1 /* 2 * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciUtilities.hpp" 27 #include "compiler/compileLog.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/cardTable.hpp" 30 #include "gc/shared/cardTableBarrierSet.hpp" 31 #include "gc/shared/collectedHeap.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "opto/addnode.hpp" 35 #include "opto/castnode.hpp" 36 #include "opto/convertnode.hpp" 37 #include "opto/graphKit.hpp" 38 #include "opto/idealKit.hpp" 39 #include "opto/intrinsicnode.hpp" 40 #include "opto/locknode.hpp" 41 #include "opto/machnode.hpp" 42 #include "opto/opaquenode.hpp" 43 #include "opto/parse.hpp" 44 #include "opto/rootnode.hpp" 45 #include "opto/runtime.hpp" 46 #include "runtime/deoptimization.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #if INCLUDE_G1GC 49 #include "gc/g1/g1CardTable.hpp" 50 #include "gc/g1/g1ThreadLocalData.hpp" 51 #include "gc/g1/heapRegion.hpp" 52 #endif // INCLUDE_ALL_GCS 53 54 //----------------------------GraphKit----------------------------------------- 55 // Main utility constructor. 56 GraphKit::GraphKit(JVMState* jvms) 57 : Phase(Phase::Parser), 58 _env(C->env()), 59 _gvn(*C->initial_gvn()) 60 { 61 _exceptions = jvms->map()->next_exception(); 62 if (_exceptions != NULL) jvms->map()->set_next_exception(NULL); 63 set_jvms(jvms); 64 } 65 66 // Private constructor for parser. 67 GraphKit::GraphKit() 68 : Phase(Phase::Parser), 69 _env(C->env()), 70 _gvn(*C->initial_gvn()) 71 { 72 _exceptions = NULL; 73 set_map(NULL); 74 debug_only(_sp = -99); 75 debug_only(set_bci(-99)); 76 } 77 78 79 80 //---------------------------clean_stack--------------------------------------- 81 // Clear away rubbish from the stack area of the JVM state. 82 // This destroys any arguments that may be waiting on the stack. 83 void GraphKit::clean_stack(int from_sp) { 84 SafePointNode* map = this->map(); 85 JVMState* jvms = this->jvms(); 86 int stk_size = jvms->stk_size(); 87 int stkoff = jvms->stkoff(); 88 Node* top = this->top(); 89 for (int i = from_sp; i < stk_size; i++) { 90 if (map->in(stkoff + i) != top) { 91 map->set_req(stkoff + i, top); 92 } 93 } 94 } 95 96 97 //--------------------------------sync_jvms----------------------------------- 98 // Make sure our current jvms agrees with our parse state. 99 JVMState* GraphKit::sync_jvms() const { 100 JVMState* jvms = this->jvms(); 101 jvms->set_bci(bci()); // Record the new bci in the JVMState 102 jvms->set_sp(sp()); // Record the new sp in the JVMState 103 assert(jvms_in_sync(), "jvms is now in sync"); 104 return jvms; 105 } 106 107 //--------------------------------sync_jvms_for_reexecute--------------------- 108 // Make sure our current jvms agrees with our parse state. This version 109 // uses the reexecute_sp for reexecuting bytecodes. 110 JVMState* GraphKit::sync_jvms_for_reexecute() { 111 JVMState* jvms = this->jvms(); 112 jvms->set_bci(bci()); // Record the new bci in the JVMState 113 jvms->set_sp(reexecute_sp()); // Record the new sp in the JVMState 114 return jvms; 115 } 116 117 #ifdef ASSERT 118 bool GraphKit::jvms_in_sync() const { 119 Parse* parse = is_Parse(); 120 if (parse == NULL) { 121 if (bci() != jvms()->bci()) return false; 122 if (sp() != (int)jvms()->sp()) return false; 123 return true; 124 } 125 if (jvms()->method() != parse->method()) return false; 126 if (jvms()->bci() != parse->bci()) return false; 127 int jvms_sp = jvms()->sp(); 128 if (jvms_sp != parse->sp()) return false; 129 int jvms_depth = jvms()->depth(); 130 if (jvms_depth != parse->depth()) return false; 131 return true; 132 } 133 134 // Local helper checks for special internal merge points 135 // used to accumulate and merge exception states. 136 // They are marked by the region's in(0) edge being the map itself. 137 // Such merge points must never "escape" into the parser at large, 138 // until they have been handed to gvn.transform. 139 static bool is_hidden_merge(Node* reg) { 140 if (reg == NULL) return false; 141 if (reg->is_Phi()) { 142 reg = reg->in(0); 143 if (reg == NULL) return false; 144 } 145 return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root(); 146 } 147 148 void GraphKit::verify_map() const { 149 if (map() == NULL) return; // null map is OK 150 assert(map()->req() <= jvms()->endoff(), "no extra garbage on map"); 151 assert(!map()->has_exceptions(), "call add_exception_states_from 1st"); 152 assert(!is_hidden_merge(control()), "call use_exception_state, not set_map"); 153 } 154 155 void GraphKit::verify_exception_state(SafePointNode* ex_map) { 156 assert(ex_map->next_exception() == NULL, "not already part of a chain"); 157 assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop"); 158 } 159 #endif 160 161 //---------------------------stop_and_kill_map--------------------------------- 162 // Set _map to NULL, signalling a stop to further bytecode execution. 163 // First smash the current map's control to a constant, to mark it dead. 164 void GraphKit::stop_and_kill_map() { 165 SafePointNode* dead_map = stop(); 166 if (dead_map != NULL) { 167 dead_map->disconnect_inputs(NULL, C); // Mark the map as killed. 168 assert(dead_map->is_killed(), "must be so marked"); 169 } 170 } 171 172 173 //--------------------------------stopped-------------------------------------- 174 // Tell if _map is NULL, or control is top. 175 bool GraphKit::stopped() { 176 if (map() == NULL) return true; 177 else if (control() == top()) return true; 178 else return false; 179 } 180 181 182 //-----------------------------has_ex_handler---------------------------------- 183 // Tell if this method or any caller method has exception handlers. 184 bool GraphKit::has_ex_handler() { 185 for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) { 186 if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) { 187 return true; 188 } 189 } 190 return false; 191 } 192 193 //------------------------------save_ex_oop------------------------------------ 194 // Save an exception without blowing stack contents or other JVM state. 195 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) { 196 assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again"); 197 ex_map->add_req(ex_oop); 198 debug_only(verify_exception_state(ex_map)); 199 } 200 201 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) { 202 assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there"); 203 Node* ex_oop = ex_map->in(ex_map->req()-1); 204 if (clear_it) ex_map->del_req(ex_map->req()-1); 205 return ex_oop; 206 } 207 208 //-----------------------------saved_ex_oop------------------------------------ 209 // Recover a saved exception from its map. 210 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) { 211 return common_saved_ex_oop(ex_map, false); 212 } 213 214 //--------------------------clear_saved_ex_oop--------------------------------- 215 // Erase a previously saved exception from its map. 216 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) { 217 return common_saved_ex_oop(ex_map, true); 218 } 219 220 #ifdef ASSERT 221 //---------------------------has_saved_ex_oop---------------------------------- 222 // Erase a previously saved exception from its map. 223 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) { 224 return ex_map->req() == ex_map->jvms()->endoff()+1; 225 } 226 #endif 227 228 //-------------------------make_exception_state-------------------------------- 229 // Turn the current JVM state into an exception state, appending the ex_oop. 230 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) { 231 sync_jvms(); 232 SafePointNode* ex_map = stop(); // do not manipulate this map any more 233 set_saved_ex_oop(ex_map, ex_oop); 234 return ex_map; 235 } 236 237 238 //--------------------------add_exception_state-------------------------------- 239 // Add an exception to my list of exceptions. 240 void GraphKit::add_exception_state(SafePointNode* ex_map) { 241 if (ex_map == NULL || ex_map->control() == top()) { 242 return; 243 } 244 #ifdef ASSERT 245 verify_exception_state(ex_map); 246 if (has_exceptions()) { 247 assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place"); 248 } 249 #endif 250 251 // If there is already an exception of exactly this type, merge with it. 252 // In particular, null-checks and other low-level exceptions common up here. 253 Node* ex_oop = saved_ex_oop(ex_map); 254 const Type* ex_type = _gvn.type(ex_oop); 255 if (ex_oop == top()) { 256 // No action needed. 257 return; 258 } 259 assert(ex_type->isa_instptr(), "exception must be an instance"); 260 for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) { 261 const Type* ex_type2 = _gvn.type(saved_ex_oop(e2)); 262 // We check sp also because call bytecodes can generate exceptions 263 // both before and after arguments are popped! 264 if (ex_type2 == ex_type 265 && e2->_jvms->sp() == ex_map->_jvms->sp()) { 266 combine_exception_states(ex_map, e2); 267 return; 268 } 269 } 270 271 // No pre-existing exception of the same type. Chain it on the list. 272 push_exception_state(ex_map); 273 } 274 275 //-----------------------add_exception_states_from----------------------------- 276 void GraphKit::add_exception_states_from(JVMState* jvms) { 277 SafePointNode* ex_map = jvms->map()->next_exception(); 278 if (ex_map != NULL) { 279 jvms->map()->set_next_exception(NULL); 280 for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) { 281 next_map = ex_map->next_exception(); 282 ex_map->set_next_exception(NULL); 283 add_exception_state(ex_map); 284 } 285 } 286 } 287 288 //-----------------------transfer_exceptions_into_jvms------------------------- 289 JVMState* GraphKit::transfer_exceptions_into_jvms() { 290 if (map() == NULL) { 291 // We need a JVMS to carry the exceptions, but the map has gone away. 292 // Create a scratch JVMS, cloned from any of the exception states... 293 if (has_exceptions()) { 294 _map = _exceptions; 295 _map = clone_map(); 296 _map->set_next_exception(NULL); 297 clear_saved_ex_oop(_map); 298 debug_only(verify_map()); 299 } else { 300 // ...or created from scratch 301 JVMState* jvms = new (C) JVMState(_method, NULL); 302 jvms->set_bci(_bci); 303 jvms->set_sp(_sp); 304 jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms)); 305 set_jvms(jvms); 306 for (uint i = 0; i < map()->req(); i++) map()->init_req(i, top()); 307 set_all_memory(top()); 308 while (map()->req() < jvms->endoff()) map()->add_req(top()); 309 } 310 // (This is a kludge, in case you didn't notice.) 311 set_control(top()); 312 } 313 JVMState* jvms = sync_jvms(); 314 assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet"); 315 jvms->map()->set_next_exception(_exceptions); 316 _exceptions = NULL; // done with this set of exceptions 317 return jvms; 318 } 319 320 static inline void add_n_reqs(Node* dstphi, Node* srcphi) { 321 assert(is_hidden_merge(dstphi), "must be a special merge node"); 322 assert(is_hidden_merge(srcphi), "must be a special merge node"); 323 uint limit = srcphi->req(); 324 for (uint i = PhiNode::Input; i < limit; i++) { 325 dstphi->add_req(srcphi->in(i)); 326 } 327 } 328 static inline void add_one_req(Node* dstphi, Node* src) { 329 assert(is_hidden_merge(dstphi), "must be a special merge node"); 330 assert(!is_hidden_merge(src), "must not be a special merge node"); 331 dstphi->add_req(src); 332 } 333 334 //-----------------------combine_exception_states------------------------------ 335 // This helper function combines exception states by building phis on a 336 // specially marked state-merging region. These regions and phis are 337 // untransformed, and can build up gradually. The region is marked by 338 // having a control input of its exception map, rather than NULL. Such 339 // regions do not appear except in this function, and in use_exception_state. 340 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) { 341 if (failing()) return; // dying anyway... 342 JVMState* ex_jvms = ex_map->_jvms; 343 assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains"); 344 assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals"); 345 assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes"); 346 assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS"); 347 assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects"); 348 assert(ex_map->req() == phi_map->req(), "matching maps"); 349 uint tos = ex_jvms->stkoff() + ex_jvms->sp(); 350 Node* hidden_merge_mark = root(); 351 Node* region = phi_map->control(); 352 MergeMemNode* phi_mem = phi_map->merged_memory(); 353 MergeMemNode* ex_mem = ex_map->merged_memory(); 354 if (region->in(0) != hidden_merge_mark) { 355 // The control input is not (yet) a specially-marked region in phi_map. 356 // Make it so, and build some phis. 357 region = new RegionNode(2); 358 _gvn.set_type(region, Type::CONTROL); 359 region->set_req(0, hidden_merge_mark); // marks an internal ex-state 360 region->init_req(1, phi_map->control()); 361 phi_map->set_control(region); 362 Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO); 363 record_for_igvn(io_phi); 364 _gvn.set_type(io_phi, Type::ABIO); 365 phi_map->set_i_o(io_phi); 366 for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) { 367 Node* m = mms.memory(); 368 Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C)); 369 record_for_igvn(m_phi); 370 _gvn.set_type(m_phi, Type::MEMORY); 371 mms.set_memory(m_phi); 372 } 373 } 374 375 // Either or both of phi_map and ex_map might already be converted into phis. 376 Node* ex_control = ex_map->control(); 377 // if there is special marking on ex_map also, we add multiple edges from src 378 bool add_multiple = (ex_control->in(0) == hidden_merge_mark); 379 // how wide was the destination phi_map, originally? 380 uint orig_width = region->req(); 381 382 if (add_multiple) { 383 add_n_reqs(region, ex_control); 384 add_n_reqs(phi_map->i_o(), ex_map->i_o()); 385 } else { 386 // ex_map has no merges, so we just add single edges everywhere 387 add_one_req(region, ex_control); 388 add_one_req(phi_map->i_o(), ex_map->i_o()); 389 } 390 for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) { 391 if (mms.is_empty()) { 392 // get a copy of the base memory, and patch some inputs into it 393 const TypePtr* adr_type = mms.adr_type(C); 394 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 395 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 396 mms.set_memory(phi); 397 // Prepare to append interesting stuff onto the newly sliced phi: 398 while (phi->req() > orig_width) phi->del_req(phi->req()-1); 399 } 400 // Append stuff from ex_map: 401 if (add_multiple) { 402 add_n_reqs(mms.memory(), mms.memory2()); 403 } else { 404 add_one_req(mms.memory(), mms.memory2()); 405 } 406 } 407 uint limit = ex_map->req(); 408 for (uint i = TypeFunc::Parms; i < limit; i++) { 409 // Skip everything in the JVMS after tos. (The ex_oop follows.) 410 if (i == tos) i = ex_jvms->monoff(); 411 Node* src = ex_map->in(i); 412 Node* dst = phi_map->in(i); 413 if (src != dst) { 414 PhiNode* phi; 415 if (dst->in(0) != region) { 416 dst = phi = PhiNode::make(region, dst, _gvn.type(dst)); 417 record_for_igvn(phi); 418 _gvn.set_type(phi, phi->type()); 419 phi_map->set_req(i, dst); 420 // Prepare to append interesting stuff onto the new phi: 421 while (dst->req() > orig_width) dst->del_req(dst->req()-1); 422 } else { 423 assert(dst->is_Phi(), "nobody else uses a hidden region"); 424 phi = dst->as_Phi(); 425 } 426 if (add_multiple && src->in(0) == ex_control) { 427 // Both are phis. 428 add_n_reqs(dst, src); 429 } else { 430 while (dst->req() < region->req()) add_one_req(dst, src); 431 } 432 const Type* srctype = _gvn.type(src); 433 if (phi->type() != srctype) { 434 const Type* dsttype = phi->type()->meet_speculative(srctype); 435 if (phi->type() != dsttype) { 436 phi->set_type(dsttype); 437 _gvn.set_type(phi, dsttype); 438 } 439 } 440 } 441 } 442 phi_map->merge_replaced_nodes_with(ex_map); 443 } 444 445 //--------------------------use_exception_state-------------------------------- 446 Node* GraphKit::use_exception_state(SafePointNode* phi_map) { 447 if (failing()) { stop(); return top(); } 448 Node* region = phi_map->control(); 449 Node* hidden_merge_mark = root(); 450 assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation"); 451 Node* ex_oop = clear_saved_ex_oop(phi_map); 452 if (region->in(0) == hidden_merge_mark) { 453 // Special marking for internal ex-states. Process the phis now. 454 region->set_req(0, region); // now it's an ordinary region 455 set_jvms(phi_map->jvms()); // ...so now we can use it as a map 456 // Note: Setting the jvms also sets the bci and sp. 457 set_control(_gvn.transform(region)); 458 uint tos = jvms()->stkoff() + sp(); 459 for (uint i = 1; i < tos; i++) { 460 Node* x = phi_map->in(i); 461 if (x->in(0) == region) { 462 assert(x->is_Phi(), "expected a special phi"); 463 phi_map->set_req(i, _gvn.transform(x)); 464 } 465 } 466 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 467 Node* x = mms.memory(); 468 if (x->in(0) == region) { 469 assert(x->is_Phi(), "nobody else uses a hidden region"); 470 mms.set_memory(_gvn.transform(x)); 471 } 472 } 473 if (ex_oop->in(0) == region) { 474 assert(ex_oop->is_Phi(), "expected a special phi"); 475 ex_oop = _gvn.transform(ex_oop); 476 } 477 } else { 478 set_jvms(phi_map->jvms()); 479 } 480 481 assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared"); 482 assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared"); 483 return ex_oop; 484 } 485 486 //---------------------------------java_bc------------------------------------- 487 Bytecodes::Code GraphKit::java_bc() const { 488 ciMethod* method = this->method(); 489 int bci = this->bci(); 490 if (method != NULL && bci != InvocationEntryBci) 491 return method->java_code_at_bci(bci); 492 else 493 return Bytecodes::_illegal; 494 } 495 496 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason, 497 bool must_throw) { 498 // if the exception capability is set, then we will generate code 499 // to check the JavaThread.should_post_on_exceptions flag to see 500 // if we actually need to report exception events (for this 501 // thread). If we don't need to report exception events, we will 502 // take the normal fast path provided by add_exception_events. If 503 // exception event reporting is enabled for this thread, we will 504 // take the uncommon_trap in the BuildCutout below. 505 506 // first must access the should_post_on_exceptions_flag in this thread's JavaThread 507 Node* jthread = _gvn.transform(new ThreadLocalNode()); 508 Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset())); 509 Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered); 510 511 // Test the should_post_on_exceptions_flag vs. 0 512 Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) ); 513 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 514 515 // Branch to slow_path if should_post_on_exceptions_flag was true 516 { BuildCutout unless(this, tst, PROB_MAX); 517 // Do not try anything fancy if we're notifying the VM on every throw. 518 // Cf. case Bytecodes::_athrow in parse2.cpp. 519 uncommon_trap(reason, Deoptimization::Action_none, 520 (ciKlass*)NULL, (char*)NULL, must_throw); 521 } 522 523 } 524 525 //------------------------------builtin_throw---------------------------------- 526 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) { 527 bool must_throw = true; 528 529 if (env()->jvmti_can_post_on_exceptions()) { 530 // check if we must post exception events, take uncommon trap if so 531 uncommon_trap_if_should_post_on_exceptions(reason, must_throw); 532 // here if should_post_on_exceptions is false 533 // continue on with the normal codegen 534 } 535 536 // If this particular condition has not yet happened at this 537 // bytecode, then use the uncommon trap mechanism, and allow for 538 // a future recompilation if several traps occur here. 539 // If the throw is hot, try to use a more complicated inline mechanism 540 // which keeps execution inside the compiled code. 541 bool treat_throw_as_hot = false; 542 ciMethodData* md = method()->method_data(); 543 544 if (ProfileTraps) { 545 if (too_many_traps(reason)) { 546 treat_throw_as_hot = true; 547 } 548 // (If there is no MDO at all, assume it is early in 549 // execution, and that any deopts are part of the 550 // startup transient, and don't need to be remembered.) 551 552 // Also, if there is a local exception handler, treat all throws 553 // as hot if there has been at least one in this method. 554 if (C->trap_count(reason) != 0 555 && method()->method_data()->trap_count(reason) != 0 556 && has_ex_handler()) { 557 treat_throw_as_hot = true; 558 } 559 } 560 561 // If this throw happens frequently, an uncommon trap might cause 562 // a performance pothole. If there is a local exception handler, 563 // and if this particular bytecode appears to be deoptimizing often, 564 // let us handle the throw inline, with a preconstructed instance. 565 // Note: If the deopt count has blown up, the uncommon trap 566 // runtime is going to flush this nmethod, not matter what. 567 if (treat_throw_as_hot 568 && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) { 569 // If the throw is local, we use a pre-existing instance and 570 // punt on the backtrace. This would lead to a missing backtrace 571 // (a repeat of 4292742) if the backtrace object is ever asked 572 // for its backtrace. 573 // Fixing this remaining case of 4292742 requires some flavor of 574 // escape analysis. Leave that for the future. 575 ciInstance* ex_obj = NULL; 576 switch (reason) { 577 case Deoptimization::Reason_null_check: 578 ex_obj = env()->NullPointerException_instance(); 579 break; 580 case Deoptimization::Reason_div0_check: 581 ex_obj = env()->ArithmeticException_instance(); 582 break; 583 case Deoptimization::Reason_range_check: 584 ex_obj = env()->ArrayIndexOutOfBoundsException_instance(); 585 break; 586 case Deoptimization::Reason_class_check: 587 if (java_bc() == Bytecodes::_aastore) { 588 ex_obj = env()->ArrayStoreException_instance(); 589 } else { 590 ex_obj = env()->ClassCastException_instance(); 591 } 592 break; 593 default: 594 break; 595 } 596 if (failing()) { stop(); return; } // exception allocation might fail 597 if (ex_obj != NULL) { 598 // Cheat with a preallocated exception object. 599 if (C->log() != NULL) 600 C->log()->elem("hot_throw preallocated='1' reason='%s'", 601 Deoptimization::trap_reason_name(reason)); 602 const TypeInstPtr* ex_con = TypeInstPtr::make(ex_obj); 603 Node* ex_node = _gvn.transform(ConNode::make(ex_con)); 604 605 // Clear the detail message of the preallocated exception object. 606 // Weblogic sometimes mutates the detail message of exceptions 607 // using reflection. 608 int offset = java_lang_Throwable::get_detailMessage_offset(); 609 const TypePtr* adr_typ = ex_con->add_offset(offset); 610 611 Node *adr = basic_plus_adr(ex_node, ex_node, offset); 612 const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass()); 613 // Conservatively release stores of object references. 614 Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release); 615 616 add_exception_state(make_exception_state(ex_node)); 617 return; 618 } 619 } 620 621 // %%% Maybe add entry to OptoRuntime which directly throws the exc.? 622 // It won't be much cheaper than bailing to the interp., since we'll 623 // have to pass up all the debug-info, and the runtime will have to 624 // create the stack trace. 625 626 // Usual case: Bail to interpreter. 627 // Reserve the right to recompile if we haven't seen anything yet. 628 629 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL; 630 Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile; 631 if (treat_throw_as_hot 632 && (method()->method_data()->trap_recompiled_at(bci(), m) 633 || C->too_many_traps(reason))) { 634 // We cannot afford to take more traps here. Suffer in the interpreter. 635 if (C->log() != NULL) 636 C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'", 637 Deoptimization::trap_reason_name(reason), 638 C->trap_count(reason)); 639 action = Deoptimization::Action_none; 640 } 641 642 // "must_throw" prunes the JVM state to include only the stack, if there 643 // are no local exception handlers. This should cut down on register 644 // allocation time and code size, by drastically reducing the number 645 // of in-edges on the call to the uncommon trap. 646 647 uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw); 648 } 649 650 651 //----------------------------PreserveJVMState--------------------------------- 652 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) { 653 debug_only(kit->verify_map()); 654 _kit = kit; 655 _map = kit->map(); // preserve the map 656 _sp = kit->sp(); 657 kit->set_map(clone_map ? kit->clone_map() : NULL); 658 #ifdef ASSERT 659 _bci = kit->bci(); 660 Parse* parser = kit->is_Parse(); 661 int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo(); 662 _block = block; 663 #endif 664 } 665 PreserveJVMState::~PreserveJVMState() { 666 GraphKit* kit = _kit; 667 #ifdef ASSERT 668 assert(kit->bci() == _bci, "bci must not shift"); 669 Parse* parser = kit->is_Parse(); 670 int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo(); 671 assert(block == _block, "block must not shift"); 672 #endif 673 kit->set_map(_map); 674 kit->set_sp(_sp); 675 } 676 677 678 //-----------------------------BuildCutout------------------------------------- 679 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt) 680 : PreserveJVMState(kit) 681 { 682 assert(p->is_Con() || p->is_Bool(), "test must be a bool"); 683 SafePointNode* outer_map = _map; // preserved map is caller's 684 SafePointNode* inner_map = kit->map(); 685 IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt); 686 outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) )); 687 inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) )); 688 } 689 BuildCutout::~BuildCutout() { 690 GraphKit* kit = _kit; 691 assert(kit->stopped(), "cutout code must stop, throw, return, etc."); 692 } 693 694 //---------------------------PreserveReexecuteState---------------------------- 695 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) { 696 assert(!kit->stopped(), "must call stopped() before"); 697 _kit = kit; 698 _sp = kit->sp(); 699 _reexecute = kit->jvms()->_reexecute; 700 } 701 PreserveReexecuteState::~PreserveReexecuteState() { 702 if (_kit->stopped()) return; 703 _kit->jvms()->_reexecute = _reexecute; 704 _kit->set_sp(_sp); 705 } 706 707 //------------------------------clone_map-------------------------------------- 708 // Implementation of PreserveJVMState 709 // 710 // Only clone_map(...) here. If this function is only used in the 711 // PreserveJVMState class we may want to get rid of this extra 712 // function eventually and do it all there. 713 714 SafePointNode* GraphKit::clone_map() { 715 if (map() == NULL) return NULL; 716 717 // Clone the memory edge first 718 Node* mem = MergeMemNode::make(map()->memory()); 719 gvn().set_type_bottom(mem); 720 721 SafePointNode *clonemap = (SafePointNode*)map()->clone(); 722 JVMState* jvms = this->jvms(); 723 JVMState* clonejvms = jvms->clone_shallow(C); 724 clonemap->set_memory(mem); 725 clonemap->set_jvms(clonejvms); 726 clonejvms->set_map(clonemap); 727 record_for_igvn(clonemap); 728 gvn().set_type_bottom(clonemap); 729 return clonemap; 730 } 731 732 733 //-----------------------------set_map_clone----------------------------------- 734 void GraphKit::set_map_clone(SafePointNode* m) { 735 _map = m; 736 _map = clone_map(); 737 _map->set_next_exception(NULL); 738 debug_only(verify_map()); 739 } 740 741 742 //----------------------------kill_dead_locals--------------------------------- 743 // Detect any locals which are known to be dead, and force them to top. 744 void GraphKit::kill_dead_locals() { 745 // Consult the liveness information for the locals. If any 746 // of them are unused, then they can be replaced by top(). This 747 // should help register allocation time and cut down on the size 748 // of the deoptimization information. 749 750 // This call is made from many of the bytecode handling 751 // subroutines called from the Big Switch in do_one_bytecode. 752 // Every bytecode which might include a slow path is responsible 753 // for killing its dead locals. The more consistent we 754 // are about killing deads, the fewer useless phis will be 755 // constructed for them at various merge points. 756 757 // bci can be -1 (InvocationEntryBci). We return the entry 758 // liveness for the method. 759 760 if (method() == NULL || method()->code_size() == 0) { 761 // We are building a graph for a call to a native method. 762 // All locals are live. 763 return; 764 } 765 766 ResourceMark rm; 767 768 // Consult the liveness information for the locals. If any 769 // of them are unused, then they can be replaced by top(). This 770 // should help register allocation time and cut down on the size 771 // of the deoptimization information. 772 MethodLivenessResult live_locals = method()->liveness_at_bci(bci()); 773 774 int len = (int)live_locals.size(); 775 assert(len <= jvms()->loc_size(), "too many live locals"); 776 for (int local = 0; local < len; local++) { 777 if (!live_locals.at(local)) { 778 set_local(local, top()); 779 } 780 } 781 } 782 783 #ifdef ASSERT 784 //-------------------------dead_locals_are_killed------------------------------ 785 // Return true if all dead locals are set to top in the map. 786 // Used to assert "clean" debug info at various points. 787 bool GraphKit::dead_locals_are_killed() { 788 if (method() == NULL || method()->code_size() == 0) { 789 // No locals need to be dead, so all is as it should be. 790 return true; 791 } 792 793 // Make sure somebody called kill_dead_locals upstream. 794 ResourceMark rm; 795 for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) { 796 if (jvms->loc_size() == 0) continue; // no locals to consult 797 SafePointNode* map = jvms->map(); 798 ciMethod* method = jvms->method(); 799 int bci = jvms->bci(); 800 if (jvms == this->jvms()) { 801 bci = this->bci(); // it might not yet be synched 802 } 803 MethodLivenessResult live_locals = method->liveness_at_bci(bci); 804 int len = (int)live_locals.size(); 805 if (!live_locals.is_valid() || len == 0) 806 // This method is trivial, or is poisoned by a breakpoint. 807 return true; 808 assert(len == jvms->loc_size(), "live map consistent with locals map"); 809 for (int local = 0; local < len; local++) { 810 if (!live_locals.at(local) && map->local(jvms, local) != top()) { 811 if (PrintMiscellaneous && (Verbose || WizardMode)) { 812 tty->print_cr("Zombie local %d: ", local); 813 jvms->dump(); 814 } 815 return false; 816 } 817 } 818 } 819 return true; 820 } 821 822 #endif //ASSERT 823 824 // Helper function for enforcing certain bytecodes to reexecute if 825 // deoptimization happens 826 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) { 827 ciMethod* cur_method = jvms->method(); 828 int cur_bci = jvms->bci(); 829 if (cur_method != NULL && cur_bci != InvocationEntryBci) { 830 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci); 831 return Interpreter::bytecode_should_reexecute(code) || 832 (is_anewarray && code == Bytecodes::_multianewarray); 833 // Reexecute _multianewarray bytecode which was replaced with 834 // sequence of [a]newarray. See Parse::do_multianewarray(). 835 // 836 // Note: interpreter should not have it set since this optimization 837 // is limited by dimensions and guarded by flag so in some cases 838 // multianewarray() runtime calls will be generated and 839 // the bytecode should not be reexecutes (stack will not be reset). 840 } else 841 return false; 842 } 843 844 // Helper function for adding JVMState and debug information to node 845 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) { 846 // Add the safepoint edges to the call (or other safepoint). 847 848 // Make sure dead locals are set to top. This 849 // should help register allocation time and cut down on the size 850 // of the deoptimization information. 851 assert(dead_locals_are_killed(), "garbage in debug info before safepoint"); 852 853 // Walk the inline list to fill in the correct set of JVMState's 854 // Also fill in the associated edges for each JVMState. 855 856 // If the bytecode needs to be reexecuted we need to put 857 // the arguments back on the stack. 858 const bool should_reexecute = jvms()->should_reexecute(); 859 JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms(); 860 861 // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to 862 // undefined if the bci is different. This is normal for Parse but it 863 // should not happen for LibraryCallKit because only one bci is processed. 864 assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute), 865 "in LibraryCallKit the reexecute bit should not change"); 866 867 // If we are guaranteed to throw, we can prune everything but the 868 // input to the current bytecode. 869 bool can_prune_locals = false; 870 uint stack_slots_not_pruned = 0; 871 int inputs = 0, depth = 0; 872 if (must_throw) { 873 assert(method() == youngest_jvms->method(), "sanity"); 874 if (compute_stack_effects(inputs, depth)) { 875 can_prune_locals = true; 876 stack_slots_not_pruned = inputs; 877 } 878 } 879 880 if (env()->should_retain_local_variables()) { 881 // At any safepoint, this method can get breakpointed, which would 882 // then require an immediate deoptimization. 883 can_prune_locals = false; // do not prune locals 884 stack_slots_not_pruned = 0; 885 } 886 887 // do not scribble on the input jvms 888 JVMState* out_jvms = youngest_jvms->clone_deep(C); 889 call->set_jvms(out_jvms); // Start jvms list for call node 890 891 // For a known set of bytecodes, the interpreter should reexecute them if 892 // deoptimization happens. We set the reexecute state for them here 893 if (out_jvms->is_reexecute_undefined() && //don't change if already specified 894 should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) { 895 out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed 896 } 897 898 // Presize the call: 899 DEBUG_ONLY(uint non_debug_edges = call->req()); 900 call->add_req_batch(top(), youngest_jvms->debug_depth()); 901 assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), ""); 902 903 // Set up edges so that the call looks like this: 904 // Call [state:] ctl io mem fptr retadr 905 // [parms:] parm0 ... parmN 906 // [root:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 907 // [...mid:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...] 908 // [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 909 // Note that caller debug info precedes callee debug info. 910 911 // Fill pointer walks backwards from "young:" to "root:" in the diagram above: 912 uint debug_ptr = call->req(); 913 914 // Loop over the map input edges associated with jvms, add them 915 // to the call node, & reset all offsets to match call node array. 916 for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) { 917 uint debug_end = debug_ptr; 918 uint debug_start = debug_ptr - in_jvms->debug_size(); 919 debug_ptr = debug_start; // back up the ptr 920 921 uint p = debug_start; // walks forward in [debug_start, debug_end) 922 uint j, k, l; 923 SafePointNode* in_map = in_jvms->map(); 924 out_jvms->set_map(call); 925 926 if (can_prune_locals) { 927 assert(in_jvms->method() == out_jvms->method(), "sanity"); 928 // If the current throw can reach an exception handler in this JVMS, 929 // then we must keep everything live that can reach that handler. 930 // As a quick and dirty approximation, we look for any handlers at all. 931 if (in_jvms->method()->has_exception_handlers()) { 932 can_prune_locals = false; 933 } 934 } 935 936 // Add the Locals 937 k = in_jvms->locoff(); 938 l = in_jvms->loc_size(); 939 out_jvms->set_locoff(p); 940 if (!can_prune_locals) { 941 for (j = 0; j < l; j++) 942 call->set_req(p++, in_map->in(k+j)); 943 } else { 944 p += l; // already set to top above by add_req_batch 945 } 946 947 // Add the Expression Stack 948 k = in_jvms->stkoff(); 949 l = in_jvms->sp(); 950 out_jvms->set_stkoff(p); 951 if (!can_prune_locals) { 952 for (j = 0; j < l; j++) 953 call->set_req(p++, in_map->in(k+j)); 954 } else if (can_prune_locals && stack_slots_not_pruned != 0) { 955 // Divide stack into {S0,...,S1}, where S0 is set to top. 956 uint s1 = stack_slots_not_pruned; 957 stack_slots_not_pruned = 0; // for next iteration 958 if (s1 > l) s1 = l; 959 uint s0 = l - s1; 960 p += s0; // skip the tops preinstalled by add_req_batch 961 for (j = s0; j < l; j++) 962 call->set_req(p++, in_map->in(k+j)); 963 } else { 964 p += l; // already set to top above by add_req_batch 965 } 966 967 // Add the Monitors 968 k = in_jvms->monoff(); 969 l = in_jvms->mon_size(); 970 out_jvms->set_monoff(p); 971 for (j = 0; j < l; j++) 972 call->set_req(p++, in_map->in(k+j)); 973 974 // Copy any scalar object fields. 975 k = in_jvms->scloff(); 976 l = in_jvms->scl_size(); 977 out_jvms->set_scloff(p); 978 for (j = 0; j < l; j++) 979 call->set_req(p++, in_map->in(k+j)); 980 981 // Finish the new jvms. 982 out_jvms->set_endoff(p); 983 984 assert(out_jvms->endoff() == debug_end, "fill ptr must match"); 985 assert(out_jvms->depth() == in_jvms->depth(), "depth must match"); 986 assert(out_jvms->loc_size() == in_jvms->loc_size(), "size must match"); 987 assert(out_jvms->mon_size() == in_jvms->mon_size(), "size must match"); 988 assert(out_jvms->scl_size() == in_jvms->scl_size(), "size must match"); 989 assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match"); 990 991 // Update the two tail pointers in parallel. 992 out_jvms = out_jvms->caller(); 993 in_jvms = in_jvms->caller(); 994 } 995 996 assert(debug_ptr == non_debug_edges, "debug info must fit exactly"); 997 998 // Test the correctness of JVMState::debug_xxx accessors: 999 assert(call->jvms()->debug_start() == non_debug_edges, ""); 1000 assert(call->jvms()->debug_end() == call->req(), ""); 1001 assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, ""); 1002 } 1003 1004 bool GraphKit::compute_stack_effects(int& inputs, int& depth) { 1005 Bytecodes::Code code = java_bc(); 1006 if (code == Bytecodes::_wide) { 1007 code = method()->java_code_at_bci(bci() + 1); 1008 } 1009 1010 BasicType rtype = T_ILLEGAL; 1011 int rsize = 0; 1012 1013 if (code != Bytecodes::_illegal) { 1014 depth = Bytecodes::depth(code); // checkcast=0, athrow=-1 1015 rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V 1016 if (rtype < T_CONFLICT) 1017 rsize = type2size[rtype]; 1018 } 1019 1020 switch (code) { 1021 case Bytecodes::_illegal: 1022 return false; 1023 1024 case Bytecodes::_ldc: 1025 case Bytecodes::_ldc_w: 1026 case Bytecodes::_ldc2_w: 1027 inputs = 0; 1028 break; 1029 1030 case Bytecodes::_dup: inputs = 1; break; 1031 case Bytecodes::_dup_x1: inputs = 2; break; 1032 case Bytecodes::_dup_x2: inputs = 3; break; 1033 case Bytecodes::_dup2: inputs = 2; break; 1034 case Bytecodes::_dup2_x1: inputs = 3; break; 1035 case Bytecodes::_dup2_x2: inputs = 4; break; 1036 case Bytecodes::_swap: inputs = 2; break; 1037 case Bytecodes::_arraylength: inputs = 1; break; 1038 1039 case Bytecodes::_getstatic: 1040 case Bytecodes::_putstatic: 1041 case Bytecodes::_getfield: 1042 case Bytecodes::_putfield: 1043 { 1044 bool ignored_will_link; 1045 ciField* field = method()->get_field_at_bci(bci(), ignored_will_link); 1046 int size = field->type()->size(); 1047 bool is_get = (depth >= 0), is_static = (depth & 1); 1048 inputs = (is_static ? 0 : 1); 1049 if (is_get) { 1050 depth = size - inputs; 1051 } else { 1052 inputs += size; // putxxx pops the value from the stack 1053 depth = - inputs; 1054 } 1055 } 1056 break; 1057 1058 case Bytecodes::_invokevirtual: 1059 case Bytecodes::_invokespecial: 1060 case Bytecodes::_invokestatic: 1061 case Bytecodes::_invokedynamic: 1062 case Bytecodes::_invokeinterface: 1063 { 1064 bool ignored_will_link; 1065 ciSignature* declared_signature = NULL; 1066 ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); 1067 assert(declared_signature != NULL, "cannot be null"); 1068 inputs = declared_signature->arg_size_for_bc(code); 1069 int size = declared_signature->return_type()->size(); 1070 depth = size - inputs; 1071 } 1072 break; 1073 1074 case Bytecodes::_multianewarray: 1075 { 1076 ciBytecodeStream iter(method()); 1077 iter.reset_to_bci(bci()); 1078 iter.next(); 1079 inputs = iter.get_dimensions(); 1080 assert(rsize == 1, ""); 1081 depth = rsize - inputs; 1082 } 1083 break; 1084 1085 case Bytecodes::_ireturn: 1086 case Bytecodes::_lreturn: 1087 case Bytecodes::_freturn: 1088 case Bytecodes::_dreturn: 1089 case Bytecodes::_areturn: 1090 assert(rsize == -depth, ""); 1091 inputs = rsize; 1092 break; 1093 1094 case Bytecodes::_jsr: 1095 case Bytecodes::_jsr_w: 1096 inputs = 0; 1097 depth = 1; // S.B. depth=1, not zero 1098 break; 1099 1100 default: 1101 // bytecode produces a typed result 1102 inputs = rsize - depth; 1103 assert(inputs >= 0, ""); 1104 break; 1105 } 1106 1107 #ifdef ASSERT 1108 // spot check 1109 int outputs = depth + inputs; 1110 assert(outputs >= 0, "sanity"); 1111 switch (code) { 1112 case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break; 1113 case Bytecodes::_athrow: assert(inputs == 1 && outputs == 0, ""); break; 1114 case Bytecodes::_aload_0: assert(inputs == 0 && outputs == 1, ""); break; 1115 case Bytecodes::_return: assert(inputs == 0 && outputs == 0, ""); break; 1116 case Bytecodes::_drem: assert(inputs == 4 && outputs == 2, ""); break; 1117 default: break; 1118 } 1119 #endif //ASSERT 1120 1121 return true; 1122 } 1123 1124 1125 1126 //------------------------------basic_plus_adr--------------------------------- 1127 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) { 1128 // short-circuit a common case 1129 if (offset == intcon(0)) return ptr; 1130 return _gvn.transform( new AddPNode(base, ptr, offset) ); 1131 } 1132 1133 Node* GraphKit::ConvI2L(Node* offset) { 1134 // short-circuit a common case 1135 jint offset_con = find_int_con(offset, Type::OffsetBot); 1136 if (offset_con != Type::OffsetBot) { 1137 return longcon((jlong) offset_con); 1138 } 1139 return _gvn.transform( new ConvI2LNode(offset)); 1140 } 1141 1142 Node* GraphKit::ConvI2UL(Node* offset) { 1143 juint offset_con = (juint) find_int_con(offset, Type::OffsetBot); 1144 if (offset_con != (juint) Type::OffsetBot) { 1145 return longcon((julong) offset_con); 1146 } 1147 Node* conv = _gvn.transform( new ConvI2LNode(offset)); 1148 Node* mask = _gvn.transform(ConLNode::make((julong) max_juint)); 1149 return _gvn.transform( new AndLNode(conv, mask) ); 1150 } 1151 1152 Node* GraphKit::ConvL2I(Node* offset) { 1153 // short-circuit a common case 1154 jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot); 1155 if (offset_con != (jlong)Type::OffsetBot) { 1156 return intcon((int) offset_con); 1157 } 1158 return _gvn.transform( new ConvL2INode(offset)); 1159 } 1160 1161 //-------------------------load_object_klass----------------------------------- 1162 Node* GraphKit::load_object_klass(Node* obj) { 1163 // Special-case a fresh allocation to avoid building nodes: 1164 Node* akls = AllocateNode::Ideal_klass(obj, &_gvn); 1165 if (akls != NULL) return akls; 1166 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 1167 return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS)); 1168 } 1169 1170 //-------------------------load_array_length----------------------------------- 1171 Node* GraphKit::load_array_length(Node* array) { 1172 // Special-case a fresh allocation to avoid building nodes: 1173 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn); 1174 Node *alen; 1175 if (alloc == NULL) { 1176 Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes()); 1177 alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS)); 1178 } else { 1179 alen = alloc->Ideal_length(); 1180 Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn); 1181 if (ccast != alen) { 1182 alen = _gvn.transform(ccast); 1183 } 1184 } 1185 return alen; 1186 } 1187 1188 //------------------------------do_null_check---------------------------------- 1189 // Helper function to do a NULL pointer check. Returned value is 1190 // the incoming address with NULL casted away. You are allowed to use the 1191 // not-null value only if you are control dependent on the test. 1192 #ifndef PRODUCT 1193 extern int explicit_null_checks_inserted, 1194 explicit_null_checks_elided; 1195 #endif 1196 Node* GraphKit::null_check_common(Node* value, BasicType type, 1197 // optional arguments for variations: 1198 bool assert_null, 1199 Node* *null_control, 1200 bool speculative) { 1201 assert(!assert_null || null_control == NULL, "not both at once"); 1202 if (stopped()) return top(); 1203 NOT_PRODUCT(explicit_null_checks_inserted++); 1204 1205 // Construct NULL check 1206 Node *chk = NULL; 1207 switch(type) { 1208 case T_LONG : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break; 1209 case T_INT : chk = new CmpINode(value, _gvn.intcon(0)); break; 1210 case T_ARRAY : // fall through 1211 type = T_OBJECT; // simplify further tests 1212 case T_OBJECT : { 1213 const Type *t = _gvn.type( value ); 1214 1215 const TypeOopPtr* tp = t->isa_oopptr(); 1216 if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded() 1217 // Only for do_null_check, not any of its siblings: 1218 && !assert_null && null_control == NULL) { 1219 // Usually, any field access or invocation on an unloaded oop type 1220 // will simply fail to link, since the statically linked class is 1221 // likely also to be unloaded. However, in -Xcomp mode, sometimes 1222 // the static class is loaded but the sharper oop type is not. 1223 // Rather than checking for this obscure case in lots of places, 1224 // we simply observe that a null check on an unloaded class 1225 // will always be followed by a nonsense operation, so we 1226 // can just issue the uncommon trap here. 1227 // Our access to the unloaded class will only be correct 1228 // after it has been loaded and initialized, which requires 1229 // a trip through the interpreter. 1230 #ifndef PRODUCT 1231 if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); } 1232 #endif 1233 uncommon_trap(Deoptimization::Reason_unloaded, 1234 Deoptimization::Action_reinterpret, 1235 tp->klass(), "!loaded"); 1236 return top(); 1237 } 1238 1239 if (assert_null) { 1240 // See if the type is contained in NULL_PTR. 1241 // If so, then the value is already null. 1242 if (t->higher_equal(TypePtr::NULL_PTR)) { 1243 NOT_PRODUCT(explicit_null_checks_elided++); 1244 return value; // Elided null assert quickly! 1245 } 1246 } else { 1247 // See if mixing in the NULL pointer changes type. 1248 // If so, then the NULL pointer was not allowed in the original 1249 // type. In other words, "value" was not-null. 1250 if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) { 1251 // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ... 1252 NOT_PRODUCT(explicit_null_checks_elided++); 1253 return value; // Elided null check quickly! 1254 } 1255 } 1256 chk = new CmpPNode( value, null() ); 1257 break; 1258 } 1259 1260 default: 1261 fatal("unexpected type: %s", type2name(type)); 1262 } 1263 assert(chk != NULL, "sanity check"); 1264 chk = _gvn.transform(chk); 1265 1266 BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne; 1267 BoolNode *btst = new BoolNode( chk, btest); 1268 Node *tst = _gvn.transform( btst ); 1269 1270 //----------- 1271 // if peephole optimizations occurred, a prior test existed. 1272 // If a prior test existed, maybe it dominates as we can avoid this test. 1273 if (tst != btst && type == T_OBJECT) { 1274 // At this point we want to scan up the CFG to see if we can 1275 // find an identical test (and so avoid this test altogether). 1276 Node *cfg = control(); 1277 int depth = 0; 1278 while( depth < 16 ) { // Limit search depth for speed 1279 if( cfg->Opcode() == Op_IfTrue && 1280 cfg->in(0)->in(1) == tst ) { 1281 // Found prior test. Use "cast_not_null" to construct an identical 1282 // CastPP (and hence hash to) as already exists for the prior test. 1283 // Return that casted value. 1284 if (assert_null) { 1285 replace_in_map(value, null()); 1286 return null(); // do not issue the redundant test 1287 } 1288 Node *oldcontrol = control(); 1289 set_control(cfg); 1290 Node *res = cast_not_null(value); 1291 set_control(oldcontrol); 1292 NOT_PRODUCT(explicit_null_checks_elided++); 1293 return res; 1294 } 1295 cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true); 1296 if (cfg == NULL) break; // Quit at region nodes 1297 depth++; 1298 } 1299 } 1300 1301 //----------- 1302 // Branch to failure if null 1303 float ok_prob = PROB_MAX; // a priori estimate: nulls never happen 1304 Deoptimization::DeoptReason reason; 1305 if (assert_null) { 1306 reason = Deoptimization::reason_null_assert(speculative); 1307 } else if (type == T_OBJECT) { 1308 reason = Deoptimization::reason_null_check(speculative); 1309 } else { 1310 reason = Deoptimization::Reason_div0_check; 1311 } 1312 // %%% Since Reason_unhandled is not recorded on a per-bytecode basis, 1313 // ciMethodData::has_trap_at will return a conservative -1 if any 1314 // must-be-null assertion has failed. This could cause performance 1315 // problems for a method after its first do_null_assert failure. 1316 // Consider using 'Reason_class_check' instead? 1317 1318 // To cause an implicit null check, we set the not-null probability 1319 // to the maximum (PROB_MAX). For an explicit check the probability 1320 // is set to a smaller value. 1321 if (null_control != NULL || too_many_traps(reason)) { 1322 // probability is less likely 1323 ok_prob = PROB_LIKELY_MAG(3); 1324 } else if (!assert_null && 1325 (ImplicitNullCheckThreshold > 0) && 1326 method() != NULL && 1327 (method()->method_data()->trap_count(reason) 1328 >= (uint)ImplicitNullCheckThreshold)) { 1329 ok_prob = PROB_LIKELY_MAG(3); 1330 } 1331 1332 if (null_control != NULL) { 1333 IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN); 1334 Node* null_true = _gvn.transform( new IfFalseNode(iff)); 1335 set_control( _gvn.transform( new IfTrueNode(iff))); 1336 #ifndef PRODUCT 1337 if (null_true == top()) { 1338 explicit_null_checks_elided++; 1339 } 1340 #endif 1341 (*null_control) = null_true; 1342 } else { 1343 BuildCutout unless(this, tst, ok_prob); 1344 // Check for optimizer eliding test at parse time 1345 if (stopped()) { 1346 // Failure not possible; do not bother making uncommon trap. 1347 NOT_PRODUCT(explicit_null_checks_elided++); 1348 } else if (assert_null) { 1349 uncommon_trap(reason, 1350 Deoptimization::Action_make_not_entrant, 1351 NULL, "assert_null"); 1352 } else { 1353 replace_in_map(value, zerocon(type)); 1354 builtin_throw(reason); 1355 } 1356 } 1357 1358 // Must throw exception, fall-thru not possible? 1359 if (stopped()) { 1360 return top(); // No result 1361 } 1362 1363 if (assert_null) { 1364 // Cast obj to null on this path. 1365 replace_in_map(value, zerocon(type)); 1366 return zerocon(type); 1367 } 1368 1369 // Cast obj to not-null on this path, if there is no null_control. 1370 // (If there is a null_control, a non-null value may come back to haunt us.) 1371 if (type == T_OBJECT) { 1372 Node* cast = cast_not_null(value, false); 1373 if (null_control == NULL || (*null_control) == top()) 1374 replace_in_map(value, cast); 1375 value = cast; 1376 } 1377 1378 return value; 1379 } 1380 1381 1382 //------------------------------cast_not_null---------------------------------- 1383 // Cast obj to not-null on this path 1384 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) { 1385 const Type *t = _gvn.type(obj); 1386 const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL); 1387 // Object is already not-null? 1388 if( t == t_not_null ) return obj; 1389 1390 Node *cast = new CastPPNode(obj,t_not_null); 1391 cast->init_req(0, control()); 1392 cast = _gvn.transform( cast ); 1393 1394 // Scan for instances of 'obj' in the current JVM mapping. 1395 // These instances are known to be not-null after the test. 1396 if (do_replace_in_map) 1397 replace_in_map(obj, cast); 1398 1399 return cast; // Return casted value 1400 } 1401 1402 // Sometimes in intrinsics, we implicitly know an object is not null 1403 // (there's no actual null check) so we can cast it to not null. In 1404 // the course of optimizations, the input to the cast can become null. 1405 // In that case that data path will die and we need the control path 1406 // to become dead as well to keep the graph consistent. So we have to 1407 // add a check for null for which one branch can't be taken. It uses 1408 // an Opaque4 node that will cause the check to be removed after loop 1409 // opts so the test goes away and the compiled code doesn't execute a 1410 // useless check. 1411 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) { 1412 Node* chk = _gvn.transform(new CmpPNode(value, null())); 1413 Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne)); 1414 Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1))); 1415 IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN); 1416 _gvn.set_type(iff, iff->Value(&_gvn)); 1417 Node *if_f = _gvn.transform(new IfFalseNode(iff)); 1418 Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr)); 1419 Node *halt = _gvn.transform(new HaltNode(if_f, frame)); 1420 C->root()->add_req(halt); 1421 Node *if_t = _gvn.transform(new IfTrueNode(iff)); 1422 set_control(if_t); 1423 return cast_not_null(value, do_replace_in_map); 1424 } 1425 1426 1427 //--------------------------replace_in_map------------------------------------- 1428 void GraphKit::replace_in_map(Node* old, Node* neww) { 1429 if (old == neww) { 1430 return; 1431 } 1432 1433 map()->replace_edge(old, neww); 1434 1435 // Note: This operation potentially replaces any edge 1436 // on the map. This includes locals, stack, and monitors 1437 // of the current (innermost) JVM state. 1438 1439 // don't let inconsistent types from profiling escape this 1440 // method 1441 1442 const Type* told = _gvn.type(old); 1443 const Type* tnew = _gvn.type(neww); 1444 1445 if (!tnew->higher_equal(told)) { 1446 return; 1447 } 1448 1449 map()->record_replaced_node(old, neww); 1450 } 1451 1452 1453 //============================================================================= 1454 //--------------------------------memory--------------------------------------- 1455 Node* GraphKit::memory(uint alias_idx) { 1456 MergeMemNode* mem = merged_memory(); 1457 Node* p = mem->memory_at(alias_idx); 1458 _gvn.set_type(p, Type::MEMORY); // must be mapped 1459 return p; 1460 } 1461 1462 //-----------------------------reset_memory------------------------------------ 1463 Node* GraphKit::reset_memory() { 1464 Node* mem = map()->memory(); 1465 // do not use this node for any more parsing! 1466 debug_only( map()->set_memory((Node*)NULL) ); 1467 return _gvn.transform( mem ); 1468 } 1469 1470 //------------------------------set_all_memory--------------------------------- 1471 void GraphKit::set_all_memory(Node* newmem) { 1472 Node* mergemem = MergeMemNode::make(newmem); 1473 gvn().set_type_bottom(mergemem); 1474 map()->set_memory(mergemem); 1475 } 1476 1477 //------------------------------set_all_memory_call---------------------------- 1478 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) { 1479 Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) ); 1480 set_all_memory(newmem); 1481 } 1482 1483 //============================================================================= 1484 // 1485 // parser factory methods for MemNodes 1486 // 1487 // These are layered on top of the factory methods in LoadNode and StoreNode, 1488 // and integrate with the parser's memory state and _gvn engine. 1489 // 1490 1491 // factory methods in "int adr_idx" 1492 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, 1493 int adr_idx, 1494 MemNode::MemOrd mo, 1495 LoadNode::ControlDependency control_dependency, 1496 bool require_atomic_access, 1497 bool unaligned, 1498 bool mismatched) { 1499 assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" ); 1500 const TypePtr* adr_type = NULL; // debug-mode-only argument 1501 debug_only(adr_type = C->get_adr_type(adr_idx)); 1502 Node* mem = memory(adr_idx); 1503 Node* ld; 1504 if (require_atomic_access && bt == T_LONG) { 1505 ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched); 1506 } else if (require_atomic_access && bt == T_DOUBLE) { 1507 ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched); 1508 } else { 1509 ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched); 1510 } 1511 ld = _gvn.transform(ld); 1512 if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) { 1513 // Improve graph before escape analysis and boxing elimination. 1514 record_for_igvn(ld); 1515 } 1516 return ld; 1517 } 1518 1519 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt, 1520 int adr_idx, 1521 MemNode::MemOrd mo, 1522 bool require_atomic_access, 1523 bool unaligned, 1524 bool mismatched) { 1525 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 1526 const TypePtr* adr_type = NULL; 1527 debug_only(adr_type = C->get_adr_type(adr_idx)); 1528 Node *mem = memory(adr_idx); 1529 Node* st; 1530 if (require_atomic_access && bt == T_LONG) { 1531 st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo); 1532 } else if (require_atomic_access && bt == T_DOUBLE) { 1533 st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo); 1534 } else { 1535 st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo); 1536 } 1537 if (unaligned) { 1538 st->as_Store()->set_unaligned_access(); 1539 } 1540 if (mismatched) { 1541 st->as_Store()->set_mismatched_access(); 1542 } 1543 st = _gvn.transform(st); 1544 set_memory(st, adr_idx); 1545 // Back-to-back stores can only remove intermediate store with DU info 1546 // so push on worklist for optimizer. 1547 if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address)) 1548 record_for_igvn(st); 1549 1550 return st; 1551 } 1552 1553 1554 void GraphKit::pre_barrier(bool do_load, 1555 Node* ctl, 1556 Node* obj, 1557 Node* adr, 1558 uint adr_idx, 1559 Node* val, 1560 const TypeOopPtr* val_type, 1561 Node* pre_val, 1562 BasicType bt) { 1563 1564 BarrierSet* bs = BarrierSet::barrier_set(); 1565 set_control(ctl); 1566 switch (bs->kind()) { 1567 1568 #if INCLUDE_G1GC 1569 case BarrierSet::G1BarrierSet: 1570 g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt); 1571 break; 1572 #endif 1573 1574 #if INCLUDE_EPSILONGC 1575 case BarrierSet::EpsilonBarrierSet: 1576 break; 1577 #endif 1578 1579 case BarrierSet::CardTableBarrierSet: 1580 break; 1581 1582 default : 1583 ShouldNotReachHere(); 1584 1585 } 1586 } 1587 1588 bool GraphKit::can_move_pre_barrier() const { 1589 BarrierSet* bs = BarrierSet::barrier_set(); 1590 switch (bs->kind()) { 1591 1592 #if INCLUDE_G1GC 1593 case BarrierSet::G1BarrierSet: 1594 return true; // Can move it if no safepoint 1595 #endif 1596 1597 #if INCLUDE_EPSILONGC 1598 case BarrierSet::EpsilonBarrierSet: 1599 return true; // There is no pre-barrier 1600 #endif 1601 1602 case BarrierSet::CardTableBarrierSet: 1603 return true; // There is no pre-barrier 1604 1605 default : 1606 ShouldNotReachHere(); 1607 } 1608 return false; 1609 } 1610 1611 void GraphKit::post_barrier(Node* ctl, 1612 Node* store, 1613 Node* obj, 1614 Node* adr, 1615 uint adr_idx, 1616 Node* val, 1617 BasicType bt, 1618 bool use_precise) { 1619 BarrierSet* bs = BarrierSet::barrier_set(); 1620 set_control(ctl); 1621 switch (bs->kind()) { 1622 #if INCLUDE_G1GC 1623 case BarrierSet::G1BarrierSet: 1624 g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise); 1625 break; 1626 #endif 1627 1628 #if INCLUDE_EPSILONGC 1629 case BarrierSet::EpsilonBarrierSet: 1630 break; 1631 #endif 1632 1633 case BarrierSet::CardTableBarrierSet: 1634 write_barrier_post(store, obj, adr, adr_idx, val, use_precise); 1635 break; 1636 1637 default : 1638 ShouldNotReachHere(); 1639 1640 } 1641 } 1642 1643 Node* GraphKit::store_oop(Node* ctl, 1644 Node* obj, 1645 Node* adr, 1646 const TypePtr* adr_type, 1647 Node* val, 1648 const TypeOopPtr* val_type, 1649 BasicType bt, 1650 bool use_precise, 1651 MemNode::MemOrd mo, 1652 bool mismatched) { 1653 // Transformation of a value which could be NULL pointer (CastPP #NULL) 1654 // could be delayed during Parse (for example, in adjust_map_after_if()). 1655 // Execute transformation here to avoid barrier generation in such case. 1656 if (_gvn.type(val) == TypePtr::NULL_PTR) 1657 val = _gvn.makecon(TypePtr::NULL_PTR); 1658 1659 set_control(ctl); 1660 if (stopped()) return top(); // Dead path ? 1661 1662 assert(bt == T_OBJECT, "sanity"); 1663 assert(val != NULL, "not dead path"); 1664 uint adr_idx = C->get_alias_index(adr_type); 1665 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 1666 1667 pre_barrier(true /* do_load */, 1668 control(), obj, adr, adr_idx, val, val_type, 1669 NULL /* pre_val */, 1670 bt); 1671 1672 Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo, mismatched); 1673 post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise); 1674 return store; 1675 } 1676 1677 // Could be an array or object we don't know at compile time (unsafe ref.) 1678 Node* GraphKit::store_oop_to_unknown(Node* ctl, 1679 Node* obj, // containing obj 1680 Node* adr, // actual adress to store val at 1681 const TypePtr* adr_type, 1682 Node* val, 1683 BasicType bt, 1684 MemNode::MemOrd mo, 1685 bool mismatched) { 1686 Compile::AliasType* at = C->alias_type(adr_type); 1687 const TypeOopPtr* val_type = NULL; 1688 if (adr_type->isa_instptr()) { 1689 if (at->field() != NULL) { 1690 // known field. This code is a copy of the do_put_xxx logic. 1691 ciField* field = at->field(); 1692 if (!field->type()->is_loaded()) { 1693 val_type = TypeInstPtr::BOTTOM; 1694 } else { 1695 val_type = TypeOopPtr::make_from_klass(field->type()->as_klass()); 1696 } 1697 } 1698 } else if (adr_type->isa_aryptr()) { 1699 val_type = adr_type->is_aryptr()->elem()->make_oopptr(); 1700 } 1701 if (val_type == NULL) { 1702 val_type = TypeInstPtr::BOTTOM; 1703 } 1704 return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo, mismatched); 1705 } 1706 1707 1708 //-------------------------array_element_address------------------------- 1709 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt, 1710 const TypeInt* sizetype, Node* ctrl) { 1711 uint shift = exact_log2(type2aelembytes(elembt)); 1712 uint header = arrayOopDesc::base_offset_in_bytes(elembt); 1713 1714 // short-circuit a common case (saves lots of confusing waste motion) 1715 jint idx_con = find_int_con(idx, -1); 1716 if (idx_con >= 0) { 1717 intptr_t offset = header + ((intptr_t)idx_con << shift); 1718 return basic_plus_adr(ary, offset); 1719 } 1720 1721 // must be correct type for alignment purposes 1722 Node* base = basic_plus_adr(ary, header); 1723 idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl); 1724 Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) ); 1725 return basic_plus_adr(ary, base, scale); 1726 } 1727 1728 //-------------------------load_array_element------------------------- 1729 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) { 1730 const Type* elemtype = arytype->elem(); 1731 BasicType elembt = elemtype->array_element_basic_type(); 1732 Node* adr = array_element_address(ary, idx, elembt, arytype->size()); 1733 if (elembt == T_NARROWOOP) { 1734 elembt = T_OBJECT; // To satisfy switch in LoadNode::make() 1735 } 1736 Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered); 1737 return ld; 1738 } 1739 1740 //-------------------------set_arguments_for_java_call------------------------- 1741 // Arguments (pre-popped from the stack) are taken from the JVMS. 1742 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) { 1743 // Add the call arguments: 1744 uint nargs = call->method()->arg_size(); 1745 for (uint i = 0; i < nargs; i++) { 1746 Node* arg = argument(i); 1747 call->init_req(i + TypeFunc::Parms, arg); 1748 } 1749 } 1750 1751 //---------------------------set_edges_for_java_call--------------------------- 1752 // Connect a newly created call into the current JVMS. 1753 // A return value node (if any) is returned from set_edges_for_java_call. 1754 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) { 1755 1756 // Add the predefined inputs: 1757 call->init_req( TypeFunc::Control, control() ); 1758 call->init_req( TypeFunc::I_O , i_o() ); 1759 call->init_req( TypeFunc::Memory , reset_memory() ); 1760 call->init_req( TypeFunc::FramePtr, frameptr() ); 1761 call->init_req( TypeFunc::ReturnAdr, top() ); 1762 1763 add_safepoint_edges(call, must_throw); 1764 1765 Node* xcall = _gvn.transform(call); 1766 1767 if (xcall == top()) { 1768 set_control(top()); 1769 return; 1770 } 1771 assert(xcall == call, "call identity is stable"); 1772 1773 // Re-use the current map to produce the result. 1774 1775 set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control))); 1776 set_i_o( _gvn.transform(new ProjNode(call, TypeFunc::I_O , separate_io_proj))); 1777 set_all_memory_call(xcall, separate_io_proj); 1778 1779 //return xcall; // no need, caller already has it 1780 } 1781 1782 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) { 1783 if (stopped()) return top(); // maybe the call folded up? 1784 1785 // Capture the return value, if any. 1786 Node* ret; 1787 if (call->method() == NULL || 1788 call->method()->return_type()->basic_type() == T_VOID) 1789 ret = top(); 1790 else ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1791 1792 // Note: Since any out-of-line call can produce an exception, 1793 // we always insert an I_O projection from the call into the result. 1794 1795 make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj); 1796 1797 if (separate_io_proj) { 1798 // The caller requested separate projections be used by the fall 1799 // through and exceptional paths, so replace the projections for 1800 // the fall through path. 1801 set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) )); 1802 set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) )); 1803 } 1804 return ret; 1805 } 1806 1807 //--------------------set_predefined_input_for_runtime_call-------------------- 1808 // Reading and setting the memory state is way conservative here. 1809 // The real problem is that I am not doing real Type analysis on memory, 1810 // so I cannot distinguish card mark stores from other stores. Across a GC 1811 // point the Store Barrier and the card mark memory has to agree. I cannot 1812 // have a card mark store and its barrier split across the GC point from 1813 // either above or below. Here I get that to happen by reading ALL of memory. 1814 // A better answer would be to separate out card marks from other memory. 1815 // For now, return the input memory state, so that it can be reused 1816 // after the call, if this call has restricted memory effects. 1817 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) { 1818 // Set fixed predefined input arguments 1819 Node* memory = reset_memory(); 1820 call->init_req( TypeFunc::Control, control() ); 1821 call->init_req( TypeFunc::I_O, top() ); // does no i/o 1822 call->init_req( TypeFunc::Memory, memory ); // may gc ptrs 1823 call->init_req( TypeFunc::FramePtr, frameptr() ); 1824 call->init_req( TypeFunc::ReturnAdr, top() ); 1825 return memory; 1826 } 1827 1828 //-------------------set_predefined_output_for_runtime_call-------------------- 1829 // Set control and memory (not i_o) from the call. 1830 // If keep_mem is not NULL, use it for the output state, 1831 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM. 1832 // If hook_mem is NULL, this call produces no memory effects at all. 1833 // If hook_mem is a Java-visible memory slice (such as arraycopy operands), 1834 // then only that memory slice is taken from the call. 1835 // In the last case, we must put an appropriate memory barrier before 1836 // the call, so as to create the correct anti-dependencies on loads 1837 // preceding the call. 1838 void GraphKit::set_predefined_output_for_runtime_call(Node* call, 1839 Node* keep_mem, 1840 const TypePtr* hook_mem) { 1841 // no i/o 1842 set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) )); 1843 if (keep_mem) { 1844 // First clone the existing memory state 1845 set_all_memory(keep_mem); 1846 if (hook_mem != NULL) { 1847 // Make memory for the call 1848 Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) ); 1849 // Set the RawPtr memory state only. This covers all the heap top/GC stuff 1850 // We also use hook_mem to extract specific effects from arraycopy stubs. 1851 set_memory(mem, hook_mem); 1852 } 1853 // ...else the call has NO memory effects. 1854 1855 // Make sure the call advertises its memory effects precisely. 1856 // This lets us build accurate anti-dependences in gcm.cpp. 1857 assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem), 1858 "call node must be constructed correctly"); 1859 } else { 1860 assert(hook_mem == NULL, ""); 1861 // This is not a "slow path" call; all memory comes from the call. 1862 set_all_memory_call(call); 1863 } 1864 } 1865 1866 1867 // Replace the call with the current state of the kit. 1868 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) { 1869 JVMState* ejvms = NULL; 1870 if (has_exceptions()) { 1871 ejvms = transfer_exceptions_into_jvms(); 1872 } 1873 1874 ReplacedNodes replaced_nodes = map()->replaced_nodes(); 1875 ReplacedNodes replaced_nodes_exception; 1876 Node* ex_ctl = top(); 1877 1878 SafePointNode* final_state = stop(); 1879 1880 // Find all the needed outputs of this call 1881 CallProjections callprojs; 1882 call->extract_projections(&callprojs, true); 1883 1884 Node* init_mem = call->in(TypeFunc::Memory); 1885 Node* final_mem = final_state->in(TypeFunc::Memory); 1886 Node* final_ctl = final_state->in(TypeFunc::Control); 1887 Node* final_io = final_state->in(TypeFunc::I_O); 1888 1889 // Replace all the old call edges with the edges from the inlining result 1890 if (callprojs.fallthrough_catchproj != NULL) { 1891 C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl); 1892 } 1893 if (callprojs.fallthrough_memproj != NULL) { 1894 if (final_mem->is_MergeMem()) { 1895 // Parser's exits MergeMem was not transformed but may be optimized 1896 final_mem = _gvn.transform(final_mem); 1897 } 1898 C->gvn_replace_by(callprojs.fallthrough_memproj, final_mem); 1899 } 1900 if (callprojs.fallthrough_ioproj != NULL) { 1901 C->gvn_replace_by(callprojs.fallthrough_ioproj, final_io); 1902 } 1903 1904 // Replace the result with the new result if it exists and is used 1905 if (callprojs.resproj != NULL && result != NULL) { 1906 C->gvn_replace_by(callprojs.resproj, result); 1907 } 1908 1909 if (ejvms == NULL) { 1910 // No exception edges to simply kill off those paths 1911 if (callprojs.catchall_catchproj != NULL) { 1912 C->gvn_replace_by(callprojs.catchall_catchproj, C->top()); 1913 } 1914 if (callprojs.catchall_memproj != NULL) { 1915 C->gvn_replace_by(callprojs.catchall_memproj, C->top()); 1916 } 1917 if (callprojs.catchall_ioproj != NULL) { 1918 C->gvn_replace_by(callprojs.catchall_ioproj, C->top()); 1919 } 1920 // Replace the old exception object with top 1921 if (callprojs.exobj != NULL) { 1922 C->gvn_replace_by(callprojs.exobj, C->top()); 1923 } 1924 } else { 1925 GraphKit ekit(ejvms); 1926 1927 // Load my combined exception state into the kit, with all phis transformed: 1928 SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states(); 1929 replaced_nodes_exception = ex_map->replaced_nodes(); 1930 1931 Node* ex_oop = ekit.use_exception_state(ex_map); 1932 1933 if (callprojs.catchall_catchproj != NULL) { 1934 C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control()); 1935 ex_ctl = ekit.control(); 1936 } 1937 if (callprojs.catchall_memproj != NULL) { 1938 C->gvn_replace_by(callprojs.catchall_memproj, ekit.reset_memory()); 1939 } 1940 if (callprojs.catchall_ioproj != NULL) { 1941 C->gvn_replace_by(callprojs.catchall_ioproj, ekit.i_o()); 1942 } 1943 1944 // Replace the old exception object with the newly created one 1945 if (callprojs.exobj != NULL) { 1946 C->gvn_replace_by(callprojs.exobj, ex_oop); 1947 } 1948 } 1949 1950 // Disconnect the call from the graph 1951 call->disconnect_inputs(NULL, C); 1952 C->gvn_replace_by(call, C->top()); 1953 1954 // Clean up any MergeMems that feed other MergeMems since the 1955 // optimizer doesn't like that. 1956 if (final_mem->is_MergeMem()) { 1957 Node_List wl; 1958 for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) { 1959 Node* m = i.get(); 1960 if (m->is_MergeMem() && !wl.contains(m)) { 1961 wl.push(m); 1962 } 1963 } 1964 while (wl.size() > 0) { 1965 _gvn.transform(wl.pop()); 1966 } 1967 } 1968 1969 if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) { 1970 replaced_nodes.apply(C, final_ctl); 1971 } 1972 if (!ex_ctl->is_top() && do_replaced_nodes) { 1973 replaced_nodes_exception.apply(C, ex_ctl); 1974 } 1975 } 1976 1977 1978 //------------------------------increment_counter------------------------------ 1979 // for statistics: increment a VM counter by 1 1980 1981 void GraphKit::increment_counter(address counter_addr) { 1982 Node* adr1 = makecon(TypeRawPtr::make(counter_addr)); 1983 increment_counter(adr1); 1984 } 1985 1986 void GraphKit::increment_counter(Node* counter_addr) { 1987 int adr_type = Compile::AliasIdxRaw; 1988 Node* ctrl = control(); 1989 Node* cnt = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered); 1990 Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1))); 1991 store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered); 1992 } 1993 1994 1995 //------------------------------uncommon_trap---------------------------------- 1996 // Bail out to the interpreter in mid-method. Implemented by calling the 1997 // uncommon_trap blob. This helper function inserts a runtime call with the 1998 // right debug info. 1999 void GraphKit::uncommon_trap(int trap_request, 2000 ciKlass* klass, const char* comment, 2001 bool must_throw, 2002 bool keep_exact_action) { 2003 if (failing()) stop(); 2004 if (stopped()) return; // trap reachable? 2005 2006 // Note: If ProfileTraps is true, and if a deopt. actually 2007 // occurs here, the runtime will make sure an MDO exists. There is 2008 // no need to call method()->ensure_method_data() at this point. 2009 2010 // Set the stack pointer to the right value for reexecution: 2011 set_sp(reexecute_sp()); 2012 2013 #ifdef ASSERT 2014 if (!must_throw) { 2015 // Make sure the stack has at least enough depth to execute 2016 // the current bytecode. 2017 int inputs, ignored_depth; 2018 if (compute_stack_effects(inputs, ignored_depth)) { 2019 assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d", 2020 Bytecodes::name(java_bc()), sp(), inputs); 2021 } 2022 } 2023 #endif 2024 2025 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 2026 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 2027 2028 switch (action) { 2029 case Deoptimization::Action_maybe_recompile: 2030 case Deoptimization::Action_reinterpret: 2031 // Temporary fix for 6529811 to allow virtual calls to be sure they 2032 // get the chance to go from mono->bi->mega 2033 if (!keep_exact_action && 2034 Deoptimization::trap_request_index(trap_request) < 0 && 2035 too_many_recompiles(reason)) { 2036 // This BCI is causing too many recompilations. 2037 if (C->log() != NULL) { 2038 C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'", 2039 Deoptimization::trap_reason_name(reason), 2040 Deoptimization::trap_action_name(action)); 2041 } 2042 action = Deoptimization::Action_none; 2043 trap_request = Deoptimization::make_trap_request(reason, action); 2044 } else { 2045 C->set_trap_can_recompile(true); 2046 } 2047 break; 2048 case Deoptimization::Action_make_not_entrant: 2049 C->set_trap_can_recompile(true); 2050 break; 2051 case Deoptimization::Action_none: 2052 case Deoptimization::Action_make_not_compilable: 2053 break; 2054 default: 2055 #ifdef ASSERT 2056 fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action)); 2057 #endif 2058 break; 2059 } 2060 2061 if (TraceOptoParse) { 2062 char buf[100]; 2063 tty->print_cr("Uncommon trap %s at bci:%d", 2064 Deoptimization::format_trap_request(buf, sizeof(buf), 2065 trap_request), bci()); 2066 } 2067 2068 CompileLog* log = C->log(); 2069 if (log != NULL) { 2070 int kid = (klass == NULL)? -1: log->identify(klass); 2071 log->begin_elem("uncommon_trap bci='%d'", bci()); 2072 char buf[100]; 2073 log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf), 2074 trap_request)); 2075 if (kid >= 0) log->print(" klass='%d'", kid); 2076 if (comment != NULL) log->print(" comment='%s'", comment); 2077 log->end_elem(); 2078 } 2079 2080 // Make sure any guarding test views this path as very unlikely 2081 Node *i0 = control()->in(0); 2082 if (i0 != NULL && i0->is_If()) { // Found a guarding if test? 2083 IfNode *iff = i0->as_If(); 2084 float f = iff->_prob; // Get prob 2085 if (control()->Opcode() == Op_IfTrue) { 2086 if (f > PROB_UNLIKELY_MAG(4)) 2087 iff->_prob = PROB_MIN; 2088 } else { 2089 if (f < PROB_LIKELY_MAG(4)) 2090 iff->_prob = PROB_MAX; 2091 } 2092 } 2093 2094 // Clear out dead values from the debug info. 2095 kill_dead_locals(); 2096 2097 // Now insert the uncommon trap subroutine call 2098 address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point(); 2099 const TypePtr* no_memory_effects = NULL; 2100 // Pass the index of the class to be loaded 2101 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON | 2102 (must_throw ? RC_MUST_THROW : 0), 2103 OptoRuntime::uncommon_trap_Type(), 2104 call_addr, "uncommon_trap", no_memory_effects, 2105 intcon(trap_request)); 2106 assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request, 2107 "must extract request correctly from the graph"); 2108 assert(trap_request != 0, "zero value reserved by uncommon_trap_request"); 2109 2110 call->set_req(TypeFunc::ReturnAdr, returnadr()); 2111 // The debug info is the only real input to this call. 2112 2113 // Halt-and-catch fire here. The above call should never return! 2114 HaltNode* halt = new HaltNode(control(), frameptr()); 2115 _gvn.set_type_bottom(halt); 2116 root()->add_req(halt); 2117 2118 stop_and_kill_map(); 2119 } 2120 2121 2122 //--------------------------just_allocated_object------------------------------ 2123 // Report the object that was just allocated. 2124 // It must be the case that there are no intervening safepoints. 2125 // We use this to determine if an object is so "fresh" that 2126 // it does not require card marks. 2127 Node* GraphKit::just_allocated_object(Node* current_control) { 2128 if (C->recent_alloc_ctl() == current_control) 2129 return C->recent_alloc_obj(); 2130 return NULL; 2131 } 2132 2133 2134 void GraphKit::round_double_arguments(ciMethod* dest_method) { 2135 // (Note: TypeFunc::make has a cache that makes this fast.) 2136 const TypeFunc* tf = TypeFunc::make(dest_method); 2137 int nargs = tf->domain()->cnt() - TypeFunc::Parms; 2138 for (int j = 0; j < nargs; j++) { 2139 const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms); 2140 if( targ->basic_type() == T_DOUBLE ) { 2141 // If any parameters are doubles, they must be rounded before 2142 // the call, dstore_rounding does gvn.transform 2143 Node *arg = argument(j); 2144 arg = dstore_rounding(arg); 2145 set_argument(j, arg); 2146 } 2147 } 2148 } 2149 2150 /** 2151 * Record profiling data exact_kls for Node n with the type system so 2152 * that it can propagate it (speculation) 2153 * 2154 * @param n node that the type applies to 2155 * @param exact_kls type from profiling 2156 * @param maybe_null did profiling see null? 2157 * 2158 * @return node with improved type 2159 */ 2160 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) { 2161 const Type* current_type = _gvn.type(n); 2162 assert(UseTypeSpeculation, "type speculation must be on"); 2163 2164 const TypePtr* speculative = current_type->speculative(); 2165 2166 // Should the klass from the profile be recorded in the speculative type? 2167 if (current_type->would_improve_type(exact_kls, jvms()->depth())) { 2168 const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls); 2169 const TypeOopPtr* xtype = tklass->as_instance_type(); 2170 assert(xtype->klass_is_exact(), "Should be exact"); 2171 // Any reason to believe n is not null (from this profiling or a previous one)? 2172 assert(ptr_kind != ProfileAlwaysNull, "impossible here"); 2173 const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL; 2174 // record the new speculative type's depth 2175 speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2176 speculative = speculative->with_inline_depth(jvms()->depth()); 2177 } else if (current_type->would_improve_ptr(ptr_kind)) { 2178 // Profiling report that null was never seen so we can change the 2179 // speculative type to non null ptr. 2180 if (ptr_kind == ProfileAlwaysNull) { 2181 speculative = TypePtr::NULL_PTR; 2182 } else { 2183 assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement"); 2184 const TypePtr* ptr = TypePtr::NOTNULL; 2185 if (speculative != NULL) { 2186 speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2187 } else { 2188 speculative = ptr; 2189 } 2190 } 2191 } 2192 2193 if (speculative != current_type->speculative()) { 2194 // Build a type with a speculative type (what we think we know 2195 // about the type but will need a guard when we use it) 2196 const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative); 2197 // We're changing the type, we need a new CheckCast node to carry 2198 // the new type. The new type depends on the control: what 2199 // profiling tells us is only valid from here as far as we can 2200 // tell. 2201 Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type)); 2202 cast = _gvn.transform(cast); 2203 replace_in_map(n, cast); 2204 n = cast; 2205 } 2206 2207 return n; 2208 } 2209 2210 /** 2211 * Record profiling data from receiver profiling at an invoke with the 2212 * type system so that it can propagate it (speculation) 2213 * 2214 * @param n receiver node 2215 * 2216 * @return node with improved type 2217 */ 2218 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) { 2219 if (!UseTypeSpeculation) { 2220 return n; 2221 } 2222 ciKlass* exact_kls = profile_has_unique_klass(); 2223 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2224 if ((java_bc() == Bytecodes::_checkcast || 2225 java_bc() == Bytecodes::_instanceof || 2226 java_bc() == Bytecodes::_aastore) && 2227 method()->method_data()->is_mature()) { 2228 ciProfileData* data = method()->method_data()->bci_to_data(bci()); 2229 if (data != NULL) { 2230 if (!data->as_BitData()->null_seen()) { 2231 ptr_kind = ProfileNeverNull; 2232 } else { 2233 assert(data->is_ReceiverTypeData(), "bad profile data type"); 2234 ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData(); 2235 uint i = 0; 2236 for (; i < call->row_limit(); i++) { 2237 ciKlass* receiver = call->receiver(i); 2238 if (receiver != NULL) { 2239 break; 2240 } 2241 } 2242 ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull; 2243 } 2244 } 2245 } 2246 return record_profile_for_speculation(n, exact_kls, ptr_kind); 2247 } 2248 2249 /** 2250 * Record profiling data from argument profiling at an invoke with the 2251 * type system so that it can propagate it (speculation) 2252 * 2253 * @param dest_method target method for the call 2254 * @param bc what invoke bytecode is this? 2255 */ 2256 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) { 2257 if (!UseTypeSpeculation) { 2258 return; 2259 } 2260 const TypeFunc* tf = TypeFunc::make(dest_method); 2261 int nargs = tf->domain()->cnt() - TypeFunc::Parms; 2262 int skip = Bytecodes::has_receiver(bc) ? 1 : 0; 2263 for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) { 2264 const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms); 2265 if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) { 2266 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2267 ciKlass* better_type = NULL; 2268 if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) { 2269 record_profile_for_speculation(argument(j), better_type, ptr_kind); 2270 } 2271 i++; 2272 } 2273 } 2274 } 2275 2276 /** 2277 * Record profiling data from parameter profiling at an invoke with 2278 * the type system so that it can propagate it (speculation) 2279 */ 2280 void GraphKit::record_profiled_parameters_for_speculation() { 2281 if (!UseTypeSpeculation) { 2282 return; 2283 } 2284 for (int i = 0, j = 0; i < method()->arg_size() ; i++) { 2285 if (_gvn.type(local(i))->isa_oopptr()) { 2286 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2287 ciKlass* better_type = NULL; 2288 if (method()->parameter_profiled_type(j, better_type, ptr_kind)) { 2289 record_profile_for_speculation(local(i), better_type, ptr_kind); 2290 } 2291 j++; 2292 } 2293 } 2294 } 2295 2296 /** 2297 * Record profiling data from return value profiling at an invoke with 2298 * the type system so that it can propagate it (speculation) 2299 */ 2300 void GraphKit::record_profiled_return_for_speculation() { 2301 if (!UseTypeSpeculation) { 2302 return; 2303 } 2304 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2305 ciKlass* better_type = NULL; 2306 if (method()->return_profiled_type(bci(), better_type, ptr_kind)) { 2307 // If profiling reports a single type for the return value, 2308 // feed it to the type system so it can propagate it as a 2309 // speculative type 2310 record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind); 2311 } 2312 } 2313 2314 void GraphKit::round_double_result(ciMethod* dest_method) { 2315 // A non-strict method may return a double value which has an extended 2316 // exponent, but this must not be visible in a caller which is 'strict' 2317 // If a strict caller invokes a non-strict callee, round a double result 2318 2319 BasicType result_type = dest_method->return_type()->basic_type(); 2320 assert( method() != NULL, "must have caller context"); 2321 if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) { 2322 // Destination method's return value is on top of stack 2323 // dstore_rounding() does gvn.transform 2324 Node *result = pop_pair(); 2325 result = dstore_rounding(result); 2326 push_pair(result); 2327 } 2328 } 2329 2330 // rounding for strict float precision conformance 2331 Node* GraphKit::precision_rounding(Node* n) { 2332 return UseStrictFP && _method->flags().is_strict() 2333 && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding 2334 ? _gvn.transform( new RoundFloatNode(0, n) ) 2335 : n; 2336 } 2337 2338 // rounding for strict double precision conformance 2339 Node* GraphKit::dprecision_rounding(Node *n) { 2340 return UseStrictFP && _method->flags().is_strict() 2341 && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding 2342 ? _gvn.transform( new RoundDoubleNode(0, n) ) 2343 : n; 2344 } 2345 2346 // rounding for non-strict double stores 2347 Node* GraphKit::dstore_rounding(Node* n) { 2348 return Matcher::strict_fp_requires_explicit_rounding 2349 && UseSSE <= 1 2350 ? _gvn.transform( new RoundDoubleNode(0, n) ) 2351 : n; 2352 } 2353 2354 //============================================================================= 2355 // Generate a fast path/slow path idiom. Graph looks like: 2356 // [foo] indicates that 'foo' is a parameter 2357 // 2358 // [in] NULL 2359 // \ / 2360 // CmpP 2361 // Bool ne 2362 // If 2363 // / \ 2364 // True False-<2> 2365 // / | 2366 // / cast_not_null 2367 // Load | | ^ 2368 // [fast_test] | | 2369 // gvn to opt_test | | 2370 // / \ | <1> 2371 // True False | 2372 // | \\ | 2373 // [slow_call] \[fast_result] 2374 // Ctl Val \ \ 2375 // | \ \ 2376 // Catch <1> \ \ 2377 // / \ ^ \ \ 2378 // Ex No_Ex | \ \ 2379 // | \ \ | \ <2> \ 2380 // ... \ [slow_res] | | \ [null_result] 2381 // \ \--+--+--- | | 2382 // \ | / \ | / 2383 // --------Region Phi 2384 // 2385 //============================================================================= 2386 // Code is structured as a series of driver functions all called 'do_XXX' that 2387 // call a set of helper functions. Helper functions first, then drivers. 2388 2389 //------------------------------null_check_oop--------------------------------- 2390 // Null check oop. Set null-path control into Region in slot 3. 2391 // Make a cast-not-nullness use the other not-null control. Return cast. 2392 Node* GraphKit::null_check_oop(Node* value, Node* *null_control, 2393 bool never_see_null, 2394 bool safe_for_replace, 2395 bool speculative) { 2396 // Initial NULL check taken path 2397 (*null_control) = top(); 2398 Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative); 2399 2400 // Generate uncommon_trap: 2401 if (never_see_null && (*null_control) != top()) { 2402 // If we see an unexpected null at a check-cast we record it and force a 2403 // recompile; the offending check-cast will be compiled to handle NULLs. 2404 // If we see more than one offending BCI, then all checkcasts in the 2405 // method will be compiled to handle NULLs. 2406 PreserveJVMState pjvms(this); 2407 set_control(*null_control); 2408 replace_in_map(value, null()); 2409 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative); 2410 uncommon_trap(reason, 2411 Deoptimization::Action_make_not_entrant); 2412 (*null_control) = top(); // NULL path is dead 2413 } 2414 if ((*null_control) == top() && safe_for_replace) { 2415 replace_in_map(value, cast); 2416 } 2417 2418 // Cast away null-ness on the result 2419 return cast; 2420 } 2421 2422 //------------------------------opt_iff---------------------------------------- 2423 // Optimize the fast-check IfNode. Set the fast-path region slot 2. 2424 // Return slow-path control. 2425 Node* GraphKit::opt_iff(Node* region, Node* iff) { 2426 IfNode *opt_iff = _gvn.transform(iff)->as_If(); 2427 2428 // Fast path taken; set region slot 2 2429 Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) ); 2430 region->init_req(2,fast_taken); // Capture fast-control 2431 2432 // Fast path not-taken, i.e. slow path 2433 Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) ); 2434 return slow_taken; 2435 } 2436 2437 //-----------------------------make_runtime_call------------------------------- 2438 Node* GraphKit::make_runtime_call(int flags, 2439 const TypeFunc* call_type, address call_addr, 2440 const char* call_name, 2441 const TypePtr* adr_type, 2442 // The following parms are all optional. 2443 // The first NULL ends the list. 2444 Node* parm0, Node* parm1, 2445 Node* parm2, Node* parm3, 2446 Node* parm4, Node* parm5, 2447 Node* parm6, Node* parm7) { 2448 // Slow-path call 2449 bool is_leaf = !(flags & RC_NO_LEAF); 2450 bool has_io = (!is_leaf && !(flags & RC_NO_IO)); 2451 if (call_name == NULL) { 2452 assert(!is_leaf, "must supply name for leaf"); 2453 call_name = OptoRuntime::stub_name(call_addr); 2454 } 2455 CallNode* call; 2456 if (!is_leaf) { 2457 call = new CallStaticJavaNode(call_type, call_addr, call_name, 2458 bci(), adr_type); 2459 } else if (flags & RC_NO_FP) { 2460 call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type); 2461 } else { 2462 call = new CallLeafNode(call_type, call_addr, call_name, adr_type); 2463 } 2464 2465 // The following is similar to set_edges_for_java_call, 2466 // except that the memory effects of the call are restricted to AliasIdxRaw. 2467 2468 // Slow path call has no side-effects, uses few values 2469 bool wide_in = !(flags & RC_NARROW_MEM); 2470 bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot); 2471 2472 Node* prev_mem = NULL; 2473 if (wide_in) { 2474 prev_mem = set_predefined_input_for_runtime_call(call); 2475 } else { 2476 assert(!wide_out, "narrow in => narrow out"); 2477 Node* narrow_mem = memory(adr_type); 2478 prev_mem = reset_memory(); 2479 map()->set_memory(narrow_mem); 2480 set_predefined_input_for_runtime_call(call); 2481 } 2482 2483 // Hook each parm in order. Stop looking at the first NULL. 2484 if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0); 2485 if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1); 2486 if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2); 2487 if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3); 2488 if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4); 2489 if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5); 2490 if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6); 2491 if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7); 2492 /* close each nested if ===> */ } } } } } } } } 2493 assert(call->in(call->req()-1) != NULL, "must initialize all parms"); 2494 2495 if (!is_leaf) { 2496 // Non-leaves can block and take safepoints: 2497 add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0)); 2498 } 2499 // Non-leaves can throw exceptions: 2500 if (has_io) { 2501 call->set_req(TypeFunc::I_O, i_o()); 2502 } 2503 2504 if (flags & RC_UNCOMMON) { 2505 // Set the count to a tiny probability. Cf. Estimate_Block_Frequency. 2506 // (An "if" probability corresponds roughly to an unconditional count. 2507 // Sort of.) 2508 call->set_cnt(PROB_UNLIKELY_MAG(4)); 2509 } 2510 2511 Node* c = _gvn.transform(call); 2512 assert(c == call, "cannot disappear"); 2513 2514 if (wide_out) { 2515 // Slow path call has full side-effects. 2516 set_predefined_output_for_runtime_call(call); 2517 } else { 2518 // Slow path call has few side-effects, and/or sets few values. 2519 set_predefined_output_for_runtime_call(call, prev_mem, adr_type); 2520 } 2521 2522 if (has_io) { 2523 set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O))); 2524 } 2525 return call; 2526 2527 } 2528 2529 //------------------------------merge_memory----------------------------------- 2530 // Merge memory from one path into the current memory state. 2531 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) { 2532 for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) { 2533 Node* old_slice = mms.force_memory(); 2534 Node* new_slice = mms.memory2(); 2535 if (old_slice != new_slice) { 2536 PhiNode* phi; 2537 if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) { 2538 if (mms.is_empty()) { 2539 // clone base memory Phi's inputs for this memory slice 2540 assert(old_slice == mms.base_memory(), "sanity"); 2541 phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C)); 2542 _gvn.set_type(phi, Type::MEMORY); 2543 for (uint i = 1; i < phi->req(); i++) { 2544 phi->init_req(i, old_slice->in(i)); 2545 } 2546 } else { 2547 phi = old_slice->as_Phi(); // Phi was generated already 2548 } 2549 } else { 2550 phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C)); 2551 _gvn.set_type(phi, Type::MEMORY); 2552 } 2553 phi->set_req(new_path, new_slice); 2554 mms.set_memory(phi); 2555 } 2556 } 2557 } 2558 2559 //------------------------------make_slow_call_ex------------------------------ 2560 // Make the exception handler hookups for the slow call 2561 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) { 2562 if (stopped()) return; 2563 2564 // Make a catch node with just two handlers: fall-through and catch-all 2565 Node* i_o = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) ); 2566 Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) ); 2567 Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) ); 2568 Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci) ); 2569 2570 { PreserveJVMState pjvms(this); 2571 set_control(excp); 2572 set_i_o(i_o); 2573 2574 if (excp != top()) { 2575 if (deoptimize) { 2576 // Deoptimize if an exception is caught. Don't construct exception state in this case. 2577 uncommon_trap(Deoptimization::Reason_unhandled, 2578 Deoptimization::Action_none); 2579 } else { 2580 // Create an exception state also. 2581 // Use an exact type if the caller has specified a specific exception. 2582 const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull); 2583 Node* ex_oop = new CreateExNode(ex_type, control(), i_o); 2584 add_exception_state(make_exception_state(_gvn.transform(ex_oop))); 2585 } 2586 } 2587 } 2588 2589 // Get the no-exception control from the CatchNode. 2590 set_control(norm); 2591 } 2592 2593 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) { 2594 Node* cmp = NULL; 2595 switch(bt) { 2596 case T_INT: cmp = new CmpINode(in1, in2); break; 2597 case T_ADDRESS: cmp = new CmpPNode(in1, in2); break; 2598 default: fatal("unexpected comparison type %s", type2name(bt)); 2599 } 2600 gvn->transform(cmp); 2601 Node* bol = gvn->transform(new BoolNode(cmp, test)); 2602 IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN); 2603 gvn->transform(iff); 2604 if (!bol->is_Con()) gvn->record_for_igvn(iff); 2605 return iff; 2606 } 2607 2608 2609 //-------------------------------gen_subtype_check----------------------------- 2610 // Generate a subtyping check. Takes as input the subtype and supertype. 2611 // Returns 2 values: sets the default control() to the true path and returns 2612 // the false path. Only reads invariant memory; sets no (visible) memory. 2613 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding 2614 // but that's not exposed to the optimizer. This call also doesn't take in an 2615 // Object; if you wish to check an Object you need to load the Object's class 2616 // prior to coming here. 2617 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) { 2618 Compile* C = gvn->C; 2619 2620 if ((*ctrl)->is_top()) { 2621 return C->top(); 2622 } 2623 2624 // Fast check for identical types, perhaps identical constants. 2625 // The types can even be identical non-constants, in cases 2626 // involving Array.newInstance, Object.clone, etc. 2627 if (subklass == superklass) 2628 return C->top(); // false path is dead; no test needed. 2629 2630 if (gvn->type(superklass)->singleton()) { 2631 ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass(); 2632 ciKlass* subk = gvn->type(subklass)->is_klassptr()->klass(); 2633 2634 // In the common case of an exact superklass, try to fold up the 2635 // test before generating code. You may ask, why not just generate 2636 // the code and then let it fold up? The answer is that the generated 2637 // code will necessarily include null checks, which do not always 2638 // completely fold away. If they are also needless, then they turn 2639 // into a performance loss. Example: 2640 // Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x; 2641 // Here, the type of 'fa' is often exact, so the store check 2642 // of fa[1]=x will fold up, without testing the nullness of x. 2643 switch (C->static_subtype_check(superk, subk)) { 2644 case Compile::SSC_always_false: 2645 { 2646 Node* always_fail = *ctrl; 2647 *ctrl = gvn->C->top(); 2648 return always_fail; 2649 } 2650 case Compile::SSC_always_true: 2651 return C->top(); 2652 case Compile::SSC_easy_test: 2653 { 2654 // Just do a direct pointer compare and be done. 2655 IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS); 2656 *ctrl = gvn->transform(new IfTrueNode(iff)); 2657 return gvn->transform(new IfFalseNode(iff)); 2658 } 2659 case Compile::SSC_full_test: 2660 break; 2661 default: 2662 ShouldNotReachHere(); 2663 } 2664 } 2665 2666 // %%% Possible further optimization: Even if the superklass is not exact, 2667 // if the subklass is the unique subtype of the superklass, the check 2668 // will always succeed. We could leave a dependency behind to ensure this. 2669 2670 // First load the super-klass's check-offset 2671 Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset())))); 2672 Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr())); 2673 Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered)); 2674 int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset()); 2675 bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con); 2676 2677 // Load from the sub-klass's super-class display list, or a 1-word cache of 2678 // the secondary superclass list, or a failing value with a sentinel offset 2679 // if the super-klass is an interface or exceptionally deep in the Java 2680 // hierarchy and we have to scan the secondary superclass list the hard way. 2681 // Worst-case type is a little odd: NULL is allowed as a result (usually 2682 // klass loads can never produce a NULL). 2683 Node *chk_off_X = chk_off; 2684 #ifdef _LP64 2685 chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X)); 2686 #endif 2687 Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X)); 2688 // For some types like interfaces the following loadKlass is from a 1-word 2689 // cache which is mutable so can't use immutable memory. Other 2690 // types load from the super-class display table which is immutable. 2691 m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr())); 2692 Node *kmem = might_be_cache ? m : C->immutable_memory(); 2693 Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL)); 2694 2695 // Compile speed common case: ARE a subtype and we canNOT fail 2696 if( superklass == nkls ) 2697 return C->top(); // false path is dead; no test needed. 2698 2699 // See if we get an immediate positive hit. Happens roughly 83% of the 2700 // time. Test to see if the value loaded just previously from the subklass 2701 // is exactly the superklass. 2702 IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS); 2703 Node *iftrue1 = gvn->transform( new IfTrueNode (iff1)); 2704 *ctrl = gvn->transform(new IfFalseNode(iff1)); 2705 2706 // Compile speed common case: Check for being deterministic right now. If 2707 // chk_off is a constant and not equal to cacheoff then we are NOT a 2708 // subklass. In this case we need exactly the 1 test above and we can 2709 // return those results immediately. 2710 if (!might_be_cache) { 2711 Node* not_subtype_ctrl = *ctrl; 2712 *ctrl = iftrue1; // We need exactly the 1 test above 2713 return not_subtype_ctrl; 2714 } 2715 2716 // Gather the various success & failures here 2717 RegionNode *r_ok_subtype = new RegionNode(4); 2718 gvn->record_for_igvn(r_ok_subtype); 2719 RegionNode *r_not_subtype = new RegionNode(3); 2720 gvn->record_for_igvn(r_not_subtype); 2721 2722 r_ok_subtype->init_req(1, iftrue1); 2723 2724 // Check for immediate negative hit. Happens roughly 11% of the time (which 2725 // is roughly 63% of the remaining cases). Test to see if the loaded 2726 // check-offset points into the subklass display list or the 1-element 2727 // cache. If it points to the display (and NOT the cache) and the display 2728 // missed then it's not a subtype. 2729 Node *cacheoff = gvn->intcon(cacheoff_con); 2730 IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT); 2731 r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2))); 2732 *ctrl = gvn->transform(new IfFalseNode(iff2)); 2733 2734 // Check for self. Very rare to get here, but it is taken 1/3 the time. 2735 // No performance impact (too rare) but allows sharing of secondary arrays 2736 // which has some footprint reduction. 2737 IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS); 2738 r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3))); 2739 *ctrl = gvn->transform(new IfFalseNode(iff3)); 2740 2741 // -- Roads not taken here: -- 2742 // We could also have chosen to perform the self-check at the beginning 2743 // of this code sequence, as the assembler does. This would not pay off 2744 // the same way, since the optimizer, unlike the assembler, can perform 2745 // static type analysis to fold away many successful self-checks. 2746 // Non-foldable self checks work better here in second position, because 2747 // the initial primary superclass check subsumes a self-check for most 2748 // types. An exception would be a secondary type like array-of-interface, 2749 // which does not appear in its own primary supertype display. 2750 // Finally, we could have chosen to move the self-check into the 2751 // PartialSubtypeCheckNode, and from there out-of-line in a platform 2752 // dependent manner. But it is worthwhile to have the check here, 2753 // where it can be perhaps be optimized. The cost in code space is 2754 // small (register compare, branch). 2755 2756 // Now do a linear scan of the secondary super-klass array. Again, no real 2757 // performance impact (too rare) but it's gotta be done. 2758 // Since the code is rarely used, there is no penalty for moving it 2759 // out of line, and it can only improve I-cache density. 2760 // The decision to inline or out-of-line this final check is platform 2761 // dependent, and is found in the AD file definition of PartialSubtypeCheck. 2762 Node* psc = gvn->transform( 2763 new PartialSubtypeCheckNode(*ctrl, subklass, superklass)); 2764 2765 IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS); 2766 r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4))); 2767 r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4))); 2768 2769 // Return false path; set default control to true path. 2770 *ctrl = gvn->transform(r_ok_subtype); 2771 return gvn->transform(r_not_subtype); 2772 } 2773 2774 // Profile-driven exact type check: 2775 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass, 2776 float prob, 2777 Node* *casted_receiver) { 2778 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass); 2779 Node* recv_klass = load_object_klass(receiver); 2780 Node* want_klass = makecon(tklass); 2781 Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) ); 2782 Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) ); 2783 IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN); 2784 set_control( _gvn.transform( new IfTrueNode (iff) )); 2785 Node* fail = _gvn.transform( new IfFalseNode(iff) ); 2786 2787 const TypeOopPtr* recv_xtype = tklass->as_instance_type(); 2788 assert(recv_xtype->klass_is_exact(), ""); 2789 2790 // Subsume downstream occurrences of receiver with a cast to 2791 // recv_xtype, since now we know what the type will be. 2792 Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype); 2793 (*casted_receiver) = _gvn.transform(cast); 2794 // (User must make the replace_in_map call.) 2795 2796 return fail; 2797 } 2798 2799 2800 //------------------------------seems_never_null------------------------------- 2801 // Use null_seen information if it is available from the profile. 2802 // If we see an unexpected null at a type check we record it and force a 2803 // recompile; the offending check will be recompiled to handle NULLs. 2804 // If we see several offending BCIs, then all checks in the 2805 // method will be recompiled. 2806 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) { 2807 speculating = !_gvn.type(obj)->speculative_maybe_null(); 2808 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating); 2809 if (UncommonNullCast // Cutout for this technique 2810 && obj != null() // And not the -Xcomp stupid case? 2811 && !too_many_traps(reason) 2812 ) { 2813 if (speculating) { 2814 return true; 2815 } 2816 if (data == NULL) 2817 // Edge case: no mature data. Be optimistic here. 2818 return true; 2819 // If the profile has not seen a null, assume it won't happen. 2820 assert(java_bc() == Bytecodes::_checkcast || 2821 java_bc() == Bytecodes::_instanceof || 2822 java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here"); 2823 return !data->as_BitData()->null_seen(); 2824 } 2825 speculating = false; 2826 return false; 2827 } 2828 2829 //------------------------maybe_cast_profiled_receiver------------------------- 2830 // If the profile has seen exactly one type, narrow to exactly that type. 2831 // Subsequent type checks will always fold up. 2832 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj, 2833 ciKlass* require_klass, 2834 ciKlass* spec_klass, 2835 bool safe_for_replace) { 2836 if (!UseTypeProfile || !TypeProfileCasts) return NULL; 2837 2838 Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL); 2839 2840 // Make sure we haven't already deoptimized from this tactic. 2841 if (too_many_traps(reason) || too_many_recompiles(reason)) 2842 return NULL; 2843 2844 // (No, this isn't a call, but it's enough like a virtual call 2845 // to use the same ciMethod accessor to get the profile info...) 2846 // If we have a speculative type use it instead of profiling (which 2847 // may not help us) 2848 ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass; 2849 if (exact_kls != NULL) {// no cast failures here 2850 if (require_klass == NULL || 2851 C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) { 2852 // If we narrow the type to match what the type profile sees or 2853 // the speculative type, we can then remove the rest of the 2854 // cast. 2855 // This is a win, even if the exact_kls is very specific, 2856 // because downstream operations, such as method calls, 2857 // will often benefit from the sharper type. 2858 Node* exact_obj = not_null_obj; // will get updated in place... 2859 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 2860 &exact_obj); 2861 { PreserveJVMState pjvms(this); 2862 set_control(slow_ctl); 2863 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 2864 } 2865 if (safe_for_replace) { 2866 replace_in_map(not_null_obj, exact_obj); 2867 } 2868 return exact_obj; 2869 } 2870 // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us. 2871 } 2872 2873 return NULL; 2874 } 2875 2876 /** 2877 * Cast obj to type and emit guard unless we had too many traps here 2878 * already 2879 * 2880 * @param obj node being casted 2881 * @param type type to cast the node to 2882 * @param not_null true if we know node cannot be null 2883 */ 2884 Node* GraphKit::maybe_cast_profiled_obj(Node* obj, 2885 ciKlass* type, 2886 bool not_null) { 2887 if (stopped()) { 2888 return obj; 2889 } 2890 2891 // type == NULL if profiling tells us this object is always null 2892 if (type != NULL) { 2893 Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check; 2894 Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check; 2895 2896 if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) && 2897 !too_many_traps(class_reason) && 2898 !too_many_recompiles(class_reason)) { 2899 Node* not_null_obj = NULL; 2900 // not_null is true if we know the object is not null and 2901 // there's no need for a null check 2902 if (!not_null) { 2903 Node* null_ctl = top(); 2904 not_null_obj = null_check_oop(obj, &null_ctl, true, true, true); 2905 assert(null_ctl->is_top(), "no null control here"); 2906 } else { 2907 not_null_obj = obj; 2908 } 2909 2910 Node* exact_obj = not_null_obj; 2911 ciKlass* exact_kls = type; 2912 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 2913 &exact_obj); 2914 { 2915 PreserveJVMState pjvms(this); 2916 set_control(slow_ctl); 2917 uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile); 2918 } 2919 replace_in_map(not_null_obj, exact_obj); 2920 obj = exact_obj; 2921 } 2922 } else { 2923 if (!too_many_traps(Deoptimization::Reason_null_assert) && 2924 !too_many_recompiles(Deoptimization::Reason_null_assert)) { 2925 Node* exact_obj = null_assert(obj); 2926 replace_in_map(obj, exact_obj); 2927 obj = exact_obj; 2928 } 2929 } 2930 return obj; 2931 } 2932 2933 //-------------------------------gen_instanceof-------------------------------- 2934 // Generate an instance-of idiom. Used by both the instance-of bytecode 2935 // and the reflective instance-of call. 2936 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) { 2937 kill_dead_locals(); // Benefit all the uncommon traps 2938 assert( !stopped(), "dead parse path should be checked in callers" ); 2939 assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()), 2940 "must check for not-null not-dead klass in callers"); 2941 2942 // Make the merge point 2943 enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT }; 2944 RegionNode* region = new RegionNode(PATH_LIMIT); 2945 Node* phi = new PhiNode(region, TypeInt::BOOL); 2946 C->set_has_split_ifs(true); // Has chance for split-if optimization 2947 2948 ciProfileData* data = NULL; 2949 if (java_bc() == Bytecodes::_instanceof) { // Only for the bytecode 2950 data = method()->method_data()->bci_to_data(bci()); 2951 } 2952 bool speculative_not_null = false; 2953 bool never_see_null = (ProfileDynamicTypes // aggressive use of profile 2954 && seems_never_null(obj, data, speculative_not_null)); 2955 2956 // Null check; get casted pointer; set region slot 3 2957 Node* null_ctl = top(); 2958 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 2959 2960 // If not_null_obj is dead, only null-path is taken 2961 if (stopped()) { // Doing instance-of on a NULL? 2962 set_control(null_ctl); 2963 return intcon(0); 2964 } 2965 region->init_req(_null_path, null_ctl); 2966 phi ->init_req(_null_path, intcon(0)); // Set null path value 2967 if (null_ctl == top()) { 2968 // Do this eagerly, so that pattern matches like is_diamond_phi 2969 // will work even during parsing. 2970 assert(_null_path == PATH_LIMIT-1, "delete last"); 2971 region->del_req(_null_path); 2972 phi ->del_req(_null_path); 2973 } 2974 2975 // Do we know the type check always succeed? 2976 bool known_statically = false; 2977 if (_gvn.type(superklass)->singleton()) { 2978 ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass(); 2979 ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass(); 2980 if (subk != NULL && subk->is_loaded()) { 2981 int static_res = C->static_subtype_check(superk, subk); 2982 known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false); 2983 } 2984 } 2985 2986 if (!known_statically) { 2987 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 2988 // We may not have profiling here or it may not help us. If we 2989 // have a speculative type use it to perform an exact cast. 2990 ciKlass* spec_obj_type = obj_type->speculative_type(); 2991 if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) { 2992 Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace); 2993 if (stopped()) { // Profile disagrees with this path. 2994 set_control(null_ctl); // Null is the only remaining possibility. 2995 return intcon(0); 2996 } 2997 if (cast_obj != NULL) { 2998 not_null_obj = cast_obj; 2999 } 3000 } 3001 } 3002 3003 // Load the object's klass 3004 Node* obj_klass = load_object_klass(not_null_obj); 3005 3006 // Generate the subtype check 3007 Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass); 3008 3009 // Plug in the success path to the general merge in slot 1. 3010 region->init_req(_obj_path, control()); 3011 phi ->init_req(_obj_path, intcon(1)); 3012 3013 // Plug in the failing path to the general merge in slot 2. 3014 region->init_req(_fail_path, not_subtype_ctrl); 3015 phi ->init_req(_fail_path, intcon(0)); 3016 3017 // Return final merged results 3018 set_control( _gvn.transform(region) ); 3019 record_for_igvn(region); 3020 3021 // If we know the type check always succeeds then we don't use the 3022 // profiling data at this bytecode. Don't lose it, feed it to the 3023 // type system as a speculative type. 3024 if (safe_for_replace) { 3025 Node* casted_obj = record_profiled_receiver_for_speculation(obj); 3026 replace_in_map(obj, casted_obj); 3027 } 3028 3029 return _gvn.transform(phi); 3030 } 3031 3032 //-------------------------------gen_checkcast--------------------------------- 3033 // Generate a checkcast idiom. Used by both the checkcast bytecode and the 3034 // array store bytecode. Stack must be as-if BEFORE doing the bytecode so the 3035 // uncommon-trap paths work. Adjust stack after this call. 3036 // If failure_control is supplied and not null, it is filled in with 3037 // the control edge for the cast failure. Otherwise, an appropriate 3038 // uncommon trap or exception is thrown. 3039 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, 3040 Node* *failure_control) { 3041 kill_dead_locals(); // Benefit all the uncommon traps 3042 const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr(); 3043 const Type *toop = TypeOopPtr::make_from_klass(tk->klass()); 3044 3045 // Fast cutout: Check the case that the cast is vacuously true. 3046 // This detects the common cases where the test will short-circuit 3047 // away completely. We do this before we perform the null check, 3048 // because if the test is going to turn into zero code, we don't 3049 // want a residual null check left around. (Causes a slowdown, 3050 // for example, in some objArray manipulations, such as a[i]=a[j].) 3051 if (tk->singleton()) { 3052 const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr(); 3053 if (objtp != NULL && objtp->klass() != NULL) { 3054 switch (C->static_subtype_check(tk->klass(), objtp->klass())) { 3055 case Compile::SSC_always_true: 3056 // If we know the type check always succeed then we don't use 3057 // the profiling data at this bytecode. Don't lose it, feed it 3058 // to the type system as a speculative type. 3059 return record_profiled_receiver_for_speculation(obj); 3060 case Compile::SSC_always_false: 3061 // It needs a null check because a null will *pass* the cast check. 3062 // A non-null value will always produce an exception. 3063 return null_assert(obj); 3064 } 3065 } 3066 } 3067 3068 ciProfileData* data = NULL; 3069 bool safe_for_replace = false; 3070 if (failure_control == NULL) { // use MDO in regular case only 3071 assert(java_bc() == Bytecodes::_aastore || 3072 java_bc() == Bytecodes::_checkcast, 3073 "interpreter profiles type checks only for these BCs"); 3074 data = method()->method_data()->bci_to_data(bci()); 3075 safe_for_replace = true; 3076 } 3077 3078 // Make the merge point 3079 enum { _obj_path = 1, _null_path, PATH_LIMIT }; 3080 RegionNode* region = new RegionNode(PATH_LIMIT); 3081 Node* phi = new PhiNode(region, toop); 3082 C->set_has_split_ifs(true); // Has chance for split-if optimization 3083 3084 // Use null-cast information if it is available 3085 bool speculative_not_null = false; 3086 bool never_see_null = ((failure_control == NULL) // regular case only 3087 && seems_never_null(obj, data, speculative_not_null)); 3088 3089 // Null check; get casted pointer; set region slot 3 3090 Node* null_ctl = top(); 3091 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 3092 3093 // If not_null_obj is dead, only null-path is taken 3094 if (stopped()) { // Doing instance-of on a NULL? 3095 set_control(null_ctl); 3096 return null(); 3097 } 3098 region->init_req(_null_path, null_ctl); 3099 phi ->init_req(_null_path, null()); // Set null path value 3100 if (null_ctl == top()) { 3101 // Do this eagerly, so that pattern matches like is_diamond_phi 3102 // will work even during parsing. 3103 assert(_null_path == PATH_LIMIT-1, "delete last"); 3104 region->del_req(_null_path); 3105 phi ->del_req(_null_path); 3106 } 3107 3108 Node* cast_obj = NULL; 3109 if (tk->klass_is_exact()) { 3110 // The following optimization tries to statically cast the speculative type of the object 3111 // (for example obtained during profiling) to the type of the superklass and then do a 3112 // dynamic check that the type of the object is what we expect. To work correctly 3113 // for checkcast and aastore the type of superklass should be exact. 3114 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 3115 // We may not have profiling here or it may not help us. If we have 3116 // a speculative type use it to perform an exact cast. 3117 ciKlass* spec_obj_type = obj_type->speculative_type(); 3118 if (spec_obj_type != NULL || data != NULL) { 3119 cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace); 3120 if (cast_obj != NULL) { 3121 if (failure_control != NULL) // failure is now impossible 3122 (*failure_control) = top(); 3123 // adjust the type of the phi to the exact klass: 3124 phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR)); 3125 } 3126 } 3127 } 3128 3129 if (cast_obj == NULL) { 3130 // Load the object's klass 3131 Node* obj_klass = load_object_klass(not_null_obj); 3132 3133 // Generate the subtype check 3134 Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass ); 3135 3136 // Plug in success path into the merge 3137 cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop)); 3138 // Failure path ends in uncommon trap (or may be dead - failure impossible) 3139 if (failure_control == NULL) { 3140 if (not_subtype_ctrl != top()) { // If failure is possible 3141 PreserveJVMState pjvms(this); 3142 set_control(not_subtype_ctrl); 3143 builtin_throw(Deoptimization::Reason_class_check, obj_klass); 3144 } 3145 } else { 3146 (*failure_control) = not_subtype_ctrl; 3147 } 3148 } 3149 3150 region->init_req(_obj_path, control()); 3151 phi ->init_req(_obj_path, cast_obj); 3152 3153 // A merge of NULL or Casted-NotNull obj 3154 Node* res = _gvn.transform(phi); 3155 3156 // Note I do NOT always 'replace_in_map(obj,result)' here. 3157 // if( tk->klass()->can_be_primary_super() ) 3158 // This means that if I successfully store an Object into an array-of-String 3159 // I 'forget' that the Object is really now known to be a String. I have to 3160 // do this because we don't have true union types for interfaces - if I store 3161 // a Baz into an array-of-Interface and then tell the optimizer it's an 3162 // Interface, I forget that it's also a Baz and cannot do Baz-like field 3163 // references to it. FIX THIS WHEN UNION TYPES APPEAR! 3164 // replace_in_map( obj, res ); 3165 3166 // Return final merged results 3167 set_control( _gvn.transform(region) ); 3168 record_for_igvn(region); 3169 3170 return record_profiled_receiver_for_speculation(res); 3171 } 3172 3173 //------------------------------next_monitor----------------------------------- 3174 // What number should be given to the next monitor? 3175 int GraphKit::next_monitor() { 3176 int current = jvms()->monitor_depth()* C->sync_stack_slots(); 3177 int next = current + C->sync_stack_slots(); 3178 // Keep the toplevel high water mark current: 3179 if (C->fixed_slots() < next) C->set_fixed_slots(next); 3180 return current; 3181 } 3182 3183 //------------------------------insert_mem_bar--------------------------------- 3184 // Memory barrier to avoid floating things around 3185 // The membar serves as a pinch point between both control and all memory slices. 3186 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) { 3187 MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent); 3188 mb->init_req(TypeFunc::Control, control()); 3189 mb->init_req(TypeFunc::Memory, reset_memory()); 3190 Node* membar = _gvn.transform(mb); 3191 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3192 set_all_memory_call(membar); 3193 return membar; 3194 } 3195 3196 //-------------------------insert_mem_bar_volatile---------------------------- 3197 // Memory barrier to avoid floating things around 3198 // The membar serves as a pinch point between both control and memory(alias_idx). 3199 // If you want to make a pinch point on all memory slices, do not use this 3200 // function (even with AliasIdxBot); use insert_mem_bar() instead. 3201 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) { 3202 // When Parse::do_put_xxx updates a volatile field, it appends a series 3203 // of MemBarVolatile nodes, one for *each* volatile field alias category. 3204 // The first membar is on the same memory slice as the field store opcode. 3205 // This forces the membar to follow the store. (Bug 6500685 broke this.) 3206 // All the other membars (for other volatile slices, including AliasIdxBot, 3207 // which stands for all unknown volatile slices) are control-dependent 3208 // on the first membar. This prevents later volatile loads or stores 3209 // from sliding up past the just-emitted store. 3210 3211 MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent); 3212 mb->set_req(TypeFunc::Control,control()); 3213 if (alias_idx == Compile::AliasIdxBot) { 3214 mb->set_req(TypeFunc::Memory, merged_memory()->base_memory()); 3215 } else { 3216 assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller"); 3217 mb->set_req(TypeFunc::Memory, memory(alias_idx)); 3218 } 3219 Node* membar = _gvn.transform(mb); 3220 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3221 if (alias_idx == Compile::AliasIdxBot) { 3222 merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory))); 3223 } else { 3224 set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx); 3225 } 3226 return membar; 3227 } 3228 3229 //------------------------------shared_lock------------------------------------ 3230 // Emit locking code. 3231 FastLockNode* GraphKit::shared_lock(Node* obj) { 3232 // bci is either a monitorenter bc or InvocationEntryBci 3233 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3234 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3235 3236 if( !GenerateSynchronizationCode ) 3237 return NULL; // Not locking things? 3238 if (stopped()) // Dead monitor? 3239 return NULL; 3240 3241 assert(dead_locals_are_killed(), "should kill locals before sync. point"); 3242 3243 // Box the stack location 3244 Node* box = _gvn.transform(new BoxLockNode(next_monitor())); 3245 Node* mem = reset_memory(); 3246 3247 FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock(); 3248 if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) { 3249 // Create the counters for this fast lock. 3250 flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci 3251 } 3252 3253 // Create the rtm counters for this fast lock if needed. 3254 flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci 3255 3256 // Add monitor to debug info for the slow path. If we block inside the 3257 // slow path and de-opt, we need the monitor hanging around 3258 map()->push_monitor( flock ); 3259 3260 const TypeFunc *tf = LockNode::lock_type(); 3261 LockNode *lock = new LockNode(C, tf); 3262 3263 lock->init_req( TypeFunc::Control, control() ); 3264 lock->init_req( TypeFunc::Memory , mem ); 3265 lock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3266 lock->init_req( TypeFunc::FramePtr, frameptr() ); 3267 lock->init_req( TypeFunc::ReturnAdr, top() ); 3268 3269 lock->init_req(TypeFunc::Parms + 0, obj); 3270 lock->init_req(TypeFunc::Parms + 1, box); 3271 lock->init_req(TypeFunc::Parms + 2, flock); 3272 add_safepoint_edges(lock); 3273 3274 lock = _gvn.transform( lock )->as_Lock(); 3275 3276 // lock has no side-effects, sets few values 3277 set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM); 3278 3279 insert_mem_bar(Op_MemBarAcquireLock); 3280 3281 // Add this to the worklist so that the lock can be eliminated 3282 record_for_igvn(lock); 3283 3284 #ifndef PRODUCT 3285 if (PrintLockStatistics) { 3286 // Update the counter for this lock. Don't bother using an atomic 3287 // operation since we don't require absolute accuracy. 3288 lock->create_lock_counter(map()->jvms()); 3289 increment_counter(lock->counter()->addr()); 3290 } 3291 #endif 3292 3293 return flock; 3294 } 3295 3296 3297 //------------------------------shared_unlock---------------------------------- 3298 // Emit unlocking code. 3299 void GraphKit::shared_unlock(Node* box, Node* obj) { 3300 // bci is either a monitorenter bc or InvocationEntryBci 3301 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3302 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3303 3304 if( !GenerateSynchronizationCode ) 3305 return; 3306 if (stopped()) { // Dead monitor? 3307 map()->pop_monitor(); // Kill monitor from debug info 3308 return; 3309 } 3310 3311 // Memory barrier to avoid floating things down past the locked region 3312 insert_mem_bar(Op_MemBarReleaseLock); 3313 3314 const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type(); 3315 UnlockNode *unlock = new UnlockNode(C, tf); 3316 #ifdef ASSERT 3317 unlock->set_dbg_jvms(sync_jvms()); 3318 #endif 3319 uint raw_idx = Compile::AliasIdxRaw; 3320 unlock->init_req( TypeFunc::Control, control() ); 3321 unlock->init_req( TypeFunc::Memory , memory(raw_idx) ); 3322 unlock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3323 unlock->init_req( TypeFunc::FramePtr, frameptr() ); 3324 unlock->init_req( TypeFunc::ReturnAdr, top() ); 3325 3326 unlock->init_req(TypeFunc::Parms + 0, obj); 3327 unlock->init_req(TypeFunc::Parms + 1, box); 3328 unlock = _gvn.transform(unlock)->as_Unlock(); 3329 3330 Node* mem = reset_memory(); 3331 3332 // unlock has no side-effects, sets few values 3333 set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM); 3334 3335 // Kill monitor from debug info 3336 map()->pop_monitor( ); 3337 } 3338 3339 //-------------------------------get_layout_helper----------------------------- 3340 // If the given klass is a constant or known to be an array, 3341 // fetch the constant layout helper value into constant_value 3342 // and return (Node*)NULL. Otherwise, load the non-constant 3343 // layout helper value, and return the node which represents it. 3344 // This two-faced routine is useful because allocation sites 3345 // almost always feature constant types. 3346 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) { 3347 const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr(); 3348 if (!StressReflectiveCode && inst_klass != NULL) { 3349 ciKlass* klass = inst_klass->klass(); 3350 bool xklass = inst_klass->klass_is_exact(); 3351 if (xklass || klass->is_array_klass()) { 3352 jint lhelper = klass->layout_helper(); 3353 if (lhelper != Klass::_lh_neutral_value) { 3354 constant_value = lhelper; 3355 return (Node*) NULL; 3356 } 3357 } 3358 } 3359 constant_value = Klass::_lh_neutral_value; // put in a known value 3360 Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset())); 3361 return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered); 3362 } 3363 3364 // We just put in an allocate/initialize with a big raw-memory effect. 3365 // Hook selected additional alias categories on the initialization. 3366 static void hook_memory_on_init(GraphKit& kit, int alias_idx, 3367 MergeMemNode* init_in_merge, 3368 Node* init_out_raw) { 3369 DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory()); 3370 assert(init_in_merge->memory_at(alias_idx) == init_in_raw, ""); 3371 3372 Node* prevmem = kit.memory(alias_idx); 3373 init_in_merge->set_memory_at(alias_idx, prevmem); 3374 kit.set_memory(init_out_raw, alias_idx); 3375 } 3376 3377 //---------------------------set_output_for_allocation------------------------- 3378 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc, 3379 const TypeOopPtr* oop_type, 3380 bool deoptimize_on_exception) { 3381 int rawidx = Compile::AliasIdxRaw; 3382 alloc->set_req( TypeFunc::FramePtr, frameptr() ); 3383 add_safepoint_edges(alloc); 3384 Node* allocx = _gvn.transform(alloc); 3385 set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) ); 3386 // create memory projection for i_o 3387 set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx ); 3388 make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception); 3389 3390 // create a memory projection as for the normal control path 3391 Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory)); 3392 set_memory(malloc, rawidx); 3393 3394 // a normal slow-call doesn't change i_o, but an allocation does 3395 // we create a separate i_o projection for the normal control path 3396 set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) ); 3397 Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) ); 3398 3399 // put in an initialization barrier 3400 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx, 3401 rawoop)->as_Initialize(); 3402 assert(alloc->initialization() == init, "2-way macro link must work"); 3403 assert(init ->allocation() == alloc, "2-way macro link must work"); 3404 { 3405 // Extract memory strands which may participate in the new object's 3406 // initialization, and source them from the new InitializeNode. 3407 // This will allow us to observe initializations when they occur, 3408 // and link them properly (as a group) to the InitializeNode. 3409 assert(init->in(InitializeNode::Memory) == malloc, ""); 3410 MergeMemNode* minit_in = MergeMemNode::make(malloc); 3411 init->set_req(InitializeNode::Memory, minit_in); 3412 record_for_igvn(minit_in); // fold it up later, if possible 3413 Node* minit_out = memory(rawidx); 3414 assert(minit_out->is_Proj() && minit_out->in(0) == init, ""); 3415 if (oop_type->isa_aryptr()) { 3416 const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot); 3417 int elemidx = C->get_alias_index(telemref); 3418 hook_memory_on_init(*this, elemidx, minit_in, minit_out); 3419 } else if (oop_type->isa_instptr()) { 3420 ciInstanceKlass* ik = oop_type->klass()->as_instance_klass(); 3421 for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) { 3422 ciField* field = ik->nonstatic_field_at(i); 3423 if (field->offset() >= TrackedInitializationLimit * HeapWordSize) 3424 continue; // do not bother to track really large numbers of fields 3425 // Find (or create) the alias category for this field: 3426 int fieldidx = C->alias_type(field)->index(); 3427 hook_memory_on_init(*this, fieldidx, minit_in, minit_out); 3428 } 3429 } 3430 } 3431 3432 // Cast raw oop to the real thing... 3433 Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type); 3434 javaoop = _gvn.transform(javaoop); 3435 C->set_recent_alloc(control(), javaoop); 3436 assert(just_allocated_object(control()) == javaoop, "just allocated"); 3437 3438 #ifdef ASSERT 3439 { // Verify that the AllocateNode::Ideal_allocation recognizers work: 3440 assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc, 3441 "Ideal_allocation works"); 3442 assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc, 3443 "Ideal_allocation works"); 3444 if (alloc->is_AllocateArray()) { 3445 assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(), 3446 "Ideal_allocation works"); 3447 assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(), 3448 "Ideal_allocation works"); 3449 } else { 3450 assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please"); 3451 } 3452 } 3453 #endif //ASSERT 3454 3455 return javaoop; 3456 } 3457 3458 //---------------------------new_instance-------------------------------------- 3459 // This routine takes a klass_node which may be constant (for a static type) 3460 // or may be non-constant (for reflective code). It will work equally well 3461 // for either, and the graph will fold nicely if the optimizer later reduces 3462 // the type to a constant. 3463 // The optional arguments are for specialized use by intrinsics: 3464 // - If 'extra_slow_test' if not null is an extra condition for the slow-path. 3465 // - If 'return_size_val', report the the total object size to the caller. 3466 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize) 3467 Node* GraphKit::new_instance(Node* klass_node, 3468 Node* extra_slow_test, 3469 Node* *return_size_val, 3470 bool deoptimize_on_exception) { 3471 // Compute size in doublewords 3472 // The size is always an integral number of doublewords, represented 3473 // as a positive bytewise size stored in the klass's layout_helper. 3474 // The layout_helper also encodes (in a low bit) the need for a slow path. 3475 jint layout_con = Klass::_lh_neutral_value; 3476 Node* layout_val = get_layout_helper(klass_node, layout_con); 3477 int layout_is_con = (layout_val == NULL); 3478 3479 if (extra_slow_test == NULL) extra_slow_test = intcon(0); 3480 // Generate the initial go-slow test. It's either ALWAYS (return a 3481 // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective 3482 // case) a computed value derived from the layout_helper. 3483 Node* initial_slow_test = NULL; 3484 if (layout_is_con) { 3485 assert(!StressReflectiveCode, "stress mode does not use these paths"); 3486 bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con); 3487 initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test; 3488 } else { // reflective case 3489 // This reflective path is used by Unsafe.allocateInstance. 3490 // (It may be stress-tested by specifying StressReflectiveCode.) 3491 // Basically, we want to get into the VM is there's an illegal argument. 3492 Node* bit = intcon(Klass::_lh_instance_slow_path_bit); 3493 initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) ); 3494 if (extra_slow_test != intcon(0)) { 3495 initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) ); 3496 } 3497 // (Macro-expander will further convert this to a Bool, if necessary.) 3498 } 3499 3500 // Find the size in bytes. This is easy; it's the layout_helper. 3501 // The size value must be valid even if the slow path is taken. 3502 Node* size = NULL; 3503 if (layout_is_con) { 3504 size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con)); 3505 } else { // reflective case 3506 // This reflective path is used by clone and Unsafe.allocateInstance. 3507 size = ConvI2X(layout_val); 3508 3509 // Clear the low bits to extract layout_helper_size_in_bytes: 3510 assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 3511 Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong)); 3512 size = _gvn.transform( new AndXNode(size, mask) ); 3513 } 3514 if (return_size_val != NULL) { 3515 (*return_size_val) = size; 3516 } 3517 3518 // This is a precise notnull oop of the klass. 3519 // (Actually, it need not be precise if this is a reflective allocation.) 3520 // It's what we cast the result to. 3521 const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr(); 3522 if (!tklass) tklass = TypeKlassPtr::OBJECT; 3523 const TypeOopPtr* oop_type = tklass->as_instance_type(); 3524 3525 // Now generate allocation code 3526 3527 // The entire memory state is needed for slow path of the allocation 3528 // since GC and deoptimization can happened. 3529 Node *mem = reset_memory(); 3530 set_all_memory(mem); // Create new memory state 3531 3532 AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP), 3533 control(), mem, i_o(), 3534 size, klass_node, 3535 initial_slow_test); 3536 3537 return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception); 3538 } 3539 3540 //-------------------------------new_array------------------------------------- 3541 // helper for both newarray and anewarray 3542 // The 'length' parameter is (obviously) the length of the array. 3543 // See comments on new_instance for the meaning of the other arguments. 3544 Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable) 3545 Node* length, // number of array elements 3546 int nargs, // number of arguments to push back for uncommon trap 3547 Node* *return_size_val, 3548 bool deoptimize_on_exception) { 3549 jint layout_con = Klass::_lh_neutral_value; 3550 Node* layout_val = get_layout_helper(klass_node, layout_con); 3551 int layout_is_con = (layout_val == NULL); 3552 3553 if (!layout_is_con && !StressReflectiveCode && 3554 !too_many_traps(Deoptimization::Reason_class_check)) { 3555 // This is a reflective array creation site. 3556 // Optimistically assume that it is a subtype of Object[], 3557 // so that we can fold up all the address arithmetic. 3558 layout_con = Klass::array_layout_helper(T_OBJECT); 3559 Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) ); 3560 Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) ); 3561 { BuildCutout unless(this, bol_lh, PROB_MAX); 3562 inc_sp(nargs); 3563 uncommon_trap(Deoptimization::Reason_class_check, 3564 Deoptimization::Action_maybe_recompile); 3565 } 3566 layout_val = NULL; 3567 layout_is_con = true; 3568 } 3569 3570 // Generate the initial go-slow test. Make sure we do not overflow 3571 // if length is huge (near 2Gig) or negative! We do not need 3572 // exact double-words here, just a close approximation of needed 3573 // double-words. We can't add any offset or rounding bits, lest we 3574 // take a size -1 of bytes and make it positive. Use an unsigned 3575 // compare, so negative sizes look hugely positive. 3576 int fast_size_limit = FastAllocateSizeLimit; 3577 if (layout_is_con) { 3578 assert(!StressReflectiveCode, "stress mode does not use these paths"); 3579 // Increase the size limit if we have exact knowledge of array type. 3580 int log2_esize = Klass::layout_helper_log2_element_size(layout_con); 3581 fast_size_limit <<= (LogBytesPerLong - log2_esize); 3582 } 3583 3584 Node* initial_slow_cmp = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) ); 3585 Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) ); 3586 3587 // --- Size Computation --- 3588 // array_size = round_to_heap(array_header + (length << elem_shift)); 3589 // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes) 3590 // and align_to(x, y) == ((x + y-1) & ~(y-1)) 3591 // The rounding mask is strength-reduced, if possible. 3592 int round_mask = MinObjAlignmentInBytes - 1; 3593 Node* header_size = NULL; 3594 int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 3595 // (T_BYTE has the weakest alignment and size restrictions...) 3596 if (layout_is_con) { 3597 int hsize = Klass::layout_helper_header_size(layout_con); 3598 int eshift = Klass::layout_helper_log2_element_size(layout_con); 3599 BasicType etype = Klass::layout_helper_element_type(layout_con); 3600 if ((round_mask & ~right_n_bits(eshift)) == 0) 3601 round_mask = 0; // strength-reduce it if it goes away completely 3602 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 3603 assert(header_size_min <= hsize, "generic minimum is smallest"); 3604 header_size_min = hsize; 3605 header_size = intcon(hsize + round_mask); 3606 } else { 3607 Node* hss = intcon(Klass::_lh_header_size_shift); 3608 Node* hsm = intcon(Klass::_lh_header_size_mask); 3609 Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) ); 3610 hsize = _gvn.transform( new AndINode(hsize, hsm) ); 3611 Node* mask = intcon(round_mask); 3612 header_size = _gvn.transform( new AddINode(hsize, mask) ); 3613 } 3614 3615 Node* elem_shift = NULL; 3616 if (layout_is_con) { 3617 int eshift = Klass::layout_helper_log2_element_size(layout_con); 3618 if (eshift != 0) 3619 elem_shift = intcon(eshift); 3620 } else { 3621 // There is no need to mask or shift this value. 3622 // The semantics of LShiftINode include an implicit mask to 0x1F. 3623 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 3624 elem_shift = layout_val; 3625 } 3626 3627 // Transition to native address size for all offset calculations: 3628 Node* lengthx = ConvI2X(length); 3629 Node* headerx = ConvI2X(header_size); 3630 #ifdef _LP64 3631 { const TypeInt* tilen = _gvn.find_int_type(length); 3632 if (tilen != NULL && tilen->_lo < 0) { 3633 // Add a manual constraint to a positive range. Cf. array_element_address. 3634 jint size_max = fast_size_limit; 3635 if (size_max > tilen->_hi) size_max = tilen->_hi; 3636 const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin); 3637 3638 // Only do a narrow I2L conversion if the range check passed. 3639 IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 3640 _gvn.transform(iff); 3641 RegionNode* region = new RegionNode(3); 3642 _gvn.set_type(region, Type::CONTROL); 3643 lengthx = new PhiNode(region, TypeLong::LONG); 3644 _gvn.set_type(lengthx, TypeLong::LONG); 3645 3646 // Range check passed. Use ConvI2L node with narrow type. 3647 Node* passed = IfFalse(iff); 3648 region->init_req(1, passed); 3649 // Make I2L conversion control dependent to prevent it from 3650 // floating above the range check during loop optimizations. 3651 lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed)); 3652 3653 // Range check failed. Use ConvI2L with wide type because length may be invalid. 3654 region->init_req(2, IfTrue(iff)); 3655 lengthx->init_req(2, ConvI2X(length)); 3656 3657 set_control(region); 3658 record_for_igvn(region); 3659 record_for_igvn(lengthx); 3660 } 3661 } 3662 #endif 3663 3664 // Combine header size (plus rounding) and body size. Then round down. 3665 // This computation cannot overflow, because it is used only in two 3666 // places, one where the length is sharply limited, and the other 3667 // after a successful allocation. 3668 Node* abody = lengthx; 3669 if (elem_shift != NULL) 3670 abody = _gvn.transform( new LShiftXNode(lengthx, elem_shift) ); 3671 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 3672 if (round_mask != 0) { 3673 Node* mask = MakeConX(~round_mask); 3674 size = _gvn.transform( new AndXNode(size, mask) ); 3675 } 3676 // else if round_mask == 0, the size computation is self-rounding 3677 3678 if (return_size_val != NULL) { 3679 // This is the size 3680 (*return_size_val) = size; 3681 } 3682 3683 // Now generate allocation code 3684 3685 // The entire memory state is needed for slow path of the allocation 3686 // since GC and deoptimization can happened. 3687 Node *mem = reset_memory(); 3688 set_all_memory(mem); // Create new memory state 3689 3690 if (initial_slow_test->is_Bool()) { 3691 // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick. 3692 initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn); 3693 } 3694 3695 // Create the AllocateArrayNode and its result projections 3696 AllocateArrayNode* alloc 3697 = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT), 3698 control(), mem, i_o(), 3699 size, klass_node, 3700 initial_slow_test, 3701 length); 3702 3703 // Cast to correct type. Note that the klass_node may be constant or not, 3704 // and in the latter case the actual array type will be inexact also. 3705 // (This happens via a non-constant argument to inline_native_newArray.) 3706 // In any case, the value of klass_node provides the desired array type. 3707 const TypeInt* length_type = _gvn.find_int_type(length); 3708 const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type(); 3709 if (ary_type->isa_aryptr() && length_type != NULL) { 3710 // Try to get a better type than POS for the size 3711 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 3712 } 3713 3714 Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception); 3715 3716 // Cast length on remaining path to be as narrow as possible 3717 if (map()->find_edge(length) >= 0) { 3718 Node* ccast = alloc->make_ideal_length(ary_type, &_gvn); 3719 if (ccast != length) { 3720 _gvn.set_type_bottom(ccast); 3721 record_for_igvn(ccast); 3722 replace_in_map(length, ccast); 3723 } 3724 } 3725 3726 return javaoop; 3727 } 3728 3729 // The following "Ideal_foo" functions are placed here because they recognize 3730 // the graph shapes created by the functions immediately above. 3731 3732 //---------------------------Ideal_allocation---------------------------------- 3733 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode. 3734 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) { 3735 if (ptr == NULL) { // reduce dumb test in callers 3736 return NULL; 3737 } 3738 if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast 3739 ptr = ptr->in(1); 3740 if (ptr == NULL) return NULL; 3741 } 3742 // Return NULL for allocations with several casts: 3743 // j.l.reflect.Array.newInstance(jobject, jint) 3744 // Object.clone() 3745 // to keep more precise type from last cast. 3746 if (ptr->is_Proj()) { 3747 Node* allo = ptr->in(0); 3748 if (allo != NULL && allo->is_Allocate()) { 3749 return allo->as_Allocate(); 3750 } 3751 } 3752 // Report failure to match. 3753 return NULL; 3754 } 3755 3756 // Fancy version which also strips off an offset (and reports it to caller). 3757 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase, 3758 intptr_t& offset) { 3759 Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset); 3760 if (base == NULL) return NULL; 3761 return Ideal_allocation(base, phase); 3762 } 3763 3764 // Trace Initialize <- Proj[Parm] <- Allocate 3765 AllocateNode* InitializeNode::allocation() { 3766 Node* rawoop = in(InitializeNode::RawAddress); 3767 if (rawoop->is_Proj()) { 3768 Node* alloc = rawoop->in(0); 3769 if (alloc->is_Allocate()) { 3770 return alloc->as_Allocate(); 3771 } 3772 } 3773 return NULL; 3774 } 3775 3776 // Trace Allocate -> Proj[Parm] -> Initialize 3777 InitializeNode* AllocateNode::initialization() { 3778 ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress); 3779 if (rawoop == NULL) return NULL; 3780 for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) { 3781 Node* init = rawoop->fast_out(i); 3782 if (init->is_Initialize()) { 3783 assert(init->as_Initialize()->allocation() == this, "2-way link"); 3784 return init->as_Initialize(); 3785 } 3786 } 3787 return NULL; 3788 } 3789 3790 //----------------------------- loop predicates --------------------------- 3791 3792 //------------------------------add_predicate_impl---------------------------- 3793 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) { 3794 // Too many traps seen? 3795 if (too_many_traps(reason)) { 3796 #ifdef ASSERT 3797 if (TraceLoopPredicate) { 3798 int tc = C->trap_count(reason); 3799 tty->print("too many traps=%s tcount=%d in ", 3800 Deoptimization::trap_reason_name(reason), tc); 3801 method()->print(); // which method has too many predicate traps 3802 tty->cr(); 3803 } 3804 #endif 3805 // We cannot afford to take more traps here, 3806 // do not generate predicate. 3807 return; 3808 } 3809 3810 Node *cont = _gvn.intcon(1); 3811 Node* opq = _gvn.transform(new Opaque1Node(C, cont)); 3812 Node *bol = _gvn.transform(new Conv2BNode(opq)); 3813 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN); 3814 Node* iffalse = _gvn.transform(new IfFalseNode(iff)); 3815 C->add_predicate_opaq(opq); 3816 { 3817 PreserveJVMState pjvms(this); 3818 set_control(iffalse); 3819 inc_sp(nargs); 3820 uncommon_trap(reason, Deoptimization::Action_maybe_recompile); 3821 } 3822 Node* iftrue = _gvn.transform(new IfTrueNode(iff)); 3823 set_control(iftrue); 3824 } 3825 3826 //------------------------------add_predicate--------------------------------- 3827 void GraphKit::add_predicate(int nargs) { 3828 if (UseLoopPredicate) { 3829 add_predicate_impl(Deoptimization::Reason_predicate, nargs); 3830 } 3831 // loop's limit check predicate should be near the loop. 3832 add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs); 3833 } 3834 3835 //----------------------------- store barriers ---------------------------- 3836 #define __ ideal. 3837 3838 bool GraphKit::use_ReduceInitialCardMarks() { 3839 BarrierSet *bs = BarrierSet::barrier_set(); 3840 return bs->is_a(BarrierSet::CardTableBarrierSet) 3841 && barrier_set_cast<CardTableBarrierSet>(bs)->can_elide_tlab_store_barriers() 3842 && ReduceInitialCardMarks; 3843 } 3844 3845 void GraphKit::sync_kit(IdealKit& ideal) { 3846 set_all_memory(__ merged_memory()); 3847 set_i_o(__ i_o()); 3848 set_control(__ ctrl()); 3849 } 3850 3851 void GraphKit::final_sync(IdealKit& ideal) { 3852 // Final sync IdealKit and graphKit. 3853 sync_kit(ideal); 3854 } 3855 3856 Node* GraphKit::byte_map_base_node() { 3857 // Get base of card map 3858 jbyte* card_table_base = ci_card_table_address(); 3859 if (card_table_base != NULL) { 3860 return makecon(TypeRawPtr::make((address)card_table_base)); 3861 } else { 3862 return null(); 3863 } 3864 } 3865 3866 // vanilla/CMS post barrier 3867 // Insert a write-barrier store. This is to let generational GC work; we have 3868 // to flag all oop-stores before the next GC point. 3869 void GraphKit::write_barrier_post(Node* oop_store, 3870 Node* obj, 3871 Node* adr, 3872 uint adr_idx, 3873 Node* val, 3874 bool use_precise) { 3875 // No store check needed if we're storing a NULL or an old object 3876 // (latter case is probably a string constant). The concurrent 3877 // mark sweep garbage collector, however, needs to have all nonNull 3878 // oop updates flagged via card-marks. 3879 if (val != NULL && val->is_Con()) { 3880 // must be either an oop or NULL 3881 const Type* t = val->bottom_type(); 3882 if (t == TypePtr::NULL_PTR || t == Type::TOP) 3883 // stores of null never (?) need barriers 3884 return; 3885 } 3886 3887 if (use_ReduceInitialCardMarks() 3888 && obj == just_allocated_object(control())) { 3889 // We can skip marks on a freshly-allocated object in Eden. 3890 // Keep this code in sync with new_deferred_store_barrier() in runtime.cpp. 3891 // That routine informs GC to take appropriate compensating steps, 3892 // upon a slow-path allocation, so as to make this card-mark 3893 // elision safe. 3894 return; 3895 } 3896 3897 if (!use_precise) { 3898 // All card marks for a (non-array) instance are in one place: 3899 adr = obj; 3900 } 3901 // (Else it's an array (or unknown), and we want more precise card marks.) 3902 assert(adr != NULL, ""); 3903 3904 IdealKit ideal(this, true); 3905 3906 // Convert the pointer to an int prior to doing math on it 3907 Node* cast = __ CastPX(__ ctrl(), adr); 3908 3909 // Divide by card size 3910 assert(BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet), 3911 "Only one we handle so far."); 3912 Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift) ); 3913 3914 // Combine card table base and card offset 3915 Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset ); 3916 3917 // Get the alias_index for raw card-mark memory 3918 int adr_type = Compile::AliasIdxRaw; 3919 Node* zero = __ ConI(0); // Dirty card value 3920 BasicType bt = T_BYTE; 3921 3922 if (UseConcMarkSweepGC && UseCondCardMark) { 3923 insert_mem_bar(Op_MemBarVolatile); // StoreLoad barrier 3924 __ sync_kit(this); 3925 } 3926 3927 if (UseCondCardMark) { 3928 // The classic GC reference write barrier is typically implemented 3929 // as a store into the global card mark table. Unfortunately 3930 // unconditional stores can result in false sharing and excessive 3931 // coherence traffic as well as false transactional aborts. 3932 // UseCondCardMark enables MP "polite" conditional card mark 3933 // stores. In theory we could relax the load from ctrl() to 3934 // no_ctrl, but that doesn't buy much latitude. 3935 Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type); 3936 __ if_then(card_val, BoolTest::ne, zero); 3937 } 3938 3939 // Smash zero into card 3940 if( !UseConcMarkSweepGC ) { 3941 __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::unordered); 3942 } else { 3943 // Specialized path for CM store barrier 3944 __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type); 3945 } 3946 3947 if (UseCondCardMark) { 3948 __ end_if(); 3949 } 3950 3951 // Final sync IdealKit and GraphKit. 3952 final_sync(ideal); 3953 } 3954 3955 #if INCLUDE_G1GC 3956 3957 /* 3958 * Determine if the G1 pre-barrier can be removed. The pre-barrier is 3959 * required by SATB to make sure all objects live at the start of the 3960 * marking are kept alive, all reference updates need to any previous 3961 * reference stored before writing. 3962 * 3963 * If the previous value is NULL there is no need to save the old value. 3964 * References that are NULL are filtered during runtime by the barrier 3965 * code to avoid unnecessary queuing. 3966 * 3967 * However in the case of newly allocated objects it might be possible to 3968 * prove that the reference about to be overwritten is NULL during compile 3969 * time and avoid adding the barrier code completely. 3970 * 3971 * The compiler needs to determine that the object in which a field is about 3972 * to be written is newly allocated, and that no prior store to the same field 3973 * has happened since the allocation. 3974 * 3975 * Returns true if the pre-barrier can be removed 3976 */ 3977 bool GraphKit::g1_can_remove_pre_barrier(PhaseTransform* phase, Node* adr, 3978 BasicType bt, uint adr_idx) { 3979 intptr_t offset = 0; 3980 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 3981 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase); 3982 3983 if (offset == Type::OffsetBot) { 3984 return false; // cannot unalias unless there are precise offsets 3985 } 3986 3987 if (alloc == NULL) { 3988 return false; // No allocation found 3989 } 3990 3991 intptr_t size_in_bytes = type2aelembytes(bt); 3992 3993 Node* mem = memory(adr_idx); // start searching here... 3994 3995 for (int cnt = 0; cnt < 50; cnt++) { 3996 3997 if (mem->is_Store()) { 3998 3999 Node* st_adr = mem->in(MemNode::Address); 4000 intptr_t st_offset = 0; 4001 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 4002 4003 if (st_base == NULL) { 4004 break; // inscrutable pointer 4005 } 4006 4007 // Break we have found a store with same base and offset as ours so break 4008 if (st_base == base && st_offset == offset) { 4009 break; 4010 } 4011 4012 if (st_offset != offset && st_offset != Type::OffsetBot) { 4013 const int MAX_STORE = BytesPerLong; 4014 if (st_offset >= offset + size_in_bytes || 4015 st_offset <= offset - MAX_STORE || 4016 st_offset <= offset - mem->as_Store()->memory_size()) { 4017 // Success: The offsets are provably independent. 4018 // (You may ask, why not just test st_offset != offset and be done? 4019 // The answer is that stores of different sizes can co-exist 4020 // in the same sequence of RawMem effects. We sometimes initialize 4021 // a whole 'tile' of array elements with a single jint or jlong.) 4022 mem = mem->in(MemNode::Memory); 4023 continue; // advance through independent store memory 4024 } 4025 } 4026 4027 if (st_base != base 4028 && MemNode::detect_ptr_independence(base, alloc, st_base, 4029 AllocateNode::Ideal_allocation(st_base, phase), 4030 phase)) { 4031 // Success: The bases are provably independent. 4032 mem = mem->in(MemNode::Memory); 4033 continue; // advance through independent store memory 4034 } 4035 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 4036 4037 InitializeNode* st_init = mem->in(0)->as_Initialize(); 4038 AllocateNode* st_alloc = st_init->allocation(); 4039 4040 // Make sure that we are looking at the same allocation site. 4041 // The alloc variable is guaranteed to not be null here from earlier check. 4042 if (alloc == st_alloc) { 4043 // Check that the initialization is storing NULL so that no previous store 4044 // has been moved up and directly write a reference 4045 Node* captured_store = st_init->find_captured_store(offset, 4046 type2aelembytes(T_OBJECT), 4047 phase); 4048 if (captured_store == NULL || captured_store == st_init->zero_memory()) { 4049 return true; 4050 } 4051 } 4052 } 4053 4054 // Unless there is an explicit 'continue', we must bail out here, 4055 // because 'mem' is an inscrutable memory state (e.g., a call). 4056 break; 4057 } 4058 4059 return false; 4060 } 4061 4062 // G1 pre/post barriers 4063 void GraphKit::g1_write_barrier_pre(bool do_load, 4064 Node* obj, 4065 Node* adr, 4066 uint alias_idx, 4067 Node* val, 4068 const TypeOopPtr* val_type, 4069 Node* pre_val, 4070 BasicType bt) { 4071 4072 // Some sanity checks 4073 // Note: val is unused in this routine. 4074 4075 if (do_load) { 4076 // We need to generate the load of the previous value 4077 assert(obj != NULL, "must have a base"); 4078 assert(adr != NULL, "where are loading from?"); 4079 assert(pre_val == NULL, "loaded already?"); 4080 assert(val_type != NULL, "need a type"); 4081 4082 if (use_ReduceInitialCardMarks() 4083 && g1_can_remove_pre_barrier(&_gvn, adr, bt, alias_idx)) { 4084 return; 4085 } 4086 4087 } else { 4088 // In this case both val_type and alias_idx are unused. 4089 assert(pre_val != NULL, "must be loaded already"); 4090 // Nothing to be done if pre_val is null. 4091 if (pre_val->bottom_type() == TypePtr::NULL_PTR) return; 4092 assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here"); 4093 } 4094 assert(bt == T_OBJECT, "or we shouldn't be here"); 4095 4096 IdealKit ideal(this, true); 4097 4098 Node* tls = __ thread(); // ThreadLocalStorage 4099 4100 Node* no_ctrl = NULL; 4101 Node* no_base = __ top(); 4102 Node* zero = __ ConI(0); 4103 Node* zeroX = __ ConX(0); 4104 4105 float likely = PROB_LIKELY(0.999); 4106 float unlikely = PROB_UNLIKELY(0.999); 4107 4108 BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE; 4109 assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width"); 4110 4111 // Offsets into the thread 4112 const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()); 4113 const int index_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()); 4114 const int buffer_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()); 4115 4116 // Now the actual pointers into the thread 4117 Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset)); 4118 Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset)); 4119 Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset)); 4120 4121 // Now some of the values 4122 Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw); 4123 4124 // if (!marking) 4125 __ if_then(marking, BoolTest::ne, zero, unlikely); { 4126 BasicType index_bt = TypeX_X->basic_type(); 4127 assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size."); 4128 Node* index = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw); 4129 4130 if (do_load) { 4131 // load original value 4132 // alias_idx correct?? 4133 pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx); 4134 } 4135 4136 // if (pre_val != NULL) 4137 __ if_then(pre_val, BoolTest::ne, null()); { 4138 Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); 4139 4140 // is the queue for this thread full? 4141 __ if_then(index, BoolTest::ne, zeroX, likely); { 4142 4143 // decrement the index 4144 Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t)))); 4145 4146 // Now get the buffer location we will log the previous value into and store it 4147 Node *log_addr = __ AddP(no_base, buffer, next_index); 4148 __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered); 4149 // update the index 4150 __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered); 4151 4152 } __ else_(); { 4153 4154 // logging buffer is full, call the runtime 4155 const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type(); 4156 __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls); 4157 } __ end_if(); // (!index) 4158 } __ end_if(); // (pre_val != NULL) 4159 } __ end_if(); // (!marking) 4160 4161 // Final sync IdealKit and GraphKit. 4162 final_sync(ideal); 4163 } 4164 4165 /* 4166 * G1 similar to any GC with a Young Generation requires a way to keep track of 4167 * references from Old Generation to Young Generation to make sure all live 4168 * objects are found. G1 also requires to keep track of object references 4169 * between different regions to enable evacuation of old regions, which is done 4170 * as part of mixed collections. References are tracked in remembered sets and 4171 * is continuously updated as reference are written to with the help of the 4172 * post-barrier. 4173 * 4174 * To reduce the number of updates to the remembered set the post-barrier 4175 * filters updates to fields in objects located in the Young Generation, 4176 * the same region as the reference, when the NULL is being written or 4177 * if the card is already marked as dirty by an earlier write. 4178 * 4179 * Under certain circumstances it is possible to avoid generating the 4180 * post-barrier completely if it is possible during compile time to prove 4181 * the object is newly allocated and that no safepoint exists between the 4182 * allocation and the store. 4183 * 4184 * In the case of slow allocation the allocation code must handle the barrier 4185 * as part of the allocation in the case the allocated object is not located 4186 * in the nursery, this would happen for humongous objects. This is similar to 4187 * how CMS is required to handle this case, see the comments for the method 4188 * CardTableBarrierSet::on_allocation_slowpath_exit and OptoRuntime::new_deferred_store_barrier. 4189 * A deferred card mark is required for these objects and handled in the above 4190 * mentioned methods. 4191 * 4192 * Returns true if the post barrier can be removed 4193 */ 4194 bool GraphKit::g1_can_remove_post_barrier(PhaseTransform* phase, Node* store, 4195 Node* adr) { 4196 intptr_t offset = 0; 4197 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 4198 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase); 4199 4200 if (offset == Type::OffsetBot) { 4201 return false; // cannot unalias unless there are precise offsets 4202 } 4203 4204 if (alloc == NULL) { 4205 return false; // No allocation found 4206 } 4207 4208 // Start search from Store node 4209 Node* mem = store->in(MemNode::Control); 4210 if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 4211 4212 InitializeNode* st_init = mem->in(0)->as_Initialize(); 4213 AllocateNode* st_alloc = st_init->allocation(); 4214 4215 // Make sure we are looking at the same allocation 4216 if (alloc == st_alloc) { 4217 return true; 4218 } 4219 } 4220 4221 return false; 4222 } 4223 4224 // 4225 // Update the card table and add card address to the queue 4226 // 4227 void GraphKit::g1_mark_card(IdealKit& ideal, 4228 Node* card_adr, 4229 Node* oop_store, 4230 uint oop_alias_idx, 4231 Node* index, 4232 Node* index_adr, 4233 Node* buffer, 4234 const TypeFunc* tf) { 4235 4236 Node* zero = __ ConI(0); 4237 Node* zeroX = __ ConX(0); 4238 Node* no_base = __ top(); 4239 BasicType card_bt = T_BYTE; 4240 // Smash zero into card. MUST BE ORDERED WRT TO STORE 4241 __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw); 4242 4243 // Now do the queue work 4244 __ if_then(index, BoolTest::ne, zeroX); { 4245 4246 Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t)))); 4247 Node* log_addr = __ AddP(no_base, buffer, next_index); 4248 4249 // Order, see storeCM. 4250 __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 4251 __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered); 4252 4253 } __ else_(); { 4254 __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread()); 4255 } __ end_if(); 4256 4257 } 4258 4259 void GraphKit::g1_write_barrier_post(Node* oop_store, 4260 Node* obj, 4261 Node* adr, 4262 uint alias_idx, 4263 Node* val, 4264 BasicType bt, 4265 bool use_precise) { 4266 // If we are writing a NULL then we need no post barrier 4267 4268 if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) { 4269 // Must be NULL 4270 const Type* t = val->bottom_type(); 4271 assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL"); 4272 // No post barrier if writing NULLx 4273 return; 4274 } 4275 4276 if (use_ReduceInitialCardMarks() && obj == just_allocated_object(control())) { 4277 // We can skip marks on a freshly-allocated object in Eden. 4278 // Keep this code in sync with new_deferred_store_barrier() in runtime.cpp. 4279 // That routine informs GC to take appropriate compensating steps, 4280 // upon a slow-path allocation, so as to make this card-mark 4281 // elision safe. 4282 return; 4283 } 4284 4285 if (use_ReduceInitialCardMarks() 4286 && g1_can_remove_post_barrier(&_gvn, oop_store, adr)) { 4287 return; 4288 } 4289 4290 if (!use_precise) { 4291 // All card marks for a (non-array) instance are in one place: 4292 adr = obj; 4293 } 4294 // (Else it's an array (or unknown), and we want more precise card marks.) 4295 assert(adr != NULL, ""); 4296 4297 IdealKit ideal(this, true); 4298 4299 Node* tls = __ thread(); // ThreadLocalStorage 4300 4301 Node* no_base = __ top(); 4302 float likely = PROB_LIKELY(0.999); 4303 float unlikely = PROB_UNLIKELY(0.999); 4304 Node* young_card = __ ConI((jint)G1CardTable::g1_young_card_val()); 4305 Node* dirty_card = __ ConI((jint)CardTable::dirty_card_val()); 4306 Node* zeroX = __ ConX(0); 4307 4308 // Get the alias_index for raw card-mark memory 4309 const TypePtr* card_type = TypeRawPtr::BOTTOM; 4310 4311 const TypeFunc *tf = OptoRuntime::g1_wb_post_Type(); 4312 4313 // Offsets into the thread 4314 const int index_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()); 4315 const int buffer_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()); 4316 4317 // Pointers into the thread 4318 4319 Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset)); 4320 Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset)); 4321 4322 // Now some values 4323 // Use ctrl to avoid hoisting these values past a safepoint, which could 4324 // potentially reset these fields in the JavaThread. 4325 Node* index = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw); 4326 Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); 4327 4328 // Convert the store obj pointer to an int prior to doing math on it 4329 // Must use ctrl to prevent "integerized oop" existing across safepoint 4330 Node* cast = __ CastPX(__ ctrl(), adr); 4331 4332 // Divide pointer by card size 4333 Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift) ); 4334 4335 // Combine card table base and card offset 4336 Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset ); 4337 4338 // If we know the value being stored does it cross regions? 4339 4340 if (val != NULL) { 4341 // Does the store cause us to cross regions? 4342 4343 // Should be able to do an unsigned compare of region_size instead of 4344 // and extra shift. Do we have an unsigned compare?? 4345 // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes); 4346 Node* xor_res = __ URShiftX ( __ XorX( cast, __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes)); 4347 4348 // if (xor_res == 0) same region so skip 4349 __ if_then(xor_res, BoolTest::ne, zeroX); { 4350 4351 // No barrier if we are storing a NULL 4352 __ if_then(val, BoolTest::ne, null(), unlikely); { 4353 4354 // Ok must mark the card if not already dirty 4355 4356 // load the original value of the card 4357 Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw); 4358 4359 __ if_then(card_val, BoolTest::ne, young_card); { 4360 sync_kit(ideal); 4361 // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier. 4362 insert_mem_bar(Op_MemBarVolatile, oop_store); 4363 __ sync_kit(this); 4364 4365 Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw); 4366 __ if_then(card_val_reload, BoolTest::ne, dirty_card); { 4367 g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf); 4368 } __ end_if(); 4369 } __ end_if(); 4370 } __ end_if(); 4371 } __ end_if(); 4372 } else { 4373 // The Object.clone() intrinsic uses this path if !ReduceInitialCardMarks. 4374 // We don't need a barrier here if the destination is a newly allocated object 4375 // in Eden. Otherwise, GC verification breaks because we assume that cards in Eden 4376 // are set to 'g1_young_gen' (see G1CardTable::verify_g1_young_region()). 4377 assert(!use_ReduceInitialCardMarks(), "can only happen with card marking"); 4378 Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw); 4379 __ if_then(card_val, BoolTest::ne, young_card); { 4380 g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf); 4381 } __ end_if(); 4382 } 4383 4384 // Final sync IdealKit and GraphKit. 4385 final_sync(ideal); 4386 } 4387 #undef __ 4388 4389 #endif // INCLUDE_G1GC 4390 4391 Node* GraphKit::load_String_length(Node* ctrl, Node* str) { 4392 Node* len = load_array_length(load_String_value(ctrl, str)); 4393 Node* coder = load_String_coder(ctrl, str); 4394 // Divide length by 2 if coder is UTF16 4395 return _gvn.transform(new RShiftINode(len, coder)); 4396 } 4397 4398 Node* GraphKit::load_String_value(Node* ctrl, Node* str) { 4399 int value_offset = java_lang_String::value_offset_in_bytes(); 4400 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4401 false, NULL, 0); 4402 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4403 const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull, 4404 TypeAry::make(TypeInt::BYTE, TypeInt::POS), 4405 ciTypeArrayKlass::make(T_BYTE), true, 0); 4406 int value_field_idx = C->get_alias_index(value_field_type); 4407 Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset), 4408 value_type, T_OBJECT, value_field_idx, MemNode::unordered); 4409 // String.value field is known to be @Stable. 4410 if (UseImplicitStableValues) { 4411 load = cast_array_to_stable(load, value_type); 4412 } 4413 return load; 4414 } 4415 4416 Node* GraphKit::load_String_coder(Node* ctrl, Node* str) { 4417 if (!CompactStrings) { 4418 return intcon(java_lang_String::CODER_UTF16); 4419 } 4420 int coder_offset = java_lang_String::coder_offset_in_bytes(); 4421 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4422 false, NULL, 0); 4423 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4424 int coder_field_idx = C->get_alias_index(coder_field_type); 4425 return make_load(ctrl, basic_plus_adr(str, str, coder_offset), 4426 TypeInt::BYTE, T_BYTE, coder_field_idx, MemNode::unordered); 4427 } 4428 4429 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) { 4430 int value_offset = java_lang_String::value_offset_in_bytes(); 4431 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4432 false, NULL, 0); 4433 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4434 store_oop_to_object(ctrl, str, basic_plus_adr(str, value_offset), value_field_type, 4435 value, TypeAryPtr::BYTES, T_OBJECT, MemNode::unordered); 4436 } 4437 4438 void GraphKit::store_String_coder(Node* ctrl, Node* str, Node* value) { 4439 int coder_offset = java_lang_String::coder_offset_in_bytes(); 4440 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4441 false, NULL, 0); 4442 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4443 int coder_field_idx = C->get_alias_index(coder_field_type); 4444 store_to_memory(ctrl, basic_plus_adr(str, coder_offset), 4445 value, T_BYTE, coder_field_idx, MemNode::unordered); 4446 } 4447 4448 // Capture src and dst memory state with a MergeMemNode 4449 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) { 4450 if (src_type == dst_type) { 4451 // Types are equal, we don't need a MergeMemNode 4452 return memory(src_type); 4453 } 4454 MergeMemNode* merge = MergeMemNode::make(map()->memory()); 4455 record_for_igvn(merge); // fold it up later, if possible 4456 int src_idx = C->get_alias_index(src_type); 4457 int dst_idx = C->get_alias_index(dst_type); 4458 merge->set_memory_at(src_idx, memory(src_idx)); 4459 merge->set_memory_at(dst_idx, memory(dst_idx)); 4460 return merge; 4461 } 4462 4463 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) { 4464 assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported"); 4465 assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type"); 4466 // If input and output memory types differ, capture both states to preserve 4467 // the dependency between preceding and subsequent loads/stores. 4468 // For example, the following program: 4469 // StoreB 4470 // compress_string 4471 // LoadB 4472 // has this memory graph (use->def): 4473 // LoadB -> compress_string -> CharMem 4474 // ... -> StoreB -> ByteMem 4475 // The intrinsic hides the dependency between LoadB and StoreB, causing 4476 // the load to read from memory not containing the result of the StoreB. 4477 // The correct memory graph should look like this: 4478 // LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem)) 4479 Node* mem = capture_memory(src_type, TypeAryPtr::BYTES); 4480 StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count); 4481 Node* res_mem = _gvn.transform(new SCMemProjNode(str)); 4482 set_memory(res_mem, TypeAryPtr::BYTES); 4483 return str; 4484 } 4485 4486 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) { 4487 assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported"); 4488 assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type"); 4489 // Capture src and dst memory (see comment in 'compress_string'). 4490 Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type); 4491 StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count); 4492 set_memory(_gvn.transform(str), dst_type); 4493 } 4494 4495 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) { 4496 /** 4497 * int i_char = start; 4498 * for (int i_byte = 0; i_byte < count; i_byte++) { 4499 * dst[i_char++] = (char)(src[i_byte] & 0xff); 4500 * } 4501 */ 4502 add_predicate(); 4503 RegionNode* head = new RegionNode(3); 4504 head->init_req(1, control()); 4505 gvn().set_type(head, Type::CONTROL); 4506 record_for_igvn(head); 4507 4508 Node* i_byte = new PhiNode(head, TypeInt::INT); 4509 i_byte->init_req(1, intcon(0)); 4510 gvn().set_type(i_byte, TypeInt::INT); 4511 record_for_igvn(i_byte); 4512 4513 Node* i_char = new PhiNode(head, TypeInt::INT); 4514 i_char->init_req(1, start); 4515 gvn().set_type(i_char, TypeInt::INT); 4516 record_for_igvn(i_char); 4517 4518 Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES); 4519 gvn().set_type(mem, Type::MEMORY); 4520 record_for_igvn(mem); 4521 set_control(head); 4522 set_memory(mem, TypeAryPtr::BYTES); 4523 Node* ch = load_array_element(control(), src, i_byte, TypeAryPtr::BYTES); 4524 Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE), 4525 AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered, 4526 false, false, true /* mismatched */); 4527 4528 IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN); 4529 head->init_req(2, IfTrue(iff)); 4530 mem->init_req(2, st); 4531 i_byte->init_req(2, AddI(i_byte, intcon(1))); 4532 i_char->init_req(2, AddI(i_char, intcon(2))); 4533 4534 set_control(IfFalse(iff)); 4535 set_memory(st, TypeAryPtr::BYTES); 4536 } 4537 4538 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) { 4539 if (!field->is_constant()) { 4540 return NULL; // Field not marked as constant. 4541 } 4542 ciInstance* holder = NULL; 4543 if (!field->is_static()) { 4544 ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop(); 4545 if (const_oop != NULL && const_oop->is_instance()) { 4546 holder = const_oop->as_instance(); 4547 } 4548 } 4549 const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(), 4550 /*is_unsigned_load=*/false); 4551 if (con_type != NULL) { 4552 return makecon(con_type); 4553 } 4554 return NULL; 4555 } 4556 4557 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) { 4558 // Reify the property as a CastPP node in Ideal graph to comply with monotonicity 4559 // assumption of CCP analysis. 4560 return _gvn.transform(new CastPPNode(ary, ary_type->cast_to_stable(true))); 4561 } --- EOF ---