/* * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "jvm.h" #include "asm/assembler.hpp" #include "asm/assembler.inline.hpp" #include "compiler/disassembler.hpp" #include "gc/shared/barrierSet.hpp" #include "gc/shared/barrierSetAssembler.hpp" #include "gc/shared/collectedHeap.inline.hpp" #include "interpreter/interpreter.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "oops/accessDecorators.hpp" #include "oops/compressedOops.inline.hpp" #include "oops/klass.inline.hpp" #include "prims/methodHandles.hpp" #include "runtime/biasedLocking.hpp" #include "runtime/flags/flagSetting.hpp" #include "runtime/interfaceSupport.inline.hpp" #include "runtime/objectMonitor.hpp" #include "runtime/os.hpp" #include "runtime/safepoint.hpp" #include "runtime/safepointMechanism.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/thread.hpp" #include "utilities/macros.hpp" #include "crc32c.h" #ifdef COMPILER2 #include "opto/intrinsicnode.hpp" #endif #ifdef PRODUCT #define BLOCK_COMMENT(str) /* nothing */ #define STOP(error) stop(error) #else #define BLOCK_COMMENT(str) block_comment(str) #define STOP(error) block_comment(error); stop(error) #endif #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") #ifdef ASSERT bool AbstractAssembler::pd_check_instruction_mark() { return true; } #endif static Assembler::Condition reverse[] = { Assembler::noOverflow /* overflow = 0x0 */ , Assembler::overflow /* noOverflow = 0x1 */ , Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , Assembler::notZero /* zero = 0x4, equal = 0x4 */ , Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , Assembler::above /* belowEqual = 0x6 */ , Assembler::belowEqual /* above = 0x7 */ , Assembler::positive /* negative = 0x8 */ , Assembler::negative /* positive = 0x9 */ , Assembler::noParity /* parity = 0xa */ , Assembler::parity /* noParity = 0xb */ , Assembler::greaterEqual /* less = 0xc */ , Assembler::less /* greaterEqual = 0xd */ , Assembler::greater /* lessEqual = 0xe */ , Assembler::lessEqual /* greater = 0xf, */ }; // Implementation of MacroAssembler // First all the versions that have distinct versions depending on 32/64 bit // Unless the difference is trivial (1 line or so). #ifndef _LP64 // 32bit versions Address MacroAssembler::as_Address(AddressLiteral adr) { return Address(adr.target(), adr.rspec()); } Address MacroAssembler::as_Address(ArrayAddress adr) { return Address::make_array(adr); } void MacroAssembler::call_VM_leaf_base(address entry_point, int number_of_arguments) { call(RuntimeAddress(entry_point)); increment(rsp, number_of_arguments * wordSize); } void MacroAssembler::cmpklass(Address src1, Metadata* obj) { cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); } void MacroAssembler::cmpklass(Register src1, Metadata* obj) { cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); } void MacroAssembler::cmpoop_raw(Address src1, jobject obj) { cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); } void MacroAssembler::cmpoop_raw(Register src1, jobject obj) { cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); } void MacroAssembler::cmpoop(Address src1, jobject obj) { BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->obj_equals(this, src1, obj); } void MacroAssembler::cmpoop(Register src1, jobject obj) { BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->obj_equals(this, src1, obj); } void MacroAssembler::extend_sign(Register hi, Register lo) { // According to Intel Doc. AP-526, "Integer Divide", p.18. if (VM_Version::is_P6() && hi == rdx && lo == rax) { cdql(); } else { movl(hi, lo); sarl(hi, 31); } } void MacroAssembler::jC2(Register tmp, Label& L) { // set parity bit if FPU flag C2 is set (via rax) save_rax(tmp); fwait(); fnstsw_ax(); sahf(); restore_rax(tmp); // branch jcc(Assembler::parity, L); } void MacroAssembler::jnC2(Register tmp, Label& L) { // set parity bit if FPU flag C2 is set (via rax) save_rax(tmp); fwait(); fnstsw_ax(); sahf(); restore_rax(tmp); // branch jcc(Assembler::noParity, L); } // 32bit can do a case table jump in one instruction but we no longer allow the base // to be installed in the Address class void MacroAssembler::jump(ArrayAddress entry) { jmp(as_Address(entry)); } // Note: y_lo will be destroyed void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { // Long compare for Java (semantics as described in JVM spec.) Label high, low, done; cmpl(x_hi, y_hi); jcc(Assembler::less, low); jcc(Assembler::greater, high); // x_hi is the return register xorl(x_hi, x_hi); cmpl(x_lo, y_lo); jcc(Assembler::below, low); jcc(Assembler::equal, done); bind(high); xorl(x_hi, x_hi); increment(x_hi); jmp(done); bind(low); xorl(x_hi, x_hi); decrementl(x_hi); bind(done); } void MacroAssembler::lea(Register dst, AddressLiteral src) { mov_literal32(dst, (int32_t)src.target(), src.rspec()); } void MacroAssembler::lea(Address dst, AddressLiteral adr) { // leal(dst, as_Address(adr)); // see note in movl as to why we must use a move mov_literal32(dst, (int32_t) adr.target(), adr.rspec()); } void MacroAssembler::leave() { mov(rsp, rbp); pop(rbp); } void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) { // Multiplication of two Java long values stored on the stack // as illustrated below. Result is in rdx:rax. // // rsp ---> [ ?? ] \ \ // .... | y_rsp_offset | // [ y_lo ] / (in bytes) | x_rsp_offset // [ y_hi ] | (in bytes) // .... | // [ x_lo ] / // [ x_hi ] // .... // // Basic idea: lo(result) = lo(x_lo * y_lo) // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset); Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset); Label quick; // load x_hi, y_hi and check if quick // multiplication is possible movl(rbx, x_hi); movl(rcx, y_hi); movl(rax, rbx); orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0 jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply // do full multiplication // 1st step mull(y_lo); // x_hi * y_lo movl(rbx, rax); // save lo(x_hi * y_lo) in rbx, // 2nd step movl(rax, x_lo); mull(rcx); // x_lo * y_hi addl(rbx, rax); // add lo(x_lo * y_hi) to rbx, // 3rd step bind(quick); // note: rbx, = 0 if quick multiply! movl(rax, x_lo); mull(y_lo); // x_lo * y_lo addl(rdx, rbx); // correct hi(x_lo * y_lo) } void MacroAssembler::lneg(Register hi, Register lo) { negl(lo); adcl(hi, 0); negl(hi); } void MacroAssembler::lshl(Register hi, Register lo) { // Java shift left long support (semantics as described in JVM spec., p.305) // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n)) // shift value is in rcx ! assert(hi != rcx, "must not use rcx"); assert(lo != rcx, "must not use rcx"); const Register s = rcx; // shift count const int n = BitsPerWord; Label L; andl(s, 0x3f); // s := s & 0x3f (s < 0x40) cmpl(s, n); // if (s < n) jcc(Assembler::less, L); // else (s >= n) movl(hi, lo); // x := x << n xorl(lo, lo); // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! bind(L); // s (mod n) < n shldl(hi, lo); // x := x << s shll(lo); } void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) { // Java shift right long support (semantics as described in JVM spec., p.306 & p.310) // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n)) assert(hi != rcx, "must not use rcx"); assert(lo != rcx, "must not use rcx"); const Register s = rcx; // shift count const int n = BitsPerWord; Label L; andl(s, 0x3f); // s := s & 0x3f (s < 0x40) cmpl(s, n); // if (s < n) jcc(Assembler::less, L); // else (s >= n) movl(lo, hi); // x := x >> n if (sign_extension) sarl(hi, 31); else xorl(hi, hi); // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! bind(L); // s (mod n) < n shrdl(lo, hi); // x := x >> s if (sign_extension) sarl(hi); else shrl(hi); } void MacroAssembler::movoop(Register dst, jobject obj) { mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); } void MacroAssembler::movoop(Address dst, jobject obj) { mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); } void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); } void MacroAssembler::mov_metadata(Address dst, Metadata* obj) { mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); } void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) { // scratch register is not used, // it is defined to match parameters of 64-bit version of this method. if (src.is_lval()) { mov_literal32(dst, (intptr_t)src.target(), src.rspec()); } else { movl(dst, as_Address(src)); } } void MacroAssembler::movptr(ArrayAddress dst, Register src) { movl(as_Address(dst), src); } void MacroAssembler::movptr(Register dst, ArrayAddress src) { movl(dst, as_Address(src)); } // src should NEVER be a real pointer. Use AddressLiteral for true pointers void MacroAssembler::movptr(Address dst, intptr_t src) { movl(dst, src); } void MacroAssembler::pop_callee_saved_registers() { pop(rcx); pop(rdx); pop(rdi); pop(rsi); } void MacroAssembler::push_callee_saved_registers() { push(rsi); push(rdi); push(rdx); push(rcx); } void MacroAssembler::pushoop(jobject obj) { push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate()); } void MacroAssembler::pushklass(Metadata* obj) { push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate()); } void MacroAssembler::pushptr(AddressLiteral src) { if (src.is_lval()) { push_literal32((int32_t)src.target(), src.rspec()); } else { pushl(as_Address(src)); } } void MacroAssembler::set_word_if_not_zero(Register dst) { xorl(dst, dst); set_byte_if_not_zero(dst); } static void pass_arg0(MacroAssembler* masm, Register arg) { masm->push(arg); } static void pass_arg1(MacroAssembler* masm, Register arg) { masm->push(arg); } static void pass_arg2(MacroAssembler* masm, Register arg) { masm->push(arg); } static void pass_arg3(MacroAssembler* masm, Register arg) { masm->push(arg); } #ifndef PRODUCT extern "C" void findpc(intptr_t x); #endif void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) { // In order to get locks to work, we need to fake a in_VM state JavaThread* thread = JavaThread::current(); JavaThreadState saved_state = thread->thread_state(); thread->set_thread_state(_thread_in_vm); if (ShowMessageBoxOnError) { JavaThread* thread = JavaThread::current(); JavaThreadState saved_state = thread->thread_state(); thread->set_thread_state(_thread_in_vm); if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { ttyLocker ttyl; BytecodeCounter::print(); } // To see where a verify_oop failed, get $ebx+40/X for this frame. // This is the value of eip which points to where verify_oop will return. if (os::message_box(msg, "Execution stopped, print registers?")) { print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip); BREAKPOINT; } } fatal("DEBUG MESSAGE: %s", msg); } void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) { ttyLocker ttyl; FlagSetting fs(Debugging, true); tty->print_cr("eip = 0x%08x", eip); #ifndef PRODUCT if ((WizardMode || Verbose) && PrintMiscellaneous) { tty->cr(); findpc(eip); tty->cr(); } #endif #define PRINT_REG(rax) \ { tty->print("%s = ", #rax); os::print_location(tty, rax); } PRINT_REG(rax); PRINT_REG(rbx); PRINT_REG(rcx); PRINT_REG(rdx); PRINT_REG(rdi); PRINT_REG(rsi); PRINT_REG(rbp); PRINT_REG(rsp); #undef PRINT_REG // Print some words near top of staack. int* dump_sp = (int*) rsp; for (int col1 = 0; col1 < 8; col1++) { tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); os::print_location(tty, *dump_sp++); } for (int row = 0; row < 16; row++) { tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); for (int col = 0; col < 8; col++) { tty->print(" 0x%08x", *dump_sp++); } tty->cr(); } // Print some instructions around pc: Disassembler::decode((address)eip-64, (address)eip); tty->print_cr("--------"); Disassembler::decode((address)eip, (address)eip+32); } void MacroAssembler::stop(const char* msg) { ExternalAddress message((address)msg); // push address of message pushptr(message.addr()); { Label L; call(L, relocInfo::none); bind(L); } // push eip pusha(); // push registers call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32))); hlt(); } void MacroAssembler::warn(const char* msg) { push_CPU_state(); ExternalAddress message((address) msg); // push address of message pushptr(message.addr()); call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); addl(rsp, wordSize); // discard argument pop_CPU_state(); } void MacroAssembler::print_state() { { Label L; call(L, relocInfo::none); bind(L); } // push eip pusha(); // push registers push_CPU_state(); call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32))); pop_CPU_state(); popa(); addl(rsp, wordSize); } #else // _LP64 // 64 bit versions Address MacroAssembler::as_Address(AddressLiteral adr) { // amd64 always does this as a pc-rel // we can be absolute or disp based on the instruction type // jmp/call are displacements others are absolute assert(!adr.is_lval(), "must be rval"); assert(reachable(adr), "must be"); return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc()); } Address MacroAssembler::as_Address(ArrayAddress adr) { AddressLiteral base = adr.base(); lea(rscratch1, base); Address index = adr.index(); assert(index._disp == 0, "must not have disp"); // maybe it can? Address array(rscratch1, index._index, index._scale, index._disp); return array; } void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { Label L, E; #ifdef _WIN64 // Windows always allocates space for it's register args assert(num_args <= 4, "only register arguments supported"); subq(rsp, frame::arg_reg_save_area_bytes); #endif // Align stack if necessary testl(rsp, 15); jcc(Assembler::zero, L); subq(rsp, 8); { call(RuntimeAddress(entry_point)); } addq(rsp, 8); jmp(E); bind(L); { call(RuntimeAddress(entry_point)); } bind(E); #ifdef _WIN64 // restore stack pointer addq(rsp, frame::arg_reg_save_area_bytes); #endif } void MacroAssembler::cmp64(Register src1, AddressLiteral src2) { assert(!src2.is_lval(), "should use cmpptr"); if (reachable(src2)) { cmpq(src1, as_Address(src2)); } else { lea(rscratch1, src2); Assembler::cmpq(src1, Address(rscratch1, 0)); } } int MacroAssembler::corrected_idivq(Register reg) { // Full implementation of Java ldiv and lrem; checks for special // case as described in JVM spec., p.243 & p.271. The function // returns the (pc) offset of the idivl instruction - may be needed // for implicit exceptions. // // normal case special case // // input : rax: dividend min_long // reg: divisor (may not be eax/edx) -1 // // output: rax: quotient (= rax idiv reg) min_long // rdx: remainder (= rax irem reg) 0 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); static const int64_t min_long = 0x8000000000000000; Label normal_case, special_case; // check for special case cmp64(rax, ExternalAddress((address) &min_long)); jcc(Assembler::notEqual, normal_case); xorl(rdx, rdx); // prepare rdx for possible special case (where // remainder = 0) cmpq(reg, -1); jcc(Assembler::equal, special_case); // handle normal case bind(normal_case); cdqq(); int idivq_offset = offset(); idivq(reg); // normal and special case exit bind(special_case); return idivq_offset; } void MacroAssembler::decrementq(Register reg, int value) { if (value == min_jint) { subq(reg, value); return; } if (value < 0) { incrementq(reg, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { decq(reg) ; return; } /* else */ { subq(reg, value) ; return; } } void MacroAssembler::decrementq(Address dst, int value) { if (value == min_jint) { subq(dst, value); return; } if (value < 0) { incrementq(dst, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { decq(dst) ; return; } /* else */ { subq(dst, value) ; return; } } void MacroAssembler::incrementq(AddressLiteral dst) { if (reachable(dst)) { incrementq(as_Address(dst)); } else { lea(rscratch1, dst); incrementq(Address(rscratch1, 0)); } } void MacroAssembler::incrementq(Register reg, int value) { if (value == min_jint) { addq(reg, value); return; } if (value < 0) { decrementq(reg, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { incq(reg) ; return; } /* else */ { addq(reg, value) ; return; } } void MacroAssembler::incrementq(Address dst, int value) { if (value == min_jint) { addq(dst, value); return; } if (value < 0) { decrementq(dst, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { incq(dst) ; return; } /* else */ { addq(dst, value) ; return; } } // 32bit can do a case table jump in one instruction but we no longer allow the base // to be installed in the Address class void MacroAssembler::jump(ArrayAddress entry) { lea(rscratch1, entry.base()); Address dispatch = entry.index(); assert(dispatch._base == noreg, "must be"); dispatch._base = rscratch1; jmp(dispatch); } void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { ShouldNotReachHere(); // 64bit doesn't use two regs cmpq(x_lo, y_lo); } void MacroAssembler::lea(Register dst, AddressLiteral src) { mov_literal64(dst, (intptr_t)src.target(), src.rspec()); } void MacroAssembler::lea(Address dst, AddressLiteral adr) { mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec()); movptr(dst, rscratch1); } void MacroAssembler::leave() { // %%% is this really better? Why not on 32bit too? emit_int8((unsigned char)0xC9); // LEAVE } void MacroAssembler::lneg(Register hi, Register lo) { ShouldNotReachHere(); // 64bit doesn't use two regs negq(lo); } void MacroAssembler::movoop(Register dst, jobject obj) { mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); } void MacroAssembler::movoop(Address dst, jobject obj) { mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate()); movq(dst, rscratch1); } void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); } void MacroAssembler::mov_metadata(Address dst, Metadata* obj) { mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); movq(dst, rscratch1); } void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) { if (src.is_lval()) { mov_literal64(dst, (intptr_t)src.target(), src.rspec()); } else { if (reachable(src)) { movq(dst, as_Address(src)); } else { lea(scratch, src); movq(dst, Address(scratch, 0)); } } } void MacroAssembler::movptr(ArrayAddress dst, Register src) { movq(as_Address(dst), src); } void MacroAssembler::movptr(Register dst, ArrayAddress src) { movq(dst, as_Address(src)); } // src should NEVER be a real pointer. Use AddressLiteral for true pointers void MacroAssembler::movptr(Address dst, intptr_t src) { mov64(rscratch1, src); movq(dst, rscratch1); } // These are mostly for initializing NULL void MacroAssembler::movptr(Address dst, int32_t src) { movslq(dst, src); } void MacroAssembler::movptr(Register dst, int32_t src) { mov64(dst, (intptr_t)src); } void MacroAssembler::pushoop(jobject obj) { movoop(rscratch1, obj); push(rscratch1); } void MacroAssembler::pushklass(Metadata* obj) { mov_metadata(rscratch1, obj); push(rscratch1); } void MacroAssembler::pushptr(AddressLiteral src) { lea(rscratch1, src); if (src.is_lval()) { push(rscratch1); } else { pushq(Address(rscratch1, 0)); } } void MacroAssembler::reset_last_Java_frame(bool clear_fp) { // we must set sp to zero to clear frame movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); // must clear fp, so that compiled frames are not confused; it is // possible that we need it only for debugging if (clear_fp) { movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); } // Always clear the pc because it could have been set by make_walkable() movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); vzeroupper(); } void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_java_fp, address last_java_pc) { vzeroupper(); // determine last_java_sp register if (!last_java_sp->is_valid()) { last_java_sp = rsp; } // last_java_fp is optional if (last_java_fp->is_valid()) { movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), last_java_fp); } // last_java_pc is optional if (last_java_pc != NULL) { Address java_pc(r15_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); lea(rscratch1, InternalAddress(last_java_pc)); movptr(java_pc, rscratch1); } movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp); } static void pass_arg0(MacroAssembler* masm, Register arg) { if (c_rarg0 != arg ) { masm->mov(c_rarg0, arg); } } static void pass_arg1(MacroAssembler* masm, Register arg) { if (c_rarg1 != arg ) { masm->mov(c_rarg1, arg); } } static void pass_arg2(MacroAssembler* masm, Register arg) { if (c_rarg2 != arg ) { masm->mov(c_rarg2, arg); } } static void pass_arg3(MacroAssembler* masm, Register arg) { if (c_rarg3 != arg ) { masm->mov(c_rarg3, arg); } } void MacroAssembler::stop(const char* msg) { if (ShowMessageBoxOnError) { address rip = pc(); pusha(); // get regs on stack lea(c_rarg1, InternalAddress(rip)); movq(c_rarg2, rsp); // pass pointer to regs array } lea(c_rarg0, ExternalAddress((address) msg)); andq(rsp, -16); // align stack as required by ABI call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); hlt(); } void MacroAssembler::warn(const char* msg) { push(rbp); movq(rbp, rsp); andq(rsp, -16); // align stack as required by push_CPU_state and call push_CPU_state(); // keeps alignment at 16 bytes lea(c_rarg0, ExternalAddress((address) msg)); lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning))); call(rax); pop_CPU_state(); mov(rsp, rbp); pop(rbp); } void MacroAssembler::print_state() { address rip = pc(); pusha(); // get regs on stack push(rbp); movq(rbp, rsp); andq(rsp, -16); // align stack as required by push_CPU_state and call push_CPU_state(); // keeps alignment at 16 bytes lea(c_rarg0, InternalAddress(rip)); lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1); pop_CPU_state(); mov(rsp, rbp); pop(rbp); popa(); } #ifndef PRODUCT extern "C" void findpc(intptr_t x); #endif void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { // In order to get locks to work, we need to fake a in_VM state if (ShowMessageBoxOnError) { JavaThread* thread = JavaThread::current(); JavaThreadState saved_state = thread->thread_state(); thread->set_thread_state(_thread_in_vm); #ifndef PRODUCT if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { ttyLocker ttyl; BytecodeCounter::print(); } #endif // To see where a verify_oop failed, get $ebx+40/X for this frame. // XXX correct this offset for amd64 // This is the value of eip which points to where verify_oop will return. if (os::message_box(msg, "Execution stopped, print registers?")) { print_state64(pc, regs); BREAKPOINT; } } fatal("DEBUG MESSAGE: %s", msg); } void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) { ttyLocker ttyl; FlagSetting fs(Debugging, true); tty->print_cr("rip = 0x%016lx", (intptr_t)pc); #ifndef PRODUCT tty->cr(); findpc(pc); tty->cr(); #endif #define PRINT_REG(rax, value) \ { tty->print("%s = ", #rax); os::print_location(tty, value); } PRINT_REG(rax, regs[15]); PRINT_REG(rbx, regs[12]); PRINT_REG(rcx, regs[14]); PRINT_REG(rdx, regs[13]); PRINT_REG(rdi, regs[8]); PRINT_REG(rsi, regs[9]); PRINT_REG(rbp, regs[10]); PRINT_REG(rsp, regs[11]); PRINT_REG(r8 , regs[7]); PRINT_REG(r9 , regs[6]); PRINT_REG(r10, regs[5]); PRINT_REG(r11, regs[4]); PRINT_REG(r12, regs[3]); PRINT_REG(r13, regs[2]); PRINT_REG(r14, regs[1]); PRINT_REG(r15, regs[0]); #undef PRINT_REG // Print some words near top of staack. int64_t* rsp = (int64_t*) regs[11]; int64_t* dump_sp = rsp; for (int col1 = 0; col1 < 8; col1++) { tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); os::print_location(tty, *dump_sp++); } for (int row = 0; row < 25; row++) { tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); for (int col = 0; col < 4; col++) { tty->print(" 0x%016lx", (intptr_t)*dump_sp++); } tty->cr(); } // Print some instructions around pc: Disassembler::decode((address)pc-64, (address)pc); tty->print_cr("--------"); Disassembler::decode((address)pc, (address)pc+32); } #endif // _LP64 // Now versions that are common to 32/64 bit void MacroAssembler::addptr(Register dst, int32_t imm32) { LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32)); } void MacroAssembler::addptr(Register dst, Register src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); } void MacroAssembler::addptr(Address dst, Register src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); } void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::addsd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::addsd(dst, Address(rscratch1, 0)); } } void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { addss(dst, as_Address(src)); } else { lea(rscratch1, src); addss(dst, Address(rscratch1, 0)); } } void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::addpd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::addpd(dst, Address(rscratch1, 0)); } } void MacroAssembler::align(int modulus) { align(modulus, offset()); } void MacroAssembler::align(int modulus, int target) { if (target % modulus != 0) { nop(modulus - (target % modulus)); } } void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) { // Used in sign-masking with aligned address. assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); if (reachable(src)) { Assembler::andpd(dst, as_Address(src)); } else { lea(scratch_reg, src); Assembler::andpd(dst, Address(scratch_reg, 0)); } } void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register scratch_reg) { // Used in sign-masking with aligned address. assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); if (reachable(src)) { Assembler::andps(dst, as_Address(src)); } else { lea(scratch_reg, src); Assembler::andps(dst, Address(scratch_reg, 0)); } } void MacroAssembler::andptr(Register dst, int32_t imm32) { LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32)); } void MacroAssembler::atomic_incl(Address counter_addr) { lock(); incrementl(counter_addr); } void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) { if (reachable(counter_addr)) { atomic_incl(as_Address(counter_addr)); } else { lea(scr, counter_addr); atomic_incl(Address(scr, 0)); } } #ifdef _LP64 void MacroAssembler::atomic_incq(Address counter_addr) { lock(); incrementq(counter_addr); } void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) { if (reachable(counter_addr)) { atomic_incq(as_Address(counter_addr)); } else { lea(scr, counter_addr); atomic_incq(Address(scr, 0)); } } #endif // Writes to stack successive pages until offset reached to check for // stack overflow + shadow pages. This clobbers tmp. void MacroAssembler::bang_stack_size(Register size, Register tmp) { movptr(tmp, rsp); // Bang stack for total size given plus shadow page size. // Bang one page at a time because large size can bang beyond yellow and // red zones. Label loop; bind(loop); movl(Address(tmp, (-os::vm_page_size())), size ); subptr(tmp, os::vm_page_size()); subl(size, os::vm_page_size()); jcc(Assembler::greater, loop); // Bang down shadow pages too. // At this point, (tmp-0) is the last address touched, so don't // touch it again. (It was touched as (tmp-pagesize) but then tmp // was post-decremented.) Skip this address by starting at i=1, and // touch a few more pages below. N.B. It is important to touch all // the way down including all pages in the shadow zone. for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) { // this could be any sized move but this is can be a debugging crumb // so the bigger the better. movptr(Address(tmp, (-i*os::vm_page_size())), size ); } } void MacroAssembler::reserved_stack_check() { // testing if reserved zone needs to be enabled Label no_reserved_zone_enabling; Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); NOT_LP64(get_thread(rsi);) cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset())); jcc(Assembler::below, no_reserved_zone_enabling); call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread); jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry())); should_not_reach_here(); bind(no_reserved_zone_enabling); } int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg, bool swap_reg_contains_mark, Label& done, Label* slow_case, BiasedLockingCounters* counters) { assert(UseBiasedLocking, "why call this otherwise?"); assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq"); assert(tmp_reg != noreg, "tmp_reg must be supplied"); assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg); assert(markWord::age_shift == markWord::lock_bits + markWord::biased_lock_bits, "biased locking makes assumptions about bit layout"); Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes()); NOT_LP64( Address saved_mark_addr(lock_reg, 0); ) if (PrintBiasedLockingStatistics && counters == NULL) { counters = BiasedLocking::counters(); } // Biased locking // See whether the lock is currently biased toward our thread and // whether the epoch is still valid // Note that the runtime guarantees sufficient alignment of JavaThread // pointers to allow age to be placed into low bits // First check to see whether biasing is even enabled for this object Label cas_label; int null_check_offset = -1; if (!swap_reg_contains_mark) { null_check_offset = offset(); movptr(swap_reg, mark_addr); } movptr(tmp_reg, swap_reg); andptr(tmp_reg, markWord::biased_lock_mask_in_place); cmpptr(tmp_reg, markWord::biased_lock_pattern); jcc(Assembler::notEqual, cas_label); // The bias pattern is present in the object's header. Need to check // whether the bias owner and the epoch are both still current. #ifndef _LP64 // Note that because there is no current thread register on x86_32 we // need to store off the mark word we read out of the object to // avoid reloading it and needing to recheck invariants below. This // store is unfortunate but it makes the overall code shorter and // simpler. movptr(saved_mark_addr, swap_reg); #endif if (swap_reg_contains_mark) { null_check_offset = offset(); } load_prototype_header(tmp_reg, obj_reg); #ifdef _LP64 orptr(tmp_reg, r15_thread); xorptr(tmp_reg, swap_reg); Register header_reg = tmp_reg; #else xorptr(tmp_reg, swap_reg); get_thread(swap_reg); xorptr(swap_reg, tmp_reg); Register header_reg = swap_reg; #endif andptr(header_reg, ~((int) markWord::age_mask_in_place)); if (counters != NULL) { cond_inc32(Assembler::zero, ExternalAddress((address) counters->biased_lock_entry_count_addr())); } jcc(Assembler::equal, done); Label try_revoke_bias; Label try_rebias; // At this point we know that the header has the bias pattern and // that we are not the bias owner in the current epoch. We need to // figure out more details about the state of the header in order to // know what operations can be legally performed on the object's // header. // If the low three bits in the xor result aren't clear, that means // the prototype header is no longer biased and we have to revoke // the bias on this object. testptr(header_reg, markWord::biased_lock_mask_in_place); jccb(Assembler::notZero, try_revoke_bias); // Biasing is still enabled for this data type. See whether the // epoch of the current bias is still valid, meaning that the epoch // bits of the mark word are equal to the epoch bits of the // prototype header. (Note that the prototype header's epoch bits // only change at a safepoint.) If not, attempt to rebias the object // toward the current thread. Note that we must be absolutely sure // that the current epoch is invalid in order to do this because // otherwise the manipulations it performs on the mark word are // illegal. testptr(header_reg, markWord::epoch_mask_in_place); jccb(Assembler::notZero, try_rebias); // The epoch of the current bias is still valid but we know nothing // about the owner; it might be set or it might be clear. Try to // acquire the bias of the object using an atomic operation. If this // fails we will go in to the runtime to revoke the object's bias. // Note that we first construct the presumed unbiased header so we // don't accidentally blow away another thread's valid bias. NOT_LP64( movptr(swap_reg, saved_mark_addr); ) andptr(swap_reg, markWord::biased_lock_mask_in_place | markWord::age_mask_in_place | markWord::epoch_mask_in_place); #ifdef _LP64 movptr(tmp_reg, swap_reg); orptr(tmp_reg, r15_thread); #else get_thread(tmp_reg); orptr(tmp_reg, swap_reg); #endif lock(); cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg // If the biasing toward our thread failed, this means that // another thread succeeded in biasing it toward itself and we // need to revoke that bias. The revocation will occur in the // interpreter runtime in the slow case. if (counters != NULL) { cond_inc32(Assembler::zero, ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr())); } if (slow_case != NULL) { jcc(Assembler::notZero, *slow_case); } jmp(done); bind(try_rebias); // At this point we know the epoch has expired, meaning that the // current "bias owner", if any, is actually invalid. Under these // circumstances _only_, we are allowed to use the current header's // value as the comparison value when doing the cas to acquire the // bias in the current epoch. In other words, we allow transfer of // the bias from one thread to another directly in this situation. // // FIXME: due to a lack of registers we currently blow away the age // bits in this situation. Should attempt to preserve them. load_prototype_header(tmp_reg, obj_reg); #ifdef _LP64 orptr(tmp_reg, r15_thread); #else get_thread(swap_reg); orptr(tmp_reg, swap_reg); movptr(swap_reg, saved_mark_addr); #endif lock(); cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg // If the biasing toward our thread failed, then another thread // succeeded in biasing it toward itself and we need to revoke that // bias. The revocation will occur in the runtime in the slow case. if (counters != NULL) { cond_inc32(Assembler::zero, ExternalAddress((address) counters->rebiased_lock_entry_count_addr())); } if (slow_case != NULL) { jcc(Assembler::notZero, *slow_case); } jmp(done); bind(try_revoke_bias); // The prototype mark in the klass doesn't have the bias bit set any // more, indicating that objects of this data type are not supposed // to be biased any more. We are going to try to reset the mark of // this object to the prototype value and fall through to the // CAS-based locking scheme. Note that if our CAS fails, it means // that another thread raced us for the privilege of revoking the // bias of this particular object, so it's okay to continue in the // normal locking code. // // FIXME: due to a lack of registers we currently blow away the age // bits in this situation. Should attempt to preserve them. NOT_LP64( movptr(swap_reg, saved_mark_addr); ) load_prototype_header(tmp_reg, obj_reg); lock(); cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg // Fall through to the normal CAS-based lock, because no matter what // the result of the above CAS, some thread must have succeeded in // removing the bias bit from the object's header. if (counters != NULL) { cond_inc32(Assembler::zero, ExternalAddress((address) counters->revoked_lock_entry_count_addr())); } bind(cas_label); return null_check_offset; } void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) { assert(UseBiasedLocking, "why call this otherwise?"); // Check for biased locking unlock case, which is a no-op // Note: we do not have to check the thread ID for two reasons. // First, the interpreter checks for IllegalMonitorStateException at // a higher level. Second, if the bias was revoked while we held the // lock, the object could not be rebiased toward another thread, so // the bias bit would be clear. movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); andptr(temp_reg, markWord::biased_lock_mask_in_place); cmpptr(temp_reg, markWord::biased_lock_pattern); jcc(Assembler::equal, done); } #ifdef COMPILER2 #if INCLUDE_RTM_OPT // Update rtm_counters based on abort status // input: abort_status // rtm_counters (RTMLockingCounters*) // flags are killed void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) { atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset())); if (PrintPreciseRTMLockingStatistics) { for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) { Label check_abort; testl(abort_status, (1< 0) { // Delay calculation movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg); testptr(tmpReg, tmpReg); jccb(Assembler::equal, L_done); } // Abort ratio calculation only if abort_count > RTMAbortThreshold // Aborted transactions = abort_count * 100 // All transactions = total_count * RTMTotalCountIncrRate // Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio) movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset())); cmpptr(tmpReg, RTMAbortThreshold); jccb(Assembler::below, L_check_always_rtm2); imulptr(tmpReg, tmpReg, 100); Register scrReg = rtm_counters_Reg; movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset())); imulptr(scrReg, scrReg, RTMTotalCountIncrRate); imulptr(scrReg, scrReg, RTMAbortRatio); cmpptr(tmpReg, scrReg); jccb(Assembler::below, L_check_always_rtm1); if (method_data != NULL) { // set rtm_state to "no rtm" in MDO mov_metadata(tmpReg, method_data); lock(); orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM); } jmpb(L_done); bind(L_check_always_rtm1); // Reload RTMLockingCounters* address lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters)); bind(L_check_always_rtm2); movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset())); cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate); jccb(Assembler::below, L_done); if (method_data != NULL) { // set rtm_state to "always rtm" in MDO mov_metadata(tmpReg, method_data); lock(); orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM); } bind(L_done); } // Update counters and perform abort ratio calculation // input: abort_status_Reg // rtm_counters_Reg, flags are killed void MacroAssembler::rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg, RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm) { assert(rtm_counters != NULL, "should not be NULL when profiling RTM"); // update rtm counters based on rax value at abort // reads abort_status_Reg, updates flags lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters)); rtm_counters_update(abort_status_Reg, rtm_counters_Reg); if (profile_rtm) { // Save abort status because abort_status_Reg is used by following code. if (RTMRetryCount > 0) { push(abort_status_Reg); } assert(rtm_counters != NULL, "should not be NULL when profiling RTM"); rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data); // restore abort status if (RTMRetryCount > 0) { pop(abort_status_Reg); } } } // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4) // inputs: retry_count_Reg // : abort_status_Reg // output: retry_count_Reg decremented by 1 // flags are killed void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) { Label doneRetry; assert(abort_status_Reg == rax, ""); // The abort reason bits are in eax (see all states in rtmLocking.hpp) // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4) // if reason is in 0x6 and retry count != 0 then retry andptr(abort_status_Reg, 0x6); jccb(Assembler::zero, doneRetry); testl(retry_count_Reg, retry_count_Reg); jccb(Assembler::zero, doneRetry); pause(); decrementl(retry_count_Reg); jmp(retryLabel); bind(doneRetry); } // Spin and retry if lock is busy, // inputs: box_Reg (monitor address) // : retry_count_Reg // output: retry_count_Reg decremented by 1 // : clear z flag if retry count exceeded // tmp_Reg, scr_Reg, flags are killed void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg, Register tmp_Reg, Register scr_Reg, Label& retryLabel) { Label SpinLoop, SpinExit, doneRetry; int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner); testl(retry_count_Reg, retry_count_Reg); jccb(Assembler::zero, doneRetry); decrementl(retry_count_Reg); movptr(scr_Reg, RTMSpinLoopCount); bind(SpinLoop); pause(); decrementl(scr_Reg); jccb(Assembler::lessEqual, SpinExit); movptr(tmp_Reg, Address(box_Reg, owner_offset)); testptr(tmp_Reg, tmp_Reg); jccb(Assembler::notZero, SpinLoop); bind(SpinExit); jmp(retryLabel); bind(doneRetry); incrementl(retry_count_Reg); // clear z flag } // Use RTM for normal stack locks // Input: objReg (object to lock) void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg, Register retry_on_abort_count_Reg, RTMLockingCounters* stack_rtm_counters, Metadata* method_data, bool profile_rtm, Label& DONE_LABEL, Label& IsInflated) { assert(UseRTMForStackLocks, "why call this otherwise?"); assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking"); assert(tmpReg == rax, ""); assert(scrReg == rdx, ""); Label L_rtm_retry, L_decrement_retry, L_on_abort; if (RTMRetryCount > 0) { movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort bind(L_rtm_retry); } movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); testptr(tmpReg, markWord::monitor_value); // inflated vs stack-locked|neutral|biased jcc(Assembler::notZero, IsInflated); if (PrintPreciseRTMLockingStatistics || profile_rtm) { Label L_noincrement; if (RTMTotalCountIncrRate > 1) { // tmpReg, scrReg and flags are killed branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement); } assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM"); atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg); bind(L_noincrement); } xbegin(L_on_abort); movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // fetch markword andptr(tmpReg, markWord::biased_lock_mask_in_place); // look at 3 lock bits cmpptr(tmpReg, markWord::unlocked_value); // bits = 001 unlocked jcc(Assembler::equal, DONE_LABEL); // all done if unlocked Register abort_status_Reg = tmpReg; // status of abort is stored in RAX if (UseRTMXendForLockBusy) { xend(); movptr(abort_status_Reg, 0x2); // Set the abort status to 2 (so we can retry) jmp(L_decrement_retry); } else { xabort(0); } bind(L_on_abort); if (PrintPreciseRTMLockingStatistics || profile_rtm) { rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm); } bind(L_decrement_retry); if (RTMRetryCount > 0) { // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4) rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry); } } // Use RTM for inflating locks // inputs: objReg (object to lock) // boxReg (on-stack box address (displaced header location) - KILLED) // tmpReg (ObjectMonitor address + markWord::monitor_value) void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg, Register scrReg, Register retry_on_busy_count_Reg, Register retry_on_abort_count_Reg, RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm, Label& DONE_LABEL) { assert(UseRTMLocking, "why call this otherwise?"); assert(tmpReg == rax, ""); assert(scrReg == rdx, ""); Label L_rtm_retry, L_decrement_retry, L_on_abort; int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner); // Without cast to int32_t this style of movptr will destroy r10 which is typically obj. movptr(Address(boxReg, 0), (int32_t)intptr_t(markWord::unused_mark().value())); movptr(boxReg, tmpReg); // Save ObjectMonitor address if (RTMRetryCount > 0) { movl(retry_on_busy_count_Reg, RTMRetryCount); // Retry on lock busy movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort bind(L_rtm_retry); } if (PrintPreciseRTMLockingStatistics || profile_rtm) { Label L_noincrement; if (RTMTotalCountIncrRate > 1) { // tmpReg, scrReg and flags are killed branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement); } assert(rtm_counters != NULL, "should not be NULL when profiling RTM"); atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg); bind(L_noincrement); } xbegin(L_on_abort); movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); movptr(tmpReg, Address(tmpReg, owner_offset)); testptr(tmpReg, tmpReg); jcc(Assembler::zero, DONE_LABEL); if (UseRTMXendForLockBusy) { xend(); jmp(L_decrement_retry); } else { xabort(0); } bind(L_on_abort); Register abort_status_Reg = tmpReg; // status of abort is stored in RAX if (PrintPreciseRTMLockingStatistics || profile_rtm) { rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm); } if (RTMRetryCount > 0) { // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4) rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry); } movptr(tmpReg, Address(boxReg, owner_offset)) ; testptr(tmpReg, tmpReg) ; jccb(Assembler::notZero, L_decrement_retry) ; // Appears unlocked - try to swing _owner from null to non-null. // Invariant: tmpReg == 0. tmpReg is EAX which is the implicit cmpxchg comparand. #ifdef _LP64 Register threadReg = r15_thread; #else get_thread(scrReg); Register threadReg = scrReg; #endif lock(); cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg if (RTMRetryCount > 0) { // success done else retry jccb(Assembler::equal, DONE_LABEL) ; bind(L_decrement_retry); // Spin and retry if lock is busy. rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry); } else { bind(L_decrement_retry); } } #endif // INCLUDE_RTM_OPT // fast_lock and fast_unlock used by C2 // Because the transitions from emitted code to the runtime // monitorenter/exit helper stubs are so slow it's critical that // we inline both the stack-locking fast path and the inflated fast path. // // See also: cmpFastLock and cmpFastUnlock. // // What follows is a specialized inline transliteration of the code // in enter() and exit(). If we're concerned about I$ bloat another // option would be to emit TrySlowEnter and TrySlowExit methods // at startup-time. These methods would accept arguments as // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure // indications in the icc.ZFlag. fast_lock and fast_unlock would simply // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit. // In practice, however, the # of lock sites is bounded and is usually small. // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer // if the processor uses simple bimodal branch predictors keyed by EIP // Since the helper routines would be called from multiple synchronization // sites. // // An even better approach would be write "MonitorEnter()" and "MonitorExit()" // in java - using j.u.c and unsafe - and just bind the lock and unlock sites // to those specialized methods. That'd give us a mostly platform-independent // implementation that the JITs could optimize and inline at their pleasure. // Done correctly, the only time we'd need to cross to native could would be // to park() or unpark() threads. We'd also need a few more unsafe operators // to (a) prevent compiler-JIT reordering of non-volatile accesses, and // (b) explicit barriers or fence operations. // // TODO: // // * Arrange for C2 to pass "Self" into fast_lock and fast_unlock in one of the registers (scr). // This avoids manifesting the Self pointer in the fast_lock and fast_unlock terminals. // Given TLAB allocation, Self is usually manifested in a register, so passing it into // the lock operators would typically be faster than reifying Self. // // * Ideally I'd define the primitives as: // fast_lock (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED. // fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED // Unfortunately ADLC bugs prevent us from expressing the ideal form. // Instead, we're stuck with a rather awkward and brittle register assignments below. // Furthermore the register assignments are overconstrained, possibly resulting in // sub-optimal code near the synchronization site. // // * Eliminate the sp-proximity tests and just use "== Self" tests instead. // Alternately, use a better sp-proximity test. // // * Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value. // Either one is sufficient to uniquely identify a thread. // TODO: eliminate use of sp in _owner and use get_thread(tr) instead. // // * Intrinsify notify() and notifyAll() for the common cases where the // object is locked by the calling thread but the waitlist is empty. // avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll(). // // * use jccb and jmpb instead of jcc and jmp to improve code density. // But beware of excessive branch density on AMD Opterons. // // * Both fast_lock and fast_unlock set the ICC.ZF to indicate success // or failure of the fast path. If the fast path fails then we pass // control to the slow path, typically in C. In fast_lock and // fast_unlock we often branch to DONE_LABEL, just to find that C2 // will emit a conditional branch immediately after the node. // So we have branches to branches and lots of ICC.ZF games. // Instead, it might be better to have C2 pass a "FailureLabel" // into fast_lock and fast_unlock. In the case of success, control // will drop through the node. ICC.ZF is undefined at exit. // In the case of failure, the node will branch directly to the // FailureLabel // obj: object to lock // box: on-stack box address (displaced header location) - KILLED // rax,: tmp -- KILLED // scr: tmp -- KILLED void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg, Register scrReg, Register cx1Reg, Register cx2Reg, BiasedLockingCounters* counters, RTMLockingCounters* rtm_counters, RTMLockingCounters* stack_rtm_counters, Metadata* method_data, bool use_rtm, bool profile_rtm) { // Ensure the register assignments are disjoint assert(tmpReg == rax, ""); if (use_rtm) { assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg); } else { assert(cx1Reg == noreg, ""); assert(cx2Reg == noreg, ""); assert_different_registers(objReg, boxReg, tmpReg, scrReg); } if (counters != NULL) { atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg); } // Possible cases that we'll encounter in fast_lock // ------------------------------------------------ // * Inflated // -- unlocked // -- Locked // = by self // = by other // * biased // -- by Self // -- by other // * neutral // * stack-locked // -- by self // = sp-proximity test hits // = sp-proximity test generates false-negative // -- by other // Label IsInflated, DONE_LABEL; // it's stack-locked, biased or neutral // TODO: optimize away redundant LDs of obj->mark and improve the markword triage // order to reduce the number of conditional branches in the most common cases. // Beware -- there's a subtle invariant that fetch of the markword // at [FETCH], below, will never observe a biased encoding (*101b). // If this invariant is not held we risk exclusion (safety) failure. if (UseBiasedLocking && !UseOptoBiasInlining) { biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters); } #if INCLUDE_RTM_OPT if (UseRTMForStackLocks && use_rtm) { rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg, stack_rtm_counters, method_data, profile_rtm, DONE_LABEL, IsInflated); } #endif // INCLUDE_RTM_OPT movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // [FETCH] testptr(tmpReg, markWord::monitor_value); // inflated vs stack-locked|neutral|biased jccb(Assembler::notZero, IsInflated); // Attempt stack-locking ... orptr (tmpReg, markWord::unlocked_value); movptr(Address(boxReg, 0), tmpReg); // Anticipate successful CAS lock(); cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Updates tmpReg if (counters != NULL) { cond_inc32(Assembler::equal, ExternalAddress((address)counters->fast_path_entry_count_addr())); } jcc(Assembler::equal, DONE_LABEL); // Success // Recursive locking. // The object is stack-locked: markword contains stack pointer to BasicLock. // Locked by current thread if difference with current SP is less than one page. subptr(tmpReg, rsp); // Next instruction set ZFlag == 1 (Success) if difference is less then one page. andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) ); movptr(Address(boxReg, 0), tmpReg); if (counters != NULL) { cond_inc32(Assembler::equal, ExternalAddress((address)counters->fast_path_entry_count_addr())); } jmp(DONE_LABEL); bind(IsInflated); // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markWord::monitor_value #if INCLUDE_RTM_OPT // Use the same RTM locking code in 32- and 64-bit VM. if (use_rtm) { rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg, rtm_counters, method_data, profile_rtm, DONE_LABEL); } else { #endif // INCLUDE_RTM_OPT #ifndef _LP64 // The object is inflated. // boxReg refers to the on-stack BasicLock in the current frame. // We'd like to write: // set box->_displaced_header = markWord::unused_mark(). Any non-0 value suffices. // This is convenient but results a ST-before-CAS penalty. The following CAS suffers // additional latency as we have another ST in the store buffer that must drain. // avoid ST-before-CAS // register juggle because we need tmpReg for cmpxchgptr below movptr(scrReg, boxReg); movptr(boxReg, tmpReg); // consider: LEA box, [tmp-2] // Optimistic form: consider XORL tmpReg,tmpReg movptr(tmpReg, NULL_WORD); // Appears unlocked - try to swing _owner from null to non-null. // Ideally, I'd manifest "Self" with get_thread and then attempt // to CAS the register containing Self into m->Owner. // But we don't have enough registers, so instead we can either try to CAS // rsp or the address of the box (in scr) into &m->owner. If the CAS succeeds // we later store "Self" into m->Owner. Transiently storing a stack address // (rsp or the address of the box) into m->owner is harmless. // Invariant: tmpReg == 0. tmpReg is EAX which is the implicit cmpxchg comparand. lock(); cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner))); movptr(Address(scrReg, 0), 3); // box->_displaced_header = 3 // If we weren't able to swing _owner from NULL to the BasicLock // then take the slow path. jccb (Assembler::notZero, DONE_LABEL); // update _owner from BasicLock to thread get_thread (scrReg); // beware: clobbers ICCs movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg); xorptr(boxReg, boxReg); // set icc.ZFlag = 1 to indicate success // If the CAS fails we can either retry or pass control to the slow path. // We use the latter tactic. // Pass the CAS result in the icc.ZFlag into DONE_LABEL // If the CAS was successful ... // Self has acquired the lock // Invariant: m->_recursions should already be 0, so we don't need to explicitly set it. // Intentional fall-through into DONE_LABEL ... #else // _LP64 // It's inflated and we use scrReg for ObjectMonitor* in this section. movq(scrReg, tmpReg); xorq(tmpReg, tmpReg); lock(); cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner))); // Unconditionally set box->_displaced_header = markWord::unused_mark(). // Without cast to int32_t this style of movptr will destroy r10 which is typically obj. movptr(Address(boxReg, 0), (int32_t)intptr_t(markWord::unused_mark().value())); // Intentional fall-through into DONE_LABEL ... // Propagate ICC.ZF from CAS above into DONE_LABEL. #endif // _LP64 #if INCLUDE_RTM_OPT } // use_rtm() #endif // DONE_LABEL is a hot target - we'd really like to place it at the // start of cache line by padding with NOPs. // See the AMD and Intel software optimization manuals for the // most efficient "long" NOP encodings. // Unfortunately none of our alignment mechanisms suffice. bind(DONE_LABEL); // At DONE_LABEL the icc ZFlag is set as follows ... // fast_unlock uses the same protocol. // ZFlag == 1 -> Success // ZFlag == 0 -> Failure - force control through the slow path } // obj: object to unlock // box: box address (displaced header location), killed. Must be EAX. // tmp: killed, cannot be obj nor box. // // Some commentary on balanced locking: // // fast_lock and fast_unlock are emitted only for provably balanced lock sites. // Methods that don't have provably balanced locking are forced to run in the // interpreter - such methods won't be compiled to use fast_lock and fast_unlock. // The interpreter provides two properties: // I1: At return-time the interpreter automatically and quietly unlocks any // objects acquired the current activation (frame). Recall that the // interpreter maintains an on-stack list of locks currently held by // a frame. // I2: If a method attempts to unlock an object that is not held by the // the frame the interpreter throws IMSX. // // Lets say A(), which has provably balanced locking, acquires O and then calls B(). // B() doesn't have provably balanced locking so it runs in the interpreter. // Control returns to A() and A() unlocks O. By I1 and I2, above, we know that O // is still locked by A(). // // The only other source of unbalanced locking would be JNI. The "Java Native Interface: // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter // should not be unlocked by "normal" java-level locking and vice-versa. The specification // doesn't specify what will occur if a program engages in such mixed-mode locking, however. // Arguably given that the spec legislates the JNI case as undefined our implementation // could reasonably *avoid* checking owner in fast_unlock(). // In the interest of performance we elide m->Owner==Self check in unlock. // A perfectly viable alternative is to elide the owner check except when // Xcheck:jni is enabled. void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) { assert(boxReg == rax, ""); assert_different_registers(objReg, boxReg, tmpReg); Label DONE_LABEL, Stacked, CheckSucc; // Critically, the biased locking test must have precedence over // and appear before the (box->dhw == 0) recursive stack-lock test. if (UseBiasedLocking && !UseOptoBiasInlining) { biased_locking_exit(objReg, tmpReg, DONE_LABEL); } #if INCLUDE_RTM_OPT if (UseRTMForStackLocks && use_rtm) { assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking"); Label L_regular_unlock; movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // fetch markword andptr(tmpReg, markWord::biased_lock_mask_in_place); // look at 3 lock bits cmpptr(tmpReg, markWord::unlocked_value); // bits = 001 unlocked jccb(Assembler::notEqual, L_regular_unlock); // if !HLE RegularLock xend(); // otherwise end... jmp(DONE_LABEL); // ... and we're done bind(L_regular_unlock); } #endif cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header jcc (Assembler::zero, DONE_LABEL); // 0 indicates recursive stack-lock movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Examine the object's markword testptr(tmpReg, markWord::monitor_value); // Inflated? jccb (Assembler::zero, Stacked); // It's inflated. #if INCLUDE_RTM_OPT if (use_rtm) { Label L_regular_inflated_unlock; int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner); movptr(boxReg, Address(tmpReg, owner_offset)); testptr(boxReg, boxReg); jccb(Assembler::notZero, L_regular_inflated_unlock); xend(); jmpb(DONE_LABEL); bind(L_regular_inflated_unlock); } #endif // Despite our balanced locking property we still check that m->_owner == Self // as java routines or native JNI code called by this thread might // have released the lock. // Refer to the comments in synchronizer.cpp for how we might encode extra // state in _succ so we can avoid fetching EntryList|cxq. // // I'd like to add more cases in fast_lock() and fast_unlock() -- // such as recursive enter and exit -- but we have to be wary of // I$ bloat, T$ effects and BP$ effects. // // If there's no contention try a 1-0 exit. That is, exit without // a costly MEMBAR or CAS. See synchronizer.cpp for details on how // we detect and recover from the race that the 1-0 exit admits. // // Conceptually fast_unlock() must execute a STST|LDST "release" barrier // before it STs null into _owner, releasing the lock. Updates // to data protected by the critical section must be visible before // we drop the lock (and thus before any other thread could acquire // the lock and observe the fields protected by the lock). // IA32's memory-model is SPO, so STs are ordered with respect to // each other and there's no need for an explicit barrier (fence). // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html. #ifndef _LP64 get_thread (boxReg); // Note that we could employ various encoding schemes to reduce // the number of loads below (currently 4) to just 2 or 3. // Refer to the comments in synchronizer.cpp. // In practice the chain of fetches doesn't seem to impact performance, however. xorptr(boxReg, boxReg); orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions))); jccb (Assembler::notZero, DONE_LABEL); movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList))); orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq))); jccb (Assembler::notZero, CheckSucc); movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD); jmpb (DONE_LABEL); bind (Stacked); // It's not inflated and it's not recursively stack-locked and it's not biased. // It must be stack-locked. // Try to reset the header to displaced header. // The "box" value on the stack is stable, so we can reload // and be assured we observe the same value as above. movptr(tmpReg, Address(boxReg, 0)); lock(); cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box // Intention fall-thru into DONE_LABEL // DONE_LABEL is a hot target - we'd really like to place it at the // start of cache line by padding with NOPs. // See the AMD and Intel software optimization manuals for the // most efficient "long" NOP encodings. // Unfortunately none of our alignment mechanisms suffice. bind (CheckSucc); #else // _LP64 // It's inflated xorptr(boxReg, boxReg); orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions))); jccb (Assembler::notZero, DONE_LABEL); movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq))); orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList))); jccb (Assembler::notZero, CheckSucc); // Without cast to int32_t this style of movptr will destroy r10 which is typically obj. movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD); jmpb (DONE_LABEL); // Try to avoid passing control into the slow_path ... Label LSuccess, LGoSlowPath ; bind (CheckSucc); // The following optional optimization can be elided if necessary // Effectively: if (succ == null) goto slow path // The code reduces the window for a race, however, // and thus benefits performance. cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD); jccb (Assembler::zero, LGoSlowPath); xorptr(boxReg, boxReg); // Without cast to int32_t this style of movptr will destroy r10 which is typically obj. movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD); // Memory barrier/fence // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack. // This is faster on Nehalem and AMD Shanghai/Barcelona. // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences // We might also restructure (ST Owner=0;barrier;LD _Succ) to // (mov box,0; xchgq box, &m->Owner; LD _succ) . lock(); addl(Address(rsp, 0), 0); cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD); jccb (Assembler::notZero, LSuccess); // Rare inopportune interleaving - race. // The successor vanished in the small window above. // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor. // We need to ensure progress and succession. // Try to reacquire the lock. // If that fails then the new owner is responsible for succession and this // thread needs to take no further action and can exit via the fast path (success). // If the re-acquire succeeds then pass control into the slow path. // As implemented, this latter mode is horrible because we generated more // coherence traffic on the lock *and* artifically extended the critical section // length while by virtue of passing control into the slow path. // box is really RAX -- the following CMPXCHG depends on that binding // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R) lock(); cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner))); // There's no successor so we tried to regrab the lock. // If that didn't work, then another thread grabbed the // lock so we're done (and exit was a success). jccb (Assembler::notEqual, LSuccess); // Intentional fall-through into slow path bind (LGoSlowPath); orl (boxReg, 1); // set ICC.ZF=0 to indicate failure jmpb (DONE_LABEL); bind (LSuccess); testl (boxReg, 0); // set ICC.ZF=1 to indicate success jmpb (DONE_LABEL); bind (Stacked); movptr(tmpReg, Address (boxReg, 0)); // re-fetch lock(); cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box #endif bind(DONE_LABEL); } #endif // COMPILER2 void MacroAssembler::c2bool(Register x) { // implements x == 0 ? 0 : 1 // note: must only look at least-significant byte of x // since C-style booleans are stored in one byte // only! (was bug) andl(x, 0xFF); setb(Assembler::notZero, x); } // Wouldn't need if AddressLiteral version had new name void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { Assembler::call(L, rtype); } void MacroAssembler::call(Register entry) { Assembler::call(entry); } void MacroAssembler::call(AddressLiteral entry) { if (reachable(entry)) { Assembler::call_literal(entry.target(), entry.rspec()); } else { lea(rscratch1, entry); Assembler::call(rscratch1); } } void MacroAssembler::ic_call(address entry, jint method_index) { RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); movptr(rax, (intptr_t)Universe::non_oop_word()); call(AddressLiteral(entry, rh)); } // Implementation of call_VM versions void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) { Label C, E; call(C, relocInfo::none); jmp(E); bind(C); call_VM_helper(oop_result, entry_point, 0, check_exceptions); ret(0); bind(E); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) { Label C, E; call(C, relocInfo::none); jmp(E); bind(C); pass_arg1(this, arg_1); call_VM_helper(oop_result, entry_point, 1, check_exceptions); ret(0); bind(E); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { Label C, E; call(C, relocInfo::none); jmp(E); bind(C); LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); pass_arg1(this, arg_1); call_VM_helper(oop_result, entry_point, 2, check_exceptions); ret(0); bind(E); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) { Label C, E; call(C, relocInfo::none); jmp(E); bind(C); LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); pass_arg3(this, arg_3); LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); pass_arg1(this, arg_1); call_VM_helper(oop_result, entry_point, 3, check_exceptions); ret(0); bind(E); } void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) { Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) { pass_arg1(this, arg_1); call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); pass_arg1(this, arg_1); call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) { LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); pass_arg3(this, arg_3); LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); pass_arg1(this, arg_1); call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); } void MacroAssembler::super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) { Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); } void MacroAssembler::super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) { pass_arg1(this, arg_1); super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); } void MacroAssembler::super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); pass_arg1(this, arg_1); super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); } void MacroAssembler::super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) { LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); pass_arg3(this, arg_3); LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); pass_arg1(this, arg_1); super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); } void MacroAssembler::call_VM_base(Register oop_result, Register java_thread, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) { // determine java_thread register if (!java_thread->is_valid()) { #ifdef _LP64 java_thread = r15_thread; #else java_thread = rdi; get_thread(java_thread); #endif // LP64 } // determine last_java_sp register if (!last_java_sp->is_valid()) { last_java_sp = rsp; } // debugging support assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); LP64_ONLY(assert(java_thread == r15_thread, "unexpected register")); #ifdef ASSERT // TraceBytecodes does not use r12 but saves it over the call, so don't verify // r12 is the heapbase. LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");) #endif // ASSERT assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); // push java thread (becomes first argument of C function) NOT_LP64(push(java_thread); number_of_arguments++); LP64_ONLY(mov(c_rarg0, r15_thread)); // set last Java frame before call assert(last_java_sp != rbp, "can't use ebp/rbp"); // Only interpreter should have to set fp set_last_Java_frame(java_thread, last_java_sp, rbp, NULL); // do the call, remove parameters MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); // restore the thread (cannot use the pushed argument since arguments // may be overwritten by C code generated by an optimizing compiler); // however can use the register value directly if it is callee saved. if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) { // rdi & rsi (also r15) are callee saved -> nothing to do #ifdef ASSERT guarantee(java_thread != rax, "change this code"); push(rax); { Label L; get_thread(rax); cmpptr(java_thread, rax); jcc(Assembler::equal, L); STOP("MacroAssembler::call_VM_base: rdi not callee saved?"); bind(L); } pop(rax); #endif } else { get_thread(java_thread); } // reset last Java frame // Only interpreter should have to clear fp reset_last_Java_frame(java_thread, true); // C++ interp handles this in the interpreter check_and_handle_popframe(java_thread); check_and_handle_earlyret(java_thread); if (check_exceptions) { // check for pending exceptions (java_thread is set upon return) cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD); #ifndef _LP64 jump_cc(Assembler::notEqual, RuntimeAddress(StubRoutines::forward_exception_entry())); #else // This used to conditionally jump to forward_exception however it is // possible if we relocate that the branch will not reach. So we must jump // around so we can always reach Label ok; jcc(Assembler::equal, ok); jump(RuntimeAddress(StubRoutines::forward_exception_entry())); bind(ok); #endif // LP64 } // get oop result if there is one and reset the value in the thread if (oop_result->is_valid()) { get_vm_result(oop_result, java_thread); } } void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { // Calculate the value for last_Java_sp // somewhat subtle. call_VM does an intermediate call // which places a return address on the stack just under the // stack pointer as the user finsihed with it. This allows // use to retrieve last_Java_pc from last_Java_sp[-1]. // On 32bit we then have to push additional args on the stack to accomplish // the actual requested call. On 64bit call_VM only can use register args // so the only extra space is the return address that call_VM created. // This hopefully explains the calculations here. #ifdef _LP64 // We've pushed one address, correct last_Java_sp lea(rax, Address(rsp, wordSize)); #else lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize)); #endif // LP64 call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions); } // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter. void MacroAssembler::call_VM_leaf0(address entry_point) { MacroAssembler::call_VM_leaf_base(entry_point, 0); } void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { call_VM_leaf_base(entry_point, number_of_arguments); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { pass_arg0(this, arg_0); call_VM_leaf(entry_point, 1); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); pass_arg1(this, arg_1); pass_arg0(this, arg_0); call_VM_leaf(entry_point, 2); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg")); LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); pass_arg1(this, arg_1); pass_arg0(this, arg_0); call_VM_leaf(entry_point, 3); } void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { pass_arg0(this, arg_0); MacroAssembler::call_VM_leaf_base(entry_point, 1); } void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); pass_arg1(this, arg_1); pass_arg0(this, arg_0); MacroAssembler::call_VM_leaf_base(entry_point, 2); } void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg")); LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); pass_arg1(this, arg_1); pass_arg0(this, arg_0); MacroAssembler::call_VM_leaf_base(entry_point, 3); } void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg")); LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); pass_arg3(this, arg_3); LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg")); LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); pass_arg2(this, arg_2); LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); pass_arg1(this, arg_1); pass_arg0(this, arg_0); MacroAssembler::call_VM_leaf_base(entry_point, 4); } void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD); verify_oop(oop_result); } void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD); } void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } void MacroAssembler::check_and_handle_popframe(Register java_thread) { } void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) { if (reachable(src1)) { cmpl(as_Address(src1), imm); } else { lea(rscratch1, src1); cmpl(Address(rscratch1, 0), imm); } } void MacroAssembler::cmp32(Register src1, AddressLiteral src2) { assert(!src2.is_lval(), "use cmpptr"); if (reachable(src2)) { cmpl(src1, as_Address(src2)); } else { lea(rscratch1, src2); cmpl(src1, Address(rscratch1, 0)); } } void MacroAssembler::cmp32(Register src1, int32_t imm) { Assembler::cmpl(src1, imm); } void MacroAssembler::cmp32(Register src1, Address src2) { Assembler::cmpl(src1, src2); } void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { ucomisd(opr1, opr2); Label L; if (unordered_is_less) { movl(dst, -1); jcc(Assembler::parity, L); jcc(Assembler::below , L); movl(dst, 0); jcc(Assembler::equal , L); increment(dst); } else { // unordered is greater movl(dst, 1); jcc(Assembler::parity, L); jcc(Assembler::above , L); movl(dst, 0); jcc(Assembler::equal , L); decrementl(dst); } bind(L); } void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { ucomiss(opr1, opr2); Label L; if (unordered_is_less) { movl(dst, -1); jcc(Assembler::parity, L); jcc(Assembler::below , L); movl(dst, 0); jcc(Assembler::equal , L); increment(dst); } else { // unordered is greater movl(dst, 1); jcc(Assembler::parity, L); jcc(Assembler::above , L); movl(dst, 0); jcc(Assembler::equal , L); decrementl(dst); } bind(L); } void MacroAssembler::cmp8(AddressLiteral src1, int imm) { if (reachable(src1)) { cmpb(as_Address(src1), imm); } else { lea(rscratch1, src1); cmpb(Address(rscratch1, 0), imm); } } void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) { #ifdef _LP64 if (src2.is_lval()) { movptr(rscratch1, src2); Assembler::cmpq(src1, rscratch1); } else if (reachable(src2)) { cmpq(src1, as_Address(src2)); } else { lea(rscratch1, src2); Assembler::cmpq(src1, Address(rscratch1, 0)); } #else if (src2.is_lval()) { cmp_literal32(src1, (int32_t) src2.target(), src2.rspec()); } else { cmpl(src1, as_Address(src2)); } #endif // _LP64 } void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) { assert(src2.is_lval(), "not a mem-mem compare"); #ifdef _LP64 // moves src2's literal address movptr(rscratch1, src2); Assembler::cmpq(src1, rscratch1); #else cmp_literal32(src1, (int32_t) src2.target(), src2.rspec()); #endif // _LP64 } void MacroAssembler::cmpoop(Register src1, Register src2) { BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->obj_equals(this, src1, src2); } void MacroAssembler::cmpoop(Register src1, Address src2) { BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->obj_equals(this, src1, src2); } #ifdef _LP64 void MacroAssembler::cmpoop(Register src1, jobject src2) { movoop(rscratch1, src2); BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->obj_equals(this, src1, rscratch1); } #endif void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) { if (reachable(adr)) { lock(); cmpxchgptr(reg, as_Address(adr)); } else { lea(rscratch1, adr); lock(); cmpxchgptr(reg, Address(rscratch1, 0)); } } void MacroAssembler::cmpxchgptr(Register reg, Address adr) { LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr)); } void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::comisd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::comisd(dst, Address(rscratch1, 0)); } } void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::comiss(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::comiss(dst, Address(rscratch1, 0)); } } void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) { Condition negated_cond = negate_condition(cond); Label L; jcc(negated_cond, L); pushf(); // Preserve flags atomic_incl(counter_addr); popf(); bind(L); } int MacroAssembler::corrected_idivl(Register reg) { // Full implementation of Java idiv and irem; checks for // special case as described in JVM spec., p.243 & p.271. // The function returns the (pc) offset of the idivl // instruction - may be needed for implicit exceptions. // // normal case special case // // input : rax,: dividend min_int // reg: divisor (may not be rax,/rdx) -1 // // output: rax,: quotient (= rax, idiv reg) min_int // rdx: remainder (= rax, irem reg) 0 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); const int min_int = 0x80000000; Label normal_case, special_case; // check for special case cmpl(rax, min_int); jcc(Assembler::notEqual, normal_case); xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) cmpl(reg, -1); jcc(Assembler::equal, special_case); // handle normal case bind(normal_case); cdql(); int idivl_offset = offset(); idivl(reg); // normal and special case exit bind(special_case); return idivl_offset; } void MacroAssembler::decrementl(Register reg, int value) { if (value == min_jint) {subl(reg, value) ; return; } if (value < 0) { incrementl(reg, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { decl(reg) ; return; } /* else */ { subl(reg, value) ; return; } } void MacroAssembler::decrementl(Address dst, int value) { if (value == min_jint) {subl(dst, value) ; return; } if (value < 0) { incrementl(dst, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { decl(dst) ; return; } /* else */ { subl(dst, value) ; return; } } void MacroAssembler::division_with_shift (Register reg, int shift_value) { assert (shift_value > 0, "illegal shift value"); Label _is_positive; testl (reg, reg); jcc (Assembler::positive, _is_positive); int offset = (1 << shift_value) - 1 ; if (offset == 1) { incrementl(reg); } else { addl(reg, offset); } bind (_is_positive); sarl(reg, shift_value); } void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::divsd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::divsd(dst, Address(rscratch1, 0)); } } void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::divss(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::divss(dst, Address(rscratch1, 0)); } } #ifndef _LP64 void MacroAssembler::empty_FPU_stack() { if (VM_Version::supports_mmx()) { emms(); } else { for (int i = 8; i-- > 0; ) ffree(i); } } #endif // !LP64 void MacroAssembler::enter() { push(rbp); mov(rbp, rsp); } // A 5 byte nop that is safe for patching (see patch_verified_entry) void MacroAssembler::fat_nop() { if (UseAddressNop) { addr_nop_5(); } else { emit_int8(0x26); // es: emit_int8(0x2e); // cs: emit_int8(0x64); // fs: emit_int8(0x65); // gs: emit_int8((unsigned char)0x90); } } #if !defined(_LP64) void MacroAssembler::fcmp(Register tmp) { fcmp(tmp, 1, true, true); } void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) { assert(!pop_right || pop_left, "usage error"); if (VM_Version::supports_cmov()) { assert(tmp == noreg, "unneeded temp"); if (pop_left) { fucomip(index); } else { fucomi(index); } if (pop_right) { fpop(); } } else { assert(tmp != noreg, "need temp"); if (pop_left) { if (pop_right) { fcompp(); } else { fcomp(index); } } else { fcom(index); } // convert FPU condition into eflags condition via rax, save_rax(tmp); fwait(); fnstsw_ax(); sahf(); restore_rax(tmp); } // condition codes set as follows: // // CF (corresponds to C0) if x < y // PF (corresponds to C2) if unordered // ZF (corresponds to C3) if x = y } void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) { fcmp2int(dst, unordered_is_less, 1, true, true); } void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) { fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right); Label L; if (unordered_is_less) { movl(dst, -1); jcc(Assembler::parity, L); jcc(Assembler::below , L); movl(dst, 0); jcc(Assembler::equal , L); increment(dst); } else { // unordered is greater movl(dst, 1); jcc(Assembler::parity, L); jcc(Assembler::above , L); movl(dst, 0); jcc(Assembler::equal , L); decrementl(dst); } bind(L); } void MacroAssembler::fld_d(AddressLiteral src) { fld_d(as_Address(src)); } void MacroAssembler::fld_s(AddressLiteral src) { fld_s(as_Address(src)); } void MacroAssembler::fld_x(AddressLiteral src) { Assembler::fld_x(as_Address(src)); } void MacroAssembler::fldcw(AddressLiteral src) { Assembler::fldcw(as_Address(src)); } void MacroAssembler::fpop() { ffree(); fincstp(); } void MacroAssembler::fremr(Register tmp) { save_rax(tmp); { Label L; bind(L); fprem(); fwait(); fnstsw_ax(); sahf(); jcc(Assembler::parity, L); } restore_rax(tmp); // Result is in ST0. // Note: fxch & fpop to get rid of ST1 // (otherwise FPU stack could overflow eventually) fxch(1); fpop(); } #endif // !LP64 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::mulpd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::mulpd(dst, Address(rscratch1, 0)); } } void MacroAssembler::load_float(Address src) { if (UseSSE >= 1) { movflt(xmm0, src); } else { LP64_ONLY(ShouldNotReachHere()); NOT_LP64(fld_s(src)); } } void MacroAssembler::store_float(Address dst) { if (UseSSE >= 1) { movflt(dst, xmm0); } else { LP64_ONLY(ShouldNotReachHere()); NOT_LP64(fstp_s(dst)); } } void MacroAssembler::load_double(Address src) { if (UseSSE >= 2) { movdbl(xmm0, src); } else { LP64_ONLY(ShouldNotReachHere()); NOT_LP64(fld_d(src)); } } void MacroAssembler::store_double(Address dst) { if (UseSSE >= 2) { movdbl(dst, xmm0); } else { LP64_ONLY(ShouldNotReachHere()); NOT_LP64(fstp_d(dst)); } } // dst = c = a * b + c void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { Assembler::vfmadd231sd(c, a, b); if (dst != c) { movdbl(dst, c); } } // dst = c = a * b + c void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { Assembler::vfmadd231ss(c, a, b); if (dst != c) { movflt(dst, c); } } // dst = c = a * b + c void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { Assembler::vfmadd231pd(c, a, b, vector_len); if (dst != c) { vmovdqu(dst, c); } } // dst = c = a * b + c void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { Assembler::vfmadd231ps(c, a, b, vector_len); if (dst != c) { vmovdqu(dst, c); } } // dst = c = a * b + c void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { Assembler::vfmadd231pd(c, a, b, vector_len); if (dst != c) { vmovdqu(dst, c); } } // dst = c = a * b + c void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { Assembler::vfmadd231ps(c, a, b, vector_len); if (dst != c) { vmovdqu(dst, c); } } void MacroAssembler::incrementl(AddressLiteral dst) { if (reachable(dst)) { incrementl(as_Address(dst)); } else { lea(rscratch1, dst); incrementl(Address(rscratch1, 0)); } } void MacroAssembler::incrementl(ArrayAddress dst) { incrementl(as_Address(dst)); } void MacroAssembler::incrementl(Register reg, int value) { if (value == min_jint) {addl(reg, value) ; return; } if (value < 0) { decrementl(reg, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { incl(reg) ; return; } /* else */ { addl(reg, value) ; return; } } void MacroAssembler::incrementl(Address dst, int value) { if (value == min_jint) {addl(dst, value) ; return; } if (value < 0) { decrementl(dst, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { incl(dst) ; return; } /* else */ { addl(dst, value) ; return; } } void MacroAssembler::jump(AddressLiteral dst) { if (reachable(dst)) { jmp_literal(dst.target(), dst.rspec()); } else { lea(rscratch1, dst); jmp(rscratch1); } } void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) { if (reachable(dst)) { InstructionMark im(this); relocate(dst.reloc()); const int short_size = 2; const int long_size = 6; int offs = (intptr_t)dst.target() - ((intptr_t)pc()); if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { // 0111 tttn #8-bit disp emit_int8(0x70 | cc); emit_int8((offs - short_size) & 0xFF); } else { // 0000 1111 1000 tttn #32-bit disp emit_int8(0x0F); emit_int8((unsigned char)(0x80 | cc)); emit_int32(offs - long_size); } } else { #ifdef ASSERT warning("reversing conditional branch"); #endif /* ASSERT */ Label skip; jccb(reverse[cc], skip); lea(rscratch1, dst); Assembler::jmp(rscratch1); bind(skip); } } void MacroAssembler::ldmxcsr(AddressLiteral src) { if (reachable(src)) { Assembler::ldmxcsr(as_Address(src)); } else { lea(rscratch1, src); Assembler::ldmxcsr(Address(rscratch1, 0)); } } int MacroAssembler::load_signed_byte(Register dst, Address src) { int off; if (LP64_ONLY(true ||) VM_Version::is_P6()) { off = offset(); movsbl(dst, src); // movsxb } else { off = load_unsigned_byte(dst, src); shll(dst, 24); sarl(dst, 24); } return off; } // Note: load_signed_short used to be called load_signed_word. // Although the 'w' in x86 opcodes refers to the term "word" in the assembler // manual, which means 16 bits, that usage is found nowhere in HotSpot code. // The term "word" in HotSpot means a 32- or 64-bit machine word. int MacroAssembler::load_signed_short(Register dst, Address src) { int off; if (LP64_ONLY(true ||) VM_Version::is_P6()) { // This is dubious to me since it seems safe to do a signed 16 => 64 bit // version but this is what 64bit has always done. This seems to imply // that users are only using 32bits worth. off = offset(); movswl(dst, src); // movsxw } else { off = load_unsigned_short(dst, src); shll(dst, 16); sarl(dst, 16); } return off; } int MacroAssembler::load_unsigned_byte(Register dst, Address src) { // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, // and "3.9 Partial Register Penalties", p. 22). int off; if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) { off = offset(); movzbl(dst, src); // movzxb } else { xorl(dst, dst); off = offset(); movb(dst, src); } return off; } // Note: load_unsigned_short used to be called load_unsigned_word. int MacroAssembler::load_unsigned_short(Register dst, Address src) { // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, // and "3.9 Partial Register Penalties", p. 22). int off; if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) { off = offset(); movzwl(dst, src); // movzxw } else { xorl(dst, dst); off = offset(); movw(dst, src); } return off; } void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { switch (size_in_bytes) { #ifndef _LP64 case 8: assert(dst2 != noreg, "second dest register required"); movl(dst, src); movl(dst2, src.plus_disp(BytesPerInt)); break; #else case 8: movq(dst, src); break; #endif case 4: movl(dst, src); break; case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; default: ShouldNotReachHere(); } } void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { switch (size_in_bytes) { #ifndef _LP64 case 8: assert(src2 != noreg, "second source register required"); movl(dst, src); movl(dst.plus_disp(BytesPerInt), src2); break; #else case 8: movq(dst, src); break; #endif case 4: movl(dst, src); break; case 2: movw(dst, src); break; case 1: movb(dst, src); break; default: ShouldNotReachHere(); } } void MacroAssembler::mov32(AddressLiteral dst, Register src) { if (reachable(dst)) { movl(as_Address(dst), src); } else { lea(rscratch1, dst); movl(Address(rscratch1, 0), src); } } void MacroAssembler::mov32(Register dst, AddressLiteral src) { if (reachable(src)) { movl(dst, as_Address(src)); } else { lea(rscratch1, src); movl(dst, Address(rscratch1, 0)); } } // C++ bool manipulation void MacroAssembler::movbool(Register dst, Address src) { if(sizeof(bool) == 1) movb(dst, src); else if(sizeof(bool) == 2) movw(dst, src); else if(sizeof(bool) == 4) movl(dst, src); else // unsupported ShouldNotReachHere(); } void MacroAssembler::movbool(Address dst, bool boolconst) { if(sizeof(bool) == 1) movb(dst, (int) boolconst); else if(sizeof(bool) == 2) movw(dst, (int) boolconst); else if(sizeof(bool) == 4) movl(dst, (int) boolconst); else // unsupported ShouldNotReachHere(); } void MacroAssembler::movbool(Address dst, Register src) { if(sizeof(bool) == 1) movb(dst, src); else if(sizeof(bool) == 2) movw(dst, src); else if(sizeof(bool) == 4) movl(dst, src); else // unsupported ShouldNotReachHere(); } void MacroAssembler::movbyte(ArrayAddress dst, int src) { movb(as_Address(dst), src); } void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { movdl(dst, as_Address(src)); } else { lea(rscratch1, src); movdl(dst, Address(rscratch1, 0)); } } void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { movq(dst, as_Address(src)); } else { lea(rscratch1, src); movq(dst, Address(rscratch1, 0)); } } #ifdef COMPILER2 void MacroAssembler::setvectmask(Register dst, Register src) { guarantee(PostLoopMultiversioning, "must be"); Assembler::movl(dst, 1); Assembler::shlxl(dst, dst, src); Assembler::decl(dst); Assembler::kmovdl(k1, dst); Assembler::movl(dst, src); } void MacroAssembler::restorevectmask() { guarantee(PostLoopMultiversioning, "must be"); Assembler::knotwl(k1, k0); } #endif // COMPILER2 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { if (UseXmmLoadAndClearUpper) { movsd (dst, as_Address(src)); } else { movlpd(dst, as_Address(src)); } } else { lea(rscratch1, src); if (UseXmmLoadAndClearUpper) { movsd (dst, Address(rscratch1, 0)); } else { movlpd(dst, Address(rscratch1, 0)); } } } void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { movss(dst, as_Address(src)); } else { lea(rscratch1, src); movss(dst, Address(rscratch1, 0)); } } void MacroAssembler::movptr(Register dst, Register src) { LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); } void MacroAssembler::movptr(Register dst, Address src) { LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); } // src should NEVER be a real pointer. Use AddressLiteral for true pointers void MacroAssembler::movptr(Register dst, intptr_t src) { LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src)); } void MacroAssembler::movptr(Address dst, Register src) { LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); } void MacroAssembler::movdqu(Address dst, XMMRegister src) { assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); Assembler::movdqu(dst, src); } void MacroAssembler::movdqu(XMMRegister dst, Address src) { assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); Assembler::movdqu(dst, src); } void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) { assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); Assembler::movdqu(dst, src); } void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) { if (reachable(src)) { movdqu(dst, as_Address(src)); } else { lea(scratchReg, src); movdqu(dst, Address(scratchReg, 0)); } } void MacroAssembler::vmovdqu(Address dst, XMMRegister src) { assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); Assembler::vmovdqu(dst, src); } void MacroAssembler::vmovdqu(XMMRegister dst, Address src) { assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); Assembler::vmovdqu(dst, src); } void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) { assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); Assembler::vmovdqu(dst, src); } void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg) { if (reachable(src)) { vmovdqu(dst, as_Address(src)); } else { lea(scratch_reg, src); vmovdqu(dst, Address(scratch_reg, 0)); } } void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { if (reachable(src)) { Assembler::evmovdquq(dst, as_Address(src), vector_len); } else { lea(rscratch, src); Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len); } } void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::movdqa(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::movdqa(dst, Address(rscratch1, 0)); } } void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::movsd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::movsd(dst, Address(rscratch1, 0)); } } void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::movss(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::movss(dst, Address(rscratch1, 0)); } } void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::mulsd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::mulsd(dst, Address(rscratch1, 0)); } } void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::mulss(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::mulss(dst, Address(rscratch1, 0)); } } void MacroAssembler::null_check(Register reg, int offset) { if (needs_explicit_null_check(offset)) { // provoke OS NULL exception if reg = NULL by // accessing M[reg] w/o changing any (non-CC) registers // NOTE: cmpl is plenty here to provoke a segv cmpptr(rax, Address(reg, 0)); // Note: should probably use testl(rax, Address(reg, 0)); // may be shorter code (however, this version of // testl needs to be implemented first) } else { // nothing to do, (later) access of M[reg + offset] // will provoke OS NULL exception if reg = NULL } } void MacroAssembler::os_breakpoint() { // instead of directly emitting a breakpoint, call os:breakpoint for better debugability // (e.g., MSVC can't call ps() otherwise) call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); } void MacroAssembler::unimplemented(const char* what) { const char* buf = NULL; { ResourceMark rm; stringStream ss; ss.print("unimplemented: %s", what); buf = code_string(ss.as_string()); } stop(buf); } #ifdef _LP64 #define XSTATE_BV 0x200 #endif void MacroAssembler::pop_CPU_state() { pop_FPU_state(); pop_IU_state(); } void MacroAssembler::pop_FPU_state() { #ifndef _LP64 frstor(Address(rsp, 0)); #else fxrstor(Address(rsp, 0)); #endif addptr(rsp, FPUStateSizeInWords * wordSize); } void MacroAssembler::pop_IU_state() { popa(); LP64_ONLY(addq(rsp, 8)); popf(); } // Save Integer and Float state // Warning: Stack must be 16 byte aligned (64bit) void MacroAssembler::push_CPU_state() { push_IU_state(); push_FPU_state(); } void MacroAssembler::push_FPU_state() { subptr(rsp, FPUStateSizeInWords * wordSize); #ifndef _LP64 fnsave(Address(rsp, 0)); fwait(); #else fxsave(Address(rsp, 0)); #endif // LP64 } void MacroAssembler::push_IU_state() { // Push flags first because pusha kills them pushf(); // Make sure rsp stays 16-byte aligned LP64_ONLY(subq(rsp, 8)); pusha(); } void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register if (!java_thread->is_valid()) { java_thread = rdi; get_thread(java_thread); } // we must set sp to zero to clear frame movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); if (clear_fp) { movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); } // Always clear the pc because it could have been set by make_walkable() movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); vzeroupper(); } void MacroAssembler::restore_rax(Register tmp) { if (tmp == noreg) pop(rax); else if (tmp != rax) mov(rax, tmp); } void MacroAssembler::round_to(Register reg, int modulus) { addptr(reg, modulus - 1); andptr(reg, -modulus); } void MacroAssembler::save_rax(Register tmp) { if (tmp == noreg) push(rax); else if (tmp != rax) mov(tmp, rax); } void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) { if (SafepointMechanism::uses_thread_local_poll()) { #ifdef _LP64 assert(thread_reg == r15_thread, "should be"); #else if (thread_reg == noreg) { thread_reg = temp_reg; get_thread(thread_reg); } #endif testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit()); jcc(Assembler::notZero, slow_path); // handshake bit set implies poll } else { cmp32(ExternalAddress(SafepointSynchronize::address_of_state()), SafepointSynchronize::_not_synchronized); jcc(Assembler::notEqual, slow_path); } } // Calls to C land // // When entering C land, the rbp, & rsp of the last Java frame have to be recorded // in the (thread-local) JavaThread object. When leaving C land, the last Java fp // has to be reset to 0. This is required to allow proper stack traversal. void MacroAssembler::set_last_Java_frame(Register java_thread, Register last_java_sp, Register last_java_fp, address last_java_pc) { vzeroupper(); // determine java_thread register if (!java_thread->is_valid()) { java_thread = rdi; get_thread(java_thread); } // determine last_java_sp register if (!last_java_sp->is_valid()) { last_java_sp = rsp; } // last_java_fp is optional if (last_java_fp->is_valid()) { movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp); } // last_java_pc is optional if (last_java_pc != NULL) { lea(Address(java_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()), InternalAddress(last_java_pc)); } movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp); } void MacroAssembler::shlptr(Register dst, int imm8) { LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8)); } void MacroAssembler::shrptr(Register dst, int imm8) { LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8)); } void MacroAssembler::sign_extend_byte(Register reg) { if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) { movsbl(reg, reg); // movsxb } else { shll(reg, 24); sarl(reg, 24); } } void MacroAssembler::sign_extend_short(Register reg) { if (LP64_ONLY(true ||) VM_Version::is_P6()) { movswl(reg, reg); // movsxw } else { shll(reg, 16); sarl(reg, 16); } } void MacroAssembler::testl(Register dst, AddressLiteral src) { assert(reachable(src), "Address should be reachable"); testl(dst, as_Address(src)); } void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) { assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::pcmpeqb(dst, src); } void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) { assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::pcmpeqw(dst, src); } void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) { assert((dst->encoding() < 16),"XMM register should be 0-15"); Assembler::pcmpestri(dst, src, imm8); } void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); Assembler::pcmpestri(dst, src, imm8); } void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) { assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::pmovzxbw(dst, src); } void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) { assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::pmovzxbw(dst, src); } void MacroAssembler::pmovmskb(Register dst, XMMRegister src) { assert((src->encoding() < 16),"XMM register should be 0-15"); Assembler::pmovmskb(dst, src); } void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) { assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); Assembler::ptest(dst, src); } void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::sqrtsd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::sqrtsd(dst, Address(rscratch1, 0)); } } void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::sqrtss(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::sqrtss(dst, Address(rscratch1, 0)); } } void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::subsd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::subsd(dst, Address(rscratch1, 0)); } } void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg) { if (reachable(src)) { Assembler::roundsd(dst, as_Address(src), rmode); } else { lea(scratch_reg, src); Assembler::roundsd(dst, Address(scratch_reg, 0), rmode); } } void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::subss(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::subss(dst, Address(rscratch1, 0)); } } void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::ucomisd(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::ucomisd(dst, Address(rscratch1, 0)); } } void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { Assembler::ucomiss(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::ucomiss(dst, Address(rscratch1, 0)); } } void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) { // Used in sign-bit flipping with aligned address. assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); if (reachable(src)) { Assembler::xorpd(dst, as_Address(src)); } else { lea(scratch_reg, src); Assembler::xorpd(dst, Address(scratch_reg, 0)); } } void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) { if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) { Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); } else { Assembler::xorpd(dst, src); } } void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) { if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) { Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); } else { Assembler::xorps(dst, src); } } void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg) { // Used in sign-bit flipping with aligned address. assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); if (reachable(src)) { Assembler::xorps(dst, as_Address(src)); } else { lea(scratch_reg, src); Assembler::xorps(dst, Address(scratch_reg, 0)); } } void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) { // Used in sign-bit flipping with aligned address. bool aligned_adr = (((intptr_t)src.target() & 15) == 0); assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes"); if (reachable(src)) { Assembler::pshufb(dst, as_Address(src)); } else { lea(rscratch1, src); Assembler::pshufb(dst, Address(rscratch1, 0)); } } // AVX 3-operands instructions void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vaddsd(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vaddsd(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vaddss(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vaddss(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { assert(UseAVX > 0, "requires some form of AVX"); if (reachable(src)) { Assembler::vpaddd(dst, nds, as_Address(src), vector_len); } else { lea(rscratch, src); Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len); } } void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) { assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); vandps(dst, nds, negate_field, vector_len); } void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) { assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); vandpd(dst, nds, negate_field, vector_len); } void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpaddb(dst, nds, src, vector_len); } void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpaddb(dst, nds, src, vector_len); } void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpaddw(dst, nds, src, vector_len); } void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpaddw(dst, nds, src, vector_len); } void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) { if (reachable(src)) { Assembler::vpand(dst, nds, as_Address(src), vector_len); } else { lea(scratch_reg, src); Assembler::vpand(dst, nds, Address(scratch_reg, 0), vector_len); } } void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) { assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpbroadcastw(dst, src, vector_len); } void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpcmpeqb(dst, nds, src, vector_len); } void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpcmpeqw(dst, nds, src, vector_len); } void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) { assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpmovzxbw(dst, src, vector_len); } void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) { assert((src->encoding() < 16),"XMM register should be 0-15"); Assembler::vpmovmskb(dst, src); } void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpmullw(dst, nds, src, vector_len); } void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpmullw(dst, nds, src, vector_len); } void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpsubb(dst, nds, src, vector_len); } void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpsubb(dst, nds, src, vector_len); } void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpsubw(dst, nds, src, vector_len); } void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpsubw(dst, nds, src, vector_len); } void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpsraw(dst, nds, shift, vector_len); } void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpsraw(dst, nds, shift, vector_len); } void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { assert(UseAVX > 2,""); if (!VM_Version::supports_avx512vl() && vector_len < 2) { vector_len = 2; } Assembler::evpsraq(dst, nds, shift, vector_len); } void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { assert(UseAVX > 2,""); if (!VM_Version::supports_avx512vl() && vector_len < 2) { vector_len = 2; } Assembler::evpsraq(dst, nds, shift, vector_len); } void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpsrlw(dst, nds, shift, vector_len); } void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpsrlw(dst, nds, shift, vector_len); } void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpsllw(dst, nds, shift, vector_len); } void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::vpsllw(dst, nds, shift, vector_len); } void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) { assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); Assembler::vptest(dst, src); } void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) { assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::punpcklbw(dst, src); } void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) { assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); Assembler::pshufd(dst, src, mode); } void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); Assembler::pshuflw(dst, src, mode); } void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) { if (reachable(src)) { vandpd(dst, nds, as_Address(src), vector_len); } else { lea(scratch_reg, src); vandpd(dst, nds, Address(scratch_reg, 0), vector_len); } } void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) { if (reachable(src)) { vandps(dst, nds, as_Address(src), vector_len); } else { lea(scratch_reg, src); vandps(dst, nds, Address(scratch_reg, 0), vector_len); } } void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vdivsd(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vdivsd(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vdivss(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vdivss(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vmulsd(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vmulsd(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vmulss(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vmulss(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vsubsd(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vsubsd(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) { if (reachable(src)) { vsubss(dst, nds, as_Address(src)); } else { lea(rscratch1, src); vsubss(dst, nds, Address(rscratch1, 0)); } } void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) { assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); vxorps(dst, nds, src, Assembler::AVX_128bit); } void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) { assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); vxorpd(dst, nds, src, Assembler::AVX_128bit); } void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) { if (reachable(src)) { vxorpd(dst, nds, as_Address(src), vector_len); } else { lea(scratch_reg, src); vxorpd(dst, nds, Address(scratch_reg, 0), vector_len); } } void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) { if (reachable(src)) { vxorps(dst, nds, as_Address(src), vector_len); } else { lea(scratch_reg, src); vxorps(dst, nds, Address(scratch_reg, 0), vector_len); } } void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) { if (UseAVX > 1 || (vector_len < 1)) { if (reachable(src)) { Assembler::vpxor(dst, nds, as_Address(src), vector_len); } else { lea(scratch_reg, src); Assembler::vpxor(dst, nds, Address(scratch_reg, 0), vector_len); } } else { MacroAssembler::vxorpd(dst, nds, src, vector_len, scratch_reg); } } //------------------------------------------------------------------------------------------- #ifdef COMPILER2 // Generic instructions support for use in .ad files C2 code generation void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, XMMRegister src, Register scr) { if (dst != src) { movdqu(dst, src); } if (opcode == Op_AbsVD) { andpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), scr); } else { assert((opcode == Op_NegVD),"opcode should be Op_NegD"); xorpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), scr); } } void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) { if (opcode == Op_AbsVD) { vandpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), vector_len, scr); } else { assert((opcode == Op_NegVD),"opcode should be Op_NegD"); vxorpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), vector_len, scr); } } void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, XMMRegister src, Register scr) { if (dst != src) { movdqu(dst, src); } if (opcode == Op_AbsVF) { andps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), scr); } else { assert((opcode == Op_NegVF),"opcode should be Op_NegF"); xorps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), scr); } } void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) { if (opcode == Op_AbsVF) { vandps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), vector_len, scr); } else { assert((opcode == Op_NegVF),"opcode should be Op_NegF"); vxorps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), vector_len, scr); } } void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src) { if (sign) { pmovsxbw(dst, src); } else { pmovzxbw(dst, src); } } void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len) { if (sign) { vpmovsxbw(dst, src, vector_len); } else { vpmovzxbw(dst, src, vector_len); } } void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister src) { if (opcode == Op_RShiftVI) { psrad(dst, src); } else if (opcode == Op_LShiftVI) { pslld(dst, src); } else { assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI"); psrld(dst, src); } } void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { if (opcode == Op_RShiftVI) { vpsrad(dst, nds, src, vector_len); } else if (opcode == Op_LShiftVI) { vpslld(dst, nds, src, vector_len); } else { assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI"); vpsrld(dst, nds, src, vector_len); } } void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister src) { if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) { psraw(dst, src); } else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) { psllw(dst, src); } else { assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB"); psrlw(dst, src); } } void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) { vpsraw(dst, nds, src, vector_len); } else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) { vpsllw(dst, nds, src, vector_len); } else { assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB"); vpsrlw(dst, nds, src, vector_len); } } void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister src) { if (opcode == Op_RShiftVL) { psrlq(dst, src); // using srl to implement sra on pre-avs512 systems } else if (opcode == Op_LShiftVL) { psllq(dst, src); } else { assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL"); psrlq(dst, src); } } void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { if (opcode == Op_RShiftVL) { evpsraq(dst, nds, src, vector_len); } else if (opcode == Op_LShiftVL) { vpsllq(dst, nds, src, vector_len); } else { assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL"); vpsrlq(dst, nds, src, vector_len); } } #endif //------------------------------------------------------------------------------------------- void MacroAssembler::clear_jweak_tag(Register possibly_jweak) { const int32_t inverted_jweak_mask = ~static_cast(JNIHandles::weak_tag_mask); STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code // The inverted mask is sign-extended andptr(possibly_jweak, inverted_jweak_mask); } void MacroAssembler::resolve_jobject(Register value, Register thread, Register tmp) { assert_different_registers(value, thread, tmp); Label done, not_weak; testptr(value, value); jcc(Assembler::zero, done); // Use NULL as-is. testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag. jcc(Assembler::zero, not_weak); // Resolve jweak. access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, value, Address(value, -JNIHandles::weak_tag_value), tmp, thread); verify_oop(value); jmp(done); bind(not_weak); // Resolve (untagged) jobject. access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread); verify_oop(value); bind(done); } void MacroAssembler::subptr(Register dst, int32_t imm32) { LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32)); } // Force generation of a 4 byte immediate value even if it fits into 8bit void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) { LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32)); } void MacroAssembler::subptr(Register dst, Register src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); } // C++ bool manipulation void MacroAssembler::testbool(Register dst) { if(sizeof(bool) == 1) testb(dst, 0xff); else if(sizeof(bool) == 2) { // testw implementation needed for two byte bools ShouldNotReachHere(); } else if(sizeof(bool) == 4) testl(dst, dst); else // unsupported ShouldNotReachHere(); } void MacroAssembler::testptr(Register dst, Register src) { LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src)); } // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. void MacroAssembler::tlab_allocate(Register thread, Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, Label& slow_case) { BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); } // Defines obj, preserves var_size_in_bytes void MacroAssembler::eden_allocate(Register thread, Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Label& slow_case) { BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->eden_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case); } // Preserves the contents of address, destroys the contents length_in_bytes and temp. void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) { assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different"); assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord"); Label done; testptr(length_in_bytes, length_in_bytes); jcc(Assembler::zero, done); // initialize topmost word, divide index by 2, check if odd and test if zero // note: for the remaining code to work, index must be a multiple of BytesPerWord #ifdef ASSERT { Label L; testptr(length_in_bytes, BytesPerWord - 1); jcc(Assembler::zero, L); stop("length must be a multiple of BytesPerWord"); bind(L); } #endif Register index = length_in_bytes; xorptr(temp, temp); // use _zero reg to clear memory (shorter code) if (UseIncDec) { shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set } else { shrptr(index, 2); // use 2 instructions to avoid partial flag stall shrptr(index, 1); } #ifndef _LP64 // index could have not been a multiple of 8 (i.e., bit 2 was set) { Label even; // note: if index was a multiple of 8, then it cannot // be 0 now otherwise it must have been 0 before // => if it is even, we don't need to check for 0 again jcc(Assembler::carryClear, even); // clear topmost word (no jump would be needed if conditional assignment worked here) movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp); // index could be 0 now, must check again jcc(Assembler::zero, done); bind(even); } #endif // !_LP64 // initialize remaining object fields: index is a multiple of 2 now { Label loop; bind(loop); movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp); NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);) decrement(index); jcc(Assembler::notZero, loop); } bind(done); } // Look up the method for a megamorphic invokeinterface call. // The target method is determined by . // The receiver klass is in recv_klass. // On success, the result will be in method_result, and execution falls through. // On failure, execution transfers to the given label. void MacroAssembler::lookup_interface_method(Register recv_klass, Register intf_klass, RegisterOrConstant itable_index, Register method_result, Register scan_temp, Label& L_no_such_interface, bool return_method) { assert_different_registers(recv_klass, intf_klass, scan_temp); assert_different_registers(method_result, intf_klass, scan_temp); assert(recv_klass != method_result || !return_method, "recv_klass can be destroyed when method isn't needed"); assert(itable_index.is_constant() || itable_index.as_register() == method_result, "caller must use same register for non-constant itable index as for method"); // Compute start of first itableOffsetEntry (which is at the end of the vtable) int vtable_base = in_bytes(Klass::vtable_start_offset()); int itentry_off = itableMethodEntry::method_offset_in_bytes(); int scan_step = itableOffsetEntry::size() * wordSize; int vte_size = vtableEntry::size_in_bytes(); Address::ScaleFactor times_vte_scale = Address::times_ptr; assert(vte_size == wordSize, "else adjust times_vte_scale"); movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); // %%% Could store the aligned, prescaled offset in the klassoop. lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); if (return_method) { // Adjust recv_klass by scaled itable_index, so we can free itable_index. assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); } // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) { // if (scan->interface() == intf) { // result = (klass + scan->offset() + itable_index); // } // } Label search, found_method; for (int peel = 1; peel >= 0; peel--) { movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); cmpptr(intf_klass, method_result); if (peel) { jccb(Assembler::equal, found_method); } else { jccb(Assembler::notEqual, search); // (invert the test to fall through to found_method...) } if (!peel) break; bind(search); // Check that the previous entry is non-null. A null entry means that // the receiver class doesn't implement the interface, and wasn't the // same as when the caller was compiled. testptr(method_result, method_result); jcc(Assembler::zero, L_no_such_interface); addptr(scan_temp, scan_step); } bind(found_method); if (return_method) { // Got a hit. movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes())); movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); } } // virtual method calling void MacroAssembler::lookup_virtual_method(Register recv_klass, RegisterOrConstant vtable_index, Register method_result) { const int base = in_bytes(Klass::vtable_start_offset()); assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below"); Address vtable_entry_addr(recv_klass, vtable_index, Address::times_ptr, base + vtableEntry::method_offset_in_bytes()); movptr(method_result, vtable_entry_addr); } void MacroAssembler::check_klass_subtype(Register sub_klass, Register super_klass, Register temp_reg, Label& L_success) { Label L_failure; check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL); check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL); bind(L_failure); } void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, Register super_klass, Register temp_reg, Label* L_success, Label* L_failure, Label* L_slow_path, RegisterOrConstant super_check_offset) { assert_different_registers(sub_klass, super_klass, temp_reg); bool must_load_sco = (super_check_offset.constant_or_zero() == -1); if (super_check_offset.is_register()) { assert_different_registers(sub_klass, super_klass, super_check_offset.as_register()); } else if (must_load_sco) { assert(temp_reg != noreg, "supply either a temp or a register offset"); } Label L_fallthrough; int label_nulls = 0; if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; } assert(label_nulls <= 1, "at most one NULL in the batch"); int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); int sco_offset = in_bytes(Klass::super_check_offset_offset()); Address super_check_offset_addr(super_klass, sco_offset); // Hacked jcc, which "knows" that L_fallthrough, at least, is in // range of a jccb. If this routine grows larger, reconsider at // least some of these. #define local_jcc(assembler_cond, label) \ if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ else jcc( assembler_cond, label) /*omit semi*/ // Hacked jmp, which may only be used just before L_fallthrough. #define final_jmp(label) \ if (&(label) == &L_fallthrough) { /*do nothing*/ } \ else jmp(label) /*omit semi*/ // If the pointers are equal, we are done (e.g., String[] elements). // This self-check enables sharing of secondary supertype arrays among // non-primary types such as array-of-interface. Otherwise, each such // type would need its own customized SSA. // We move this check to the front of the fast path because many // type checks are in fact trivially successful in this manner, // so we get a nicely predicted branch right at the start of the check. cmpptr(sub_klass, super_klass); local_jcc(Assembler::equal, *L_success); // Check the supertype display: if (must_load_sco) { // Positive movl does right thing on LP64. movl(temp_reg, super_check_offset_addr); super_check_offset = RegisterOrConstant(temp_reg); } Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); cmpptr(super_klass, super_check_addr); // load displayed supertype // This check has worked decisively for primary supers. // Secondary supers are sought in the super_cache ('super_cache_addr'). // (Secondary supers are interfaces and very deeply nested subtypes.) // This works in the same check above because of a tricky aliasing // between the super_cache and the primary super display elements. // (The 'super_check_addr' can address either, as the case requires.) // Note that the cache is updated below if it does not help us find // what we need immediately. // So if it was a primary super, we can just fail immediately. // Otherwise, it's the slow path for us (no success at this point). if (super_check_offset.is_register()) { local_jcc(Assembler::equal, *L_success); cmpl(super_check_offset.as_register(), sc_offset); if (L_failure == &L_fallthrough) { local_jcc(Assembler::equal, *L_slow_path); } else { local_jcc(Assembler::notEqual, *L_failure); final_jmp(*L_slow_path); } } else if (super_check_offset.as_constant() == sc_offset) { // Need a slow path; fast failure is impossible. if (L_slow_path == &L_fallthrough) { local_jcc(Assembler::equal, *L_success); } else { local_jcc(Assembler::notEqual, *L_slow_path); final_jmp(*L_success); } } else { // No slow path; it's a fast decision. if (L_failure == &L_fallthrough) { local_jcc(Assembler::equal, *L_success); } else { local_jcc(Assembler::notEqual, *L_failure); final_jmp(*L_success); } } bind(L_fallthrough); #undef local_jcc #undef final_jmp } void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, Register super_klass, Register temp_reg, Register temp2_reg, Label* L_success, Label* L_failure, bool set_cond_codes) { assert_different_registers(sub_klass, super_klass, temp_reg); if (temp2_reg != noreg) assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) Label L_fallthrough; int label_nulls = 0; if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } assert(label_nulls <= 1, "at most one NULL in the batch"); // a couple of useful fields in sub_klass: int ss_offset = in_bytes(Klass::secondary_supers_offset()); int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); Address secondary_supers_addr(sub_klass, ss_offset); Address super_cache_addr( sub_klass, sc_offset); // Do a linear scan of the secondary super-klass chain. // This code is rarely used, so simplicity is a virtue here. // The repne_scan instruction uses fixed registers, which we must spill. // Don't worry too much about pre-existing connections with the input regs. assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) // Get super_klass value into rax (even if it was in rdi or rcx). bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; if (super_klass != rax || UseCompressedOops) { if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } mov(rax, super_klass); } if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } #ifndef PRODUCT int* pst_counter = &SharedRuntime::_partial_subtype_ctr; ExternalAddress pst_counter_addr((address) pst_counter); NOT_LP64( incrementl(pst_counter_addr) ); LP64_ONLY( lea(rcx, pst_counter_addr) ); LP64_ONLY( incrementl(Address(rcx, 0)) ); #endif //PRODUCT // We will consult the secondary-super array. movptr(rdi, secondary_supers_addr); // Load the array length. (Positive movl does right thing on LP64.) movl(rcx, Address(rdi, Array::length_offset_in_bytes())); // Skip to start of data. addptr(rdi, Array::base_offset_in_bytes()); // Scan RCX words at [RDI] for an occurrence of RAX. // Set NZ/Z based on last compare. // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does // not change flags (only scas instruction which is repeated sets flags). // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. testptr(rax,rax); // Set Z = 0 repne_scan(); // Unspill the temp. registers: if (pushed_rdi) pop(rdi); if (pushed_rcx) pop(rcx); if (pushed_rax) pop(rax); if (set_cond_codes) { // Special hack for the AD files: rdi is guaranteed non-zero. assert(!pushed_rdi, "rdi must be left non-NULL"); // Also, the condition codes are properly set Z/NZ on succeed/failure. } if (L_failure == &L_fallthrough) jccb(Assembler::notEqual, *L_failure); else jcc(Assembler::notEqual, *L_failure); // Success. Cache the super we found and proceed in triumph. movptr(super_cache_addr, super_klass); if (L_success != &L_fallthrough) { jmp(*L_success); } #undef IS_A_TEMP bind(L_fallthrough); } void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) { assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required"); Label L_fallthrough; if (L_fast_path == NULL) { L_fast_path = &L_fallthrough; } else if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; } // Fast path check: class is fully initialized cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); jcc(Assembler::equal, *L_fast_path); // Fast path check: current thread is initializer thread cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset())); if (L_slow_path == &L_fallthrough) { jcc(Assembler::equal, *L_fast_path); bind(*L_slow_path); } else if (L_fast_path == &L_fallthrough) { jcc(Assembler::notEqual, *L_slow_path); bind(*L_fast_path); } else { Unimplemented(); } } void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { if (VM_Version::supports_cmov()) { cmovl(cc, dst, src); } else { Label L; jccb(negate_condition(cc), L); movl(dst, src); bind(L); } } void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { if (VM_Version::supports_cmov()) { cmovl(cc, dst, src); } else { Label L; jccb(negate_condition(cc), L); movl(dst, src); bind(L); } } void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { if (!VerifyOops) return; // Pass register number to verify_oop_subroutine const char* b = NULL; { ResourceMark rm; stringStream ss; ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); b = code_string(ss.as_string()); } BLOCK_COMMENT("verify_oop {"); #ifdef _LP64 push(rscratch1); // save r10, trashed by movptr() #endif push(rax); // save rax, push(reg); // pass register argument ExternalAddress buffer((address) b); // avoid using pushptr, as it modifies scratch registers // and our contract is not to modify anything movptr(rax, buffer.addr()); push(rax); // call indirectly to solve generation ordering problem movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); call(rax); // Caller pops the arguments (oop, message) and restores rax, r10 BLOCK_COMMENT("} verify_oop"); } RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset) { intptr_t value = *delayed_value_addr; if (value != 0) return RegisterOrConstant(value + offset); // load indirectly to solve generation ordering problem movptr(tmp, ExternalAddress((address) delayed_value_addr)); #ifdef ASSERT { Label L; testptr(tmp, tmp); if (WizardMode) { const char* buf = NULL; { ResourceMark rm; stringStream ss; ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]); buf = code_string(ss.as_string()); } jcc(Assembler::notZero, L); STOP(buf); } else { jccb(Assembler::notZero, L); hlt(); } bind(L); } #endif if (offset != 0) addptr(tmp, offset); return RegisterOrConstant(tmp); } Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, int extra_slot_offset) { // cf. TemplateTable::prepare_invoke(), if (load_receiver). int stackElementSize = Interpreter::stackElementSize; int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); #ifdef ASSERT int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); assert(offset1 - offset == stackElementSize, "correct arithmetic"); #endif Register scale_reg = noreg; Address::ScaleFactor scale_factor = Address::no_scale; if (arg_slot.is_constant()) { offset += arg_slot.as_constant() * stackElementSize; } else { scale_reg = arg_slot.as_register(); scale_factor = Address::times(stackElementSize); } offset += wordSize; // return PC is on stack return Address(rsp, scale_reg, scale_factor, offset); } void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { if (!VerifyOops) return; // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord); // Pass register number to verify_oop_subroutine const char* b = NULL; { ResourceMark rm; stringStream ss; ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); b = code_string(ss.as_string()); } #ifdef _LP64 push(rscratch1); // save r10, trashed by movptr() #endif push(rax); // save rax, // addr may contain rsp so we will have to adjust it based on the push // we just did (and on 64 bit we do two pushes) // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which // stores rax into addr which is backwards of what was intended. if (addr.uses(rsp)) { lea(rax, addr); pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord)); } else { pushptr(addr); } ExternalAddress buffer((address) b); // pass msg argument // avoid using pushptr, as it modifies scratch registers // and our contract is not to modify anything movptr(rax, buffer.addr()); push(rax); // call indirectly to solve generation ordering problem movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); call(rax); // Caller pops the arguments (addr, message) and restores rax, r10. } void MacroAssembler::verify_tlab() { #ifdef ASSERT if (UseTLAB && VerifyOops) { Label next, ok; Register t1 = rsi; Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread); push(t1); NOT_LP64(push(thread_reg)); NOT_LP64(get_thread(thread_reg)); movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset()))); jcc(Assembler::aboveEqual, next); STOP("assert(top >= start)"); should_not_reach_here(); bind(next); movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); jcc(Assembler::aboveEqual, ok); STOP("assert(top <= end)"); should_not_reach_here(); bind(ok); NOT_LP64(pop(thread_reg)); pop(t1); } #endif } class ControlWord { public: int32_t _value; int rounding_control() const { return (_value >> 10) & 3 ; } int precision_control() const { return (_value >> 8) & 3 ; } bool precision() const { return ((_value >> 5) & 1) != 0; } bool underflow() const { return ((_value >> 4) & 1) != 0; } bool overflow() const { return ((_value >> 3) & 1) != 0; } bool zero_divide() const { return ((_value >> 2) & 1) != 0; } bool denormalized() const { return ((_value >> 1) & 1) != 0; } bool invalid() const { return ((_value >> 0) & 1) != 0; } void print() const { // rounding control const char* rc; switch (rounding_control()) { case 0: rc = "round near"; break; case 1: rc = "round down"; break; case 2: rc = "round up "; break; case 3: rc = "chop "; break; }; // precision control const char* pc; switch (precision_control()) { case 0: pc = "24 bits "; break; case 1: pc = "reserved"; break; case 2: pc = "53 bits "; break; case 3: pc = "64 bits "; break; }; // flags char f[9]; f[0] = ' '; f[1] = ' '; f[2] = (precision ()) ? 'P' : 'p'; f[3] = (underflow ()) ? 'U' : 'u'; f[4] = (overflow ()) ? 'O' : 'o'; f[5] = (zero_divide ()) ? 'Z' : 'z'; f[6] = (denormalized()) ? 'D' : 'd'; f[7] = (invalid ()) ? 'I' : 'i'; f[8] = '\x0'; // output printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); } }; class StatusWord { public: int32_t _value; bool busy() const { return ((_value >> 15) & 1) != 0; } bool C3() const { return ((_value >> 14) & 1) != 0; } bool C2() const { return ((_value >> 10) & 1) != 0; } bool C1() const { return ((_value >> 9) & 1) != 0; } bool C0() const { return ((_value >> 8) & 1) != 0; } int top() const { return (_value >> 11) & 7 ; } bool error_status() const { return ((_value >> 7) & 1) != 0; } bool stack_fault() const { return ((_value >> 6) & 1) != 0; } bool precision() const { return ((_value >> 5) & 1) != 0; } bool underflow() const { return ((_value >> 4) & 1) != 0; } bool overflow() const { return ((_value >> 3) & 1) != 0; } bool zero_divide() const { return ((_value >> 2) & 1) != 0; } bool denormalized() const { return ((_value >> 1) & 1) != 0; } bool invalid() const { return ((_value >> 0) & 1) != 0; } void print() const { // condition codes char c[5]; c[0] = (C3()) ? '3' : '-'; c[1] = (C2()) ? '2' : '-'; c[2] = (C1()) ? '1' : '-'; c[3] = (C0()) ? '0' : '-'; c[4] = '\x0'; // flags char f[9]; f[0] = (error_status()) ? 'E' : '-'; f[1] = (stack_fault ()) ? 'S' : '-'; f[2] = (precision ()) ? 'P' : '-'; f[3] = (underflow ()) ? 'U' : '-'; f[4] = (overflow ()) ? 'O' : '-'; f[5] = (zero_divide ()) ? 'Z' : '-'; f[6] = (denormalized()) ? 'D' : '-'; f[7] = (invalid ()) ? 'I' : '-'; f[8] = '\x0'; // output printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); } }; class TagWord { public: int32_t _value; int tag_at(int i) const { return (_value >> (i*2)) & 3; } void print() const { printf("%04x", _value & 0xFFFF); } }; class FPU_Register { public: int32_t _m0; int32_t _m1; int16_t _ex; bool is_indefinite() const { return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; } void print() const { char sign = (_ex < 0) ? '-' : '+'; const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); }; }; class FPU_State { public: enum { register_size = 10, number_of_registers = 8, register_mask = 7 }; ControlWord _control_word; StatusWord _status_word; TagWord _tag_word; int32_t _error_offset; int32_t _error_selector; int32_t _data_offset; int32_t _data_selector; int8_t _register[register_size * number_of_registers]; int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } const char* tag_as_string(int tag) const { switch (tag) { case 0: return "valid"; case 1: return "zero"; case 2: return "special"; case 3: return "empty"; } ShouldNotReachHere(); return NULL; } void print() const { // print computation registers { int t = _status_word.top(); for (int i = 0; i < number_of_registers; i++) { int j = (i - t) & register_mask; printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); st(j)->print(); printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); } } printf("\n"); // print control registers printf("ctrl = "); _control_word.print(); printf("\n"); printf("stat = "); _status_word .print(); printf("\n"); printf("tags = "); _tag_word .print(); printf("\n"); } }; class Flag_Register { public: int32_t _value; bool overflow() const { return ((_value >> 11) & 1) != 0; } bool direction() const { return ((_value >> 10) & 1) != 0; } bool sign() const { return ((_value >> 7) & 1) != 0; } bool zero() const { return ((_value >> 6) & 1) != 0; } bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } bool parity() const { return ((_value >> 2) & 1) != 0; } bool carry() const { return ((_value >> 0) & 1) != 0; } void print() const { // flags char f[8]; f[0] = (overflow ()) ? 'O' : '-'; f[1] = (direction ()) ? 'D' : '-'; f[2] = (sign ()) ? 'S' : '-'; f[3] = (zero ()) ? 'Z' : '-'; f[4] = (auxiliary_carry()) ? 'A' : '-'; f[5] = (parity ()) ? 'P' : '-'; f[6] = (carry ()) ? 'C' : '-'; f[7] = '\x0'; // output printf("%08x flags = %s", _value, f); } }; class IU_Register { public: int32_t _value; void print() const { printf("%08x %11d", _value, _value); } }; class IU_State { public: Flag_Register _eflags; IU_Register _rdi; IU_Register _rsi; IU_Register _rbp; IU_Register _rsp; IU_Register _rbx; IU_Register _rdx; IU_Register _rcx; IU_Register _rax; void print() const { // computation registers printf("rax, = "); _rax.print(); printf("\n"); printf("rbx, = "); _rbx.print(); printf("\n"); printf("rcx = "); _rcx.print(); printf("\n"); printf("rdx = "); _rdx.print(); printf("\n"); printf("rdi = "); _rdi.print(); printf("\n"); printf("rsi = "); _rsi.print(); printf("\n"); printf("rbp, = "); _rbp.print(); printf("\n"); printf("rsp = "); _rsp.print(); printf("\n"); printf("\n"); // control registers printf("flgs = "); _eflags.print(); printf("\n"); } }; class CPU_State { public: FPU_State _fpu_state; IU_State _iu_state; void print() const { printf("--------------------------------------------------\n"); _iu_state .print(); printf("\n"); _fpu_state.print(); printf("--------------------------------------------------\n"); } }; static void _print_CPU_state(CPU_State* state) { state->print(); }; void MacroAssembler::print_CPU_state() { push_CPU_state(); push(rsp); // pass CPU state call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); addptr(rsp, wordSize); // discard argument pop_CPU_state(); } #ifndef _LP64 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) { static int counter = 0; FPU_State* fs = &state->_fpu_state; counter++; // For leaf calls, only verify that the top few elements remain empty. // We only need 1 empty at the top for C2 code. if( stack_depth < 0 ) { if( fs->tag_for_st(7) != 3 ) { printf("FPR7 not empty\n"); state->print(); assert(false, "error"); return false; } return true; // All other stack states do not matter } assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std, "bad FPU control word"); // compute stack depth int i = 0; while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++; int d = i; while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++; // verify findings if (i != FPU_State::number_of_registers) { // stack not contiguous printf("%s: stack not contiguous at ST%d\n", s, i); state->print(); assert(false, "error"); return false; } // check if computed stack depth corresponds to expected stack depth if (stack_depth < 0) { // expected stack depth is -stack_depth or less if (d > -stack_depth) { // too many elements on the stack printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d); state->print(); assert(false, "error"); return false; } } else { // expected stack depth is stack_depth if (d != stack_depth) { // wrong stack depth printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d); state->print(); assert(false, "error"); return false; } } // everything is cool return true; } void MacroAssembler::verify_FPU(int stack_depth, const char* s) { if (!VerifyFPU) return; push_CPU_state(); push(rsp); // pass CPU state ExternalAddress msg((address) s); // pass message string s pushptr(msg.addr()); push(stack_depth); // pass stack depth call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU))); addptr(rsp, 3 * wordSize); // discard arguments // check for error { Label L; testl(rax, rax); jcc(Assembler::notZero, L); int3(); // break if error condition bind(L); } pop_CPU_state(); } #endif // _LP64 void MacroAssembler::restore_cpu_control_state_after_jni() { // Either restore the MXCSR register after returning from the JNI Call // or verify that it wasn't changed (with -Xcheck:jni flag). if (VM_Version::supports_sse()) { if (RestoreMXCSROnJNICalls) { ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std())); } else if (CheckJNICalls) { call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry())); } } // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty. vzeroupper(); // Reset k1 to 0xffff. #ifdef COMPILER2 if (PostLoopMultiversioning && VM_Version::supports_evex()) { push(rcx); movl(rcx, 0xffff); kmovwl(k1, rcx); pop(rcx); } #endif // COMPILER2 #ifndef _LP64 // Either restore the x87 floating pointer control word after returning // from the JNI call or verify that it wasn't changed. if (CheckJNICalls) { call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry())); } #endif // _LP64 } // ((OopHandle)result).resolve(); void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { assert_different_registers(result, tmp); // Only 64 bit platforms support GCs that require a tmp register // Only IN_HEAP loads require a thread_tmp register // OopHandle::resolve is an indirection like jobject. access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp, /*tmp_thread*/noreg); } // ((WeakHandle)result).resolve(); void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { assert_different_registers(rresult, rtmp); Label resolved; // A null weak handle resolves to null. cmpptr(rresult, 0); jcc(Assembler::equal, resolved); // Only 64 bit platforms support GCs that require a tmp register // Only IN_HEAP loads require a thread_tmp register // WeakHandle::resolve is an indirection like jweak. access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg); bind(resolved); } void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) { // get mirror const int mirror_offset = in_bytes(Klass::java_mirror_offset()); load_method_holder(mirror, method); movptr(mirror, Address(mirror, mirror_offset)); resolve_oop_handle(mirror, tmp); } void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { load_method_holder(rresult, rmethod); movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); } void MacroAssembler::load_method_holder(Register holder, Register method) { movptr(holder, Address(method, Method::const_offset())); // ConstMethod* movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* movptr(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass* } void MacroAssembler::load_klass(Register dst, Register src) { #ifdef _LP64 if (UseCompressedClassPointers) { movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); decode_klass_not_null(dst); } else #endif movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); } void MacroAssembler::load_prototype_header(Register dst, Register src) { load_klass(dst, src); movptr(dst, Address(dst, Klass::prototype_header_offset())); } void MacroAssembler::store_klass(Register dst, Register src) { #ifdef _LP64 if (UseCompressedClassPointers) { encode_klass_not_null(src); movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); } else #endif movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); } void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, Register tmp1, Register thread_tmp) { BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); decorators = AccessInternal::decorator_fixup(decorators); bool as_raw = (decorators & AS_RAW) != 0; if (as_raw) { bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); } else { bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); } } void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src, Register tmp1, Register tmp2) { BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); decorators = AccessInternal::decorator_fixup(decorators); bool as_raw = (decorators & AS_RAW) != 0; if (as_raw) { bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2); } else { bs->store_at(this, decorators, type, dst, src, tmp1, tmp2); } } void MacroAssembler::resolve(DecoratorSet decorators, Register obj) { // Use stronger ACCESS_WRITE|ACCESS_READ by default. if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) { decorators |= ACCESS_READ | ACCESS_WRITE; } BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); return bs->resolve(this, decorators, obj); } void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, Register thread_tmp, DecoratorSet decorators) { access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); } // Doesn't do verfication, generates fixed size code void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, Register thread_tmp, DecoratorSet decorators) { access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); } void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1, Register tmp2, DecoratorSet decorators) { access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); } // Used for storing NULLs. void MacroAssembler::store_heap_oop_null(Address dst) { access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg); } #ifdef _LP64 void MacroAssembler::store_klass_gap(Register dst, Register src) { if (UseCompressedClassPointers) { // Store to klass gap in destination movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); } } #ifdef ASSERT void MacroAssembler::verify_heapbase(const char* msg) { assert (UseCompressedOops, "should be compressed"); assert (Universe::heap() != NULL, "java heap should be initialized"); if (CheckCompressedOops) { Label ok; push(rscratch1); // cmpptr trashes rscratch1 cmpptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr())); jcc(Assembler::equal, ok); STOP(msg); bind(ok); pop(rscratch1); } } #endif // Algorithm must match oop.inline.hpp encode_heap_oop. void MacroAssembler::encode_heap_oop(Register r) { #ifdef ASSERT verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); #endif verify_oop(r); if (CompressedOops::base() == NULL) { if (CompressedOops::shift() != 0) { assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); shrq(r, LogMinObjAlignmentInBytes); } return; } testq(r, r); cmovq(Assembler::equal, r, r12_heapbase); subq(r, r12_heapbase); shrq(r, LogMinObjAlignmentInBytes); } void MacroAssembler::encode_heap_oop_not_null(Register r) { #ifdef ASSERT verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); if (CheckCompressedOops) { Label ok; testq(r, r); jcc(Assembler::notEqual, ok); STOP("null oop passed to encode_heap_oop_not_null"); bind(ok); } #endif verify_oop(r); if (CompressedOops::base() != NULL) { subq(r, r12_heapbase); } if (CompressedOops::shift() != 0) { assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); shrq(r, LogMinObjAlignmentInBytes); } } void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { #ifdef ASSERT verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); if (CheckCompressedOops) { Label ok; testq(src, src); jcc(Assembler::notEqual, ok); STOP("null oop passed to encode_heap_oop_not_null2"); bind(ok); } #endif verify_oop(src); if (dst != src) { movq(dst, src); } if (CompressedOops::base() != NULL) { subq(dst, r12_heapbase); } if (CompressedOops::shift() != 0) { assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); shrq(dst, LogMinObjAlignmentInBytes); } } void MacroAssembler::decode_heap_oop(Register r) { #ifdef ASSERT verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); #endif if (CompressedOops::base() == NULL) { if (CompressedOops::shift() != 0) { assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); shlq(r, LogMinObjAlignmentInBytes); } } else { Label done; shlq(r, LogMinObjAlignmentInBytes); jccb(Assembler::equal, done); addq(r, r12_heapbase); bind(done); } verify_oop(r); } void MacroAssembler::decode_heap_oop_not_null(Register r) { // Note: it will change flags assert (UseCompressedOops, "should only be used for compressed headers"); assert (Universe::heap() != NULL, "java heap should be initialized"); // Cannot assert, unverified entry point counts instructions (see .ad file) // vtableStubs also counts instructions in pd_code_size_limit. // Also do not verify_oop as this is called by verify_oop. if (CompressedOops::shift() != 0) { assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); shlq(r, LogMinObjAlignmentInBytes); if (CompressedOops::base() != NULL) { addq(r, r12_heapbase); } } else { assert (CompressedOops::base() == NULL, "sanity"); } } void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { // Note: it will change flags assert (UseCompressedOops, "should only be used for compressed headers"); assert (Universe::heap() != NULL, "java heap should be initialized"); // Cannot assert, unverified entry point counts instructions (see .ad file) // vtableStubs also counts instructions in pd_code_size_limit. // Also do not verify_oop as this is called by verify_oop. if (CompressedOops::shift() != 0) { assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); if (LogMinObjAlignmentInBytes == Address::times_8) { leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); } else { if (dst != src) { movq(dst, src); } shlq(dst, LogMinObjAlignmentInBytes); if (CompressedOops::base() != NULL) { addq(dst, r12_heapbase); } } } else { assert (CompressedOops::base() == NULL, "sanity"); if (dst != src) { movq(dst, src); } } } void MacroAssembler::encode_klass_not_null(Register r) { if (CompressedKlassPointers::base() != NULL) { // Use r12 as a scratch register in which to temporarily load the narrow_klass_base. assert(r != r12_heapbase, "Encoding a klass in r12"); mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base()); subq(r, r12_heapbase); } if (CompressedKlassPointers::shift() != 0) { assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); shrq(r, LogKlassAlignmentInBytes); } if (CompressedKlassPointers::base() != NULL) { reinit_heapbase(); } } void MacroAssembler::encode_klass_not_null(Register dst, Register src) { if (dst == src) { encode_klass_not_null(src); } else { if (CompressedKlassPointers::base() != NULL) { mov64(dst, (int64_t)CompressedKlassPointers::base()); negq(dst); addq(dst, src); } else { movptr(dst, src); } if (CompressedKlassPointers::shift() != 0) { assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); shrq(dst, LogKlassAlignmentInBytes); } } } // Function instr_size_for_decode_klass_not_null() counts the instructions // generated by decode_klass_not_null(register r) and reinit_heapbase(), // when (Universe::heap() != NULL). Hence, if the instructions they // generate change, then this method needs to be updated. int MacroAssembler::instr_size_for_decode_klass_not_null() { assert (UseCompressedClassPointers, "only for compressed klass ptrs"); if (CompressedKlassPointers::base() != NULL) { // mov64 + addq + shlq? + mov64 (for reinit_heapbase()). return (CompressedKlassPointers::shift() == 0 ? 20 : 24); } else { // longest load decode klass function, mov64, leaq return 16; } } // !!! If the instructions that get generated here change then function // instr_size_for_decode_klass_not_null() needs to get updated. void MacroAssembler::decode_klass_not_null(Register r) { // Note: it will change flags assert (UseCompressedClassPointers, "should only be used for compressed headers"); assert(r != r12_heapbase, "Decoding a klass in r12"); // Cannot assert, unverified entry point counts instructions (see .ad file) // vtableStubs also counts instructions in pd_code_size_limit. // Also do not verify_oop as this is called by verify_oop. if (CompressedKlassPointers::shift() != 0) { assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); shlq(r, LogKlassAlignmentInBytes); } // Use r12 as a scratch register in which to temporarily load the narrow_klass_base. if (CompressedKlassPointers::base() != NULL) { mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base()); addq(r, r12_heapbase); reinit_heapbase(); } } void MacroAssembler::decode_klass_not_null(Register dst, Register src) { // Note: it will change flags assert (UseCompressedClassPointers, "should only be used for compressed headers"); if (dst == src) { decode_klass_not_null(dst); } else { // Cannot assert, unverified entry point counts instructions (see .ad file) // vtableStubs also counts instructions in pd_code_size_limit. // Also do not verify_oop as this is called by verify_oop. mov64(dst, (int64_t)CompressedKlassPointers::base()); if (CompressedKlassPointers::shift() != 0) { assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?"); leaq(dst, Address(dst, src, Address::times_8, 0)); } else { addq(dst, src); } } } void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { assert (UseCompressedOops, "should only be used for compressed headers"); assert (Universe::heap() != NULL, "java heap should be initialized"); assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); int oop_index = oop_recorder()->find_index(obj); RelocationHolder rspec = oop_Relocation::spec(oop_index); mov_narrow_oop(dst, oop_index, rspec); } void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { assert (UseCompressedOops, "should only be used for compressed headers"); assert (Universe::heap() != NULL, "java heap should be initialized"); assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); int oop_index = oop_recorder()->find_index(obj); RelocationHolder rspec = oop_Relocation::spec(oop_index); mov_narrow_oop(dst, oop_index, rspec); } void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { assert (UseCompressedClassPointers, "should only be used for compressed headers"); assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); int klass_index = oop_recorder()->find_index(k); RelocationHolder rspec = metadata_Relocation::spec(klass_index); mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); } void MacroAssembler::set_narrow_klass(Address dst, Klass* k) { assert (UseCompressedClassPointers, "should only be used for compressed headers"); assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); int klass_index = oop_recorder()->find_index(k); RelocationHolder rspec = metadata_Relocation::spec(klass_index); mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); } void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { assert (UseCompressedOops, "should only be used for compressed headers"); assert (Universe::heap() != NULL, "java heap should be initialized"); assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); int oop_index = oop_recorder()->find_index(obj); RelocationHolder rspec = oop_Relocation::spec(oop_index); Assembler::cmp_narrow_oop(dst, oop_index, rspec); } void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { assert (UseCompressedOops, "should only be used for compressed headers"); assert (Universe::heap() != NULL, "java heap should be initialized"); assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); int oop_index = oop_recorder()->find_index(obj); RelocationHolder rspec = oop_Relocation::spec(oop_index); Assembler::cmp_narrow_oop(dst, oop_index, rspec); } void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) { assert (UseCompressedClassPointers, "should only be used for compressed headers"); assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); int klass_index = oop_recorder()->find_index(k); RelocationHolder rspec = metadata_Relocation::spec(klass_index); Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); } void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) { assert (UseCompressedClassPointers, "should only be used for compressed headers"); assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); int klass_index = oop_recorder()->find_index(k); RelocationHolder rspec = metadata_Relocation::spec(klass_index); Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); } void MacroAssembler::reinit_heapbase() { if (UseCompressedOops || UseCompressedClassPointers) { if (Universe::heap() != NULL) { if (CompressedOops::base() == NULL) { MacroAssembler::xorptr(r12_heapbase, r12_heapbase); } else { mov64(r12_heapbase, (int64_t)CompressedOops::ptrs_base()); } } else { movptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr())); } } } #endif // _LP64 // C2 compiled method's prolog code. void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub) { // WARNING: Initial instruction MUST be 5 bytes or longer so that // NativeJump::patch_verified_entry will be able to patch out the entry // code safely. The push to verify stack depth is ok at 5 bytes, // the frame allocation can be either 3 or 6 bytes. So if we don't do // stack bang then we must use the 6 byte frame allocation even if // we have no frame. :-( assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect"); assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); // Remove word for return addr framesize -= wordSize; stack_bang_size -= wordSize; // Calls to C2R adapters often do not accept exceptional returns. // We require that their callers must bang for them. But be careful, because // some VM calls (such as call site linkage) can use several kilobytes of // stack. But the stack safety zone should account for that. // See bugs 4446381, 4468289, 4497237. if (stack_bang_size > 0) { generate_stack_overflow_check(stack_bang_size); // We always push rbp, so that on return to interpreter rbp, will be // restored correctly and we can correct the stack. push(rbp); // Save caller's stack pointer into RBP if the frame pointer is preserved. if (PreserveFramePointer) { mov(rbp, rsp); } // Remove word for ebp framesize -= wordSize; // Create frame if (framesize) { subptr(rsp, framesize); } } else { // Create frame (force generation of a 4 byte immediate value) subptr_imm32(rsp, framesize); // Save RBP register now. framesize -= wordSize; movptr(Address(rsp, framesize), rbp); // Save caller's stack pointer into RBP if the frame pointer is preserved. if (PreserveFramePointer) { movptr(rbp, rsp); if (framesize > 0) { addptr(rbp, framesize); } } } if (VerifyStackAtCalls) { // Majik cookie to verify stack depth framesize -= wordSize; movptr(Address(rsp, framesize), (int32_t)0xbadb100d); } #ifndef _LP64 // If method sets FPU control word do it now if (fp_mode_24b) { fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24())); } if (UseSSE >= 2 && VerifyFPU) { verify_FPU(0, "FPU stack must be clean on entry"); } #endif #ifdef ASSERT if (VerifyStackAtCalls) { Label L; push(rax); mov(rax, rsp); andptr(rax, StackAlignmentInBytes-1); cmpptr(rax, StackAlignmentInBytes-wordSize); pop(rax); jcc(Assembler::equal, L); STOP("Stack is not properly aligned!"); bind(L); } #endif if (!is_stub) { BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->nmethod_entry_barrier(this); } } // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers void MacroAssembler::xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp) { // cnt - number of qwords (8-byte words). // base - start address, qword aligned. Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end; if (UseAVX >= 2) { vpxor(xtmp, xtmp, xtmp, AVX_256bit); } else { pxor(xtmp, xtmp); } jmp(L_zero_64_bytes); BIND(L_loop); if (UseAVX >= 2) { vmovdqu(Address(base, 0), xtmp); vmovdqu(Address(base, 32), xtmp); } else { movdqu(Address(base, 0), xtmp); movdqu(Address(base, 16), xtmp); movdqu(Address(base, 32), xtmp); movdqu(Address(base, 48), xtmp); } addptr(base, 64); BIND(L_zero_64_bytes); subptr(cnt, 8); jccb(Assembler::greaterEqual, L_loop); addptr(cnt, 4); jccb(Assembler::less, L_tail); // Copy trailing 32 bytes if (UseAVX >= 2) { vmovdqu(Address(base, 0), xtmp); } else { movdqu(Address(base, 0), xtmp); movdqu(Address(base, 16), xtmp); } addptr(base, 32); subptr(cnt, 4); BIND(L_tail); addptr(cnt, 4); jccb(Assembler::lessEqual, L_end); decrement(cnt); BIND(L_sloop); movq(Address(base, 0), xtmp); addptr(base, 8); decrement(cnt); jccb(Assembler::greaterEqual, L_sloop); BIND(L_end); } void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, bool is_large) { // cnt - number of qwords (8-byte words). // base - start address, qword aligned. // is_large - if optimizers know cnt is larger than InitArrayShortSize assert(base==rdi, "base register must be edi for rep stos"); assert(tmp==rax, "tmp register must be eax for rep stos"); assert(cnt==rcx, "cnt register must be ecx for rep stos"); assert(InitArrayShortSize % BytesPerLong == 0, "InitArrayShortSize should be the multiple of BytesPerLong"); Label DONE; if (!is_large || !UseXMMForObjInit) { xorptr(tmp, tmp); } if (!is_large) { Label LOOP, LONG; cmpptr(cnt, InitArrayShortSize/BytesPerLong); jccb(Assembler::greater, LONG); NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM decrement(cnt); jccb(Assembler::negative, DONE); // Zero length // Use individual pointer-sized stores for small counts: BIND(LOOP); movptr(Address(base, cnt, Address::times_ptr), tmp); decrement(cnt); jccb(Assembler::greaterEqual, LOOP); jmpb(DONE); BIND(LONG); } // Use longer rep-prefixed ops for non-small counts: if (UseFastStosb) { shlptr(cnt, 3); // convert to number of bytes rep_stosb(); } else if (UseXMMForObjInit) { movptr(tmp, base); xmm_clear_mem(tmp, cnt, xtmp); } else { NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM rep_stos(); } BIND(DONE); } #ifdef COMPILER2 // IndexOf for constant substrings with size >= 8 chars // which don't need to be loaded through stack. void MacroAssembler::string_indexofC8(Register str1, Register str2, Register cnt1, Register cnt2, int int_cnt2, Register result, XMMRegister vec, Register tmp, int ae) { ShortBranchVerifier sbv(this); assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required"); assert(ae != StrIntrinsicNode::LU, "Invalid encoding"); // This method uses the pcmpestri instruction with bound registers // inputs: // xmm - substring // rax - substring length (elements count) // mem - scanned string // rdx - string length (elements count) // 0xd - mode: 1100 (substring search) + 01 (unsigned shorts) // 0xc - mode: 1100 (substring search) + 00 (unsigned bytes) // outputs: // rcx - matched index in string assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri"); int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8 Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2; Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1; Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR, MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE; // Note, inline_string_indexOf() generates checks: // if (substr.count > string.count) return -1; // if (substr.count == 0) return 0; assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars"); // Load substring. if (ae == StrIntrinsicNode::UL) { pmovzxbw(vec, Address(str2, 0)); } else { movdqu(vec, Address(str2, 0)); } movl(cnt2, int_cnt2); movptr(result, str1); // string addr if (int_cnt2 > stride) { jmpb(SCAN_TO_SUBSTR); // Reload substr for rescan, this code // is executed only for large substrings (> 8 chars) bind(RELOAD_SUBSTR); if (ae == StrIntrinsicNode::UL) { pmovzxbw(vec, Address(str2, 0)); } else { movdqu(vec, Address(str2, 0)); } negptr(cnt2); // Jumped here with negative cnt2, convert to positive bind(RELOAD_STR); // We came here after the beginning of the substring was // matched but the rest of it was not so we need to search // again. Start from the next element after the previous match. // cnt2 is number of substring reminding elements and // cnt1 is number of string reminding elements when cmp failed. // Restored cnt1 = cnt1 - cnt2 + int_cnt2 subl(cnt1, cnt2); addl(cnt1, int_cnt2); movl(cnt2, int_cnt2); // Now restore cnt2 decrementl(cnt1); // Shift to next element cmpl(cnt1, cnt2); jcc(Assembler::negative, RET_NOT_FOUND); // Left less then substring addptr(result, (1< 8) // Scan string for start of substr in 16-byte vectors bind(SCAN_TO_SUBSTR); pcmpestri(vec, Address(result, 0), mode); jccb(Assembler::below, FOUND_CANDIDATE); // CF == 1 subl(cnt1, stride); jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string cmpl(cnt1, cnt2); jccb(Assembler::negative, RET_NOT_FOUND); // Left less then substring addptr(result, 16); jmpb(SCAN_TO_SUBSTR); // Found a potential substr bind(FOUND_CANDIDATE); // Matched whole vector if first element matched (tmp(rcx) == 0). if (int_cnt2 == stride) { jccb(Assembler::overflow, RET_FOUND); // OF == 1 } else { // int_cnt2 > 8 jccb(Assembler::overflow, FOUND_SUBSTR); } // After pcmpestri tmp(rcx) contains matched element index // Compute start addr of substr lea(result, Address(result, tmp, scale1)); // Make sure string is still long enough subl(cnt1, tmp); cmpl(cnt1, cnt2); if (int_cnt2 == stride) { jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR); } else { // int_cnt2 > 8 jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD); } // Left less then substring. bind(RET_NOT_FOUND); movl(result, -1); jmp(EXIT); if (int_cnt2 > stride) { // This code is optimized for the case when whole substring // is matched if its head is matched. bind(MATCH_SUBSTR_HEAD); pcmpestri(vec, Address(result, 0), mode); // Reload only string if does not match jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0 Label CONT_SCAN_SUBSTR; // Compare the rest of substring (> 8 chars). bind(FOUND_SUBSTR); // First 8 chars are already matched. negptr(cnt2); addptr(cnt2, stride); bind(SCAN_SUBSTR); subl(cnt1, stride); cmpl(cnt2, -stride); // Do not read beyond substring jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR); // Back-up strings to avoid reading beyond substring: // cnt1 = cnt1 - cnt2 + 8 addl(cnt1, cnt2); // cnt2 is negative addl(cnt1, stride); movl(cnt2, stride); negptr(cnt2); bind(CONT_SCAN_SUBSTR); if (int_cnt2 < (int)G) { int tail_off1 = int_cnt2< 8) bind(RET_FOUND); // Found result if we matched full small substring. // Compute substr offset subptr(result, str1); if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { shrl(result, 1); // index } bind(EXIT); } // string_indexofC8 // Small strings are loaded through stack if they cross page boundary. void MacroAssembler::string_indexof(Register str1, Register str2, Register cnt1, Register cnt2, int int_cnt2, Register result, XMMRegister vec, Register tmp, int ae) { ShortBranchVerifier sbv(this); assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required"); assert(ae != StrIntrinsicNode::LU, "Invalid encoding"); // // int_cnt2 is length of small (< 8 chars) constant substring // or (-1) for non constant substring in which case its length // is in cnt2 register. // // Note, inline_string_indexOf() generates checks: // if (substr.count > string.count) return -1; // if (substr.count == 0) return 0; // int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8 assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0"); // This method uses the pcmpestri instruction with bound registers // inputs: // xmm - substring // rax - substring length (elements count) // mem - scanned string // rdx - string length (elements count) // 0xd - mode: 1100 (substring search) + 01 (unsigned shorts) // 0xc - mode: 1100 (substring search) + 00 (unsigned bytes) // outputs: // rcx - matched index in string assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri"); int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2; Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1; Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR, RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR, FOUND_CANDIDATE; { //======================================================== // We don't know where these strings are located // and we can't read beyond them. Load them through stack. Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR; movptr(tmp, rsp); // save old SP if (int_cnt2 > 0) { // small (< 8 chars) constant substring if (int_cnt2 == (1>>scale2)) { // One byte assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding"); load_unsigned_byte(result, Address(str2, 0)); movdl(vec, result); // move 32 bits } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) { // Three bytes // Not enough header space in 32-bit VM: 12+3 = 15. movl(result, Address(str2, -1)); shrl(result, 8); movdl(vec, result); // move 32 bits } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) { // One char load_unsigned_short(result, Address(str2, 0)); movdl(vec, result); // move 32 bits } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars movdl(vec, Address(str2, 0)); // move 32 bits } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars movq(vec, Address(str2, 0)); // move 64 bits } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7}) // Array header size is 12 bytes in 32-bit VM // + 6 bytes for 3 chars == 18 bytes, // enough space to load vec and shift. assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity"); if (ae == StrIntrinsicNode::UL) { int tail_off = int_cnt2-8; pmovzxbw(vec, Address(str2, tail_off)); psrldq(vec, -2*tail_off); } else { int tail_off = int_cnt2*(1< 8 chars) bind(RELOAD_SUBSTR); movptr(str2, Address(rsp, 2*wordSize)); movl(cnt2, Address(rsp, 3*wordSize)); if (ae == StrIntrinsicNode::UL) { pmovzxbw(vec, Address(str2, 0)); } else { movdqu(vec, Address(str2, 0)); } // We came here after the beginning of the substring was // matched but the rest of it was not so we need to search // again. Start from the next element after the previous match. subptr(str1, result); // Restore counter if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { shrl(str1, 1); } addl(cnt1, str1); decrementl(cnt1); // Shift to next element cmpl(cnt1, cnt2); jcc(Assembler::negative, RET_NOT_FOUND); // Left less then substring addptr(result, (1< 0) { // Constant substring // Repeat search for small substring (< 8 chars) // from new point without reloading substring. // Have to check that we don't read beyond string. cmpl(tmp, stride-int_cnt2); jccb(Assembler::greater, ADJUST_STR); // Fall through if matched whole substring. } else { // non constant assert(int_cnt2 == -1, "should be != 0"); addl(tmp, cnt2); // Found result if we matched whole substring. cmpl(tmp, stride); jcc(Assembler::lessEqual, RET_FOUND); // Repeat search for small substring (<= 8 chars) // from new point 'str1' without reloading substring. cmpl(cnt2, stride); // Have to check that we don't read beyond string. jccb(Assembler::lessEqual, ADJUST_STR); Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG; // Compare the rest of substring (> 8 chars). movptr(str1, result); cmpl(tmp, cnt2); // First 8 chars are already matched. jccb(Assembler::equal, CHECK_NEXT); bind(SCAN_SUBSTR); pcmpestri(vec, Address(str1, 0), mode); // Need to reload strings pointers if not matched whole vector jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0 bind(CHECK_NEXT); subl(cnt2, stride); jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring addptr(str1, 16); if (ae == StrIntrinsicNode::UL) { addptr(str2, 8); } else { addptr(str2, 16); } subl(cnt1, stride); cmpl(cnt2, stride); // Do not read beyond substring jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR); // Back-up strings to avoid reading beyond substring. if (ae == StrIntrinsicNode::UL) { lea(str2, Address(str2, cnt2, scale2, -8)); lea(str1, Address(str1, cnt2, scale1, -16)); } else { lea(str2, Address(str2, cnt2, scale2, -16)); lea(str1, Address(str1, cnt2, scale1, -16)); } subl(cnt1, cnt2); movl(cnt2, stride); addl(cnt1, stride); bind(CONT_SCAN_SUBSTR); if (ae == StrIntrinsicNode::UL) { pmovzxbw(vec, Address(str2, 0)); } else { movdqu(vec, Address(str2, 0)); } jmp(SCAN_SUBSTR); bind(RET_FOUND_LONG); movptr(str1, Address(rsp, wordSize)); } // non constant bind(RET_FOUND); // Compute substr offset subptr(result, str1); if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { shrl(result, 1); // index } bind(CLEANUP); pop(rsp); // restore SP } // string_indexof void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result, XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) { ShortBranchVerifier sbv(this); assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required"); int stride = 8; Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP, SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP, RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT, FOUND_SEQ_CHAR, DONE_LABEL; movptr(result, str1); if (UseAVX >= 2) { cmpl(cnt1, stride); jcc(Assembler::less, SCAN_TO_CHAR); cmpl(cnt1, 2*stride); jcc(Assembler::less, SCAN_TO_8_CHAR_INIT); movdl(vec1, ch); vpbroadcastw(vec1, vec1, Assembler::AVX_256bit); vpxor(vec2, vec2); movl(tmp, cnt1); andl(tmp, 0xFFFFFFF0); //vector count (in chars) andl(cnt1,0x0000000F); //tail count (in chars) bind(SCAN_TO_16_CHAR_LOOP); vmovdqu(vec3, Address(result, 0)); vpcmpeqw(vec3, vec3, vec1, 1); vptest(vec2, vec3); jcc(Assembler::carryClear, FOUND_CHAR); addptr(result, 32); subl(tmp, 2*stride); jcc(Assembler::notZero, SCAN_TO_16_CHAR_LOOP); jmp(SCAN_TO_8_CHAR); bind(SCAN_TO_8_CHAR_INIT); movdl(vec1, ch); pshuflw(vec1, vec1, 0x00); pshufd(vec1, vec1, 0); pxor(vec2, vec2); } bind(SCAN_TO_8_CHAR); cmpl(cnt1, stride); jcc(Assembler::less, SCAN_TO_CHAR); if (UseAVX < 2) { movdl(vec1, ch); pshuflw(vec1, vec1, 0x00); pshufd(vec1, vec1, 0); pxor(vec2, vec2); } movl(tmp, cnt1); andl(tmp, 0xFFFFFFF8); //vector count (in chars) andl(cnt1,0x00000007); //tail count (in chars) bind(SCAN_TO_8_CHAR_LOOP); movdqu(vec3, Address(result, 0)); pcmpeqw(vec3, vec1); ptest(vec2, vec3); jcc(Assembler::carryClear, FOUND_CHAR); addptr(result, 16); subl(tmp, stride); jcc(Assembler::notZero, SCAN_TO_8_CHAR_LOOP); bind(SCAN_TO_CHAR); testl(cnt1, cnt1); jcc(Assembler::zero, RET_NOT_FOUND); bind(SCAN_TO_CHAR_LOOP); load_unsigned_short(tmp, Address(result, 0)); cmpl(ch, tmp); jccb(Assembler::equal, FOUND_SEQ_CHAR); addptr(result, 2); subl(cnt1, 1); jccb(Assembler::zero, RET_NOT_FOUND); jmp(SCAN_TO_CHAR_LOOP); bind(RET_NOT_FOUND); movl(result, -1); jmpb(DONE_LABEL); bind(FOUND_CHAR); if (UseAVX >= 2) { vpmovmskb(tmp, vec3); } else { pmovmskb(tmp, vec3); } bsfl(ch, tmp); addl(result, ch); bind(FOUND_SEQ_CHAR); subptr(result, str1); shrl(result, 1); bind(DONE_LABEL); } // string_indexof_char // helper function for string_compare void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2, Address::ScaleFactor scale, Address::ScaleFactor scale1, Address::ScaleFactor scale2, Register index, int ae) { if (ae == StrIntrinsicNode::LL) { load_unsigned_byte(elem1, Address(str1, index, scale, 0)); load_unsigned_byte(elem2, Address(str2, index, scale, 0)); } else if (ae == StrIntrinsicNode::UU) { load_unsigned_short(elem1, Address(str1, index, scale, 0)); load_unsigned_short(elem2, Address(str2, index, scale, 0)); } else { load_unsigned_byte(elem1, Address(str1, index, scale1, 0)); load_unsigned_short(elem2, Address(str2, index, scale2, 0)); } } // Compare strings, used for char[] and byte[]. void MacroAssembler::string_compare(Register str1, Register str2, Register cnt1, Register cnt2, Register result, XMMRegister vec1, int ae) { ShortBranchVerifier sbv(this); Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL; Label COMPARE_WIDE_VECTORS_LOOP_FAILED; // used only _LP64 && AVX3 int stride, stride2, adr_stride, adr_stride1, adr_stride2; int stride2x2 = 0x40; Address::ScaleFactor scale = Address::no_scale; Address::ScaleFactor scale1 = Address::no_scale; Address::ScaleFactor scale2 = Address::no_scale; if (ae != StrIntrinsicNode::LL) { stride2x2 = 0x20; } if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) { shrl(cnt2, 1); } // Compute the minimum of the string lengths and the // difference of the string lengths (stack). // Do the conditional move stuff movl(result, cnt1); subl(cnt1, cnt2); push(cnt1); cmov32(Assembler::lessEqual, cnt2, result); // cnt2 = min(cnt1, cnt2) // Is the minimum length zero? testl(cnt2, cnt2); jcc(Assembler::zero, LENGTH_DIFF_LABEL); if (ae == StrIntrinsicNode::LL) { // Load first bytes load_unsigned_byte(result, Address(str1, 0)); // result = str1[0] load_unsigned_byte(cnt1, Address(str2, 0)); // cnt1 = str2[0] } else if (ae == StrIntrinsicNode::UU) { // Load first characters load_unsigned_short(result, Address(str1, 0)); load_unsigned_short(cnt1, Address(str2, 0)); } else { load_unsigned_byte(result, Address(str1, 0)); load_unsigned_short(cnt1, Address(str2, 0)); } subl(result, cnt1); jcc(Assembler::notZero, POP_LABEL); if (ae == StrIntrinsicNode::UU) { // Divide length by 2 to get number of chars shrl(cnt2, 1); } cmpl(cnt2, 1); jcc(Assembler::equal, LENGTH_DIFF_LABEL); // Check if the strings start at the same location and setup scale and stride if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) { cmpptr(str1, str2); jcc(Assembler::equal, LENGTH_DIFF_LABEL); if (ae == StrIntrinsicNode::LL) { scale = Address::times_1; stride = 16; } else { scale = Address::times_2; stride = 8; } } else { scale1 = Address::times_1; scale2 = Address::times_2; // scale not used stride = 8; } if (UseAVX >= 2 && UseSSE42Intrinsics) { Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR; Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR; Label COMPARE_WIDE_VECTORS_LOOP_AVX2; Label COMPARE_TAIL_LONG; Label COMPARE_WIDE_VECTORS_LOOP_AVX3; // used only _LP64 && AVX3 int pcmpmask = 0x19; if (ae == StrIntrinsicNode::LL) { pcmpmask &= ~0x01; } // Setup to compare 16-chars (32-bytes) vectors, // start from first character again because it has aligned address. if (ae == StrIntrinsicNode::LL) { stride2 = 32; } else { stride2 = 16; } if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) { adr_stride = stride << scale; } else { adr_stride1 = 8; //stride << scale1; adr_stride2 = 16; //stride << scale2; } assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri"); // rax and rdx are used by pcmpestri as elements counters movl(result, cnt2); andl(cnt2, ~(stride2-1)); // cnt2 holds the vector count jcc(Assembler::zero, COMPARE_TAIL_LONG); // fast path : compare first 2 8-char vectors. bind(COMPARE_16_CHARS); if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) { movdqu(vec1, Address(str1, 0)); } else { pmovzxbw(vec1, Address(str1, 0)); } pcmpestri(vec1, Address(str2, 0), pcmpmask); jccb(Assembler::below, COMPARE_INDEX_CHAR); if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) { movdqu(vec1, Address(str1, adr_stride)); pcmpestri(vec1, Address(str2, adr_stride), pcmpmask); } else { pmovzxbw(vec1, Address(str1, adr_stride1)); pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask); } jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS); addl(cnt1, stride); // Compare the characters at index in cnt1 bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae); subl(result, cnt2); jmp(POP_LABEL); // Setup the registers to start vector comparison loop bind(COMPARE_WIDE_VECTORS); if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) { lea(str1, Address(str1, result, scale)); lea(str2, Address(str2, result, scale)); } else { lea(str1, Address(str1, result, scale1)); lea(str2, Address(str2, result, scale2)); } subl(result, stride2); subl(cnt2, stride2); jcc(Assembler::zero, COMPARE_WIDE_TAIL); negptr(result); // In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest) bind(COMPARE_WIDE_VECTORS_LOOP); #ifdef _LP64 if ((AVX3Threshold == 0) && VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop cmpl(cnt2, stride2x2); jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2); testl(cnt2, stride2x2-1); // cnt2 holds the vector count jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2); // means we cannot subtract by 0x40 bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) { evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit); evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0 } else { vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit); evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0 } kortestql(k7, k7); jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED); // miscompare addptr(result, stride2x2); // update since we already compared at this addr subl(cnt2, stride2x2); // and sub the size too jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3); vpxor(vec1, vec1); jmpb(COMPARE_WIDE_TAIL); }//if (VM_Version::supports_avx512vlbw()) #endif // _LP64 bind(COMPARE_WIDE_VECTORS_LOOP_AVX2); if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) { vmovdqu(vec1, Address(str1, result, scale)); vpxor(vec1, Address(str2, result, scale)); } else { vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit); vpxor(vec1, Address(str2, result, scale2)); } vptest(vec1, vec1); jcc(Assembler::notZero, VECTOR_NOT_EQUAL); addptr(result, stride2); subl(cnt2, stride2); jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP); // clean upper bits of YMM registers vpxor(vec1, vec1); // compare wide vectors tail bind(COMPARE_WIDE_TAIL); testptr(result, result); jcc(Assembler::zero, LENGTH_DIFF_LABEL); movl(result, stride2); movl(cnt2, result); negptr(result); jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2); // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors. bind(VECTOR_NOT_EQUAL); // clean upper bits of YMM registers vpxor(vec1, vec1); if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) { lea(str1, Address(str1, result, scale)); lea(str2, Address(str2, result, scale)); } else { lea(str1, Address(str1, result, scale1)); lea(str2, Address(str2, result, scale2)); } jmp(COMPARE_16_CHARS); // Compare tail chars, length between 1 to 15 chars bind(COMPARE_TAIL_LONG); movl(cnt2, result); cmpl(cnt2, stride); jcc(Assembler::less, COMPARE_SMALL_STR); if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) { movdqu(vec1, Address(str1, 0)); } else { pmovzxbw(vec1, Address(str1, 0)); } pcmpestri(vec1, Address(str2, 0), pcmpmask); jcc(Assembler::below, COMPARE_INDEX_CHAR); subptr(cnt2, stride); jcc(Assembler::zero, LENGTH_DIFF_LABEL); if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) { lea(str1, Address(str1, result, scale)); lea(str2, Address(str2, result, scale)); } else { lea(str1, Address(str1, result, scale1)); lea(str2, Address(str2, result, scale2)); } negptr(cnt2); jmpb(WHILE_HEAD_LABEL); bind(COMPARE_SMALL_STR); } else if (UseSSE42Intrinsics) { Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL; int pcmpmask = 0x19; // Setup to compare 8-char (16-byte) vectors, // start from first character again because it has aligned address. movl(result, cnt2); andl(cnt2, ~(stride - 1)); // cnt2 holds the vector count if (ae == StrIntrinsicNode::LL) { pcmpmask &= ~0x01; } jcc(Assembler::zero, COMPARE_TAIL); if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) { lea(str1, Address(str1, result, scale)); lea(str2, Address(str2, result, scale)); } else { lea(str1, Address(str1, result, scale1)); lea(str2, Address(str2, result, scale2)); } negptr(result); // pcmpestri // inputs: // vec1- substring // rax - negative string length (elements count) // mem - scanned string // rdx - string length (elements count) // pcmpmask - cmp mode: 11000 (string compare with negated result) // + 00 (unsigned bytes) or + 01 (unsigned shorts) // outputs: // rcx - first mismatched element index assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri"); bind(COMPARE_WIDE_VECTORS); if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) { movdqu(vec1, Address(str1, result, scale)); pcmpestri(vec1, Address(str2, result, scale), pcmpmask); } else { pmovzxbw(vec1, Address(str1, result, scale1)); pcmpestri(vec1, Address(str2, result, scale2), pcmpmask); } // After pcmpestri cnt1(rcx) contains mismatched element index jccb(Assembler::below, VECTOR_NOT_EQUAL); // CF==1 addptr(result, stride); subptr(cnt2, stride); jccb(Assembler::notZero, COMPARE_WIDE_VECTORS); // compare wide vectors tail testptr(result, result); jcc(Assembler::zero, LENGTH_DIFF_LABEL); movl(cnt2, stride); movl(result, stride); negptr(result); if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) { movdqu(vec1, Address(str1, result, scale)); pcmpestri(vec1, Address(str2, result, scale), pcmpmask); } else { pmovzxbw(vec1, Address(str1, result, scale1)); pcmpestri(vec1, Address(str2, result, scale2), pcmpmask); } jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL); // Mismatched characters in the vectors bind(VECTOR_NOT_EQUAL); addptr(cnt1, result); load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae); subl(result, cnt2); jmpb(POP_LABEL); bind(COMPARE_TAIL); // limit is zero movl(cnt2, result); // Fallthru to tail compare } // Shift str2 and str1 to the end of the arrays, negate min if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) { lea(str1, Address(str1, cnt2, scale)); lea(str2, Address(str2, cnt2, scale)); } else { lea(str1, Address(str1, cnt2, scale1)); lea(str2, Address(str2, cnt2, scale2)); } decrementl(cnt2); // first character was compared already negptr(cnt2); // Compare the rest of the elements bind(WHILE_HEAD_LABEL); load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae); subl(result, cnt1); jccb(Assembler::notZero, POP_LABEL); increment(cnt2); jccb(Assembler::notZero, WHILE_HEAD_LABEL); // Strings are equal up to min length. Return the length difference. bind(LENGTH_DIFF_LABEL); pop(result); if (ae == StrIntrinsicNode::UU) { // Divide diff by 2 to get number of chars sarl(result, 1); } jmpb(DONE_LABEL); #ifdef _LP64 if (VM_Version::supports_avx512vlbw()) { bind(COMPARE_WIDE_VECTORS_LOOP_FAILED); kmovql(cnt1, k7); notq(cnt1); bsfq(cnt2, cnt1); if (ae != StrIntrinsicNode::LL) { // Divide diff by 2 to get number of chars sarl(cnt2, 1); } addq(result, cnt2); if (ae == StrIntrinsicNode::LL) { load_unsigned_byte(cnt1, Address(str2, result)); load_unsigned_byte(result, Address(str1, result)); } else if (ae == StrIntrinsicNode::UU) { load_unsigned_short(cnt1, Address(str2, result, scale)); load_unsigned_short(result, Address(str1, result, scale)); } else { load_unsigned_short(cnt1, Address(str2, result, scale2)); load_unsigned_byte(result, Address(str1, result, scale1)); } subl(result, cnt1); jmpb(POP_LABEL); }//if (VM_Version::supports_avx512vlbw()) #endif // _LP64 // Discard the stored length difference bind(POP_LABEL); pop(cnt1); // That's it bind(DONE_LABEL); if(ae == StrIntrinsicNode::UL) { negl(result); } } // Search for Non-ASCII character (Negative byte value) in a byte array, // return true if it has any and false otherwise. // ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java // @HotSpotIntrinsicCandidate // private static boolean hasNegatives(byte[] ba, int off, int len) { // for (int i = off; i < off + len; i++) { // if (ba[i] < 0) { // return true; // } // } // return false; // } void MacroAssembler::has_negatives(Register ary1, Register len, Register result, Register tmp1, XMMRegister vec1, XMMRegister vec2) { // rsi: byte array // rcx: len // rax: result ShortBranchVerifier sbv(this); assert_different_registers(ary1, len, result, tmp1); assert_different_registers(vec1, vec2); Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE; // len == 0 testl(len, len); jcc(Assembler::zero, FALSE_LABEL); if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2()) { Label test_64_loop, test_tail; Register tmp3_aliased = len; movl(tmp1, len); vpxor(vec2, vec2, vec2, Assembler::AVX_512bit); andl(tmp1, 64 - 1); // tail count (in chars) 0x3F andl(len, ~(64 - 1)); // vector count (in chars) jccb(Assembler::zero, test_tail); lea(ary1, Address(ary1, len, Address::times_1)); negptr(len); bind(test_64_loop); // Check whether our 64 elements of size byte contain negatives evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit); kortestql(k2, k2); jcc(Assembler::notZero, TRUE_LABEL); addptr(len, 64); jccb(Assembler::notZero, test_64_loop); bind(test_tail); // bail out when there is nothing to be done testl(tmp1, -1); jcc(Assembler::zero, FALSE_LABEL); // ~(~0 << len) applied up to two times (for 32-bit scenario) #ifdef _LP64 mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF); shlxq(tmp3_aliased, tmp3_aliased, tmp1); notq(tmp3_aliased); kmovql(k3, tmp3_aliased); #else Label k_init; jmp(k_init); // We could not read 64-bits from a general purpose register thus we move // data required to compose 64 1's to the instruction stream // We emit 64 byte wide series of elements from 0..63 which later on would // be used as a compare targets with tail count contained in tmp1 register. // Result would be a k register having tmp1 consecutive number or 1 // counting from least significant bit. address tmp = pc(); emit_int64(0x0706050403020100); emit_int64(0x0F0E0D0C0B0A0908); emit_int64(0x1716151413121110); emit_int64(0x1F1E1D1C1B1A1918); emit_int64(0x2726252423222120); emit_int64(0x2F2E2D2C2B2A2928); emit_int64(0x3736353433323130); emit_int64(0x3F3E3D3C3B3A3938); bind(k_init); lea(len, InternalAddress(tmp)); // create mask to test for negative byte inside a vector evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit); evpcmpgtb(k3, vec1, Address(len, 0), Assembler::AVX_512bit); #endif evpcmpgtb(k2, k3, vec2, Address(ary1, 0), Assembler::AVX_512bit); ktestq(k2, k3); jcc(Assembler::notZero, TRUE_LABEL); jmp(FALSE_LABEL); } else { movl(result, len); // copy if (UseAVX >= 2 && UseSSE >= 2) { // With AVX2, use 32-byte vector compare Label COMPARE_WIDE_VECTORS, COMPARE_TAIL; // Compare 32-byte vectors andl(result, 0x0000001f); // tail count (in bytes) andl(len, 0xffffffe0); // vector count (in bytes) jccb(Assembler::zero, COMPARE_TAIL); lea(ary1, Address(ary1, len, Address::times_1)); negptr(len); movl(tmp1, 0x80808080); // create mask to test for Unicode chars in vector movdl(vec2, tmp1); vpbroadcastd(vec2, vec2, Assembler::AVX_256bit); bind(COMPARE_WIDE_VECTORS); vmovdqu(vec1, Address(ary1, len, Address::times_1)); vptest(vec1, vec2); jccb(Assembler::notZero, TRUE_LABEL); addptr(len, 32); jcc(Assembler::notZero, COMPARE_WIDE_VECTORS); testl(result, result); jccb(Assembler::zero, FALSE_LABEL); vmovdqu(vec1, Address(ary1, result, Address::times_1, -32)); vptest(vec1, vec2); jccb(Assembler::notZero, TRUE_LABEL); jmpb(FALSE_LABEL); bind(COMPARE_TAIL); // len is zero movl(len, result); // Fallthru to tail compare } else if (UseSSE42Intrinsics) { // With SSE4.2, use double quad vector compare Label COMPARE_WIDE_VECTORS, COMPARE_TAIL; // Compare 16-byte vectors andl(result, 0x0000000f); // tail count (in bytes) andl(len, 0xfffffff0); // vector count (in bytes) jcc(Assembler::zero, COMPARE_TAIL); lea(ary1, Address(ary1, len, Address::times_1)); negptr(len); movl(tmp1, 0x80808080); movdl(vec2, tmp1); pshufd(vec2, vec2, 0); bind(COMPARE_WIDE_VECTORS); movdqu(vec1, Address(ary1, len, Address::times_1)); ptest(vec1, vec2); jcc(Assembler::notZero, TRUE_LABEL); addptr(len, 16); jcc(Assembler::notZero, COMPARE_WIDE_VECTORS); testl(result, result); jcc(Assembler::zero, FALSE_LABEL); movdqu(vec1, Address(ary1, result, Address::times_1, -16)); ptest(vec1, vec2); jccb(Assembler::notZero, TRUE_LABEL); jmpb(FALSE_LABEL); bind(COMPARE_TAIL); // len is zero movl(len, result); // Fallthru to tail compare } } // Compare 4-byte vectors andl(len, 0xfffffffc); // vector count (in bytes) jccb(Assembler::zero, COMPARE_CHAR); lea(ary1, Address(ary1, len, Address::times_1)); negptr(len); bind(COMPARE_VECTORS); movl(tmp1, Address(ary1, len, Address::times_1)); andl(tmp1, 0x80808080); jccb(Assembler::notZero, TRUE_LABEL); addptr(len, 4); jcc(Assembler::notZero, COMPARE_VECTORS); // Compare trailing char (final 2 bytes), if any bind(COMPARE_CHAR); testl(result, 0x2); // tail char jccb(Assembler::zero, COMPARE_BYTE); load_unsigned_short(tmp1, Address(ary1, 0)); andl(tmp1, 0x00008080); jccb(Assembler::notZero, TRUE_LABEL); subptr(result, 2); lea(ary1, Address(ary1, 2)); bind(COMPARE_BYTE); testl(result, 0x1); // tail byte jccb(Assembler::zero, FALSE_LABEL); load_unsigned_byte(tmp1, Address(ary1, 0)); andl(tmp1, 0x00000080); jccb(Assembler::notEqual, TRUE_LABEL); jmpb(FALSE_LABEL); bind(TRUE_LABEL); movl(result, 1); // return true jmpb(DONE); bind(FALSE_LABEL); xorl(result, result); // return false // That's it bind(DONE); if (UseAVX >= 2 && UseSSE >= 2) { // clean upper bits of YMM registers vpxor(vec1, vec1); vpxor(vec2, vec2); } } // Compare char[] or byte[] arrays aligned to 4 bytes or substrings. void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2, Register limit, Register result, Register chr, XMMRegister vec1, XMMRegister vec2, bool is_char) { ShortBranchVerifier sbv(this); Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE; int length_offset = arrayOopDesc::length_offset_in_bytes(); int base_offset = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE); if (is_array_equ) { // Check the input args cmpoop(ary1, ary2); jcc(Assembler::equal, TRUE_LABEL); // Need additional checks for arrays_equals. testptr(ary1, ary1); jcc(Assembler::zero, FALSE_LABEL); testptr(ary2, ary2); jcc(Assembler::zero, FALSE_LABEL); // Check the lengths movl(limit, Address(ary1, length_offset)); cmpl(limit, Address(ary2, length_offset)); jcc(Assembler::notEqual, FALSE_LABEL); } // count == 0 testl(limit, limit); jcc(Assembler::zero, TRUE_LABEL); if (is_array_equ) { // Load array address lea(ary1, Address(ary1, base_offset)); lea(ary2, Address(ary2, base_offset)); } if (is_array_equ && is_char) { // arrays_equals when used for char[]. shll(limit, 1); // byte count != 0 } movl(result, limit); // copy if (UseAVX >= 2) { // With AVX2, use 32-byte vector compare Label COMPARE_WIDE_VECTORS, COMPARE_TAIL; // Compare 32-byte vectors andl(result, 0x0000001f); // tail count (in bytes) andl(limit, 0xffffffe0); // vector count (in bytes) jcc(Assembler::zero, COMPARE_TAIL); lea(ary1, Address(ary1, limit, Address::times_1)); lea(ary2, Address(ary2, limit, Address::times_1)); negptr(limit); #ifdef _LP64 if ((AVX3Threshold == 0) && VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3; cmpl(limit, -64); jcc(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2); bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit); evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit); kortestql(k7, k7); jcc(Assembler::aboveEqual, FALSE_LABEL); // miscompare addptr(limit, 64); // update since we already compared at this addr cmpl(limit, -64); jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3); // At this point we may still need to compare -limit+result bytes. // We could execute the next two instruction and just continue via non-wide path: // cmpl(limit, 0); // jcc(Assembler::equal, COMPARE_TAIL); // true // But since we stopped at the points ary{1,2}+limit which are // not farther than 64 bytes from the ends of arrays ary{1,2}+result // (|limit| <= 32 and result < 32), // we may just compare the last 64 bytes. // addptr(result, -64); // it is safe, bc we just came from this area evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit); evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit); kortestql(k7, k7); jcc(Assembler::aboveEqual, FALSE_LABEL); // miscompare jmp(TRUE_LABEL); bind(COMPARE_WIDE_VECTORS_LOOP_AVX2); }//if (VM_Version::supports_avx512vlbw()) #endif //_LP64 bind(COMPARE_WIDE_VECTORS); vmovdqu(vec1, Address(ary1, limit, Address::times_1)); vmovdqu(vec2, Address(ary2, limit, Address::times_1)); vpxor(vec1, vec2); vptest(vec1, vec1); jcc(Assembler::notZero, FALSE_LABEL); addptr(limit, 32); jcc(Assembler::notZero, COMPARE_WIDE_VECTORS); testl(result, result); jcc(Assembler::zero, TRUE_LABEL); vmovdqu(vec1, Address(ary1, result, Address::times_1, -32)); vmovdqu(vec2, Address(ary2, result, Address::times_1, -32)); vpxor(vec1, vec2); vptest(vec1, vec1); jccb(Assembler::notZero, FALSE_LABEL); jmpb(TRUE_LABEL); bind(COMPARE_TAIL); // limit is zero movl(limit, result); // Fallthru to tail compare } else if (UseSSE42Intrinsics) { // With SSE4.2, use double quad vector compare Label COMPARE_WIDE_VECTORS, COMPARE_TAIL; // Compare 16-byte vectors andl(result, 0x0000000f); // tail count (in bytes) andl(limit, 0xfffffff0); // vector count (in bytes) jcc(Assembler::zero, COMPARE_TAIL); lea(ary1, Address(ary1, limit, Address::times_1)); lea(ary2, Address(ary2, limit, Address::times_1)); negptr(limit); bind(COMPARE_WIDE_VECTORS); movdqu(vec1, Address(ary1, limit, Address::times_1)); movdqu(vec2, Address(ary2, limit, Address::times_1)); pxor(vec1, vec2); ptest(vec1, vec1); jcc(Assembler::notZero, FALSE_LABEL); addptr(limit, 16); jcc(Assembler::notZero, COMPARE_WIDE_VECTORS); testl(result, result); jcc(Assembler::zero, TRUE_LABEL); movdqu(vec1, Address(ary1, result, Address::times_1, -16)); movdqu(vec2, Address(ary2, result, Address::times_1, -16)); pxor(vec1, vec2); ptest(vec1, vec1); jccb(Assembler::notZero, FALSE_LABEL); jmpb(TRUE_LABEL); bind(COMPARE_TAIL); // limit is zero movl(limit, result); // Fallthru to tail compare } // Compare 4-byte vectors andl(limit, 0xfffffffc); // vector count (in bytes) jccb(Assembler::zero, COMPARE_CHAR); lea(ary1, Address(ary1, limit, Address::times_1)); lea(ary2, Address(ary2, limit, Address::times_1)); negptr(limit); bind(COMPARE_VECTORS); movl(chr, Address(ary1, limit, Address::times_1)); cmpl(chr, Address(ary2, limit, Address::times_1)); jccb(Assembler::notEqual, FALSE_LABEL); addptr(limit, 4); jcc(Assembler::notZero, COMPARE_VECTORS); // Compare trailing char (final 2 bytes), if any bind(COMPARE_CHAR); testl(result, 0x2); // tail char jccb(Assembler::zero, COMPARE_BYTE); load_unsigned_short(chr, Address(ary1, 0)); load_unsigned_short(limit, Address(ary2, 0)); cmpl(chr, limit); jccb(Assembler::notEqual, FALSE_LABEL); if (is_array_equ && is_char) { bind(COMPARE_BYTE); } else { lea(ary1, Address(ary1, 2)); lea(ary2, Address(ary2, 2)); bind(COMPARE_BYTE); testl(result, 0x1); // tail byte jccb(Assembler::zero, TRUE_LABEL); load_unsigned_byte(chr, Address(ary1, 0)); load_unsigned_byte(limit, Address(ary2, 0)); cmpl(chr, limit); jccb(Assembler::notEqual, FALSE_LABEL); } bind(TRUE_LABEL); movl(result, 1); // return true jmpb(DONE); bind(FALSE_LABEL); xorl(result, result); // return false // That's it bind(DONE); if (UseAVX >= 2) { // clean upper bits of YMM registers vpxor(vec1, vec1); vpxor(vec2, vec2); } } #endif void MacroAssembler::generate_fill(BasicType t, bool aligned, Register to, Register value, Register count, Register rtmp, XMMRegister xtmp) { ShortBranchVerifier sbv(this); assert_different_registers(to, value, count, rtmp); Label L_exit; Label L_fill_2_bytes, L_fill_4_bytes; int shift = -1; switch (t) { case T_BYTE: shift = 2; break; case T_SHORT: shift = 1; break; case T_INT: shift = 0; break; default: ShouldNotReachHere(); } if (t == T_BYTE) { andl(value, 0xff); movl(rtmp, value); shll(rtmp, 8); orl(value, rtmp); } if (t == T_SHORT) { andl(value, 0xffff); } if (t == T_BYTE || t == T_SHORT) { movl(rtmp, value); shll(rtmp, 16); orl(value, rtmp); } cmpl(count, 2<= 2, "supported cpu only" ); Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; movdl(xtmp, value); if (UseAVX >= 2 && UseUnalignedLoadStores) { Label L_check_fill_32_bytes; if (UseAVX > 2) { // Fill 64-byte chunks Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2; // If number of bytes to fill < AVX3Threshold, perform fill using AVX2 cmpl(count, AVX3Threshold); jccb(Assembler::below, L_check_fill_64_bytes_avx2); vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit); subl(count, 16 << shift); jccb(Assembler::less, L_check_fill_32_bytes); align(16); BIND(L_fill_64_bytes_loop_avx3); evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit); addptr(to, 64); subl(count, 16 << shift); jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3); jmpb(L_check_fill_32_bytes); BIND(L_check_fill_64_bytes_avx2); } // Fill 64-byte chunks Label L_fill_64_bytes_loop; vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit); subl(count, 16 << shift); jcc(Assembler::less, L_check_fill_32_bytes); align(16); BIND(L_fill_64_bytes_loop); vmovdqu(Address(to, 0), xtmp); vmovdqu(Address(to, 32), xtmp); addptr(to, 64); subl(count, 16 << shift); jcc(Assembler::greaterEqual, L_fill_64_bytes_loop); BIND(L_check_fill_32_bytes); addl(count, 8 << shift); jccb(Assembler::less, L_check_fill_8_bytes); vmovdqu(Address(to, 0), xtmp); addptr(to, 32); subl(count, 8 << shift); BIND(L_check_fill_8_bytes); // clean upper bits of YMM registers movdl(xtmp, value); pshufd(xtmp, xtmp, 0); } else { // Fill 32-byte chunks pshufd(xtmp, xtmp, 0); subl(count, 8 << shift); jcc(Assembler::less, L_check_fill_8_bytes); align(16); BIND(L_fill_32_bytes_loop); if (UseUnalignedLoadStores) { movdqu(Address(to, 0), xtmp); movdqu(Address(to, 16), xtmp); } else { movq(Address(to, 0), xtmp); movq(Address(to, 8), xtmp); movq(Address(to, 16), xtmp); movq(Address(to, 24), xtmp); } addptr(to, 32); subl(count, 8 << shift); jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); BIND(L_check_fill_8_bytes); } addl(count, 8 << shift); jccb(Assembler::zero, L_exit); jmpb(L_fill_8_bytes); // // length is too short, just fill qwords // BIND(L_fill_8_bytes_loop); movq(Address(to, 0), xtmp); addptr(to, 8); BIND(L_fill_8_bytes); subl(count, 1 << (shift + 1)); jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); } } // fill trailing 4 bytes BIND(L_fill_4_bytes); testl(count, 1< '\u00FF') // break; // da[dp++] = (byte)c; // } // return i; //} void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, XMMRegister tmp1Reg, XMMRegister tmp2Reg, XMMRegister tmp3Reg, XMMRegister tmp4Reg, Register tmp5, Register result) { // rsi: src // rdi: dst // rdx: len // rcx: tmp5 // rax: result ShortBranchVerifier sbv(this); assert_different_registers(src, dst, len, tmp5, result); Label L_done, L_copy_1_char, L_copy_1_char_exit; // set result xorl(result, result); // check for zero length testl(len, len); jcc(Assembler::zero, L_done); movl(result, len); // Setup pointers lea(src, Address(src, len, Address::times_2)); // char[] lea(dst, Address(dst, len, Address::times_1)); // byte[] negptr(len); if (UseSSE42Intrinsics || UseAVX >= 2) { Label L_copy_8_chars, L_copy_8_chars_exit; Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit; if (UseAVX >= 2) { Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit; movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vector movdl(tmp1Reg, tmp5); vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit); jmp(L_chars_32_check); bind(L_copy_32_chars); vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64)); vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32)); vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); vptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector jccb(Assembler::notZero, L_copy_32_chars_exit); vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1); vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg); bind(L_chars_32_check); addptr(len, 32); jcc(Assembler::lessEqual, L_copy_32_chars); bind(L_copy_32_chars_exit); subptr(len, 16); jccb(Assembler::greater, L_copy_16_chars_exit); } else if (UseSSE42Intrinsics) { movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vector movdl(tmp1Reg, tmp5); pshufd(tmp1Reg, tmp1Reg, 0); jmpb(L_chars_16_check); } bind(L_copy_16_chars); if (UseAVX >= 2) { vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32)); vptest(tmp2Reg, tmp1Reg); jcc(Assembler::notZero, L_copy_16_chars_exit); vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1); vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1); } else { if (UseAVX > 0) { movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0); } else { movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); por(tmp2Reg, tmp3Reg); movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); por(tmp2Reg, tmp4Reg); } ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector jccb(Assembler::notZero, L_copy_16_chars_exit); packuswb(tmp3Reg, tmp4Reg); } movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg); bind(L_chars_16_check); addptr(len, 16); jcc(Assembler::lessEqual, L_copy_16_chars); bind(L_copy_16_chars_exit); if (UseAVX >= 2) { // clean upper bits of YMM registers vpxor(tmp2Reg, tmp2Reg); vpxor(tmp3Reg, tmp3Reg); vpxor(tmp4Reg, tmp4Reg); movdl(tmp1Reg, tmp5); pshufd(tmp1Reg, tmp1Reg, 0); } subptr(len, 8); jccb(Assembler::greater, L_copy_8_chars_exit); bind(L_copy_8_chars); movdqu(tmp3Reg, Address(src, len, Address::times_2, -16)); ptest(tmp3Reg, tmp1Reg); jccb(Assembler::notZero, L_copy_8_chars_exit); packuswb(tmp3Reg, tmp1Reg); movq(Address(dst, len, Address::times_1, -8), tmp3Reg); addptr(len, 8); jccb(Assembler::lessEqual, L_copy_8_chars); bind(L_copy_8_chars_exit); subptr(len, 8); jccb(Assembler::zero, L_done); } bind(L_copy_1_char); load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0)); testl(tmp5, 0xff00); // check if Unicode char jccb(Assembler::notZero, L_copy_1_char_exit); movb(Address(dst, len, Address::times_1, 0), tmp5); addptr(len, 1); jccb(Assembler::less, L_copy_1_char); bind(L_copy_1_char_exit); addptr(result, len); // len is negative count of not processed elements bind(L_done); } #ifdef _LP64 /** * Helper for multiply_to_len(). */ void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { addq(dest_lo, src1); adcq(dest_hi, 0); addq(dest_lo, src2); adcq(dest_hi, 0); } /** * Multiply 64 bit by 64 bit first loop. */ void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, Register y, Register y_idx, Register z, Register carry, Register product, Register idx, Register kdx) { // // jlong carry, x[], y[], z[]; // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { // huge_128 product = y[idx] * x[xstart] + carry; // z[kdx] = (jlong)product; // carry = (jlong)(product >>> 64); // } // z[xstart] = carry; // Label L_first_loop, L_first_loop_exit; Label L_one_x, L_one_y, L_multiply; decrementl(xstart); jcc(Assembler::negative, L_one_x); movq(x_xstart, Address(x, xstart, Address::times_4, 0)); rorq(x_xstart, 32); // convert big-endian to little-endian bind(L_first_loop); decrementl(idx); jcc(Assembler::negative, L_first_loop_exit); decrementl(idx); jcc(Assembler::negative, L_one_y); movq(y_idx, Address(y, idx, Address::times_4, 0)); rorq(y_idx, 32); // convert big-endian to little-endian bind(L_multiply); movq(product, x_xstart); mulq(y_idx); // product(rax) * y_idx -> rdx:rax addq(product, carry); adcq(rdx, 0); subl(kdx, 2); movl(Address(z, kdx, Address::times_4, 4), product); shrq(product, 32); movl(Address(z, kdx, Address::times_4, 0), product); movq(carry, rdx); jmp(L_first_loop); bind(L_one_y); movl(y_idx, Address(y, 0)); jmp(L_multiply); bind(L_one_x); movl(x_xstart, Address(x, 0)); jmp(L_first_loop); bind(L_first_loop_exit); } /** * Multiply 64 bit by 64 bit and add 128 bit. */ void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, Register yz_idx, Register idx, Register carry, Register product, int offset) { // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; // z[kdx] = (jlong)product; movq(yz_idx, Address(y, idx, Address::times_4, offset)); rorq(yz_idx, 32); // convert big-endian to little-endian movq(product, x_xstart); mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) movq(yz_idx, Address(z, idx, Address::times_4, offset)); rorq(yz_idx, 32); // convert big-endian to little-endian add2_with_carry(rdx, product, carry, yz_idx); movl(Address(z, idx, Address::times_4, offset+4), product); shrq(product, 32); movl(Address(z, idx, Address::times_4, offset), product); } /** * Multiply 128 bit by 128 bit. Unrolled inner loop. */ void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, Register yz_idx, Register idx, Register jdx, Register carry, Register product, Register carry2) { // jlong carry, x[], y[], z[]; // int kdx = ystart+1; // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; // z[kdx+idx+1] = (jlong)product; // jlong carry2 = (jlong)(product >>> 64); // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; // z[kdx+idx] = (jlong)product; // carry = (jlong)(product >>> 64); // } // idx += 2; // if (idx > 0) { // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; // z[kdx+idx] = (jlong)product; // carry = (jlong)(product >>> 64); // } // Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; movl(jdx, idx); andl(jdx, 0xFFFFFFFC); shrl(jdx, 2); bind(L_third_loop); subl(jdx, 1); jcc(Assembler::negative, L_third_loop_exit); subl(idx, 4); multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8); movq(carry2, rdx); multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0); movq(carry, rdx); jmp(L_third_loop); bind (L_third_loop_exit); andl (idx, 0x3); jcc(Assembler::zero, L_post_third_loop_done); Label L_check_1; subl(idx, 2); jcc(Assembler::negative, L_check_1); multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0); movq(carry, rdx); bind (L_check_1); addl (idx, 0x2); andl (idx, 0x1); subl(idx, 1); jcc(Assembler::negative, L_post_third_loop_done); movl(yz_idx, Address(y, idx, Address::times_4, 0)); movq(product, x_xstart); mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) movl(yz_idx, Address(z, idx, Address::times_4, 0)); add2_with_carry(rdx, product, yz_idx, carry); movl(Address(z, idx, Address::times_4, 0), product); shrq(product, 32); shlq(rdx, 32); orq(product, rdx); movq(carry, product); bind(L_post_third_loop_done); } /** * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop. * */ void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z, Register carry, Register carry2, Register idx, Register jdx, Register yz_idx1, Register yz_idx2, Register tmp, Register tmp3, Register tmp4) { assert(UseBMI2Instructions, "should be used only when BMI2 is available"); // jlong carry, x[], y[], z[]; // int kdx = ystart+1; // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry; // jlong carry2 = (jlong)(tmp3 >>> 64); // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2; // carry = (jlong)(tmp4 >>> 64); // z[kdx+idx+1] = (jlong)tmp3; // z[kdx+idx] = (jlong)tmp4; // } // idx += 2; // if (idx > 0) { // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry; // z[kdx+idx] = (jlong)yz_idx1; // carry = (jlong)(yz_idx1 >>> 64); // } // Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; movl(jdx, idx); andl(jdx, 0xFFFFFFFC); shrl(jdx, 2); bind(L_third_loop); subl(jdx, 1); jcc(Assembler::negative, L_third_loop_exit); subl(idx, 4); movq(yz_idx1, Address(y, idx, Address::times_4, 8)); rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian movq(yz_idx2, Address(y, idx, Address::times_4, 0)); rorxq(yz_idx2, yz_idx2, 32); mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp movq(yz_idx1, Address(z, idx, Address::times_4, 8)); rorxq(yz_idx1, yz_idx1, 32); movq(yz_idx2, Address(z, idx, Address::times_4, 0)); rorxq(yz_idx2, yz_idx2, 32); if (VM_Version::supports_adx()) { adcxq(tmp3, carry); adoxq(tmp3, yz_idx1); adcxq(tmp4, tmp); adoxq(tmp4, yz_idx2); movl(carry, 0); // does not affect flags adcxq(carry2, carry); adoxq(carry2, carry); } else { add2_with_carry(tmp4, tmp3, carry, yz_idx1); add2_with_carry(carry2, tmp4, tmp, yz_idx2); } movq(carry, carry2); movl(Address(z, idx, Address::times_4, 12), tmp3); shrq(tmp3, 32); movl(Address(z, idx, Address::times_4, 8), tmp3); movl(Address(z, idx, Address::times_4, 4), tmp4); shrq(tmp4, 32); movl(Address(z, idx, Address::times_4, 0), tmp4); jmp(L_third_loop); bind (L_third_loop_exit); andl (idx, 0x3); jcc(Assembler::zero, L_post_third_loop_done); Label L_check_1; subl(idx, 2); jcc(Assembler::negative, L_check_1); movq(yz_idx1, Address(y, idx, Address::times_4, 0)); rorxq(yz_idx1, yz_idx1, 32); mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); rorxq(yz_idx2, yz_idx2, 32); add2_with_carry(tmp4, tmp3, carry, yz_idx2); movl(Address(z, idx, Address::times_4, 4), tmp3); shrq(tmp3, 32); movl(Address(z, idx, Address::times_4, 0), tmp3); movq(carry, tmp4); bind (L_check_1); addl (idx, 0x2); andl (idx, 0x1); subl(idx, 1); jcc(Assembler::negative, L_post_third_loop_done); movl(tmp4, Address(y, idx, Address::times_4, 0)); mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3 movl(tmp4, Address(z, idx, Address::times_4, 0)); add2_with_carry(carry2, tmp3, tmp4, carry); movl(Address(z, idx, Address::times_4, 0), tmp3); shrq(tmp3, 32); shlq(carry2, 32); orq(tmp3, carry2); movq(carry, tmp3); bind(L_post_third_loop_done); } /** * Code for BigInteger::multiplyToLen() instrinsic. * * rdi: x * rax: xlen * rsi: y * rcx: ylen * r8: z * r11: zlen * r12: tmp1 * r13: tmp2 * r14: tmp3 * r15: tmp4 * rbx: tmp5 * */ void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) { ShortBranchVerifier sbv(this); assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx); push(tmp1); push(tmp2); push(tmp3); push(tmp4); push(tmp5); push(xlen); push(zlen); const Register idx = tmp1; const Register kdx = tmp2; const Register xstart = tmp3; const Register y_idx = tmp4; const Register carry = tmp5; const Register product = xlen; const Register x_xstart = zlen; // reuse register // First Loop. // // final static long LONG_MASK = 0xffffffffL; // int xstart = xlen - 1; // int ystart = ylen - 1; // long carry = 0; // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; // z[kdx] = (int)product; // carry = product >>> 32; // } // z[xstart] = (int)carry; // movl(idx, ylen); // idx = ylen; movl(kdx, zlen); // kdx = xlen+ylen; xorq(carry, carry); // carry = 0; Label L_done; movl(xstart, xlen); decrementl(xstart); jcc(Assembler::negative, L_done); multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); Label L_second_loop; testl(kdx, kdx); jcc(Assembler::zero, L_second_loop); Label L_carry; subl(kdx, 1); jcc(Assembler::zero, L_carry); movl(Address(z, kdx, Address::times_4, 0), carry); shrq(carry, 32); subl(kdx, 1); bind(L_carry); movl(Address(z, kdx, Address::times_4, 0), carry); // Second and third (nested) loops. // // for (int i = xstart-1; i >= 0; i--) { // Second loop // carry = 0; // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + // (z[k] & LONG_MASK) + carry; // z[k] = (int)product; // carry = product >>> 32; // } // z[i] = (int)carry; // } // // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx const Register jdx = tmp1; bind(L_second_loop); xorl(carry, carry); // carry = 0; movl(jdx, ylen); // j = ystart+1 subl(xstart, 1); // i = xstart-1; jcc(Assembler::negative, L_done); push (z); Label L_last_x; lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j subl(xstart, 1); // i = xstart-1; jcc(Assembler::negative, L_last_x); if (UseBMI2Instructions) { movq(rdx, Address(x, xstart, Address::times_4, 0)); rorxq(rdx, rdx, 32); // convert big-endian to little-endian } else { movq(x_xstart, Address(x, xstart, Address::times_4, 0)); rorq(x_xstart, 32); // convert big-endian to little-endian } Label L_third_loop_prologue; bind(L_third_loop_prologue); push (x); push (xstart); push (ylen); if (UseBMI2Instructions) { multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4); } else { // !UseBMI2Instructions multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x); } pop(ylen); pop(xlen); pop(x); pop(z); movl(tmp3, xlen); addl(tmp3, 1); movl(Address(z, tmp3, Address::times_4, 0), carry); subl(tmp3, 1); jccb(Assembler::negative, L_done); shrq(carry, 32); movl(Address(z, tmp3, Address::times_4, 0), carry); jmp(L_second_loop); // Next infrequent code is moved outside loops. bind(L_last_x); if (UseBMI2Instructions) { movl(rdx, Address(x, 0)); } else { movl(x_xstart, Address(x, 0)); } jmp(L_third_loop_prologue); bind(L_done); pop(zlen); pop(xlen); pop(tmp5); pop(tmp4); pop(tmp3); pop(tmp2); pop(tmp1); } void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){ assert(UseSSE42Intrinsics, "SSE4.2 must be enabled."); Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP; Label VECTOR8_TAIL, VECTOR4_TAIL; Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL; Label SAME_TILL_END, DONE; Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL; //scale is in rcx in both Win64 and Unix ShortBranchVerifier sbv(this); shlq(length); xorq(result, result); if ((AVX3Threshold == 0) && (UseAVX > 2) && VM_Version::supports_avx512vlbw()) { Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL; cmpq(length, 64); jcc(Assembler::less, VECTOR32_TAIL); movq(tmp1, length); andq(tmp1, 0x3F); // tail count andq(length, ~(0x3F)); //vector count bind(VECTOR64_LOOP); // AVX512 code to compare 64 byte vectors. evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit); evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit); kortestql(k7, k7); jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch addq(result, 64); subq(length, 64); jccb(Assembler::notZero, VECTOR64_LOOP); //bind(VECTOR64_TAIL); testq(tmp1, tmp1); jcc(Assembler::zero, SAME_TILL_END); //bind(VECTOR64_TAIL); // AVX512 code to compare upto 63 byte vectors. mov64(tmp2, 0xFFFFFFFFFFFFFFFF); shlxq(tmp2, tmp2, tmp1); notq(tmp2); kmovql(k3, tmp2); evmovdqub(rymm0, k3, Address(obja, result), Assembler::AVX_512bit); evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit); ktestql(k7, k3); jcc(Assembler::below, SAME_TILL_END); // not mismatch bind(VECTOR64_NOT_EQUAL); kmovql(tmp1, k7); notq(tmp1); tzcntq(tmp1, tmp1); addq(result, tmp1); shrq(result); jmp(DONE); bind(VECTOR32_TAIL); } cmpq(length, 8); jcc(Assembler::equal, VECTOR8_LOOP); jcc(Assembler::less, VECTOR4_TAIL); if (UseAVX >= 2) { Label VECTOR16_TAIL, VECTOR32_LOOP; cmpq(length, 16); jcc(Assembler::equal, VECTOR16_LOOP); jcc(Assembler::less, VECTOR8_LOOP); cmpq(length, 32); jccb(Assembler::less, VECTOR16_TAIL); subq(length, 32); bind(VECTOR32_LOOP); vmovdqu(rymm0, Address(obja, result)); vmovdqu(rymm1, Address(objb, result)); vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit); vptest(rymm2, rymm2); jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found addq(result, 32); subq(length, 32); jcc(Assembler::greaterEqual, VECTOR32_LOOP); addq(length, 32); jcc(Assembler::equal, SAME_TILL_END); //falling through if less than 32 bytes left //close the branch here. bind(VECTOR16_TAIL); cmpq(length, 16); jccb(Assembler::less, VECTOR8_TAIL); bind(VECTOR16_LOOP); movdqu(rymm0, Address(obja, result)); movdqu(rymm1, Address(objb, result)); vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit); ptest(rymm2, rymm2); jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found addq(result, 16); subq(length, 16); jcc(Assembler::equal, SAME_TILL_END); //falling through if less than 16 bytes left } else {//regular intrinsics cmpq(length, 16); jccb(Assembler::less, VECTOR8_TAIL); subq(length, 16); bind(VECTOR16_LOOP); movdqu(rymm0, Address(obja, result)); movdqu(rymm1, Address(objb, result)); pxor(rymm0, rymm1); ptest(rymm0, rymm0); jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found addq(result, 16); subq(length, 16); jccb(Assembler::greaterEqual, VECTOR16_LOOP); addq(length, 16); jcc(Assembler::equal, SAME_TILL_END); //falling through if less than 16 bytes left } bind(VECTOR8_TAIL); cmpq(length, 8); jccb(Assembler::less, VECTOR4_TAIL); bind(VECTOR8_LOOP); movq(tmp1, Address(obja, result)); movq(tmp2, Address(objb, result)); xorq(tmp1, tmp2); testq(tmp1, tmp1); jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found addq(result, 8); subq(length, 8); jcc(Assembler::equal, SAME_TILL_END); //falling through if less than 8 bytes left bind(VECTOR4_TAIL); cmpq(length, 4); jccb(Assembler::less, BYTES_TAIL); bind(VECTOR4_LOOP); movl(tmp1, Address(obja, result)); xorl(tmp1, Address(objb, result)); testl(tmp1, tmp1); jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found addq(result, 4); subq(length, 4); jcc(Assembler::equal, SAME_TILL_END); //falling through if less than 4 bytes left bind(BYTES_TAIL); bind(BYTES_LOOP); load_unsigned_byte(tmp1, Address(obja, result)); load_unsigned_byte(tmp2, Address(objb, result)); xorl(tmp1, tmp2); testl(tmp1, tmp1); jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found decq(length); jcc(Assembler::zero, SAME_TILL_END); incq(result); load_unsigned_byte(tmp1, Address(obja, result)); load_unsigned_byte(tmp2, Address(objb, result)); xorl(tmp1, tmp2); testl(tmp1, tmp1); jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found decq(length); jcc(Assembler::zero, SAME_TILL_END); incq(result); load_unsigned_byte(tmp1, Address(obja, result)); load_unsigned_byte(tmp2, Address(objb, result)); xorl(tmp1, tmp2); testl(tmp1, tmp1); jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found jmp(SAME_TILL_END); if (UseAVX >= 2) { bind(VECTOR32_NOT_EQUAL); vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit); vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit); vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit); vpmovmskb(tmp1, rymm0); bsfq(tmp1, tmp1); addq(result, tmp1); shrq(result); jmp(DONE); } bind(VECTOR16_NOT_EQUAL); if (UseAVX >= 2) { vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit); vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit); pxor(rymm0, rymm2); } else { pcmpeqb(rymm2, rymm2); pxor(rymm0, rymm1); pcmpeqb(rymm0, rymm1); pxor(rymm0, rymm2); } pmovmskb(tmp1, rymm0); bsfq(tmp1, tmp1); addq(result, tmp1); shrq(result); jmpb(DONE); bind(VECTOR8_NOT_EQUAL); bind(VECTOR4_NOT_EQUAL); bsfq(tmp1, tmp1); shrq(tmp1, 3); addq(result, tmp1); bind(BYTES_NOT_EQUAL); shrq(result); jmpb(DONE); bind(SAME_TILL_END); mov64(result, -1); bind(DONE); } //Helper functions for square_to_len() /** * Store the squares of x[], right shifted one bit (divided by 2) into z[] * Preserves x and z and modifies rest of the registers. */ void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { // Perform square and right shift by 1 // Handle odd xlen case first, then for even xlen do the following // jlong carry = 0; // for (int j=0, i=0; j < xlen; j+=2, i+=4) { // huge_128 product = x[j:j+1] * x[j:j+1]; // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65); // z[i+2:i+3] = (jlong)(product >>> 1); // carry = (jlong)product; // } xorq(tmp5, tmp5); // carry xorq(rdxReg, rdxReg); xorl(tmp1, tmp1); // index for x xorl(tmp4, tmp4); // index for z Label L_first_loop, L_first_loop_exit; testl(xlen, 1); jccb(Assembler::zero, L_first_loop); //jump if xlen is even // Square and right shift by 1 the odd element using 32 bit multiply movl(raxReg, Address(x, tmp1, Address::times_4, 0)); imulq(raxReg, raxReg); shrq(raxReg, 1); adcq(tmp5, 0); movq(Address(z, tmp4, Address::times_4, 0), raxReg); incrementl(tmp1); addl(tmp4, 2); // Square and right shift by 1 the rest using 64 bit multiply bind(L_first_loop); cmpptr(tmp1, xlen); jccb(Assembler::equal, L_first_loop_exit); // Square movq(raxReg, Address(x, tmp1, Address::times_4, 0)); rorq(raxReg, 32); // convert big-endian to little-endian mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax // Right shift by 1 and save carry shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1 rcrq(rdxReg, 1); rcrq(raxReg, 1); adcq(tmp5, 0); // Store result in z movq(Address(z, tmp4, Address::times_4, 0), rdxReg); movq(Address(z, tmp4, Address::times_4, 8), raxReg); // Update indices for x and z addl(tmp1, 2); addl(tmp4, 4); jmp(L_first_loop); bind(L_first_loop_exit); } /** * Perform the following multiply add operation using BMI2 instructions * carry:sum = sum + op1*op2 + carry * op2 should be in rdx * op2 is preserved, all other registers are modified */ void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) { // assert op2 is rdx mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1 addq(sum, carry); adcq(tmp2, 0); addq(sum, op1); adcq(tmp2, 0); movq(carry, tmp2); } /** * Perform the following multiply add operation: * carry:sum = sum + op1*op2 + carry * Preserves op1, op2 and modifies rest of registers */ void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) { // rdx:rax = op1 * op2 movq(raxReg, op2); mulq(op1); // rdx:rax = sum + carry + rdx:rax addq(sum, carry); adcq(rdxReg, 0); addq(sum, raxReg); adcq(rdxReg, 0); // carry:sum = rdx:sum movq(carry, rdxReg); } /** * Add 64 bit long carry into z[] with carry propogation. * Preserves z and carry register values and modifies rest of registers. * */ void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) { Label L_fourth_loop, L_fourth_loop_exit; movl(tmp1, 1); subl(zlen, 2); addq(Address(z, zlen, Address::times_4, 0), carry); bind(L_fourth_loop); jccb(Assembler::carryClear, L_fourth_loop_exit); subl(zlen, 2); jccb(Assembler::negative, L_fourth_loop_exit); addq(Address(z, zlen, Address::times_4, 0), tmp1); jmp(L_fourth_loop); bind(L_fourth_loop_exit); } /** * Shift z[] left by 1 bit. * Preserves x, len, z and zlen registers and modifies rest of the registers. * */ void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { Label L_fifth_loop, L_fifth_loop_exit; // Fifth loop // Perform primitiveLeftShift(z, zlen, 1) const Register prev_carry = tmp1; const Register new_carry = tmp4; const Register value = tmp2; const Register zidx = tmp3; // int zidx, carry; // long value; // carry = 0; // for (zidx = zlen-2; zidx >=0; zidx -= 2) { // (carry:value) = (z[i] << 1) | carry ; // z[i] = value; // } movl(zidx, zlen); xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register bind(L_fifth_loop); decl(zidx); // Use decl to preserve carry flag decl(zidx); jccb(Assembler::negative, L_fifth_loop_exit); if (UseBMI2Instructions) { movq(value, Address(z, zidx, Address::times_4, 0)); rclq(value, 1); rorxq(value, value, 32); movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form } else { // clear new_carry xorl(new_carry, new_carry); // Shift z[i] by 1, or in previous carry and save new carry movq(value, Address(z, zidx, Address::times_4, 0)); shlq(value, 1); adcl(new_carry, 0); orq(value, prev_carry); rorq(value, 0x20); movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form // Set previous carry = new carry movl(prev_carry, new_carry); } jmp(L_fifth_loop); bind(L_fifth_loop_exit); } /** * Code for BigInteger::squareToLen() intrinsic * * rdi: x * rsi: len * r8: z * rcx: zlen * r12: tmp1 * r13: tmp2 * r14: tmp3 * r15: tmp4 * rbx: tmp5 * */ void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply; push(tmp1); push(tmp2); push(tmp3); push(tmp4); push(tmp5); // First loop // Store the squares, right shifted one bit (i.e., divided by 2). square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg); // Add in off-diagonal sums. // // Second, third (nested) and fourth loops. // zlen +=2; // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) { // carry = 0; // long op2 = x[xidx:xidx+1]; // for (int j=xidx-2,k=zidx; j >= 0; j-=2) { // k -= 2; // long op1 = x[j:j+1]; // long sum = z[k:k+1]; // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs); // z[k:k+1] = sum; // } // add_one_64(z, k, carry, tmp_regs); // } const Register carry = tmp5; const Register sum = tmp3; const Register op1 = tmp4; Register op2 = tmp2; push(zlen); push(len); addl(zlen,2); bind(L_second_loop); xorq(carry, carry); subl(zlen, 4); subl(len, 2); push(zlen); push(len); cmpl(len, 0); jccb(Assembler::lessEqual, L_second_loop_exit); // Multiply an array by one 64 bit long. if (UseBMI2Instructions) { op2 = rdxReg; movq(op2, Address(x, len, Address::times_4, 0)); rorxq(op2, op2, 32); } else { movq(op2, Address(x, len, Address::times_4, 0)); rorq(op2, 32); } bind(L_third_loop); decrementl(len); jccb(Assembler::negative, L_third_loop_exit); decrementl(len); jccb(Assembler::negative, L_last_x); movq(op1, Address(x, len, Address::times_4, 0)); rorq(op1, 32); bind(L_multiply); subl(zlen, 2); movq(sum, Address(z, zlen, Address::times_4, 0)); // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry. if (UseBMI2Instructions) { multiply_add_64_bmi2(sum, op1, op2, carry, tmp2); } else { multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); } movq(Address(z, zlen, Address::times_4, 0), sum); jmp(L_third_loop); bind(L_third_loop_exit); // Fourth loop // Add 64 bit long carry into z with carry propogation. // Uses offsetted zlen. add_one_64(z, zlen, carry, tmp1); pop(len); pop(zlen); jmp(L_second_loop); // Next infrequent code is moved outside loops. bind(L_last_x); movl(op1, Address(x, 0)); jmp(L_multiply); bind(L_second_loop_exit); pop(len); pop(zlen); pop(len); pop(zlen); // Fifth loop // Shift z left 1 bit. lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4); // z[zlen-1] |= x[len-1] & 1; movl(tmp3, Address(x, len, Address::times_4, -4)); andl(tmp3, 1); orl(Address(z, zlen, Address::times_4, -4), tmp3); pop(tmp5); pop(tmp4); pop(tmp3); pop(tmp2); pop(tmp1); } /** * Helper function for mul_add() * Multiply the in[] by int k and add to out[] starting at offset offs using * 128 bit by 32 bit multiply and return the carry in tmp5. * Only quad int aligned length of in[] is operated on in this function. * k is in rdxReg for BMI2Instructions, for others it is in tmp2. * This function preserves out, in and k registers. * len and offset point to the appropriate index in "in" & "out" correspondingly * tmp5 has the carry. * other registers are temporary and are modified. * */ void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { Label L_first_loop, L_first_loop_exit; movl(tmp1, len); shrl(tmp1, 2); bind(L_first_loop); subl(tmp1, 1); jccb(Assembler::negative, L_first_loop_exit); subl(len, 4); subl(offset, 4); Register op2 = tmp2; const Register sum = tmp3; const Register op1 = tmp4; const Register carry = tmp5; if (UseBMI2Instructions) { op2 = rdxReg; } movq(op1, Address(in, len, Address::times_4, 8)); rorq(op1, 32); movq(sum, Address(out, offset, Address::times_4, 8)); rorq(sum, 32); if (UseBMI2Instructions) { multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); } else { multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); } // Store back in big endian from little endian rorq(sum, 0x20); movq(Address(out, offset, Address::times_4, 8), sum); movq(op1, Address(in, len, Address::times_4, 0)); rorq(op1, 32); movq(sum, Address(out, offset, Address::times_4, 0)); rorq(sum, 32); if (UseBMI2Instructions) { multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); } else { multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); } // Store back in big endian from little endian rorq(sum, 0x20); movq(Address(out, offset, Address::times_4, 0), sum); jmp(L_first_loop); bind(L_first_loop_exit); } /** * Code for BigInteger::mulAdd() intrinsic * * rdi: out * rsi: in * r11: offs (out.length - offset) * rcx: len * r8: k * r12: tmp1 * r13: tmp2 * r14: tmp3 * r15: tmp4 * rbx: tmp5 * Multiply the in[] by word k and add to out[], return the carry in rax */ void MacroAssembler::mul_add(Register out, Register in, Register offs, Register len, Register k, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { Label L_carry, L_last_in, L_done; // carry = 0; // for (int j=len-1; j >= 0; j--) { // long product = (in[j] & LONG_MASK) * kLong + // (out[offs] & LONG_MASK) + carry; // out[offs--] = (int)product; // carry = product >>> 32; // } // push(tmp1); push(tmp2); push(tmp3); push(tmp4); push(tmp5); Register op2 = tmp2; const Register sum = tmp3; const Register op1 = tmp4; const Register carry = tmp5; if (UseBMI2Instructions) { op2 = rdxReg; movl(op2, k); } else { movl(op2, k); } xorq(carry, carry); //First loop //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply //The carry is in tmp5 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg); //Multiply the trailing in[] entry using 64 bit by 32 bit, if any decrementl(len); jccb(Assembler::negative, L_carry); decrementl(len); jccb(Assembler::negative, L_last_in); movq(op1, Address(in, len, Address::times_4, 0)); rorq(op1, 32); subl(offs, 2); movq(sum, Address(out, offs, Address::times_4, 0)); rorq(sum, 32); if (UseBMI2Instructions) { multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); } else { multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); } // Store back in big endian from little endian rorq(sum, 0x20); movq(Address(out, offs, Address::times_4, 0), sum); testl(len, len); jccb(Assembler::zero, L_carry); //Multiply the last in[] entry, if any bind(L_last_in); movl(op1, Address(in, 0)); movl(sum, Address(out, offs, Address::times_4, -4)); movl(raxReg, k); mull(op1); //tmp4 * eax -> edx:eax addl(sum, carry); adcl(rdxReg, 0); addl(sum, raxReg); adcl(rdxReg, 0); movl(carry, rdxReg); movl(Address(out, offs, Address::times_4, -4), sum); bind(L_carry); //return tmp5/carry as carry in rax movl(rax, carry); bind(L_done); pop(tmp5); pop(tmp4); pop(tmp3); pop(tmp2); pop(tmp1); } #endif /** * Emits code to update CRC-32 with a byte value according to constants in table * * @param [in,out]crc Register containing the crc. * @param [in]val Register containing the byte to fold into the CRC. * @param [in]table Register containing the table of crc constants. * * uint32_t crc; * val = crc_table[(val ^ crc) & 0xFF]; * crc = val ^ (crc >> 8); * */ void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { xorl(val, crc); andl(val, 0xFF); shrl(crc, 8); // unsigned shift xorl(crc, Address(table, val, Address::times_4, 0)); } /** * Fold four 128-bit data chunks */ void MacroAssembler::fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { evpclmulhdq(xtmp, xK, xcrc, Assembler::AVX_512bit); // [123:64] evpclmulldq(xcrc, xK, xcrc, Assembler::AVX_512bit); // [63:0] evpxorq(xcrc, xcrc, Address(buf, offset), Assembler::AVX_512bit /* vector_len */); evpxorq(xcrc, xcrc, xtmp, Assembler::AVX_512bit /* vector_len */); } /** * Fold 128-bit data chunk */ void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { if (UseAVX > 0) { vpclmulhdq(xtmp, xK, xcrc); // [123:64] vpclmulldq(xcrc, xK, xcrc); // [63:0] vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */); pxor(xcrc, xtmp); } else { movdqa(xtmp, xcrc); pclmulhdq(xtmp, xK); // [123:64] pclmulldq(xcrc, xK); // [63:0] pxor(xcrc, xtmp); movdqu(xtmp, Address(buf, offset)); pxor(xcrc, xtmp); } } void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) { if (UseAVX > 0) { vpclmulhdq(xtmp, xK, xcrc); vpclmulldq(xcrc, xK, xcrc); pxor(xcrc, xbuf); pxor(xcrc, xtmp); } else { movdqa(xtmp, xcrc); pclmulhdq(xtmp, xK); pclmulldq(xcrc, xK); pxor(xcrc, xbuf); pxor(xcrc, xtmp); } } /** * 8-bit folds to compute 32-bit CRC * * uint64_t xcrc; * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8); */ void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) { movdl(tmp, xcrc); andl(tmp, 0xFF); movdl(xtmp, Address(table, tmp, Address::times_4, 0)); psrldq(xcrc, 1); // unsigned shift one byte pxor(xcrc, xtmp); } /** * uint32_t crc; * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); */ void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { movl(tmp, crc); andl(tmp, 0xFF); shrl(crc, 8); xorl(crc, Address(table, tmp, Address::times_4, 0)); } /** * @param crc register containing existing CRC (32-bit) * @param buf register pointing to input byte buffer (byte*) * @param len register containing number of bytes * @param table register that will contain address of CRC table * @param tmp scratch register */ void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) { assert_different_registers(crc, buf, len, table, tmp, rax); Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge // context for the registers used, where all instructions below are using 128-bit mode // On EVEX without VL and BW, these instructions will all be AVX. lea(table, ExternalAddress(StubRoutines::crc_table_addr())); notl(crc); // ~crc cmpl(len, 16); jcc(Assembler::less, L_tail); // Align buffer to 16 bytes movl(tmp, buf); andl(tmp, 0xF); jccb(Assembler::zero, L_aligned); subl(tmp, 16); addl(len, tmp); align(4); BIND(L_align_loop); movsbl(rax, Address(buf, 0)); // load byte with sign extension update_byte_crc32(crc, rax, table); increment(buf); incrementl(tmp); jccb(Assembler::less, L_align_loop); BIND(L_aligned); movl(tmp, len); // save shrl(len, 4); jcc(Assembler::zero, L_tail_restore); // Fold crc into first bytes of vector movdqa(xmm1, Address(buf, 0)); movdl(rax, xmm1); xorl(crc, rax); if (VM_Version::supports_sse4_1()) { pinsrd(xmm1, crc, 0); } else { pinsrw(xmm1, crc, 0); shrl(crc, 16); pinsrw(xmm1, crc, 1); } addptr(buf, 16); subl(len, 4); // len > 0 jcc(Assembler::less, L_fold_tail); movdqa(xmm2, Address(buf, 0)); movdqa(xmm3, Address(buf, 16)); movdqa(xmm4, Address(buf, 32)); addptr(buf, 48); subl(len, 3); jcc(Assembler::lessEqual, L_fold_512b); // Fold total 512 bits of polynomial on each iteration, // 128 bits per each of 4 parallel streams. movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32)); align(32); BIND(L_fold_512b_loop); fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16); fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32); fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48); addptr(buf, 64); subl(len, 4); jcc(Assembler::greater, L_fold_512b_loop); // Fold 512 bits to 128 bits. BIND(L_fold_512b); movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16)); fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2); fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3); fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4); // Fold the rest of 128 bits data chunks BIND(L_fold_tail); addl(len, 3); jccb(Assembler::lessEqual, L_fold_128b); movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16)); BIND(L_fold_tail_loop); fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); addptr(buf, 16); decrementl(len); jccb(Assembler::greater, L_fold_tail_loop); // Fold 128 bits in xmm1 down into 32 bits in crc register. BIND(L_fold_128b); movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr())); if (UseAVX > 0) { vpclmulqdq(xmm2, xmm0, xmm1, 0x1); vpand(xmm3, xmm0, xmm2, 0 /* vector_len */); vpclmulqdq(xmm0, xmm0, xmm3, 0x1); } else { movdqa(xmm2, xmm0); pclmulqdq(xmm2, xmm1, 0x1); movdqa(xmm3, xmm0); pand(xmm3, xmm2); pclmulqdq(xmm0, xmm3, 0x1); } psrldq(xmm1, 8); psrldq(xmm2, 4); pxor(xmm0, xmm1); pxor(xmm0, xmm2); // 8 8-bit folds to compute 32-bit CRC. for (int j = 0; j < 4; j++) { fold_8bit_crc32(xmm0, table, xmm1, rax); } movdl(crc, xmm0); // mov 32 bits to general register for (int j = 0; j < 4; j++) { fold_8bit_crc32(crc, table, rax); } BIND(L_tail_restore); movl(len, tmp); // restore BIND(L_tail); andl(len, 0xf); jccb(Assembler::zero, L_exit); // Fold the rest of bytes align(4); BIND(L_tail_loop); movsbl(rax, Address(buf, 0)); // load byte with sign extension update_byte_crc32(crc, rax, table); increment(buf); decrementl(len); jccb(Assembler::greater, L_tail_loop); BIND(L_exit); notl(crc); // ~c } #ifdef _LP64 // S. Gueron / Information Processing Letters 112 (2012) 184 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table. // Input: A 32 bit value B = [byte3, byte2, byte1, byte0]. // Output: the 64-bit carry-less product of B * CONST void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n, Register tmp1, Register tmp2, Register tmp3) { lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); if (n > 0) { addq(tmp3, n * 256 * 8); } // Q1 = TABLEExt[n][B & 0xFF]; movl(tmp1, in); andl(tmp1, 0x000000FF); shll(tmp1, 3); addq(tmp1, tmp3); movq(tmp1, Address(tmp1, 0)); // Q2 = TABLEExt[n][B >> 8 & 0xFF]; movl(tmp2, in); shrl(tmp2, 8); andl(tmp2, 0x000000FF); shll(tmp2, 3); addq(tmp2, tmp3); movq(tmp2, Address(tmp2, 0)); shlq(tmp2, 8); xorq(tmp1, tmp2); // Q3 = TABLEExt[n][B >> 16 & 0xFF]; movl(tmp2, in); shrl(tmp2, 16); andl(tmp2, 0x000000FF); shll(tmp2, 3); addq(tmp2, tmp3); movq(tmp2, Address(tmp2, 0)); shlq(tmp2, 16); xorq(tmp1, tmp2); // Q4 = TABLEExt[n][B >> 24 & 0xFF]; shrl(in, 24); andl(in, 0x000000FF); shll(in, 3); addq(in, tmp3); movq(in, Address(in, 0)); shlq(in, 24); xorq(in, tmp1); // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; } void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, Register in_out, uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, XMMRegister w_xtmp2, Register tmp1, Register n_tmp2, Register n_tmp3) { if (is_pclmulqdq_supported) { movdl(w_xtmp1, in_out); // modified blindly movl(tmp1, const_or_pre_comp_const_index); movdl(w_xtmp2, tmp1); pclmulqdq(w_xtmp1, w_xtmp2, 0); movdq(in_out, w_xtmp1); } else { crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3); } } // Recombination Alternative 2: No bit-reflections // T1 = (CRC_A * U1) << 1 // T2 = (CRC_B * U2) << 1 // C1 = T1 >> 32 // C2 = T2 >> 32 // T1 = T1 & 0xFFFFFFFF // T2 = T2 & 0xFFFFFFFF // T1 = CRC32(0, T1) // T2 = CRC32(0, T2) // C1 = C1 ^ T1 // C2 = C2 ^ T2 // CRC = C1 ^ C2 ^ CRC_C void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, Register tmp1, Register tmp2, Register n_tmp3) { crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); shlq(in_out, 1); movl(tmp1, in_out); shrq(in_out, 32); xorl(tmp2, tmp2); crc32(tmp2, tmp1, 4); xorl(in_out, tmp2); // we don't care about upper 32 bit contents here shlq(in1, 1); movl(tmp1, in1); shrq(in1, 32); xorl(tmp2, tmp2); crc32(tmp2, tmp1, 4); xorl(in1, tmp2); xorl(in_out, in1); xorl(in_out, in2); } // Set N to predefined value // Subtract from a lenght of a buffer // execute in a loop: // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0 // for i = 1 to N do // CRC_A = CRC32(CRC_A, A[i]) // CRC_B = CRC32(CRC_B, B[i]) // CRC_C = CRC32(CRC_C, C[i]) // end for // Recombine void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out1, Register in_out2, Register in_out3, Register tmp1, Register tmp2, Register tmp3, XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, Register tmp4, Register tmp5, Register n_tmp6) { Label L_processPartitions; Label L_processPartition; Label L_exit; bind(L_processPartitions); cmpl(in_out1, 3 * size); jcc(Assembler::less, L_exit); xorl(tmp1, tmp1); xorl(tmp2, tmp2); movq(tmp3, in_out2); addq(tmp3, size); bind(L_processPartition); crc32(in_out3, Address(in_out2, 0), 8); crc32(tmp1, Address(in_out2, size), 8); crc32(tmp2, Address(in_out2, size * 2), 8); addq(in_out2, 8); cmpq(in_out2, tmp3); jcc(Assembler::less, L_processPartition); crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, w_xtmp1, w_xtmp2, w_xtmp3, tmp4, tmp5, n_tmp6); addq(in_out2, 2 * size); subl(in_out1, 3 * size); jmp(L_processPartitions); bind(L_exit); } #else void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n, Register tmp1, Register tmp2, Register tmp3, XMMRegister xtmp1, XMMRegister xtmp2) { lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); if (n > 0) { addl(tmp3, n * 256 * 8); } // Q1 = TABLEExt[n][B & 0xFF]; movl(tmp1, in_out); andl(tmp1, 0x000000FF); shll(tmp1, 3); addl(tmp1, tmp3); movq(xtmp1, Address(tmp1, 0)); // Q2 = TABLEExt[n][B >> 8 & 0xFF]; movl(tmp2, in_out); shrl(tmp2, 8); andl(tmp2, 0x000000FF); shll(tmp2, 3); addl(tmp2, tmp3); movq(xtmp2, Address(tmp2, 0)); psllq(xtmp2, 8); pxor(xtmp1, xtmp2); // Q3 = TABLEExt[n][B >> 16 & 0xFF]; movl(tmp2, in_out); shrl(tmp2, 16); andl(tmp2, 0x000000FF); shll(tmp2, 3); addl(tmp2, tmp3); movq(xtmp2, Address(tmp2, 0)); psllq(xtmp2, 16); pxor(xtmp1, xtmp2); // Q4 = TABLEExt[n][B >> 24 & 0xFF]; shrl(in_out, 24); andl(in_out, 0x000000FF); shll(in_out, 3); addl(in_out, tmp3); movq(xtmp2, Address(in_out, 0)); psllq(xtmp2, 24); pxor(xtmp1, xtmp2); // Result in CXMM // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; } void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, Register in_out, uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, XMMRegister w_xtmp2, Register tmp1, Register n_tmp2, Register n_tmp3) { if (is_pclmulqdq_supported) { movdl(w_xtmp1, in_out); movl(tmp1, const_or_pre_comp_const_index); movdl(w_xtmp2, tmp1); pclmulqdq(w_xtmp1, w_xtmp2, 0); // Keep result in XMM since GPR is 32 bit in length } else { crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2); } } void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, Register tmp1, Register tmp2, Register n_tmp3) { crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); psllq(w_xtmp1, 1); movdl(tmp1, w_xtmp1); psrlq(w_xtmp1, 32); movdl(in_out, w_xtmp1); xorl(tmp2, tmp2); crc32(tmp2, tmp1, 4); xorl(in_out, tmp2); psllq(w_xtmp2, 1); movdl(tmp1, w_xtmp2); psrlq(w_xtmp2, 32); movdl(in1, w_xtmp2); xorl(tmp2, tmp2); crc32(tmp2, tmp1, 4); xorl(in1, tmp2); xorl(in_out, in1); xorl(in_out, in2); } void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out1, Register in_out2, Register in_out3, Register tmp1, Register tmp2, Register tmp3, XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, Register tmp4, Register tmp5, Register n_tmp6) { Label L_processPartitions; Label L_processPartition; Label L_exit; bind(L_processPartitions); cmpl(in_out1, 3 * size); jcc(Assembler::less, L_exit); xorl(tmp1, tmp1); xorl(tmp2, tmp2); movl(tmp3, in_out2); addl(tmp3, size); bind(L_processPartition); crc32(in_out3, Address(in_out2, 0), 4); crc32(tmp1, Address(in_out2, size), 4); crc32(tmp2, Address(in_out2, size*2), 4); crc32(in_out3, Address(in_out2, 0+4), 4); crc32(tmp1, Address(in_out2, size+4), 4); crc32(tmp2, Address(in_out2, size*2+4), 4); addl(in_out2, 8); cmpl(in_out2, tmp3); jcc(Assembler::less, L_processPartition); push(tmp3); push(in_out1); push(in_out2); tmp4 = tmp3; tmp5 = in_out1; n_tmp6 = in_out2; crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, w_xtmp1, w_xtmp2, w_xtmp3, tmp4, tmp5, n_tmp6); pop(in_out2); pop(in_out1); pop(tmp3); addl(in_out2, 2 * size); subl(in_out1, 3 * size); jmp(L_processPartitions); bind(L_exit); } #endif //LP64 #ifdef _LP64 // Algorithm 2: Pipelined usage of the CRC32 instruction. // Input: A buffer I of L bytes. // Output: the CRC32C value of the buffer. // Notations: // Write L = 24N + r, with N = floor (L/24). // r = L mod 24 (0 <= r < 24). // Consider I as the concatenation of A|B|C|R, where A, B, C, each, // N quadwords, and R consists of r bytes. // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register tmp6, XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, bool is_pclmulqdq_supported) { uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; Label L_wordByWord; Label L_byteByByteProlog; Label L_byteByByte; Label L_exit; if (is_pclmulqdq_supported ) { const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1); const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\""); } else { const_or_pre_comp_const_index[0] = 1; const_or_pre_comp_const_index[1] = 0; const_or_pre_comp_const_index[2] = 3; const_or_pre_comp_const_index[3] = 2; const_or_pre_comp_const_index[4] = 5; const_or_pre_comp_const_index[5] = 4; } crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, in2, in1, in_out, tmp1, tmp2, tmp3, w_xtmp1, w_xtmp2, w_xtmp3, tmp4, tmp5, tmp6); crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, in2, in1, in_out, tmp1, tmp2, tmp3, w_xtmp1, w_xtmp2, w_xtmp3, tmp4, tmp5, tmp6); crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, in2, in1, in_out, tmp1, tmp2, tmp3, w_xtmp1, w_xtmp2, w_xtmp3, tmp4, tmp5, tmp6); movl(tmp1, in2); andl(tmp1, 0x00000007); negl(tmp1); addl(tmp1, in2); addq(tmp1, in1); BIND(L_wordByWord); cmpq(in1, tmp1); jcc(Assembler::greaterEqual, L_byteByByteProlog); crc32(in_out, Address(in1, 0), 4); addq(in1, 4); jmp(L_wordByWord); BIND(L_byteByByteProlog); andl(in2, 0x00000007); movl(tmp2, 1); BIND(L_byteByByte); cmpl(tmp2, in2); jccb(Assembler::greater, L_exit); crc32(in_out, Address(in1, 0), 1); incq(in1); incl(tmp2); jmp(L_byteByByte); BIND(L_exit); } #else void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register tmp6, XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, bool is_pclmulqdq_supported) { uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; Label L_wordByWord; Label L_byteByByteProlog; Label L_byteByByte; Label L_exit; if (is_pclmulqdq_supported) { const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1); const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); } else { const_or_pre_comp_const_index[0] = 1; const_or_pre_comp_const_index[1] = 0; const_or_pre_comp_const_index[2] = 3; const_or_pre_comp_const_index[3] = 2; const_or_pre_comp_const_index[4] = 5; const_or_pre_comp_const_index[5] = 4; } crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, in2, in1, in_out, tmp1, tmp2, tmp3, w_xtmp1, w_xtmp2, w_xtmp3, tmp4, tmp5, tmp6); crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, in2, in1, in_out, tmp1, tmp2, tmp3, w_xtmp1, w_xtmp2, w_xtmp3, tmp4, tmp5, tmp6); crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, in2, in1, in_out, tmp1, tmp2, tmp3, w_xtmp1, w_xtmp2, w_xtmp3, tmp4, tmp5, tmp6); movl(tmp1, in2); andl(tmp1, 0x00000007); negl(tmp1); addl(tmp1, in2); addl(tmp1, in1); BIND(L_wordByWord); cmpl(in1, tmp1); jcc(Assembler::greaterEqual, L_byteByByteProlog); crc32(in_out, Address(in1,0), 4); addl(in1, 4); jmp(L_wordByWord); BIND(L_byteByByteProlog); andl(in2, 0x00000007); movl(tmp2, 1); BIND(L_byteByByte); cmpl(tmp2, in2); jccb(Assembler::greater, L_exit); movb(tmp1, Address(in1, 0)); crc32(in_out, tmp1, 1); incl(in1); incl(tmp2); jmp(L_byteByByte); BIND(L_exit); } #endif // LP64 #undef BIND #undef BLOCK_COMMENT // Compress char[] array to byte[]. // ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java // @HotSpotIntrinsicCandidate // private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) { // for (int i = 0; i < len; i++) { // int c = src[srcOff++]; // if (c >>> 8 != 0) { // return 0; // } // dst[dstOff++] = (byte)c; // } // return len; // } void MacroAssembler::char_array_compress(Register src, Register dst, Register len, XMMRegister tmp1Reg, XMMRegister tmp2Reg, XMMRegister tmp3Reg, XMMRegister tmp4Reg, Register tmp5, Register result) { Label copy_chars_loop, return_length, return_zero, done; // rsi: src // rdi: dst // rdx: len // rcx: tmp5 // rax: result // rsi holds start addr of source char[] to be compressed // rdi holds start addr of destination byte[] // rdx holds length assert(len != result, ""); // save length for return push(len); if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2()) { Label copy_32_loop, copy_loop_tail, below_threshold; // alignment Label post_alignment; // if length of the string is less than 16, handle it in an old fashioned way testl(len, -32); jcc(Assembler::zero, below_threshold); // First check whether a character is compressable ( <= 0xFF). // Create mask to test for Unicode chars inside zmm vector movl(result, 0x00FF); evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit); testl(len, -64); jcc(Assembler::zero, post_alignment); movl(tmp5, dst); andl(tmp5, (32 - 1)); negl(tmp5); andl(tmp5, (32 - 1)); // bail out when there is nothing to be done testl(tmp5, 0xFFFFFFFF); jcc(Assembler::zero, post_alignment); // ~(~0 << len), where len is the # of remaining elements to process movl(result, 0xFFFFFFFF); shlxl(result, result, tmp5); notl(result); kmovdl(k3, result); evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit); evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); ktestd(k2, k3); jcc(Assembler::carryClear, return_zero); evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit); addptr(src, tmp5); addptr(src, tmp5); addptr(dst, tmp5); subl(len, tmp5); bind(post_alignment); // end of alignment movl(tmp5, len); andl(tmp5, (32 - 1)); // tail count (in chars) andl(len, ~(32 - 1)); // vector count (in chars) jcc(Assembler::zero, copy_loop_tail); lea(src, Address(src, len, Address::times_2)); lea(dst, Address(dst, len, Address::times_1)); negptr(len); bind(copy_32_loop); evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit); evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); kortestdl(k2, k2); jcc(Assembler::carryClear, return_zero); // All elements in current processed chunk are valid candidates for // compression. Write a truncated byte elements to the memory. evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit); addptr(len, 32); jcc(Assembler::notZero, copy_32_loop); bind(copy_loop_tail); // bail out when there is nothing to be done testl(tmp5, 0xFFFFFFFF); jcc(Assembler::zero, return_length); movl(len, tmp5); // ~(~0 << len), where len is the # of remaining elements to process movl(result, 0xFFFFFFFF); shlxl(result, result, len); notl(result); kmovdl(k3, result); evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit); evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); ktestd(k2, k3); jcc(Assembler::carryClear, return_zero); evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit); jmp(return_length); bind(below_threshold); } if (UseSSE42Intrinsics) { Label copy_32_loop, copy_16, copy_tail; movl(result, len); movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors // vectored compression andl(len, 0xfffffff0); // vector count (in chars) andl(result, 0x0000000f); // tail count (in chars) testl(len, len); jcc(Assembler::zero, copy_16); // compress 16 chars per iter movdl(tmp1Reg, tmp5); pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg pxor(tmp4Reg, tmp4Reg); lea(src, Address(src, len, Address::times_2)); lea(dst, Address(dst, len, Address::times_1)); negptr(len); bind(copy_32_loop); movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters por(tmp4Reg, tmp2Reg); movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters por(tmp4Reg, tmp3Reg); ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector jcc(Assembler::notZero, return_zero); packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte movdqu(Address(dst, len, Address::times_1), tmp2Reg); addptr(len, 16); jcc(Assembler::notZero, copy_32_loop); // compress next vector of 8 chars (if any) bind(copy_16); movl(len, result); andl(len, 0xfffffff8); // vector count (in chars) andl(result, 0x00000007); // tail count (in chars) testl(len, len); jccb(Assembler::zero, copy_tail); movdl(tmp1Reg, tmp5); pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg pxor(tmp3Reg, tmp3Reg); movdqu(tmp2Reg, Address(src, 0)); ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector jccb(Assembler::notZero, return_zero); packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte movq(Address(dst, 0), tmp2Reg); addptr(src, 16); addptr(dst, 8); bind(copy_tail); movl(len, result); } // compress 1 char per iter testl(len, len); jccb(Assembler::zero, return_length); lea(src, Address(src, len, Address::times_2)); lea(dst, Address(dst, len, Address::times_1)); negptr(len); bind(copy_chars_loop); load_unsigned_short(result, Address(src, len, Address::times_2)); testl(result, 0xff00); // check if Unicode char jccb(Assembler::notZero, return_zero); movb(Address(dst, len, Address::times_1), result); // ASCII char; compress to 1 byte increment(len); jcc(Assembler::notZero, copy_chars_loop); // if compression succeeded, return length bind(return_length); pop(result); jmpb(done); // if compression failed, return 0 bind(return_zero); xorl(result, result); addptr(rsp, wordSize); bind(done); } // Inflate byte[] array to char[]. // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java // @HotSpotIntrinsicCandidate // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) { // for (int i = 0; i < len; i++) { // dst[dstOff++] = (char)(src[srcOff++] & 0xff); // } // } void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, XMMRegister tmp1, Register tmp2) { Label copy_chars_loop, done, below_threshold, avx3_threshold; // rsi: src // rdi: dst // rdx: len // rcx: tmp2 // rsi holds start addr of source byte[] to be inflated // rdi holds start addr of destination char[] // rdx holds length assert_different_registers(src, dst, len, tmp2); movl(tmp2, len); if ((UseAVX > 2) && // AVX512 VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2()) { Label copy_32_loop, copy_tail; Register tmp3_aliased = len; // if length of the string is less than 16, handle it in an old fashioned way testl(len, -16); jcc(Assembler::zero, below_threshold); testl(len, -1 * AVX3Threshold); jcc(Assembler::zero, avx3_threshold); // In order to use only one arithmetic operation for the main loop we use // this pre-calculation andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop andl(len, -32); // vector count jccb(Assembler::zero, copy_tail); lea(src, Address(src, len, Address::times_1)); lea(dst, Address(dst, len, Address::times_2)); negptr(len); // inflate 32 chars per iter bind(copy_32_loop); vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit); evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit); addptr(len, 32); jcc(Assembler::notZero, copy_32_loop); bind(copy_tail); // bail out when there is nothing to be done testl(tmp2, -1); // we don't destroy the contents of tmp2 here jcc(Assembler::zero, done); // ~(~0 << length), where length is the # of remaining elements to process movl(tmp3_aliased, -1); shlxl(tmp3_aliased, tmp3_aliased, tmp2); notl(tmp3_aliased); kmovdl(k2, tmp3_aliased); evpmovzxbw(tmp1, k2, Address(src, 0), Assembler::AVX_512bit); evmovdquw(Address(dst, 0), k2, tmp1, Assembler::AVX_512bit); jmp(done); bind(avx3_threshold); } if (UseSSE42Intrinsics) { Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail; if (UseAVX > 1) { andl(tmp2, (16 - 1)); andl(len, -16); jccb(Assembler::zero, copy_new_tail); } else { andl(tmp2, 0x00000007); // tail count (in chars) andl(len, 0xfffffff8); // vector count (in chars) jccb(Assembler::zero, copy_tail); } // vectored inflation lea(src, Address(src, len, Address::times_1)); lea(dst, Address(dst, len, Address::times_2)); negptr(len); if (UseAVX > 1) { bind(copy_16_loop); vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit); vmovdqu(Address(dst, len, Address::times_2), tmp1); addptr(len, 16); jcc(Assembler::notZero, copy_16_loop); bind(below_threshold); bind(copy_new_tail); movl(len, tmp2); andl(tmp2, 0x00000007); andl(len, 0xFFFFFFF8); jccb(Assembler::zero, copy_tail); pmovzxbw(tmp1, Address(src, 0)); movdqu(Address(dst, 0), tmp1); addptr(src, 8); addptr(dst, 2 * 8); jmp(copy_tail, true); } // inflate 8 chars per iter bind(copy_8_loop); pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words movdqu(Address(dst, len, Address::times_2), tmp1); addptr(len, 8); jcc(Assembler::notZero, copy_8_loop); bind(copy_tail); movl(len, tmp2); cmpl(len, 4); jccb(Assembler::less, copy_bytes); movdl(tmp1, Address(src, 0)); // load 4 byte chars pmovzxbw(tmp1, tmp1); movq(Address(dst, 0), tmp1); subptr(len, 4); addptr(src, 4); addptr(dst, 8); bind(copy_bytes); } else { bind(below_threshold); } testl(len, len); jccb(Assembler::zero, done); lea(src, Address(src, len, Address::times_1)); lea(dst, Address(dst, len, Address::times_2)); negptr(len); // inflate 1 char per iter bind(copy_chars_loop); load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word increment(len); jcc(Assembler::notZero, copy_chars_loop); bind(done); } #ifdef _LP64 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) { Label done; cvttss2sil(dst, src); // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub cmpl(dst, 0x80000000); // float_sign_flip jccb(Assembler::notEqual, done); subptr(rsp, 8); movflt(Address(rsp, 0), src); call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup()))); pop(dst); bind(done); } void MacroAssembler::convert_d2i(Register dst, XMMRegister src) { Label done; cvttsd2sil(dst, src); // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub cmpl(dst, 0x80000000); // float_sign_flip jccb(Assembler::notEqual, done); subptr(rsp, 8); movdbl(Address(rsp, 0), src); call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup()))); pop(dst); bind(done); } void MacroAssembler::convert_f2l(Register dst, XMMRegister src) { Label done; cvttss2siq(dst, src); cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); jccb(Assembler::notEqual, done); subptr(rsp, 8); movflt(Address(rsp, 0), src); call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup()))); pop(dst); bind(done); } void MacroAssembler::convert_d2l(Register dst, XMMRegister src) { Label done; cvttsd2siq(dst, src); cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); jccb(Assembler::notEqual, done); subptr(rsp, 8); movdbl(Address(rsp, 0), src); call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); pop(dst); bind(done); } void MacroAssembler::cache_wb(Address line) { // 64 bit cpus always support clflush assert(VM_Version::supports_clflush(), "clflush should be available"); bool optimized = VM_Version::supports_clflushopt(); bool no_evict = VM_Version::supports_clwb(); // prefer clwb (writeback without evict) otherwise // prefer clflushopt (potentially parallel writeback with evict) // otherwise fallback on clflush (serial writeback with evict) if (optimized) { if (no_evict) { clwb(line); } else { clflushopt(line); } } else { // no need for fence when using CLFLUSH clflush(line); } } void MacroAssembler::cache_wbsync(bool is_pre) { assert(VM_Version::supports_clflush(), "clflush should be available"); bool optimized = VM_Version::supports_clflushopt(); bool no_evict = VM_Version::supports_clwb(); // pick the correct implementation if (!is_pre && (optimized || no_evict)) { // need an sfence for post flush when using clflushopt or clwb // otherwise no no need for any synchroniaztion sfence(); } } #endif // _LP64 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { switch (cond) { // Note some conditions are synonyms for others case Assembler::zero: return Assembler::notZero; case Assembler::notZero: return Assembler::zero; case Assembler::less: return Assembler::greaterEqual; case Assembler::lessEqual: return Assembler::greater; case Assembler::greater: return Assembler::lessEqual; case Assembler::greaterEqual: return Assembler::less; case Assembler::below: return Assembler::aboveEqual; case Assembler::belowEqual: return Assembler::above; case Assembler::above: return Assembler::belowEqual; case Assembler::aboveEqual: return Assembler::below; case Assembler::overflow: return Assembler::noOverflow; case Assembler::noOverflow: return Assembler::overflow; case Assembler::negative: return Assembler::positive; case Assembler::positive: return Assembler::negative; case Assembler::parity: return Assembler::noParity; case Assembler::noParity: return Assembler::parity; } ShouldNotReachHere(); return Assembler::overflow; } SkipIfEqual::SkipIfEqual( MacroAssembler* masm, const bool* flag_addr, bool value) { _masm = masm; _masm->cmp8(ExternalAddress((address)flag_addr), value); _masm->jcc(Assembler::equal, _label); } SkipIfEqual::~SkipIfEqual() { _masm->bind(_label); } // 32-bit Windows has its own fast-path implementation // of get_thread #if !defined(WIN32) || defined(_LP64) // This is simply a call to Thread::current() void MacroAssembler::get_thread(Register thread) { if (thread != rax) { push(rax); } LP64_ONLY(push(rdi);) LP64_ONLY(push(rsi);) push(rdx); push(rcx); #ifdef _LP64 push(r8); push(r9); push(r10); push(r11); #endif MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0); #ifdef _LP64 pop(r11); pop(r10); pop(r9); pop(r8); #endif pop(rcx); pop(rdx); LP64_ONLY(pop(rsi);) LP64_ONLY(pop(rdi);) if (thread != rax) { mov(thread, rax); pop(rax); } } #endif // !WIN32 || _LP64