1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "classfile/vmSymbols.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/codeCacheExtensions.hpp" 31 #include "compiler/compileBroker.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "gc/shared/collectedHeap.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "interpreter/interpreterRuntime.hpp" 36 #include "interpreter/linkResolver.hpp" 37 #include "interpreter/templateTable.hpp" 38 #include "memory/oopFactory.hpp" 39 #include "memory/universe.inline.hpp" 40 #include "oops/constantPool.hpp" 41 #include "oops/instanceKlass.hpp" 42 #include "oops/methodData.hpp" 43 #include "oops/objArrayKlass.hpp" 44 #include "oops/objArrayOop.inline.hpp" 45 #include "oops/oop.inline.hpp" 46 #include "oops/symbol.hpp" 47 #include "prims/jvmtiExport.hpp" 48 #include "prims/nativeLookup.hpp" 49 #include "runtime/atomic.inline.hpp" 50 #include "runtime/biasedLocking.hpp" 51 #include "runtime/compilationPolicy.hpp" 52 #include "runtime/deoptimization.hpp" 53 #include "runtime/fieldDescriptor.hpp" 54 #include "runtime/handles.inline.hpp" 55 #include "runtime/icache.hpp" 56 #include "runtime/interfaceSupport.hpp" 57 #include "runtime/java.hpp" 58 #include "runtime/jfieldIDWorkaround.hpp" 59 #include "runtime/osThread.hpp" 60 #include "runtime/sharedRuntime.hpp" 61 #include "runtime/stubRoutines.hpp" 62 #include "runtime/synchronizer.hpp" 63 #include "runtime/threadCritical.hpp" 64 #include "utilities/events.hpp" 65 #ifdef COMPILER2 66 #include "opto/runtime.hpp" 67 #endif 68 69 class UnlockFlagSaver { 70 private: 71 JavaThread* _thread; 72 bool _do_not_unlock; 73 public: 74 UnlockFlagSaver(JavaThread* t) { 75 _thread = t; 76 _do_not_unlock = t->do_not_unlock_if_synchronized(); 77 t->set_do_not_unlock_if_synchronized(false); 78 } 79 ~UnlockFlagSaver() { 80 _thread->set_do_not_unlock_if_synchronized(_do_not_unlock); 81 } 82 }; 83 84 //------------------------------------------------------------------------------------------------------------------------ 85 // State accessors 86 87 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) { 88 last_frame(thread).interpreter_frame_set_bcp(bcp); 89 if (ProfileInterpreter) { 90 // ProfileTraps uses MDOs independently of ProfileInterpreter. 91 // That is why we must check both ProfileInterpreter and mdo != NULL. 92 MethodData* mdo = last_frame(thread).interpreter_frame_method()->method_data(); 93 if (mdo != NULL) { 94 NEEDS_CLEANUP; 95 last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci())); 96 } 97 } 98 } 99 100 //------------------------------------------------------------------------------------------------------------------------ 101 // Constants 102 103 104 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide)) 105 // access constant pool 106 ConstantPool* pool = method(thread)->constants(); 107 int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc); 108 constantTag tag = pool->tag_at(index); 109 110 assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call"); 111 Klass* klass = pool->klass_at(index, CHECK); 112 oop java_class = klass->java_mirror(); 113 thread->set_vm_result(java_class); 114 IRT_END 115 116 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) { 117 assert(bytecode == Bytecodes::_fast_aldc || 118 bytecode == Bytecodes::_fast_aldc_w, "wrong bc"); 119 ResourceMark rm(thread); 120 methodHandle m (thread, method(thread)); 121 Bytecode_loadconstant ldc(m, bci(thread)); 122 oop result = ldc.resolve_constant(CHECK); 123 #ifdef ASSERT 124 { 125 // The bytecode wrappers aren't GC-safe so construct a new one 126 Bytecode_loadconstant ldc2(m, bci(thread)); 127 oop coop = m->constants()->resolved_references()->obj_at(ldc2.cache_index()); 128 assert(result == coop, "expected result for assembly code"); 129 } 130 #endif 131 thread->set_vm_result(result); 132 } 133 IRT_END 134 135 136 //------------------------------------------------------------------------------------------------------------------------ 137 // Allocation 138 139 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index)) 140 Klass* k_oop = pool->klass_at(index, CHECK); 141 instanceKlassHandle klass (THREAD, k_oop); 142 143 // Make sure we are not instantiating an abstract klass 144 klass->check_valid_for_instantiation(true, CHECK); 145 146 // Make sure klass is initialized 147 klass->initialize(CHECK); 148 149 // At this point the class may not be fully initialized 150 // because of recursive initialization. If it is fully 151 // initialized & has_finalized is not set, we rewrite 152 // it into its fast version (Note: no locking is needed 153 // here since this is an atomic byte write and can be 154 // done more than once). 155 // 156 // Note: In case of classes with has_finalized we don't 157 // rewrite since that saves us an extra check in 158 // the fast version which then would call the 159 // slow version anyway (and do a call back into 160 // Java). 161 // If we have a breakpoint, then we don't rewrite 162 // because the _breakpoint bytecode would be lost. 163 oop obj = klass->allocate_instance(CHECK); 164 thread->set_vm_result(obj); 165 IRT_END 166 167 168 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size)) 169 oop obj = oopFactory::new_typeArray(type, size, CHECK); 170 thread->set_vm_result(obj); 171 IRT_END 172 173 174 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size)) 175 // Note: no oopHandle for pool & klass needed since they are not used 176 // anymore after new_objArray() and no GC can happen before. 177 // (This may have to change if this code changes!) 178 Klass* klass = pool->klass_at(index, CHECK); 179 objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK); 180 thread->set_vm_result(obj); 181 IRT_END 182 183 184 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address)) 185 // We may want to pass in more arguments - could make this slightly faster 186 ConstantPool* constants = method(thread)->constants(); 187 int i = get_index_u2(thread, Bytecodes::_multianewarray); 188 Klass* klass = constants->klass_at(i, CHECK); 189 int nof_dims = number_of_dimensions(thread); 190 assert(klass->is_klass(), "not a class"); 191 assert(nof_dims >= 1, "multianewarray rank must be nonzero"); 192 193 // We must create an array of jints to pass to multi_allocate. 194 ResourceMark rm(thread); 195 const int small_dims = 10; 196 jint dim_array[small_dims]; 197 jint *dims = &dim_array[0]; 198 if (nof_dims > small_dims) { 199 dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims); 200 } 201 for (int index = 0; index < nof_dims; index++) { 202 // offset from first_size_address is addressed as local[index] 203 int n = Interpreter::local_offset_in_bytes(index)/jintSize; 204 dims[index] = first_size_address[n]; 205 } 206 oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK); 207 thread->set_vm_result(obj); 208 IRT_END 209 210 211 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) 212 assert(obj->is_oop(), "must be a valid oop"); 213 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 214 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 215 IRT_END 216 217 218 // Quicken instance-of and check-cast bytecodes 219 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread)) 220 // Force resolving; quicken the bytecode 221 int which = get_index_u2(thread, Bytecodes::_checkcast); 222 ConstantPool* cpool = method(thread)->constants(); 223 // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded 224 // program we might have seen an unquick'd bytecode in the interpreter but have another 225 // thread quicken the bytecode before we get here. 226 // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" ); 227 Klass* klass = cpool->klass_at(which, CHECK); 228 thread->set_vm_result_2(klass); 229 IRT_END 230 231 232 //------------------------------------------------------------------------------------------------------------------------ 233 // Exceptions 234 235 void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason, 236 methodHandle trap_method, int trap_bci, TRAPS) { 237 if (trap_method.not_null()) { 238 MethodData* trap_mdo = trap_method->method_data(); 239 if (trap_mdo == NULL) { 240 Method::build_interpreter_method_data(trap_method, THREAD); 241 if (HAS_PENDING_EXCEPTION) { 242 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), 243 "we expect only an OOM error here"); 244 CLEAR_PENDING_EXCEPTION; 245 } 246 trap_mdo = trap_method->method_data(); 247 // and fall through... 248 } 249 if (trap_mdo != NULL) { 250 // Update per-method count of trap events. The interpreter 251 // is updating the MDO to simulate the effect of compiler traps. 252 Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason); 253 } 254 } 255 } 256 257 // Assume the compiler is (or will be) interested in this event. 258 // If necessary, create an MDO to hold the information, and record it. 259 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) { 260 assert(ProfileTraps, "call me only if profiling"); 261 methodHandle trap_method(thread, method(thread)); 262 int trap_bci = trap_method->bci_from(bcp(thread)); 263 note_trap_inner(thread, reason, trap_method, trap_bci, THREAD); 264 } 265 266 #ifdef CC_INTERP 267 // As legacy note_trap, but we have more arguments. 268 IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci)) 269 methodHandle trap_method(method); 270 note_trap_inner(thread, reason, trap_method, trap_bci, THREAD); 271 IRT_END 272 273 // Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper 274 // for each exception. 275 void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci) 276 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); } 277 void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci) 278 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); } 279 void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci) 280 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); } 281 void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci) 282 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); } 283 void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci) 284 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); } 285 #endif // CC_INTERP 286 287 288 static Handle get_preinitialized_exception(Klass* k, TRAPS) { 289 // get klass 290 InstanceKlass* klass = InstanceKlass::cast(k); 291 assert(klass->is_initialized(), 292 "this klass should have been initialized during VM initialization"); 293 // create instance - do not call constructor since we may have no 294 // (java) stack space left (should assert constructor is empty) 295 Handle exception; 296 oop exception_oop = klass->allocate_instance(CHECK_(exception)); 297 exception = Handle(THREAD, exception_oop); 298 if (StackTraceInThrowable) { 299 java_lang_Throwable::fill_in_stack_trace(exception); 300 } 301 return exception; 302 } 303 304 // Special handling for stack overflow: since we don't have any (java) stack 305 // space left we use the pre-allocated & pre-initialized StackOverflowError 306 // klass to create an stack overflow error instance. We do not call its 307 // constructor for the same reason (it is empty, anyway). 308 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread)) 309 Handle exception = get_preinitialized_exception( 310 SystemDictionary::StackOverflowError_klass(), 311 CHECK); 312 // Increment counter for hs_err file reporting 313 Atomic::inc(&Exceptions::_stack_overflow_errors); 314 THROW_HANDLE(exception); 315 IRT_END 316 317 318 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message)) 319 // lookup exception klass 320 TempNewSymbol s = SymbolTable::new_symbol(name, CHECK); 321 if (ProfileTraps) { 322 if (s == vmSymbols::java_lang_ArithmeticException()) { 323 note_trap(thread, Deoptimization::Reason_div0_check, CHECK); 324 } else if (s == vmSymbols::java_lang_NullPointerException()) { 325 note_trap(thread, Deoptimization::Reason_null_check, CHECK); 326 } 327 } 328 // create exception 329 Handle exception = Exceptions::new_exception(thread, s, message); 330 thread->set_vm_result(exception()); 331 IRT_END 332 333 334 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj)) 335 ResourceMark rm(thread); 336 const char* klass_name = obj->klass()->external_name(); 337 // lookup exception klass 338 TempNewSymbol s = SymbolTable::new_symbol(name, CHECK); 339 if (ProfileTraps) { 340 note_trap(thread, Deoptimization::Reason_class_check, CHECK); 341 } 342 // create exception, with klass name as detail message 343 Handle exception = Exceptions::new_exception(thread, s, klass_name); 344 thread->set_vm_result(exception()); 345 IRT_END 346 347 348 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index)) 349 char message[jintAsStringSize]; 350 // lookup exception klass 351 TempNewSymbol s = SymbolTable::new_symbol(name, CHECK); 352 if (ProfileTraps) { 353 note_trap(thread, Deoptimization::Reason_range_check, CHECK); 354 } 355 // create exception 356 sprintf(message, "%d", index); 357 THROW_MSG(s, message); 358 IRT_END 359 360 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException( 361 JavaThread* thread, oopDesc* obj)) 362 363 ResourceMark rm(thread); 364 char* message = SharedRuntime::generate_class_cast_message( 365 thread, obj->klass()->external_name()); 366 367 if (ProfileTraps) { 368 note_trap(thread, Deoptimization::Reason_class_check, CHECK); 369 } 370 371 // create exception 372 THROW_MSG(vmSymbols::java_lang_ClassCastException(), message); 373 IRT_END 374 375 // exception_handler_for_exception(...) returns the continuation address, 376 // the exception oop (via TLS) and sets the bci/bcp for the continuation. 377 // The exception oop is returned to make sure it is preserved over GC (it 378 // is only on the stack if the exception was thrown explicitly via athrow). 379 // During this operation, the expression stack contains the values for the 380 // bci where the exception happened. If the exception was propagated back 381 // from a call, the expression stack contains the values for the bci at the 382 // invoke w/o arguments (i.e., as if one were inside the call). 383 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception)) 384 385 Handle h_exception(thread, exception); 386 methodHandle h_method (thread, method(thread)); 387 constantPoolHandle h_constants(thread, h_method->constants()); 388 bool should_repeat; 389 int handler_bci; 390 int current_bci = bci(thread); 391 392 if (thread->frames_to_pop_failed_realloc() > 0) { 393 // Allocation of scalar replaced object used in this frame 394 // failed. Unconditionally pop the frame. 395 thread->dec_frames_to_pop_failed_realloc(); 396 thread->set_vm_result(h_exception()); 397 // If the method is synchronized we already unlocked the monitor 398 // during deoptimization so the interpreter needs to skip it when 399 // the frame is popped. 400 thread->set_do_not_unlock_if_synchronized(true); 401 #ifdef CC_INTERP 402 return (address) -1; 403 #else 404 return Interpreter::remove_activation_entry(); 405 #endif 406 } 407 408 // Need to do this check first since when _do_not_unlock_if_synchronized 409 // is set, we don't want to trigger any classloading which may make calls 410 // into java, or surprisingly find a matching exception handler for bci 0 411 // since at this moment the method hasn't been "officially" entered yet. 412 if (thread->do_not_unlock_if_synchronized()) { 413 ResourceMark rm; 414 assert(current_bci == 0, "bci isn't zero for do_not_unlock_if_synchronized"); 415 thread->set_vm_result(exception); 416 #ifdef CC_INTERP 417 return (address) -1; 418 #else 419 return Interpreter::remove_activation_entry(); 420 #endif 421 } 422 423 do { 424 should_repeat = false; 425 426 // assertions 427 #ifdef ASSERT 428 assert(h_exception.not_null(), "NULL exceptions should be handled by athrow"); 429 assert(h_exception->is_oop(), "just checking"); 430 // Check that exception is a subclass of Throwable, otherwise we have a VerifyError 431 if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) { 432 if (ExitVMOnVerifyError) vm_exit(-1); 433 ShouldNotReachHere(); 434 } 435 #endif 436 437 // tracing 438 if (TraceExceptions) { 439 ResourceMark rm(thread); 440 Symbol* message = java_lang_Throwable::detail_message(h_exception()); 441 ttyLocker ttyl; // Lock after getting the detail message 442 if (message != NULL) { 443 tty->print_cr("Exception <%s: %s> (" INTPTR_FORMAT ")", 444 h_exception->print_value_string(), message->as_C_string(), 445 p2i(h_exception())); 446 } else { 447 tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", 448 h_exception->print_value_string(), 449 p2i(h_exception())); 450 } 451 tty->print_cr(" thrown in interpreter method <%s>", h_method->print_value_string()); 452 tty->print_cr(" at bci %d for thread " INTPTR_FORMAT, current_bci, p2i(thread)); 453 } 454 // Don't go paging in something which won't be used. 455 // else if (extable->length() == 0) { 456 // // disabled for now - interpreter is not using shortcut yet 457 // // (shortcut is not to call runtime if we have no exception handlers) 458 // // warning("performance bug: should not call runtime if method has no exception handlers"); 459 // } 460 // for AbortVMOnException flag 461 Exceptions::debug_check_abort(h_exception); 462 463 // exception handler lookup 464 KlassHandle h_klass(THREAD, h_exception->klass()); 465 handler_bci = Method::fast_exception_handler_bci_for(h_method, h_klass, current_bci, THREAD); 466 if (HAS_PENDING_EXCEPTION) { 467 // We threw an exception while trying to find the exception handler. 468 // Transfer the new exception to the exception handle which will 469 // be set into thread local storage, and do another lookup for an 470 // exception handler for this exception, this time starting at the 471 // BCI of the exception handler which caused the exception to be 472 // thrown (bug 4307310). 473 h_exception = Handle(THREAD, PENDING_EXCEPTION); 474 CLEAR_PENDING_EXCEPTION; 475 if (handler_bci >= 0) { 476 current_bci = handler_bci; 477 should_repeat = true; 478 } 479 } 480 } while (should_repeat == true); 481 482 #if INCLUDE_JVMCI 483 if (EnableJVMCI && h_method->method_data() != NULL) { 484 ResourceMark rm(thread); 485 ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL); 486 if (pdata != NULL && pdata->is_BitData()) { 487 BitData* bit_data = (BitData*) pdata; 488 bit_data->set_exception_seen(); 489 } 490 } 491 #endif 492 493 // notify JVMTI of an exception throw; JVMTI will detect if this is a first 494 // time throw or a stack unwinding throw and accordingly notify the debugger 495 if (JvmtiExport::can_post_on_exceptions()) { 496 JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception()); 497 } 498 499 #ifdef CC_INTERP 500 address continuation = (address)(intptr_t) handler_bci; 501 #else 502 address continuation = NULL; 503 #endif 504 address handler_pc = NULL; 505 if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) { 506 // Forward exception to callee (leaving bci/bcp untouched) because (a) no 507 // handler in this method, or (b) after a stack overflow there is not yet 508 // enough stack space available to reprotect the stack. 509 #ifndef CC_INTERP 510 continuation = Interpreter::remove_activation_entry(); 511 #endif 512 // Count this for compilation purposes 513 h_method->interpreter_throwout_increment(THREAD); 514 } else { 515 // handler in this method => change bci/bcp to handler bci/bcp and continue there 516 handler_pc = h_method->code_base() + handler_bci; 517 #ifndef CC_INTERP 518 set_bcp_and_mdp(handler_pc, thread); 519 continuation = Interpreter::dispatch_table(vtos)[*handler_pc]; 520 #endif 521 } 522 // notify debugger of an exception catch 523 // (this is good for exceptions caught in native methods as well) 524 if (JvmtiExport::can_post_on_exceptions()) { 525 JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL)); 526 } 527 528 thread->set_vm_result(h_exception()); 529 return continuation; 530 IRT_END 531 532 533 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread)) 534 assert(thread->has_pending_exception(), "must only ne called if there's an exception pending"); 535 // nothing to do - eventually we should remove this code entirely (see comments @ call sites) 536 IRT_END 537 538 539 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread)) 540 THROW(vmSymbols::java_lang_AbstractMethodError()); 541 IRT_END 542 543 544 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) 545 THROW(vmSymbols::java_lang_IncompatibleClassChangeError()); 546 IRT_END 547 548 549 //------------------------------------------------------------------------------------------------------------------------ 550 // Fields 551 // 552 553 void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) { 554 Thread* THREAD = thread; 555 // resolve field 556 fieldDescriptor info; 557 constantPoolHandle pool(thread, method(thread)->constants()); 558 bool is_put = (bytecode == Bytecodes::_putfield || bytecode == Bytecodes::_nofast_putfield || 559 bytecode == Bytecodes::_putstatic); 560 bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic); 561 562 { 563 JvmtiHideSingleStepping jhss(thread); 564 LinkResolver::resolve_field_access(info, pool, get_index_u2_cpcache(thread, bytecode), 565 bytecode, CHECK); 566 } // end JvmtiHideSingleStepping 567 568 // check if link resolution caused cpCache to be updated 569 ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread); 570 if (cp_cache_entry->is_resolved(bytecode)) return; 571 572 // compute auxiliary field attributes 573 TosState state = as_TosState(info.field_type()); 574 575 // We need to delay resolving put instructions on final fields 576 // until we actually invoke one. This is required so we throw 577 // exceptions at the correct place. If we do not resolve completely 578 // in the current pass, leaving the put_code set to zero will 579 // cause the next put instruction to reresolve. 580 Bytecodes::Code put_code = (Bytecodes::Code)0; 581 582 // We also need to delay resolving getstatic instructions until the 583 // class is intitialized. This is required so that access to the static 584 // field will call the initialization function every time until the class 585 // is completely initialized ala. in 2.17.5 in JVM Specification. 586 InstanceKlass* klass = InstanceKlass::cast(info.field_holder()); 587 bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) && 588 !klass->is_initialized()); 589 Bytecodes::Code get_code = (Bytecodes::Code)0; 590 591 592 if (info.is_accessor()) { 593 // If it is an accessor (not a real field) change bytecode 594 // semantic to be a call to the accessor-method) 595 InstanceKlass* current_klass = method(thread)->method_holder(); 596 // find method based on get/put 597 Method* m = klass->method_with_idnum(is_put 598 ? info.get_put_accessor() 599 : info.get_get_accessor() 600 ); 601 602 // Create a linkinfo to resolve the method 603 LinkInfo linfo(klass,m->name(),m->signature(),current_klass,true); 604 605 // Resolve static/non-static method and initialize cp_cache_entry 606 // accordingly 607 if (is_static) { 608 methodHandle mh = LinkResolver::resolve_static_call_or_null(linfo); 609 cp_cache_entry->set_direct_call( 610 Bytecodes::_invokestatic, 611 mh); 612 }else { 613 methodHandle mh = LinkResolver::resolve_virtual_call_or_null(klass,linfo); 614 cp_cache_entry->set_vtable_call( 615 Bytecodes::_invokevirtual, 616 mh, 617 m->vtable_index()); 618 } 619 620 }else { 621 if (!uninitialized_static) { 622 get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield); 623 if (is_put || !info.access_flags().is_final()) { 624 put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield); 625 } 626 } 627 628 cp_cache_entry->set_field( 629 get_code, 630 put_code, 631 info.field_holder(), 632 info.index(), 633 info.offset(), 634 state, 635 info.access_flags().is_final(), 636 info.access_flags().is_volatile(), 637 pool->pool_holder() 638 ); 639 } 640 } 641 642 643 //------------------------------------------------------------------------------------------------------------------------ 644 // Synchronization 645 // 646 // The interpreter's synchronization code is factored out so that it can 647 // be shared by method invocation and synchronized blocks. 648 //%note synchronization_3 649 650 //%note monitor_1 651 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem)) 652 #ifdef ASSERT 653 thread->last_frame().interpreter_frame_verify_monitor(elem); 654 #endif 655 if (PrintBiasedLockingStatistics) { 656 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 657 } 658 Handle h_obj(thread, elem->obj()); 659 assert(Universe::heap()->is_in_reserved_or_null(h_obj()), 660 "must be NULL or an object"); 661 if (UseBiasedLocking) { 662 // Retry fast entry if bias is revoked to avoid unnecessary inflation 663 ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK); 664 } else { 665 ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK); 666 } 667 assert(Universe::heap()->is_in_reserved_or_null(elem->obj()), 668 "must be NULL or an object"); 669 #ifdef ASSERT 670 thread->last_frame().interpreter_frame_verify_monitor(elem); 671 #endif 672 IRT_END 673 674 675 //%note monitor_1 676 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem)) 677 #ifdef ASSERT 678 thread->last_frame().interpreter_frame_verify_monitor(elem); 679 #endif 680 Handle h_obj(thread, elem->obj()); 681 assert(Universe::heap()->is_in_reserved_or_null(h_obj()), 682 "must be NULL or an object"); 683 if (elem == NULL || h_obj()->is_unlocked()) { 684 THROW(vmSymbols::java_lang_IllegalMonitorStateException()); 685 } 686 ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread); 687 // Free entry. This must be done here, since a pending exception might be installed on 688 // exit. If it is not cleared, the exception handling code will try to unlock the monitor again. 689 elem->set_obj(NULL); 690 #ifdef ASSERT 691 thread->last_frame().interpreter_frame_verify_monitor(elem); 692 #endif 693 IRT_END 694 695 696 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread)) 697 THROW(vmSymbols::java_lang_IllegalMonitorStateException()); 698 IRT_END 699 700 701 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread)) 702 // Returns an illegal exception to install into the current thread. The 703 // pending_exception flag is cleared so normal exception handling does not 704 // trigger. Any current installed exception will be overwritten. This 705 // method will be called during an exception unwind. 706 707 assert(!HAS_PENDING_EXCEPTION, "no pending exception"); 708 Handle exception(thread, thread->vm_result()); 709 assert(exception() != NULL, "vm result should be set"); 710 thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures) 711 if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) { 712 exception = get_preinitialized_exception( 713 SystemDictionary::IllegalMonitorStateException_klass(), 714 CATCH); 715 } 716 thread->set_vm_result(exception()); 717 IRT_END 718 719 720 //------------------------------------------------------------------------------------------------------------------------ 721 // Invokes 722 723 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp)) 724 return method->orig_bytecode_at(method->bci_from(bcp)); 725 IRT_END 726 727 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code)) 728 method->set_orig_bytecode_at(method->bci_from(bcp), new_code); 729 IRT_END 730 731 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp)) 732 JvmtiExport::post_raw_breakpoint(thread, method, bcp); 733 IRT_END 734 735 void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) { 736 Thread* THREAD = thread; 737 // extract receiver from the outgoing argument list if necessary 738 Handle receiver(thread, NULL); 739 if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) { 740 ResourceMark rm(thread); 741 methodHandle m (thread, method(thread)); 742 Bytecode_invoke call(m, bci(thread)); 743 Symbol* signature = call.signature(); 744 receiver = Handle(thread, 745 thread->last_frame().interpreter_callee_receiver(signature)); 746 assert(Universe::heap()->is_in_reserved_or_null(receiver()), 747 "sanity check"); 748 assert(receiver.is_null() || 749 !Universe::heap()->is_in_reserved(receiver->klass()), 750 "sanity check"); 751 } 752 753 // resolve method 754 CallInfo info; 755 constantPoolHandle pool(thread, method(thread)->constants()); 756 757 { 758 JvmtiHideSingleStepping jhss(thread); 759 LinkResolver::resolve_invoke(info, receiver, pool, 760 get_index_u2_cpcache(thread, bytecode), bytecode, 761 CHECK); 762 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 763 int retry_count = 0; 764 while (info.resolved_method()->is_old()) { 765 // It is very unlikely that method is redefined more than 100 times 766 // in the middle of resolve. If it is looping here more than 100 times 767 // means then there could be a bug here. 768 guarantee((retry_count++ < 100), 769 "Could not resolve to latest version of redefined method"); 770 // method is redefined in the middle of resolve so re-try. 771 LinkResolver::resolve_invoke(info, receiver, pool, 772 get_index_u2_cpcache(thread, bytecode), bytecode, 773 CHECK); 774 } 775 } 776 } // end JvmtiHideSingleStepping 777 778 // check if link resolution caused cpCache to be updated 779 ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread); 780 if (cp_cache_entry->is_resolved(bytecode)) return; 781 782 if (bytecode == Bytecodes::_invokeinterface) { 783 if (TraceItables && Verbose) { 784 ResourceMark rm(thread); 785 tty->print_cr("Resolving: klass: %s to method: %s", info.resolved_klass()->name()->as_C_string(), info.resolved_method()->name()->as_C_string()); 786 } 787 } 788 #ifdef ASSERT 789 if (bytecode == Bytecodes::_invokeinterface) { 790 if (info.resolved_method()->method_holder() == 791 SystemDictionary::Object_klass()) { 792 // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec 793 // (see also CallInfo::set_interface for details) 794 assert(info.call_kind() == CallInfo::vtable_call || 795 info.call_kind() == CallInfo::direct_call, ""); 796 methodHandle rm = info.resolved_method(); 797 assert(rm->is_final() || info.has_vtable_index(), 798 "should have been set already"); 799 } else if (!info.resolved_method()->has_itable_index()) { 800 // Resolved something like CharSequence.toString. Use vtable not itable. 801 assert(info.call_kind() != CallInfo::itable_call, ""); 802 } else { 803 // Setup itable entry 804 assert(info.call_kind() == CallInfo::itable_call, ""); 805 int index = info.resolved_method()->itable_index(); 806 assert(info.itable_index() == index, ""); 807 } 808 } else { 809 assert(info.call_kind() == CallInfo::direct_call || 810 info.call_kind() == CallInfo::vtable_call, ""); 811 } 812 #endif 813 switch (info.call_kind()) { 814 case CallInfo::direct_call: 815 cp_cache_entry->set_direct_call( 816 bytecode, 817 info.resolved_method()); 818 break; 819 case CallInfo::vtable_call: 820 cp_cache_entry->set_vtable_call( 821 bytecode, 822 info.resolved_method(), 823 info.vtable_index()); 824 break; 825 case CallInfo::itable_call: 826 cp_cache_entry->set_itable_call( 827 bytecode, 828 info.resolved_method(), 829 info.itable_index()); 830 break; 831 default: ShouldNotReachHere(); 832 } 833 } 834 835 836 // First time execution: Resolve symbols, create a permanent MethodType object. 837 void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) { 838 Thread* THREAD = thread; 839 const Bytecodes::Code bytecode = Bytecodes::_invokehandle; 840 841 // resolve method 842 CallInfo info; 843 constantPoolHandle pool(thread, method(thread)->constants()); 844 { 845 JvmtiHideSingleStepping jhss(thread); 846 LinkResolver::resolve_invoke(info, Handle(), pool, 847 get_index_u2_cpcache(thread, bytecode), bytecode, 848 CHECK); 849 } // end JvmtiHideSingleStepping 850 851 ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread); 852 cp_cache_entry->set_method_handle(pool, info); 853 } 854 855 // First time execution: Resolve symbols, create a permanent CallSite object. 856 void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) { 857 Thread* THREAD = thread; 858 const Bytecodes::Code bytecode = Bytecodes::_invokedynamic; 859 860 //TO DO: consider passing BCI to Java. 861 // int caller_bci = method(thread)->bci_from(bcp(thread)); 862 863 // resolve method 864 CallInfo info; 865 constantPoolHandle pool(thread, method(thread)->constants()); 866 int index = get_index_u4(thread, bytecode); 867 { 868 JvmtiHideSingleStepping jhss(thread); 869 LinkResolver::resolve_invoke(info, Handle(), pool, 870 index, bytecode, CHECK); 871 } // end JvmtiHideSingleStepping 872 873 ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index); 874 cp_cache_entry->set_dynamic_call(pool, info); 875 } 876 877 // This function is the interface to the assembly code. It returns the resolved 878 // cpCache entry. This doesn't safepoint, but the helper routines safepoint. 879 // This function will check for redefinition! 880 IRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) { 881 switch (bytecode) { 882 case Bytecodes::_getstatic: 883 case Bytecodes::_putstatic: 884 case Bytecodes::_getfield: 885 case Bytecodes::_putfield: 886 resolve_get_put(thread, bytecode); 887 break; 888 case Bytecodes::_invokevirtual: 889 case Bytecodes::_invokespecial: 890 case Bytecodes::_invokestatic: 891 case Bytecodes::_invokeinterface: 892 resolve_invoke(thread, bytecode); 893 break; 894 case Bytecodes::_invokehandle: 895 resolve_invokehandle(thread); 896 break; 897 case Bytecodes::_invokedynamic: 898 resolve_invokedynamic(thread); 899 break; 900 default: 901 fatal("unexpected bytecode: %s", Bytecodes::name(bytecode)); 902 break; 903 } 904 } 905 IRT_END 906 907 //------------------------------------------------------------------------------------------------------------------------ 908 // Miscellaneous 909 910 911 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) { 912 nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp); 913 assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests"); 914 if (branch_bcp != NULL && nm != NULL) { 915 // This was a successful request for an OSR nmethod. Because 916 // frequency_counter_overflow_inner ends with a safepoint check, 917 // nm could have been unloaded so look it up again. It's unsafe 918 // to examine nm directly since it might have been freed and used 919 // for something else. 920 frame fr = thread->last_frame(); 921 Method* method = fr.interpreter_frame_method(); 922 int bci = method->bci_from(fr.interpreter_frame_bcp()); 923 nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false); 924 } 925 #ifndef PRODUCT 926 if (TraceOnStackReplacement) { 927 if (nm != NULL) { 928 tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry())); 929 nm->print(); 930 } 931 } 932 #endif 933 return nm; 934 } 935 936 IRT_ENTRY(nmethod*, 937 InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp)) 938 // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized 939 // flag, in case this method triggers classloading which will call into Java. 940 UnlockFlagSaver fs(thread); 941 942 frame fr = thread->last_frame(); 943 assert(fr.is_interpreted_frame(), "must come from interpreter"); 944 methodHandle method(thread, fr.interpreter_frame_method()); 945 const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci; 946 const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci; 947 948 assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending"); 949 nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread); 950 assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions"); 951 952 if (osr_nm != NULL) { 953 // We may need to do on-stack replacement which requires that no 954 // monitors in the activation are biased because their 955 // BasicObjectLocks will need to migrate during OSR. Force 956 // unbiasing of all monitors in the activation now (even though 957 // the OSR nmethod might be invalidated) because we don't have a 958 // safepoint opportunity later once the migration begins. 959 if (UseBiasedLocking) { 960 ResourceMark rm; 961 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>(); 962 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 963 kptr < fr.interpreter_frame_monitor_begin(); 964 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 965 if( kptr->obj() != NULL ) { 966 objects_to_revoke->append(Handle(THREAD, kptr->obj())); 967 } 968 } 969 BiasedLocking::revoke(objects_to_revoke); 970 } 971 } 972 return osr_nm; 973 IRT_END 974 975 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp)) 976 assert(ProfileInterpreter, "must be profiling interpreter"); 977 int bci = method->bci_from(cur_bcp); 978 MethodData* mdo = method->method_data(); 979 if (mdo == NULL) return 0; 980 return mdo->bci_to_di(bci); 981 IRT_END 982 983 IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread)) 984 // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized 985 // flag, in case this method triggers classloading which will call into Java. 986 UnlockFlagSaver fs(thread); 987 988 assert(ProfileInterpreter, "must be profiling interpreter"); 989 frame fr = thread->last_frame(); 990 assert(fr.is_interpreted_frame(), "must come from interpreter"); 991 methodHandle method(thread, fr.interpreter_frame_method()); 992 Method::build_interpreter_method_data(method, THREAD); 993 if (HAS_PENDING_EXCEPTION) { 994 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); 995 CLEAR_PENDING_EXCEPTION; 996 // and fall through... 997 } 998 IRT_END 999 1000 1001 #ifdef ASSERT 1002 IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp)) 1003 assert(ProfileInterpreter, "must be profiling interpreter"); 1004 1005 MethodData* mdo = method->method_data(); 1006 assert(mdo != NULL, "must not be null"); 1007 1008 int bci = method->bci_from(bcp); 1009 1010 address mdp2 = mdo->bci_to_dp(bci); 1011 if (mdp != mdp2) { 1012 ResourceMark rm; 1013 ResetNoHandleMark rnm; // In a LEAF entry. 1014 HandleMark hm; 1015 tty->print_cr("FAILED verify : actual mdp %p expected mdp %p @ bci %d", mdp, mdp2, bci); 1016 int current_di = mdo->dp_to_di(mdp); 1017 int expected_di = mdo->dp_to_di(mdp2); 1018 tty->print_cr(" actual di %d expected di %d", current_di, expected_di); 1019 int expected_approx_bci = mdo->data_at(expected_di)->bci(); 1020 int approx_bci = -1; 1021 if (current_di >= 0) { 1022 approx_bci = mdo->data_at(current_di)->bci(); 1023 } 1024 tty->print_cr(" actual bci is %d expected bci %d", approx_bci, expected_approx_bci); 1025 mdo->print_on(tty); 1026 method->print_codes(); 1027 } 1028 assert(mdp == mdp2, "wrong mdp"); 1029 IRT_END 1030 #endif // ASSERT 1031 1032 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci)) 1033 assert(ProfileInterpreter, "must be profiling interpreter"); 1034 ResourceMark rm(thread); 1035 HandleMark hm(thread); 1036 frame fr = thread->last_frame(); 1037 assert(fr.is_interpreted_frame(), "must come from interpreter"); 1038 MethodData* h_mdo = fr.interpreter_frame_method()->method_data(); 1039 1040 // Grab a lock to ensure atomic access to setting the return bci and 1041 // the displacement. This can block and GC, invalidating all naked oops. 1042 MutexLocker ml(RetData_lock); 1043 1044 // ProfileData is essentially a wrapper around a derived oop, so we 1045 // need to take the lock before making any ProfileData structures. 1046 ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp())); 1047 RetData* rdata = data->as_RetData(); 1048 address new_mdp = rdata->fixup_ret(return_bci, h_mdo); 1049 fr.interpreter_frame_set_mdp(new_mdp); 1050 IRT_END 1051 1052 IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m)) 1053 MethodCounters* mcs = Method::build_method_counters(m, thread); 1054 if (HAS_PENDING_EXCEPTION) { 1055 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1056 CLEAR_PENDING_EXCEPTION; 1057 } 1058 return mcs; 1059 IRT_END 1060 1061 1062 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread)) 1063 // We used to need an explict preserve_arguments here for invoke bytecodes. However, 1064 // stack traversal automatically takes care of preserving arguments for invoke, so 1065 // this is no longer needed. 1066 1067 // IRT_END does an implicit safepoint check, hence we are guaranteed to block 1068 // if this is called during a safepoint 1069 1070 if (JvmtiExport::should_post_single_step()) { 1071 // We are called during regular safepoints and when the VM is 1072 // single stepping. If any thread is marked for single stepping, 1073 // then we may have JVMTI work to do. 1074 JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread)); 1075 } 1076 IRT_END 1077 1078 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj, 1079 ConstantPoolCacheEntry *cp_entry)) 1080 1081 // check the access_flags for the field in the klass 1082 1083 InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass()); 1084 int index = cp_entry->field_index(); 1085 if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return; 1086 1087 bool is_static = (obj == NULL); 1088 HandleMark hm(thread); 1089 1090 Handle h_obj; 1091 if (!is_static) { 1092 // non-static field accessors have an object, but we need a handle 1093 h_obj = Handle(thread, obj); 1094 } 1095 instanceKlassHandle h_cp_entry_f1(thread, (Klass*)cp_entry->f1_as_klass()); 1096 jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_cp_entry_f1, cp_entry->f2_as_index(), is_static); 1097 JvmtiExport::post_field_access(thread, method(thread), bcp(thread), h_cp_entry_f1, h_obj, fid); 1098 IRT_END 1099 1100 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread, 1101 oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value)) 1102 1103 Klass* k = (Klass*)cp_entry->f1_as_klass(); 1104 1105 // check the access_flags for the field in the klass 1106 InstanceKlass* ik = InstanceKlass::cast(k); 1107 int index = cp_entry->field_index(); 1108 // bail out if field modifications are not watched 1109 if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return; 1110 1111 char sig_type = '\0'; 1112 1113 switch(cp_entry->flag_state()) { 1114 case btos: sig_type = 'Z'; break; 1115 case ctos: sig_type = 'C'; break; 1116 case stos: sig_type = 'S'; break; 1117 case itos: sig_type = 'I'; break; 1118 case ftos: sig_type = 'F'; break; 1119 case atos: sig_type = 'L'; break; 1120 case ltos: sig_type = 'J'; break; 1121 case dtos: sig_type = 'D'; break; 1122 default: ShouldNotReachHere(); return; 1123 } 1124 bool is_static = (obj == NULL); 1125 1126 HandleMark hm(thread); 1127 instanceKlassHandle h_klass(thread, k); 1128 jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_klass, cp_entry->f2_as_index(), is_static); 1129 jvalue fvalue; 1130 #ifdef _LP64 1131 fvalue = *value; 1132 #else 1133 // Long/double values are stored unaligned and also noncontiguously with 1134 // tagged stacks. We can't just do a simple assignment even in the non- 1135 // J/D cases because a C++ compiler is allowed to assume that a jvalue is 1136 // 8-byte aligned, and interpreter stack slots are only 4-byte aligned. 1137 // We assume that the two halves of longs/doubles are stored in interpreter 1138 // stack slots in platform-endian order. 1139 jlong_accessor u; 1140 jint* newval = (jint*)value; 1141 u.words[0] = newval[0]; 1142 u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag 1143 fvalue.j = u.long_value; 1144 #endif // _LP64 1145 1146 Handle h_obj; 1147 if (!is_static) { 1148 // non-static field accessors have an object, but we need a handle 1149 h_obj = Handle(thread, obj); 1150 } 1151 1152 JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), h_klass, h_obj, 1153 fid, sig_type, &fvalue); 1154 IRT_END 1155 1156 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread)) 1157 JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread)); 1158 IRT_END 1159 1160 1161 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread)) 1162 JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread)); 1163 IRT_END 1164 1165 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc)) 1166 { 1167 return (Interpreter::contains(pc) ? 1 : 0); 1168 } 1169 IRT_END 1170 1171 1172 // Implementation of SignatureHandlerLibrary 1173 1174 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS 1175 // Dummy definition (else normalization method is defined in CPU 1176 // dependant code) 1177 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) { 1178 return fingerprint; 1179 } 1180 #endif 1181 1182 address SignatureHandlerLibrary::set_handler_blob() { 1183 BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size); 1184 if (handler_blob == NULL) { 1185 return NULL; 1186 } 1187 address handler = handler_blob->code_begin(); 1188 _handler_blob = handler_blob; 1189 _handler = handler; 1190 return handler; 1191 } 1192 1193 void SignatureHandlerLibrary::initialize() { 1194 if (_fingerprints != NULL) { 1195 return; 1196 } 1197 if (set_handler_blob() == NULL) { 1198 vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers"); 1199 } 1200 1201 BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer", 1202 SignatureHandlerLibrary::buffer_size); 1203 _buffer = bb->code_begin(); 1204 1205 _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true); 1206 _handlers = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true); 1207 } 1208 1209 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) { 1210 address handler = _handler; 1211 int insts_size = buffer->pure_insts_size(); 1212 if (handler + insts_size > _handler_blob->code_end()) { 1213 // get a new handler blob 1214 handler = set_handler_blob(); 1215 } 1216 if (handler != NULL) { 1217 memcpy(handler, buffer->insts_begin(), insts_size); 1218 pd_set_handler(handler); 1219 ICache::invalidate_range(handler, insts_size); 1220 _handler = handler + insts_size; 1221 } 1222 CodeCacheExtensions::handle_generated_handler(handler, buffer->name(), _handler); 1223 return handler; 1224 } 1225 1226 void SignatureHandlerLibrary::add(const methodHandle& method) { 1227 if (method->signature_handler() == NULL) { 1228 // use slow signature handler if we can't do better 1229 int handler_index = -1; 1230 // check if we can use customized (fast) signature handler 1231 if (UseFastSignatureHandlers && CodeCacheExtensions::support_fast_signature_handlers() && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) { 1232 // use customized signature handler 1233 MutexLocker mu(SignatureHandlerLibrary_lock); 1234 // make sure data structure is initialized 1235 initialize(); 1236 // lookup method signature's fingerprint 1237 uint64_t fingerprint = Fingerprinter(method).fingerprint(); 1238 // allow CPU dependant code to optimize the fingerprints for the fast handler 1239 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1240 handler_index = _fingerprints->find(fingerprint); 1241 // create handler if necessary 1242 if (handler_index < 0) { 1243 ResourceMark rm; 1244 ptrdiff_t align_offset = (address) 1245 round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer; 1246 CodeBuffer buffer((address)(_buffer + align_offset), 1247 SignatureHandlerLibrary::buffer_size - align_offset); 1248 if (!CodeCacheExtensions::support_dynamic_code()) { 1249 // we need a name for the signature (for lookups or saving) 1250 const int SYMBOL_SIZE = 50; 1251 char *symbolName = NEW_RESOURCE_ARRAY(char, SYMBOL_SIZE); 1252 // support for named signatures 1253 jio_snprintf(symbolName, SYMBOL_SIZE, 1254 "native_" UINT64_FORMAT, fingerprint); 1255 buffer.set_name(symbolName); 1256 } 1257 InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint); 1258 // copy into code heap 1259 address handler = set_handler(&buffer); 1260 if (handler == NULL) { 1261 // use slow signature handler (without memorizing it in the fingerprints) 1262 } else { 1263 // debugging suppport 1264 if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) { 1265 tty->cr(); 1266 tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)", 1267 _handlers->length(), 1268 (method->is_static() ? "static" : "receiver"), 1269 method->name_and_sig_as_C_string(), 1270 fingerprint, 1271 buffer.insts_size()); 1272 if (buffer.insts_size() > 0) { 1273 // buffer may be empty for pregenerated handlers 1274 Disassembler::decode(handler, handler + buffer.insts_size()); 1275 } 1276 #ifndef PRODUCT 1277 address rh_begin = Interpreter::result_handler(method()->result_type()); 1278 if (CodeCache::contains(rh_begin)) { 1279 // else it might be special platform dependent values 1280 tty->print_cr(" --- associated result handler ---"); 1281 address rh_end = rh_begin; 1282 while (*(int*)rh_end != 0) { 1283 rh_end += sizeof(int); 1284 } 1285 Disassembler::decode(rh_begin, rh_end); 1286 } else { 1287 tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin)); 1288 } 1289 #endif 1290 } 1291 // add handler to library 1292 _fingerprints->append(fingerprint); 1293 _handlers->append(handler); 1294 // set handler index 1295 assert(_fingerprints->length() == _handlers->length(), "sanity check"); 1296 handler_index = _fingerprints->length() - 1; 1297 } 1298 } 1299 // Set handler under SignatureHandlerLibrary_lock 1300 if (handler_index < 0) { 1301 // use generic signature handler 1302 method->set_signature_handler(Interpreter::slow_signature_handler()); 1303 } else { 1304 // set handler 1305 method->set_signature_handler(_handlers->at(handler_index)); 1306 } 1307 } else { 1308 CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops()); 1309 // use generic signature handler 1310 method->set_signature_handler(Interpreter::slow_signature_handler()); 1311 } 1312 } 1313 #ifdef ASSERT 1314 int handler_index = -1; 1315 int fingerprint_index = -2; 1316 { 1317 // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized 1318 // in any way if accessed from multiple threads. To avoid races with another 1319 // thread which may change the arrays in the above, mutex protected block, we 1320 // have to protect this read access here with the same mutex as well! 1321 MutexLocker mu(SignatureHandlerLibrary_lock); 1322 if (_handlers != NULL) { 1323 handler_index = _handlers->find(method->signature_handler()); 1324 uint64_t fingerprint = Fingerprinter(method).fingerprint(); 1325 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1326 fingerprint_index = _fingerprints->find(fingerprint); 1327 } 1328 } 1329 assert(method->signature_handler() == Interpreter::slow_signature_handler() || 1330 handler_index == fingerprint_index, "sanity check"); 1331 #endif // ASSERT 1332 } 1333 1334 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) { 1335 int handler_index = -1; 1336 // use customized signature handler 1337 MutexLocker mu(SignatureHandlerLibrary_lock); 1338 // make sure data structure is initialized 1339 initialize(); 1340 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1341 handler_index = _fingerprints->find(fingerprint); 1342 // create handler if necessary 1343 if (handler_index < 0) { 1344 if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) { 1345 tty->cr(); 1346 tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT, 1347 _handlers->length(), 1348 p2i(handler), 1349 fingerprint); 1350 } 1351 _fingerprints->append(fingerprint); 1352 _handlers->append(handler); 1353 } else { 1354 if (PrintSignatureHandlers) { 1355 tty->cr(); 1356 tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")", 1357 _handlers->length(), 1358 fingerprint, 1359 p2i(_handlers->at(handler_index)), 1360 p2i(handler)); 1361 } 1362 } 1363 } 1364 1365 1366 BufferBlob* SignatureHandlerLibrary::_handler_blob = NULL; 1367 address SignatureHandlerLibrary::_handler = NULL; 1368 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL; 1369 GrowableArray<address>* SignatureHandlerLibrary::_handlers = NULL; 1370 address SignatureHandlerLibrary::_buffer = NULL; 1371 1372 1373 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method)) 1374 methodHandle m(thread, method); 1375 assert(m->is_native(), "sanity check"); 1376 // lookup native function entry point if it doesn't exist 1377 bool in_base_library; 1378 if (!m->has_native_function()) { 1379 NativeLookup::lookup(m, in_base_library, CHECK); 1380 } 1381 // make sure signature handler is installed 1382 SignatureHandlerLibrary::add(m); 1383 // The interpreter entry point checks the signature handler first, 1384 // before trying to fetch the native entry point and klass mirror. 1385 // We must set the signature handler last, so that multiple processors 1386 // preparing the same method will be sure to see non-null entry & mirror. 1387 IRT_END 1388 1389 #if defined(IA32) || defined(AMD64) || defined(ARM) 1390 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address)) 1391 if (src_address == dest_address) { 1392 return; 1393 } 1394 ResetNoHandleMark rnm; // In a LEAF entry. 1395 HandleMark hm; 1396 ResourceMark rm; 1397 frame fr = thread->last_frame(); 1398 assert(fr.is_interpreted_frame(), ""); 1399 jint bci = fr.interpreter_frame_bci(); 1400 methodHandle mh(thread, fr.interpreter_frame_method()); 1401 Bytecode_invoke invoke(mh, bci); 1402 ArgumentSizeComputer asc(invoke.signature()); 1403 int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver 1404 Copy::conjoint_jbytes(src_address, dest_address, 1405 size_of_arguments * Interpreter::stackElementSize); 1406 IRT_END 1407 #endif 1408 1409 #if INCLUDE_JVMTI 1410 // This is a support of the JVMTI PopFrame interface. 1411 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument 1412 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters. 1413 // The member_name argument is a saved reference (in local#0) to the member_name. 1414 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle. 1415 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated. 1416 IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name, 1417 Method* method, address bcp)) 1418 Bytecodes::Code code = Bytecodes::code_at(method, bcp); 1419 if (code != Bytecodes::_invokestatic) { 1420 return; 1421 } 1422 ConstantPool* cpool = method->constants(); 1423 int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG; 1424 Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index)); 1425 Symbol* mname = cpool->name_ref_at(cp_index); 1426 1427 if (MethodHandles::has_member_arg(cname, mname)) { 1428 oop member_name_oop = (oop) member_name; 1429 if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) { 1430 // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated. 1431 member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop); 1432 } 1433 thread->set_vm_result(member_name_oop); 1434 } else { 1435 thread->set_vm_result(NULL); 1436 } 1437 IRT_END 1438 #endif // INCLUDE_JVMTI