mined(0); 3296 break; 3297 case Op_LShiftI: 3298 case Op_RShiftI: 3299 case Op_URShiftI: 3300 case Op_LShiftL: 3301 case Op_RShiftL: 3302 case Op_URShiftL: 3303 if (Matcher::need_masked_shift_count) { 3304 // The cpu's shift instructions don't restrict the count to the 3305 // lower 5/6 bits. We need to do the masking ourselves. 3306 Node* in2 = n->in(2); 3307 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3308 const TypeInt* t = in2->find_int_type(); 3309 if (t != NULL && t->is_con()) { 3310 juint shift = t->get_con(); 3311 if (shift > mask) { // Unsigned cmp 3312 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3313 } 3314 } else { 3315 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) { 3316 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3317 n->set_req(2, shift); 3318 } 3319 } 3320 if (in2->outcnt() == 0) { // Remove dead node 3321 in2->disconnect_inputs(NULL, this); 3322 } 3323 } 3324 break; 3325 case Op_MemBarStoreStore: 3326 case Op_MemBarRelease: 3327 // Break the link with AllocateNode: it is no longer useful and 3328 // confuses register allocation. 3329 if (n->req() > MemBarNode::Precedent) { 3330 n->set_req(MemBarNode::Precedent, top()); 3331 } 3332 break; 3333 case Op_ShenandoahReadBarrier: 3334 break; 3335 case Op_ShenandoahWriteBarrier: 3336 assert(!ShenandoahWriteBarrierToIR, "should have been expanded already"); 3337 break; 3338 case Op_RangeCheck: { 3339 RangeCheckNode* rc = n->as_RangeCheck(); 3340 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3341 n->subsume_by(iff, this); 3342 frc._tests.push(iff); 3343 break; 3344 } 3345 case Op_ConvI2L: { 3346 if (!Matcher::convi2l_type_required) { 3347 // Code generation on some platforms doesn't need accurate 3348 // ConvI2L types. Widening the type can help remove redundant 3349 // address computations. 3350 n->as_Type()->set_type(TypeLong::INT); 3351 ResourceMark rm; 3352 Node_List wq; 3353 wq.push(n); 3354 for (uint next = 0; next < wq.size(); next++) { 3355 Node *m = wq.at(next); 3356 3357 for(;;) { 3358 // Loop over all nodes with identical inputs edges as m 3359 Node* k = m->find_similar(m->Opcode()); 3360 if (k == NULL) { 3361 break; 3362 } 3363 // Push their uses so we get a chance to remove node made 3364 // redundant 3365 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3366 Node* u = k->fast_out(i); 3367 assert(!wq.contains(u), "shouldn't process one node several times"); 3368 if (u->Opcode() == Op_LShiftL || 3369 u->Opcode() == Op_AddL || 3370 u->Opcode() == Op_SubL || 3371 u->Opcode() == Op_AddP) { 3372 wq.push(u); 3373 } 3374 } 3375 // Replace all nodes with identical edges as m with m 3376 k->subsume_by(m, this); 3377 } 3378 } 3379 } 3380 break; 3381 } 3382 case Op_If: { 3383 #ifdef ASSERT 3384 if (ShenandoahWriteBarrierNode::is_evacuation_in_progress_test(n->as_If())) { 3385 Node* c = n->in(0); 3386 int count = 0; 3387 for (;;) { 3388 assert(c->is_Proj(), "proj expected"); 3389 MemBarNode* mb = c->in(0)->as_MemBar(); 3390 c = c->in(0)->in(0); 3391 count++; 3392 assert(mb->outcnt() == 2, "lost a projection?"); 3393 3394 if (mb->adr_type() == TypeRawPtr::BOTTOM) { 3395 break; 3396 } 3397 } 3398 assert(count >= 2, "at least 2 membars"); 3399 } 3400 #endif 3401 break; 3402 } 3403 default: 3404 assert( !n->is_Call(), "" ); 3405 assert( !n->is_Mem(), "" ); 3406 assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3407 break; 3408 } 3409 3410 // Collect CFG split points 3411 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3412 frc._tests.push(n); 3413 } 3414 } 3415 3416 //------------------------------final_graph_reshaping_walk--------------------- 3417 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3418 // requires that the walk visits a node's inputs before visiting the node. 3419 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) { 3420 ResourceArea *area = Thread::current()->resource_area(); 3421 Unique_Node_List sfpt(area); 3422 3423 frc._visited.set(root->_idx); // first, mark node as visited 3424 uint cnt = root->req(); 3425 Node *n = root; 3426 uint i = 0; 3427 while (true) { 3428 if (i < cnt) { 3429 // Place all non-visited non-null inputs onto stack 3430 Node* m = n->in(i); 3431 ++i; 3432 if (m != NULL && !frc._visited.test_set(m->_idx)) { 3433 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) { 3434 // compute worst case interpreter size in case of a deoptimization 3435 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3436 3437 sfpt.push(m); 3438 } 3439 cnt = m->req(); 3440 nstack.push(n, i); // put on stack parent and next input's index 3441 n = m; 3442 i = 0; 3443 } 3444 } else { 3445 // Now do post-visit work 3446 final_graph_reshaping_impl( n, frc ); 3447 if (nstack.is_empty()) 3448 break; // finished 3449 n = nstack.node(); // Get node from stack 3450 cnt = n->req(); 3451 i = nstack.index(); 3452 nstack.pop(); // Shift to the next node on stack 3453 } 3454 } 3455 3456 // Skip next transformation if compressed oops are not used. 3457 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3458 (!UseCompressedOops && !UseCompressedClassPointers)) 3459 return; 3460 3461 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3462 // It could be done for an uncommon traps or any safepoints/calls 3463 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3464 while (sfpt.size() > 0) { 3465 n = sfpt.pop(); 3466 JVMState *jvms = n->as_SafePoint()->jvms(); 3467 assert(jvms != NULL, "sanity"); 3468 int start = jvms->debug_start(); 3469 int end = n->req(); 3470 bool is_uncommon = (n->is_CallStaticJava() && 3471 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3472 for (int j = start; j < end; j++) { 3473 Node* in = n->in(j); 3474 if (in->is_DecodeNarrowPtr()) { 3475 bool safe_to_skip = true; 3476 if (!is_uncommon ) { 3477 // Is it safe to skip? 3478 for (uint i = 0; i < in->outcnt(); i++) { 3479 Node* u = in->raw_out(i); 3480 if (!u->is_SafePoint() || 3481 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3482 safe_to_skip = false; 3483 } 3484 } 3485 } 3486 if (safe_to_skip) { 3487 n->set_req(j, in->in(1)); 3488 } 3489 if (in->outcnt() == 0) { 3490 in->disconnect_inputs(NULL, this); 3491 } 3492 } 3493 } 3494 } 3495 } 3496 3497 //------------------------------final_graph_reshaping-------------------------- 3498 // Final Graph Reshaping. 3499 // 3500 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3501 // and not commoned up and forced early. Must come after regular 3502 // optimizations to avoid GVN undoing the cloning. Clone constant 3503 // inputs to Loop Phis; these will be split by the allocator anyways. 3504 // Remove Opaque nodes. 3505 // (2) Move last-uses by commutative operations to the left input to encourage 3506 // Intel update-in-place two-address operations and better register usage 3507 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3508 // calls canonicalizing them back. 3509 // (3) Count the number of double-precision FP ops, single-precision FP ops 3510 // and call sites. On Intel, we can get correct rounding either by 3511 // forcing singles to memory (requires extra stores and loads after each 3512 // FP bytecode) or we can set a rounding mode bit (requires setting and 3513 // clearing the mode bit around call sites). The mode bit is only used 3514 // if the relative frequency of single FP ops to calls is low enough. 3515 // This is a key transform for SPEC mpeg_audio. 3516 // (4) Detect infinite loops; blobs of code reachable from above but not 3517 // below. Several of the Code_Gen algorithms fail on such code shapes, 3518 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3519 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3520 // Detection is by looking for IfNodes where only 1 projection is 3521 // reachable from below or CatchNodes missing some targets. 3522 // (5) Assert for insane oop offsets in debug mode. 3523 3524 bool Compile::final_graph_reshaping() { 3525 // an infinite loop may have been eliminated by the optimizer, 3526 // in which case the graph will be empty. 3527 if (root()->req() == 1) { 3528 record_method_not_compilable("trivial infinite loop"); 3529 return true; 3530 } 3531 3532 // Expensive nodes have their control input set to prevent the GVN 3533 // from freely commoning them. There's no GVN beyond this point so 3534 // no need to keep the control input. We want the expensive nodes to 3535 // be freely moved to the least frequent code path by gcm. 3536 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 3537 for (int i = 0; i < expensive_count(); i++) { 3538 _expensive_nodes->at(i)->set_req(0, NULL); 3539 } 3540 3541 Final_Reshape_Counts frc; 3542 3543 // Visit everybody reachable! 3544 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 3545 Node_Stack nstack(live_nodes() >> 1); 3546 final_graph_reshaping_walk(nstack, root(), frc); 3547 3548 // Check for unreachable (from below) code (i.e., infinite loops). 3549 for( uint i = 0; i < frc._tests.size(); i++ ) { 3550 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 3551 // Get number of CFG targets. 3552 // Note that PCTables include exception targets after calls. 3553 uint required_outcnt = n->required_outcnt(); 3554 if (n->outcnt() != required_outcnt) { 3555 // Check for a few special cases. Rethrow Nodes never take the 3556 // 'fall-thru' path, so expected kids is 1 less. 3557 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 3558 if (n->in(0)->in(0)->is_Call()) { 3559 CallNode *call = n->in(0)->in(0)->as_Call(); 3560 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 3561 required_outcnt--; // Rethrow always has 1 less kid 3562 } else if (call->req() > TypeFunc::Parms && 3563 call->is_CallDynamicJava()) { 3564 // Check for null receiver. In such case, the optimizer has 3565 // detected that the virtual call will always result in a null 3566 // pointer exception. The fall-through projection of this CatchNode 3567 // will not be populated. 3568 Node *arg0 = call->in(TypeFunc::Parms); 3569 if (arg0->is_Type() && 3570 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 3571 required_outcnt--; 3572 } 3573 } else if (call->entry_point() == OptoRuntime::new_array_Java() && 3574 call->req() > TypeFunc::Parms+1 && 3575 call->is_CallStaticJava()) { 3576 // Check for negative array length. In such case, the optimizer has 3577 // detected that the allocation attempt will always result in an 3578 // exception. There is no fall-through projection of this CatchNode . 3579 Node *arg1 = call->in(TypeFunc::Parms+1); 3580 if (arg1->is_Type() && 3581 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) { 3582 required_outcnt--; 3583 } 3584 } 3585 } 3586 } 3587 // Recheck with a better notion of 'required_outcnt' 3588 if (n->outcnt() != required_outcnt) { 3589 record_method_not_compilable("malformed control flow"); 3590 return true; // Not all targets reachable! 3591 } 3592 } 3593 // Check that I actually visited all kids. Unreached kids 3594 // must be infinite loops. 3595 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 3596 if (!frc._visited.test(n->fast_out(j)->_idx)) { 3597 record_method_not_compilable("infinite loop"); 3598 return true; // Found unvisited kid; must be unreach 3599 } 3600 } 3601 3602 // If original bytecodes contained a mixture of floats and doubles 3603 // check if the optimizer has made it homogenous, item (3). 3604 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 && 3605 frc.get_float_count() > 32 && 3606 frc.get_double_count() == 0 && 3607 (10 * frc.get_call_count() < frc.get_float_count()) ) { 3608 set_24_bit_selection_and_mode( false, true ); 3609 } 3610 3611 set_java_calls(frc.get_java_call_count()); 3612 set_inner_loops(frc.get_inner_loop_count()); 3613 3614 // No infinite loops, no reason to bail out. 3615 return false; 3616 } 3617 3618 //-----------------------------too_many_traps---------------------------------- 3619 // Report if there are too many traps at the current method and bci. 3620 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 3621 bool Compile::too_many_traps(ciMethod* method, 3622 int bci, 3623 Deoptimization::DeoptReason reason) { 3624 ciMethodData* md = method->method_data(); 3625 if (md->is_empty()) { 3626 // Assume the trap has not occurred, or that it occurred only 3627 // because of a transient condition during start-up in the interpreter. 3628 return false; 3629 } 3630 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL; 3631 if (md->has_trap_at(bci, m, reason) != 0) { 3632 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 3633 // Also, if there are multiple reasons, or if there is no per-BCI record, 3634 // assume the worst. 3635 if (log()) 3636 log()->elem("observe trap='%s' count='%d'", 3637 Deoptimization::trap_reason_name(reason), 3638 md->trap_count(reason)); 3639 return true; 3640 } else { 3641 // Ignore method/bci and see if there have been too many globally. 3642 return too_many_traps(reason, md); 3643 } 3644 } 3645 3646 // Less-accurate variant which does not require a method and bci. 3647 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 3648 ciMethodData* logmd) { 3649 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 3650 // Too many traps globally. 3651 // Note that we use cumulative trap_count, not just md->trap_count. 3652 if (log()) { 3653 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason); 3654 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 3655 Deoptimization::trap_reason_name(reason), 3656 mcount, trap_count(reason)); 3657 } 3658 return true; 3659 } else { 3660 // The coast is clear. 3661 return false; 3662 } 3663 } 3664 3665 //--------------------------too_many_recompiles-------------------------------- 3666 // Report if there are too many recompiles at the current method and bci. 3667 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 3668 // Is not eager to return true, since this will cause the compiler to use 3669 // Action_none for a trap point, to avoid too many recompilations. 3670 bool Compile::too_many_recompiles(ciMethod* method, 3671 int bci, 3672 Deoptimization::DeoptReason reason) { 3673 ciMethodData* md = method->method_data(); 3674 if (md->is_empty()) { 3675 // Assume the trap has not occurred, or that it occurred only 3676 // because of a transient condition during start-up in the interpreter. 3677 return false; 3678 } 3679 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 3680 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 3681 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 3682 Deoptimization::DeoptReason per_bc_reason 3683 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 3684 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL; 3685 if ((per_bc_reason == Deoptimization::Reason_none 3686 || md->has_trap_at(bci, m, reason) != 0) 3687 // The trap frequency measure we care about is the recompile count: 3688 && md->trap_recompiled_at(bci, m) 3689 && md->overflow_recompile_count() >= bc_cutoff) { 3690 // Do not emit a trap here if it has already caused recompilations. 3691 // Also, if there are multiple reasons, or if there is no per-BCI record, 3692 // assume the worst. 3693 if (log()) 3694 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 3695 Deoptimization::trap_reason_name(reason), 3696 md->trap_count(reason), 3697 md->overflow_recompile_count()); 3698 return true; 3699 } else if (trap_count(reason) != 0 3700 && decompile_count() >= m_cutoff) { 3701 // Too many recompiles globally, and we have seen this sort of trap. 3702 // Use cumulative decompile_count, not just md->decompile_count. 3703 if (log()) 3704 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 3705 Deoptimization::trap_reason_name(reason), 3706 md->trap_count(reason), trap_count(reason), 3707 md->decompile_count(), decompile_count()); 3708 return true; 3709 } else { 3710 // The coast is clear. 3711 return false; 3712 } 3713 } 3714 3715 // Compute when not to trap. Used by matching trap based nodes and 3716 // NullCheck optimization. 3717 void Compile::set_allowed_deopt_reasons() { 3718 _allowed_reasons = 0; 3719 if (is_method_compilation()) { 3720 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 3721 assert(rs < BitsPerInt, "recode bit map"); 3722 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 3723 _allowed_reasons |= nth_bit(rs); 3724 } 3725 } 3726 } 3727 } 3728 3729 #ifndef PRODUCT 3730 //------------------------------verify_graph_edges--------------------------- 3731 // Walk the Graph and verify that there is a one-to-one correspondence 3732 // between Use-Def edges and Def-Use edges in the graph. 3733 void Compile::verify_graph_edges(bool no_dead_code) { 3734 if (VerifyGraphEdges) { 3735 ResourceArea *area = Thread::current()->resource_area(); 3736 Unique_Node_List visited(area); 3737 // Call recursive graph walk to check edges 3738 _root->verify_edges(visited); 3739 if (no_dead_code) { 3740 // Now make sure that no visited node is used by an unvisited node. 3741 bool dead_nodes = false; 3742 Unique_Node_List checked(area); 3743 while (visited.size() > 0) { 3744 Node* n = visited.pop(); 3745 checked.push(n); 3746 for (uint i = 0; i < n->outcnt(); i++) { 3747 Node* use = n->raw_out(i); 3748 if (checked.member(use)) continue; // already checked 3749 if (visited.member(use)) continue; // already in the graph 3750 if (use->is_Con()) continue; // a dead ConNode is OK 3751 // At this point, we have found a dead node which is DU-reachable. 3752 if (!dead_nodes) { 3753 tty->print_cr("*** Dead nodes reachable via DU edges:"); 3754 dead_nodes = true; 3755 } 3756 use->dump(2); 3757 tty->print_cr("---"); 3758 checked.push(use); // No repeats; pretend it is now checked. 3759 } 3760 } 3761 assert(!dead_nodes, "using nodes must be reachable from root"); 3762 } 3763 } 3764 } 3765 3766 // Verify GC barriers consistency 3767 // Currently supported: 3768 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre()) 3769 void Compile::verify_barriers() { 3770 if (UseG1GC || UseShenandoahGC) { 3771 // Verify G1 pre-barriers 3772 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()); 3773 3774 ResourceArea *area = Thread::current()->resource_area(); 3775 Unique_Node_List visited(area); 3776 Node_List worklist(area); 3777 // We're going to walk control flow backwards starting from the Root 3778 worklist.push(_root); 3779 while (worklist.size() > 0) { 3780 Node* x = worklist.pop(); 3781 if (x == NULL || x == top()) continue; 3782 if (visited.member(x)) { 3783 continue; 3784 } else { 3785 visited.push(x); 3786 } 3787 3788 if (x->is_Region()) { 3789 for (uint i = 1; i < x->req(); i++) { 3790 worklist.push(x->in(i)); 3791 } 3792 } else { 3793 worklist.push(x->in(0)); 3794 // We are looking for the pattern: 3795 // /->ThreadLocal 3796 // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset) 3797 // \->ConI(0) 3798 // We want to verify that the If and the LoadB have the same control 3799 // See GraphKit::g1_write_barrier_pre() 3800 if (x->is_If()) { 3801 IfNode *iff = x->as_If(); 3802 if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) { 3803 CmpNode *cmp = iff->in(1)->in(1)->as_Cmp(); 3804 if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0 3805 && cmp->in(1)->is_Load()) { 3806 LoadNode* load = cmp->in(1)->as_Load(); 3807 if (load->is_g1_marking_load()) { 3808 3809 Node* if_ctrl = iff->in(0); 3810 Node* load_ctrl = load->in(0); 3811 3812 if (if_ctrl != load_ctrl) { 3813 // Skip possible CProj->NeverBranch in infinite loops 3814 if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj) 3815 && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) { 3816 if_ctrl = if_ctrl->in(0)->in(0); 3817 } 3818 } 3819 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match"); 3820 } 3821 } 3822 } 3823 } 3824 } 3825 } 3826 } 3827 } 3828 3829 #endif 3830 3831 // The Compile object keeps track of failure reasons separately from the ciEnv. 3832 // This is required because there is not quite a 1-1 relation between the 3833 // ciEnv and its compilation task and the Compile object. Note that one 3834 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 3835 // to backtrack and retry without subsuming loads. Other than this backtracking 3836 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 3837 // by the logic in C2Compiler. 3838 void Compile::record_failure(const char* reason) { 3839 if (log() != NULL) { 3840 log()->elem("failure reason='%s' phase='compile'", reason); 3841 } 3842 if (_failure_reason == NULL) { 3843 // Record the first failure reason. 3844 _failure_reason = reason; 3845 } 3846 3847 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 3848 C->print_method(PHASE_FAILURE); 3849 } 3850 _root = NULL; // flush the graph, too 3851 } 3852 3853 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator) 3854 : TraceTime(name, accumulator, CITime, CITimeVerbose), 3855 _phase_name(name), _dolog(CITimeVerbose) 3856 { 3857 if (_dolog) { 3858 C = Compile::current(); 3859 _log = C->log(); 3860 } else { 3861 C = NULL; 3862 _log = NULL; 3863 } 3864 if (_log != NULL) { 3865 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 3866 _log->stamp(); 3867 _log->end_head(); 3868 } 3869 } 3870 3871 Compile::TracePhase::~TracePhase() { 3872 3873 C = Compile::current(); 3874 if (_dolog) { 3875 _log = C->log(); 3876 } else { 3877 _log = NULL; 3878 } 3879 3880 #ifdef ASSERT 3881 if (PrintIdealNodeCount) { 3882 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 3883 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk()); 3884 } 3885 3886 if (VerifyIdealNodeCount) { 3887 Compile::current()->print_missing_nodes(); 3888 } 3889 #endif 3890 3891 if (_log != NULL) { 3892 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 3893 } 3894 } 3895 3896 //============================================================================= 3897 // Two Constant's are equal when the type and the value are equal. 3898 bool Compile::Constant::operator==(const Constant& other) { 3899 if (type() != other.type() ) return false; 3900 if (can_be_reused() != other.can_be_reused()) return false; 3901 // For floating point values we compare the bit pattern. 3902 switch (type()) { 3903 case T_INT: 3904 case T_FLOAT: return (_v._value.i == other._v._value.i); 3905 case T_LONG: 3906 case T_DOUBLE: return (_v._value.j == other._v._value.j); 3907 case T_OBJECT: 3908 case T_ADDRESS: return (_v._value.l == other._v._value.l); 3909 case T_VOID: return (_v._value.l == other._v._value.l); // jump-table entries 3910 case T_METADATA: return (_v._metadata == other._v._metadata); 3911 default: ShouldNotReachHere(); return false; 3912 } 3913 } 3914 3915 static int type_to_size_in_bytes(BasicType t) { 3916 switch (t) { 3917 case T_INT: return sizeof(jint ); 3918 case T_LONG: return sizeof(jlong ); 3919 case T_FLOAT: return sizeof(jfloat ); 3920 case T_DOUBLE: return sizeof(jdouble); 3921 case T_METADATA: return sizeof(Metadata*); 3922 // We use T_VOID as marker for jump-table entries (labels) which 3923 // need an internal word relocation. 3924 case T_VOID: 3925 case T_ADDRESS: 3926 case T_OBJECT: return sizeof(jobject); 3927 default: 3928 ShouldNotReachHere(); 3929 return -1; 3930 } 3931 } 3932 3933 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) { 3934 // sort descending 3935 if (a->freq() > b->freq()) return -1; 3936 if (a->freq() < b->freq()) return 1; 3937 return 0; 3938 } 3939 3940 void Compile::ConstantTable::calculate_offsets_and_size() { 3941 // First, sort the array by frequencies. 3942 _constants.sort(qsort_comparator); 3943 3944 #ifdef ASSERT 3945 // Make sure all jump-table entries were sorted to the end of the 3946 // array (they have a negative frequency). 3947 bool found_void = false; 3948 for (int i = 0; i < _constants.length(); i++) { 3949 Constant con = _constants.at(i); 3950 if (con.type() == T_VOID) 3951 found_void = true; // jump-tables 3952 else 3953 assert(!found_void, "wrong sorting"); 3954 } 3955 #endif 3956 3957 int offset = 0; 3958 for (int i = 0; i < _constants.length(); i++) { 3959 Constant* con = _constants.adr_at(i); 3960 3961 // Align offset for type. 3962 int typesize = type_to_size_in_bytes(con->type()); 3963 offset = align_up(offset, typesize); 3964 con->set_offset(offset); // set constant's offset 3965 3966 if (con->type() == T_VOID) { 3967 MachConstantNode* n = (MachConstantNode*) con->get_jobject(); 3968 offset = offset + typesize * n->outcnt(); // expand jump-table 3969 } else { 3970 offset = offset + typesize; 3971 } 3972 } 3973 3974 // Align size up to the next section start (which is insts; see 3975 // CodeBuffer::align_at_start). 3976 assert(_size == -1, "already set?"); 3977 _size = align_up(offset, (int)CodeEntryAlignment); 3978 } 3979 3980 void Compile::ConstantTable::emit(CodeBuffer& cb) { 3981 MacroAssembler _masm(&cb); 3982 for (int i = 0; i < _constants.length(); i++) { 3983 Constant con = _constants.at(i); 3984 address constant_addr = NULL; 3985 switch (con.type()) { 3986 case T_INT: constant_addr = _masm.int_constant( con.get_jint() ); break; 3987 case T_LONG: constant_addr = _masm.long_constant( con.get_jlong() ); break; 3988 case T_FLOAT: constant_addr = _masm.float_constant( con.get_jfloat() ); break; 3989 case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break; 3990 case T_OBJECT: { 3991 jobject obj = con.get_jobject(); 3992 int oop_index = _masm.oop_recorder()->find_index(obj); 3993 constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index)); 3994 break; 3995 } 3996 case T_ADDRESS: { 3997 address addr = (address) con.get_jobject(); 3998 constant_addr = _masm.address_constant(addr); 3999 break; 4000 } 4001 // We use T_VOID as marker for jump-table entries (labels) which 4002 // need an internal word relocation. 4003 case T_VOID: { 4004 MachConstantNode* n = (MachConstantNode*) con.get_jobject(); 4005 // Fill the jump-table with a dummy word. The real value is 4006 // filled in later in fill_jump_table. 4007 address dummy = (address) n; 4008 constant_addr = _masm.address_constant(dummy); 4009 // Expand jump-table 4010 for (uint i = 1; i < n->outcnt(); i++) { 4011 address temp_addr = _masm.address_constant(dummy + i); 4012 assert(temp_addr, "consts section too small"); 4013 } 4014 break; 4015 } 4016 case T_METADATA: { 4017 Metadata* obj = con.get_metadata(); 4018 int metadata_index = _masm.oop_recorder()->find_index(obj); 4019 constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index)); 4020 break; 4021 } 4022 default: ShouldNotReachHere(); 4023 } 4024 assert(constant_addr, "consts section too small"); 4025 assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), 4026 "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())); 4027 } 4028 } 4029 4030 int Compile::ConstantTable::find_offset(Constant& con) const { 4031 int idx = _constants.find(con); 4032 assert(idx != -1, "constant must be in constant table"); 4033 int offset = _constants.at(idx).offset(); 4034 assert(offset != -1, "constant table not emitted yet?"); 4035 return offset; 4036 } 4037 4038 void Compile::ConstantTable::add(Constant& con) { 4039 if (con.can_be_reused()) { 4040 int idx = _constants.find(con); 4041 if (idx != -1 && _constants.at(idx).can_be_reused()) { 4042 _constants.adr_at(idx)->inc_freq(con.freq()); // increase the frequency by the current value 4043 return; 4044 } 4045 } 4046 (void) _constants.append(con); 4047 } 4048 4049 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) { 4050 Block* b = Compile::current()->cfg()->get_block_for_node(n); 4051 Constant con(type, value, b->_freq); 4052 add(con); 4053 return con; 4054 } 4055 4056 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) { 4057 Constant con(metadata); 4058 add(con); 4059 return con; 4060 } 4061 4062 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) { 4063 jvalue value; 4064 BasicType type = oper->type()->basic_type(); 4065 switch (type) { 4066 case T_LONG: value.j = oper->constantL(); break; 4067 case T_FLOAT: value.f = oper->constantF(); break; 4068 case T_DOUBLE: value.d = oper->constantD(); break; 4069 case T_OBJECT: 4070 case T_ADDRESS: value.l = (jobject) oper->constant(); break; 4071 case T_METADATA: return add((Metadata*)oper->constant()); break; 4072 default: guarantee(false, "unhandled type: %s", type2name(type)); 4073 } 4074 return add(n, type, value); 4075 } 4076 4077 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) { 4078 jvalue value; 4079 // We can use the node pointer here to identify the right jump-table 4080 // as this method is called from Compile::Fill_buffer right before 4081 // the MachNodes are emitted and the jump-table is filled (means the 4082 // MachNode pointers do not change anymore). 4083 value.l = (jobject) n; 4084 Constant con(T_VOID, value, next_jump_table_freq(), false); // Labels of a jump-table cannot be reused. 4085 add(con); 4086 return con; 4087 } 4088 4089 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const { 4090 // If called from Compile::scratch_emit_size do nothing. 4091 if (Compile::current()->in_scratch_emit_size()) return; 4092 4093 assert(labels.is_nonempty(), "must be"); 4094 assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt()); 4095 4096 // Since MachConstantNode::constant_offset() also contains 4097 // table_base_offset() we need to subtract the table_base_offset() 4098 // to get the plain offset into the constant table. 4099 int offset = n->constant_offset() - table_base_offset(); 4100 4101 MacroAssembler _masm(&cb); 4102 address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset); 4103 4104 for (uint i = 0; i < n->outcnt(); i++) { 4105 address* constant_addr = &jump_table_base[i]; 4106 assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)); 4107 *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr); 4108 cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type); 4109 } 4110 } 4111 4112 //----------------------------static_subtype_check----------------------------- 4113 // Shortcut important common cases when superklass is exact: 4114 // (0) superklass is java.lang.Object (can occur in reflective code) 4115 // (1) subklass is already limited to a subtype of superklass => always ok 4116 // (2) subklass does not overlap with superklass => always fail 4117 // (3) superklass has NO subtypes and we can check with a simple compare. 4118 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) { 4119 if (StressReflectiveCode) { 4120 return SSC_full_test; // Let caller generate the general case. 4121 } 4122 4123 if (superk == env()->Object_klass()) { 4124 return SSC_always_true; // (0) this test cannot fail 4125 } 4126 4127 ciType* superelem = superk; 4128 if (superelem->is_array_klass()) 4129 superelem = superelem->as_array_klass()->base_element_type(); 4130 4131 if (!subk->is_interface()) { // cannot trust static interface types yet 4132 if (subk->is_subtype_of(superk)) { 4133 return SSC_always_true; // (1) false path dead; no dynamic test needed 4134 } 4135 if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) && 4136 !superk->is_subtype_of(subk)) { 4137 return SSC_always_false; 4138 } 4139 } 4140 4141 // If casting to an instance klass, it must have no subtypes 4142 if (superk->is_interface()) { 4143 // Cannot trust interfaces yet. 4144 // %%% S.B. superk->nof_implementors() == 1 4145 } else if (superelem->is_instance_klass()) { 4146 ciInstanceKlass* ik = superelem->as_instance_klass(); 4147 if (!ik->has_subklass() && !ik->is_interface()) { 4148 if (!ik->is_final()) { 4149 // Add a dependency if there is a chance of a later subclass. 4150 dependencies()->assert_leaf_type(ik); 4151 } 4152 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4153 } 4154 } else { 4155 // A primitive array type has no subtypes. 4156 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4157 } 4158 4159 return SSC_full_test; 4160 } 4161 4162 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4163 #ifdef _LP64 4164 // The scaled index operand to AddP must be a clean 64-bit value. 4165 // Java allows a 32-bit int to be incremented to a negative 4166 // value, which appears in a 64-bit register as a large 4167 // positive number. Using that large positive number as an 4168 // operand in pointer arithmetic has bad consequences. 4169 // On the other hand, 32-bit overflow is rare, and the possibility 4170 // can often be excluded, if we annotate the ConvI2L node with 4171 // a type assertion that its value is known to be a small positive 4172 // number. (The prior range check has ensured this.) 4173 // This assertion is used by ConvI2LNode::Ideal. 4174 int index_max = max_jint - 1; // array size is max_jint, index is one less 4175 if (sizetype != NULL) index_max = sizetype->_hi - 1; 4176 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4177 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4178 #endif 4179 return idx; 4180 } 4181 4182 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4183 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) { 4184 if (ctrl != NULL) { 4185 // Express control dependency by a CastII node with a narrow type. 4186 value = new CastIINode(value, itype, false, true /* range check dependency */); 4187 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4188 // node from floating above the range check during loop optimizations. Otherwise, the 4189 // ConvI2L node may be eliminated independently of the range check, causing the data path 4190 // to become TOP while the control path is still there (although it's unreachable). 4191 value->set_req(0, ctrl); 4192 // Save CastII node to remove it after loop optimizations. 4193 phase->C->add_range_check_cast(value); 4194 value = phase->transform(value); 4195 } 4196 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4197 return phase->transform(new ConvI2LNode(value, ltype)); 4198 } 4199 4200 // The message about the current inlining is accumulated in 4201 // _print_inlining_stream and transfered into the _print_inlining_list 4202 // once we know whether inlining succeeds or not. For regular 4203 // inlining, messages are appended to the buffer pointed by 4204 // _print_inlining_idx in the _print_inlining_list. For late inlining, 4205 // a new buffer is added after _print_inlining_idx in the list. This 4206 // way we can update the inlining message for late inlining call site 4207 // when the inlining is attempted again. 4208 void Compile::print_inlining_init() { 4209 if (print_inlining() || print_intrinsics()) { 4210 _print_inlining_stream = new stringStream(); 4211 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer()); 4212 } 4213 } 4214 4215 void Compile::print_inlining_reinit() { 4216 if (print_inlining() || print_intrinsics()) { 4217 // Re allocate buffer when we change ResourceMark 4218 _print_inlining_stream = new stringStream(); 4219 } 4220 } 4221 4222 void Compile::print_inlining_reset() { 4223 _print_inlining_stream->reset(); 4224 } 4225 4226 void Compile::print_inlining_commit() { 4227 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 4228 // Transfer the message from _print_inlining_stream to the current 4229 // _print_inlining_list buffer and clear _print_inlining_stream. 4230 _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size()); 4231 print_inlining_reset(); 4232 } 4233 4234 void Compile::print_inlining_push() { 4235 // Add new buffer to the _print_inlining_list at current position 4236 _print_inlining_idx++; 4237 _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer()); 4238 } 4239 4240 Compile::PrintInliningBuffer& Compile::print_inlining_current() { 4241 return _print_inlining_list->at(_print_inlining_idx); 4242 } 4243 4244 void Compile::print_inlining_update(CallGenerator* cg) { 4245 if (print_inlining() || print_intrinsics()) { 4246 if (!cg->is_late_inline()) { 4247 if (print_inlining_current().cg() != NULL) { 4248 print_inlining_push(); 4249 } 4250 print_inlining_commit(); 4251 } else { 4252 if (print_inlining_current().cg() != cg && 4253 (print_inlining_current().cg() != NULL || 4254 print_inlining_current().ss()->size() != 0)) { 4255 print_inlining_push(); 4256 } 4257 print_inlining_commit(); 4258 print_inlining_current().set_cg(cg); 4259 } 4260 } 4261 } 4262 4263 void Compile::print_inlining_move_to(CallGenerator* cg) { 4264 // We resume inlining at a late inlining call site. Locate the 4265 // corresponding inlining buffer so that we can update it. 4266 if (print_inlining()) { 4267 for (int i = 0; i < _print_inlining_list->length(); i++) { 4268 if (_print_inlining_list->adr_at(i)->cg() == cg) { 4269 _print_inlining_idx = i; 4270 return; 4271 } 4272 } 4273 ShouldNotReachHere(); 4274 } 4275 } 4276 4277 void Compile::print_inlining_update_delayed(CallGenerator* cg) { 4278 if (print_inlining()) { 4279 assert(_print_inlining_stream->size() > 0, "missing inlining msg"); 4280 assert(print_inlining_current().cg() == cg, "wrong entry"); 4281 // replace message with new message 4282 _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer()); 4283 print_inlining_commit(); 4284 print_inlining_current().set_cg(cg); 4285 } 4286 } 4287 4288 void Compile::print_inlining_assert_ready() { 4289 assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data"); 4290 } 4291 4292 void Compile::process_print_inlining() { 4293 bool do_print_inlining = print_inlining() || print_intrinsics(); 4294 if (do_print_inlining || log() != NULL) { 4295 // Print inlining message for candidates that we couldn't inline 4296 // for lack of space 4297 for (int i = 0; i < _late_inlines.length(); i++) { 4298 CallGenerator* cg = _late_inlines.at(i); 4299 if (!cg->is_mh_late_inline()) { 4300 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 4301 if (do_print_inlining) { 4302 cg->print_inlining_late(msg); 4303 } 4304 log_late_inline_failure(cg, msg); 4305 } 4306 } 4307 } 4308 if (do_print_inlining) { 4309 ResourceMark rm; 4310 stringStream ss; 4311 for (int i = 0; i < _print_inlining_list->length(); i++) { 4312 ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string()); 4313 } 4314 size_t end = ss.size(); 4315 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1); 4316 strncpy(_print_inlining_output, ss.base(), end+1); 4317 _print_inlining_output[end] = 0; 4318 } 4319 } 4320 4321 void Compile::dump_print_inlining() { 4322 if (_print_inlining_output != NULL) { 4323 tty->print_raw(_print_inlining_output); 4324 } 4325 } 4326 4327 void Compile::log_late_inline(CallGenerator* cg) { 4328 if (log() != NULL) { 4329 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4330 cg->unique_id()); 4331 JVMState* p = cg->call_node()->jvms(); 4332 while (p != NULL) { 4333 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4334 p = p->caller(); 4335 } 4336 log()->tail("late_inline"); 4337 } 4338 } 4339 4340 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4341 log_late_inline(cg); 4342 if (log() != NULL) { 4343 log()->inline_fail(msg); 4344 } 4345 } 4346 4347 void Compile::log_inline_id(CallGenerator* cg) { 4348 if (log() != NULL) { 4349 // The LogCompilation tool needs a unique way to identify late 4350 // inline call sites. This id must be unique for this call site in 4351 // this compilation. Try to have it unique across compilations as 4352 // well because it can be convenient when grepping through the log 4353 // file. 4354 // Distinguish OSR compilations from others in case CICountOSR is 4355 // on. 4356 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4357 cg->set_unique_id(id); 4358 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4359 } 4360 } 4361 4362 void Compile::log_inline_failure(const char* msg) { 4363 if (C->log() != NULL) { 4364 C->log()->inline_fail(msg); 4365 } 4366 } 4367 4368 4369 // Dump inlining replay data to the stream. 4370 // Don't change thread state and acquire any locks. 4371 void Compile::dump_inline_data(outputStream* out) { 4372 InlineTree* inl_tree = ilt(); 4373 if (inl_tree != NULL) { 4374 out->print(" inline %d", inl_tree->count()); 4375 inl_tree->dump_replay_data(out); 4376 } 4377 } 4378 4379 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4380 if (n1->Opcode() < n2->Opcode()) return -1; 4381 else if (n1->Opcode() > n2->Opcode()) return 1; 4382 4383 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4384 for (uint i = 1; i < n1->req(); i++) { 4385 if (n1->in(i) < n2->in(i)) return -1; 4386 else if (n1->in(i) > n2->in(i)) return 1; 4387 } 4388 4389 return 0; 4390 } 4391 4392 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4393 Node* n1 = *n1p; 4394 Node* n2 = *n2p; 4395 4396 return cmp_expensive_nodes(n1, n2); 4397 } 4398 4399 void Compile::sort_expensive_nodes() { 4400 if (!expensive_nodes_sorted()) { 4401 _expensive_nodes->sort(cmp_expensive_nodes); 4402 } 4403 } 4404 4405 bool Compile::expensive_nodes_sorted() const { 4406 for (int i = 1; i < _expensive_nodes->length(); i++) { 4407 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) { 4408 return false; 4409 } 4410 } 4411 return true; 4412 } 4413 4414 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4415 if (_expensive_nodes->length() == 0) { 4416 return false; 4417 } 4418 4419 assert(OptimizeExpensiveOps, "optimization off?"); 4420 4421 // Take this opportunity to remove dead nodes from the list 4422 int j = 0; 4423 for (int i = 0; i < _expensive_nodes->length(); i++) { 4424 Node* n = _expensive_nodes->at(i); 4425 if (!n->is_unreachable(igvn)) { 4426 assert(n->is_expensive(), "should be expensive"); 4427 _expensive_nodes->at_put(j, n); 4428 j++; 4429 } 4430 } 4431 _expensive_nodes->trunc_to(j); 4432 4433 // Then sort the list so that similar nodes are next to each other 4434 // and check for at least two nodes of identical kind with same data 4435 // inputs. 4436 sort_expensive_nodes(); 4437 4438 for (int i = 0; i < _expensive_nodes->length()-1; i++) { 4439 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) { 4440 return true; 4441 } 4442 } 4443 4444 return false; 4445 } 4446 4447 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4448 if (_expensive_nodes->length() == 0) { 4449 return; 4450 } 4451 4452 assert(OptimizeExpensiveOps, "optimization off?"); 4453 4454 // Sort to bring similar nodes next to each other and clear the 4455 // control input of nodes for which there's only a single copy. 4456 sort_expensive_nodes(); 4457 4458 int j = 0; 4459 int identical = 0; 4460 int i = 0; 4461 bool modified = false; 4462 for (; i < _expensive_nodes->length()-1; i++) { 4463 assert(j <= i, "can't write beyond current index"); 4464 if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) { 4465 identical++; 4466 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 4467 continue; 4468 } 4469 if (identical > 0) { 4470 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 4471 identical = 0; 4472 } else { 4473 Node* n = _expensive_nodes->at(i); 4474 igvn.replace_input_of(n, 0, NULL); 4475 igvn.hash_insert(n); 4476 modified = true; 4477 } 4478 } 4479 if (identical > 0) { 4480 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 4481 } else if (_expensive_nodes->length() >= 1) { 4482 Node* n = _expensive_nodes->at(i); 4483 igvn.replace_input_of(n, 0, NULL); 4484 igvn.hash_insert(n); 4485 modified = true; 4486 } 4487 _expensive_nodes->trunc_to(j); 4488 if (modified) { 4489 igvn.optimize(); 4490 } 4491 } 4492 4493 void Compile::add_expensive_node(Node * n) { 4494 assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list"); 4495 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4496 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4497 if (OptimizeExpensiveOps) { 4498 _expensive_nodes->append(n); 4499 } else { 4500 // Clear control input and let IGVN optimize expensive nodes if 4501 // OptimizeExpensiveOps is off. 4502 n->set_req(0, NULL); 4503 } 4504 } 4505 4506 /** 4507 * Remove the speculative part of types and clean up the graph 4508 */ 4509 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4510 if (UseTypeSpeculation) { 4511 Unique_Node_List worklist; 4512 worklist.push(root()); 4513 int modified = 0; 4514 // Go over all type nodes that carry a speculative type, drop the 4515 // speculative part of the type and enqueue the node for an igvn 4516 // which may optimize it out. 4517 for (uint next = 0; next < worklist.size(); ++next) { 4518 Node *n = worklist.at(next); 4519 if (n->is_Type()) { 4520 TypeNode* tn = n->as_Type(); 4521 const Type* t = tn->type(); 4522 const Type* t_no_spec = t->remove_speculative(); 4523 if (t_no_spec != t) { 4524 bool in_hash = igvn.hash_delete(n); 4525 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 4526 tn->set_type(t_no_spec); 4527 igvn.hash_insert(n); 4528 igvn._worklist.push(n); // give it a chance to go away 4529 modified++; 4530 } 4531 } 4532 uint max = n->len(); 4533 for( uint i = 0; i < max; ++i ) { 4534 Node *m = n->in(i); 4535 if (not_a_node(m)) continue; 4536 worklist.push(m); 4537 } 4538 } 4539 // Drop the speculative part of all types in the igvn's type table 4540 igvn.remove_speculative_types(); 4541 if (modified > 0) { 4542 igvn.optimize(); 4543 } 4544 #ifdef ASSERT 4545 // Verify that after the IGVN is over no speculative type has resurfaced 4546 worklist.clear(); 4547 worklist.push(root()); 4548 for (uint next = 0; next < worklist.size(); ++next) { 4549 Node *n = worklist.at(next); 4550 const Type* t = igvn.type_or_null(n); 4551 assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types"); 4552 if (n->is_Type()) { 4553 t = n->as_Type()->type(); 4554 assert(t == t->remove_speculative(), "no more speculative types"); 4555 } 4556 uint max = n->len(); 4557 for( uint i = 0; i < max; ++i ) { 4558 Node *m = n->in(i); 4559 if (not_a_node(m)) continue; 4560 worklist.push(m); 4561 } 4562 } 4563 igvn.check_no_speculative_types(); 4564 #endif 4565 } 4566 } 4567 4568 // Auxiliary method to support randomized stressing/fuzzing. 4569 // 4570 // This method can be called the arbitrary number of times, with current count 4571 // as the argument. The logic allows selecting a single candidate from the 4572 // running list of candidates as follows: 4573 // int count = 0; 4574 // Cand* selected = null; 4575 // while(cand = cand->next()) { 4576 // if (randomized_select(++count)) { 4577 // selected = cand; 4578 // } 4579 // } 4580 // 4581 // Including count equalizes the chances any candidate is "selected". 4582 // This is useful when we don't have the complete list of candidates to choose 4583 // from uniformly. In this case, we need to adjust the randomicity of the 4584 // selection, or else we will end up biasing the selection towards the latter 4585 // candidates. 4586 // 4587 // Quick back-envelope calculation shows that for the list of n candidates 4588 // the equal probability for the candidate to persist as "best" can be 4589 // achieved by replacing it with "next" k-th candidate with the probability 4590 // of 1/k. It can be easily shown that by the end of the run, the 4591 // probability for any candidate is converged to 1/n, thus giving the 4592 // uniform distribution among all the candidates. 4593 // 4594 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 4595 #define RANDOMIZED_DOMAIN_POW 29 4596 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 4597 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 4598 bool Compile::randomized_select(int count) { 4599 assert(count > 0, "only positive"); 4600 return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 4601 } 4602 4603 CloneMap& Compile::clone_map() { return _clone_map; } 4604 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 4605 4606 void NodeCloneInfo::dump() const { 4607 tty->print(" {%d:%d} ", idx(), gen()); 4608 } 4609 4610 void CloneMap::clone(Node* old, Node* nnn, int gen) { 4611 uint64_t val = value(old->_idx); 4612 NodeCloneInfo cio(val); 4613 assert(val != 0, "old node should be in the map"); 4614 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 4615 insert(nnn->_idx, cin.get()); 4616 #ifndef PRODUCT 4617 if (is_debug()) { 4618 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 4619 } 4620 #endif 4621 } 4622 4623 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 4624 NodeCloneInfo cio(value(old->_idx)); 4625 if (cio.get() == 0) { 4626 cio.set(old->_idx, 0); 4627 insert(old->_idx, cio.get()); 4628 #ifndef PRODUCT 4629 if (is_debug()) { 4630 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 4631 } 4632 #endif 4633 } 4634 clone(old, nnn, gen); 4635 } 4636 4637 int CloneMap::max_gen() const { 4638 int g = 0; 4639 DictI di(_dict); 4640 for(; di.test(); ++di) { 4641 int t = gen(di._key); 4642 if (g < t) { 4643 g = t; 4644 #ifndef PRODUCT 4645 if (is_debug()) { 4646 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 4647 } 4648 #endif 4649 } 4650 } 4651 return g; 4652 } 4653 4654 void CloneMap::dump(node_idx_t key) const { 4655 uint64_t val = value(key); 4656 if (val != 0) { 4657 NodeCloneInfo ni(val); 4658 ni.dump(); 4659 } 4660 } 4661 4662 void Compile::shenandoah_eliminate_matrix_update(Node* p2x, PhaseIterGVN* igvn) { 4663 assert(UseShenandoahGC && p2x->Opcode() == Op_CastP2X, ""); 4664 ResourceMark rm; 4665 Unique_Node_List wq; 4666 4667 wq.push(p2x); 4668 for (uint next = 0; next < wq.size(); next++) { 4669 Node *n = wq.at(next); 4670 if (n->is_Store()) { 4671 // do nothing 4672 } else if (n->is_Load()) { 4673 igvn->replace_node(n, igvn->intcon(1)); 4674 } else { 4675 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4676 Node* u = n->fast_out(i); 4677 wq.push(u); 4678 } 4679 } 4680 } 4681 igvn->replace_node(p2x, C->top()); 4682 } 4683 4684 void Compile::shenandoah_eliminate_g1_wb_pre(Node* call, PhaseIterGVN* igvn) { 4685 assert(UseShenandoahGC && call->is_g1_wb_pre_call(), ""); 4686 Node* c = call->as_Call()->proj_out(TypeFunc::Control); 4687 c = c->unique_ctrl_out(); 4688 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 4689 c = c->unique_ctrl_out(); 4690 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 4691 Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); 4692 assert(iff->is_If(), "expect test"); 4693 if (!iff->is_g1_marking_if(igvn)) { 4694 c = c->unique_ctrl_out(); 4695 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 4696 iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); 4697 assert(iff->is_g1_marking_if(igvn), "expect marking test"); 4698 } 4699 Node* cmpx = iff->in(1)->in(1); 4700 igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ)); 4701 igvn->rehash_node_delayed(call); 4702 call->del_req(call->req()-1); 4703 }