1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  public:
  42   // Support for VM calls
  43   //
  44   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  45   // may customize this version by overriding it for its purposes (e.g., to save/restore
  46   // additional registers when doing a VM call).
  47 
  48   virtual void call_VM_leaf_base(
  49     address entry_point,               // the entry point
  50     int     number_of_arguments        // the number of arguments to pop after the call
  51   );
  52 
  53  protected:
  54   // This is the base routine called by the different versions of call_VM. The interpreter
  55   // may customize this version by overriding it for its purposes (e.g., to save/restore
  56   // additional registers when doing a VM call).
  57   //
  58   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  59   // returns the register which contains the thread upon return. If a thread register has been
  60   // specified, the return value will correspond to that register. If no last_java_sp is specified
  61   // (noreg) than rsp will be used instead.
  62   virtual void call_VM_base(           // returns the register containing the thread upon return
  63     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  64     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  65     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  66     address  entry_point,              // the entry point
  67     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  68     bool     check_exceptions          // whether to check for pending exceptions after return
  69   );
  70 
  71   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  72 
  73   // helpers for FPU flag access
  74   // tmp is a temporary register, if none is available use noreg
  75   void save_rax   (Register tmp);
  76   void restore_rax(Register tmp);
  77 
  78  public:
  79   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  80 
  81  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  82  // The implementation is only non-empty for the InterpreterMacroAssembler,
  83  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  84  virtual void check_and_handle_popframe(Register java_thread);
  85  virtual void check_and_handle_earlyret(Register java_thread);
  86 
  87   Address as_Address(AddressLiteral adr);
  88   Address as_Address(ArrayAddress adr);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99   static bool uses_implicit_null_check(void* address);
 100 
 101   // Required platform-specific helpers for Label::patch_instructions.
 102   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 103   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 104     unsigned char op = branch[0];
 105     assert(op == 0xE8 /* call */ ||
 106         op == 0xE9 /* jmp */ ||
 107         op == 0xEB /* short jmp */ ||
 108         (op & 0xF0) == 0x70 /* short jcc */ ||
 109         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 110         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 111         "Invalid opcode at patch point");
 112 
 113     if (op == 0xEB || (op & 0xF0) == 0x70) {
 114       // short offset operators (jmp and jcc)
 115       char* disp = (char*) &branch[1];
 116       int imm8 = target - (address) &disp[1];
 117       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 118                 file == NULL ? "<NULL>" : file, line);
 119       *disp = imm8;
 120     } else {
 121       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 122       int imm32 = target - (address) &disp[1];
 123       *disp = imm32;
 124     }
 125   }
 126 
 127   // The following 4 methods return the offset of the appropriate move instruction
 128 
 129   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 130   int load_unsigned_byte(Register dst, Address src);
 131   int load_unsigned_short(Register dst, Address src);
 132 
 133   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 134   int load_signed_byte(Register dst, Address src);
 135   int load_signed_short(Register dst, Address src);
 136 
 137   // Support for sign-extension (hi:lo = extend_sign(lo))
 138   void extend_sign(Register hi, Register lo);
 139 
 140   // Load and store values by size and signed-ness
 141   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 142   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 143 
 144   // Support for inc/dec with optimal instruction selection depending on value
 145 
 146   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 147   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 148 
 149   void decrementl(Address dst, int value = 1);
 150   void decrementl(Register reg, int value = 1);
 151 
 152   void decrementq(Register reg, int value = 1);
 153   void decrementq(Address dst, int value = 1);
 154 
 155   void incrementl(Address dst, int value = 1);
 156   void incrementl(Register reg, int value = 1);
 157 
 158   void incrementq(Register reg, int value = 1);
 159   void incrementq(Address dst, int value = 1);
 160 
 161 #ifdef COMPILER2
 162   // special instructions for EVEX
 163   void setvectmask(Register dst, Register src);
 164   void restorevectmask();
 165 #endif
 166 
 167   // Support optimal SSE move instructions.
 168   void movflt(XMMRegister dst, XMMRegister src) {
 169     if (dst-> encoding() == src->encoding()) return;
 170     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 171     else                       { movss (dst, src); return; }
 172   }
 173   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 174   void movflt(XMMRegister dst, AddressLiteral src);
 175   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 176 
 177   void movdbl(XMMRegister dst, XMMRegister src) {
 178     if (dst-> encoding() == src->encoding()) return;
 179     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 180     else                       { movsd (dst, src); return; }
 181   }
 182 
 183   void movdbl(XMMRegister dst, AddressLiteral src);
 184 
 185   void movdbl(XMMRegister dst, Address src) {
 186     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 187     else                         { movlpd(dst, src); return; }
 188   }
 189   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 190 
 191   void incrementl(AddressLiteral dst);
 192   void incrementl(ArrayAddress dst);
 193 
 194   void incrementq(AddressLiteral dst);
 195 
 196   // Alignment
 197   void align(int modulus);
 198   void align(int modulus, int target);
 199 
 200   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 201   void fat_nop();
 202 
 203   // Stack frame creation/removal
 204   void enter();
 205   void leave();
 206 
 207   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 208   // The pointer will be loaded into the thread register.
 209   void get_thread(Register thread);
 210 
 211 
 212   // Support for VM calls
 213   //
 214   // It is imperative that all calls into the VM are handled via the call_VM macros.
 215   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 216   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 217 
 218 
 219   void call_VM(Register oop_result,
 220                address entry_point,
 221                bool check_exceptions = true);
 222   void call_VM(Register oop_result,
 223                address entry_point,
 224                Register arg_1,
 225                bool check_exceptions = true);
 226   void call_VM(Register oop_result,
 227                address entry_point,
 228                Register arg_1, Register arg_2,
 229                bool check_exceptions = true);
 230   void call_VM(Register oop_result,
 231                address entry_point,
 232                Register arg_1, Register arg_2, Register arg_3,
 233                bool check_exceptions = true);
 234 
 235   // Overloadings with last_Java_sp
 236   void call_VM(Register oop_result,
 237                Register last_java_sp,
 238                address entry_point,
 239                int number_of_arguments = 0,
 240                bool check_exceptions = true);
 241   void call_VM(Register oop_result,
 242                Register last_java_sp,
 243                address entry_point,
 244                Register arg_1, bool
 245                check_exceptions = true);
 246   void call_VM(Register oop_result,
 247                Register last_java_sp,
 248                address entry_point,
 249                Register arg_1, Register arg_2,
 250                bool check_exceptions = true);
 251   void call_VM(Register oop_result,
 252                Register last_java_sp,
 253                address entry_point,
 254                Register arg_1, Register arg_2, Register arg_3,
 255                bool check_exceptions = true);
 256 
 257   void get_vm_result  (Register oop_result, Register thread);
 258   void get_vm_result_2(Register metadata_result, Register thread);
 259 
 260   // These always tightly bind to MacroAssembler::call_VM_base
 261   // bypassing the virtual implementation
 262   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 263   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 264   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 265   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 266   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 267 
 268   void call_VM_leaf0(address entry_point);
 269   void call_VM_leaf(address entry_point,
 270                     int number_of_arguments = 0);
 271   void call_VM_leaf(address entry_point,
 272                     Register arg_1);
 273   void call_VM_leaf(address entry_point,
 274                     Register arg_1, Register arg_2);
 275   void call_VM_leaf(address entry_point,
 276                     Register arg_1, Register arg_2, Register arg_3);
 277 
 278   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 279   // bypassing the virtual implementation
 280   void super_call_VM_leaf(address entry_point);
 281   void super_call_VM_leaf(address entry_point, Register arg_1);
 282   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 283   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 284   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 285 
 286   // last Java Frame (fills frame anchor)
 287   void set_last_Java_frame(Register thread,
 288                            Register last_java_sp,
 289                            Register last_java_fp,
 290                            address last_java_pc);
 291 
 292   // thread in the default location (r15_thread on 64bit)
 293   void set_last_Java_frame(Register last_java_sp,
 294                            Register last_java_fp,
 295                            address last_java_pc);
 296 
 297   void reset_last_Java_frame(Register thread, bool clear_fp);
 298 
 299   // thread in the default location (r15_thread on 64bit)
 300   void reset_last_Java_frame(bool clear_fp);
 301 
 302   // jobjects
 303   void clear_jweak_tag(Register possibly_jweak);
 304   void resolve_jobject(Register value, Register thread, Register tmp);
 305 
 306   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 307   void c2bool(Register x);
 308 
 309   // C++ bool manipulation
 310 
 311   void movbool(Register dst, Address src);
 312   void movbool(Address dst, bool boolconst);
 313   void movbool(Address dst, Register src);
 314   void testbool(Register dst);
 315 
 316   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 317   void resolve_weak_handle(Register result, Register tmp);
 318   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 319   void load_method_holder_cld(Register rresult, Register rmethod);
 320 
 321   void load_method_holder(Register holder, Register method);
 322 
 323   // oop manipulations
 324   void load_klass(Register dst, Register src);
 325   void store_klass(Register dst, Register src);
 326 
 327   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 328                       Register tmp1, Register thread_tmp);
 329   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 330                        Register tmp1, Register tmp2);
 331 
 332   // Resolves obj access. Result is placed in the same register.
 333   // All other registers are preserved.
 334   void resolve(DecoratorSet decorators, Register obj);
 335 
 336   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 337                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 338   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 339                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 340   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 341                       Register tmp2 = noreg, DecoratorSet decorators = 0);
 342 
 343   // Used for storing NULL. All other oop constants should be
 344   // stored using routines that take a jobject.
 345   void store_heap_oop_null(Address dst);
 346 
 347   void load_prototype_header(Register dst, Register src);
 348 
 349 #ifdef _LP64
 350   void store_klass_gap(Register dst, Register src);
 351 
 352   // This dummy is to prevent a call to store_heap_oop from
 353   // converting a zero (like NULL) into a Register by giving
 354   // the compiler two choices it can't resolve
 355 
 356   void store_heap_oop(Address dst, void* dummy);
 357 
 358   void encode_heap_oop(Register r);
 359   void decode_heap_oop(Register r);
 360   void encode_heap_oop_not_null(Register r);
 361   void decode_heap_oop_not_null(Register r);
 362   void encode_heap_oop_not_null(Register dst, Register src);
 363   void decode_heap_oop_not_null(Register dst, Register src);
 364 
 365   void set_narrow_oop(Register dst, jobject obj);
 366   void set_narrow_oop(Address dst, jobject obj);
 367   void cmp_narrow_oop(Register dst, jobject obj);
 368   void cmp_narrow_oop(Address dst, jobject obj);
 369 
 370   void encode_klass_not_null(Register r);
 371   void decode_klass_not_null(Register r);
 372   void encode_klass_not_null(Register dst, Register src);
 373   void decode_klass_not_null(Register dst, Register src);
 374   void set_narrow_klass(Register dst, Klass* k);
 375   void set_narrow_klass(Address dst, Klass* k);
 376   void cmp_narrow_klass(Register dst, Klass* k);
 377   void cmp_narrow_klass(Address dst, Klass* k);
 378 
 379   // Returns the byte size of the instructions generated by decode_klass_not_null()
 380   // when compressed klass pointers are being used.
 381   static int instr_size_for_decode_klass_not_null();
 382 
 383   // if heap base register is used - reinit it with the correct value
 384   void reinit_heapbase();
 385 
 386   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 387 
 388 #endif // _LP64
 389 
 390   // Int division/remainder for Java
 391   // (as idivl, but checks for special case as described in JVM spec.)
 392   // returns idivl instruction offset for implicit exception handling
 393   int corrected_idivl(Register reg);
 394 
 395   // Long division/remainder for Java
 396   // (as idivq, but checks for special case as described in JVM spec.)
 397   // returns idivq instruction offset for implicit exception handling
 398   int corrected_idivq(Register reg);
 399 
 400   void int3();
 401 
 402   // Long operation macros for a 32bit cpu
 403   // Long negation for Java
 404   void lneg(Register hi, Register lo);
 405 
 406   // Long multiplication for Java
 407   // (destroys contents of eax, ebx, ecx and edx)
 408   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 409 
 410   // Long shifts for Java
 411   // (semantics as described in JVM spec.)
 412   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 413   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 414 
 415   // Long compare for Java
 416   // (semantics as described in JVM spec.)
 417   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 418 
 419 
 420   // misc
 421 
 422   // Sign extension
 423   void sign_extend_short(Register reg);
 424   void sign_extend_byte(Register reg);
 425 
 426   // Division by power of 2, rounding towards 0
 427   void division_with_shift(Register reg, int shift_value);
 428 
 429 #ifndef _LP64
 430   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 431   //
 432   // CF (corresponds to C0) if x < y
 433   // PF (corresponds to C2) if unordered
 434   // ZF (corresponds to C3) if x = y
 435   //
 436   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 437   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 438   void fcmp(Register tmp);
 439   // Variant of the above which allows y to be further down the stack
 440   // and which only pops x and y if specified. If pop_right is
 441   // specified then pop_left must also be specified.
 442   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 443 
 444   // Floating-point comparison for Java
 445   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 446   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 447   // (semantics as described in JVM spec.)
 448   void fcmp2int(Register dst, bool unordered_is_less);
 449   // Variant of the above which allows y to be further down the stack
 450   // and which only pops x and y if specified. If pop_right is
 451   // specified then pop_left must also be specified.
 452   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 453 
 454   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 455   // tmp is a temporary register, if none is available use noreg
 456   void fremr(Register tmp);
 457 
 458   // only if +VerifyFPU
 459   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 460 #endif // !LP64
 461 
 462   // dst = c = a * b + c
 463   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 464   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 465 
 466   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 467   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 468   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 469   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 470 
 471 
 472   // same as fcmp2int, but using SSE2
 473   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 474   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 475 
 476   // branch to L if FPU flag C2 is set/not set
 477   // tmp is a temporary register, if none is available use noreg
 478   void jC2 (Register tmp, Label& L);
 479   void jnC2(Register tmp, Label& L);
 480 
 481   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 482   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 483   void load_float(Address src);
 484 
 485   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 486   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 487   void store_float(Address dst);
 488 
 489   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 490   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 491   void load_double(Address src);
 492 
 493   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 494   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 495   void store_double(Address dst);
 496 
 497 #ifndef _LP64
 498   // Pop ST (ffree & fincstp combined)
 499   void fpop();
 500 
 501   void empty_FPU_stack();
 502 #endif // !_LP64
 503 
 504   void push_IU_state();
 505   void pop_IU_state();
 506 
 507   void push_FPU_state();
 508   void pop_FPU_state();
 509 
 510   void push_CPU_state();
 511   void pop_CPU_state();
 512 
 513   // Round up to a power of two
 514   void round_to(Register reg, int modulus);
 515 
 516   // Callee saved registers handling
 517   void push_callee_saved_registers();
 518   void pop_callee_saved_registers();
 519 
 520   // allocation
 521   void eden_allocate(
 522     Register thread,                   // Current thread
 523     Register obj,                      // result: pointer to object after successful allocation
 524     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 525     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 526     Register t1,                       // temp register
 527     Label&   slow_case                 // continuation point if fast allocation fails
 528   );
 529   void tlab_allocate(
 530     Register thread,                   // Current thread
 531     Register obj,                      // result: pointer to object after successful allocation
 532     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 533     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 534     Register t1,                       // temp register
 535     Register t2,                       // temp register
 536     Label&   slow_case                 // continuation point if fast allocation fails
 537   );
 538   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 539 
 540   // interface method calling
 541   void lookup_interface_method(Register recv_klass,
 542                                Register intf_klass,
 543                                RegisterOrConstant itable_index,
 544                                Register method_result,
 545                                Register scan_temp,
 546                                Label& no_such_interface,
 547                                bool return_method = true);
 548 
 549   // virtual method calling
 550   void lookup_virtual_method(Register recv_klass,
 551                              RegisterOrConstant vtable_index,
 552                              Register method_result);
 553 
 554   // Test sub_klass against super_klass, with fast and slow paths.
 555 
 556   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 557   // One of the three labels can be NULL, meaning take the fall-through.
 558   // If super_check_offset is -1, the value is loaded up from super_klass.
 559   // No registers are killed, except temp_reg.
 560   void check_klass_subtype_fast_path(Register sub_klass,
 561                                      Register super_klass,
 562                                      Register temp_reg,
 563                                      Label* L_success,
 564                                      Label* L_failure,
 565                                      Label* L_slow_path,
 566                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 567 
 568   // The rest of the type check; must be wired to a corresponding fast path.
 569   // It does not repeat the fast path logic, so don't use it standalone.
 570   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 571   // Updates the sub's secondary super cache as necessary.
 572   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 573   void check_klass_subtype_slow_path(Register sub_klass,
 574                                      Register super_klass,
 575                                      Register temp_reg,
 576                                      Register temp2_reg,
 577                                      Label* L_success,
 578                                      Label* L_failure,
 579                                      bool set_cond_codes = false);
 580 
 581   // Simplified, combined version, good for typical uses.
 582   // Falls through on failure.
 583   void check_klass_subtype(Register sub_klass,
 584                            Register super_klass,
 585                            Register temp_reg,
 586                            Label& L_success);
 587 
 588   void clinit_barrier(Register klass,
 589                       Register thread,
 590                       Label* L_fast_path = NULL,
 591                       Label* L_slow_path = NULL);
 592 
 593   // method handles (JSR 292)
 594   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 595 
 596   //----
 597   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 598 
 599   // Debugging
 600 
 601   // only if +VerifyOops
 602   // TODO: Make these macros with file and line like sparc version!
 603   void verify_oop(Register reg, const char* s = "broken oop");
 604   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 605 
 606   // TODO: verify method and klass metadata (compare against vptr?)
 607   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 608   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 609 
 610 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 611 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 612 
 613   // Verify or restore cpu control state after JNI call
 614   void restore_cpu_control_state_after_jni();
 615 
 616   // prints msg, dumps registers and stops execution
 617   void stop(const char* msg);
 618 
 619   // prints msg and continues
 620   void warn(const char* msg);
 621 
 622   // dumps registers and other state
 623   void print_state();
 624 
 625   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 626   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 627   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 628   static void print_state64(int64_t pc, int64_t regs[]);
 629 
 630   void os_breakpoint();
 631 
 632   void untested()                                { stop("untested"); }
 633 
 634   void unimplemented(const char* what = "");
 635 
 636   void should_not_reach_here()                   { stop("should not reach here"); }
 637 
 638   void print_CPU_state();
 639 
 640   // Stack overflow checking
 641   void bang_stack_with_offset(int offset) {
 642     // stack grows down, caller passes positive offset
 643     assert(offset > 0, "must bang with negative offset");
 644     movl(Address(rsp, (-offset)), rax);
 645   }
 646 
 647   // Writes to stack successive pages until offset reached to check for
 648   // stack overflow + shadow pages.  Also, clobbers tmp
 649   void bang_stack_size(Register size, Register tmp);
 650 
 651   // Check for reserved stack access in method being exited (for JIT)
 652   void reserved_stack_check();
 653 
 654   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 655                                                 Register tmp,
 656                                                 int offset);
 657 
 658   // If thread_reg is != noreg the code assumes the register passed contains
 659   // the thread (required on 64 bit).
 660   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 661 
 662   void verify_tlab();
 663 
 664   // Biased locking support
 665   // lock_reg and obj_reg must be loaded up with the appropriate values.
 666   // swap_reg must be rax, and is killed.
 667   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 668   // be killed; if not supplied, push/pop will be used internally to
 669   // allocate a temporary (inefficient, avoid if possible).
 670   // Optional slow case is for implementations (interpreter and C1) which branch to
 671   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 672   // Returns offset of first potentially-faulting instruction for null
 673   // check info (currently consumed only by C1). If
 674   // swap_reg_contains_mark is true then returns -1 as it is assumed
 675   // the calling code has already passed any potential faults.
 676   int biased_locking_enter(Register lock_reg, Register obj_reg,
 677                            Register swap_reg, Register tmp_reg,
 678                            bool swap_reg_contains_mark,
 679                            Label& done, Label* slow_case = NULL,
 680                            BiasedLockingCounters* counters = NULL);
 681   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 682 #ifdef COMPILER2
 683   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 684   // See full desription in macroAssembler_x86.cpp.
 685   void fast_lock(Register obj, Register box, Register tmp,
 686                  Register scr, Register cx1, Register cx2,
 687                  BiasedLockingCounters* counters,
 688                  RTMLockingCounters* rtm_counters,
 689                  RTMLockingCounters* stack_rtm_counters,
 690                  Metadata* method_data,
 691                  bool use_rtm, bool profile_rtm);
 692   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 693 #if INCLUDE_RTM_OPT
 694   void rtm_counters_update(Register abort_status, Register rtm_counters);
 695   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 696   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 697                                    RTMLockingCounters* rtm_counters,
 698                                    Metadata* method_data);
 699   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 700                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 701   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 702   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 703   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 704                          Register retry_on_abort_count,
 705                          RTMLockingCounters* stack_rtm_counters,
 706                          Metadata* method_data, bool profile_rtm,
 707                          Label& DONE_LABEL, Label& IsInflated);
 708   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 709                             Register scr, Register retry_on_busy_count,
 710                             Register retry_on_abort_count,
 711                             RTMLockingCounters* rtm_counters,
 712                             Metadata* method_data, bool profile_rtm,
 713                             Label& DONE_LABEL);
 714 #endif
 715 #endif
 716 
 717   Condition negate_condition(Condition cond);
 718 
 719   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 720   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 721   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 722   // here in MacroAssembler. The major exception to this rule is call
 723 
 724   // Arithmetics
 725 
 726 
 727   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 728   void addptr(Address dst, Register src);
 729 
 730   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 731   void addptr(Register dst, int32_t src);
 732   void addptr(Register dst, Register src);
 733   void addptr(Register dst, RegisterOrConstant src) {
 734     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 735     else                   addptr(dst,       src.as_register());
 736   }
 737 
 738   void andptr(Register dst, int32_t src);
 739   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 740 
 741   void cmp8(AddressLiteral src1, int imm);
 742 
 743   // renamed to drag out the casting of address to int32_t/intptr_t
 744   void cmp32(Register src1, int32_t imm);
 745 
 746   void cmp32(AddressLiteral src1, int32_t imm);
 747   // compare reg - mem, or reg - &mem
 748   void cmp32(Register src1, AddressLiteral src2);
 749 
 750   void cmp32(Register src1, Address src2);
 751 
 752 #ifndef _LP64
 753   void cmpklass(Address dst, Metadata* obj);
 754   void cmpklass(Register dst, Metadata* obj);
 755   void cmpoop(Address dst, jobject obj);
 756   void cmpoop_raw(Address dst, jobject obj);
 757 #endif // _LP64
 758 
 759   void cmpoop(Register src1, Register src2);
 760   void cmpoop(Register src1, Address src2);
 761   void cmpoop(Register dst, jobject obj);
 762   void cmpoop_raw(Register dst, jobject obj);
 763 
 764   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 765   void cmpptr(Address src1, AddressLiteral src2);
 766 
 767   void cmpptr(Register src1, AddressLiteral src2);
 768 
 769   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 770   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 771   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 772 
 773   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 774   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 775 
 776   // cmp64 to avoild hiding cmpq
 777   void cmp64(Register src1, AddressLiteral src);
 778 
 779   void cmpxchgptr(Register reg, Address adr);
 780 
 781   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 782 
 783 
 784   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 785   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 786 
 787 
 788   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 789 
 790   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 791 
 792   void shlptr(Register dst, int32_t shift);
 793   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 794 
 795   void shrptr(Register dst, int32_t shift);
 796   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 797 
 798   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 799   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 800 
 801   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 802 
 803   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 804   void subptr(Register dst, int32_t src);
 805   // Force generation of a 4 byte immediate value even if it fits into 8bit
 806   void subptr_imm32(Register dst, int32_t src);
 807   void subptr(Register dst, Register src);
 808   void subptr(Register dst, RegisterOrConstant src) {
 809     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 810     else                   subptr(dst,       src.as_register());
 811   }
 812 
 813   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 814   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 815 
 816   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 817   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 818 
 819   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 820 
 821 
 822 
 823   // Helper functions for statistics gathering.
 824   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 825   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 826   // Unconditional atomic increment.
 827   void atomic_incl(Address counter_addr);
 828   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 829 #ifdef _LP64
 830   void atomic_incq(Address counter_addr);
 831   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 832 #endif
 833   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 834   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 835 
 836   void lea(Register dst, AddressLiteral adr);
 837   void lea(Address dst, AddressLiteral adr);
 838   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 839 
 840   void leal32(Register dst, Address src) { leal(dst, src); }
 841 
 842   // Import other testl() methods from the parent class or else
 843   // they will be hidden by the following overriding declaration.
 844   using Assembler::testl;
 845   void testl(Register dst, AddressLiteral src);
 846 
 847   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 848   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 849   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 850   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 851 
 852   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 853   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 854   void testptr(Register src1, Register src2);
 855 
 856   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 857   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 858 
 859   // Calls
 860 
 861   void call(Label& L, relocInfo::relocType rtype);
 862   void call(Register entry);
 863 
 864   // NOTE: this call transfers to the effective address of entry NOT
 865   // the address contained by entry. This is because this is more natural
 866   // for jumps/calls.
 867   void call(AddressLiteral entry);
 868 
 869   // Emit the CompiledIC call idiom
 870   void ic_call(address entry, jint method_index = 0);
 871 
 872   // Jumps
 873 
 874   // NOTE: these jumps tranfer to the effective address of dst NOT
 875   // the address contained by dst. This is because this is more natural
 876   // for jumps/calls.
 877   void jump(AddressLiteral dst);
 878   void jump_cc(Condition cc, AddressLiteral dst);
 879 
 880   // 32bit can do a case table jump in one instruction but we no longer allow the base
 881   // to be installed in the Address class. This jump will tranfers to the address
 882   // contained in the location described by entry (not the address of entry)
 883   void jump(ArrayAddress entry);
 884 
 885   // Floating
 886 
 887   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 888   void andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 889   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 890 
 891   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 892   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 893   void andps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 894 
 895   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 896   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 897   void comiss(XMMRegister dst, AddressLiteral src);
 898 
 899   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 900   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 901   void comisd(XMMRegister dst, AddressLiteral src);
 902 
 903 #ifndef _LP64
 904   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 905   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 906 
 907   void fldcw(Address src) { Assembler::fldcw(src); }
 908   void fldcw(AddressLiteral src);
 909 
 910   void fld_s(int index)   { Assembler::fld_s(index); }
 911   void fld_s(Address src) { Assembler::fld_s(src); }
 912   void fld_s(AddressLiteral src);
 913 
 914   void fld_d(Address src) { Assembler::fld_d(src); }
 915   void fld_d(AddressLiteral src);
 916 
 917   void fld_x(Address src) { Assembler::fld_x(src); }
 918   void fld_x(AddressLiteral src);
 919 
 920   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 921   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 922 #endif // _LP64
 923 
 924   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 925   void ldmxcsr(AddressLiteral src);
 926 
 927 #ifdef _LP64
 928  private:
 929   void sha256_AVX2_one_round_compute(
 930     Register  reg_old_h,
 931     Register  reg_a,
 932     Register  reg_b,
 933     Register  reg_c,
 934     Register  reg_d,
 935     Register  reg_e,
 936     Register  reg_f,
 937     Register  reg_g,
 938     Register  reg_h,
 939     int iter);
 940   void sha256_AVX2_four_rounds_compute_first(int start);
 941   void sha256_AVX2_four_rounds_compute_last(int start);
 942   void sha256_AVX2_one_round_and_sched(
 943         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 944         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 945         XMMRegister xmm_2,     /* ymm6 */
 946         XMMRegister xmm_3,     /* ymm7 */
 947         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 948         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 949         Register    reg_c,      /* edi */
 950         Register    reg_d,      /* esi */
 951         Register    reg_e,      /* r8d */
 952         Register    reg_f,      /* r9d */
 953         Register    reg_g,      /* r10d */
 954         Register    reg_h,      /* r11d */
 955         int iter);
 956 
 957   void addm(int disp, Register r1, Register r2);
 958   void gfmul(XMMRegister tmp0, XMMRegister t);
 959   void schoolbookAAD(int i, Register subkeyH, XMMRegister data, XMMRegister tmp0,
 960                      XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3);
 961   void generateHtbl_one_block(Register htbl);
 962   void generateHtbl_eight_blocks(Register htbl);
 963  public:
 964   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 965                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 966                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 967                    bool multi_block, XMMRegister shuf_mask);
 968   void avx_ghash(Register state, Register htbl, Register data, Register blocks);
 969 #endif
 970 
 971 #ifdef _LP64
 972  private:
 973   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 974                                      Register e, Register f, Register g, Register h, int iteration);
 975 
 976   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 977                                           Register a, Register b, Register c, Register d, Register e, Register f,
 978                                           Register g, Register h, int iteration);
 979 
 980   void addmq(int disp, Register r1, Register r2);
 981  public:
 982   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 983                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 984                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 985                    XMMRegister shuf_mask);
 986 private:
 987   void roundEnc(XMMRegister key, int rnum);
 988   void lastroundEnc(XMMRegister key, int rnum);
 989   void roundDec(XMMRegister key, int rnum);
 990   void lastroundDec(XMMRegister key, int rnum);
 991   void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask);
 992 
 993 public:
 994   void aesecb_encrypt(Register source_addr, Register dest_addr, Register key, Register len);
 995   void aesecb_decrypt(Register source_addr, Register dest_addr, Register key, Register len);
 996   void aesctr_encrypt(Register src_addr, Register dest_addr, Register key, Register counter,
 997                       Register len_reg, Register used, Register used_addr, Register saved_encCounter_start);
 998 
 999 #endif
1000 
1001   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1002                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1003                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1004                  bool multi_block);
1005 
1006 #ifdef _LP64
1007   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1008                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1009                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1010                    bool multi_block, XMMRegister shuf_mask);
1011 #else
1012   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1013                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1014                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1015                    bool multi_block);
1016 #endif
1017 
1018   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1019                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1020                 Register rax, Register rcx, Register rdx, Register tmp);
1021 
1022 #ifdef _LP64
1023   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1024                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1025                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1026 
1027   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1028                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1029                   Register rax, Register rcx, Register rdx, Register r11);
1030 
1031   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1032                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1033                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1034 
1035   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1036                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1037                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1038                 Register tmp3, Register tmp4);
1039 
1040   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1041                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1042                 Register rax, Register rcx, Register rdx, Register tmp1,
1043                 Register tmp2, Register tmp3, Register tmp4);
1044   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1045                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1046                 Register rax, Register rcx, Register rdx, Register tmp1,
1047                 Register tmp2, Register tmp3, Register tmp4);
1048 #else
1049   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1050                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1051                 Register rax, Register rcx, Register rdx, Register tmp1);
1052 
1053   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1054                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1055                 Register rax, Register rcx, Register rdx, Register tmp);
1056 
1057   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1058                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1059                 Register rdx, Register tmp);
1060 
1061   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1062                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1063                 Register rax, Register rbx, Register rdx);
1064 
1065   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1066                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1067                 Register rax, Register rcx, Register rdx, Register tmp);
1068 
1069   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1070                         Register edx, Register ebx, Register esi, Register edi,
1071                         Register ebp, Register esp);
1072 
1073   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1074                          Register esi, Register edi, Register ebp, Register esp);
1075 
1076   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1077                         Register edx, Register ebx, Register esi, Register edi,
1078                         Register ebp, Register esp);
1079 
1080   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1081                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1082                 Register rax, Register rcx, Register rdx, Register tmp);
1083 #endif
1084 
1085 private:
1086 
1087   // these are private because users should be doing movflt/movdbl
1088 
1089   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1090   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1091   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1092   void movss(XMMRegister dst, AddressLiteral src);
1093 
1094   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1095   void movlpd(XMMRegister dst, AddressLiteral src);
1096 
1097 public:
1098 
1099   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1100   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1101   void addsd(XMMRegister dst, AddressLiteral src);
1102 
1103   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1104   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1105   void addss(XMMRegister dst, AddressLiteral src);
1106 
1107   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1108   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1109   void addpd(XMMRegister dst, AddressLiteral src);
1110 
1111   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1112   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1113   void divsd(XMMRegister dst, AddressLiteral src);
1114 
1115   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1116   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1117   void divss(XMMRegister dst, AddressLiteral src);
1118 
1119   // Move Unaligned Double Quadword
1120   void movdqu(Address     dst, XMMRegister src);
1121   void movdqu(XMMRegister dst, Address src);
1122   void movdqu(XMMRegister dst, XMMRegister src);
1123   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1124   // AVX Unaligned forms
1125   void vmovdqu(Address     dst, XMMRegister src);
1126   void vmovdqu(XMMRegister dst, Address src);
1127   void vmovdqu(XMMRegister dst, XMMRegister src);
1128   void vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1129   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1130   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1131   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1132   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1133 
1134   // Move Aligned Double Quadword
1135   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1136   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1137   void movdqa(XMMRegister dst, AddressLiteral src);
1138 
1139   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1140   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1141   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1142   void movsd(XMMRegister dst, AddressLiteral src);
1143 
1144   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1145   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1146   void mulpd(XMMRegister dst, AddressLiteral src);
1147 
1148   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1149   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1150   void mulsd(XMMRegister dst, AddressLiteral src);
1151 
1152   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1153   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1154   void mulss(XMMRegister dst, AddressLiteral src);
1155 
1156   // Carry-Less Multiplication Quadword
1157   void pclmulldq(XMMRegister dst, XMMRegister src) {
1158     // 0x00 - multiply lower 64 bits [0:63]
1159     Assembler::pclmulqdq(dst, src, 0x00);
1160   }
1161   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1162     // 0x11 - multiply upper 64 bits [64:127]
1163     Assembler::pclmulqdq(dst, src, 0x11);
1164   }
1165 
1166   void pcmpeqb(XMMRegister dst, XMMRegister src);
1167   void pcmpeqw(XMMRegister dst, XMMRegister src);
1168 
1169   void pcmpestri(XMMRegister dst, Address src, int imm8);
1170   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1171 
1172   void pmovzxbw(XMMRegister dst, XMMRegister src);
1173   void pmovzxbw(XMMRegister dst, Address src);
1174 
1175   void pmovmskb(Register dst, XMMRegister src);
1176 
1177   void ptest(XMMRegister dst, XMMRegister src);
1178 
1179   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1180   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1181   void sqrtsd(XMMRegister dst, AddressLiteral src);
1182 
1183   void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode)    { Assembler::roundsd(dst, src, rmode); }
1184   void roundsd(XMMRegister dst, Address src, int32_t rmode)        { Assembler::roundsd(dst, src, rmode); }
1185   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg);
1186 
1187   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1188   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1189   void sqrtss(XMMRegister dst, AddressLiteral src);
1190 
1191   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1192   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1193   void subsd(XMMRegister dst, AddressLiteral src);
1194 
1195   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1196   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1197   void subss(XMMRegister dst, AddressLiteral src);
1198 
1199   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1200   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1201   void ucomiss(XMMRegister dst, AddressLiteral src);
1202 
1203   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1204   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1205   void ucomisd(XMMRegister dst, AddressLiteral src);
1206 
1207   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1208   void xorpd(XMMRegister dst, XMMRegister src);
1209   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1210   void xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1211 
1212   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1213   void xorps(XMMRegister dst, XMMRegister src);
1214   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1215   void xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1216 
1217   // Shuffle Bytes
1218   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1219   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1220   void pshufb(XMMRegister dst, AddressLiteral src);
1221   // AVX 3-operands instructions
1222 
1223   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1224   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1225   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1226 
1227   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1228   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1229   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1230 
1231   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1232   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1233 
1234   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1235   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1236 
1237   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1238   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1239 
1240   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1241   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1242   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch);
1243 
1244   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1245   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1246   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1247 
1248   void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
1249   void vpbroadcastw(XMMRegister dst, Address src, int vector_len) { Assembler::vpbroadcastw(dst, src, vector_len); }
1250 
1251   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1252 
1253   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1254 
1255   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1256   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1257 
1258   void vpmovmskb(Register dst, XMMRegister src);
1259 
1260   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1261   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1262 
1263   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1264   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1265 
1266   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1267   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1268 
1269   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1270   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1271 
1272   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1273   void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1274 
1275   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1276   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1277 
1278   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1279   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1280 
1281   void vptest(XMMRegister dst, XMMRegister src);
1282 
1283   void punpcklbw(XMMRegister dst, XMMRegister src);
1284   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1285 
1286   void pshufd(XMMRegister dst, Address src, int mode);
1287   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1288 
1289   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1290   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1291 
1292   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1293   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1294   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1295 
1296   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1297   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1298   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1299 
1300   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1301   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1302   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1303 
1304   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1305   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1306   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1307 
1308   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1309   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1310   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1311 
1312   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1313   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1314   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1315 
1316   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1317   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1318   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1319 
1320   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1321   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1322   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1323 
1324   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1325   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1326 
1327   // AVX Vector instructions
1328 
1329   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1330   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1331   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1332 
1333   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1334   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1335   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1336 
1337   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1338     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1339       Assembler::vpxor(dst, nds, src, vector_len);
1340     else
1341       Assembler::vxorpd(dst, nds, src, vector_len);
1342   }
1343   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1344     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1345       Assembler::vpxor(dst, nds, src, vector_len);
1346     else
1347       Assembler::vxorpd(dst, nds, src, vector_len);
1348   }
1349   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1350 
1351   // Simple version for AVX2 256bit vectors
1352   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1353   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1354 
1355   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1356     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1357       Assembler::vinserti32x4(dst, dst, src, imm8);
1358     } else if (UseAVX > 1) {
1359       // vinserti128 is available only in AVX2
1360       Assembler::vinserti128(dst, nds, src, imm8);
1361     } else {
1362       Assembler::vinsertf128(dst, nds, src, imm8);
1363     }
1364   }
1365 
1366   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1367     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1368       Assembler::vinserti32x4(dst, dst, src, imm8);
1369     } else if (UseAVX > 1) {
1370       // vinserti128 is available only in AVX2
1371       Assembler::vinserti128(dst, nds, src, imm8);
1372     } else {
1373       Assembler::vinsertf128(dst, nds, src, imm8);
1374     }
1375   }
1376 
1377   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1378     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1379       Assembler::vextracti32x4(dst, src, imm8);
1380     } else if (UseAVX > 1) {
1381       // vextracti128 is available only in AVX2
1382       Assembler::vextracti128(dst, src, imm8);
1383     } else {
1384       Assembler::vextractf128(dst, src, imm8);
1385     }
1386   }
1387 
1388   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1389     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1390       Assembler::vextracti32x4(dst, src, imm8);
1391     } else if (UseAVX > 1) {
1392       // vextracti128 is available only in AVX2
1393       Assembler::vextracti128(dst, src, imm8);
1394     } else {
1395       Assembler::vextractf128(dst, src, imm8);
1396     }
1397   }
1398 
1399   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1400   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1401     vinserti128(dst, dst, src, 1);
1402   }
1403   void vinserti128_high(XMMRegister dst, Address src) {
1404     vinserti128(dst, dst, src, 1);
1405   }
1406   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1407     vextracti128(dst, src, 1);
1408   }
1409   void vextracti128_high(Address dst, XMMRegister src) {
1410     vextracti128(dst, src, 1);
1411   }
1412 
1413   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1414     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1415       Assembler::vinsertf32x4(dst, dst, src, 1);
1416     } else {
1417       Assembler::vinsertf128(dst, dst, src, 1);
1418     }
1419   }
1420 
1421   void vinsertf128_high(XMMRegister dst, Address src) {
1422     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1423       Assembler::vinsertf32x4(dst, dst, src, 1);
1424     } else {
1425       Assembler::vinsertf128(dst, dst, src, 1);
1426     }
1427   }
1428 
1429   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1430     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1431       Assembler::vextractf32x4(dst, src, 1);
1432     } else {
1433       Assembler::vextractf128(dst, src, 1);
1434     }
1435   }
1436 
1437   void vextractf128_high(Address dst, XMMRegister src) {
1438     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1439       Assembler::vextractf32x4(dst, src, 1);
1440     } else {
1441       Assembler::vextractf128(dst, src, 1);
1442     }
1443   }
1444 
1445   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1446   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1447     Assembler::vinserti64x4(dst, dst, src, 1);
1448   }
1449   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1450     Assembler::vinsertf64x4(dst, dst, src, 1);
1451   }
1452   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1453     Assembler::vextracti64x4(dst, src, 1);
1454   }
1455   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1456     Assembler::vextractf64x4(dst, src, 1);
1457   }
1458   void vextractf64x4_high(Address dst, XMMRegister src) {
1459     Assembler::vextractf64x4(dst, src, 1);
1460   }
1461   void vinsertf64x4_high(XMMRegister dst, Address src) {
1462     Assembler::vinsertf64x4(dst, dst, src, 1);
1463   }
1464 
1465   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1466   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1467     vinserti128(dst, dst, src, 0);
1468   }
1469   void vinserti128_low(XMMRegister dst, Address src) {
1470     vinserti128(dst, dst, src, 0);
1471   }
1472   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1473     vextracti128(dst, src, 0);
1474   }
1475   void vextracti128_low(Address dst, XMMRegister src) {
1476     vextracti128(dst, src, 0);
1477   }
1478 
1479   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1480     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1481       Assembler::vinsertf32x4(dst, dst, src, 0);
1482     } else {
1483       Assembler::vinsertf128(dst, dst, src, 0);
1484     }
1485   }
1486 
1487   void vinsertf128_low(XMMRegister dst, Address src) {
1488     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1489       Assembler::vinsertf32x4(dst, dst, src, 0);
1490     } else {
1491       Assembler::vinsertf128(dst, dst, src, 0);
1492     }
1493   }
1494 
1495   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1496     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1497       Assembler::vextractf32x4(dst, src, 0);
1498     } else {
1499       Assembler::vextractf128(dst, src, 0);
1500     }
1501   }
1502 
1503   void vextractf128_low(Address dst, XMMRegister src) {
1504     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1505       Assembler::vextractf32x4(dst, src, 0);
1506     } else {
1507       Assembler::vextractf128(dst, src, 0);
1508     }
1509   }
1510 
1511   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1512   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1513     Assembler::vinserti64x4(dst, dst, src, 0);
1514   }
1515   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1516     Assembler::vinsertf64x4(dst, dst, src, 0);
1517   }
1518   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1519     Assembler::vextracti64x4(dst, src, 0);
1520   }
1521   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1522     Assembler::vextractf64x4(dst, src, 0);
1523   }
1524   void vextractf64x4_low(Address dst, XMMRegister src) {
1525     Assembler::vextractf64x4(dst, src, 0);
1526   }
1527   void vinsertf64x4_low(XMMRegister dst, Address src) {
1528     Assembler::vinsertf64x4(dst, dst, src, 0);
1529   }
1530 
1531   // Carry-Less Multiplication Quadword
1532   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1533     // 0x00 - multiply lower 64 bits [0:63]
1534     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1535   }
1536   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1537     // 0x11 - multiply upper 64 bits [64:127]
1538     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1539   }
1540   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1541     // 0x10 - multiply nds[0:63] and src[64:127]
1542     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1543   }
1544   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1545     //0x01 - multiply nds[64:127] and src[0:63]
1546     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1547   }
1548 
1549   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1550     // 0x00 - multiply lower 64 bits [0:63]
1551     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1552   }
1553   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1554     // 0x11 - multiply upper 64 bits [64:127]
1555     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1556   }
1557 
1558   // Data
1559 
1560   void cmov32( Condition cc, Register dst, Address  src);
1561   void cmov32( Condition cc, Register dst, Register src);
1562 
1563   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1564 
1565   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1566   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1567 
1568   void movoop(Register dst, jobject obj);
1569   void movoop(Address dst, jobject obj);
1570 
1571   void mov_metadata(Register dst, Metadata* obj);
1572   void mov_metadata(Address dst, Metadata* obj);
1573 
1574   void movptr(ArrayAddress dst, Register src);
1575   // can this do an lea?
1576   void movptr(Register dst, ArrayAddress src);
1577 
1578   void movptr(Register dst, Address src);
1579 
1580 #ifdef _LP64
1581   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1582 #else
1583   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1584 #endif
1585 
1586   void movptr(Register dst, intptr_t src);
1587   void movptr(Register dst, Register src);
1588   void movptr(Address dst, intptr_t src);
1589 
1590   void movptr(Address dst, Register src);
1591 
1592   void movptr(Register dst, RegisterOrConstant src) {
1593     if (src.is_constant()) movptr(dst, src.as_constant());
1594     else                   movptr(dst, src.as_register());
1595   }
1596 
1597 #ifdef _LP64
1598   // Generally the next two are only used for moving NULL
1599   // Although there are situations in initializing the mark word where
1600   // they could be used. They are dangerous.
1601 
1602   // They only exist on LP64 so that int32_t and intptr_t are not the same
1603   // and we have ambiguous declarations.
1604 
1605   void movptr(Address dst, int32_t imm32);
1606   void movptr(Register dst, int32_t imm32);
1607 #endif // _LP64
1608 
1609   // to avoid hiding movl
1610   void mov32(AddressLiteral dst, Register src);
1611   void mov32(Register dst, AddressLiteral src);
1612 
1613   // to avoid hiding movb
1614   void movbyte(ArrayAddress dst, int src);
1615 
1616   // Import other mov() methods from the parent class or else
1617   // they will be hidden by the following overriding declaration.
1618   using Assembler::movdl;
1619   using Assembler::movq;
1620   void movdl(XMMRegister dst, AddressLiteral src);
1621   void movq(XMMRegister dst, AddressLiteral src);
1622 
1623   // Can push value or effective address
1624   void pushptr(AddressLiteral src);
1625 
1626   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1627   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1628 
1629   void pushoop(jobject obj);
1630   void pushklass(Metadata* obj);
1631 
1632   // sign extend as need a l to ptr sized element
1633   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1634   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1635 
1636 #ifdef COMPILER2
1637   // Generic instructions support for use in .ad files C2 code generation
1638   void vabsnegd(int opcode, XMMRegister dst, XMMRegister src, Register scr);
1639   void vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr);
1640   void vabsnegf(int opcode, XMMRegister dst, XMMRegister src, Register scr);
1641   void vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr);
1642   void vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len);
1643   void vextendbw(bool sign, XMMRegister dst, XMMRegister src);
1644   void vshiftd(int opcode, XMMRegister dst, XMMRegister src);
1645   void vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1646   void vshiftw(int opcode, XMMRegister dst, XMMRegister src);
1647   void vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1648   void vshiftq(int opcode, XMMRegister dst, XMMRegister src);
1649   void vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1650 #endif
1651 
1652   // C2 compiled method's prolog code.
1653   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub);
1654 
1655   // clear memory of size 'cnt' qwords, starting at 'base';
1656   // if 'is_large' is set, do not try to produce short loop
1657   void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large);
1658 
1659   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1660   void xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp);
1661 
1662 #ifdef COMPILER2
1663   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1664                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1665 
1666   // IndexOf strings.
1667   // Small strings are loaded through stack if they cross page boundary.
1668   void string_indexof(Register str1, Register str2,
1669                       Register cnt1, Register cnt2,
1670                       int int_cnt2,  Register result,
1671                       XMMRegister vec, Register tmp,
1672                       int ae);
1673 
1674   // IndexOf for constant substrings with size >= 8 elements
1675   // which don't need to be loaded through stack.
1676   void string_indexofC8(Register str1, Register str2,
1677                       Register cnt1, Register cnt2,
1678                       int int_cnt2,  Register result,
1679                       XMMRegister vec, Register tmp,
1680                       int ae);
1681 
1682     // Smallest code: we don't need to load through stack,
1683     // check string tail.
1684 
1685   // helper function for string_compare
1686   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1687                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1688                           Address::ScaleFactor scale2, Register index, int ae);
1689   // Compare strings.
1690   void string_compare(Register str1, Register str2,
1691                       Register cnt1, Register cnt2, Register result,
1692                       XMMRegister vec1, int ae);
1693 
1694   // Search for Non-ASCII character (Negative byte value) in a byte array,
1695   // return true if it has any and false otherwise.
1696   void has_negatives(Register ary1, Register len,
1697                      Register result, Register tmp1,
1698                      XMMRegister vec1, XMMRegister vec2);
1699 
1700   // Compare char[] or byte[] arrays.
1701   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1702                      Register limit, Register result, Register chr,
1703                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1704 
1705 #endif
1706 
1707   // Fill primitive arrays
1708   void generate_fill(BasicType t, bool aligned,
1709                      Register to, Register value, Register count,
1710                      Register rtmp, XMMRegister xtmp);
1711 
1712   void encode_iso_array(Register src, Register dst, Register len,
1713                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1714                         XMMRegister tmp4, Register tmp5, Register result);
1715 
1716 #ifdef _LP64
1717   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1718   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1719                              Register y, Register y_idx, Register z,
1720                              Register carry, Register product,
1721                              Register idx, Register kdx);
1722   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1723                               Register yz_idx, Register idx,
1724                               Register carry, Register product, int offset);
1725   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1726                                     Register carry, Register carry2,
1727                                     Register idx, Register jdx,
1728                                     Register yz_idx1, Register yz_idx2,
1729                                     Register tmp, Register tmp3, Register tmp4);
1730   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1731                                Register yz_idx, Register idx, Register jdx,
1732                                Register carry, Register product,
1733                                Register carry2);
1734   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1735                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1736   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1737                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1738   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1739                             Register tmp2);
1740   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1741                        Register rdxReg, Register raxReg);
1742   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1743   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1744                        Register tmp3, Register tmp4);
1745   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1746                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1747 
1748   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1749                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1750                Register raxReg);
1751   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1752                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1753                Register raxReg);
1754   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1755                            Register result, Register tmp1, Register tmp2,
1756                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1757 #endif
1758 
1759   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1760   void update_byte_crc32(Register crc, Register val, Register table);
1761   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1762   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1763   // Note on a naming convention:
1764   // Prefix w = register only used on a Westmere+ architecture
1765   // Prefix n = register only used on a Nehalem architecture
1766 #ifdef _LP64
1767   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1768                        Register tmp1, Register tmp2, Register tmp3);
1769 #else
1770   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1771                        Register tmp1, Register tmp2, Register tmp3,
1772                        XMMRegister xtmp1, XMMRegister xtmp2);
1773 #endif
1774   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1775                         Register in_out,
1776                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1777                         XMMRegister w_xtmp2,
1778                         Register tmp1,
1779                         Register n_tmp2, Register n_tmp3);
1780   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1781                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1782                        Register tmp1, Register tmp2,
1783                        Register n_tmp3);
1784   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1785                          Register in_out1, Register in_out2, Register in_out3,
1786                          Register tmp1, Register tmp2, Register tmp3,
1787                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1788                          Register tmp4, Register tmp5,
1789                          Register n_tmp6);
1790   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1791                             Register tmp1, Register tmp2, Register tmp3,
1792                             Register tmp4, Register tmp5, Register tmp6,
1793                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1794                             bool is_pclmulqdq_supported);
1795   // Fold 128-bit data chunk
1796   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1797   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1798   // Fold 8-bit data
1799   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1800   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1801   void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1802 
1803   // Compress char[] array to byte[].
1804   void char_array_compress(Register src, Register dst, Register len,
1805                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1806                            XMMRegister tmp4, Register tmp5, Register result);
1807 
1808   // Inflate byte[] array to char[].
1809   void byte_array_inflate(Register src, Register dst, Register len,
1810                           XMMRegister tmp1, Register tmp2);
1811 
1812 #ifdef _LP64
1813   void convert_f2i(Register dst, XMMRegister src);
1814   void convert_d2i(Register dst, XMMRegister src);
1815   void convert_f2l(Register dst, XMMRegister src);
1816   void convert_d2l(Register dst, XMMRegister src);
1817 
1818   void cache_wb(Address line);
1819   void cache_wbsync(bool is_pre);
1820 #endif // _LP64
1821 };
1822 
1823 /**
1824  * class SkipIfEqual:
1825  *
1826  * Instantiating this class will result in assembly code being output that will
1827  * jump around any code emitted between the creation of the instance and it's
1828  * automatic destruction at the end of a scope block, depending on the value of
1829  * the flag passed to the constructor, which will be checked at run-time.
1830  */
1831 class SkipIfEqual {
1832  private:
1833   MacroAssembler* _masm;
1834   Label _label;
1835 
1836  public:
1837    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1838    ~SkipIfEqual();
1839 };
1840 
1841 #endif // CPU_X86_MACROASSEMBLER_X86_HPP