/* * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "interp_masm_x86.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterRuntime.hpp" #include "logging/log.hpp" #include "oops/arrayOop.hpp" #include "oops/markWord.hpp" #include "oops/methodData.hpp" #include "oops/method.hpp" #include "prims/jvmtiExport.hpp" #include "prims/jvmtiThreadState.hpp" #include "runtime/basicLock.hpp" #include "runtime/biasedLocking.hpp" #include "runtime/frame.inline.hpp" #include "runtime/safepointMechanism.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/thread.inline.hpp" #include "utilities/powerOfTwo.hpp" // Implementation of InterpreterMacroAssembler void InterpreterMacroAssembler::jump_to_entry(address entry) { assert(entry, "Entry must have been generated by now"); jump(RuntimeAddress(entry)); } void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { Label update, next, none; interp_verify_oop(obj, atos, __FILE__, __LINE__); testptr(obj, obj); jccb(Assembler::notZero, update); orptr(mdo_addr, TypeEntries::null_seen); jmpb(next); bind(update); load_klass(obj, obj); xorptr(obj, mdo_addr); testptr(obj, TypeEntries::type_klass_mask); jccb(Assembler::zero, next); // klass seen before, nothing to // do. The unknown bit may have been // set already but no need to check. testptr(obj, TypeEntries::type_unknown); jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. cmpptr(mdo_addr, 0); jccb(Assembler::equal, none); cmpptr(mdo_addr, TypeEntries::null_seen); jccb(Assembler::equal, none); // There is a chance that the checks above (re-reading profiling // data from memory) fail if another thread has just set the // profiling to this obj's klass xorptr(obj, mdo_addr); testptr(obj, TypeEntries::type_klass_mask); jccb(Assembler::zero, next); // different than before. Cannot keep accurate profile. orptr(mdo_addr, TypeEntries::type_unknown); jmpb(next); bind(none); // first time here. Set profile type. movptr(mdo_addr, obj); bind(next); } void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { if (!ProfileInterpreter) { return; } if (MethodData::profile_arguments() || MethodData::profile_return()) { Label profile_continue; test_method_data_pointer(mdp, profile_continue); int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); jcc(Assembler::notEqual, profile_continue); if (MethodData::profile_arguments()) { Label done; int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); addptr(mdp, off_to_args); for (int i = 0; i < TypeProfileArgsLimit; i++) { if (i > 0 || MethodData::profile_return()) { // If return value type is profiled we may have no argument to profile movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); subl(tmp, i*TypeStackSlotEntries::per_arg_count()); cmpl(tmp, TypeStackSlotEntries::per_arg_count()); jcc(Assembler::less, done); } movptr(tmp, Address(callee, Method::const_offset())); load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); // stack offset o (zero based) from the start of the argument // list, for n arguments translates into offset n - o - 1 from // the end of the argument list subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); subl(tmp, 1); Address arg_addr = argument_address(tmp); movptr(tmp, arg_addr); Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); profile_obj_type(tmp, mdo_arg_addr); int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); addptr(mdp, to_add); off_to_args += to_add; } if (MethodData::profile_return()) { movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); } bind(done); if (MethodData::profile_return()) { // We're right after the type profile for the last // argument. tmp is the number of cells left in the // CallTypeData/VirtualCallTypeData to reach its end. Non null // if there's a return to profile. assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); shll(tmp, exact_log2(DataLayout::cell_size)); addptr(mdp, tmp); } movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp); } else { assert(MethodData::profile_return(), "either profile call args or call ret"); update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); } // mdp points right after the end of the // CallTypeData/VirtualCallTypeData, right after the cells for the // return value type if there's one bind(profile_continue); } } void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { assert_different_registers(mdp, ret, tmp, _bcp_register); if (ProfileInterpreter && MethodData::profile_return()) { Label profile_continue; test_method_data_pointer(mdp, profile_continue); if (MethodData::profile_return_jsr292_only()) { assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); // If we don't profile all invoke bytecodes we must make sure // it's a bytecode we indeed profile. We can't go back to the // begining of the ProfileData we intend to update to check its // type because we're right after it and we don't known its // length Label do_profile; cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic); jcc(Assembler::equal, do_profile); cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle); jcc(Assembler::equal, do_profile); get_method(tmp); cmpw(Address(tmp, Method::intrinsic_id_offset_in_bytes()), vmIntrinsics::_compiledLambdaForm); jcc(Assembler::notEqual, profile_continue); bind(do_profile); } Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); mov(tmp, ret); profile_obj_type(tmp, mdo_ret_addr); bind(profile_continue); } } void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { if (ProfileInterpreter && MethodData::profile_parameters()) { Label profile_continue; test_method_data_pointer(mdp, profile_continue); // Load the offset of the area within the MDO used for // parameters. If it's negative we're not profiling any parameters movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); testl(tmp1, tmp1); jcc(Assembler::negative, profile_continue); // Compute a pointer to the area for parameters from the offset // and move the pointer to the slot for the last // parameters. Collect profiling from last parameter down. // mdo start + parameters offset + array length - 1 addptr(mdp, tmp1); movptr(tmp1, Address(mdp, ArrayData::array_len_offset())); decrement(tmp1, TypeStackSlotEntries::per_arg_count()); Label loop; bind(loop); int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); int type_base = in_bytes(ParametersTypeData::type_offset(0)); Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size); Address arg_off(mdp, tmp1, per_arg_scale, off_base); Address arg_type(mdp, tmp1, per_arg_scale, type_base); // load offset on the stack from the slot for this parameter movptr(tmp2, arg_off); negptr(tmp2); // read the parameter from the local area movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale())); // profile the parameter profile_obj_type(tmp2, arg_type); // go to next parameter decrement(tmp1, TypeStackSlotEntries::per_arg_count()); jcc(Assembler::positive, loop); bind(profile_continue); } } void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, int number_of_arguments) { // interpreter specific // // Note: No need to save/restore bcp & locals registers // since these are callee saved registers and no blocking/ // GC can happen in leaf calls. // Further Note: DO NOT save/restore bcp/locals. If a caller has // already saved them so that it can use rsi/rdi as temporaries // then a save/restore here will DESTROY the copy the caller // saved! There used to be a save_bcp() that only happened in // the ASSERT path (no restore_bcp). Which caused bizarre failures // when jvm built with ASSERTs. #ifdef ASSERT { Label L; cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); jcc(Assembler::equal, L); stop("InterpreterMacroAssembler::call_VM_leaf_base:" " last_sp != NULL"); bind(L); } #endif // super call MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); // interpreter specific // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals // but since they may not have been saved (and we don't want to // save them here (see note above) the assert is invalid. } void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register java_thread, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) { // interpreter specific // // Note: Could avoid restoring locals ptr (callee saved) - however doesn't // really make a difference for these runtime calls, since they are // slow anyway. Btw., bcp must be saved/restored since it may change // due to GC. NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");) save_bcp(); #ifdef ASSERT { Label L; cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); jcc(Assembler::equal, L); stop("InterpreterMacroAssembler::call_VM_base:" " last_sp != NULL"); bind(L); } #endif /* ASSERT */ // super call MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions); // interpreter specific restore_bcp(); restore_locals(); } void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { if (JvmtiExport::can_pop_frame()) { Label L; // Initiate popframe handling only if it is not already being // processed. If the flag has the popframe_processing bit set, it // means that this code is called *during* popframe handling - we // don't want to reenter. // This method is only called just after the call into the vm in // call_VM_base, so the arg registers are available. Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit LP64_ONLY(c_rarg0); movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset())); testl(pop_cond, JavaThread::popframe_pending_bit); jcc(Assembler::zero, L); testl(pop_cond, JavaThread::popframe_processing_bit); jcc(Assembler::notZero, L); // Call Interpreter::remove_activation_preserving_args_entry() to get the // address of the same-named entrypoint in the generated interpreter code. call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); jmp(rax); bind(L); NOT_LP64(get_thread(java_thread);) } } void InterpreterMacroAssembler::load_earlyret_value(TosState state) { Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); NOT_LP64(get_thread(thread);) movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset())); const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); #ifdef _LP64 switch (state) { case atos: movptr(rax, oop_addr); movptr(oop_addr, (int32_t)NULL_WORD); interp_verify_oop(rax, state, __FILE__, __LINE__); break; case ltos: movptr(rax, val_addr); break; case btos: // fall through case ztos: // fall through case ctos: // fall through case stos: // fall through case itos: movl(rax, val_addr); break; case ftos: load_float(val_addr); break; case dtos: load_double(val_addr); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } // Clean up tos value in the thread object movl(tos_addr, (int) ilgl); movl(val_addr, (int32_t) NULL_WORD); #else const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset() + in_ByteSize(wordSize)); switch (state) { case atos: movptr(rax, oop_addr); movptr(oop_addr, NULL_WORD); interp_verify_oop(rax, state, __FILE__, __LINE__); break; case ltos: movl(rdx, val_addr1); // fall through case btos: // fall through case ztos: // fall through case ctos: // fall through case stos: // fall through case itos: movl(rax, val_addr); break; case ftos: load_float(val_addr); break; case dtos: load_double(val_addr); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } #endif // _LP64 // Clean up tos value in the thread object movl(tos_addr, (int32_t) ilgl); movptr(val_addr, NULL_WORD); NOT_LP64(movptr(val_addr1, NULL_WORD);) } void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { if (JvmtiExport::can_force_early_return()) { Label L; Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread); Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread); movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); testptr(tmp, tmp); jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit; // Initiate earlyret handling only if it is not already being processed. // If the flag has the earlyret_processing bit set, it means that this code // is called *during* earlyret handling - we don't want to reenter. movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); cmpl(tmp, JvmtiThreadState::earlyret_pending); jcc(Assembler::notEqual, L); // Call Interpreter::remove_activation_early_entry() to get the address of the // same-named entrypoint in the generated interpreter code. NOT_LP64(get_thread(java_thread);) movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); #ifdef _LP64 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); #else pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset())); call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1); #endif // _LP64 jmp(rax); bind(L); NOT_LP64(get_thread(java_thread);) } } void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); bswapl(reg); shrl(reg, 16); } void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) { assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); if (index_size == sizeof(u2)) { load_unsigned_short(index, Address(_bcp_register, bcp_offset)); } else if (index_size == sizeof(u4)) { movl(index, Address(_bcp_register, bcp_offset)); // Check if the secondary index definition is still ~x, otherwise // we have to change the following assembler code to calculate the // plain index. assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); notl(index); // convert to plain index } else if (index_size == sizeof(u1)) { load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); } else { ShouldNotReachHere(); } } void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index, int bcp_offset, size_t index_size) { assert_different_registers(cache, index); get_cache_index_at_bcp(index, bcp_offset, index_size); movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); // convert from field index to ConstantPoolCacheEntry index assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line"); shll(index, 2); } void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, Register index, Register bytecode, int byte_no, int bcp_offset, size_t index_size) { get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); // We use a 32-bit load here since the layout of 64-bit words on // little-endian machines allow us that. movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())); const int shift_count = (1 + byte_no) * BitsPerByte; assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) || (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift), "correct shift count"); shrl(bytecode, shift_count); assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask"); andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask); } void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset, size_t index_size) { assert_different_registers(cache, tmp); get_cache_index_at_bcp(tmp, bcp_offset, index_size); assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); // convert from field index to ConstantPoolCacheEntry index // and from word offset to byte offset assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); shll(tmp, 2 + LogBytesPerWord); movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); // skip past the header addptr(cache, in_bytes(ConstantPoolCache::base_offset())); addptr(cache, tmp); // construct pointer to cache entry } // Load object from cpool->resolved_references(index) void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index, Register tmp) { assert_different_registers(result, index); get_constant_pool(result); // load pointer for resolved_references[] objArray movptr(result, Address(result, ConstantPool::cache_offset_in_bytes())); movptr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes())); resolve_oop_handle(result, tmp); load_heap_oop(result, Address(result, index, UseCompressedOops ? Address::times_4 : Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp); } // load cpool->resolved_klass_at(index) void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass, Register cpool, Register index) { assert_different_registers(cpool, index); movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool))); Register resolved_klasses = cpool; movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array::base_offset_in_bytes())); } void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, Register method, Register cache, Register index) { assert_different_registers(cache, index); const int method_offset = in_bytes( ConstantPoolCache::base_offset() + ((byte_no == TemplateTable::f2_byte) ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset())); movptr(method, Address(cache, index, Address::times_ptr, method_offset)); // get f1 Method* } // Generate a subtype check: branch to ok_is_subtype if sub_klass is a // subtype of super_klass. // // Args: // rax: superklass // Rsub_klass: subklass // // Kills: // rcx, rdi void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Label& ok_is_subtype) { assert(Rsub_klass != rax, "rax holds superklass"); LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); // Profile the not-null value's klass. profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi // Do the check. check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx // Profile the failure of the check. profile_typecheck_failed(rcx); // blows rcx } #ifndef _LP64 void InterpreterMacroAssembler::f2ieee() { if (IEEEPrecision) { fstp_s(Address(rsp, 0)); fld_s(Address(rsp, 0)); } } void InterpreterMacroAssembler::d2ieee() { if (IEEEPrecision) { fstp_d(Address(rsp, 0)); fld_d(Address(rsp, 0)); } } #endif // _LP64 // Java Expression Stack void InterpreterMacroAssembler::pop_ptr(Register r) { pop(r); } void InterpreterMacroAssembler::push_ptr(Register r) { push(r); } void InterpreterMacroAssembler::push_i(Register r) { push(r); } void InterpreterMacroAssembler::push_f(XMMRegister r) { subptr(rsp, wordSize); movflt(Address(rsp, 0), r); } void InterpreterMacroAssembler::pop_f(XMMRegister r) { movflt(r, Address(rsp, 0)); addptr(rsp, wordSize); } void InterpreterMacroAssembler::push_d(XMMRegister r) { subptr(rsp, 2 * wordSize); movdbl(Address(rsp, 0), r); } void InterpreterMacroAssembler::pop_d(XMMRegister r) { movdbl(r, Address(rsp, 0)); addptr(rsp, 2 * Interpreter::stackElementSize); } #ifdef _LP64 void InterpreterMacroAssembler::pop_i(Register r) { // XXX can't use pop currently, upper half non clean movl(r, Address(rsp, 0)); addptr(rsp, wordSize); } void InterpreterMacroAssembler::pop_l(Register r) { movq(r, Address(rsp, 0)); addptr(rsp, 2 * Interpreter::stackElementSize); } void InterpreterMacroAssembler::push_l(Register r) { subptr(rsp, 2 * wordSize); movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r ); movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD ); } void InterpreterMacroAssembler::pop(TosState state) { switch (state) { case atos: pop_ptr(); break; case btos: case ztos: case ctos: case stos: case itos: pop_i(); break; case ltos: pop_l(); break; case ftos: pop_f(xmm0); break; case dtos: pop_d(xmm0); break; case vtos: /* nothing to do */ break; default: ShouldNotReachHere(); } interp_verify_oop(rax, state, __FILE__, __LINE__); } void InterpreterMacroAssembler::push(TosState state) { interp_verify_oop(rax, state, __FILE__, __LINE__); switch (state) { case atos: push_ptr(); break; case btos: case ztos: case ctos: case stos: case itos: push_i(); break; case ltos: push_l(); break; case ftos: push_f(xmm0); break; case dtos: push_d(xmm0); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } } #else void InterpreterMacroAssembler::pop_i(Register r) { pop(r); } void InterpreterMacroAssembler::pop_l(Register lo, Register hi) { pop(lo); pop(hi); } void InterpreterMacroAssembler::pop_f() { fld_s(Address(rsp, 0)); addptr(rsp, 1 * wordSize); } void InterpreterMacroAssembler::pop_d() { fld_d(Address(rsp, 0)); addptr(rsp, 2 * wordSize); } void InterpreterMacroAssembler::pop(TosState state) { switch (state) { case atos: pop_ptr(rax); break; case btos: // fall through case ztos: // fall through case ctos: // fall through case stos: // fall through case itos: pop_i(rax); break; case ltos: pop_l(rax, rdx); break; case ftos: if (UseSSE >= 1) { pop_f(xmm0); } else { pop_f(); } break; case dtos: if (UseSSE >= 2) { pop_d(xmm0); } else { pop_d(); } break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } interp_verify_oop(rax, state, __FILE__, __LINE__); } void InterpreterMacroAssembler::push_l(Register lo, Register hi) { push(hi); push(lo); } void InterpreterMacroAssembler::push_f() { // Do not schedule for no AGI! Never write beyond rsp! subptr(rsp, 1 * wordSize); fstp_s(Address(rsp, 0)); } void InterpreterMacroAssembler::push_d() { // Do not schedule for no AGI! Never write beyond rsp! subptr(rsp, 2 * wordSize); fstp_d(Address(rsp, 0)); } void InterpreterMacroAssembler::push(TosState state) { interp_verify_oop(rax, state, __FILE__, __LINE__); switch (state) { case atos: push_ptr(rax); break; case btos: // fall through case ztos: // fall through case ctos: // fall through case stos: // fall through case itos: push_i(rax); break; case ltos: push_l(rax, rdx); break; case ftos: if (UseSSE >= 1) { push_f(xmm0); } else { push_f(); } break; case dtos: if (UseSSE >= 2) { push_d(xmm0); } else { push_d(); } break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } } #endif // _LP64 // Helpers for swap and dup void InterpreterMacroAssembler::load_ptr(int n, Register val) { movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); } void InterpreterMacroAssembler::store_ptr(int n, Register val) { movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); } void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { // set sender sp lea(_bcp_register, Address(rsp, wordSize)); // record last_sp movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register); } // Jump to from_interpreted entry of a call unless single stepping is possible // in this thread in which case we must call the i2i entry void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { prepare_to_jump_from_interpreted(); if (JvmtiExport::can_post_interpreter_events()) { Label run_compiled_code; // JVMTI events, such as single-stepping, are implemented partly by avoiding running // compiled code in threads for which the event is enabled. Check here for // interp_only_mode if these events CAN be enabled. // interp_only is an int, on little endian it is sufficient to test the byte only // Is a cmpl faster? LP64_ONLY(temp = r15_thread;) NOT_LP64(get_thread(temp);) cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0); jccb(Assembler::zero, run_compiled_code); jmp(Address(method, Method::interpreter_entry_offset())); bind(run_compiled_code); } jmp(Address(method, Method::from_interpreted_offset())); } // The following two routines provide a hook so that an implementation // can schedule the dispatch in two parts. x86 does not do this. void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { // Nothing x86 specific to be done here } void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { dispatch_next(state, step); } void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, bool verifyoop, bool generate_poll) { verify_FPU(1, state); if (VerifyActivationFrameSize) { Label L; mov(rcx, rbp); subptr(rcx, rsp); int32_t min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize; cmpptr(rcx, (int32_t)min_frame_size); jcc(Assembler::greaterEqual, L); stop("broken stack frame"); bind(L); } if (verifyoop) { interp_verify_oop(rax, state, __FILE__, __LINE__); } address* const safepoint_table = Interpreter::safept_table(state); #ifdef _LP64 Label no_safepoint, dispatch; if (SafepointMechanism::uses_thread_local_poll() && table != safepoint_table && generate_poll) { NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); testb(Address(r15_thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit()); jccb(Assembler::zero, no_safepoint); lea(rscratch1, ExternalAddress((address)safepoint_table)); jmpb(dispatch); } bind(no_safepoint); lea(rscratch1, ExternalAddress((address)table)); bind(dispatch); jmp(Address(rscratch1, rbx, Address::times_8)); #else Address index(noreg, rbx, Address::times_ptr); if (SafepointMechanism::uses_thread_local_poll() && table != safepoint_table && generate_poll) { NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); Label no_safepoint; const Register thread = rcx; get_thread(thread); testb(Address(thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit()); jccb(Assembler::zero, no_safepoint); ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index); jump(dispatch_addr); bind(no_safepoint); } { ArrayAddress dispatch_addr(ExternalAddress((address)table), index); jump(dispatch_addr); } #endif // _LP64 } void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); } void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { dispatch_base(state, Interpreter::normal_table(state)); } void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { dispatch_base(state, Interpreter::normal_table(state), false); } void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { // load next bytecode (load before advancing _bcp_register to prevent AGI) load_unsigned_byte(rbx, Address(_bcp_register, step)); // advance _bcp_register increment(_bcp_register, step); dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); } void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { // load current bytecode load_unsigned_byte(rbx, Address(_bcp_register, 0)); dispatch_base(state, table); } void InterpreterMacroAssembler::narrow(Register result) { // Get method->_constMethod->_result_type movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); movptr(rcx, Address(rcx, Method::const_offset())); load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); Label done, notBool, notByte, notChar; // common case first cmpl(rcx, T_INT); jcc(Assembler::equal, done); // mask integer result to narrower return type. cmpl(rcx, T_BOOLEAN); jcc(Assembler::notEqual, notBool); andl(result, 0x1); jmp(done); bind(notBool); cmpl(rcx, T_BYTE); jcc(Assembler::notEqual, notByte); LP64_ONLY(movsbl(result, result);) NOT_LP64(shll(result, 24);) // truncate upper 24 bits NOT_LP64(sarl(result, 24);) // and sign-extend byte jmp(done); bind(notByte); cmpl(rcx, T_CHAR); jcc(Assembler::notEqual, notChar); LP64_ONLY(movzwl(result, result);) NOT_LP64(andl(result, 0xFFFF);) // truncate upper 16 bits jmp(done); bind(notChar); // cmpl(rcx, T_SHORT); // all that's left // jcc(Assembler::notEqual, done); LP64_ONLY(movswl(result, result);) NOT_LP64(shll(result, 16);) // truncate upper 16 bits NOT_LP64(sarl(result, 16);) // and sign-extend short // Nothing to do for T_INT bind(done); } // remove activation // // Unlock the receiver if this is a synchronized method. // Unlock any Java monitors from syncronized blocks. // Remove the activation from the stack. // // If there are locked Java monitors // If throw_monitor_exception // throws IllegalMonitorStateException // Else if install_monitor_exception // installs IllegalMonitorStateException // Else // no error processing void InterpreterMacroAssembler::remove_activation( TosState state, Register ret_addr, bool throw_monitor_exception, bool install_monitor_exception, bool notify_jvmdi) { // Note: Registers rdx xmm0 may be in use for the // result check if synchronized method Label unlocked, unlock, no_unlock; const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); const Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rdx); const Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rcx); // monitor pointers need different register // because rdx may have the result in it NOT_LP64(get_thread(rcx);) // get the value of _do_not_unlock_if_synchronized into rdx const Address do_not_unlock_if_synchronized(rthread, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); movbool(rbx, do_not_unlock_if_synchronized); movbool(do_not_unlock_if_synchronized, false); // reset the flag // get method access flags movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); movl(rcx, Address(rcx, Method::access_flags_offset())); testl(rcx, JVM_ACC_SYNCHRONIZED); jcc(Assembler::zero, unlocked); // Don't unlock anything if the _do_not_unlock_if_synchronized flag // is set. testbool(rbx); jcc(Assembler::notZero, no_unlock); // unlock monitor push(state); // save result // BasicObjectLock will be first in list, since this is a // synchronized method. However, need to check that the object has // not been unlocked by an explicit monitorexit bytecode. const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int) sizeof(BasicObjectLock)); // We use c_rarg1/rdx so that if we go slow path it will be the correct // register for unlock_object to pass to VM directly lea(robj, monitor); // address of first monitor movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes())); testptr(rax, rax); jcc(Assembler::notZero, unlock); pop(state); if (throw_monitor_exception) { // Entry already unlocked, need to throw exception NOT_LP64(empty_FPU_stack();) // remove possible return value from FPU-stack, otherwise stack could overflow call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); should_not_reach_here(); } else { // Monitor already unlocked during a stack unroll. If requested, // install an illegal_monitor_state_exception. Continue with // stack unrolling. if (install_monitor_exception) { NOT_LP64(empty_FPU_stack();) call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); } jmp(unlocked); } bind(unlock); unlock_object(robj); pop(state); // Check that for block-structured locking (i.e., that all locked // objects has been unlocked) bind(unlocked); // rax, rdx: Might contain return value // Check that all monitors are unlocked { Label loop, exception, entry, restart; const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; const Address monitor_block_top( rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); const Address monitor_block_bot( rbp, frame::interpreter_frame_initial_sp_offset * wordSize); bind(restart); // We use c_rarg1 so that if we go slow path it will be the correct // register for unlock_object to pass to VM directly movptr(rmon, monitor_block_top); // points to current entry, starting // with top-most entry lea(rbx, monitor_block_bot); // points to word before bottom of // monitor block jmp(entry); // Entry already locked, need to throw exception bind(exception); if (throw_monitor_exception) { // Throw exception NOT_LP64(empty_FPU_stack();) MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime:: throw_illegal_monitor_state_exception)); should_not_reach_here(); } else { // Stack unrolling. Unlock object and install illegal_monitor_exception. // Unlock does not block, so don't have to worry about the frame. // We don't have to preserve c_rarg1 since we are going to throw an exception. push(state); mov(robj, rmon); // nop if robj and rmon are the same unlock_object(robj); pop(state); if (install_monitor_exception) { NOT_LP64(empty_FPU_stack();) call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime:: new_illegal_monitor_state_exception)); } jmp(restart); } bind(loop); // check if current entry is used cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL); jcc(Assembler::notEqual, exception); addptr(rmon, entry_size); // otherwise advance to next entry bind(entry); cmpptr(rmon, rbx); // check if bottom reached jcc(Assembler::notEqual, loop); // if not at bottom then check this entry } bind(no_unlock); // jvmti support if (notify_jvmdi) { notify_method_exit(state, NotifyJVMTI); // preserve TOSCA } else { notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA } // remove activation // get sender sp movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); if (StackReservedPages > 0) { // testing if reserved zone needs to be re-enabled Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); Label no_reserved_zone_enabling; NOT_LP64(get_thread(rthread);) cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_enabled); jcc(Assembler::equal, no_reserved_zone_enabling); cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset())); jcc(Assembler::lessEqual, no_reserved_zone_enabling); call_VM_leaf( CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError)); should_not_reach_here(); bind(no_reserved_zone_enabling); } leave(); // remove frame anchor pop(ret_addr); // get return address mov(rsp, rbx); // set sp to sender sp } void InterpreterMacroAssembler::get_method_counters(Register method, Register mcs, Label& skip) { Label has_counters; movptr(mcs, Address(method, Method::method_counters_offset())); testptr(mcs, mcs); jcc(Assembler::notZero, has_counters); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), method); movptr(mcs, Address(method,Method::method_counters_offset())); testptr(mcs, mcs); jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory bind(has_counters); } // Lock object // // Args: // rdx, c_rarg1: BasicObjectLock to be used for locking // // Kills: // rax, rbx void InterpreterMacroAssembler::lock_object(Register lock_reg) { assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), "The argument is only for looks. It must be c_rarg1"); if (UseHeavyMonitors) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg); } else { Label done; const Register swap_reg = rax; // Must use rax for cmpxchg instruction const Register tmp_reg = rbx; // Will be passed to biased_locking_enter to avoid a // problematic case where tmp_reg = no_reg. const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes(); Label slow_case; // Load object pointer into obj_reg movptr(obj_reg, Address(lock_reg, obj_offset)); if (UseBiasedLocking) { biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp_reg, false, done, &slow_case); } // Load immediate 1 into swap_reg %rax movl(swap_reg, (int32_t)1); // Load (object->mark() | 1) into swap_reg %rax orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); // Save (object->mark() | 1) into BasicLock's displaced header movptr(Address(lock_reg, mark_offset), swap_reg); assert(lock_offset == 0, "displaced header must be first word in BasicObjectLock"); lock(); cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); if (PrintBiasedLockingStatistics) { cond_inc32(Assembler::zero, ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr())); } jcc(Assembler::zero, done); const int zero_bits = LP64_ONLY(7) NOT_LP64(3); // Test if the oopMark is an obvious stack pointer, i.e., // 1) (mark & zero_bits) == 0, and // 2) rsp <= mark < mark + os::pagesize() // // These 3 tests can be done by evaluating the following // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())), // assuming both stack pointer and pagesize have their // least significant bits clear. // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg subptr(swap_reg, rsp); andptr(swap_reg, zero_bits - os::vm_page_size()); // Save the test result, for recursive case, the result is zero movptr(Address(lock_reg, mark_offset), swap_reg); if (PrintBiasedLockingStatistics) { cond_inc32(Assembler::zero, ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr())); } jcc(Assembler::zero, done); bind(slow_case); // Call the runtime routine for slow case call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg); bind(done); } } // Unlocks an object. Used in monitorexit bytecode and // remove_activation. Throws an IllegalMonitorException if object is // not locked by current thread. // // Args: // rdx, c_rarg1: BasicObjectLock for lock // // Kills: // rax // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) // rscratch1 (scratch reg) // rax, rbx, rcx, rdx void InterpreterMacroAssembler::unlock_object(Register lock_reg) { assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), "The argument is only for looks. It must be c_rarg1"); if (UseHeavyMonitors) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); } else { Label done; const Register swap_reg = rax; // Must use rax for cmpxchg instruction const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx); // Will contain the old oopMark const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop save_bcp(); // Save in case of exception // Convert from BasicObjectLock structure to object and BasicLock // structure Store the BasicLock address into %rax lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); // Load oop into obj_reg(%c_rarg3) movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // Free entry movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD); if (UseBiasedLocking) { biased_locking_exit(obj_reg, header_reg, done); } // Load the old header from BasicLock structure movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes())); // Test for recursion testptr(header_reg, header_reg); // zero for recursive case jcc(Assembler::zero, done); // Atomic swap back the old header lock(); cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); // zero for simple unlock of a stack-lock case jcc(Assembler::zero, done); // Call the runtime routine for slow case. movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); bind(done); restore_bcp(); } } void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) { assert(ProfileInterpreter, "must be profiling interpreter"); movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); testptr(mdp, mdp); jcc(Assembler::zero, zero_continue); } // Set the method data pointer for the current bcp. void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { assert(ProfileInterpreter, "must be profiling interpreter"); Label set_mdp; push(rax); push(rbx); get_method(rbx); // Test MDO to avoid the call if it is NULL. movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); testptr(rax, rax); jcc(Assembler::zero, set_mdp); // rbx: method // _bcp_register: bcp call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); // rax: mdi // mdo is guaranteed to be non-zero here, we checked for it before the call. movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); addptr(rbx, in_bytes(MethodData::data_offset())); addptr(rax, rbx); bind(set_mdp); movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); pop(rbx); pop(rax); } void InterpreterMacroAssembler::verify_method_data_pointer() { assert(ProfileInterpreter, "must be profiling interpreter"); #ifdef ASSERT Label verify_continue; push(rax); push(rbx); Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx); push(arg3_reg); push(arg2_reg); test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue get_method(rbx); // If the mdp is valid, it will point to a DataLayout header which is // consistent with the bcp. The converse is highly probable also. load_unsigned_short(arg2_reg, Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); addptr(arg2_reg, Address(rbx, Method::const_offset())); lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); cmpptr(arg2_reg, _bcp_register); jcc(Assembler::equal, verify_continue); // rbx: method // _bcp_register: bcp // c_rarg3: mdp call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, _bcp_register, arg3_reg); bind(verify_continue); pop(arg2_reg); pop(arg3_reg); pop(rbx); pop(rax); #endif // ASSERT } void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) { assert(ProfileInterpreter, "must be profiling interpreter"); Address data(mdp_in, constant); movptr(data, value); } void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, int constant, bool decrement) { // Counter address Address data(mdp_in, constant); increment_mdp_data_at(data, decrement); } void InterpreterMacroAssembler::increment_mdp_data_at(Address data, bool decrement) { assert(ProfileInterpreter, "must be profiling interpreter"); // %%% this does 64bit counters at best it is wasting space // at worst it is a rare bug when counters overflow if (decrement) { // Decrement the register. Set condition codes. addptr(data, (int32_t) -DataLayout::counter_increment); // If the decrement causes the counter to overflow, stay negative Label L; jcc(Assembler::negative, L); addptr(data, (int32_t) DataLayout::counter_increment); bind(L); } else { assert(DataLayout::counter_increment == 1, "flow-free idiom only works with 1"); // Increment the register. Set carry flag. addptr(data, DataLayout::counter_increment); // If the increment causes the counter to overflow, pull back by 1. sbbptr(data, (int32_t)0); } } void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, Register reg, int constant, bool decrement) { Address data(mdp_in, reg, Address::times_1, constant); increment_mdp_data_at(data, decrement); } void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) { assert(ProfileInterpreter, "must be profiling interpreter"); int header_offset = in_bytes(DataLayout::flags_offset()); int header_bits = flag_byte_constant; // Set the flag orb(Address(mdp_in, header_offset), header_bits); } void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, int offset, Register value, Register test_value_out, Label& not_equal_continue) { assert(ProfileInterpreter, "must be profiling interpreter"); if (test_value_out == noreg) { cmpptr(value, Address(mdp_in, offset)); } else { // Put the test value into a register, so caller can use it: movptr(test_value_out, Address(mdp_in, offset)); cmpptr(test_value_out, value); } jcc(Assembler::notEqual, not_equal_continue); } void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) { assert(ProfileInterpreter, "must be profiling interpreter"); Address disp_address(mdp_in, offset_of_disp); addptr(mdp_in, disp_address); movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); } void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) { assert(ProfileInterpreter, "must be profiling interpreter"); Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); addptr(mdp_in, disp_address); movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); } void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) { assert(ProfileInterpreter, "must be profiling interpreter"); addptr(mdp_in, constant); movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); } void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { assert(ProfileInterpreter, "must be profiling interpreter"); push(return_bci); // save/restore across call_VM call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci); pop(return_bci); } void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. // Otherwise, assign to mdp test_method_data_pointer(mdp, profile_continue); // We are taking a branch. Increment the taken count. // We inline increment_mdp_data_at to return bumped_count in a register //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); Address data(mdp, in_bytes(JumpData::taken_offset())); movptr(bumped_count, data); assert(DataLayout::counter_increment == 1, "flow-free idiom only works with 1"); addptr(bumped_count, DataLayout::counter_increment); sbbptr(bumped_count, 0); movptr(data, bumped_count); // Store back out // The method data pointer needs to be updated to reflect the new target. update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // We are taking a branch. Increment the not taken count. increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); // The method data pointer needs to be updated to correspond to // the next bytecode update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_call(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // We are making a call. Increment the count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_final_call(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // We are making a call. Increment the count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(mdp, in_bytes(VirtualCallData:: virtual_call_data_size())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp, Register reg2, bool receiver_can_be_null) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); Label skip_receiver_profile; if (receiver_can_be_null) { Label not_null; testptr(receiver, receiver); jccb(Assembler::notZero, not_null); // We are making a call. Increment the count for null receiver. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); jmp(skip_receiver_profile); bind(not_null); } // Record the receiver type. record_klass_in_profile(receiver, mdp, reg2, true); bind(skip_receiver_profile); // The method data pointer needs to be updated to reflect the new target. #if INCLUDE_JVMCI if (MethodProfileWidth == 0) { update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); } #else // INCLUDE_JVMCI update_mdp_by_constant(mdp, in_bytes(VirtualCallData:: virtual_call_data_size())); #endif // INCLUDE_JVMCI bind(profile_continue); } } #if INCLUDE_JVMCI void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) { assert_different_registers(method, mdp, reg2); if (ProfileInterpreter && MethodProfileWidth > 0) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); Label done; record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth, &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset())); bind(done); update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); bind(profile_continue); } } #endif // INCLUDE_JVMCI // This routine creates a state machine for updating the multi-row // type profile at a virtual call site (or other type-sensitive bytecode). // The machine visits each row (of receiver/count) until the receiver type // is found, or until it runs out of rows. At the same time, it remembers // the location of the first empty row. (An empty row records null for its // receiver, and can be allocated for a newly-observed receiver type.) // Because there are two degrees of freedom in the state, a simple linear // search will not work; it must be a decision tree. Hence this helper // function is recursive, to generate the required tree structured code. // It's the interpreter, so we are trading off code space for speed. // See below for example code. void InterpreterMacroAssembler::record_klass_in_profile_helper( Register receiver, Register mdp, Register reg2, int start_row, Label& done, bool is_virtual_call) { if (TypeProfileWidth == 0) { if (is_virtual_call) { increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); } #if INCLUDE_JVMCI else if (EnableJVMCI) { increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset())); } #endif // INCLUDE_JVMCI } else { int non_profiled_offset = -1; if (is_virtual_call) { non_profiled_offset = in_bytes(CounterData::count_offset()); } #if INCLUDE_JVMCI else if (EnableJVMCI) { non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()); } #endif // INCLUDE_JVMCI record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); } } void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row, Label& done, int total_rows, OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, int non_profiled_offset) { int last_row = total_rows - 1; assert(start_row <= last_row, "must be work left to do"); // Test this row for both the item and for null. // Take any of three different outcomes: // 1. found item => increment count and goto done // 2. found null => keep looking for case 1, maybe allocate this cell // 3. found something else => keep looking for cases 1 and 2 // Case 3 is handled by a recursive call. for (int row = start_row; row <= last_row; row++) { Label next_test; bool test_for_null_also = (row == start_row); // See if the item is item[n]. int item_offset = in_bytes(item_offset_fn(row)); test_mdp_data_at(mdp, item_offset, item, (test_for_null_also ? reg2 : noreg), next_test); // (Reg2 now contains the item from the CallData.) // The item is item[n]. Increment count[n]. int count_offset = in_bytes(item_count_offset_fn(row)); increment_mdp_data_at(mdp, count_offset); jmp(done); bind(next_test); if (test_for_null_also) { // Failed the equality check on item[n]... Test for null. testptr(reg2, reg2); if (start_row == last_row) { // The only thing left to do is handle the null case. if (non_profiled_offset >= 0) { Label found_null; jccb(Assembler::zero, found_null); // Item did not match any saved item and there is no empty row for it. // Increment total counter to indicate polymorphic case. increment_mdp_data_at(mdp, non_profiled_offset); jmp(done); bind(found_null); } else { jcc(Assembler::notZero, done); } break; } Label found_null; // Since null is rare, make it be the branch-taken case. jcc(Assembler::zero, found_null); // Put all the "Case 3" tests here. record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, item_offset_fn, item_count_offset_fn, non_profiled_offset); // Found a null. Keep searching for a matching item, // but remember that this is an empty (unused) slot. bind(found_null); } } // In the fall-through case, we found no matching item, but we // observed the item[start_row] is NULL. // Fill in the item field and increment the count. int item_offset = in_bytes(item_offset_fn(start_row)); set_mdp_data_at(mdp, item_offset, item); int count_offset = in_bytes(item_count_offset_fn(start_row)); movl(reg2, DataLayout::counter_increment); set_mdp_data_at(mdp, count_offset, reg2); if (start_row > 0) { jmp(done); } } // Example state machine code for three profile rows: // // main copy of decision tree, rooted at row[1] // if (row[0].rec == rec) { row[0].incr(); goto done; } // if (row[0].rec != NULL) { // // inner copy of decision tree, rooted at row[1] // if (row[1].rec == rec) { row[1].incr(); goto done; } // if (row[1].rec != NULL) { // // degenerate decision tree, rooted at row[2] // if (row[2].rec == rec) { row[2].incr(); goto done; } // if (row[2].rec != NULL) { count.incr(); goto done; } // overflow // row[2].init(rec); goto done; // } else { // // remember row[1] is empty // if (row[2].rec == rec) { row[2].incr(); goto done; } // row[1].init(rec); goto done; // } // } else { // // remember row[0] is empty // if (row[1].rec == rec) { row[1].incr(); goto done; } // if (row[2].rec == rec) { row[2].incr(); goto done; } // row[0].init(rec); goto done; // } // done: void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, Register mdp, Register reg2, bool is_virtual_call) { assert(ProfileInterpreter, "must be profiling"); Label done; record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); bind (done); } void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { if (ProfileInterpreter) { Label profile_continue; uint row; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // Update the total ret count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); for (row = 0; row < RetData::row_limit(); row++) { Label next_test; // See if return_bci is equal to bci[n]: test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci, noreg, next_test); // return_bci is equal to bci[n]. Increment the count. increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row))); jmp(profile_continue); bind(next_test); } update_mdp_for_ret(return_bci); bind(profile_continue); } } void InterpreterMacroAssembler::profile_null_seen(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); // The method data pointer needs to be updated. int mdp_delta = in_bytes(BitData::bit_data_size()); if (TypeProfileCasts) { mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); } update_mdp_by_constant(mdp, mdp_delta); bind(profile_continue); } } void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { if (ProfileInterpreter && TypeProfileCasts) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); int count_offset = in_bytes(CounterData::count_offset()); // Back up the address, since we have already bumped the mdp. count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); // *Decrement* the counter. We expect to see zero or small negatives. increment_mdp_data_at(mdp, count_offset, true); bind (profile_continue); } } void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // The method data pointer needs to be updated. int mdp_delta = in_bytes(BitData::bit_data_size()); if (TypeProfileCasts) { mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); // Record the object type. record_klass_in_profile(klass, mdp, reg2, false); NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");) NOT_LP64(restore_locals();) // Restore EDI } update_mdp_by_constant(mdp, mdp_delta); bind(profile_continue); } } void InterpreterMacroAssembler::profile_switch_default(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // Update the default case count increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset())); // The method data pointer needs to be updated. update_mdp_by_offset(mdp, in_bytes(MultiBranchData:: default_displacement_offset())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // Build the base (index * per_case_size_in_bytes()) + // case_array_offset_in_bytes() movl(reg2, in_bytes(MultiBranchData::per_case_size())); imulptr(index, reg2); // XXX l ? addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? // Update the case count increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset())); // The method data pointer needs to be updated. update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData:: relative_displacement_offset())); bind(profile_continue); } } void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char* file, int line) { if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop", file, line); } } void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { #ifndef _LP64 if ((state == ftos && UseSSE < 1) || (state == dtos && UseSSE < 2)) { MacroAssembler::verify_FPU(stack_depth); } #endif } // Jump if ((*counter_addr += increment) & mask) satisfies the condition. void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, int increment, Address mask, Register scratch, bool preloaded, Condition cond, Label* where) { if (!preloaded) { movl(scratch, counter_addr); } incrementl(scratch, increment); movl(counter_addr, scratch); andl(scratch, mask); if (where != NULL) { jcc(cond, *where); } } void InterpreterMacroAssembler::notify_method_entry() { // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to // track stack depth. If it is possible to enter interp_only_mode we add // the code to check if the event should be sent. Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); if (JvmtiExport::can_post_interpreter_events()) { Label L; NOT_LP64(get_thread(rthread);) movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); testl(rdx, rdx); jcc(Assembler::zero, L); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry)); bind(L); } { SkipIfEqual skip(this, &DTraceMethodProbes, false); NOT_LP64(get_thread(rthread);) get_method(rarg); call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rthread, rarg); } // RedefineClasses() tracing support for obsolete method entry if (log_is_enabled(Trace, redefine, class, obsolete)) { NOT_LP64(get_thread(rthread);) get_method(rarg); call_VM_leaf( CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), rthread, rarg); } } void InterpreterMacroAssembler::notify_method_exit( TosState state, NotifyMethodExitMode mode) { // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to // track stack depth. If it is possible to enter interp_only_mode we add // the code to check if the event should be sent. Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { Label L; // Note: frame::interpreter_frame_result has a dependency on how the // method result is saved across the call to post_method_exit. If this // is changed then the interpreter_frame_result implementation will // need to be updated too. // template interpreter will leave the result on the top of the stack. push(state); NOT_LP64(get_thread(rthread);) movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); testl(rdx, rdx); jcc(Assembler::zero, L); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); bind(L); pop(state); } { SkipIfEqual skip(this, &DTraceMethodProbes, false); push(state); NOT_LP64(get_thread(rthread);) get_method(rarg); call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), rthread, rarg); pop(state); } }