rev 13070 : [mq]: webrev.0a rev 13071 : [mq]: webrev.1
1 /* 2 * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/metadataOnStackMark.hpp" 27 #include "classfile/stringTable.hpp" 28 #include "classfile/symbolTable.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/icBuffer.hpp" 31 #include "gc/g1/bufferingOopClosure.hpp" 32 #include "gc/g1/concurrentG1Refine.hpp" 33 #include "gc/g1/concurrentG1RefineThread.hpp" 34 #include "gc/g1/concurrentMarkThread.inline.hpp" 35 #include "gc/g1/g1Allocator.inline.hpp" 36 #include "gc/g1/g1CollectedHeap.inline.hpp" 37 #include "gc/g1/g1CollectionSet.hpp" 38 #include "gc/g1/g1CollectorPolicy.hpp" 39 #include "gc/g1/g1CollectorState.hpp" 40 #include "gc/g1/g1EvacStats.inline.hpp" 41 #include "gc/g1/g1GCPhaseTimes.hpp" 42 #include "gc/g1/g1HeapSizingPolicy.hpp" 43 #include "gc/g1/g1HeapTransition.hpp" 44 #include "gc/g1/g1HeapVerifier.hpp" 45 #include "gc/g1/g1HotCardCache.hpp" 46 #include "gc/g1/g1MarkSweep.hpp" 47 #include "gc/g1/g1OopClosures.inline.hpp" 48 #include "gc/g1/g1ParScanThreadState.inline.hpp" 49 #include "gc/g1/g1Policy.hpp" 50 #include "gc/g1/g1RegionToSpaceMapper.hpp" 51 #include "gc/g1/g1RemSet.inline.hpp" 52 #include "gc/g1/g1RootClosures.hpp" 53 #include "gc/g1/g1RootProcessor.hpp" 54 #include "gc/g1/g1StringDedup.hpp" 55 #include "gc/g1/g1YCTypes.hpp" 56 #include "gc/g1/heapRegion.inline.hpp" 57 #include "gc/g1/heapRegionRemSet.hpp" 58 #include "gc/g1/heapRegionSet.inline.hpp" 59 #include "gc/g1/suspendibleThreadSet.hpp" 60 #include "gc/g1/vm_operations_g1.hpp" 61 #include "gc/shared/gcHeapSummary.hpp" 62 #include "gc/shared/gcId.hpp" 63 #include "gc/shared/gcLocker.inline.hpp" 64 #include "gc/shared/gcTimer.hpp" 65 #include "gc/shared/gcTrace.hpp" 66 #include "gc/shared/gcTraceTime.inline.hpp" 67 #include "gc/shared/generationSpec.hpp" 68 #include "gc/shared/isGCActiveMark.hpp" 69 #include "gc/shared/preservedMarks.inline.hpp" 70 #include "gc/shared/referenceProcessor.inline.hpp" 71 #include "gc/shared/taskqueue.inline.hpp" 72 #include "logging/log.hpp" 73 #include "memory/allocation.hpp" 74 #include "memory/iterator.hpp" 75 #include "memory/resourceArea.hpp" 76 #include "oops/oop.inline.hpp" 77 #include "prims/resolvedMethodTable.hpp" 78 #include "runtime/atomic.hpp" 79 #include "runtime/init.hpp" 80 #include "runtime/orderAccess.inline.hpp" 81 #include "runtime/vmThread.hpp" 82 #include "utilities/globalDefinitions.hpp" 83 #include "utilities/stack.inline.hpp" 84 85 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; 86 87 // INVARIANTS/NOTES 88 // 89 // All allocation activity covered by the G1CollectedHeap interface is 90 // serialized by acquiring the HeapLock. This happens in mem_allocate 91 // and allocate_new_tlab, which are the "entry" points to the 92 // allocation code from the rest of the JVM. (Note that this does not 93 // apply to TLAB allocation, which is not part of this interface: it 94 // is done by clients of this interface.) 95 96 // Local to this file. 97 98 class RefineCardTableEntryClosure: public CardTableEntryClosure { 99 bool _concurrent; 100 public: 101 RefineCardTableEntryClosure() : _concurrent(true) { } 102 103 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 104 G1CollectedHeap::heap()->g1_rem_set()->refine_card_concurrently(card_ptr, worker_i); 105 106 if (_concurrent && SuspendibleThreadSet::should_yield()) { 107 // Caller will actually yield. 108 return false; 109 } 110 // Otherwise, we finished successfully; return true. 111 return true; 112 } 113 114 void set_concurrent(bool b) { _concurrent = b; } 115 }; 116 117 118 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure { 119 private: 120 size_t _num_dirtied; 121 G1CollectedHeap* _g1h; 122 G1SATBCardTableLoggingModRefBS* _g1_bs; 123 124 HeapRegion* region_for_card(jbyte* card_ptr) const { 125 return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr)); 126 } 127 128 bool will_become_free(HeapRegion* hr) const { 129 // A region will be freed by free_collection_set if the region is in the 130 // collection set and has not had an evacuation failure. 131 return _g1h->is_in_cset(hr) && !hr->evacuation_failed(); 132 } 133 134 public: 135 RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(), 136 _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { } 137 138 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 139 HeapRegion* hr = region_for_card(card_ptr); 140 141 // Should only dirty cards in regions that won't be freed. 142 if (!will_become_free(hr)) { 143 *card_ptr = CardTableModRefBS::dirty_card_val(); 144 _num_dirtied++; 145 } 146 147 return true; 148 } 149 150 size_t num_dirtied() const { return _num_dirtied; } 151 }; 152 153 154 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) { 155 HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions); 156 } 157 158 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) { 159 // The from card cache is not the memory that is actually committed. So we cannot 160 // take advantage of the zero_filled parameter. 161 reset_from_card_cache(start_idx, num_regions); 162 } 163 164 // Returns true if the reference points to an object that 165 // can move in an incremental collection. 166 bool G1CollectedHeap::is_scavengable(const void* p) { 167 HeapRegion* hr = heap_region_containing(p); 168 return !hr->is_pinned(); 169 } 170 171 // Private methods. 172 173 HeapRegion* 174 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) { 175 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 176 while (!_secondary_free_list.is_empty() || free_regions_coming()) { 177 if (!_secondary_free_list.is_empty()) { 178 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : " 179 "secondary_free_list has %u entries", 180 _secondary_free_list.length()); 181 // It looks as if there are free regions available on the 182 // secondary_free_list. Let's move them to the free_list and try 183 // again to allocate from it. 184 append_secondary_free_list(); 185 186 assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not " 187 "empty we should have moved at least one entry to the free_list"); 188 HeapRegion* res = _hrm.allocate_free_region(is_old); 189 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : " 190 "allocated " HR_FORMAT " from secondary_free_list", 191 HR_FORMAT_PARAMS(res)); 192 return res; 193 } 194 195 // Wait here until we get notified either when (a) there are no 196 // more free regions coming or (b) some regions have been moved on 197 // the secondary_free_list. 198 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 199 } 200 201 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : " 202 "could not allocate from secondary_free_list"); 203 return NULL; 204 } 205 206 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) { 207 assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords, 208 "the only time we use this to allocate a humongous region is " 209 "when we are allocating a single humongous region"); 210 211 HeapRegion* res; 212 if (G1StressConcRegionFreeing) { 213 if (!_secondary_free_list.is_empty()) { 214 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : " 215 "forced to look at the secondary_free_list"); 216 res = new_region_try_secondary_free_list(is_old); 217 if (res != NULL) { 218 return res; 219 } 220 } 221 } 222 223 res = _hrm.allocate_free_region(is_old); 224 225 if (res == NULL) { 226 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : " 227 "res == NULL, trying the secondary_free_list"); 228 res = new_region_try_secondary_free_list(is_old); 229 } 230 if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { 231 // Currently, only attempts to allocate GC alloc regions set 232 // do_expand to true. So, we should only reach here during a 233 // safepoint. If this assumption changes we might have to 234 // reconsider the use of _expand_heap_after_alloc_failure. 235 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 236 237 log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B", 238 word_size * HeapWordSize); 239 240 if (expand(word_size * HeapWordSize)) { 241 // Given that expand() succeeded in expanding the heap, and we 242 // always expand the heap by an amount aligned to the heap 243 // region size, the free list should in theory not be empty. 244 // In either case allocate_free_region() will check for NULL. 245 res = _hrm.allocate_free_region(is_old); 246 } else { 247 _expand_heap_after_alloc_failure = false; 248 } 249 } 250 return res; 251 } 252 253 HeapWord* 254 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first, 255 uint num_regions, 256 size_t word_size, 257 AllocationContext_t context) { 258 assert(first != G1_NO_HRM_INDEX, "pre-condition"); 259 assert(is_humongous(word_size), "word_size should be humongous"); 260 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 261 262 // Index of last region in the series. 263 uint last = first + num_regions - 1; 264 265 // We need to initialize the region(s) we just discovered. This is 266 // a bit tricky given that it can happen concurrently with 267 // refinement threads refining cards on these regions and 268 // potentially wanting to refine the BOT as they are scanning 269 // those cards (this can happen shortly after a cleanup; see CR 270 // 6991377). So we have to set up the region(s) carefully and in 271 // a specific order. 272 273 // The word size sum of all the regions we will allocate. 274 size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords; 275 assert(word_size <= word_size_sum, "sanity"); 276 277 // This will be the "starts humongous" region. 278 HeapRegion* first_hr = region_at(first); 279 // The header of the new object will be placed at the bottom of 280 // the first region. 281 HeapWord* new_obj = first_hr->bottom(); 282 // This will be the new top of the new object. 283 HeapWord* obj_top = new_obj + word_size; 284 285 // First, we need to zero the header of the space that we will be 286 // allocating. When we update top further down, some refinement 287 // threads might try to scan the region. By zeroing the header we 288 // ensure that any thread that will try to scan the region will 289 // come across the zero klass word and bail out. 290 // 291 // NOTE: It would not have been correct to have used 292 // CollectedHeap::fill_with_object() and make the space look like 293 // an int array. The thread that is doing the allocation will 294 // later update the object header to a potentially different array 295 // type and, for a very short period of time, the klass and length 296 // fields will be inconsistent. This could cause a refinement 297 // thread to calculate the object size incorrectly. 298 Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); 299 300 // Next, pad out the unused tail of the last region with filler 301 // objects, for improved usage accounting. 302 // How many words we use for filler objects. 303 size_t word_fill_size = word_size_sum - word_size; 304 305 // How many words memory we "waste" which cannot hold a filler object. 306 size_t words_not_fillable = 0; 307 308 if (word_fill_size >= min_fill_size()) { 309 fill_with_objects(obj_top, word_fill_size); 310 } else if (word_fill_size > 0) { 311 // We have space to fill, but we cannot fit an object there. 312 words_not_fillable = word_fill_size; 313 word_fill_size = 0; 314 } 315 316 // We will set up the first region as "starts humongous". This 317 // will also update the BOT covering all the regions to reflect 318 // that there is a single object that starts at the bottom of the 319 // first region. 320 first_hr->set_starts_humongous(obj_top, word_fill_size); 321 first_hr->set_allocation_context(context); 322 // Then, if there are any, we will set up the "continues 323 // humongous" regions. 324 HeapRegion* hr = NULL; 325 for (uint i = first + 1; i <= last; ++i) { 326 hr = region_at(i); 327 hr->set_continues_humongous(first_hr); 328 hr->set_allocation_context(context); 329 } 330 331 // Up to this point no concurrent thread would have been able to 332 // do any scanning on any region in this series. All the top 333 // fields still point to bottom, so the intersection between 334 // [bottom,top] and [card_start,card_end] will be empty. Before we 335 // update the top fields, we'll do a storestore to make sure that 336 // no thread sees the update to top before the zeroing of the 337 // object header and the BOT initialization. 338 OrderAccess::storestore(); 339 340 // Now, we will update the top fields of the "continues humongous" 341 // regions except the last one. 342 for (uint i = first; i < last; ++i) { 343 hr = region_at(i); 344 hr->set_top(hr->end()); 345 } 346 347 hr = region_at(last); 348 // If we cannot fit a filler object, we must set top to the end 349 // of the humongous object, otherwise we cannot iterate the heap 350 // and the BOT will not be complete. 351 hr->set_top(hr->end() - words_not_fillable); 352 353 assert(hr->bottom() < obj_top && obj_top <= hr->end(), 354 "obj_top should be in last region"); 355 356 _verifier->check_bitmaps("Humongous Region Allocation", first_hr); 357 358 assert(words_not_fillable == 0 || 359 first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(), 360 "Miscalculation in humongous allocation"); 361 362 increase_used((word_size_sum - words_not_fillable) * HeapWordSize); 363 364 for (uint i = first; i <= last; ++i) { 365 hr = region_at(i); 366 _humongous_set.add(hr); 367 _hr_printer.alloc(hr); 368 } 369 370 return new_obj; 371 } 372 373 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) { 374 assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size); 375 return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords; 376 } 377 378 // If could fit into free regions w/o expansion, try. 379 // Otherwise, if can expand, do so. 380 // Otherwise, if using ex regions might help, try with ex given back. 381 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) { 382 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 383 384 _verifier->verify_region_sets_optional(); 385 386 uint first = G1_NO_HRM_INDEX; 387 uint obj_regions = (uint) humongous_obj_size_in_regions(word_size); 388 389 if (obj_regions == 1) { 390 // Only one region to allocate, try to use a fast path by directly allocating 391 // from the free lists. Do not try to expand here, we will potentially do that 392 // later. 393 HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */); 394 if (hr != NULL) { 395 first = hr->hrm_index(); 396 } 397 } else { 398 // We can't allocate humongous regions spanning more than one region while 399 // cleanupComplete() is running, since some of the regions we find to be 400 // empty might not yet be added to the free list. It is not straightforward 401 // to know in which list they are on so that we can remove them. We only 402 // need to do this if we need to allocate more than one region to satisfy the 403 // current humongous allocation request. If we are only allocating one region 404 // we use the one-region region allocation code (see above), that already 405 // potentially waits for regions from the secondary free list. 406 wait_while_free_regions_coming(); 407 append_secondary_free_list_if_not_empty_with_lock(); 408 409 // Policy: Try only empty regions (i.e. already committed first). Maybe we 410 // are lucky enough to find some. 411 first = _hrm.find_contiguous_only_empty(obj_regions); 412 if (first != G1_NO_HRM_INDEX) { 413 _hrm.allocate_free_regions_starting_at(first, obj_regions); 414 } 415 } 416 417 if (first == G1_NO_HRM_INDEX) { 418 // Policy: We could not find enough regions for the humongous object in the 419 // free list. Look through the heap to find a mix of free and uncommitted regions. 420 // If so, try expansion. 421 first = _hrm.find_contiguous_empty_or_unavailable(obj_regions); 422 if (first != G1_NO_HRM_INDEX) { 423 // We found something. Make sure these regions are committed, i.e. expand 424 // the heap. Alternatively we could do a defragmentation GC. 425 log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B", 426 word_size * HeapWordSize); 427 428 _hrm.expand_at(first, obj_regions, workers()); 429 g1_policy()->record_new_heap_size(num_regions()); 430 431 #ifdef ASSERT 432 for (uint i = first; i < first + obj_regions; ++i) { 433 HeapRegion* hr = region_at(i); 434 assert(hr->is_free(), "sanity"); 435 assert(hr->is_empty(), "sanity"); 436 assert(is_on_master_free_list(hr), "sanity"); 437 } 438 #endif 439 _hrm.allocate_free_regions_starting_at(first, obj_regions); 440 } else { 441 // Policy: Potentially trigger a defragmentation GC. 442 } 443 } 444 445 HeapWord* result = NULL; 446 if (first != G1_NO_HRM_INDEX) { 447 result = humongous_obj_allocate_initialize_regions(first, obj_regions, 448 word_size, context); 449 assert(result != NULL, "it should always return a valid result"); 450 451 // A successful humongous object allocation changes the used space 452 // information of the old generation so we need to recalculate the 453 // sizes and update the jstat counters here. 454 g1mm()->update_sizes(); 455 } 456 457 _verifier->verify_region_sets_optional(); 458 459 return result; 460 } 461 462 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) { 463 assert_heap_not_locked_and_not_at_safepoint(); 464 assert(!is_humongous(word_size), "we do not allow humongous TLABs"); 465 466 uint dummy_gc_count_before; 467 uint dummy_gclocker_retry_count = 0; 468 return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count); 469 } 470 471 HeapWord* 472 G1CollectedHeap::mem_allocate(size_t word_size, 473 bool* gc_overhead_limit_was_exceeded) { 474 assert_heap_not_locked_and_not_at_safepoint(); 475 476 // Loop until the allocation is satisfied, or unsatisfied after GC. 477 for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { 478 uint gc_count_before; 479 480 HeapWord* result = NULL; 481 if (!is_humongous(word_size)) { 482 result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count); 483 } else { 484 result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count); 485 } 486 if (result != NULL) { 487 return result; 488 } 489 490 // Create the garbage collection operation... 491 VM_G1CollectForAllocation op(gc_count_before, word_size); 492 op.set_allocation_context(AllocationContext::current()); 493 494 // ...and get the VM thread to execute it. 495 VMThread::execute(&op); 496 497 if (op.prologue_succeeded() && op.pause_succeeded()) { 498 // If the operation was successful we'll return the result even 499 // if it is NULL. If the allocation attempt failed immediately 500 // after a Full GC, it's unlikely we'll be able to allocate now. 501 HeapWord* result = op.result(); 502 if (result != NULL && !is_humongous(word_size)) { 503 // Allocations that take place on VM operations do not do any 504 // card dirtying and we have to do it here. We only have to do 505 // this for non-humongous allocations, though. 506 dirty_young_block(result, word_size); 507 } 508 return result; 509 } else { 510 if (gclocker_retry_count > GCLockerRetryAllocationCount) { 511 return NULL; 512 } 513 assert(op.result() == NULL, 514 "the result should be NULL if the VM op did not succeed"); 515 } 516 517 // Give a warning if we seem to be looping forever. 518 if ((QueuedAllocationWarningCount > 0) && 519 (try_count % QueuedAllocationWarningCount == 0)) { 520 log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count); 521 } 522 } 523 524 ShouldNotReachHere(); 525 return NULL; 526 } 527 528 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size, 529 AllocationContext_t context, 530 uint* gc_count_before_ret, 531 uint* gclocker_retry_count_ret) { 532 // Make sure you read the note in attempt_allocation_humongous(). 533 534 assert_heap_not_locked_and_not_at_safepoint(); 535 assert(!is_humongous(word_size), "attempt_allocation_slow() should not " 536 "be called for humongous allocation requests"); 537 538 // We should only get here after the first-level allocation attempt 539 // (attempt_allocation()) failed to allocate. 540 541 // We will loop until a) we manage to successfully perform the 542 // allocation or b) we successfully schedule a collection which 543 // fails to perform the allocation. b) is the only case when we'll 544 // return NULL. 545 HeapWord* result = NULL; 546 for (int try_count = 1; /* we'll return */; try_count += 1) { 547 bool should_try_gc; 548 uint gc_count_before; 549 550 { 551 MutexLockerEx x(Heap_lock); 552 result = _allocator->attempt_allocation_locked(word_size, context); 553 if (result != NULL) { 554 return result; 555 } 556 557 if (GCLocker::is_active_and_needs_gc()) { 558 if (g1_policy()->can_expand_young_list()) { 559 // No need for an ergo verbose message here, 560 // can_expand_young_list() does this when it returns true. 561 result = _allocator->attempt_allocation_force(word_size, context); 562 if (result != NULL) { 563 return result; 564 } 565 } 566 should_try_gc = false; 567 } else { 568 // The GCLocker may not be active but the GCLocker initiated 569 // GC may not yet have been performed (GCLocker::needs_gc() 570 // returns true). In this case we do not try this GC and 571 // wait until the GCLocker initiated GC is performed, and 572 // then retry the allocation. 573 if (GCLocker::needs_gc()) { 574 should_try_gc = false; 575 } else { 576 // Read the GC count while still holding the Heap_lock. 577 gc_count_before = total_collections(); 578 should_try_gc = true; 579 } 580 } 581 } 582 583 if (should_try_gc) { 584 bool succeeded; 585 result = do_collection_pause(word_size, gc_count_before, &succeeded, 586 GCCause::_g1_inc_collection_pause); 587 if (result != NULL) { 588 assert(succeeded, "only way to get back a non-NULL result"); 589 return result; 590 } 591 592 if (succeeded) { 593 // If we get here we successfully scheduled a collection which 594 // failed to allocate. No point in trying to allocate 595 // further. We'll just return NULL. 596 MutexLockerEx x(Heap_lock); 597 *gc_count_before_ret = total_collections(); 598 return NULL; 599 } 600 } else { 601 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 602 MutexLockerEx x(Heap_lock); 603 *gc_count_before_ret = total_collections(); 604 return NULL; 605 } 606 // The GCLocker is either active or the GCLocker initiated 607 // GC has not yet been performed. Stall until it is and 608 // then retry the allocation. 609 GCLocker::stall_until_clear(); 610 (*gclocker_retry_count_ret) += 1; 611 } 612 613 // We can reach here if we were unsuccessful in scheduling a 614 // collection (because another thread beat us to it) or if we were 615 // stalled due to the GC locker. In either can we should retry the 616 // allocation attempt in case another thread successfully 617 // performed a collection and reclaimed enough space. We do the 618 // first attempt (without holding the Heap_lock) here and the 619 // follow-on attempt will be at the start of the next loop 620 // iteration (after taking the Heap_lock). 621 result = _allocator->attempt_allocation(word_size, context); 622 if (result != NULL) { 623 return result; 624 } 625 626 // Give a warning if we seem to be looping forever. 627 if ((QueuedAllocationWarningCount > 0) && 628 (try_count % QueuedAllocationWarningCount == 0)) { 629 log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() " 630 "retries %d times", try_count); 631 } 632 } 633 634 ShouldNotReachHere(); 635 return NULL; 636 } 637 638 void G1CollectedHeap::begin_archive_alloc_range() { 639 assert_at_safepoint(true /* should_be_vm_thread */); 640 if (_archive_allocator == NULL) { 641 _archive_allocator = G1ArchiveAllocator::create_allocator(this); 642 } 643 } 644 645 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) { 646 // Allocations in archive regions cannot be of a size that would be considered 647 // humongous even for a minimum-sized region, because G1 region sizes/boundaries 648 // may be different at archive-restore time. 649 return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words()); 650 } 651 652 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) { 653 assert_at_safepoint(true /* should_be_vm_thread */); 654 assert(_archive_allocator != NULL, "_archive_allocator not initialized"); 655 if (is_archive_alloc_too_large(word_size)) { 656 return NULL; 657 } 658 return _archive_allocator->archive_mem_allocate(word_size); 659 } 660 661 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges, 662 size_t end_alignment_in_bytes) { 663 assert_at_safepoint(true /* should_be_vm_thread */); 664 assert(_archive_allocator != NULL, "_archive_allocator not initialized"); 665 666 // Call complete_archive to do the real work, filling in the MemRegion 667 // array with the archive regions. 668 _archive_allocator->complete_archive(ranges, end_alignment_in_bytes); 669 delete _archive_allocator; 670 _archive_allocator = NULL; 671 } 672 673 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) { 674 assert(ranges != NULL, "MemRegion array NULL"); 675 assert(count != 0, "No MemRegions provided"); 676 MemRegion reserved = _hrm.reserved(); 677 for (size_t i = 0; i < count; i++) { 678 if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) { 679 return false; 680 } 681 } 682 return true; 683 } 684 685 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) { 686 assert(!is_init_completed(), "Expect to be called at JVM init time"); 687 assert(ranges != NULL, "MemRegion array NULL"); 688 assert(count != 0, "No MemRegions provided"); 689 MutexLockerEx x(Heap_lock); 690 691 MemRegion reserved = _hrm.reserved(); 692 HeapWord* prev_last_addr = NULL; 693 HeapRegion* prev_last_region = NULL; 694 695 // Temporarily disable pretouching of heap pages. This interface is used 696 // when mmap'ing archived heap data in, so pre-touching is wasted. 697 FlagSetting fs(AlwaysPreTouch, false); 698 699 // Enable archive object checking used by G1MarkSweep. We have to let it know 700 // about each archive range, so that objects in those ranges aren't marked. 701 G1ArchiveAllocator::enable_archive_object_check(); 702 703 // For each specified MemRegion range, allocate the corresponding G1 704 // regions and mark them as archive regions. We expect the ranges in 705 // ascending starting address order, without overlap. 706 for (size_t i = 0; i < count; i++) { 707 MemRegion curr_range = ranges[i]; 708 HeapWord* start_address = curr_range.start(); 709 size_t word_size = curr_range.word_size(); 710 HeapWord* last_address = curr_range.last(); 711 size_t commits = 0; 712 713 guarantee(reserved.contains(start_address) && reserved.contains(last_address), 714 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 715 p2i(start_address), p2i(last_address)); 716 guarantee(start_address > prev_last_addr, 717 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 718 p2i(start_address), p2i(prev_last_addr)); 719 prev_last_addr = last_address; 720 721 // Check for ranges that start in the same G1 region in which the previous 722 // range ended, and adjust the start address so we don't try to allocate 723 // the same region again. If the current range is entirely within that 724 // region, skip it, just adjusting the recorded top. 725 HeapRegion* start_region = _hrm.addr_to_region(start_address); 726 if ((prev_last_region != NULL) && (start_region == prev_last_region)) { 727 start_address = start_region->end(); 728 if (start_address > last_address) { 729 increase_used(word_size * HeapWordSize); 730 start_region->set_top(last_address + 1); 731 continue; 732 } 733 start_region->set_top(start_address); 734 curr_range = MemRegion(start_address, last_address + 1); 735 start_region = _hrm.addr_to_region(start_address); 736 } 737 738 // Perform the actual region allocation, exiting if it fails. 739 // Then note how much new space we have allocated. 740 if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) { 741 return false; 742 } 743 increase_used(word_size * HeapWordSize); 744 if (commits != 0) { 745 log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B", 746 HeapRegion::GrainWords * HeapWordSize * commits); 747 748 } 749 750 // Mark each G1 region touched by the range as archive, add it to the old set, 751 // and set the allocation context and top. 752 HeapRegion* curr_region = _hrm.addr_to_region(start_address); 753 HeapRegion* last_region = _hrm.addr_to_region(last_address); 754 prev_last_region = last_region; 755 756 while (curr_region != NULL) { 757 assert(curr_region->is_empty() && !curr_region->is_pinned(), 758 "Region already in use (index %u)", curr_region->hrm_index()); 759 curr_region->set_allocation_context(AllocationContext::system()); 760 curr_region->set_archive(); 761 _hr_printer.alloc(curr_region); 762 _old_set.add(curr_region); 763 if (curr_region != last_region) { 764 curr_region->set_top(curr_region->end()); 765 curr_region = _hrm.next_region_in_heap(curr_region); 766 } else { 767 curr_region->set_top(last_address + 1); 768 curr_region = NULL; 769 } 770 } 771 772 // Notify mark-sweep of the archive range. 773 G1ArchiveAllocator::set_range_archive(curr_range, true); 774 } 775 return true; 776 } 777 778 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) { 779 assert(!is_init_completed(), "Expect to be called at JVM init time"); 780 assert(ranges != NULL, "MemRegion array NULL"); 781 assert(count != 0, "No MemRegions provided"); 782 MemRegion reserved = _hrm.reserved(); 783 HeapWord *prev_last_addr = NULL; 784 HeapRegion* prev_last_region = NULL; 785 786 // For each MemRegion, create filler objects, if needed, in the G1 regions 787 // that contain the address range. The address range actually within the 788 // MemRegion will not be modified. That is assumed to have been initialized 789 // elsewhere, probably via an mmap of archived heap data. 790 MutexLockerEx x(Heap_lock); 791 for (size_t i = 0; i < count; i++) { 792 HeapWord* start_address = ranges[i].start(); 793 HeapWord* last_address = ranges[i].last(); 794 795 assert(reserved.contains(start_address) && reserved.contains(last_address), 796 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 797 p2i(start_address), p2i(last_address)); 798 assert(start_address > prev_last_addr, 799 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 800 p2i(start_address), p2i(prev_last_addr)); 801 802 HeapRegion* start_region = _hrm.addr_to_region(start_address); 803 HeapRegion* last_region = _hrm.addr_to_region(last_address); 804 HeapWord* bottom_address = start_region->bottom(); 805 806 // Check for a range beginning in the same region in which the 807 // previous one ended. 808 if (start_region == prev_last_region) { 809 bottom_address = prev_last_addr + 1; 810 } 811 812 // Verify that the regions were all marked as archive regions by 813 // alloc_archive_regions. 814 HeapRegion* curr_region = start_region; 815 while (curr_region != NULL) { 816 guarantee(curr_region->is_archive(), 817 "Expected archive region at index %u", curr_region->hrm_index()); 818 if (curr_region != last_region) { 819 curr_region = _hrm.next_region_in_heap(curr_region); 820 } else { 821 curr_region = NULL; 822 } 823 } 824 825 prev_last_addr = last_address; 826 prev_last_region = last_region; 827 828 // Fill the memory below the allocated range with dummy object(s), 829 // if the region bottom does not match the range start, or if the previous 830 // range ended within the same G1 region, and there is a gap. 831 if (start_address != bottom_address) { 832 size_t fill_size = pointer_delta(start_address, bottom_address); 833 G1CollectedHeap::fill_with_objects(bottom_address, fill_size); 834 increase_used(fill_size * HeapWordSize); 835 } 836 } 837 } 838 839 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size, 840 uint* gc_count_before_ret, 841 uint* gclocker_retry_count_ret) { 842 assert_heap_not_locked_and_not_at_safepoint(); 843 assert(!is_humongous(word_size), "attempt_allocation() should not " 844 "be called for humongous allocation requests"); 845 846 AllocationContext_t context = AllocationContext::current(); 847 HeapWord* result = _allocator->attempt_allocation(word_size, context); 848 849 if (result == NULL) { 850 result = attempt_allocation_slow(word_size, 851 context, 852 gc_count_before_ret, 853 gclocker_retry_count_ret); 854 } 855 assert_heap_not_locked(); 856 if (result != NULL) { 857 dirty_young_block(result, word_size); 858 } 859 return result; 860 } 861 862 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) { 863 assert(!is_init_completed(), "Expect to be called at JVM init time"); 864 assert(ranges != NULL, "MemRegion array NULL"); 865 assert(count != 0, "No MemRegions provided"); 866 MemRegion reserved = _hrm.reserved(); 867 HeapWord* prev_last_addr = NULL; 868 HeapRegion* prev_last_region = NULL; 869 size_t size_used = 0; 870 size_t uncommitted_regions = 0; 871 872 // For each Memregion, free the G1 regions that constitute it, and 873 // notify mark-sweep that the range is no longer to be considered 'archive.' 874 MutexLockerEx x(Heap_lock); 875 for (size_t i = 0; i < count; i++) { 876 HeapWord* start_address = ranges[i].start(); 877 HeapWord* last_address = ranges[i].last(); 878 879 assert(reserved.contains(start_address) && reserved.contains(last_address), 880 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 881 p2i(start_address), p2i(last_address)); 882 assert(start_address > prev_last_addr, 883 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 884 p2i(start_address), p2i(prev_last_addr)); 885 size_used += ranges[i].byte_size(); 886 prev_last_addr = last_address; 887 888 HeapRegion* start_region = _hrm.addr_to_region(start_address); 889 HeapRegion* last_region = _hrm.addr_to_region(last_address); 890 891 // Check for ranges that start in the same G1 region in which the previous 892 // range ended, and adjust the start address so we don't try to free 893 // the same region again. If the current range is entirely within that 894 // region, skip it. 895 if (start_region == prev_last_region) { 896 start_address = start_region->end(); 897 if (start_address > last_address) { 898 continue; 899 } 900 start_region = _hrm.addr_to_region(start_address); 901 } 902 prev_last_region = last_region; 903 904 // After verifying that each region was marked as an archive region by 905 // alloc_archive_regions, set it free and empty and uncommit it. 906 HeapRegion* curr_region = start_region; 907 while (curr_region != NULL) { 908 guarantee(curr_region->is_archive(), 909 "Expected archive region at index %u", curr_region->hrm_index()); 910 uint curr_index = curr_region->hrm_index(); 911 _old_set.remove(curr_region); 912 curr_region->set_free(); 913 curr_region->set_top(curr_region->bottom()); 914 if (curr_region != last_region) { 915 curr_region = _hrm.next_region_in_heap(curr_region); 916 } else { 917 curr_region = NULL; 918 } 919 _hrm.shrink_at(curr_index, 1); 920 uncommitted_regions++; 921 } 922 923 // Notify mark-sweep that this is no longer an archive range. 924 G1ArchiveAllocator::set_range_archive(ranges[i], false); 925 } 926 927 if (uncommitted_regions != 0) { 928 log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B", 929 HeapRegion::GrainWords * HeapWordSize * uncommitted_regions); 930 } 931 decrease_used(size_used); 932 } 933 934 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size, 935 uint* gc_count_before_ret, 936 uint* gclocker_retry_count_ret) { 937 // The structure of this method has a lot of similarities to 938 // attempt_allocation_slow(). The reason these two were not merged 939 // into a single one is that such a method would require several "if 940 // allocation is not humongous do this, otherwise do that" 941 // conditional paths which would obscure its flow. In fact, an early 942 // version of this code did use a unified method which was harder to 943 // follow and, as a result, it had subtle bugs that were hard to 944 // track down. So keeping these two methods separate allows each to 945 // be more readable. It will be good to keep these two in sync as 946 // much as possible. 947 948 assert_heap_not_locked_and_not_at_safepoint(); 949 assert(is_humongous(word_size), "attempt_allocation_humongous() " 950 "should only be called for humongous allocations"); 951 952 // Humongous objects can exhaust the heap quickly, so we should check if we 953 // need to start a marking cycle at each humongous object allocation. We do 954 // the check before we do the actual allocation. The reason for doing it 955 // before the allocation is that we avoid having to keep track of the newly 956 // allocated memory while we do a GC. 957 if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation", 958 word_size)) { 959 collect(GCCause::_g1_humongous_allocation); 960 } 961 962 // We will loop until a) we manage to successfully perform the 963 // allocation or b) we successfully schedule a collection which 964 // fails to perform the allocation. b) is the only case when we'll 965 // return NULL. 966 HeapWord* result = NULL; 967 for (int try_count = 1; /* we'll return */; try_count += 1) { 968 bool should_try_gc; 969 uint gc_count_before; 970 971 { 972 MutexLockerEx x(Heap_lock); 973 974 // Given that humongous objects are not allocated in young 975 // regions, we'll first try to do the allocation without doing a 976 // collection hoping that there's enough space in the heap. 977 result = humongous_obj_allocate(word_size, AllocationContext::current()); 978 if (result != NULL) { 979 size_t size_in_regions = humongous_obj_size_in_regions(word_size); 980 g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes); 981 return result; 982 } 983 984 if (GCLocker::is_active_and_needs_gc()) { 985 should_try_gc = false; 986 } else { 987 // The GCLocker may not be active but the GCLocker initiated 988 // GC may not yet have been performed (GCLocker::needs_gc() 989 // returns true). In this case we do not try this GC and 990 // wait until the GCLocker initiated GC is performed, and 991 // then retry the allocation. 992 if (GCLocker::needs_gc()) { 993 should_try_gc = false; 994 } else { 995 // Read the GC count while still holding the Heap_lock. 996 gc_count_before = total_collections(); 997 should_try_gc = true; 998 } 999 } 1000 } 1001 1002 if (should_try_gc) { 1003 // If we failed to allocate the humongous object, we should try to 1004 // do a collection pause (if we're allowed) in case it reclaims 1005 // enough space for the allocation to succeed after the pause. 1006 1007 bool succeeded; 1008 result = do_collection_pause(word_size, gc_count_before, &succeeded, 1009 GCCause::_g1_humongous_allocation); 1010 if (result != NULL) { 1011 assert(succeeded, "only way to get back a non-NULL result"); 1012 return result; 1013 } 1014 1015 if (succeeded) { 1016 // If we get here we successfully scheduled a collection which 1017 // failed to allocate. No point in trying to allocate 1018 // further. We'll just return NULL. 1019 MutexLockerEx x(Heap_lock); 1020 *gc_count_before_ret = total_collections(); 1021 return NULL; 1022 } 1023 } else { 1024 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 1025 MutexLockerEx x(Heap_lock); 1026 *gc_count_before_ret = total_collections(); 1027 return NULL; 1028 } 1029 // The GCLocker is either active or the GCLocker initiated 1030 // GC has not yet been performed. Stall until it is and 1031 // then retry the allocation. 1032 GCLocker::stall_until_clear(); 1033 (*gclocker_retry_count_ret) += 1; 1034 } 1035 1036 // We can reach here if we were unsuccessful in scheduling a 1037 // collection (because another thread beat us to it) or if we were 1038 // stalled due to the GC locker. In either can we should retry the 1039 // allocation attempt in case another thread successfully 1040 // performed a collection and reclaimed enough space. Give a 1041 // warning if we seem to be looping forever. 1042 1043 if ((QueuedAllocationWarningCount > 0) && 1044 (try_count % QueuedAllocationWarningCount == 0)) { 1045 log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() " 1046 "retries %d times", try_count); 1047 } 1048 } 1049 1050 ShouldNotReachHere(); 1051 return NULL; 1052 } 1053 1054 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, 1055 AllocationContext_t context, 1056 bool expect_null_mutator_alloc_region) { 1057 assert_at_safepoint(true /* should_be_vm_thread */); 1058 assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region, 1059 "the current alloc region was unexpectedly found to be non-NULL"); 1060 1061 if (!is_humongous(word_size)) { 1062 return _allocator->attempt_allocation_locked(word_size, context); 1063 } else { 1064 HeapWord* result = humongous_obj_allocate(word_size, context); 1065 if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) { 1066 collector_state()->set_initiate_conc_mark_if_possible(true); 1067 } 1068 return result; 1069 } 1070 1071 ShouldNotReachHere(); 1072 } 1073 1074 class PostMCRemSetClearClosure: public HeapRegionClosure { 1075 G1CollectedHeap* _g1h; 1076 ModRefBarrierSet* _mr_bs; 1077 public: 1078 PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) : 1079 _g1h(g1h), _mr_bs(mr_bs) {} 1080 1081 bool doHeapRegion(HeapRegion* r) { 1082 HeapRegionRemSet* hrrs = r->rem_set(); 1083 1084 _g1h->reset_gc_time_stamps(r); 1085 1086 if (r->is_continues_humongous()) { 1087 // We'll assert that the strong code root list and RSet is empty 1088 assert(hrrs->strong_code_roots_list_length() == 0, "sanity"); 1089 assert(hrrs->occupied() == 0, "RSet should be empty"); 1090 } else { 1091 hrrs->clear(); 1092 } 1093 // You might think here that we could clear just the cards 1094 // corresponding to the used region. But no: if we leave a dirty card 1095 // in a region we might allocate into, then it would prevent that card 1096 // from being enqueued, and cause it to be missed. 1097 // Re: the performance cost: we shouldn't be doing full GC anyway! 1098 _mr_bs->clear(MemRegion(r->bottom(), r->end())); 1099 1100 return false; 1101 } 1102 }; 1103 1104 void G1CollectedHeap::clear_rsets_post_compaction() { 1105 PostMCRemSetClearClosure rs_clear(this, g1_barrier_set()); 1106 heap_region_iterate(&rs_clear); 1107 } 1108 1109 class RebuildRSOutOfRegionClosure: public HeapRegionClosure { 1110 G1CollectedHeap* _g1h; 1111 UpdateRSOopClosure _cl; 1112 public: 1113 RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) : 1114 _cl(g1->g1_rem_set(), worker_i), 1115 _g1h(g1) 1116 { } 1117 1118 bool doHeapRegion(HeapRegion* r) { 1119 if (!r->is_continues_humongous()) { 1120 _cl.set_from(r); 1121 r->oop_iterate(&_cl); 1122 } 1123 return false; 1124 } 1125 }; 1126 1127 class ParRebuildRSTask: public AbstractGangTask { 1128 G1CollectedHeap* _g1; 1129 HeapRegionClaimer _hrclaimer; 1130 1131 public: 1132 ParRebuildRSTask(G1CollectedHeap* g1) : 1133 AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {} 1134 1135 void work(uint worker_id) { 1136 RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id); 1137 _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer); 1138 } 1139 }; 1140 1141 class PostCompactionPrinterClosure: public HeapRegionClosure { 1142 private: 1143 G1HRPrinter* _hr_printer; 1144 public: 1145 bool doHeapRegion(HeapRegion* hr) { 1146 assert(!hr->is_young(), "not expecting to find young regions"); 1147 _hr_printer->post_compaction(hr); 1148 return false; 1149 } 1150 1151 PostCompactionPrinterClosure(G1HRPrinter* hr_printer) 1152 : _hr_printer(hr_printer) { } 1153 }; 1154 1155 void G1CollectedHeap::print_hrm_post_compaction() { 1156 if (_hr_printer.is_active()) { 1157 PostCompactionPrinterClosure cl(hr_printer()); 1158 heap_region_iterate(&cl); 1159 } 1160 1161 } 1162 1163 bool G1CollectedHeap::do_full_collection(bool explicit_gc, 1164 bool clear_all_soft_refs) { 1165 assert_at_safepoint(true /* should_be_vm_thread */); 1166 1167 if (GCLocker::check_active_before_gc()) { 1168 return false; 1169 } 1170 1171 STWGCTimer* gc_timer = G1MarkSweep::gc_timer(); 1172 gc_timer->register_gc_start(); 1173 1174 SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer(); 1175 GCIdMark gc_id_mark; 1176 gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start()); 1177 1178 SvcGCMarker sgcm(SvcGCMarker::FULL); 1179 ResourceMark rm; 1180 1181 print_heap_before_gc(); 1182 print_heap_regions(); 1183 trace_heap_before_gc(gc_tracer); 1184 1185 size_t metadata_prev_used = MetaspaceAux::used_bytes(); 1186 1187 _verifier->verify_region_sets_optional(); 1188 1189 const bool do_clear_all_soft_refs = clear_all_soft_refs || 1190 collector_policy()->should_clear_all_soft_refs(); 1191 1192 ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy()); 1193 1194 { 1195 IsGCActiveMark x; 1196 1197 // Timing 1198 assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant"); 1199 GCTraceCPUTime tcpu; 1200 1201 { 1202 GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true); 1203 TraceCollectorStats tcs(g1mm()->full_collection_counters()); 1204 TraceMemoryManagerStats tms(true /* fullGC */, gc_cause()); 1205 1206 G1HeapTransition heap_transition(this); 1207 g1_policy()->record_full_collection_start(); 1208 1209 // Note: When we have a more flexible GC logging framework that 1210 // allows us to add optional attributes to a GC log record we 1211 // could consider timing and reporting how long we wait in the 1212 // following two methods. 1213 wait_while_free_regions_coming(); 1214 // If we start the compaction before the CM threads finish 1215 // scanning the root regions we might trip them over as we'll 1216 // be moving objects / updating references. So let's wait until 1217 // they are done. By telling them to abort, they should complete 1218 // early. 1219 _cm->root_regions()->abort(); 1220 _cm->root_regions()->wait_until_scan_finished(); 1221 append_secondary_free_list_if_not_empty_with_lock(); 1222 1223 gc_prologue(true); 1224 increment_total_collections(true /* full gc */); 1225 increment_old_marking_cycles_started(); 1226 1227 assert(used() == recalculate_used(), "Should be equal"); 1228 1229 _verifier->verify_before_gc(); 1230 1231 _verifier->check_bitmaps("Full GC Start"); 1232 pre_full_gc_dump(gc_timer); 1233 1234 #if defined(COMPILER2) || INCLUDE_JVMCI 1235 DerivedPointerTable::clear(); 1236 #endif 1237 1238 // Disable discovery and empty the discovered lists 1239 // for the CM ref processor. 1240 ref_processor_cm()->disable_discovery(); 1241 ref_processor_cm()->abandon_partial_discovery(); 1242 ref_processor_cm()->verify_no_references_recorded(); 1243 1244 // Abandon current iterations of concurrent marking and concurrent 1245 // refinement, if any are in progress. 1246 concurrent_mark()->abort(); 1247 1248 // Make sure we'll choose a new allocation region afterwards. 1249 _allocator->release_mutator_alloc_region(); 1250 _allocator->abandon_gc_alloc_regions(); 1251 g1_rem_set()->cleanupHRRS(); 1252 1253 // We may have added regions to the current incremental collection 1254 // set between the last GC or pause and now. We need to clear the 1255 // incremental collection set and then start rebuilding it afresh 1256 // after this full GC. 1257 abandon_collection_set(collection_set()); 1258 1259 tear_down_region_sets(false /* free_list_only */); 1260 collector_state()->set_gcs_are_young(true); 1261 1262 // See the comments in g1CollectedHeap.hpp and 1263 // G1CollectedHeap::ref_processing_init() about 1264 // how reference processing currently works in G1. 1265 1266 // Temporarily make discovery by the STW ref processor single threaded (non-MT). 1267 ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false); 1268 1269 // Temporarily clear the STW ref processor's _is_alive_non_header field. 1270 ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL); 1271 1272 ref_processor_stw()->enable_discovery(); 1273 ref_processor_stw()->setup_policy(do_clear_all_soft_refs); 1274 1275 // Do collection work 1276 { 1277 HandleMark hm; // Discard invalid handles created during gc 1278 G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs); 1279 } 1280 1281 assert(num_free_regions() == 0, "we should not have added any free regions"); 1282 rebuild_region_sets(false /* free_list_only */); 1283 1284 // Enqueue any discovered reference objects that have 1285 // not been removed from the discovered lists. 1286 ref_processor_stw()->enqueue_discovered_references(); 1287 1288 #if defined(COMPILER2) || INCLUDE_JVMCI 1289 DerivedPointerTable::update_pointers(); 1290 #endif 1291 1292 MemoryService::track_memory_usage(); 1293 1294 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 1295 ref_processor_stw()->verify_no_references_recorded(); 1296 1297 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1298 ClassLoaderDataGraph::purge(); 1299 MetaspaceAux::verify_metrics(); 1300 1301 // Note: since we've just done a full GC, concurrent 1302 // marking is no longer active. Therefore we need not 1303 // re-enable reference discovery for the CM ref processor. 1304 // That will be done at the start of the next marking cycle. 1305 assert(!ref_processor_cm()->discovery_enabled(), "Postcondition"); 1306 ref_processor_cm()->verify_no_references_recorded(); 1307 1308 reset_gc_time_stamp(); 1309 // Since everything potentially moved, we will clear all remembered 1310 // sets, and clear all cards. Later we will rebuild remembered 1311 // sets. We will also reset the GC time stamps of the regions. 1312 clear_rsets_post_compaction(); 1313 check_gc_time_stamps(); 1314 1315 resize_if_necessary_after_full_collection(); 1316 1317 // We should do this after we potentially resize the heap so 1318 // that all the COMMIT / UNCOMMIT events are generated before 1319 // the compaction events. 1320 print_hrm_post_compaction(); 1321 1322 if (_hot_card_cache->use_cache()) { 1323 _hot_card_cache->reset_card_counts(); 1324 _hot_card_cache->reset_hot_cache(); 1325 } 1326 1327 // Rebuild remembered sets of all regions. 1328 uint n_workers = 1329 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 1330 workers()->active_workers(), 1331 Threads::number_of_non_daemon_threads()); 1332 workers()->update_active_workers(n_workers); 1333 log_info(gc,task)("Using %u workers of %u to rebuild remembered set", n_workers, workers()->total_workers()); 1334 1335 ParRebuildRSTask rebuild_rs_task(this); 1336 workers()->run_task(&rebuild_rs_task); 1337 1338 // Rebuild the strong code root lists for each region 1339 rebuild_strong_code_roots(); 1340 1341 if (true) { // FIXME 1342 MetaspaceGC::compute_new_size(); 1343 } 1344 1345 #ifdef TRACESPINNING 1346 ParallelTaskTerminator::print_termination_counts(); 1347 #endif 1348 1349 // Discard all rset updates 1350 JavaThread::dirty_card_queue_set().abandon_logs(); 1351 assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty"); 1352 1353 // At this point there should be no regions in the 1354 // entire heap tagged as young. 1355 assert(check_young_list_empty(), "young list should be empty at this point"); 1356 1357 // Update the number of full collections that have been completed. 1358 increment_old_marking_cycles_completed(false /* concurrent */); 1359 1360 _hrm.verify_optional(); 1361 _verifier->verify_region_sets_optional(); 1362 1363 _verifier->verify_after_gc(); 1364 1365 // Clear the previous marking bitmap, if needed for bitmap verification. 1366 // Note we cannot do this when we clear the next marking bitmap in 1367 // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the 1368 // objects marked during a full GC against the previous bitmap. 1369 // But we need to clear it before calling check_bitmaps below since 1370 // the full GC has compacted objects and updated TAMS but not updated 1371 // the prev bitmap. 1372 if (G1VerifyBitmaps) { 1373 GCTraceTime(Debug, gc)("Clear Bitmap for Verification"); 1374 _cm->clear_prev_bitmap(workers()); 1375 } 1376 _verifier->check_bitmaps("Full GC End"); 1377 1378 start_new_collection_set(); 1379 1380 _allocator->init_mutator_alloc_region(); 1381 1382 g1_policy()->record_full_collection_end(); 1383 1384 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 1385 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 1386 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 1387 // before any GC notifications are raised. 1388 g1mm()->update_sizes(); 1389 1390 gc_epilogue(true); 1391 1392 heap_transition.print(); 1393 1394 print_heap_after_gc(); 1395 print_heap_regions(); 1396 trace_heap_after_gc(gc_tracer); 1397 1398 post_full_gc_dump(gc_timer); 1399 } 1400 1401 gc_timer->register_gc_end(); 1402 gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); 1403 } 1404 1405 return true; 1406 } 1407 1408 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { 1409 // Currently, there is no facility in the do_full_collection(bool) API to notify 1410 // the caller that the collection did not succeed (e.g., because it was locked 1411 // out by the GC locker). So, right now, we'll ignore the return value. 1412 bool dummy = do_full_collection(true, /* explicit_gc */ 1413 clear_all_soft_refs); 1414 } 1415 1416 void G1CollectedHeap::resize_if_necessary_after_full_collection() { 1417 // Include bytes that will be pre-allocated to support collections, as "used". 1418 const size_t used_after_gc = used(); 1419 const size_t capacity_after_gc = capacity(); 1420 const size_t free_after_gc = capacity_after_gc - used_after_gc; 1421 1422 // This is enforced in arguments.cpp. 1423 assert(MinHeapFreeRatio <= MaxHeapFreeRatio, 1424 "otherwise the code below doesn't make sense"); 1425 1426 // We don't have floating point command-line arguments 1427 const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0; 1428 const double maximum_used_percentage = 1.0 - minimum_free_percentage; 1429 const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0; 1430 const double minimum_used_percentage = 1.0 - maximum_free_percentage; 1431 1432 const size_t min_heap_size = collector_policy()->min_heap_byte_size(); 1433 const size_t max_heap_size = collector_policy()->max_heap_byte_size(); 1434 1435 // We have to be careful here as these two calculations can overflow 1436 // 32-bit size_t's. 1437 double used_after_gc_d = (double) used_after_gc; 1438 double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage; 1439 double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage; 1440 1441 // Let's make sure that they are both under the max heap size, which 1442 // by default will make them fit into a size_t. 1443 double desired_capacity_upper_bound = (double) max_heap_size; 1444 minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d, 1445 desired_capacity_upper_bound); 1446 maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d, 1447 desired_capacity_upper_bound); 1448 1449 // We can now safely turn them into size_t's. 1450 size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d; 1451 size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d; 1452 1453 // This assert only makes sense here, before we adjust them 1454 // with respect to the min and max heap size. 1455 assert(minimum_desired_capacity <= maximum_desired_capacity, 1456 "minimum_desired_capacity = " SIZE_FORMAT ", " 1457 "maximum_desired_capacity = " SIZE_FORMAT, 1458 minimum_desired_capacity, maximum_desired_capacity); 1459 1460 // Should not be greater than the heap max size. No need to adjust 1461 // it with respect to the heap min size as it's a lower bound (i.e., 1462 // we'll try to make the capacity larger than it, not smaller). 1463 minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size); 1464 // Should not be less than the heap min size. No need to adjust it 1465 // with respect to the heap max size as it's an upper bound (i.e., 1466 // we'll try to make the capacity smaller than it, not greater). 1467 maximum_desired_capacity = MAX2(maximum_desired_capacity, min_heap_size); 1468 1469 if (capacity_after_gc < minimum_desired_capacity) { 1470 // Don't expand unless it's significant 1471 size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; 1472 1473 log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). " 1474 "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)", 1475 capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio); 1476 1477 expand(expand_bytes, _workers); 1478 1479 // No expansion, now see if we want to shrink 1480 } else if (capacity_after_gc > maximum_desired_capacity) { 1481 // Capacity too large, compute shrinking size 1482 size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity; 1483 1484 log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). " 1485 "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)", 1486 capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio); 1487 1488 shrink(shrink_bytes); 1489 } 1490 } 1491 1492 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size, 1493 AllocationContext_t context, 1494 bool do_gc, 1495 bool clear_all_soft_refs, 1496 bool expect_null_mutator_alloc_region, 1497 bool* gc_succeeded) { 1498 *gc_succeeded = true; 1499 // Let's attempt the allocation first. 1500 HeapWord* result = 1501 attempt_allocation_at_safepoint(word_size, 1502 context, 1503 expect_null_mutator_alloc_region); 1504 if (result != NULL) { 1505 assert(*gc_succeeded, "sanity"); 1506 return result; 1507 } 1508 1509 // In a G1 heap, we're supposed to keep allocation from failing by 1510 // incremental pauses. Therefore, at least for now, we'll favor 1511 // expansion over collection. (This might change in the future if we can 1512 // do something smarter than full collection to satisfy a failed alloc.) 1513 result = expand_and_allocate(word_size, context); 1514 if (result != NULL) { 1515 assert(*gc_succeeded, "sanity"); 1516 return result; 1517 } 1518 1519 if (do_gc) { 1520 // Expansion didn't work, we'll try to do a Full GC. 1521 *gc_succeeded = do_full_collection(false, /* explicit_gc */ 1522 clear_all_soft_refs); 1523 } 1524 1525 return NULL; 1526 } 1527 1528 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size, 1529 AllocationContext_t context, 1530 bool* succeeded) { 1531 assert_at_safepoint(true /* should_be_vm_thread */); 1532 1533 // Attempts to allocate followed by Full GC. 1534 HeapWord* result = 1535 satisfy_failed_allocation_helper(word_size, 1536 context, 1537 true, /* do_gc */ 1538 false, /* clear_all_soft_refs */ 1539 false, /* expect_null_mutator_alloc_region */ 1540 succeeded); 1541 1542 if (result != NULL || !*succeeded) { 1543 return result; 1544 } 1545 1546 // Attempts to allocate followed by Full GC that will collect all soft references. 1547 result = satisfy_failed_allocation_helper(word_size, 1548 context, 1549 true, /* do_gc */ 1550 true, /* clear_all_soft_refs */ 1551 true, /* expect_null_mutator_alloc_region */ 1552 succeeded); 1553 1554 if (result != NULL || !*succeeded) { 1555 return result; 1556 } 1557 1558 // Attempts to allocate, no GC 1559 result = satisfy_failed_allocation_helper(word_size, 1560 context, 1561 false, /* do_gc */ 1562 false, /* clear_all_soft_refs */ 1563 true, /* expect_null_mutator_alloc_region */ 1564 succeeded); 1565 1566 if (result != NULL) { 1567 assert(*succeeded, "sanity"); 1568 return result; 1569 } 1570 1571 assert(!collector_policy()->should_clear_all_soft_refs(), 1572 "Flag should have been handled and cleared prior to this point"); 1573 1574 // What else? We might try synchronous finalization later. If the total 1575 // space available is large enough for the allocation, then a more 1576 // complete compaction phase than we've tried so far might be 1577 // appropriate. 1578 assert(*succeeded, "sanity"); 1579 return NULL; 1580 } 1581 1582 // Attempting to expand the heap sufficiently 1583 // to support an allocation of the given "word_size". If 1584 // successful, perform the allocation and return the address of the 1585 // allocated block, or else "NULL". 1586 1587 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) { 1588 assert_at_safepoint(true /* should_be_vm_thread */); 1589 1590 _verifier->verify_region_sets_optional(); 1591 1592 size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); 1593 log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B", 1594 word_size * HeapWordSize); 1595 1596 1597 if (expand(expand_bytes, _workers)) { 1598 _hrm.verify_optional(); 1599 _verifier->verify_region_sets_optional(); 1600 return attempt_allocation_at_safepoint(word_size, 1601 context, 1602 false /* expect_null_mutator_alloc_region */); 1603 } 1604 return NULL; 1605 } 1606 1607 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) { 1608 size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); 1609 aligned_expand_bytes = align_size_up(aligned_expand_bytes, 1610 HeapRegion::GrainBytes); 1611 1612 log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B", 1613 expand_bytes, aligned_expand_bytes); 1614 1615 if (is_maximal_no_gc()) { 1616 log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)"); 1617 return false; 1618 } 1619 1620 double expand_heap_start_time_sec = os::elapsedTime(); 1621 uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes); 1622 assert(regions_to_expand > 0, "Must expand by at least one region"); 1623 1624 uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers); 1625 if (expand_time_ms != NULL) { 1626 *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS; 1627 } 1628 1629 if (expanded_by > 0) { 1630 size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes; 1631 assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); 1632 g1_policy()->record_new_heap_size(num_regions()); 1633 } else { 1634 log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)"); 1635 1636 // The expansion of the virtual storage space was unsuccessful. 1637 // Let's see if it was because we ran out of swap. 1638 if (G1ExitOnExpansionFailure && 1639 _hrm.available() >= regions_to_expand) { 1640 // We had head room... 1641 vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion"); 1642 } 1643 } 1644 return regions_to_expand > 0; 1645 } 1646 1647 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { 1648 size_t aligned_shrink_bytes = 1649 ReservedSpace::page_align_size_down(shrink_bytes); 1650 aligned_shrink_bytes = align_size_down(aligned_shrink_bytes, 1651 HeapRegion::GrainBytes); 1652 uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes); 1653 1654 uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove); 1655 size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes; 1656 1657 1658 log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B", 1659 shrink_bytes, aligned_shrink_bytes, shrunk_bytes); 1660 if (num_regions_removed > 0) { 1661 g1_policy()->record_new_heap_size(num_regions()); 1662 } else { 1663 log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)"); 1664 } 1665 } 1666 1667 void G1CollectedHeap::shrink(size_t shrink_bytes) { 1668 _verifier->verify_region_sets_optional(); 1669 1670 // We should only reach here at the end of a Full GC which means we 1671 // should not not be holding to any GC alloc regions. The method 1672 // below will make sure of that and do any remaining clean up. 1673 _allocator->abandon_gc_alloc_regions(); 1674 1675 // Instead of tearing down / rebuilding the free lists here, we 1676 // could instead use the remove_all_pending() method on free_list to 1677 // remove only the ones that we need to remove. 1678 tear_down_region_sets(true /* free_list_only */); 1679 shrink_helper(shrink_bytes); 1680 rebuild_region_sets(true /* free_list_only */); 1681 1682 _hrm.verify_optional(); 1683 _verifier->verify_region_sets_optional(); 1684 } 1685 1686 // Public methods. 1687 1688 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) : 1689 CollectedHeap(), 1690 _collector_policy(collector_policy), 1691 _g1_policy(create_g1_policy()), 1692 _collection_set(this, _g1_policy), 1693 _dirty_card_queue_set(false), 1694 _is_alive_closure_cm(this), 1695 _is_alive_closure_stw(this), 1696 _ref_processor_cm(NULL), 1697 _ref_processor_stw(NULL), 1698 _bot(NULL), 1699 _hot_card_cache(NULL), 1700 _g1_rem_set(NULL), 1701 _cg1r(NULL), 1702 _g1mm(NULL), 1703 _refine_cte_cl(NULL), 1704 _preserved_marks_set(true /* in_c_heap */), 1705 _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()), 1706 _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()), 1707 _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()), 1708 _humongous_reclaim_candidates(), 1709 _has_humongous_reclaim_candidates(false), 1710 _archive_allocator(NULL), 1711 _free_regions_coming(false), 1712 _gc_time_stamp(0), 1713 _summary_bytes_used(0), 1714 _survivor_evac_stats("Young", YoungPLABSize, PLABWeight), 1715 _old_evac_stats("Old", OldPLABSize, PLABWeight), 1716 _expand_heap_after_alloc_failure(true), 1717 _old_marking_cycles_started(0), 1718 _old_marking_cycles_completed(0), 1719 _in_cset_fast_test(), 1720 _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()), 1721 _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) { 1722 1723 _workers = new WorkGang("GC Thread", ParallelGCThreads, 1724 /* are_GC_task_threads */true, 1725 /* are_ConcurrentGC_threads */false); 1726 _workers->initialize_workers(); 1727 _verifier = new G1HeapVerifier(this); 1728 1729 _allocator = G1Allocator::create_allocator(this); 1730 1731 _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics()); 1732 1733 _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords); 1734 1735 // Override the default _filler_array_max_size so that no humongous filler 1736 // objects are created. 1737 _filler_array_max_size = _humongous_object_threshold_in_words; 1738 1739 uint n_queues = ParallelGCThreads; 1740 _task_queues = new RefToScanQueueSet(n_queues); 1741 1742 _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC); 1743 1744 for (uint i = 0; i < n_queues; i++) { 1745 RefToScanQueue* q = new RefToScanQueue(); 1746 q->initialize(); 1747 _task_queues->register_queue(i, q); 1748 ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo(); 1749 } 1750 1751 // Initialize the G1EvacuationFailureALot counters and flags. 1752 NOT_PRODUCT(reset_evacuation_should_fail();) 1753 1754 guarantee(_task_queues != NULL, "task_queues allocation failure."); 1755 } 1756 1757 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description, 1758 size_t size, 1759 size_t translation_factor) { 1760 size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1); 1761 // Allocate a new reserved space, preferring to use large pages. 1762 ReservedSpace rs(size, preferred_page_size); 1763 G1RegionToSpaceMapper* result = 1764 G1RegionToSpaceMapper::create_mapper(rs, 1765 size, 1766 rs.alignment(), 1767 HeapRegion::GrainBytes, 1768 translation_factor, 1769 mtGC); 1770 1771 os::trace_page_sizes_for_requested_size(description, 1772 size, 1773 preferred_page_size, 1774 rs.alignment(), 1775 rs.base(), 1776 rs.size()); 1777 1778 return result; 1779 } 1780 1781 jint G1CollectedHeap::initialize() { 1782 CollectedHeap::pre_initialize(); 1783 os::enable_vtime(); 1784 1785 // Necessary to satisfy locking discipline assertions. 1786 1787 MutexLocker x(Heap_lock); 1788 1789 // While there are no constraints in the GC code that HeapWordSize 1790 // be any particular value, there are multiple other areas in the 1791 // system which believe this to be true (e.g. oop->object_size in some 1792 // cases incorrectly returns the size in wordSize units rather than 1793 // HeapWordSize). 1794 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); 1795 1796 size_t init_byte_size = collector_policy()->initial_heap_byte_size(); 1797 size_t max_byte_size = collector_policy()->max_heap_byte_size(); 1798 size_t heap_alignment = collector_policy()->heap_alignment(); 1799 1800 // Ensure that the sizes are properly aligned. 1801 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1802 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1803 Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap"); 1804 1805 _refine_cte_cl = new RefineCardTableEntryClosure(); 1806 1807 jint ecode = JNI_OK; 1808 _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode); 1809 if (_cg1r == NULL) { 1810 return ecode; 1811 } 1812 1813 // Reserve the maximum. 1814 1815 // When compressed oops are enabled, the preferred heap base 1816 // is calculated by subtracting the requested size from the 1817 // 32Gb boundary and using the result as the base address for 1818 // heap reservation. If the requested size is not aligned to 1819 // HeapRegion::GrainBytes (i.e. the alignment that is passed 1820 // into the ReservedHeapSpace constructor) then the actual 1821 // base of the reserved heap may end up differing from the 1822 // address that was requested (i.e. the preferred heap base). 1823 // If this happens then we could end up using a non-optimal 1824 // compressed oops mode. 1825 1826 ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, 1827 heap_alignment); 1828 1829 initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size())); 1830 1831 // Create the barrier set for the entire reserved region. 1832 G1SATBCardTableLoggingModRefBS* bs 1833 = new G1SATBCardTableLoggingModRefBS(reserved_region()); 1834 bs->initialize(); 1835 assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity"); 1836 set_barrier_set(bs); 1837 1838 // Create the hot card cache. 1839 _hot_card_cache = new G1HotCardCache(this); 1840 1841 // Also create a G1 rem set. 1842 _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache); 1843 1844 // Carve out the G1 part of the heap. 1845 ReservedSpace g1_rs = heap_rs.first_part(max_byte_size); 1846 size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 1847 G1RegionToSpaceMapper* heap_storage = 1848 G1RegionToSpaceMapper::create_mapper(g1_rs, 1849 g1_rs.size(), 1850 page_size, 1851 HeapRegion::GrainBytes, 1852 1, 1853 mtJavaHeap); 1854 os::trace_page_sizes("Heap", 1855 collector_policy()->min_heap_byte_size(), 1856 max_byte_size, 1857 page_size, 1858 heap_rs.base(), 1859 heap_rs.size()); 1860 heap_storage->set_mapping_changed_listener(&_listener); 1861 1862 // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps. 1863 G1RegionToSpaceMapper* bot_storage = 1864 create_aux_memory_mapper("Block Offset Table", 1865 G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize), 1866 G1BlockOffsetTable::heap_map_factor()); 1867 1868 ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize)); 1869 G1RegionToSpaceMapper* cardtable_storage = 1870 create_aux_memory_mapper("Card Table", 1871 G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize), 1872 G1SATBCardTableLoggingModRefBS::heap_map_factor()); 1873 1874 G1RegionToSpaceMapper* card_counts_storage = 1875 create_aux_memory_mapper("Card Counts Table", 1876 G1CardCounts::compute_size(g1_rs.size() / HeapWordSize), 1877 G1CardCounts::heap_map_factor()); 1878 1879 size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size()); 1880 G1RegionToSpaceMapper* prev_bitmap_storage = 1881 create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor()); 1882 G1RegionToSpaceMapper* next_bitmap_storage = 1883 create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor()); 1884 1885 _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage); 1886 g1_barrier_set()->initialize(cardtable_storage); 1887 // Do later initialization work for concurrent refinement. 1888 _hot_card_cache->initialize(card_counts_storage); 1889 1890 // 6843694 - ensure that the maximum region index can fit 1891 // in the remembered set structures. 1892 const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; 1893 guarantee((max_regions() - 1) <= max_region_idx, "too many regions"); 1894 1895 g1_rem_set()->initialize(max_capacity(), max_regions()); 1896 1897 size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; 1898 guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); 1899 guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, 1900 "too many cards per region"); 1901 1902 FreeRegionList::set_unrealistically_long_length(max_regions() + 1); 1903 1904 _bot = new G1BlockOffsetTable(reserved_region(), bot_storage); 1905 1906 { 1907 HeapWord* start = _hrm.reserved().start(); 1908 HeapWord* end = _hrm.reserved().end(); 1909 size_t granularity = HeapRegion::GrainBytes; 1910 1911 _in_cset_fast_test.initialize(start, end, granularity); 1912 _humongous_reclaim_candidates.initialize(start, end, granularity); 1913 } 1914 1915 // Create the G1ConcurrentMark data structure and thread. 1916 // (Must do this late, so that "max_regions" is defined.) 1917 _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage); 1918 if (_cm == NULL || !_cm->completed_initialization()) { 1919 vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark"); 1920 return JNI_ENOMEM; 1921 } 1922 _cmThread = _cm->cmThread(); 1923 1924 // Now expand into the initial heap size. 1925 if (!expand(init_byte_size, _workers)) { 1926 vm_shutdown_during_initialization("Failed to allocate initial heap."); 1927 return JNI_ENOMEM; 1928 } 1929 1930 // Perform any initialization actions delegated to the policy. 1931 g1_policy()->init(this, &_collection_set); 1932 1933 JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon, 1934 SATB_Q_FL_lock, 1935 G1SATBProcessCompletedThreshold, 1936 Shared_SATB_Q_lock); 1937 1938 JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl, 1939 DirtyCardQ_CBL_mon, 1940 DirtyCardQ_FL_lock, 1941 (int)concurrent_g1_refine()->yellow_zone(), 1942 (int)concurrent_g1_refine()->red_zone(), 1943 Shared_DirtyCardQ_lock, 1944 NULL, // fl_owner 1945 true); // init_free_ids 1946 1947 dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code 1948 DirtyCardQ_CBL_mon, 1949 DirtyCardQ_FL_lock, 1950 -1, // never trigger processing 1951 -1, // no limit on length 1952 Shared_DirtyCardQ_lock, 1953 &JavaThread::dirty_card_queue_set()); 1954 1955 // Here we allocate the dummy HeapRegion that is required by the 1956 // G1AllocRegion class. 1957 HeapRegion* dummy_region = _hrm.get_dummy_region(); 1958 1959 // We'll re-use the same region whether the alloc region will 1960 // require BOT updates or not and, if it doesn't, then a non-young 1961 // region will complain that it cannot support allocations without 1962 // BOT updates. So we'll tag the dummy region as eden to avoid that. 1963 dummy_region->set_eden(); 1964 // Make sure it's full. 1965 dummy_region->set_top(dummy_region->end()); 1966 G1AllocRegion::setup(this, dummy_region); 1967 1968 _allocator->init_mutator_alloc_region(); 1969 1970 // Do create of the monitoring and management support so that 1971 // values in the heap have been properly initialized. 1972 _g1mm = new G1MonitoringSupport(this); 1973 1974 G1StringDedup::initialize(); 1975 1976 _preserved_marks_set.init(ParallelGCThreads); 1977 1978 _collection_set.initialize(max_regions()); 1979 1980 return JNI_OK; 1981 } 1982 1983 void G1CollectedHeap::stop() { 1984 // Stop all concurrent threads. We do this to make sure these threads 1985 // do not continue to execute and access resources (e.g. logging) 1986 // that are destroyed during shutdown. 1987 _cg1r->stop(); 1988 _cmThread->stop(); 1989 if (G1StringDedup::is_enabled()) { 1990 G1StringDedup::stop(); 1991 } 1992 } 1993 1994 size_t G1CollectedHeap::conservative_max_heap_alignment() { 1995 return HeapRegion::max_region_size(); 1996 } 1997 1998 void G1CollectedHeap::post_initialize() { 1999 ref_processing_init(); 2000 } 2001 2002 void G1CollectedHeap::ref_processing_init() { 2003 // Reference processing in G1 currently works as follows: 2004 // 2005 // * There are two reference processor instances. One is 2006 // used to record and process discovered references 2007 // during concurrent marking; the other is used to 2008 // record and process references during STW pauses 2009 // (both full and incremental). 2010 // * Both ref processors need to 'span' the entire heap as 2011 // the regions in the collection set may be dotted around. 2012 // 2013 // * For the concurrent marking ref processor: 2014 // * Reference discovery is enabled at initial marking. 2015 // * Reference discovery is disabled and the discovered 2016 // references processed etc during remarking. 2017 // * Reference discovery is MT (see below). 2018 // * Reference discovery requires a barrier (see below). 2019 // * Reference processing may or may not be MT 2020 // (depending on the value of ParallelRefProcEnabled 2021 // and ParallelGCThreads). 2022 // * A full GC disables reference discovery by the CM 2023 // ref processor and abandons any entries on it's 2024 // discovered lists. 2025 // 2026 // * For the STW processor: 2027 // * Non MT discovery is enabled at the start of a full GC. 2028 // * Processing and enqueueing during a full GC is non-MT. 2029 // * During a full GC, references are processed after marking. 2030 // 2031 // * Discovery (may or may not be MT) is enabled at the start 2032 // of an incremental evacuation pause. 2033 // * References are processed near the end of a STW evacuation pause. 2034 // * For both types of GC: 2035 // * Discovery is atomic - i.e. not concurrent. 2036 // * Reference discovery will not need a barrier. 2037 2038 MemRegion mr = reserved_region(); 2039 2040 // Concurrent Mark ref processor 2041 _ref_processor_cm = 2042 new ReferenceProcessor(mr, // span 2043 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2044 // mt processing 2045 ParallelGCThreads, 2046 // degree of mt processing 2047 (ParallelGCThreads > 1) || (ConcGCThreads > 1), 2048 // mt discovery 2049 MAX2(ParallelGCThreads, ConcGCThreads), 2050 // degree of mt discovery 2051 false, 2052 // Reference discovery is not atomic 2053 &_is_alive_closure_cm); 2054 // is alive closure 2055 // (for efficiency/performance) 2056 2057 // STW ref processor 2058 _ref_processor_stw = 2059 new ReferenceProcessor(mr, // span 2060 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2061 // mt processing 2062 ParallelGCThreads, 2063 // degree of mt processing 2064 (ParallelGCThreads > 1), 2065 // mt discovery 2066 ParallelGCThreads, 2067 // degree of mt discovery 2068 true, 2069 // Reference discovery is atomic 2070 &_is_alive_closure_stw); 2071 // is alive closure 2072 // (for efficiency/performance) 2073 } 2074 2075 CollectorPolicy* G1CollectedHeap::collector_policy() const { 2076 return _collector_policy; 2077 } 2078 2079 size_t G1CollectedHeap::capacity() const { 2080 return _hrm.length() * HeapRegion::GrainBytes; 2081 } 2082 2083 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) { 2084 hr->reset_gc_time_stamp(); 2085 } 2086 2087 #ifndef PRODUCT 2088 2089 class CheckGCTimeStampsHRClosure : public HeapRegionClosure { 2090 private: 2091 unsigned _gc_time_stamp; 2092 bool _failures; 2093 2094 public: 2095 CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) : 2096 _gc_time_stamp(gc_time_stamp), _failures(false) { } 2097 2098 virtual bool doHeapRegion(HeapRegion* hr) { 2099 unsigned region_gc_time_stamp = hr->get_gc_time_stamp(); 2100 if (_gc_time_stamp != region_gc_time_stamp) { 2101 log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr), 2102 region_gc_time_stamp, _gc_time_stamp); 2103 _failures = true; 2104 } 2105 return false; 2106 } 2107 2108 bool failures() { return _failures; } 2109 }; 2110 2111 void G1CollectedHeap::check_gc_time_stamps() { 2112 CheckGCTimeStampsHRClosure cl(_gc_time_stamp); 2113 heap_region_iterate(&cl); 2114 guarantee(!cl.failures(), "all GC time stamps should have been reset"); 2115 } 2116 #endif // PRODUCT 2117 2118 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) { 2119 _hot_card_cache->drain(cl, worker_i); 2120 } 2121 2122 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) { 2123 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 2124 size_t n_completed_buffers = 0; 2125 while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) { 2126 n_completed_buffers++; 2127 } 2128 g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers); 2129 dcqs.clear_n_completed_buffers(); 2130 assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!"); 2131 } 2132 2133 // Computes the sum of the storage used by the various regions. 2134 size_t G1CollectedHeap::used() const { 2135 size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions(); 2136 if (_archive_allocator != NULL) { 2137 result += _archive_allocator->used(); 2138 } 2139 return result; 2140 } 2141 2142 size_t G1CollectedHeap::used_unlocked() const { 2143 return _summary_bytes_used; 2144 } 2145 2146 class SumUsedClosure: public HeapRegionClosure { 2147 size_t _used; 2148 public: 2149 SumUsedClosure() : _used(0) {} 2150 bool doHeapRegion(HeapRegion* r) { 2151 _used += r->used(); 2152 return false; 2153 } 2154 size_t result() { return _used; } 2155 }; 2156 2157 size_t G1CollectedHeap::recalculate_used() const { 2158 double recalculate_used_start = os::elapsedTime(); 2159 2160 SumUsedClosure blk; 2161 heap_region_iterate(&blk); 2162 2163 g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0); 2164 return blk.result(); 2165 } 2166 2167 bool G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) { 2168 switch (cause) { 2169 case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent; 2170 case GCCause::_dcmd_gc_run: return ExplicitGCInvokesConcurrent; 2171 case GCCause::_update_allocation_context_stats_inc: return true; 2172 case GCCause::_wb_conc_mark: return true; 2173 default : return false; 2174 } 2175 } 2176 2177 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { 2178 switch (cause) { 2179 case GCCause::_gc_locker: return GCLockerInvokesConcurrent; 2180 case GCCause::_g1_humongous_allocation: return true; 2181 default: return is_user_requested_concurrent_full_gc(cause); 2182 } 2183 } 2184 2185 #ifndef PRODUCT 2186 void G1CollectedHeap::allocate_dummy_regions() { 2187 // Let's fill up most of the region 2188 size_t word_size = HeapRegion::GrainWords - 1024; 2189 // And as a result the region we'll allocate will be humongous. 2190 guarantee(is_humongous(word_size), "sanity"); 2191 2192 // _filler_array_max_size is set to humongous object threshold 2193 // but temporarily change it to use CollectedHeap::fill_with_object(). 2194 SizeTFlagSetting fs(_filler_array_max_size, word_size); 2195 2196 for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { 2197 // Let's use the existing mechanism for the allocation 2198 HeapWord* dummy_obj = humongous_obj_allocate(word_size, 2199 AllocationContext::system()); 2200 if (dummy_obj != NULL) { 2201 MemRegion mr(dummy_obj, word_size); 2202 CollectedHeap::fill_with_object(mr); 2203 } else { 2204 // If we can't allocate once, we probably cannot allocate 2205 // again. Let's get out of the loop. 2206 break; 2207 } 2208 } 2209 } 2210 #endif // !PRODUCT 2211 2212 void G1CollectedHeap::increment_old_marking_cycles_started() { 2213 assert(_old_marking_cycles_started == _old_marking_cycles_completed || 2214 _old_marking_cycles_started == _old_marking_cycles_completed + 1, 2215 "Wrong marking cycle count (started: %d, completed: %d)", 2216 _old_marking_cycles_started, _old_marking_cycles_completed); 2217 2218 _old_marking_cycles_started++; 2219 } 2220 2221 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) { 2222 MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag); 2223 2224 // We assume that if concurrent == true, then the caller is a 2225 // concurrent thread that was joined the Suspendible Thread 2226 // Set. If there's ever a cheap way to check this, we should add an 2227 // assert here. 2228 2229 // Given that this method is called at the end of a Full GC or of a 2230 // concurrent cycle, and those can be nested (i.e., a Full GC can 2231 // interrupt a concurrent cycle), the number of full collections 2232 // completed should be either one (in the case where there was no 2233 // nesting) or two (when a Full GC interrupted a concurrent cycle) 2234 // behind the number of full collections started. 2235 2236 // This is the case for the inner caller, i.e. a Full GC. 2237 assert(concurrent || 2238 (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || 2239 (_old_marking_cycles_started == _old_marking_cycles_completed + 2), 2240 "for inner caller (Full GC): _old_marking_cycles_started = %u " 2241 "is inconsistent with _old_marking_cycles_completed = %u", 2242 _old_marking_cycles_started, _old_marking_cycles_completed); 2243 2244 // This is the case for the outer caller, i.e. the concurrent cycle. 2245 assert(!concurrent || 2246 (_old_marking_cycles_started == _old_marking_cycles_completed + 1), 2247 "for outer caller (concurrent cycle): " 2248 "_old_marking_cycles_started = %u " 2249 "is inconsistent with _old_marking_cycles_completed = %u", 2250 _old_marking_cycles_started, _old_marking_cycles_completed); 2251 2252 _old_marking_cycles_completed += 1; 2253 2254 // We need to clear the "in_progress" flag in the CM thread before 2255 // we wake up any waiters (especially when ExplicitInvokesConcurrent 2256 // is set) so that if a waiter requests another System.gc() it doesn't 2257 // incorrectly see that a marking cycle is still in progress. 2258 if (concurrent) { 2259 _cmThread->set_idle(); 2260 } 2261 2262 // This notify_all() will ensure that a thread that called 2263 // System.gc() with (with ExplicitGCInvokesConcurrent set or not) 2264 // and it's waiting for a full GC to finish will be woken up. It is 2265 // waiting in VM_G1IncCollectionPause::doit_epilogue(). 2266 FullGCCount_lock->notify_all(); 2267 } 2268 2269 void G1CollectedHeap::collect(GCCause::Cause cause) { 2270 assert_heap_not_locked(); 2271 2272 uint gc_count_before; 2273 uint old_marking_count_before; 2274 uint full_gc_count_before; 2275 bool retry_gc; 2276 2277 do { 2278 retry_gc = false; 2279 2280 { 2281 MutexLocker ml(Heap_lock); 2282 2283 // Read the GC count while holding the Heap_lock 2284 gc_count_before = total_collections(); 2285 full_gc_count_before = total_full_collections(); 2286 old_marking_count_before = _old_marking_cycles_started; 2287 } 2288 2289 if (should_do_concurrent_full_gc(cause)) { 2290 // Schedule an initial-mark evacuation pause that will start a 2291 // concurrent cycle. We're setting word_size to 0 which means that 2292 // we are not requesting a post-GC allocation. 2293 VM_G1IncCollectionPause op(gc_count_before, 2294 0, /* word_size */ 2295 true, /* should_initiate_conc_mark */ 2296 g1_policy()->max_pause_time_ms(), 2297 cause); 2298 op.set_allocation_context(AllocationContext::current()); 2299 2300 VMThread::execute(&op); 2301 if (!op.pause_succeeded()) { 2302 if (old_marking_count_before == _old_marking_cycles_started) { 2303 retry_gc = op.should_retry_gc(); 2304 } else { 2305 // A Full GC happened while we were trying to schedule the 2306 // initial-mark GC. No point in starting a new cycle given 2307 // that the whole heap was collected anyway. 2308 } 2309 2310 if (retry_gc) { 2311 if (GCLocker::is_active_and_needs_gc()) { 2312 GCLocker::stall_until_clear(); 2313 } 2314 } 2315 } 2316 } else { 2317 if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc 2318 DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { 2319 2320 // Schedule a standard evacuation pause. We're setting word_size 2321 // to 0 which means that we are not requesting a post-GC allocation. 2322 VM_G1IncCollectionPause op(gc_count_before, 2323 0, /* word_size */ 2324 false, /* should_initiate_conc_mark */ 2325 g1_policy()->max_pause_time_ms(), 2326 cause); 2327 VMThread::execute(&op); 2328 } else { 2329 // Schedule a Full GC. 2330 VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause); 2331 VMThread::execute(&op); 2332 } 2333 } 2334 } while (retry_gc); 2335 } 2336 2337 bool G1CollectedHeap::is_in(const void* p) const { 2338 if (_hrm.reserved().contains(p)) { 2339 // Given that we know that p is in the reserved space, 2340 // heap_region_containing() should successfully 2341 // return the containing region. 2342 HeapRegion* hr = heap_region_containing(p); 2343 return hr->is_in(p); 2344 } else { 2345 return false; 2346 } 2347 } 2348 2349 #ifdef ASSERT 2350 bool G1CollectedHeap::is_in_exact(const void* p) const { 2351 bool contains = reserved_region().contains(p); 2352 bool available = _hrm.is_available(addr_to_region((HeapWord*)p)); 2353 if (contains && available) { 2354 return true; 2355 } else { 2356 return false; 2357 } 2358 } 2359 #endif 2360 2361 // Iteration functions. 2362 2363 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion. 2364 2365 class IterateOopClosureRegionClosure: public HeapRegionClosure { 2366 ExtendedOopClosure* _cl; 2367 public: 2368 IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {} 2369 bool doHeapRegion(HeapRegion* r) { 2370 if (!r->is_continues_humongous()) { 2371 r->oop_iterate(_cl); 2372 } 2373 return false; 2374 } 2375 }; 2376 2377 // Iterates an ObjectClosure over all objects within a HeapRegion. 2378 2379 class IterateObjectClosureRegionClosure: public HeapRegionClosure { 2380 ObjectClosure* _cl; 2381 public: 2382 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} 2383 bool doHeapRegion(HeapRegion* r) { 2384 if (!r->is_continues_humongous()) { 2385 r->object_iterate(_cl); 2386 } 2387 return false; 2388 } 2389 }; 2390 2391 void G1CollectedHeap::object_iterate(ObjectClosure* cl) { 2392 IterateObjectClosureRegionClosure blk(cl); 2393 heap_region_iterate(&blk); 2394 } 2395 2396 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { 2397 _hrm.iterate(cl); 2398 } 2399 2400 void 2401 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl, 2402 uint worker_id, 2403 HeapRegionClaimer *hrclaimer, 2404 bool concurrent) const { 2405 _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent); 2406 } 2407 2408 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) { 2409 _collection_set.iterate(cl); 2410 } 2411 2412 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) { 2413 _collection_set.iterate_from(cl, worker_id, workers()->active_workers()); 2414 } 2415 2416 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const { 2417 HeapRegion* result = _hrm.next_region_in_heap(from); 2418 while (result != NULL && result->is_pinned()) { 2419 result = _hrm.next_region_in_heap(result); 2420 } 2421 return result; 2422 } 2423 2424 HeapWord* G1CollectedHeap::block_start(const void* addr) const { 2425 HeapRegion* hr = heap_region_containing(addr); 2426 return hr->block_start(addr); 2427 } 2428 2429 size_t G1CollectedHeap::block_size(const HeapWord* addr) const { 2430 HeapRegion* hr = heap_region_containing(addr); 2431 return hr->block_size(addr); 2432 } 2433 2434 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { 2435 HeapRegion* hr = heap_region_containing(addr); 2436 return hr->block_is_obj(addr); 2437 } 2438 2439 bool G1CollectedHeap::supports_tlab_allocation() const { 2440 return true; 2441 } 2442 2443 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { 2444 return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes; 2445 } 2446 2447 size_t G1CollectedHeap::tlab_used(Thread* ignored) const { 2448 return _eden.length() * HeapRegion::GrainBytes; 2449 } 2450 2451 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size 2452 // must be equal to the humongous object limit. 2453 size_t G1CollectedHeap::max_tlab_size() const { 2454 return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment); 2455 } 2456 2457 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { 2458 AllocationContext_t context = AllocationContext::current(); 2459 return _allocator->unsafe_max_tlab_alloc(context); 2460 } 2461 2462 size_t G1CollectedHeap::max_capacity() const { 2463 return _hrm.reserved().byte_size(); 2464 } 2465 2466 jlong G1CollectedHeap::millis_since_last_gc() { 2467 // See the notes in GenCollectedHeap::millis_since_last_gc() 2468 // for more information about the implementation. 2469 jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) - 2470 _g1_policy->collection_pause_end_millis(); 2471 if (ret_val < 0) { 2472 log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT 2473 ". returning zero instead.", ret_val); 2474 return 0; 2475 } 2476 return ret_val; 2477 } 2478 2479 void G1CollectedHeap::prepare_for_verify() { 2480 _verifier->prepare_for_verify(); 2481 } 2482 2483 void G1CollectedHeap::verify(VerifyOption vo) { 2484 _verifier->verify(vo); 2485 } 2486 2487 bool G1CollectedHeap::supports_concurrent_phase_control() const { 2488 return true; 2489 } 2490 2491 const char* const* G1CollectedHeap::concurrent_phases() const { 2492 return _cmThread->concurrent_phases(); 2493 } 2494 2495 bool G1CollectedHeap::request_concurrent_phase(const char* phase) { 2496 return _cmThread->request_concurrent_phase(phase); 2497 } 2498 2499 class PrintRegionClosure: public HeapRegionClosure { 2500 outputStream* _st; 2501 public: 2502 PrintRegionClosure(outputStream* st) : _st(st) {} 2503 bool doHeapRegion(HeapRegion* r) { 2504 r->print_on(_st); 2505 return false; 2506 } 2507 }; 2508 2509 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 2510 const HeapRegion* hr, 2511 const VerifyOption vo) const { 2512 switch (vo) { 2513 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr); 2514 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr); 2515 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked() && !hr->is_archive(); 2516 default: ShouldNotReachHere(); 2517 } 2518 return false; // keep some compilers happy 2519 } 2520 2521 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 2522 const VerifyOption vo) const { 2523 switch (vo) { 2524 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj); 2525 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj); 2526 case VerifyOption_G1UseMarkWord: { 2527 HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj); 2528 return !obj->is_gc_marked() && !hr->is_archive(); 2529 } 2530 default: ShouldNotReachHere(); 2531 } 2532 return false; // keep some compilers happy 2533 } 2534 2535 void G1CollectedHeap::print_heap_regions() const { 2536 Log(gc, heap, region) log; 2537 if (log.is_trace()) { 2538 ResourceMark rm; 2539 print_regions_on(log.trace_stream()); 2540 } 2541 } 2542 2543 void G1CollectedHeap::print_on(outputStream* st) const { 2544 st->print(" %-20s", "garbage-first heap"); 2545 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", 2546 capacity()/K, used_unlocked()/K); 2547 st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")", 2548 p2i(_hrm.reserved().start()), 2549 p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords), 2550 p2i(_hrm.reserved().end())); 2551 st->cr(); 2552 st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); 2553 uint young_regions = young_regions_count(); 2554 st->print("%u young (" SIZE_FORMAT "K), ", young_regions, 2555 (size_t) young_regions * HeapRegion::GrainBytes / K); 2556 uint survivor_regions = survivor_regions_count(); 2557 st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, 2558 (size_t) survivor_regions * HeapRegion::GrainBytes / K); 2559 st->cr(); 2560 MetaspaceAux::print_on(st); 2561 } 2562 2563 void G1CollectedHeap::print_regions_on(outputStream* st) const { 2564 st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, " 2565 "HS=humongous(starts), HC=humongous(continues), " 2566 "CS=collection set, F=free, A=archive, TS=gc time stamp, " 2567 "AC=allocation context, " 2568 "TAMS=top-at-mark-start (previous, next)"); 2569 PrintRegionClosure blk(st); 2570 heap_region_iterate(&blk); 2571 } 2572 2573 void G1CollectedHeap::print_extended_on(outputStream* st) const { 2574 print_on(st); 2575 2576 // Print the per-region information. 2577 print_regions_on(st); 2578 } 2579 2580 void G1CollectedHeap::print_on_error(outputStream* st) const { 2581 this->CollectedHeap::print_on_error(st); 2582 2583 if (_cm != NULL) { 2584 st->cr(); 2585 _cm->print_on_error(st); 2586 } 2587 } 2588 2589 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const { 2590 workers()->print_worker_threads_on(st); 2591 _cmThread->print_on(st); 2592 st->cr(); 2593 _cm->print_worker_threads_on(st); 2594 _cg1r->print_worker_threads_on(st); // also prints the sample thread 2595 if (G1StringDedup::is_enabled()) { 2596 G1StringDedup::print_worker_threads_on(st); 2597 } 2598 } 2599 2600 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { 2601 workers()->threads_do(tc); 2602 tc->do_thread(_cmThread); 2603 _cm->threads_do(tc); 2604 _cg1r->threads_do(tc); // also iterates over the sample thread 2605 if (G1StringDedup::is_enabled()) { 2606 G1StringDedup::threads_do(tc); 2607 } 2608 } 2609 2610 void G1CollectedHeap::print_tracing_info() const { 2611 g1_rem_set()->print_summary_info(); 2612 concurrent_mark()->print_summary_info(); 2613 } 2614 2615 #ifndef PRODUCT 2616 // Helpful for debugging RSet issues. 2617 2618 class PrintRSetsClosure : public HeapRegionClosure { 2619 private: 2620 const char* _msg; 2621 size_t _occupied_sum; 2622 2623 public: 2624 bool doHeapRegion(HeapRegion* r) { 2625 HeapRegionRemSet* hrrs = r->rem_set(); 2626 size_t occupied = hrrs->occupied(); 2627 _occupied_sum += occupied; 2628 2629 tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r)); 2630 if (occupied == 0) { 2631 tty->print_cr(" RSet is empty"); 2632 } else { 2633 hrrs->print(); 2634 } 2635 tty->print_cr("----------"); 2636 return false; 2637 } 2638 2639 PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) { 2640 tty->cr(); 2641 tty->print_cr("========================================"); 2642 tty->print_cr("%s", msg); 2643 tty->cr(); 2644 } 2645 2646 ~PrintRSetsClosure() { 2647 tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum); 2648 tty->print_cr("========================================"); 2649 tty->cr(); 2650 } 2651 }; 2652 2653 void G1CollectedHeap::print_cset_rsets() { 2654 PrintRSetsClosure cl("Printing CSet RSets"); 2655 collection_set_iterate(&cl); 2656 } 2657 2658 void G1CollectedHeap::print_all_rsets() { 2659 PrintRSetsClosure cl("Printing All RSets");; 2660 heap_region_iterate(&cl); 2661 } 2662 #endif // PRODUCT 2663 2664 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() { 2665 2666 size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes; 2667 size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes; 2668 size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked(); 2669 2670 size_t eden_capacity_bytes = 2671 (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes; 2672 2673 VirtualSpaceSummary heap_summary = create_heap_space_summary(); 2674 return G1HeapSummary(heap_summary, heap_used, eden_used_bytes, 2675 eden_capacity_bytes, survivor_used_bytes, num_regions()); 2676 } 2677 2678 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) { 2679 return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(), 2680 stats->unused(), stats->used(), stats->region_end_waste(), 2681 stats->regions_filled(), stats->direct_allocated(), 2682 stats->failure_used(), stats->failure_waste()); 2683 } 2684 2685 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { 2686 const G1HeapSummary& heap_summary = create_g1_heap_summary(); 2687 gc_tracer->report_gc_heap_summary(when, heap_summary); 2688 2689 const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); 2690 gc_tracer->report_metaspace_summary(when, metaspace_summary); 2691 } 2692 2693 G1CollectedHeap* G1CollectedHeap::heap() { 2694 CollectedHeap* heap = Universe::heap(); 2695 assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()"); 2696 assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap"); 2697 return (G1CollectedHeap*)heap; 2698 } 2699 2700 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) { 2701 // always_do_update_barrier = false; 2702 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); 2703 2704 double start = os::elapsedTime(); 2705 // Fill TLAB's and such 2706 accumulate_statistics_all_tlabs(); 2707 ensure_parsability(true); 2708 g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0); 2709 2710 g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections()); 2711 } 2712 2713 void G1CollectedHeap::gc_epilogue(bool full) { 2714 // we are at the end of the GC. Total collections has already been increased. 2715 g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1); 2716 2717 // FIXME: what is this about? 2718 // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" 2719 // is set. 2720 #if defined(COMPILER2) || INCLUDE_JVMCI 2721 assert(DerivedPointerTable::is_empty(), "derived pointer present"); 2722 #endif 2723 // always_do_update_barrier = true; 2724 2725 double start = os::elapsedTime(); 2726 resize_all_tlabs(); 2727 g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0); 2728 2729 allocation_context_stats().update(full); 2730 2731 // We have just completed a GC. Update the soft reference 2732 // policy with the new heap occupancy 2733 Universe::update_heap_info_at_gc(); 2734 } 2735 2736 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, 2737 uint gc_count_before, 2738 bool* succeeded, 2739 GCCause::Cause gc_cause) { 2740 assert_heap_not_locked_and_not_at_safepoint(); 2741 VM_G1IncCollectionPause op(gc_count_before, 2742 word_size, 2743 false, /* should_initiate_conc_mark */ 2744 g1_policy()->max_pause_time_ms(), 2745 gc_cause); 2746 2747 op.set_allocation_context(AllocationContext::current()); 2748 VMThread::execute(&op); 2749 2750 HeapWord* result = op.result(); 2751 bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded(); 2752 assert(result == NULL || ret_succeeded, 2753 "the result should be NULL if the VM did not succeed"); 2754 *succeeded = ret_succeeded; 2755 2756 assert_heap_not_locked(); 2757 return result; 2758 } 2759 2760 void 2761 G1CollectedHeap::doConcurrentMark() { 2762 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2763 if (!_cmThread->in_progress()) { 2764 _cmThread->set_started(); 2765 CGC_lock->notify(); 2766 } 2767 } 2768 2769 size_t G1CollectedHeap::pending_card_num() { 2770 size_t extra_cards = 0; 2771 JavaThread *curr = Threads::first(); 2772 while (curr != NULL) { 2773 DirtyCardQueue& dcq = curr->dirty_card_queue(); 2774 extra_cards += dcq.size(); 2775 curr = curr->next(); 2776 } 2777 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 2778 size_t buffer_size = dcqs.buffer_size(); 2779 size_t buffer_num = dcqs.completed_buffers_num(); 2780 2781 return buffer_size * buffer_num + extra_cards; 2782 } 2783 2784 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure { 2785 private: 2786 size_t _total_humongous; 2787 size_t _candidate_humongous; 2788 2789 DirtyCardQueue _dcq; 2790 2791 // We don't nominate objects with many remembered set entries, on 2792 // the assumption that such objects are likely still live. 2793 bool is_remset_small(HeapRegion* region) const { 2794 HeapRegionRemSet* const rset = region->rem_set(); 2795 return G1EagerReclaimHumongousObjectsWithStaleRefs 2796 ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) 2797 : rset->is_empty(); 2798 } 2799 2800 bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const { 2801 assert(region->is_starts_humongous(), "Must start a humongous object"); 2802 2803 oop obj = oop(region->bottom()); 2804 2805 // Dead objects cannot be eager reclaim candidates. Due to class 2806 // unloading it is unsafe to query their classes so we return early. 2807 if (heap->is_obj_dead(obj, region)) { 2808 return false; 2809 } 2810 2811 // Candidate selection must satisfy the following constraints 2812 // while concurrent marking is in progress: 2813 // 2814 // * In order to maintain SATB invariants, an object must not be 2815 // reclaimed if it was allocated before the start of marking and 2816 // has not had its references scanned. Such an object must have 2817 // its references (including type metadata) scanned to ensure no 2818 // live objects are missed by the marking process. Objects 2819 // allocated after the start of concurrent marking don't need to 2820 // be scanned. 2821 // 2822 // * An object must not be reclaimed if it is on the concurrent 2823 // mark stack. Objects allocated after the start of concurrent 2824 // marking are never pushed on the mark stack. 2825 // 2826 // Nominating only objects allocated after the start of concurrent 2827 // marking is sufficient to meet both constraints. This may miss 2828 // some objects that satisfy the constraints, but the marking data 2829 // structures don't support efficiently performing the needed 2830 // additional tests or scrubbing of the mark stack. 2831 // 2832 // However, we presently only nominate is_typeArray() objects. 2833 // A humongous object containing references induces remembered 2834 // set entries on other regions. In order to reclaim such an 2835 // object, those remembered sets would need to be cleaned up. 2836 // 2837 // We also treat is_typeArray() objects specially, allowing them 2838 // to be reclaimed even if allocated before the start of 2839 // concurrent mark. For this we rely on mark stack insertion to 2840 // exclude is_typeArray() objects, preventing reclaiming an object 2841 // that is in the mark stack. We also rely on the metadata for 2842 // such objects to be built-in and so ensured to be kept live. 2843 // Frequent allocation and drop of large binary blobs is an 2844 // important use case for eager reclaim, and this special handling 2845 // may reduce needed headroom. 2846 2847 return obj->is_typeArray() && is_remset_small(region); 2848 } 2849 2850 public: 2851 RegisterHumongousWithInCSetFastTestClosure() 2852 : _total_humongous(0), 2853 _candidate_humongous(0), 2854 _dcq(&JavaThread::dirty_card_queue_set()) { 2855 } 2856 2857 virtual bool doHeapRegion(HeapRegion* r) { 2858 if (!r->is_starts_humongous()) { 2859 return false; 2860 } 2861 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 2862 2863 bool is_candidate = humongous_region_is_candidate(g1h, r); 2864 uint rindex = r->hrm_index(); 2865 g1h->set_humongous_reclaim_candidate(rindex, is_candidate); 2866 if (is_candidate) { 2867 _candidate_humongous++; 2868 g1h->register_humongous_region_with_cset(rindex); 2869 // Is_candidate already filters out humongous object with large remembered sets. 2870 // If we have a humongous object with a few remembered sets, we simply flush these 2871 // remembered set entries into the DCQS. That will result in automatic 2872 // re-evaluation of their remembered set entries during the following evacuation 2873 // phase. 2874 if (!r->rem_set()->is_empty()) { 2875 guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries), 2876 "Found a not-small remembered set here. This is inconsistent with previous assumptions."); 2877 G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set(); 2878 HeapRegionRemSetIterator hrrs(r->rem_set()); 2879 size_t card_index; 2880 while (hrrs.has_next(card_index)) { 2881 jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index); 2882 // The remembered set might contain references to already freed 2883 // regions. Filter out such entries to avoid failing card table 2884 // verification. 2885 if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) { 2886 if (*card_ptr != CardTableModRefBS::dirty_card_val()) { 2887 *card_ptr = CardTableModRefBS::dirty_card_val(); 2888 _dcq.enqueue(card_ptr); 2889 } 2890 } 2891 } 2892 assert(hrrs.n_yielded() == r->rem_set()->occupied(), 2893 "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries", 2894 hrrs.n_yielded(), r->rem_set()->occupied()); 2895 r->rem_set()->clear_locked(); 2896 } 2897 assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty."); 2898 } 2899 _total_humongous++; 2900 2901 return false; 2902 } 2903 2904 size_t total_humongous() const { return _total_humongous; } 2905 size_t candidate_humongous() const { return _candidate_humongous; } 2906 2907 void flush_rem_set_entries() { _dcq.flush(); } 2908 }; 2909 2910 void G1CollectedHeap::register_humongous_regions_with_cset() { 2911 if (!G1EagerReclaimHumongousObjects) { 2912 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0); 2913 return; 2914 } 2915 double time = os::elapsed_counter(); 2916 2917 // Collect reclaim candidate information and register candidates with cset. 2918 RegisterHumongousWithInCSetFastTestClosure cl; 2919 heap_region_iterate(&cl); 2920 2921 time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0; 2922 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time, 2923 cl.total_humongous(), 2924 cl.candidate_humongous()); 2925 _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0; 2926 2927 // Finally flush all remembered set entries to re-check into the global DCQS. 2928 cl.flush_rem_set_entries(); 2929 } 2930 2931 class VerifyRegionRemSetClosure : public HeapRegionClosure { 2932 public: 2933 bool doHeapRegion(HeapRegion* hr) { 2934 if (!hr->is_archive() && !hr->is_continues_humongous()) { 2935 hr->verify_rem_set(); 2936 } 2937 return false; 2938 } 2939 }; 2940 2941 uint G1CollectedHeap::num_task_queues() const { 2942 return _task_queues->size(); 2943 } 2944 2945 #if TASKQUEUE_STATS 2946 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { 2947 st->print_raw_cr("GC Task Stats"); 2948 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr(); 2949 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr(); 2950 } 2951 2952 void G1CollectedHeap::print_taskqueue_stats() const { 2953 if (!log_is_enabled(Trace, gc, task, stats)) { 2954 return; 2955 } 2956 Log(gc, task, stats) log; 2957 ResourceMark rm; 2958 outputStream* st = log.trace_stream(); 2959 2960 print_taskqueue_stats_hdr(st); 2961 2962 TaskQueueStats totals; 2963 const uint n = num_task_queues(); 2964 for (uint i = 0; i < n; ++i) { 2965 st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr(); 2966 totals += task_queue(i)->stats; 2967 } 2968 st->print_raw("tot "); totals.print(st); st->cr(); 2969 2970 DEBUG_ONLY(totals.verify()); 2971 } 2972 2973 void G1CollectedHeap::reset_taskqueue_stats() { 2974 const uint n = num_task_queues(); 2975 for (uint i = 0; i < n; ++i) { 2976 task_queue(i)->stats.reset(); 2977 } 2978 } 2979 #endif // TASKQUEUE_STATS 2980 2981 void G1CollectedHeap::wait_for_root_region_scanning() { 2982 double scan_wait_start = os::elapsedTime(); 2983 // We have to wait until the CM threads finish scanning the 2984 // root regions as it's the only way to ensure that all the 2985 // objects on them have been correctly scanned before we start 2986 // moving them during the GC. 2987 bool waited = _cm->root_regions()->wait_until_scan_finished(); 2988 double wait_time_ms = 0.0; 2989 if (waited) { 2990 double scan_wait_end = os::elapsedTime(); 2991 wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0; 2992 } 2993 g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms); 2994 } 2995 2996 class G1PrintCollectionSetClosure : public HeapRegionClosure { 2997 private: 2998 G1HRPrinter* _hr_printer; 2999 public: 3000 G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { } 3001 3002 virtual bool doHeapRegion(HeapRegion* r) { 3003 _hr_printer->cset(r); 3004 return false; 3005 } 3006 }; 3007 3008 void G1CollectedHeap::start_new_collection_set() { 3009 collection_set()->start_incremental_building(); 3010 3011 clear_cset_fast_test(); 3012 3013 guarantee(_eden.length() == 0, "eden should have been cleared"); 3014 g1_policy()->transfer_survivors_to_cset(survivor()); 3015 } 3016 3017 bool 3018 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { 3019 assert_at_safepoint(true /* should_be_vm_thread */); 3020 guarantee(!is_gc_active(), "collection is not reentrant"); 3021 3022 if (GCLocker::check_active_before_gc()) { 3023 return false; 3024 } 3025 3026 _gc_timer_stw->register_gc_start(); 3027 3028 GCIdMark gc_id_mark; 3029 _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start()); 3030 3031 SvcGCMarker sgcm(SvcGCMarker::MINOR); 3032 ResourceMark rm; 3033 3034 g1_policy()->note_gc_start(); 3035 3036 wait_for_root_region_scanning(); 3037 3038 print_heap_before_gc(); 3039 print_heap_regions(); 3040 trace_heap_before_gc(_gc_tracer_stw); 3041 3042 _verifier->verify_region_sets_optional(); 3043 _verifier->verify_dirty_young_regions(); 3044 3045 // We should not be doing initial mark unless the conc mark thread is running 3046 if (!_cmThread->should_terminate()) { 3047 // This call will decide whether this pause is an initial-mark 3048 // pause. If it is, during_initial_mark_pause() will return true 3049 // for the duration of this pause. 3050 g1_policy()->decide_on_conc_mark_initiation(); 3051 } 3052 3053 // We do not allow initial-mark to be piggy-backed on a mixed GC. 3054 assert(!collector_state()->during_initial_mark_pause() || 3055 collector_state()->gcs_are_young(), "sanity"); 3056 3057 // We also do not allow mixed GCs during marking. 3058 assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity"); 3059 3060 // Record whether this pause is an initial mark. When the current 3061 // thread has completed its logging output and it's safe to signal 3062 // the CM thread, the flag's value in the policy has been reset. 3063 bool should_start_conc_mark = collector_state()->during_initial_mark_pause(); 3064 3065 // Inner scope for scope based logging, timers, and stats collection 3066 { 3067 EvacuationInfo evacuation_info; 3068 3069 if (collector_state()->during_initial_mark_pause()) { 3070 // We are about to start a marking cycle, so we increment the 3071 // full collection counter. 3072 increment_old_marking_cycles_started(); 3073 _cm->gc_tracer_cm()->set_gc_cause(gc_cause()); 3074 } 3075 3076 _gc_tracer_stw->report_yc_type(collector_state()->yc_type()); 3077 3078 GCTraceCPUTime tcpu; 3079 3080 FormatBuffer<> gc_string("Pause "); 3081 if (collector_state()->during_initial_mark_pause()) { 3082 gc_string.append("Initial Mark"); 3083 } else if (collector_state()->gcs_are_young()) { 3084 gc_string.append("Young"); 3085 } else { 3086 gc_string.append("Mixed"); 3087 } 3088 GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true); 3089 3090 uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 3091 workers()->active_workers(), 3092 Threads::number_of_non_daemon_threads()); 3093 workers()->update_active_workers(active_workers); 3094 log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers()); 3095 3096 TraceCollectorStats tcs(g1mm()->incremental_collection_counters()); 3097 TraceMemoryManagerStats tms(false /* fullGC */, gc_cause()); 3098 3099 // If the secondary_free_list is not empty, append it to the 3100 // free_list. No need to wait for the cleanup operation to finish; 3101 // the region allocation code will check the secondary_free_list 3102 // and wait if necessary. If the G1StressConcRegionFreeing flag is 3103 // set, skip this step so that the region allocation code has to 3104 // get entries from the secondary_free_list. 3105 if (!G1StressConcRegionFreeing) { 3106 append_secondary_free_list_if_not_empty_with_lock(); 3107 } 3108 3109 G1HeapTransition heap_transition(this); 3110 size_t heap_used_bytes_before_gc = used(); 3111 3112 // Don't dynamically change the number of GC threads this early. A value of 3113 // 0 is used to indicate serial work. When parallel work is done, 3114 // it will be set. 3115 3116 { // Call to jvmpi::post_class_unload_events must occur outside of active GC 3117 IsGCActiveMark x; 3118 3119 gc_prologue(false); 3120 increment_total_collections(false /* full gc */); 3121 increment_gc_time_stamp(); 3122 3123 if (VerifyRememberedSets) { 3124 log_info(gc, verify)("[Verifying RemSets before GC]"); 3125 VerifyRegionRemSetClosure v_cl; 3126 heap_region_iterate(&v_cl); 3127 } 3128 3129 _verifier->verify_before_gc(); 3130 3131 _verifier->check_bitmaps("GC Start"); 3132 3133 #if defined(COMPILER2) || INCLUDE_JVMCI 3134 DerivedPointerTable::clear(); 3135 #endif 3136 3137 // Please see comment in g1CollectedHeap.hpp and 3138 // G1CollectedHeap::ref_processing_init() to see how 3139 // reference processing currently works in G1. 3140 3141 // Enable discovery in the STW reference processor 3142 if (g1_policy()->should_process_references()) { 3143 ref_processor_stw()->enable_discovery(); 3144 } else { 3145 ref_processor_stw()->disable_discovery(); 3146 } 3147 3148 { 3149 // We want to temporarily turn off discovery by the 3150 // CM ref processor, if necessary, and turn it back on 3151 // on again later if we do. Using a scoped 3152 // NoRefDiscovery object will do this. 3153 NoRefDiscovery no_cm_discovery(ref_processor_cm()); 3154 3155 // Forget the current alloc region (we might even choose it to be part 3156 // of the collection set!). 3157 _allocator->release_mutator_alloc_region(); 3158 3159 // This timing is only used by the ergonomics to handle our pause target. 3160 // It is unclear why this should not include the full pause. We will 3161 // investigate this in CR 7178365. 3162 // 3163 // Preserving the old comment here if that helps the investigation: 3164 // 3165 // The elapsed time induced by the start time below deliberately elides 3166 // the possible verification above. 3167 double sample_start_time_sec = os::elapsedTime(); 3168 3169 g1_policy()->record_collection_pause_start(sample_start_time_sec); 3170 3171 if (collector_state()->during_initial_mark_pause()) { 3172 concurrent_mark()->checkpointRootsInitialPre(); 3173 } 3174 3175 g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor); 3176 3177 evacuation_info.set_collectionset_regions(collection_set()->region_length()); 3178 3179 // Make sure the remembered sets are up to date. This needs to be 3180 // done before register_humongous_regions_with_cset(), because the 3181 // remembered sets are used there to choose eager reclaim candidates. 3182 // If the remembered sets are not up to date we might miss some 3183 // entries that need to be handled. 3184 g1_rem_set()->cleanupHRRS(); 3185 3186 register_humongous_regions_with_cset(); 3187 3188 assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table."); 3189 3190 // We call this after finalize_cset() to 3191 // ensure that the CSet has been finalized. 3192 _cm->verify_no_cset_oops(); 3193 3194 if (_hr_printer.is_active()) { 3195 G1PrintCollectionSetClosure cl(&_hr_printer); 3196 _collection_set.iterate(&cl); 3197 } 3198 3199 // Initialize the GC alloc regions. 3200 _allocator->init_gc_alloc_regions(evacuation_info); 3201 3202 G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length()); 3203 pre_evacuate_collection_set(); 3204 3205 // Actually do the work... 3206 evacuate_collection_set(evacuation_info, &per_thread_states); 3207 3208 post_evacuate_collection_set(evacuation_info, &per_thread_states); 3209 3210 const size_t* surviving_young_words = per_thread_states.surviving_young_words(); 3211 free_collection_set(&_collection_set, evacuation_info, surviving_young_words); 3212 3213 eagerly_reclaim_humongous_regions(); 3214 3215 record_obj_copy_mem_stats(); 3216 _survivor_evac_stats.adjust_desired_plab_sz(); 3217 _old_evac_stats.adjust_desired_plab_sz(); 3218 3219 double start = os::elapsedTime(); 3220 start_new_collection_set(); 3221 g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0); 3222 3223 if (evacuation_failed()) { 3224 set_used(recalculate_used()); 3225 if (_archive_allocator != NULL) { 3226 _archive_allocator->clear_used(); 3227 } 3228 for (uint i = 0; i < ParallelGCThreads; i++) { 3229 if (_evacuation_failed_info_array[i].has_failed()) { 3230 _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]); 3231 } 3232 } 3233 } else { 3234 // The "used" of the the collection set have already been subtracted 3235 // when they were freed. Add in the bytes evacuated. 3236 increase_used(g1_policy()->bytes_copied_during_gc()); 3237 } 3238 3239 if (collector_state()->during_initial_mark_pause()) { 3240 // We have to do this before we notify the CM threads that 3241 // they can start working to make sure that all the 3242 // appropriate initialization is done on the CM object. 3243 concurrent_mark()->checkpointRootsInitialPost(); 3244 collector_state()->set_mark_in_progress(true); 3245 // Note that we don't actually trigger the CM thread at 3246 // this point. We do that later when we're sure that 3247 // the current thread has completed its logging output. 3248 } 3249 3250 allocate_dummy_regions(); 3251 3252 _allocator->init_mutator_alloc_region(); 3253 3254 { 3255 size_t expand_bytes = _heap_sizing_policy->expansion_amount(); 3256 if (expand_bytes > 0) { 3257 size_t bytes_before = capacity(); 3258 // No need for an ergo logging here, 3259 // expansion_amount() does this when it returns a value > 0. 3260 double expand_ms; 3261 if (!expand(expand_bytes, _workers, &expand_ms)) { 3262 // We failed to expand the heap. Cannot do anything about it. 3263 } 3264 g1_policy()->phase_times()->record_expand_heap_time(expand_ms); 3265 } 3266 } 3267 3268 // We redo the verification but now wrt to the new CSet which 3269 // has just got initialized after the previous CSet was freed. 3270 _cm->verify_no_cset_oops(); 3271 3272 // This timing is only used by the ergonomics to handle our pause target. 3273 // It is unclear why this should not include the full pause. We will 3274 // investigate this in CR 7178365. 3275 double sample_end_time_sec = os::elapsedTime(); 3276 double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS; 3277 size_t total_cards_scanned = per_thread_states.total_cards_scanned(); 3278 g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc); 3279 3280 evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before()); 3281 evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc()); 3282 3283 MemoryService::track_memory_usage(); 3284 3285 // In prepare_for_verify() below we'll need to scan the deferred 3286 // update buffers to bring the RSets up-to-date if 3287 // G1HRRSFlushLogBuffersOnVerify has been set. While scanning 3288 // the update buffers we'll probably need to scan cards on the 3289 // regions we just allocated to (i.e., the GC alloc 3290 // regions). However, during the last GC we called 3291 // set_saved_mark() on all the GC alloc regions, so card 3292 // scanning might skip the [saved_mark_word()...top()] area of 3293 // those regions (i.e., the area we allocated objects into 3294 // during the last GC). But it shouldn't. Given that 3295 // saved_mark_word() is conditional on whether the GC time stamp 3296 // on the region is current or not, by incrementing the GC time 3297 // stamp here we invalidate all the GC time stamps on all the 3298 // regions and saved_mark_word() will simply return top() for 3299 // all the regions. This is a nicer way of ensuring this rather 3300 // than iterating over the regions and fixing them. In fact, the 3301 // GC time stamp increment here also ensures that 3302 // saved_mark_word() will return top() between pauses, i.e., 3303 // during concurrent refinement. So we don't need the 3304 // is_gc_active() check to decided which top to use when 3305 // scanning cards (see CR 7039627). 3306 increment_gc_time_stamp(); 3307 3308 if (VerifyRememberedSets) { 3309 log_info(gc, verify)("[Verifying RemSets after GC]"); 3310 VerifyRegionRemSetClosure v_cl; 3311 heap_region_iterate(&v_cl); 3312 } 3313 3314 _verifier->verify_after_gc(); 3315 _verifier->check_bitmaps("GC End"); 3316 3317 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 3318 ref_processor_stw()->verify_no_references_recorded(); 3319 3320 // CM reference discovery will be re-enabled if necessary. 3321 } 3322 3323 #ifdef TRACESPINNING 3324 ParallelTaskTerminator::print_termination_counts(); 3325 #endif 3326 3327 gc_epilogue(false); 3328 } 3329 3330 // Print the remainder of the GC log output. 3331 if (evacuation_failed()) { 3332 log_info(gc)("To-space exhausted"); 3333 } 3334 3335 g1_policy()->print_phases(); 3336 heap_transition.print(); 3337 3338 // It is not yet to safe to tell the concurrent mark to 3339 // start as we have some optional output below. We don't want the 3340 // output from the concurrent mark thread interfering with this 3341 // logging output either. 3342 3343 _hrm.verify_optional(); 3344 _verifier->verify_region_sets_optional(); 3345 3346 TASKQUEUE_STATS_ONLY(print_taskqueue_stats()); 3347 TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); 3348 3349 print_heap_after_gc(); 3350 print_heap_regions(); 3351 trace_heap_after_gc(_gc_tracer_stw); 3352 3353 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 3354 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 3355 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 3356 // before any GC notifications are raised. 3357 g1mm()->update_sizes(); 3358 3359 _gc_tracer_stw->report_evacuation_info(&evacuation_info); 3360 _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold()); 3361 _gc_timer_stw->register_gc_end(); 3362 _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions()); 3363 } 3364 // It should now be safe to tell the concurrent mark thread to start 3365 // without its logging output interfering with the logging output 3366 // that came from the pause. 3367 3368 if (should_start_conc_mark) { 3369 // CAUTION: after the doConcurrentMark() call below, 3370 // the concurrent marking thread(s) could be running 3371 // concurrently with us. Make sure that anything after 3372 // this point does not assume that we are the only GC thread 3373 // running. Note: of course, the actual marking work will 3374 // not start until the safepoint itself is released in 3375 // SuspendibleThreadSet::desynchronize(). 3376 doConcurrentMark(); 3377 } 3378 3379 return true; 3380 } 3381 3382 void G1CollectedHeap::remove_self_forwarding_pointers() { 3383 G1ParRemoveSelfForwardPtrsTask rsfp_task; 3384 workers()->run_task(&rsfp_task); 3385 } 3386 3387 void G1CollectedHeap::restore_after_evac_failure() { 3388 double remove_self_forwards_start = os::elapsedTime(); 3389 3390 remove_self_forwarding_pointers(); 3391 SharedRestorePreservedMarksTaskExecutor task_executor(workers()); 3392 _preserved_marks_set.restore(&task_executor); 3393 3394 g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0); 3395 } 3396 3397 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) { 3398 if (!_evacuation_failed) { 3399 _evacuation_failed = true; 3400 } 3401 3402 _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size()); 3403 _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m); 3404 } 3405 3406 bool G1ParEvacuateFollowersClosure::offer_termination() { 3407 G1ParScanThreadState* const pss = par_scan_state(); 3408 start_term_time(); 3409 const bool res = terminator()->offer_termination(); 3410 end_term_time(); 3411 return res; 3412 } 3413 3414 void G1ParEvacuateFollowersClosure::do_void() { 3415 G1ParScanThreadState* const pss = par_scan_state(); 3416 pss->trim_queue(); 3417 do { 3418 pss->steal_and_trim_queue(queues()); 3419 } while (!offer_termination()); 3420 } 3421 3422 class G1ParTask : public AbstractGangTask { 3423 protected: 3424 G1CollectedHeap* _g1h; 3425 G1ParScanThreadStateSet* _pss; 3426 RefToScanQueueSet* _queues; 3427 G1RootProcessor* _root_processor; 3428 ParallelTaskTerminator _terminator; 3429 uint _n_workers; 3430 3431 public: 3432 G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers) 3433 : AbstractGangTask("G1 collection"), 3434 _g1h(g1h), 3435 _pss(per_thread_states), 3436 _queues(task_queues), 3437 _root_processor(root_processor), 3438 _terminator(n_workers, _queues), 3439 _n_workers(n_workers) 3440 {} 3441 3442 void work(uint worker_id) { 3443 if (worker_id >= _n_workers) return; // no work needed this round 3444 3445 double start_sec = os::elapsedTime(); 3446 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec); 3447 3448 { 3449 ResourceMark rm; 3450 HandleMark hm; 3451 3452 ReferenceProcessor* rp = _g1h->ref_processor_stw(); 3453 3454 G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); 3455 pss->set_ref_processor(rp); 3456 3457 double start_strong_roots_sec = os::elapsedTime(); 3458 3459 _root_processor->evacuate_roots(pss->closures(), worker_id); 3460 3461 G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss); 3462 3463 // We pass a weak code blobs closure to the remembered set scanning because we want to avoid 3464 // treating the nmethods visited to act as roots for concurrent marking. 3465 // We only want to make sure that the oops in the nmethods are adjusted with regard to the 3466 // objects copied by the current evacuation. 3467 size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl, 3468 pss->closures()->weak_codeblobs(), 3469 worker_id); 3470 3471 _pss->add_cards_scanned(worker_id, cards_scanned); 3472 3473 double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec; 3474 3475 double term_sec = 0.0; 3476 size_t evac_term_attempts = 0; 3477 { 3478 double start = os::elapsedTime(); 3479 G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator); 3480 evac.do_void(); 3481 3482 evac_term_attempts = evac.term_attempts(); 3483 term_sec = evac.term_time(); 3484 double elapsed_sec = os::elapsedTime() - start; 3485 _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec); 3486 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec); 3487 _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts); 3488 } 3489 3490 assert(pss->queue_is_empty(), "should be empty"); 3491 3492 if (log_is_enabled(Debug, gc, task, stats)) { 3493 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 3494 size_t lab_waste; 3495 size_t lab_undo_waste; 3496 pss->waste(lab_waste, lab_undo_waste); 3497 _g1h->print_termination_stats(worker_id, 3498 (os::elapsedTime() - start_sec) * 1000.0, /* elapsed time */ 3499 strong_roots_sec * 1000.0, /* strong roots time */ 3500 term_sec * 1000.0, /* evac term time */ 3501 evac_term_attempts, /* evac term attempts */ 3502 lab_waste, /* alloc buffer waste */ 3503 lab_undo_waste /* undo waste */ 3504 ); 3505 } 3506 3507 // Close the inner scope so that the ResourceMark and HandleMark 3508 // destructors are executed here and are included as part of the 3509 // "GC Worker Time". 3510 } 3511 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime()); 3512 } 3513 }; 3514 3515 void G1CollectedHeap::print_termination_stats_hdr() { 3516 log_debug(gc, task, stats)("GC Termination Stats"); 3517 log_debug(gc, task, stats)(" elapsed --strong roots-- -------termination------- ------waste (KiB)------"); 3518 log_debug(gc, task, stats)("thr ms ms %% ms %% attempts total alloc undo"); 3519 log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------"); 3520 } 3521 3522 void G1CollectedHeap::print_termination_stats(uint worker_id, 3523 double elapsed_ms, 3524 double strong_roots_ms, 3525 double term_ms, 3526 size_t term_attempts, 3527 size_t alloc_buffer_waste, 3528 size_t undo_waste) const { 3529 log_debug(gc, task, stats) 3530 ("%3d %9.2f %9.2f %6.2f " 3531 "%9.2f %6.2f " SIZE_FORMAT_W(8) " " 3532 SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7), 3533 worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms, 3534 term_ms, term_ms * 100 / elapsed_ms, term_attempts, 3535 (alloc_buffer_waste + undo_waste) * HeapWordSize / K, 3536 alloc_buffer_waste * HeapWordSize / K, 3537 undo_waste * HeapWordSize / K); 3538 } 3539 3540 class G1StringAndSymbolCleaningTask : public AbstractGangTask { 3541 private: 3542 BoolObjectClosure* _is_alive; 3543 G1StringDedupUnlinkOrOopsDoClosure _dedup_closure; 3544 3545 int _initial_string_table_size; 3546 int _initial_symbol_table_size; 3547 3548 bool _process_strings; 3549 int _strings_processed; 3550 int _strings_removed; 3551 3552 bool _process_symbols; 3553 int _symbols_processed; 3554 int _symbols_removed; 3555 3556 bool _process_string_dedup; 3557 3558 public: 3559 G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) : 3560 AbstractGangTask("String/Symbol Unlinking"), 3561 _is_alive(is_alive), 3562 _dedup_closure(is_alive, NULL, false), 3563 _process_strings(process_strings), _strings_processed(0), _strings_removed(0), 3564 _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0), 3565 _process_string_dedup(process_string_dedup) { 3566 3567 _initial_string_table_size = StringTable::the_table()->table_size(); 3568 _initial_symbol_table_size = SymbolTable::the_table()->table_size(); 3569 if (process_strings) { 3570 StringTable::clear_parallel_claimed_index(); 3571 } 3572 if (process_symbols) { 3573 SymbolTable::clear_parallel_claimed_index(); 3574 } 3575 } 3576 3577 ~G1StringAndSymbolCleaningTask() { 3578 guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size, 3579 "claim value %d after unlink less than initial string table size %d", 3580 StringTable::parallel_claimed_index(), _initial_string_table_size); 3581 guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size, 3582 "claim value %d after unlink less than initial symbol table size %d", 3583 SymbolTable::parallel_claimed_index(), _initial_symbol_table_size); 3584 3585 log_info(gc, stringtable)( 3586 "Cleaned string and symbol table, " 3587 "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, " 3588 "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed", 3589 strings_processed(), strings_removed(), 3590 symbols_processed(), symbols_removed()); 3591 } 3592 3593 void work(uint worker_id) { 3594 int strings_processed = 0; 3595 int strings_removed = 0; 3596 int symbols_processed = 0; 3597 int symbols_removed = 0; 3598 if (_process_strings) { 3599 StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed); 3600 Atomic::add(strings_processed, &_strings_processed); 3601 Atomic::add(strings_removed, &_strings_removed); 3602 } 3603 if (_process_symbols) { 3604 SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed); 3605 Atomic::add(symbols_processed, &_symbols_processed); 3606 Atomic::add(symbols_removed, &_symbols_removed); 3607 } 3608 if (_process_string_dedup) { 3609 G1StringDedup::parallel_unlink(&_dedup_closure, worker_id); 3610 } 3611 } 3612 3613 size_t strings_processed() const { return (size_t)_strings_processed; } 3614 size_t strings_removed() const { return (size_t)_strings_removed; } 3615 3616 size_t symbols_processed() const { return (size_t)_symbols_processed; } 3617 size_t symbols_removed() const { return (size_t)_symbols_removed; } 3618 }; 3619 3620 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC { 3621 private: 3622 static Monitor* _lock; 3623 3624 BoolObjectClosure* const _is_alive; 3625 const bool _unloading_occurred; 3626 const uint _num_workers; 3627 3628 // Variables used to claim nmethods. 3629 CompiledMethod* _first_nmethod; 3630 volatile CompiledMethod* _claimed_nmethod; 3631 3632 // The list of nmethods that need to be processed by the second pass. 3633 volatile CompiledMethod* _postponed_list; 3634 volatile uint _num_entered_barrier; 3635 3636 public: 3637 G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) : 3638 _is_alive(is_alive), 3639 _unloading_occurred(unloading_occurred), 3640 _num_workers(num_workers), 3641 _first_nmethod(NULL), 3642 _claimed_nmethod(NULL), 3643 _postponed_list(NULL), 3644 _num_entered_barrier(0) 3645 { 3646 CompiledMethod::increase_unloading_clock(); 3647 // Get first alive nmethod 3648 CompiledMethodIterator iter = CompiledMethodIterator(); 3649 if(iter.next_alive()) { 3650 _first_nmethod = iter.method(); 3651 } 3652 _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod; 3653 } 3654 3655 ~G1CodeCacheUnloadingTask() { 3656 CodeCache::verify_clean_inline_caches(); 3657 3658 CodeCache::set_needs_cache_clean(false); 3659 guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be"); 3660 3661 CodeCache::verify_icholder_relocations(); 3662 } 3663 3664 private: 3665 void add_to_postponed_list(CompiledMethod* nm) { 3666 CompiledMethod* old; 3667 do { 3668 old = (CompiledMethod*)_postponed_list; 3669 nm->set_unloading_next(old); 3670 } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old); 3671 } 3672 3673 void clean_nmethod(CompiledMethod* nm) { 3674 bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred); 3675 3676 if (postponed) { 3677 // This nmethod referred to an nmethod that has not been cleaned/unloaded yet. 3678 add_to_postponed_list(nm); 3679 } 3680 3681 // Mark that this thread has been cleaned/unloaded. 3682 // After this call, it will be safe to ask if this nmethod was unloaded or not. 3683 nm->set_unloading_clock(CompiledMethod::global_unloading_clock()); 3684 } 3685 3686 void clean_nmethod_postponed(CompiledMethod* nm) { 3687 nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred); 3688 } 3689 3690 static const int MaxClaimNmethods = 16; 3691 3692 void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) { 3693 CompiledMethod* first; 3694 CompiledMethodIterator last; 3695 3696 do { 3697 *num_claimed_nmethods = 0; 3698 3699 first = (CompiledMethod*)_claimed_nmethod; 3700 last = CompiledMethodIterator(first); 3701 3702 if (first != NULL) { 3703 3704 for (int i = 0; i < MaxClaimNmethods; i++) { 3705 if (!last.next_alive()) { 3706 break; 3707 } 3708 claimed_nmethods[i] = last.method(); 3709 (*num_claimed_nmethods)++; 3710 } 3711 } 3712 3713 } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first); 3714 } 3715 3716 CompiledMethod* claim_postponed_nmethod() { 3717 CompiledMethod* claim; 3718 CompiledMethod* next; 3719 3720 do { 3721 claim = (CompiledMethod*)_postponed_list; 3722 if (claim == NULL) { 3723 return NULL; 3724 } 3725 3726 next = claim->unloading_next(); 3727 3728 } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim); 3729 3730 return claim; 3731 } 3732 3733 public: 3734 // Mark that we're done with the first pass of nmethod cleaning. 3735 void barrier_mark(uint worker_id) { 3736 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); 3737 _num_entered_barrier++; 3738 if (_num_entered_barrier == _num_workers) { 3739 ml.notify_all(); 3740 } 3741 } 3742 3743 // See if we have to wait for the other workers to 3744 // finish their first-pass nmethod cleaning work. 3745 void barrier_wait(uint worker_id) { 3746 if (_num_entered_barrier < _num_workers) { 3747 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); 3748 while (_num_entered_barrier < _num_workers) { 3749 ml.wait(Mutex::_no_safepoint_check_flag, 0, false); 3750 } 3751 } 3752 } 3753 3754 // Cleaning and unloading of nmethods. Some work has to be postponed 3755 // to the second pass, when we know which nmethods survive. 3756 void work_first_pass(uint worker_id) { 3757 // The first nmethods is claimed by the first worker. 3758 if (worker_id == 0 && _first_nmethod != NULL) { 3759 clean_nmethod(_first_nmethod); 3760 _first_nmethod = NULL; 3761 } 3762 3763 int num_claimed_nmethods; 3764 CompiledMethod* claimed_nmethods[MaxClaimNmethods]; 3765 3766 while (true) { 3767 claim_nmethods(claimed_nmethods, &num_claimed_nmethods); 3768 3769 if (num_claimed_nmethods == 0) { 3770 break; 3771 } 3772 3773 for (int i = 0; i < num_claimed_nmethods; i++) { 3774 clean_nmethod(claimed_nmethods[i]); 3775 } 3776 } 3777 } 3778 3779 void work_second_pass(uint worker_id) { 3780 CompiledMethod* nm; 3781 // Take care of postponed nmethods. 3782 while ((nm = claim_postponed_nmethod()) != NULL) { 3783 clean_nmethod_postponed(nm); 3784 } 3785 } 3786 }; 3787 3788 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never); 3789 3790 class G1KlassCleaningTask : public StackObj { 3791 BoolObjectClosure* _is_alive; 3792 volatile jint _clean_klass_tree_claimed; 3793 ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator; 3794 3795 public: 3796 G1KlassCleaningTask(BoolObjectClosure* is_alive) : 3797 _is_alive(is_alive), 3798 _clean_klass_tree_claimed(0), 3799 _klass_iterator() { 3800 } 3801 3802 private: 3803 bool claim_clean_klass_tree_task() { 3804 if (_clean_klass_tree_claimed) { 3805 return false; 3806 } 3807 3808 return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0; 3809 } 3810 3811 InstanceKlass* claim_next_klass() { 3812 Klass* klass; 3813 do { 3814 klass =_klass_iterator.next_klass(); 3815 } while (klass != NULL && !klass->is_instance_klass()); 3816 3817 // this can be null so don't call InstanceKlass::cast 3818 return static_cast<InstanceKlass*>(klass); 3819 } 3820 3821 public: 3822 3823 void clean_klass(InstanceKlass* ik) { 3824 ik->clean_weak_instanceklass_links(_is_alive); 3825 } 3826 3827 void work() { 3828 ResourceMark rm; 3829 3830 // One worker will clean the subklass/sibling klass tree. 3831 if (claim_clean_klass_tree_task()) { 3832 Klass::clean_subklass_tree(_is_alive); 3833 } 3834 3835 // All workers will help cleaning the classes, 3836 InstanceKlass* klass; 3837 while ((klass = claim_next_klass()) != NULL) { 3838 clean_klass(klass); 3839 } 3840 } 3841 }; 3842 3843 class G1ResolvedMethodCleaningTask : public StackObj { 3844 BoolObjectClosure* _is_alive; 3845 volatile jint _resolved_method_task_claimed; 3846 public: 3847 G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) : 3848 _is_alive(is_alive), _resolved_method_task_claimed(0) {} 3849 3850 bool claim_resolved_method_task() { 3851 if (_resolved_method_task_claimed) { 3852 return false; 3853 } 3854 return Atomic::cmpxchg(1, (jint*)&_resolved_method_task_claimed, 0) == 0; 3855 } 3856 3857 // These aren't big, one thread can do it all. 3858 void work() { 3859 if (claim_resolved_method_task()) { 3860 ResolvedMethodTable::unlink(_is_alive); 3861 } 3862 } 3863 }; 3864 3865 3866 // To minimize the remark pause times, the tasks below are done in parallel. 3867 class G1ParallelCleaningTask : public AbstractGangTask { 3868 private: 3869 G1StringAndSymbolCleaningTask _string_symbol_task; 3870 G1CodeCacheUnloadingTask _code_cache_task; 3871 G1KlassCleaningTask _klass_cleaning_task; 3872 G1ResolvedMethodCleaningTask _resolved_method_cleaning_task; 3873 3874 public: 3875 // The constructor is run in the VMThread. 3876 G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) : 3877 AbstractGangTask("Parallel Cleaning"), 3878 _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()), 3879 _code_cache_task(num_workers, is_alive, unloading_occurred), 3880 _klass_cleaning_task(is_alive), 3881 _resolved_method_cleaning_task(is_alive) { 3882 } 3883 3884 // The parallel work done by all worker threads. 3885 void work(uint worker_id) { 3886 // Do first pass of code cache cleaning. 3887 _code_cache_task.work_first_pass(worker_id); 3888 3889 // Let the threads mark that the first pass is done. 3890 _code_cache_task.barrier_mark(worker_id); 3891 3892 // Clean the Strings and Symbols. 3893 _string_symbol_task.work(worker_id); 3894 3895 // Clean unreferenced things in the ResolvedMethodTable 3896 _resolved_method_cleaning_task.work(); 3897 3898 // Wait for all workers to finish the first code cache cleaning pass. 3899 _code_cache_task.barrier_wait(worker_id); 3900 3901 // Do the second code cache cleaning work, which realize on 3902 // the liveness information gathered during the first pass. 3903 _code_cache_task.work_second_pass(worker_id); 3904 3905 // Clean all klasses that were not unloaded. 3906 _klass_cleaning_task.work(); 3907 } 3908 }; 3909 3910 3911 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive, 3912 bool class_unloading_occurred) { 3913 uint n_workers = workers()->active_workers(); 3914 3915 G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred); 3916 workers()->run_task(&g1_unlink_task); 3917 } 3918 3919 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive, 3920 bool process_strings, 3921 bool process_symbols, 3922 bool process_string_dedup) { 3923 if (!process_strings && !process_symbols && !process_string_dedup) { 3924 // Nothing to clean. 3925 return; 3926 } 3927 3928 G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup); 3929 workers()->run_task(&g1_unlink_task); 3930 3931 } 3932 3933 class G1RedirtyLoggedCardsTask : public AbstractGangTask { 3934 private: 3935 DirtyCardQueueSet* _queue; 3936 G1CollectedHeap* _g1h; 3937 public: 3938 G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"), 3939 _queue(queue), _g1h(g1h) { } 3940 3941 virtual void work(uint worker_id) { 3942 G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times(); 3943 G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id); 3944 3945 RedirtyLoggedCardTableEntryClosure cl(_g1h); 3946 _queue->par_apply_closure_to_all_completed_buffers(&cl); 3947 3948 phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied()); 3949 } 3950 }; 3951 3952 void G1CollectedHeap::redirty_logged_cards() { 3953 double redirty_logged_cards_start = os::elapsedTime(); 3954 3955 G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this); 3956 dirty_card_queue_set().reset_for_par_iteration(); 3957 workers()->run_task(&redirty_task); 3958 3959 DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set(); 3960 dcq.merge_bufferlists(&dirty_card_queue_set()); 3961 assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed"); 3962 3963 g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0); 3964 } 3965 3966 // Weak Reference Processing support 3967 3968 // An always "is_alive" closure that is used to preserve referents. 3969 // If the object is non-null then it's alive. Used in the preservation 3970 // of referent objects that are pointed to by reference objects 3971 // discovered by the CM ref processor. 3972 class G1AlwaysAliveClosure: public BoolObjectClosure { 3973 G1CollectedHeap* _g1; 3974 public: 3975 G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 3976 bool do_object_b(oop p) { 3977 if (p != NULL) { 3978 return true; 3979 } 3980 return false; 3981 } 3982 }; 3983 3984 bool G1STWIsAliveClosure::do_object_b(oop p) { 3985 // An object is reachable if it is outside the collection set, 3986 // or is inside and copied. 3987 return !_g1->is_in_cset(p) || p->is_forwarded(); 3988 } 3989 3990 // Non Copying Keep Alive closure 3991 class G1KeepAliveClosure: public OopClosure { 3992 G1CollectedHeap* _g1; 3993 public: 3994 G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 3995 void do_oop(narrowOop* p) { guarantee(false, "Not needed"); } 3996 void do_oop(oop* p) { 3997 oop obj = *p; 3998 assert(obj != NULL, "the caller should have filtered out NULL values"); 3999 4000 const InCSetState cset_state = _g1->in_cset_state(obj); 4001 if (!cset_state.is_in_cset_or_humongous()) { 4002 return; 4003 } 4004 if (cset_state.is_in_cset()) { 4005 assert( obj->is_forwarded(), "invariant" ); 4006 *p = obj->forwardee(); 4007 } else { 4008 assert(!obj->is_forwarded(), "invariant" ); 4009 assert(cset_state.is_humongous(), 4010 "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()); 4011 _g1->set_humongous_is_live(obj); 4012 } 4013 } 4014 }; 4015 4016 // Copying Keep Alive closure - can be called from both 4017 // serial and parallel code as long as different worker 4018 // threads utilize different G1ParScanThreadState instances 4019 // and different queues. 4020 4021 class G1CopyingKeepAliveClosure: public OopClosure { 4022 G1CollectedHeap* _g1h; 4023 OopClosure* _copy_non_heap_obj_cl; 4024 G1ParScanThreadState* _par_scan_state; 4025 4026 public: 4027 G1CopyingKeepAliveClosure(G1CollectedHeap* g1h, 4028 OopClosure* non_heap_obj_cl, 4029 G1ParScanThreadState* pss): 4030 _g1h(g1h), 4031 _copy_non_heap_obj_cl(non_heap_obj_cl), 4032 _par_scan_state(pss) 4033 {} 4034 4035 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 4036 virtual void do_oop( oop* p) { do_oop_work(p); } 4037 4038 template <class T> void do_oop_work(T* p) { 4039 oop obj = oopDesc::load_decode_heap_oop(p); 4040 4041 if (_g1h->is_in_cset_or_humongous(obj)) { 4042 // If the referent object has been forwarded (either copied 4043 // to a new location or to itself in the event of an 4044 // evacuation failure) then we need to update the reference 4045 // field and, if both reference and referent are in the G1 4046 // heap, update the RSet for the referent. 4047 // 4048 // If the referent has not been forwarded then we have to keep 4049 // it alive by policy. Therefore we have copy the referent. 4050 // 4051 // If the reference field is in the G1 heap then we can push 4052 // on the PSS queue. When the queue is drained (after each 4053 // phase of reference processing) the object and it's followers 4054 // will be copied, the reference field set to point to the 4055 // new location, and the RSet updated. Otherwise we need to 4056 // use the the non-heap or metadata closures directly to copy 4057 // the referent object and update the pointer, while avoiding 4058 // updating the RSet. 4059 4060 if (_g1h->is_in_g1_reserved(p)) { 4061 _par_scan_state->push_on_queue(p); 4062 } else { 4063 assert(!Metaspace::contains((const void*)p), 4064 "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)); 4065 _copy_non_heap_obj_cl->do_oop(p); 4066 } 4067 } 4068 } 4069 }; 4070 4071 // Serial drain queue closure. Called as the 'complete_gc' 4072 // closure for each discovered list in some of the 4073 // reference processing phases. 4074 4075 class G1STWDrainQueueClosure: public VoidClosure { 4076 protected: 4077 G1CollectedHeap* _g1h; 4078 G1ParScanThreadState* _par_scan_state; 4079 4080 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 4081 4082 public: 4083 G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : 4084 _g1h(g1h), 4085 _par_scan_state(pss) 4086 { } 4087 4088 void do_void() { 4089 G1ParScanThreadState* const pss = par_scan_state(); 4090 pss->trim_queue(); 4091 } 4092 }; 4093 4094 // Parallel Reference Processing closures 4095 4096 // Implementation of AbstractRefProcTaskExecutor for parallel reference 4097 // processing during G1 evacuation pauses. 4098 4099 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor { 4100 private: 4101 G1CollectedHeap* _g1h; 4102 G1ParScanThreadStateSet* _pss; 4103 RefToScanQueueSet* _queues; 4104 WorkGang* _workers; 4105 uint _active_workers; 4106 4107 public: 4108 G1STWRefProcTaskExecutor(G1CollectedHeap* g1h, 4109 G1ParScanThreadStateSet* per_thread_states, 4110 WorkGang* workers, 4111 RefToScanQueueSet *task_queues, 4112 uint n_workers) : 4113 _g1h(g1h), 4114 _pss(per_thread_states), 4115 _queues(task_queues), 4116 _workers(workers), 4117 _active_workers(n_workers) 4118 { 4119 g1h->ref_processor_stw()->set_active_mt_degree(n_workers); 4120 } 4121 4122 // Executes the given task using concurrent marking worker threads. 4123 virtual void execute(ProcessTask& task); 4124 virtual void execute(EnqueueTask& task); 4125 }; 4126 4127 // Gang task for possibly parallel reference processing 4128 4129 class G1STWRefProcTaskProxy: public AbstractGangTask { 4130 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 4131 ProcessTask& _proc_task; 4132 G1CollectedHeap* _g1h; 4133 G1ParScanThreadStateSet* _pss; 4134 RefToScanQueueSet* _task_queues; 4135 ParallelTaskTerminator* _terminator; 4136 4137 public: 4138 G1STWRefProcTaskProxy(ProcessTask& proc_task, 4139 G1CollectedHeap* g1h, 4140 G1ParScanThreadStateSet* per_thread_states, 4141 RefToScanQueueSet *task_queues, 4142 ParallelTaskTerminator* terminator) : 4143 AbstractGangTask("Process reference objects in parallel"), 4144 _proc_task(proc_task), 4145 _g1h(g1h), 4146 _pss(per_thread_states), 4147 _task_queues(task_queues), 4148 _terminator(terminator) 4149 {} 4150 4151 virtual void work(uint worker_id) { 4152 // The reference processing task executed by a single worker. 4153 ResourceMark rm; 4154 HandleMark hm; 4155 4156 G1STWIsAliveClosure is_alive(_g1h); 4157 4158 G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); 4159 pss->set_ref_processor(NULL); 4160 4161 // Keep alive closure. 4162 G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss); 4163 4164 // Complete GC closure 4165 G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator); 4166 4167 // Call the reference processing task's work routine. 4168 _proc_task.work(worker_id, is_alive, keep_alive, drain_queue); 4169 4170 // Note we cannot assert that the refs array is empty here as not all 4171 // of the processing tasks (specifically phase2 - pp2_work) execute 4172 // the complete_gc closure (which ordinarily would drain the queue) so 4173 // the queue may not be empty. 4174 } 4175 }; 4176 4177 // Driver routine for parallel reference processing. 4178 // Creates an instance of the ref processing gang 4179 // task and has the worker threads execute it. 4180 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) { 4181 assert(_workers != NULL, "Need parallel worker threads."); 4182 4183 ParallelTaskTerminator terminator(_active_workers, _queues); 4184 G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator); 4185 4186 _workers->run_task(&proc_task_proxy); 4187 } 4188 4189 // Gang task for parallel reference enqueueing. 4190 4191 class G1STWRefEnqueueTaskProxy: public AbstractGangTask { 4192 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 4193 EnqueueTask& _enq_task; 4194 4195 public: 4196 G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) : 4197 AbstractGangTask("Enqueue reference objects in parallel"), 4198 _enq_task(enq_task) 4199 { } 4200 4201 virtual void work(uint worker_id) { 4202 _enq_task.work(worker_id); 4203 } 4204 }; 4205 4206 // Driver routine for parallel reference enqueueing. 4207 // Creates an instance of the ref enqueueing gang 4208 // task and has the worker threads execute it. 4209 4210 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) { 4211 assert(_workers != NULL, "Need parallel worker threads."); 4212 4213 G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task); 4214 4215 _workers->run_task(&enq_task_proxy); 4216 } 4217 4218 // End of weak reference support closures 4219 4220 // Abstract task used to preserve (i.e. copy) any referent objects 4221 // that are in the collection set and are pointed to by reference 4222 // objects discovered by the CM ref processor. 4223 4224 class G1ParPreserveCMReferentsTask: public AbstractGangTask { 4225 protected: 4226 G1CollectedHeap* _g1h; 4227 G1ParScanThreadStateSet* _pss; 4228 RefToScanQueueSet* _queues; 4229 ParallelTaskTerminator _terminator; 4230 uint _n_workers; 4231 4232 public: 4233 G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) : 4234 AbstractGangTask("ParPreserveCMReferents"), 4235 _g1h(g1h), 4236 _pss(per_thread_states), 4237 _queues(task_queues), 4238 _terminator(workers, _queues), 4239 _n_workers(workers) 4240 { 4241 g1h->ref_processor_cm()->set_active_mt_degree(workers); 4242 } 4243 4244 void work(uint worker_id) { 4245 G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id); 4246 4247 ResourceMark rm; 4248 HandleMark hm; 4249 4250 G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); 4251 pss->set_ref_processor(NULL); 4252 assert(pss->queue_is_empty(), "both queue and overflow should be empty"); 4253 4254 // Is alive closure 4255 G1AlwaysAliveClosure always_alive(_g1h); 4256 4257 // Copying keep alive closure. Applied to referent objects that need 4258 // to be copied. 4259 G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss); 4260 4261 ReferenceProcessor* rp = _g1h->ref_processor_cm(); 4262 4263 uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q(); 4264 uint stride = MIN2(MAX2(_n_workers, 1U), limit); 4265 4266 // limit is set using max_num_q() - which was set using ParallelGCThreads. 4267 // So this must be true - but assert just in case someone decides to 4268 // change the worker ids. 4269 assert(worker_id < limit, "sanity"); 4270 assert(!rp->discovery_is_atomic(), "check this code"); 4271 4272 // Select discovered lists [i, i+stride, i+2*stride,...,limit) 4273 for (uint idx = worker_id; idx < limit; idx += stride) { 4274 DiscoveredList& ref_list = rp->discovered_refs()[idx]; 4275 4276 DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive); 4277 while (iter.has_next()) { 4278 // Since discovery is not atomic for the CM ref processor, we 4279 // can see some null referent objects. 4280 iter.load_ptrs(DEBUG_ONLY(true)); 4281 oop ref = iter.obj(); 4282 4283 // This will filter nulls. 4284 if (iter.is_referent_alive()) { 4285 iter.make_referent_alive(); 4286 } 4287 iter.move_to_next(); 4288 } 4289 } 4290 4291 // Drain the queue - which may cause stealing 4292 G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator); 4293 drain_queue.do_void(); 4294 // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure 4295 assert(pss->queue_is_empty(), "should be"); 4296 } 4297 }; 4298 4299 void G1CollectedHeap::process_weak_jni_handles() { 4300 double ref_proc_start = os::elapsedTime(); 4301 4302 G1STWIsAliveClosure is_alive(this); 4303 G1KeepAliveClosure keep_alive(this); 4304 JNIHandles::weak_oops_do(&is_alive, &keep_alive); 4305 4306 double ref_proc_time = os::elapsedTime() - ref_proc_start; 4307 g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 4308 } 4309 4310 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) { 4311 // Any reference objects, in the collection set, that were 'discovered' 4312 // by the CM ref processor should have already been copied (either by 4313 // applying the external root copy closure to the discovered lists, or 4314 // by following an RSet entry). 4315 // 4316 // But some of the referents, that are in the collection set, that these 4317 // reference objects point to may not have been copied: the STW ref 4318 // processor would have seen that the reference object had already 4319 // been 'discovered' and would have skipped discovering the reference, 4320 // but would not have treated the reference object as a regular oop. 4321 // As a result the copy closure would not have been applied to the 4322 // referent object. 4323 // 4324 // We need to explicitly copy these referent objects - the references 4325 // will be processed at the end of remarking. 4326 // 4327 // We also need to do this copying before we process the reference 4328 // objects discovered by the STW ref processor in case one of these 4329 // referents points to another object which is also referenced by an 4330 // object discovered by the STW ref processor. 4331 double preserve_cm_referents_time = 0.0; 4332 4333 // To avoid spawning task when there is no work to do, check that 4334 // a concurrent cycle is active and that some references have been 4335 // discovered. 4336 if (concurrent_mark()->cmThread()->during_cycle() && 4337 ref_processor_cm()->has_discovered_references()) { 4338 double preserve_cm_referents_start = os::elapsedTime(); 4339 uint no_of_gc_workers = workers()->active_workers(); 4340 G1ParPreserveCMReferentsTask keep_cm_referents(this, 4341 per_thread_states, 4342 no_of_gc_workers, 4343 _task_queues); 4344 workers()->run_task(&keep_cm_referents); 4345 preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start; 4346 } 4347 4348 g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0); 4349 } 4350 4351 // Weak Reference processing during an evacuation pause (part 1). 4352 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) { 4353 double ref_proc_start = os::elapsedTime(); 4354 4355 ReferenceProcessor* rp = _ref_processor_stw; 4356 assert(rp->discovery_enabled(), "should have been enabled"); 4357 4358 // Closure to test whether a referent is alive. 4359 G1STWIsAliveClosure is_alive(this); 4360 4361 // Even when parallel reference processing is enabled, the processing 4362 // of JNI refs is serial and performed serially by the current thread 4363 // rather than by a worker. The following PSS will be used for processing 4364 // JNI refs. 4365 4366 // Use only a single queue for this PSS. 4367 G1ParScanThreadState* pss = per_thread_states->state_for_worker(0); 4368 pss->set_ref_processor(NULL); 4369 assert(pss->queue_is_empty(), "pre-condition"); 4370 4371 // Keep alive closure. 4372 G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss); 4373 4374 // Serial Complete GC closure 4375 G1STWDrainQueueClosure drain_queue(this, pss); 4376 4377 // Setup the soft refs policy... 4378 rp->setup_policy(false); 4379 4380 ReferenceProcessorStats stats; 4381 if (!rp->processing_is_mt()) { 4382 // Serial reference processing... 4383 stats = rp->process_discovered_references(&is_alive, 4384 &keep_alive, 4385 &drain_queue, 4386 NULL, 4387 _gc_timer_stw); 4388 } else { 4389 uint no_of_gc_workers = workers()->active_workers(); 4390 4391 // Parallel reference processing 4392 assert(no_of_gc_workers <= rp->max_num_q(), 4393 "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u", 4394 no_of_gc_workers, rp->max_num_q()); 4395 4396 G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers); 4397 stats = rp->process_discovered_references(&is_alive, 4398 &keep_alive, 4399 &drain_queue, 4400 &par_task_executor, 4401 _gc_timer_stw); 4402 } 4403 4404 _gc_tracer_stw->report_gc_reference_stats(stats); 4405 4406 // We have completed copying any necessary live referent objects. 4407 assert(pss->queue_is_empty(), "both queue and overflow should be empty"); 4408 4409 double ref_proc_time = os::elapsedTime() - ref_proc_start; 4410 g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 4411 } 4412 4413 // Weak Reference processing during an evacuation pause (part 2). 4414 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) { 4415 double ref_enq_start = os::elapsedTime(); 4416 4417 ReferenceProcessor* rp = _ref_processor_stw; 4418 assert(!rp->discovery_enabled(), "should have been disabled as part of processing"); 4419 4420 // Now enqueue any remaining on the discovered lists on to 4421 // the pending list. 4422 if (!rp->processing_is_mt()) { 4423 // Serial reference processing... 4424 rp->enqueue_discovered_references(); 4425 } else { 4426 // Parallel reference enqueueing 4427 4428 uint n_workers = workers()->active_workers(); 4429 4430 assert(n_workers <= rp->max_num_q(), 4431 "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u", 4432 n_workers, rp->max_num_q()); 4433 4434 G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers); 4435 rp->enqueue_discovered_references(&par_task_executor, _gc_timer_stw); 4436 } 4437 4438 rp->verify_no_references_recorded(); 4439 assert(!rp->discovery_enabled(), "should have been disabled"); 4440 4441 // FIXME 4442 // CM's reference processing also cleans up the string and symbol tables. 4443 // Should we do that here also? We could, but it is a serial operation 4444 // and could significantly increase the pause time. 4445 4446 double ref_enq_time = os::elapsedTime() - ref_enq_start; 4447 g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0); 4448 } 4449 4450 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) { 4451 double merge_pss_time_start = os::elapsedTime(); 4452 per_thread_states->flush(); 4453 g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0); 4454 } 4455 4456 void G1CollectedHeap::pre_evacuate_collection_set() { 4457 _expand_heap_after_alloc_failure = true; 4458 _evacuation_failed = false; 4459 4460 // Disable the hot card cache. 4461 _hot_card_cache->reset_hot_cache_claimed_index(); 4462 _hot_card_cache->set_use_cache(false); 4463 4464 g1_rem_set()->prepare_for_oops_into_collection_set_do(); 4465 _preserved_marks_set.assert_empty(); 4466 4467 G1GCPhaseTimes* phase_times = g1_policy()->phase_times(); 4468 4469 // InitialMark needs claim bits to keep track of the marked-through CLDs. 4470 if (collector_state()->during_initial_mark_pause()) { 4471 double start_clear_claimed_marks = os::elapsedTime(); 4472 4473 ClassLoaderDataGraph::clear_claimed_marks(); 4474 4475 double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0; 4476 phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms); 4477 } 4478 } 4479 4480 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) { 4481 // Should G1EvacuationFailureALot be in effect for this GC? 4482 NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();) 4483 4484 assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty"); 4485 4486 G1GCPhaseTimes* phase_times = g1_policy()->phase_times(); 4487 4488 double start_par_time_sec = os::elapsedTime(); 4489 double end_par_time_sec; 4490 4491 { 4492 const uint n_workers = workers()->active_workers(); 4493 G1RootProcessor root_processor(this, n_workers); 4494 G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers); 4495 4496 print_termination_stats_hdr(); 4497 4498 workers()->run_task(&g1_par_task); 4499 end_par_time_sec = os::elapsedTime(); 4500 4501 // Closing the inner scope will execute the destructor 4502 // for the G1RootProcessor object. We record the current 4503 // elapsed time before closing the scope so that time 4504 // taken for the destructor is NOT included in the 4505 // reported parallel time. 4506 } 4507 4508 double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0; 4509 phase_times->record_par_time(par_time_ms); 4510 4511 double code_root_fixup_time_ms = 4512 (os::elapsedTime() - end_par_time_sec) * 1000.0; 4513 phase_times->record_code_root_fixup_time(code_root_fixup_time_ms); 4514 } 4515 4516 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) { 4517 // Process any discovered reference objects - we have 4518 // to do this _before_ we retire the GC alloc regions 4519 // as we may have to copy some 'reachable' referent 4520 // objects (and their reachable sub-graphs) that were 4521 // not copied during the pause. 4522 if (g1_policy()->should_process_references()) { 4523 preserve_cm_referents(per_thread_states); 4524 process_discovered_references(per_thread_states); 4525 } else { 4526 ref_processor_stw()->verify_no_references_recorded(); 4527 process_weak_jni_handles(); 4528 } 4529 4530 if (G1StringDedup::is_enabled()) { 4531 double fixup_start = os::elapsedTime(); 4532 4533 G1STWIsAliveClosure is_alive(this); 4534 G1KeepAliveClosure keep_alive(this); 4535 G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times()); 4536 4537 double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0; 4538 g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms); 4539 } 4540 4541 g1_rem_set()->cleanup_after_oops_into_collection_set_do(); 4542 4543 if (evacuation_failed()) { 4544 restore_after_evac_failure(); 4545 4546 // Reset the G1EvacuationFailureALot counters and flags 4547 // Note: the values are reset only when an actual 4548 // evacuation failure occurs. 4549 NOT_PRODUCT(reset_evacuation_should_fail();) 4550 } 4551 4552 _preserved_marks_set.assert_empty(); 4553 4554 // Enqueue any remaining references remaining on the STW 4555 // reference processor's discovered lists. We need to do 4556 // this after the card table is cleaned (and verified) as 4557 // the act of enqueueing entries on to the pending list 4558 // will log these updates (and dirty their associated 4559 // cards). We need these updates logged to update any 4560 // RSets. 4561 if (g1_policy()->should_process_references()) { 4562 enqueue_discovered_references(per_thread_states); 4563 } else { 4564 g1_policy()->phase_times()->record_ref_enq_time(0); 4565 } 4566 4567 _allocator->release_gc_alloc_regions(evacuation_info); 4568 4569 merge_per_thread_state_info(per_thread_states); 4570 4571 // Reset and re-enable the hot card cache. 4572 // Note the counts for the cards in the regions in the 4573 // collection set are reset when the collection set is freed. 4574 _hot_card_cache->reset_hot_cache(); 4575 _hot_card_cache->set_use_cache(true); 4576 4577 purge_code_root_memory(); 4578 4579 redirty_logged_cards(); 4580 #if defined(COMPILER2) || INCLUDE_JVMCI 4581 double start = os::elapsedTime(); 4582 DerivedPointerTable::update_pointers(); 4583 g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0); 4584 #endif 4585 g1_policy()->print_age_table(); 4586 } 4587 4588 void G1CollectedHeap::record_obj_copy_mem_stats() { 4589 g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize); 4590 4591 _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats), 4592 create_g1_evac_summary(&_old_evac_stats)); 4593 } 4594 4595 void G1CollectedHeap::free_region(HeapRegion* hr, 4596 FreeRegionList* free_list, 4597 bool skip_remset, 4598 bool skip_hot_card_cache, 4599 bool locked) { 4600 assert(!hr->is_free(), "the region should not be free"); 4601 assert(!hr->is_empty(), "the region should not be empty"); 4602 assert(_hrm.is_available(hr->hrm_index()), "region should be committed"); 4603 assert(free_list != NULL, "pre-condition"); 4604 4605 if (G1VerifyBitmaps) { 4606 MemRegion mr(hr->bottom(), hr->end()); 4607 concurrent_mark()->clearRangePrevBitmap(mr); 4608 } 4609 4610 // Clear the card counts for this region. 4611 // Note: we only need to do this if the region is not young 4612 // (since we don't refine cards in young regions). 4613 if (!skip_hot_card_cache && !hr->is_young()) { 4614 _hot_card_cache->reset_card_counts(hr); 4615 } 4616 hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */); 4617 free_list->add_ordered(hr); 4618 } 4619 4620 void G1CollectedHeap::free_humongous_region(HeapRegion* hr, 4621 FreeRegionList* free_list, 4622 bool skip_remset) { 4623 assert(hr->is_humongous(), "this is only for humongous regions"); 4624 assert(free_list != NULL, "pre-condition"); 4625 hr->clear_humongous(); 4626 free_region(hr, free_list, skip_remset); 4627 } 4628 4629 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed, 4630 const uint humongous_regions_removed) { 4631 if (old_regions_removed > 0 || humongous_regions_removed > 0) { 4632 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 4633 _old_set.bulk_remove(old_regions_removed); 4634 _humongous_set.bulk_remove(humongous_regions_removed); 4635 } 4636 4637 } 4638 4639 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) { 4640 assert(list != NULL, "list can't be null"); 4641 if (!list->is_empty()) { 4642 MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); 4643 _hrm.insert_list_into_free_list(list); 4644 } 4645 } 4646 4647 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) { 4648 decrease_used(bytes); 4649 } 4650 4651 class G1ParScrubRemSetTask: public AbstractGangTask { 4652 protected: 4653 G1RemSet* _g1rs; 4654 HeapRegionClaimer _hrclaimer; 4655 4656 public: 4657 G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) : 4658 AbstractGangTask("G1 ScrubRS"), 4659 _g1rs(g1_rs), 4660 _hrclaimer(num_workers) { 4661 } 4662 4663 void work(uint worker_id) { 4664 _g1rs->scrub(worker_id, &_hrclaimer); 4665 } 4666 }; 4667 4668 void G1CollectedHeap::scrub_rem_set() { 4669 uint num_workers = workers()->active_workers(); 4670 G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers); 4671 workers()->run_task(&g1_par_scrub_rs_task); 4672 } 4673 4674 class G1FreeCollectionSetTask : public AbstractGangTask { 4675 private: 4676 4677 // Closure applied to all regions in the collection set to do work that needs to 4678 // be done serially in a single thread. 4679 class G1SerialFreeCollectionSetClosure : public HeapRegionClosure { 4680 private: 4681 EvacuationInfo* _evacuation_info; 4682 const size_t* _surviving_young_words; 4683 4684 // Bytes used in successfully evacuated regions before the evacuation. 4685 size_t _before_used_bytes; 4686 // Bytes used in unsucessfully evacuated regions before the evacuation 4687 size_t _after_used_bytes; 4688 4689 size_t _bytes_allocated_in_old_since_last_gc; 4690 4691 size_t _failure_used_words; 4692 size_t _failure_waste_words; 4693 4694 FreeRegionList _local_free_list; 4695 public: 4696 G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) : 4697 HeapRegionClosure(), 4698 _evacuation_info(evacuation_info), 4699 _surviving_young_words(surviving_young_words), 4700 _before_used_bytes(0), 4701 _after_used_bytes(0), 4702 _bytes_allocated_in_old_since_last_gc(0), 4703 _failure_used_words(0), 4704 _failure_waste_words(0), 4705 _local_free_list("Local Region List for CSet Freeing") { 4706 } 4707 4708 virtual bool doHeapRegion(HeapRegion* r) { 4709 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 4710 4711 assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index()); 4712 g1h->clear_in_cset(r); 4713 4714 if (r->is_young()) { 4715 assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(), 4716 "Young index %d is wrong for region %u of type %s with %u young regions", 4717 r->young_index_in_cset(), 4718 r->hrm_index(), 4719 r->get_type_str(), 4720 g1h->collection_set()->young_region_length()); 4721 size_t words_survived = _surviving_young_words[r->young_index_in_cset()]; 4722 r->record_surv_words_in_group(words_survived); 4723 } 4724 4725 if (!r->evacuation_failed()) { 4726 assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index()); 4727 _before_used_bytes += r->used(); 4728 g1h->free_region(r, 4729 &_local_free_list, 4730 true, /* skip_remset */ 4731 true, /* skip_hot_card_cache */ 4732 true /* locked */); 4733 } else { 4734 r->uninstall_surv_rate_group(); 4735 r->set_young_index_in_cset(-1); 4736 r->set_evacuation_failed(false); 4737 // When moving a young gen region to old gen, we "allocate" that whole region 4738 // there. This is in addition to any already evacuated objects. Notify the 4739 // policy about that. 4740 // Old gen regions do not cause an additional allocation: both the objects 4741 // still in the region and the ones already moved are accounted for elsewhere. 4742 if (r->is_young()) { 4743 _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes; 4744 } 4745 // The region is now considered to be old. 4746 r->set_old(); 4747 // Do some allocation statistics accounting. Regions that failed evacuation 4748 // are always made old, so there is no need to update anything in the young 4749 // gen statistics, but we need to update old gen statistics. 4750 size_t used_words = r->marked_bytes() / HeapWordSize; 4751 4752 _failure_used_words += used_words; 4753 _failure_waste_words += HeapRegion::GrainWords - used_words; 4754 4755 g1h->old_set_add(r); 4756 _after_used_bytes += r->used(); 4757 } 4758 return false; 4759 } 4760 4761 void complete_work() { 4762 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 4763 4764 _evacuation_info->set_regions_freed(_local_free_list.length()); 4765 _evacuation_info->increment_collectionset_used_after(_after_used_bytes); 4766 4767 g1h->prepend_to_freelist(&_local_free_list); 4768 g1h->decrement_summary_bytes(_before_used_bytes); 4769 4770 G1Policy* policy = g1h->g1_policy(); 4771 policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc); 4772 4773 g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words); 4774 } 4775 }; 4776 4777 G1CollectionSet* _collection_set; 4778 G1SerialFreeCollectionSetClosure _cl; 4779 const size_t* _surviving_young_words; 4780 4781 size_t _rs_lengths; 4782 4783 volatile jint _serial_work_claim; 4784 4785 struct WorkItem { 4786 uint region_idx; 4787 bool is_young; 4788 bool evacuation_failed; 4789 4790 WorkItem(HeapRegion* r) { 4791 region_idx = r->hrm_index(); 4792 is_young = r->is_young(); 4793 evacuation_failed = r->evacuation_failed(); 4794 } 4795 }; 4796 4797 volatile size_t _parallel_work_claim; 4798 size_t _num_work_items; 4799 WorkItem* _work_items; 4800 4801 void do_serial_work() { 4802 // Need to grab the lock to be allowed to modify the old region list. 4803 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 4804 _collection_set->iterate(&_cl); 4805 } 4806 4807 void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) { 4808 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 4809 4810 HeapRegion* r = g1h->region_at(region_idx); 4811 assert(!g1h->is_on_master_free_list(r), "sanity"); 4812 4813 Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths); 4814 4815 if (!is_young) { 4816 g1h->_hot_card_cache->reset_card_counts(r); 4817 } 4818 4819 if (!evacuation_failed) { 4820 r->rem_set()->clear_locked(); 4821 } 4822 } 4823 4824 class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure { 4825 private: 4826 size_t _cur_idx; 4827 WorkItem* _work_items; 4828 public: 4829 G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { } 4830 4831 virtual bool doHeapRegion(HeapRegion* r) { 4832 _work_items[_cur_idx++] = WorkItem(r); 4833 return false; 4834 } 4835 }; 4836 4837 void prepare_work() { 4838 G1PrepareFreeCollectionSetClosure cl(_work_items); 4839 _collection_set->iterate(&cl); 4840 } 4841 4842 void complete_work() { 4843 _cl.complete_work(); 4844 4845 G1Policy* policy = G1CollectedHeap::heap()->g1_policy(); 4846 policy->record_max_rs_lengths(_rs_lengths); 4847 policy->cset_regions_freed(); 4848 } 4849 public: 4850 G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) : 4851 AbstractGangTask("G1 Free Collection Set"), 4852 _cl(evacuation_info, surviving_young_words), 4853 _collection_set(collection_set), 4854 _surviving_young_words(surviving_young_words), 4855 _serial_work_claim(0), 4856 _rs_lengths(0), 4857 _parallel_work_claim(0), 4858 _num_work_items(collection_set->region_length()), 4859 _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) { 4860 prepare_work(); 4861 } 4862 4863 ~G1FreeCollectionSetTask() { 4864 complete_work(); 4865 FREE_C_HEAP_ARRAY(WorkItem, _work_items); 4866 } 4867 4868 // Chunk size for work distribution. The chosen value has been determined experimentally 4869 // to be a good tradeoff between overhead and achievable parallelism. 4870 static uint chunk_size() { return 32; } 4871 4872 virtual void work(uint worker_id) { 4873 G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times(); 4874 4875 // Claim serial work. 4876 if (_serial_work_claim == 0) { 4877 jint value = Atomic::add(1, &_serial_work_claim) - 1; 4878 if (value == 0) { 4879 double serial_time = os::elapsedTime(); 4880 do_serial_work(); 4881 timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0); 4882 } 4883 } 4884 4885 // Start parallel work. 4886 double young_time = 0.0; 4887 bool has_young_time = false; 4888 double non_young_time = 0.0; 4889 bool has_non_young_time = false; 4890 4891 while (true) { 4892 size_t end = Atomic::add(chunk_size(), &_parallel_work_claim); 4893 size_t cur = end - chunk_size(); 4894 4895 if (cur >= _num_work_items) { 4896 break; 4897 } 4898 4899 double start_time = os::elapsedTime(); 4900 4901 end = MIN2(end, _num_work_items); 4902 4903 for (; cur < end; cur++) { 4904 bool is_young = _work_items[cur].is_young; 4905 4906 do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed); 4907 4908 double end_time = os::elapsedTime(); 4909 double time_taken = end_time - start_time; 4910 if (is_young) { 4911 young_time += time_taken; 4912 has_young_time = true; 4913 } else { 4914 non_young_time += time_taken; 4915 has_non_young_time = true; 4916 } 4917 start_time = end_time; 4918 } 4919 } 4920 4921 if (has_young_time) { 4922 timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time); 4923 } 4924 if (has_non_young_time) { 4925 timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time); 4926 } 4927 } 4928 }; 4929 4930 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) { 4931 _eden.clear(); 4932 4933 double free_cset_start_time = os::elapsedTime(); 4934 4935 { 4936 uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U); 4937 uint const num_workers = MIN2(workers()->active_workers(), num_chunks); 4938 4939 G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words); 4940 4941 log_debug(gc, ergo)("Running %s using %u workers for collection set length %u", 4942 cl.name(), 4943 num_workers, 4944 _collection_set.region_length()); 4945 workers()->run_task(&cl, num_workers); 4946 } 4947 g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0); 4948 4949 collection_set->clear(); 4950 } 4951 4952 class G1FreeHumongousRegionClosure : public HeapRegionClosure { 4953 private: 4954 FreeRegionList* _free_region_list; 4955 HeapRegionSet* _proxy_set; 4956 uint _humongous_objects_reclaimed; 4957 uint _humongous_regions_reclaimed; 4958 size_t _freed_bytes; 4959 public: 4960 4961 G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) : 4962 _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) { 4963 } 4964 4965 virtual bool doHeapRegion(HeapRegion* r) { 4966 if (!r->is_starts_humongous()) { 4967 return false; 4968 } 4969 4970 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 4971 4972 oop obj = (oop)r->bottom(); 4973 G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap(); 4974 4975 // The following checks whether the humongous object is live are sufficient. 4976 // The main additional check (in addition to having a reference from the roots 4977 // or the young gen) is whether the humongous object has a remembered set entry. 4978 // 4979 // A humongous object cannot be live if there is no remembered set for it 4980 // because: 4981 // - there can be no references from within humongous starts regions referencing 4982 // the object because we never allocate other objects into them. 4983 // (I.e. there are no intra-region references that may be missed by the 4984 // remembered set) 4985 // - as soon there is a remembered set entry to the humongous starts region 4986 // (i.e. it has "escaped" to an old object) this remembered set entry will stay 4987 // until the end of a concurrent mark. 4988 // 4989 // It is not required to check whether the object has been found dead by marking 4990 // or not, in fact it would prevent reclamation within a concurrent cycle, as 4991 // all objects allocated during that time are considered live. 4992 // SATB marking is even more conservative than the remembered set. 4993 // So if at this point in the collection there is no remembered set entry, 4994 // nobody has a reference to it. 4995 // At the start of collection we flush all refinement logs, and remembered sets 4996 // are completely up-to-date wrt to references to the humongous object. 4997 // 4998 // Other implementation considerations: 4999 // - never consider object arrays at this time because they would pose 5000 // considerable effort for cleaning up the the remembered sets. This is 5001 // required because stale remembered sets might reference locations that 5002 // are currently allocated into. 5003 uint region_idx = r->hrm_index(); 5004 if (!g1h->is_humongous_reclaim_candidate(region_idx) || 5005 !r->rem_set()->is_empty()) { 5006 log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d", 5007 region_idx, 5008 (size_t)obj->size() * HeapWordSize, 5009 p2i(r->bottom()), 5010 r->rem_set()->occupied(), 5011 r->rem_set()->strong_code_roots_list_length(), 5012 next_bitmap->isMarked(r->bottom()), 5013 g1h->is_humongous_reclaim_candidate(region_idx), 5014 obj->is_typeArray() 5015 ); 5016 return false; 5017 } 5018 5019 guarantee(obj->is_typeArray(), 5020 "Only eagerly reclaiming type arrays is supported, but the object " 5021 PTR_FORMAT " is not.", p2i(r->bottom())); 5022 5023 log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d", 5024 region_idx, 5025 (size_t)obj->size() * HeapWordSize, 5026 p2i(r->bottom()), 5027 r->rem_set()->occupied(), 5028 r->rem_set()->strong_code_roots_list_length(), 5029 next_bitmap->isMarked(r->bottom()), 5030 g1h->is_humongous_reclaim_candidate(region_idx), 5031 obj->is_typeArray() 5032 ); 5033 5034 // Need to clear mark bit of the humongous object if already set. 5035 if (next_bitmap->isMarked(r->bottom())) { 5036 next_bitmap->clear(r->bottom()); 5037 } 5038 _humongous_objects_reclaimed++; 5039 do { 5040 HeapRegion* next = g1h->next_region_in_humongous(r); 5041 _freed_bytes += r->used(); 5042 r->set_containing_set(NULL); 5043 _humongous_regions_reclaimed++; 5044 g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ ); 5045 r = next; 5046 } while (r != NULL); 5047 5048 return false; 5049 } 5050 5051 uint humongous_objects_reclaimed() { 5052 return _humongous_objects_reclaimed; 5053 } 5054 5055 uint humongous_regions_reclaimed() { 5056 return _humongous_regions_reclaimed; 5057 } 5058 5059 size_t bytes_freed() const { 5060 return _freed_bytes; 5061 } 5062 }; 5063 5064 void G1CollectedHeap::eagerly_reclaim_humongous_regions() { 5065 assert_at_safepoint(true); 5066 5067 if (!G1EagerReclaimHumongousObjects || 5068 (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) { 5069 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0); 5070 return; 5071 } 5072 5073 double start_time = os::elapsedTime(); 5074 5075 FreeRegionList local_cleanup_list("Local Humongous Cleanup List"); 5076 5077 G1FreeHumongousRegionClosure cl(&local_cleanup_list); 5078 heap_region_iterate(&cl); 5079 5080 remove_from_old_sets(0, cl.humongous_regions_reclaimed()); 5081 5082 G1HRPrinter* hrp = hr_printer(); 5083 if (hrp->is_active()) { 5084 FreeRegionListIterator iter(&local_cleanup_list); 5085 while (iter.more_available()) { 5086 HeapRegion* hr = iter.get_next(); 5087 hrp->cleanup(hr); 5088 } 5089 } 5090 5091 prepend_to_freelist(&local_cleanup_list); 5092 decrement_summary_bytes(cl.bytes_freed()); 5093 5094 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0, 5095 cl.humongous_objects_reclaimed()); 5096 } 5097 5098 class G1AbandonCollectionSetClosure : public HeapRegionClosure { 5099 public: 5100 virtual bool doHeapRegion(HeapRegion* r) { 5101 assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index()); 5102 G1CollectedHeap::heap()->clear_in_cset(r); 5103 r->set_young_index_in_cset(-1); 5104 return false; 5105 } 5106 }; 5107 5108 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) { 5109 G1AbandonCollectionSetClosure cl; 5110 collection_set->iterate(&cl); 5111 5112 collection_set->clear(); 5113 collection_set->stop_incremental_building(); 5114 } 5115 5116 void G1CollectedHeap::set_free_regions_coming() { 5117 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming"); 5118 5119 assert(!free_regions_coming(), "pre-condition"); 5120 _free_regions_coming = true; 5121 } 5122 5123 void G1CollectedHeap::reset_free_regions_coming() { 5124 assert(free_regions_coming(), "pre-condition"); 5125 5126 { 5127 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 5128 _free_regions_coming = false; 5129 SecondaryFreeList_lock->notify_all(); 5130 } 5131 5132 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming"); 5133 } 5134 5135 void G1CollectedHeap::wait_while_free_regions_coming() { 5136 // Most of the time we won't have to wait, so let's do a quick test 5137 // first before we take the lock. 5138 if (!free_regions_coming()) { 5139 return; 5140 } 5141 5142 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions"); 5143 5144 { 5145 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 5146 while (free_regions_coming()) { 5147 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 5148 } 5149 } 5150 5151 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions"); 5152 } 5153 5154 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) { 5155 return _allocator->is_retained_old_region(hr); 5156 } 5157 5158 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { 5159 _eden.add(hr); 5160 _g1_policy->set_region_eden(hr); 5161 } 5162 5163 #ifdef ASSERT 5164 5165 class NoYoungRegionsClosure: public HeapRegionClosure { 5166 private: 5167 bool _success; 5168 public: 5169 NoYoungRegionsClosure() : _success(true) { } 5170 bool doHeapRegion(HeapRegion* r) { 5171 if (r->is_young()) { 5172 log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young", 5173 p2i(r->bottom()), p2i(r->end())); 5174 _success = false; 5175 } 5176 return false; 5177 } 5178 bool success() { return _success; } 5179 }; 5180 5181 bool G1CollectedHeap::check_young_list_empty() { 5182 bool ret = (young_regions_count() == 0); 5183 5184 NoYoungRegionsClosure closure; 5185 heap_region_iterate(&closure); 5186 ret = ret && closure.success(); 5187 5188 return ret; 5189 } 5190 5191 #endif // ASSERT 5192 5193 class TearDownRegionSetsClosure : public HeapRegionClosure { 5194 private: 5195 HeapRegionSet *_old_set; 5196 5197 public: 5198 TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { } 5199 5200 bool doHeapRegion(HeapRegion* r) { 5201 if (r->is_old()) { 5202 _old_set->remove(r); 5203 } else if(r->is_young()) { 5204 r->uninstall_surv_rate_group(); 5205 } else { 5206 // We ignore free regions, we'll empty the free list afterwards. 5207 // We ignore humongous regions, we're not tearing down the 5208 // humongous regions set. 5209 assert(r->is_free() || r->is_humongous(), 5210 "it cannot be another type"); 5211 } 5212 return false; 5213 } 5214 5215 ~TearDownRegionSetsClosure() { 5216 assert(_old_set->is_empty(), "post-condition"); 5217 } 5218 }; 5219 5220 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) { 5221 assert_at_safepoint(true /* should_be_vm_thread */); 5222 5223 if (!free_list_only) { 5224 TearDownRegionSetsClosure cl(&_old_set); 5225 heap_region_iterate(&cl); 5226 5227 // Note that emptying the _young_list is postponed and instead done as 5228 // the first step when rebuilding the regions sets again. The reason for 5229 // this is that during a full GC string deduplication needs to know if 5230 // a collected region was young or old when the full GC was initiated. 5231 } 5232 _hrm.remove_all_free_regions(); 5233 } 5234 5235 void G1CollectedHeap::increase_used(size_t bytes) { 5236 _summary_bytes_used += bytes; 5237 } 5238 5239 void G1CollectedHeap::decrease_used(size_t bytes) { 5240 assert(_summary_bytes_used >= bytes, 5241 "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT, 5242 _summary_bytes_used, bytes); 5243 _summary_bytes_used -= bytes; 5244 } 5245 5246 void G1CollectedHeap::set_used(size_t bytes) { 5247 _summary_bytes_used = bytes; 5248 } 5249 5250 class RebuildRegionSetsClosure : public HeapRegionClosure { 5251 private: 5252 bool _free_list_only; 5253 HeapRegionSet* _old_set; 5254 HeapRegionManager* _hrm; 5255 size_t _total_used; 5256 5257 public: 5258 RebuildRegionSetsClosure(bool free_list_only, 5259 HeapRegionSet* old_set, HeapRegionManager* hrm) : 5260 _free_list_only(free_list_only), 5261 _old_set(old_set), _hrm(hrm), _total_used(0) { 5262 assert(_hrm->num_free_regions() == 0, "pre-condition"); 5263 if (!free_list_only) { 5264 assert(_old_set->is_empty(), "pre-condition"); 5265 } 5266 } 5267 5268 bool doHeapRegion(HeapRegion* r) { 5269 if (r->is_empty()) { 5270 // Add free regions to the free list 5271 r->set_free(); 5272 r->set_allocation_context(AllocationContext::system()); 5273 _hrm->insert_into_free_list(r); 5274 } else if (!_free_list_only) { 5275 5276 if (r->is_humongous()) { 5277 // We ignore humongous regions. We left the humongous set unchanged. 5278 } else { 5279 assert(r->is_young() || r->is_free() || r->is_old(), "invariant"); 5280 // We now consider all regions old, so register as such. Leave 5281 // archive regions set that way, however, while still adding 5282 // them to the old set. 5283 if (!r->is_archive()) { 5284 r->set_old(); 5285 } 5286 _old_set->add(r); 5287 } 5288 _total_used += r->used(); 5289 } 5290 5291 return false; 5292 } 5293 5294 size_t total_used() { 5295 return _total_used; 5296 } 5297 }; 5298 5299 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { 5300 assert_at_safepoint(true /* should_be_vm_thread */); 5301 5302 if (!free_list_only) { 5303 _eden.clear(); 5304 _survivor.clear(); 5305 } 5306 5307 RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm); 5308 heap_region_iterate(&cl); 5309 5310 if (!free_list_only) { 5311 set_used(cl.total_used()); 5312 if (_archive_allocator != NULL) { 5313 _archive_allocator->clear_used(); 5314 } 5315 } 5316 assert(used_unlocked() == recalculate_used(), 5317 "inconsistent used_unlocked(), " 5318 "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT, 5319 used_unlocked(), recalculate_used()); 5320 } 5321 5322 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) { 5323 _refine_cte_cl->set_concurrent(concurrent); 5324 } 5325 5326 bool G1CollectedHeap::is_in_closed_subset(const void* p) const { 5327 HeapRegion* hr = heap_region_containing(p); 5328 return hr->is_in(p); 5329 } 5330 5331 // Methods for the mutator alloc region 5332 5333 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, 5334 bool force) { 5335 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 5336 bool should_allocate = g1_policy()->should_allocate_mutator_region(); 5337 if (force || should_allocate) { 5338 HeapRegion* new_alloc_region = new_region(word_size, 5339 false /* is_old */, 5340 false /* do_expand */); 5341 if (new_alloc_region != NULL) { 5342 set_region_short_lived_locked(new_alloc_region); 5343 _hr_printer.alloc(new_alloc_region, !should_allocate); 5344 _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region); 5345 return new_alloc_region; 5346 } 5347 } 5348 return NULL; 5349 } 5350 5351 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, 5352 size_t allocated_bytes) { 5353 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 5354 assert(alloc_region->is_eden(), "all mutator alloc regions should be eden"); 5355 5356 collection_set()->add_eden_region(alloc_region); 5357 increase_used(allocated_bytes); 5358 _hr_printer.retire(alloc_region); 5359 // We update the eden sizes here, when the region is retired, 5360 // instead of when it's allocated, since this is the point that its 5361 // used space has been recored in _summary_bytes_used. 5362 g1mm()->update_eden_size(); 5363 } 5364 5365 // Methods for the GC alloc regions 5366 5367 bool G1CollectedHeap::has_more_regions(InCSetState dest) { 5368 if (dest.is_old()) { 5369 return true; 5370 } else { 5371 return survivor_regions_count() < g1_policy()->max_survivor_regions(); 5372 } 5373 } 5374 5375 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) { 5376 assert(FreeList_lock->owned_by_self(), "pre-condition"); 5377 5378 if (!has_more_regions(dest)) { 5379 return NULL; 5380 } 5381 5382 const bool is_survivor = dest.is_young(); 5383 5384 HeapRegion* new_alloc_region = new_region(word_size, 5385 !is_survivor, 5386 true /* do_expand */); 5387 if (new_alloc_region != NULL) { 5388 // We really only need to do this for old regions given that we 5389 // should never scan survivors. But it doesn't hurt to do it 5390 // for survivors too. 5391 new_alloc_region->record_timestamp(); 5392 if (is_survivor) { 5393 new_alloc_region->set_survivor(); 5394 _survivor.add(new_alloc_region); 5395 _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region); 5396 } else { 5397 new_alloc_region->set_old(); 5398 _verifier->check_bitmaps("Old Region Allocation", new_alloc_region); 5399 } 5400 _hr_printer.alloc(new_alloc_region); 5401 bool during_im = collector_state()->during_initial_mark_pause(); 5402 new_alloc_region->note_start_of_copying(during_im); 5403 return new_alloc_region; 5404 } 5405 return NULL; 5406 } 5407 5408 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, 5409 size_t allocated_bytes, 5410 InCSetState dest) { 5411 bool during_im = collector_state()->during_initial_mark_pause(); 5412 alloc_region->note_end_of_copying(during_im); 5413 g1_policy()->record_bytes_copied_during_gc(allocated_bytes); 5414 if (dest.is_old()) { 5415 _old_set.add(alloc_region); 5416 } 5417 _hr_printer.retire(alloc_region); 5418 } 5419 5420 HeapRegion* G1CollectedHeap::alloc_highest_free_region() { 5421 bool expanded = false; 5422 uint index = _hrm.find_highest_free(&expanded); 5423 5424 if (index != G1_NO_HRM_INDEX) { 5425 if (expanded) { 5426 log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B", 5427 HeapRegion::GrainWords * HeapWordSize); 5428 } 5429 _hrm.allocate_free_regions_starting_at(index, 1); 5430 return region_at(index); 5431 } 5432 return NULL; 5433 } 5434 5435 // Optimized nmethod scanning 5436 5437 class RegisterNMethodOopClosure: public OopClosure { 5438 G1CollectedHeap* _g1h; 5439 nmethod* _nm; 5440 5441 template <class T> void do_oop_work(T* p) { 5442 T heap_oop = oopDesc::load_heap_oop(p); 5443 if (!oopDesc::is_null(heap_oop)) { 5444 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 5445 HeapRegion* hr = _g1h->heap_region_containing(obj); 5446 assert(!hr->is_continues_humongous(), 5447 "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT 5448 " starting at " HR_FORMAT, 5449 p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); 5450 5451 // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries. 5452 hr->add_strong_code_root_locked(_nm); 5453 } 5454 } 5455 5456 public: 5457 RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 5458 _g1h(g1h), _nm(nm) {} 5459 5460 void do_oop(oop* p) { do_oop_work(p); } 5461 void do_oop(narrowOop* p) { do_oop_work(p); } 5462 }; 5463 5464 class UnregisterNMethodOopClosure: public OopClosure { 5465 G1CollectedHeap* _g1h; 5466 nmethod* _nm; 5467 5468 template <class T> void do_oop_work(T* p) { 5469 T heap_oop = oopDesc::load_heap_oop(p); 5470 if (!oopDesc::is_null(heap_oop)) { 5471 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 5472 HeapRegion* hr = _g1h->heap_region_containing(obj); 5473 assert(!hr->is_continues_humongous(), 5474 "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT 5475 " starting at " HR_FORMAT, 5476 p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); 5477 5478 hr->remove_strong_code_root(_nm); 5479 } 5480 } 5481 5482 public: 5483 UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 5484 _g1h(g1h), _nm(nm) {} 5485 5486 void do_oop(oop* p) { do_oop_work(p); } 5487 void do_oop(narrowOop* p) { do_oop_work(p); } 5488 }; 5489 5490 void G1CollectedHeap::register_nmethod(nmethod* nm) { 5491 CollectedHeap::register_nmethod(nm); 5492 5493 guarantee(nm != NULL, "sanity"); 5494 RegisterNMethodOopClosure reg_cl(this, nm); 5495 nm->oops_do(®_cl); 5496 } 5497 5498 void G1CollectedHeap::unregister_nmethod(nmethod* nm) { 5499 CollectedHeap::unregister_nmethod(nm); 5500 5501 guarantee(nm != NULL, "sanity"); 5502 UnregisterNMethodOopClosure reg_cl(this, nm); 5503 nm->oops_do(®_cl, true); 5504 } 5505 5506 void G1CollectedHeap::purge_code_root_memory() { 5507 double purge_start = os::elapsedTime(); 5508 G1CodeRootSet::purge(); 5509 double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0; 5510 g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms); 5511 } 5512 5513 class RebuildStrongCodeRootClosure: public CodeBlobClosure { 5514 G1CollectedHeap* _g1h; 5515 5516 public: 5517 RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) : 5518 _g1h(g1h) {} 5519 5520 void do_code_blob(CodeBlob* cb) { 5521 nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL; 5522 if (nm == NULL) { 5523 return; 5524 } 5525 5526 if (ScavengeRootsInCode) { 5527 _g1h->register_nmethod(nm); 5528 } 5529 } 5530 }; 5531 5532 void G1CollectedHeap::rebuild_strong_code_roots() { 5533 RebuildStrongCodeRootClosure blob_cl(this); 5534 CodeCache::blobs_do(&blob_cl); 5535 } --- EOF ---