1 /* 2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/stringTable.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "classfile/vmSymbols.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/compiledIC.hpp" 31 #include "code/codeCacheExtensions.hpp" 32 #include "code/scopeDesc.hpp" 33 #include "code/vtableStubs.hpp" 34 #include "compiler/abstractCompiler.hpp" 35 #include "compiler/compileBroker.hpp" 36 #include "compiler/disassembler.hpp" 37 #include "gc/shared/gcLocker.inline.hpp" 38 #include "interpreter/interpreter.hpp" 39 #include "interpreter/interpreterRuntime.hpp" 40 #include "logging/log.hpp" 41 #include "memory/metaspaceShared.hpp" 42 #include "memory/resourceArea.hpp" 43 #include "memory/universe.inline.hpp" 44 #include "oops/klass.hpp" 45 #include "oops/objArrayKlass.hpp" 46 #include "oops/oop.inline.hpp" 47 #include "prims/forte.hpp" 48 #include "prims/jvmtiExport.hpp" 49 #include "prims/methodHandles.hpp" 50 #include "prims/nativeLookup.hpp" 51 #include "runtime/arguments.hpp" 52 #include "runtime/atomic.hpp" 53 #include "runtime/biasedLocking.hpp" 54 #include "runtime/compilationPolicy.hpp" 55 #include "runtime/handles.inline.hpp" 56 #include "runtime/init.hpp" 57 #include "runtime/interfaceSupport.hpp" 58 #include "runtime/java.hpp" 59 #include "runtime/javaCalls.hpp" 60 #include "runtime/sharedRuntime.hpp" 61 #include "runtime/stubRoutines.hpp" 62 #include "runtime/vframe.hpp" 63 #include "runtime/vframeArray.hpp" 64 #include "trace/tracing.hpp" 65 #include "utilities/copy.hpp" 66 #include "utilities/dtrace.hpp" 67 #include "utilities/events.hpp" 68 #include "utilities/hashtable.inline.hpp" 69 #include "utilities/macros.hpp" 70 #include "utilities/xmlstream.hpp" 71 #ifdef COMPILER1 72 #include "c1/c1_Runtime1.hpp" 73 #endif 74 75 // Shared stub locations 76 RuntimeStub* SharedRuntime::_wrong_method_blob; 77 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob; 78 RuntimeStub* SharedRuntime::_ic_miss_blob; 79 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; 80 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; 81 RuntimeStub* SharedRuntime::_resolve_static_call_blob; 82 83 DeoptimizationBlob* SharedRuntime::_deopt_blob; 84 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob; 85 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; 86 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; 87 88 #ifdef COMPILER2 89 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; 90 #endif // COMPILER2 91 92 93 //----------------------------generate_stubs----------------------------------- 94 void SharedRuntime::generate_stubs() { 95 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); 96 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub"); 97 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); 98 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); 99 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); 100 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); 101 102 #if defined(COMPILER2) || INCLUDE_JVMCI 103 // Vectors are generated only by C2 and JVMCI. 104 bool support_wide = is_wide_vector(MaxVectorSize); 105 if (support_wide) { 106 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP); 107 } 108 #endif // COMPILER2 || INCLUDE_JVMCI 109 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP); 110 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN); 111 112 generate_deopt_blob(); 113 114 #ifdef COMPILER2 115 generate_uncommon_trap_blob(); 116 #endif // COMPILER2 117 } 118 119 #include <math.h> 120 121 // Implementation of SharedRuntime 122 123 #ifndef PRODUCT 124 // For statistics 125 int SharedRuntime::_ic_miss_ctr = 0; 126 int SharedRuntime::_wrong_method_ctr = 0; 127 int SharedRuntime::_resolve_static_ctr = 0; 128 int SharedRuntime::_resolve_virtual_ctr = 0; 129 int SharedRuntime::_resolve_opt_virtual_ctr = 0; 130 int SharedRuntime::_implicit_null_throws = 0; 131 int SharedRuntime::_implicit_div0_throws = 0; 132 int SharedRuntime::_throw_null_ctr = 0; 133 134 int SharedRuntime::_nof_normal_calls = 0; 135 int SharedRuntime::_nof_optimized_calls = 0; 136 int SharedRuntime::_nof_inlined_calls = 0; 137 int SharedRuntime::_nof_megamorphic_calls = 0; 138 int SharedRuntime::_nof_static_calls = 0; 139 int SharedRuntime::_nof_inlined_static_calls = 0; 140 int SharedRuntime::_nof_interface_calls = 0; 141 int SharedRuntime::_nof_optimized_interface_calls = 0; 142 int SharedRuntime::_nof_inlined_interface_calls = 0; 143 int SharedRuntime::_nof_megamorphic_interface_calls = 0; 144 int SharedRuntime::_nof_removable_exceptions = 0; 145 146 int SharedRuntime::_new_instance_ctr=0; 147 int SharedRuntime::_new_array_ctr=0; 148 int SharedRuntime::_multi1_ctr=0; 149 int SharedRuntime::_multi2_ctr=0; 150 int SharedRuntime::_multi3_ctr=0; 151 int SharedRuntime::_multi4_ctr=0; 152 int SharedRuntime::_multi5_ctr=0; 153 int SharedRuntime::_mon_enter_stub_ctr=0; 154 int SharedRuntime::_mon_exit_stub_ctr=0; 155 int SharedRuntime::_mon_enter_ctr=0; 156 int SharedRuntime::_mon_exit_ctr=0; 157 int SharedRuntime::_partial_subtype_ctr=0; 158 int SharedRuntime::_jbyte_array_copy_ctr=0; 159 int SharedRuntime::_jshort_array_copy_ctr=0; 160 int SharedRuntime::_jint_array_copy_ctr=0; 161 int SharedRuntime::_jlong_array_copy_ctr=0; 162 int SharedRuntime::_oop_array_copy_ctr=0; 163 int SharedRuntime::_checkcast_array_copy_ctr=0; 164 int SharedRuntime::_unsafe_array_copy_ctr=0; 165 int SharedRuntime::_generic_array_copy_ctr=0; 166 int SharedRuntime::_slow_array_copy_ctr=0; 167 int SharedRuntime::_find_handler_ctr=0; 168 int SharedRuntime::_rethrow_ctr=0; 169 170 int SharedRuntime::_ICmiss_index = 0; 171 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 172 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 173 174 175 void SharedRuntime::trace_ic_miss(address at) { 176 for (int i = 0; i < _ICmiss_index; i++) { 177 if (_ICmiss_at[i] == at) { 178 _ICmiss_count[i]++; 179 return; 180 } 181 } 182 int index = _ICmiss_index++; 183 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 184 _ICmiss_at[index] = at; 185 _ICmiss_count[index] = 1; 186 } 187 188 void SharedRuntime::print_ic_miss_histogram() { 189 if (ICMissHistogram) { 190 tty->print_cr("IC Miss Histogram:"); 191 int tot_misses = 0; 192 for (int i = 0; i < _ICmiss_index; i++) { 193 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 194 tot_misses += _ICmiss_count[i]; 195 } 196 tty->print_cr("Total IC misses: %7d", tot_misses); 197 } 198 } 199 #endif // PRODUCT 200 201 #if INCLUDE_ALL_GCS 202 203 // G1 write-barrier pre: executed before a pointer store. 204 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread)) 205 if (orig == NULL) { 206 assert(false, "should be optimized out"); 207 return; 208 } 209 assert(orig->is_oop(true /* ignore mark word */), "Error"); 210 // store the original value that was in the field reference 211 thread->satb_mark_queue().enqueue(orig); 212 JRT_END 213 214 // G1 write-barrier post: executed after a pointer store. 215 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread)) 216 thread->dirty_card_queue().enqueue(card_addr); 217 JRT_END 218 219 #endif // INCLUDE_ALL_GCS 220 221 222 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 223 return x * y; 224 JRT_END 225 226 227 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 228 if (x == min_jlong && y == CONST64(-1)) { 229 return x; 230 } else { 231 return x / y; 232 } 233 JRT_END 234 235 236 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 237 if (x == min_jlong && y == CONST64(-1)) { 238 return 0; 239 } else { 240 return x % y; 241 } 242 JRT_END 243 244 245 const juint float_sign_mask = 0x7FFFFFFF; 246 const juint float_infinity = 0x7F800000; 247 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 248 const julong double_infinity = CONST64(0x7FF0000000000000); 249 250 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 251 #ifdef _WIN64 252 // 64-bit Windows on amd64 returns the wrong values for 253 // infinity operands. 254 union { jfloat f; juint i; } xbits, ybits; 255 xbits.f = x; 256 ybits.f = y; 257 // x Mod Infinity == x unless x is infinity 258 if (((xbits.i & float_sign_mask) != float_infinity) && 259 ((ybits.i & float_sign_mask) == float_infinity) ) { 260 return x; 261 } 262 return ((jfloat)fmod_winx64((double)x, (double)y)); 263 #else 264 return ((jfloat)fmod((double)x,(double)y)); 265 #endif 266 JRT_END 267 268 269 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 270 #ifdef _WIN64 271 union { jdouble d; julong l; } xbits, ybits; 272 xbits.d = x; 273 ybits.d = y; 274 // x Mod Infinity == x unless x is infinity 275 if (((xbits.l & double_sign_mask) != double_infinity) && 276 ((ybits.l & double_sign_mask) == double_infinity) ) { 277 return x; 278 } 279 return ((jdouble)fmod_winx64((double)x, (double)y)); 280 #else 281 return ((jdouble)fmod((double)x,(double)y)); 282 #endif 283 JRT_END 284 285 #ifdef __SOFTFP__ 286 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 287 return x + y; 288 JRT_END 289 290 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 291 return x - y; 292 JRT_END 293 294 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 295 return x * y; 296 JRT_END 297 298 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 299 return x / y; 300 JRT_END 301 302 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 303 return x + y; 304 JRT_END 305 306 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 307 return x - y; 308 JRT_END 309 310 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 311 return x * y; 312 JRT_END 313 314 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 315 return x / y; 316 JRT_END 317 318 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 319 return (jfloat)x; 320 JRT_END 321 322 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 323 return (jdouble)x; 324 JRT_END 325 326 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 327 return (jdouble)x; 328 JRT_END 329 330 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 331 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 332 JRT_END 333 334 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 335 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 336 JRT_END 337 338 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 339 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 340 JRT_END 341 342 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 343 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 344 JRT_END 345 346 // Functions to return the opposite of the aeabi functions for nan. 347 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 348 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 349 JRT_END 350 351 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 352 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 353 JRT_END 354 355 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 356 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 357 JRT_END 358 359 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 360 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 361 JRT_END 362 363 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 364 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 365 JRT_END 366 367 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 368 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 369 JRT_END 370 371 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 372 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 373 JRT_END 374 375 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 376 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 377 JRT_END 378 379 // Intrinsics make gcc generate code for these. 380 float SharedRuntime::fneg(float f) { 381 return -f; 382 } 383 384 double SharedRuntime::dneg(double f) { 385 return -f; 386 } 387 388 #endif // __SOFTFP__ 389 390 #if defined(__SOFTFP__) || defined(E500V2) 391 // Intrinsics make gcc generate code for these. 392 double SharedRuntime::dabs(double f) { 393 return (f <= (double)0.0) ? (double)0.0 - f : f; 394 } 395 396 #endif 397 398 #if defined(__SOFTFP__) || defined(PPC) 399 double SharedRuntime::dsqrt(double f) { 400 return sqrt(f); 401 } 402 #endif 403 404 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 405 if (g_isnan(x)) 406 return 0; 407 if (x >= (jfloat) max_jint) 408 return max_jint; 409 if (x <= (jfloat) min_jint) 410 return min_jint; 411 return (jint) x; 412 JRT_END 413 414 415 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 416 if (g_isnan(x)) 417 return 0; 418 if (x >= (jfloat) max_jlong) 419 return max_jlong; 420 if (x <= (jfloat) min_jlong) 421 return min_jlong; 422 return (jlong) x; 423 JRT_END 424 425 426 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 427 if (g_isnan(x)) 428 return 0; 429 if (x >= (jdouble) max_jint) 430 return max_jint; 431 if (x <= (jdouble) min_jint) 432 return min_jint; 433 return (jint) x; 434 JRT_END 435 436 437 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 438 if (g_isnan(x)) 439 return 0; 440 if (x >= (jdouble) max_jlong) 441 return max_jlong; 442 if (x <= (jdouble) min_jlong) 443 return min_jlong; 444 return (jlong) x; 445 JRT_END 446 447 448 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 449 return (jfloat)x; 450 JRT_END 451 452 453 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 454 return (jfloat)x; 455 JRT_END 456 457 458 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 459 return (jdouble)x; 460 JRT_END 461 462 // Exception handling across interpreter/compiler boundaries 463 // 464 // exception_handler_for_return_address(...) returns the continuation address. 465 // The continuation address is the entry point of the exception handler of the 466 // previous frame depending on the return address. 467 468 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) { 469 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 470 assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 471 472 // Reset method handle flag. 473 thread->set_is_method_handle_return(false); 474 475 #if INCLUDE_JVMCI 476 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 477 // and other exception handler continuations do not read it 478 thread->set_exception_pc(NULL); 479 #endif 480 481 // The fastest case first 482 CodeBlob* blob = CodeCache::find_blob(return_address); 483 nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL; 484 if (nm != NULL) { 485 // Set flag if return address is a method handle call site. 486 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 487 // native nmethods don't have exception handlers 488 assert(!nm->is_native_method(), "no exception handler"); 489 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 490 if (nm->is_deopt_pc(return_address)) { 491 // If we come here because of a stack overflow, the stack may be 492 // unguarded. Reguard the stack otherwise if we return to the 493 // deopt blob and the stack bang causes a stack overflow we 494 // crash. 495 bool guard_pages_enabled = thread->stack_guards_enabled(); 496 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack(); 497 if (thread->reserved_stack_activation() != thread->stack_base()) { 498 thread->set_reserved_stack_activation(thread->stack_base()); 499 } 500 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 501 return SharedRuntime::deopt_blob()->unpack_with_exception(); 502 } else { 503 return nm->exception_begin(); 504 } 505 } 506 507 // Entry code 508 if (StubRoutines::returns_to_call_stub(return_address)) { 509 return StubRoutines::catch_exception_entry(); 510 } 511 // Interpreted code 512 if (Interpreter::contains(return_address)) { 513 return Interpreter::rethrow_exception_entry(); 514 } 515 516 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub"); 517 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!"); 518 519 #ifndef PRODUCT 520 { ResourceMark rm; 521 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 522 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 523 tty->print_cr("b) other problem"); 524 } 525 #endif // PRODUCT 526 527 ShouldNotReachHere(); 528 return NULL; 529 } 530 531 532 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address)) 533 return raw_exception_handler_for_return_address(thread, return_address); 534 JRT_END 535 536 537 address SharedRuntime::get_poll_stub(address pc) { 538 address stub; 539 // Look up the code blob 540 CodeBlob *cb = CodeCache::find_blob(pc); 541 542 // Should be an nmethod 543 assert(cb && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod"); 544 545 // Look up the relocation information 546 assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc), 547 "safepoint polling: type must be poll"); 548 549 #ifdef ASSERT 550 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 551 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 552 Disassembler::decode(cb); 553 fatal("Only polling locations are used for safepoint"); 554 } 555 #endif 556 557 bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc); 558 bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors(); 559 if (at_poll_return) { 560 assert(SharedRuntime::polling_page_return_handler_blob() != NULL, 561 "polling page return stub not created yet"); 562 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 563 } else if (has_wide_vectors) { 564 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL, 565 "polling page vectors safepoint stub not created yet"); 566 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 567 } else { 568 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL, 569 "polling page safepoint stub not created yet"); 570 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 571 } 572 log_debug(safepoint)("... found polling page %s exception at pc = " 573 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 574 at_poll_return ? "return" : "loop", 575 (intptr_t)pc, (intptr_t)stub); 576 return stub; 577 } 578 579 580 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) { 581 assert(caller.is_interpreted_frame(), ""); 582 int args_size = ArgumentSizeComputer(sig).size() + 1; 583 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack"); 584 oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1)); 585 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop"); 586 return result; 587 } 588 589 590 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) { 591 if (JvmtiExport::can_post_on_exceptions()) { 592 vframeStream vfst(thread, true); 593 methodHandle method = methodHandle(thread, vfst.method()); 594 address bcp = method()->bcp_from(vfst.bci()); 595 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception()); 596 } 597 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception); 598 } 599 600 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) { 601 Handle h_exception = Exceptions::new_exception(thread, name, message); 602 throw_and_post_jvmti_exception(thread, h_exception); 603 } 604 605 // The interpreter code to call this tracing function is only 606 // called/generated when UL is on for redefine, class and has the right level 607 // and tags. Since obsolete methods are never compiled, we don't have 608 // to modify the compilers to generate calls to this function. 609 // 610 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 611 JavaThread* thread, Method* method)) 612 if (method->is_obsolete()) { 613 // We are calling an obsolete method, but this is not necessarily 614 // an error. Our method could have been redefined just after we 615 // fetched the Method* from the constant pool. 616 ResourceMark rm; 617 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 618 } 619 return 0; 620 JRT_END 621 622 // ret_pc points into caller; we are returning caller's exception handler 623 // for given exception 624 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception, 625 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 626 assert(cm != NULL, "must exist"); 627 ResourceMark rm; 628 629 #if INCLUDE_JVMCI 630 if (cm->is_compiled_by_jvmci()) { 631 // lookup exception handler for this pc 632 int catch_pco = ret_pc - cm->code_begin(); 633 ExceptionHandlerTable table(cm); 634 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 635 if (t != NULL) { 636 return cm->code_begin() + t->pco(); 637 } else { 638 // there is no exception handler for this pc => deoptimize 639 cm->make_not_entrant(); 640 641 // Use Deoptimization::deoptimize for all of its side-effects: 642 // revoking biases of monitors, gathering traps statistics, logging... 643 // it also patches the return pc but we do not care about that 644 // since we return a continuation to the deopt_blob below. 645 JavaThread* thread = JavaThread::current(); 646 RegisterMap reg_map(thread, UseBiasedLocking); 647 frame runtime_frame = thread->last_frame(); 648 frame caller_frame = runtime_frame.sender(®_map); 649 Deoptimization::deoptimize(thread, caller_frame, ®_map, Deoptimization::Reason_not_compiled_exception_handler); 650 651 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 652 } 653 } 654 #endif // INCLUDE_JVMCI 655 656 nmethod* nm = cm->as_nmethod(); 657 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 658 // determine handler bci, if any 659 EXCEPTION_MARK; 660 661 int handler_bci = -1; 662 int scope_depth = 0; 663 if (!force_unwind) { 664 int bci = sd->bci(); 665 bool recursive_exception = false; 666 do { 667 bool skip_scope_increment = false; 668 // exception handler lookup 669 KlassHandle ek (THREAD, exception->klass()); 670 methodHandle mh(THREAD, sd->method()); 671 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 672 if (HAS_PENDING_EXCEPTION) { 673 recursive_exception = true; 674 // We threw an exception while trying to find the exception handler. 675 // Transfer the new exception to the exception handle which will 676 // be set into thread local storage, and do another lookup for an 677 // exception handler for this exception, this time starting at the 678 // BCI of the exception handler which caused the exception to be 679 // thrown (bugs 4307310 and 4546590). Set "exception" reference 680 // argument to ensure that the correct exception is thrown (4870175). 681 recursive_exception_occurred = true; 682 exception = Handle(THREAD, PENDING_EXCEPTION); 683 CLEAR_PENDING_EXCEPTION; 684 if (handler_bci >= 0) { 685 bci = handler_bci; 686 handler_bci = -1; 687 skip_scope_increment = true; 688 } 689 } 690 else { 691 recursive_exception = false; 692 } 693 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 694 sd = sd->sender(); 695 if (sd != NULL) { 696 bci = sd->bci(); 697 } 698 ++scope_depth; 699 } 700 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL)); 701 } 702 703 // found handling method => lookup exception handler 704 int catch_pco = ret_pc - nm->code_begin(); 705 706 ExceptionHandlerTable table(nm); 707 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 708 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) { 709 // Allow abbreviated catch tables. The idea is to allow a method 710 // to materialize its exceptions without committing to the exact 711 // routing of exceptions. In particular this is needed for adding 712 // a synthetic handler to unlock monitors when inlining 713 // synchronized methods since the unlock path isn't represented in 714 // the bytecodes. 715 t = table.entry_for(catch_pco, -1, 0); 716 } 717 718 #ifdef COMPILER1 719 if (t == NULL && nm->is_compiled_by_c1()) { 720 assert(nm->unwind_handler_begin() != NULL, ""); 721 return nm->unwind_handler_begin(); 722 } 723 #endif 724 725 if (t == NULL) { 726 ttyLocker ttyl; 727 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci); 728 tty->print_cr(" Exception:"); 729 exception->print(); 730 tty->cr(); 731 tty->print_cr(" Compiled exception table :"); 732 table.print(); 733 nm->print_code(); 734 guarantee(false, "missing exception handler"); 735 return NULL; 736 } 737 738 return nm->code_begin() + t->pco(); 739 } 740 741 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread)) 742 // These errors occur only at call sites 743 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError()); 744 JRT_END 745 746 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) 747 // These errors occur only at call sites 748 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 749 JRT_END 750 751 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread)) 752 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 753 JRT_END 754 755 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread)) 756 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 757 JRT_END 758 759 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread)) 760 // This entry point is effectively only used for NullPointerExceptions which occur at inline 761 // cache sites (when the callee activation is not yet set up) so we are at a call site 762 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 763 JRT_END 764 765 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread)) 766 throw_StackOverflowError_common(thread, false); 767 JRT_END 768 769 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread)) 770 throw_StackOverflowError_common(thread, true); 771 JRT_END 772 773 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) { 774 // We avoid using the normal exception construction in this case because 775 // it performs an upcall to Java, and we're already out of stack space. 776 Thread* THREAD = thread; 777 Klass* k = SystemDictionary::StackOverflowError_klass(); 778 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 779 if (delayed) { 780 java_lang_Throwable::set_message(exception_oop, 781 Universe::delayed_stack_overflow_error_message()); 782 } 783 Handle exception (thread, exception_oop); 784 if (StackTraceInThrowable) { 785 java_lang_Throwable::fill_in_stack_trace(exception); 786 } 787 // Increment counter for hs_err file reporting 788 Atomic::inc(&Exceptions::_stack_overflow_errors); 789 throw_and_post_jvmti_exception(thread, exception); 790 } 791 792 #if INCLUDE_JVMCI 793 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) { 794 assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason"); 795 thread->set_jvmci_implicit_exception_pc(pc); 796 thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret)); 797 return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap()); 798 } 799 #endif // INCLUDE_JVMCI 800 801 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread, 802 address pc, 803 SharedRuntime::ImplicitExceptionKind exception_kind) 804 { 805 address target_pc = NULL; 806 807 if (Interpreter::contains(pc)) { 808 #ifdef CC_INTERP 809 // C++ interpreter doesn't throw implicit exceptions 810 ShouldNotReachHere(); 811 #else 812 switch (exception_kind) { 813 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 814 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 815 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 816 default: ShouldNotReachHere(); 817 } 818 #endif // !CC_INTERP 819 } else { 820 switch (exception_kind) { 821 case STACK_OVERFLOW: { 822 // Stack overflow only occurs upon frame setup; the callee is 823 // going to be unwound. Dispatch to a shared runtime stub 824 // which will cause the StackOverflowError to be fabricated 825 // and processed. 826 // Stack overflow should never occur during deoptimization: 827 // the compiled method bangs the stack by as much as the 828 // interpreter would need in case of a deoptimization. The 829 // deoptimization blob and uncommon trap blob bang the stack 830 // in a debug VM to verify the correctness of the compiled 831 // method stack banging. 832 assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap"); 833 Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 834 return StubRoutines::throw_StackOverflowError_entry(); 835 } 836 837 case IMPLICIT_NULL: { 838 if (VtableStubs::contains(pc)) { 839 // We haven't yet entered the callee frame. Fabricate an 840 // exception and begin dispatching it in the caller. Since 841 // the caller was at a call site, it's safe to destroy all 842 // caller-saved registers, as these entry points do. 843 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 844 845 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error. 846 if (vt_stub == NULL) return NULL; 847 848 if (vt_stub->is_abstract_method_error(pc)) { 849 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 850 Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 851 return StubRoutines::throw_AbstractMethodError_entry(); 852 } else { 853 Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 854 return StubRoutines::throw_NullPointerException_at_call_entry(); 855 } 856 } else { 857 CodeBlob* cb = CodeCache::find_blob(pc); 858 859 // If code blob is NULL, then return NULL to signal handler to report the SEGV error. 860 if (cb == NULL) return NULL; 861 862 // Exception happened in CodeCache. Must be either: 863 // 1. Inline-cache check in C2I handler blob, 864 // 2. Inline-cache check in nmethod, or 865 // 3. Implicit null exception in nmethod 866 867 if (!cb->is_compiled()) { 868 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 869 if (!is_in_blob) { 870 // Allow normal crash reporting to handle this 871 return NULL; 872 } 873 Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 874 // There is no handler here, so we will simply unwind. 875 return StubRoutines::throw_NullPointerException_at_call_entry(); 876 } 877 878 // Otherwise, it's a compiled method. Consult its exception handlers. 879 CompiledMethod* cm = (CompiledMethod*)cb; 880 if (cm->inlinecache_check_contains(pc)) { 881 // exception happened inside inline-cache check code 882 // => the nmethod is not yet active (i.e., the frame 883 // is not set up yet) => use return address pushed by 884 // caller => don't push another return address 885 Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 886 return StubRoutines::throw_NullPointerException_at_call_entry(); 887 } 888 889 if (cm->method()->is_method_handle_intrinsic()) { 890 // exception happened inside MH dispatch code, similar to a vtable stub 891 Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 892 return StubRoutines::throw_NullPointerException_at_call_entry(); 893 } 894 895 #ifndef PRODUCT 896 _implicit_null_throws++; 897 #endif 898 #if INCLUDE_JVMCI 899 if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) { 900 // If there's no PcDesc then we'll die way down inside of 901 // deopt instead of just getting normal error reporting, 902 // so only go there if it will succeed. 903 return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check); 904 } else { 905 #endif // INCLUDE_JVMCI 906 assert (cm->is_nmethod(), "Expect nmethod"); 907 target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc); 908 #if INCLUDE_JVMCI 909 } 910 #endif // INCLUDE_JVMCI 911 // If there's an unexpected fault, target_pc might be NULL, 912 // in which case we want to fall through into the normal 913 // error handling code. 914 } 915 916 break; // fall through 917 } 918 919 920 case IMPLICIT_DIVIDE_BY_ZERO: { 921 CompiledMethod* cm = CodeCache::find_compiled(pc); 922 guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions"); 923 #ifndef PRODUCT 924 _implicit_div0_throws++; 925 #endif 926 #if INCLUDE_JVMCI 927 if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) { 928 return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check); 929 } else { 930 #endif // INCLUDE_JVMCI 931 target_pc = cm->continuation_for_implicit_exception(pc); 932 #if INCLUDE_JVMCI 933 } 934 #endif // INCLUDE_JVMCI 935 // If there's an unexpected fault, target_pc might be NULL, 936 // in which case we want to fall through into the normal 937 // error handling code. 938 break; // fall through 939 } 940 941 default: ShouldNotReachHere(); 942 } 943 944 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 945 946 if (exception_kind == IMPLICIT_NULL) { 947 #ifndef PRODUCT 948 // for AbortVMOnException flag 949 Exceptions::debug_check_abort("java.lang.NullPointerException"); 950 #endif //PRODUCT 951 Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 952 } else { 953 #ifndef PRODUCT 954 // for AbortVMOnException flag 955 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 956 #endif //PRODUCT 957 Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 958 } 959 return target_pc; 960 } 961 962 ShouldNotReachHere(); 963 return NULL; 964 } 965 966 967 /** 968 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 969 * installed in the native function entry of all native Java methods before 970 * they get linked to their actual native methods. 971 * 972 * \note 973 * This method actually never gets called! The reason is because 974 * the interpreter's native entries call NativeLookup::lookup() which 975 * throws the exception when the lookup fails. The exception is then 976 * caught and forwarded on the return from NativeLookup::lookup() call 977 * before the call to the native function. This might change in the future. 978 */ 979 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 980 { 981 // We return a bad value here to make sure that the exception is 982 // forwarded before we look at the return value. 983 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle); 984 } 985 JNI_END 986 987 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 988 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 989 } 990 991 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) 992 assert(obj->is_oop(), "must be a valid oop"); 993 #if INCLUDE_JVMCI 994 // This removes the requirement for JVMCI compilers to emit code 995 // performing a dynamic check that obj has a finalizer before 996 // calling this routine. There should be no performance impact 997 // for C1 since it emits a dynamic check. C2 and the interpreter 998 // uses other runtime routines for registering finalizers. 999 if (!obj->klass()->has_finalizer()) { 1000 return; 1001 } 1002 #endif // INCLUDE_JVMCI 1003 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1004 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1005 JRT_END 1006 1007 1008 jlong SharedRuntime::get_java_tid(Thread* thread) { 1009 if (thread != NULL) { 1010 if (thread->is_Java_thread()) { 1011 oop obj = ((JavaThread*)thread)->threadObj(); 1012 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj); 1013 } 1014 } 1015 return 0; 1016 } 1017 1018 /** 1019 * This function ought to be a void function, but cannot be because 1020 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1021 * 6254741. Once that is fixed we can remove the dummy return value. 1022 */ 1023 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) { 1024 return dtrace_object_alloc_base(Thread::current(), o, size); 1025 } 1026 1027 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) { 1028 assert(DTraceAllocProbes, "wrong call"); 1029 Klass* klass = o->klass(); 1030 Symbol* name = klass->name(); 1031 HOTSPOT_OBJECT_ALLOC( 1032 get_java_tid(thread), 1033 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1034 return 0; 1035 } 1036 1037 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1038 JavaThread* thread, Method* method)) 1039 assert(DTraceMethodProbes, "wrong call"); 1040 Symbol* kname = method->klass_name(); 1041 Symbol* name = method->name(); 1042 Symbol* sig = method->signature(); 1043 HOTSPOT_METHOD_ENTRY( 1044 get_java_tid(thread), 1045 (char *) kname->bytes(), kname->utf8_length(), 1046 (char *) name->bytes(), name->utf8_length(), 1047 (char *) sig->bytes(), sig->utf8_length()); 1048 return 0; 1049 JRT_END 1050 1051 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1052 JavaThread* thread, Method* method)) 1053 assert(DTraceMethodProbes, "wrong call"); 1054 Symbol* kname = method->klass_name(); 1055 Symbol* name = method->name(); 1056 Symbol* sig = method->signature(); 1057 HOTSPOT_METHOD_RETURN( 1058 get_java_tid(thread), 1059 (char *) kname->bytes(), kname->utf8_length(), 1060 (char *) name->bytes(), name->utf8_length(), 1061 (char *) sig->bytes(), sig->utf8_length()); 1062 return 0; 1063 JRT_END 1064 1065 1066 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1067 // for a call current in progress, i.e., arguments has been pushed on stack 1068 // put callee has not been invoked yet. Used by: resolve virtual/static, 1069 // vtable updates, etc. Caller frame must be compiled. 1070 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1071 ResourceMark rm(THREAD); 1072 1073 // last java frame on stack (which includes native call frames) 1074 vframeStream vfst(thread, true); // Do not skip and javaCalls 1075 1076 return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD); 1077 } 1078 1079 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) { 1080 CompiledMethod* caller = vfst.nm(); 1081 1082 nmethodLocker caller_lock(caller); 1083 1084 address pc = vfst.frame_pc(); 1085 { // Get call instruction under lock because another thread may be busy patching it. 1086 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); 1087 return caller->attached_method_before_pc(pc); 1088 } 1089 return NULL; 1090 } 1091 1092 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1093 // for a call current in progress, i.e., arguments has been pushed on stack 1094 // but callee has not been invoked yet. Caller frame must be compiled. 1095 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread, 1096 vframeStream& vfst, 1097 Bytecodes::Code& bc, 1098 CallInfo& callinfo, TRAPS) { 1099 Handle receiver; 1100 Handle nullHandle; //create a handy null handle for exception returns 1101 1102 assert(!vfst.at_end(), "Java frame must exist"); 1103 1104 // Find caller and bci from vframe 1105 methodHandle caller(THREAD, vfst.method()); 1106 int bci = vfst.bci(); 1107 1108 Bytecode_invoke bytecode(caller, bci); 1109 int bytecode_index = bytecode.index(); 1110 1111 methodHandle attached_method = extract_attached_method(vfst); 1112 if (attached_method.not_null()) { 1113 methodHandle callee = bytecode.static_target(CHECK_NH); 1114 vmIntrinsics::ID id = callee->intrinsic_id(); 1115 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1116 // it attaches statically resolved method to the call site. 1117 if (MethodHandles::is_signature_polymorphic(id) && 1118 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1119 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1120 1121 // Adjust invocation mode according to the attached method. 1122 switch (bc) { 1123 case Bytecodes::_invokeinterface: 1124 if (!attached_method->method_holder()->is_interface()) { 1125 bc = Bytecodes::_invokevirtual; 1126 } 1127 break; 1128 case Bytecodes::_invokehandle: 1129 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1130 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1131 : Bytecodes::_invokevirtual; 1132 } 1133 break; 1134 } 1135 } 1136 } else { 1137 bc = bytecode.invoke_code(); 1138 } 1139 1140 bool has_receiver = bc != Bytecodes::_invokestatic && 1141 bc != Bytecodes::_invokedynamic && 1142 bc != Bytecodes::_invokehandle; 1143 1144 // Find receiver for non-static call 1145 if (has_receiver) { 1146 // This register map must be update since we need to find the receiver for 1147 // compiled frames. The receiver might be in a register. 1148 RegisterMap reg_map2(thread); 1149 frame stubFrame = thread->last_frame(); 1150 // Caller-frame is a compiled frame 1151 frame callerFrame = stubFrame.sender(®_map2); 1152 1153 if (attached_method.is_null()) { 1154 methodHandle callee = bytecode.static_target(CHECK_NH); 1155 if (callee.is_null()) { 1156 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1157 } 1158 } 1159 1160 // Retrieve from a compiled argument list 1161 receiver = Handle(THREAD, callerFrame.retrieve_receiver(®_map2)); 1162 1163 if (receiver.is_null()) { 1164 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1165 } 1166 } 1167 1168 assert(receiver.is_null() || receiver->is_oop(), "wrong receiver"); 1169 1170 // Resolve method 1171 if (attached_method.not_null()) { 1172 // Parameterized by attached method. 1173 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1174 } else { 1175 // Parameterized by bytecode. 1176 constantPoolHandle constants(THREAD, caller->constants()); 1177 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1178 } 1179 1180 #ifdef ASSERT 1181 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1182 if (has_receiver) { 1183 assert(receiver.not_null(), "should have thrown exception"); 1184 KlassHandle receiver_klass(THREAD, receiver->klass()); 1185 Klass* rk = NULL; 1186 if (attached_method.not_null()) { 1187 // In case there's resolved method attached, use its holder during the check. 1188 rk = attached_method->method_holder(); 1189 } else { 1190 // Klass is already loaded. 1191 constantPoolHandle constants(THREAD, caller->constants()); 1192 rk = constants->klass_ref_at(bytecode_index, CHECK_NH); 1193 } 1194 KlassHandle static_receiver_klass(THREAD, rk); 1195 methodHandle callee = callinfo.selected_method(); 1196 assert(receiver_klass->is_subtype_of(static_receiver_klass()), 1197 "actual receiver must be subclass of static receiver klass"); 1198 if (receiver_klass->is_instance_klass()) { 1199 if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) { 1200 tty->print_cr("ERROR: Klass not yet initialized!!"); 1201 receiver_klass()->print(); 1202 } 1203 assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized"); 1204 } 1205 } 1206 #endif 1207 1208 return receiver; 1209 } 1210 1211 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) { 1212 ResourceMark rm(THREAD); 1213 // We need first to check if any Java activations (compiled, interpreted) 1214 // exist on the stack since last JavaCall. If not, we need 1215 // to get the target method from the JavaCall wrapper. 1216 vframeStream vfst(thread, true); // Do not skip any javaCalls 1217 methodHandle callee_method; 1218 if (vfst.at_end()) { 1219 // No Java frames were found on stack since we did the JavaCall. 1220 // Hence the stack can only contain an entry_frame. We need to 1221 // find the target method from the stub frame. 1222 RegisterMap reg_map(thread, false); 1223 frame fr = thread->last_frame(); 1224 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1225 fr = fr.sender(®_map); 1226 assert(fr.is_entry_frame(), "must be"); 1227 // fr is now pointing to the entry frame. 1228 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method()); 1229 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??"); 1230 } else { 1231 Bytecodes::Code bc; 1232 CallInfo callinfo; 1233 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle())); 1234 callee_method = callinfo.selected_method(); 1235 } 1236 assert(callee_method()->is_method(), "must be"); 1237 return callee_method; 1238 } 1239 1240 // Resolves a call. 1241 methodHandle SharedRuntime::resolve_helper(JavaThread *thread, 1242 bool is_virtual, 1243 bool is_optimized, TRAPS) { 1244 methodHandle callee_method; 1245 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); 1246 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 1247 int retry_count = 0; 1248 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() && 1249 callee_method->method_holder() != SystemDictionary::Object_klass()) { 1250 // If has a pending exception then there is no need to re-try to 1251 // resolve this method. 1252 // If the method has been redefined, we need to try again. 1253 // Hack: we have no way to update the vtables of arrays, so don't 1254 // require that java.lang.Object has been updated. 1255 1256 // It is very unlikely that method is redefined more than 100 times 1257 // in the middle of resolve. If it is looping here more than 100 times 1258 // means then there could be a bug here. 1259 guarantee((retry_count++ < 100), 1260 "Could not resolve to latest version of redefined method"); 1261 // method is redefined in the middle of resolve so re-try. 1262 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); 1263 } 1264 } 1265 return callee_method; 1266 } 1267 1268 // Resolves a call. The compilers generate code for calls that go here 1269 // and are patched with the real destination of the call. 1270 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread, 1271 bool is_virtual, 1272 bool is_optimized, TRAPS) { 1273 1274 ResourceMark rm(thread); 1275 RegisterMap cbl_map(thread, false); 1276 frame caller_frame = thread->last_frame().sender(&cbl_map); 1277 1278 CodeBlob* caller_cb = caller_frame.cb(); 1279 guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method"); 1280 CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null(); 1281 1282 // make sure caller is not getting deoptimized 1283 // and removed before we are done with it. 1284 // CLEANUP - with lazy deopt shouldn't need this lock 1285 nmethodLocker caller_lock(caller_nm); 1286 1287 // determine call info & receiver 1288 // note: a) receiver is NULL for static calls 1289 // b) an exception is thrown if receiver is NULL for non-static calls 1290 CallInfo call_info; 1291 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1292 Handle receiver = find_callee_info(thread, invoke_code, 1293 call_info, CHECK_(methodHandle())); 1294 methodHandle callee_method = call_info.selected_method(); 1295 1296 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1297 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1298 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1299 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1300 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1301 1302 assert(caller_nm->is_alive(), "It should be alive"); 1303 1304 #ifndef PRODUCT 1305 // tracing/debugging/statistics 1306 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1307 (is_virtual) ? (&_resolve_virtual_ctr) : 1308 (&_resolve_static_ctr); 1309 Atomic::inc(addr); 1310 1311 if (TraceCallFixup) { 1312 ResourceMark rm(thread); 1313 tty->print("resolving %s%s (%s) call to", 1314 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1315 Bytecodes::name(invoke_code)); 1316 callee_method->print_short_name(tty); 1317 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1318 p2i(caller_frame.pc()), p2i(callee_method->code())); 1319 } 1320 #endif 1321 1322 // JSR 292 key invariant: 1323 // If the resolved method is a MethodHandle invoke target, the call 1324 // site must be a MethodHandle call site, because the lambda form might tail-call 1325 // leaving the stack in a state unknown to either caller or callee 1326 // TODO detune for now but we might need it again 1327 // assert(!callee_method->is_compiled_lambda_form() || 1328 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site"); 1329 1330 // Compute entry points. This might require generation of C2I converter 1331 // frames, so we cannot be holding any locks here. Furthermore, the 1332 // computation of the entry points is independent of patching the call. We 1333 // always return the entry-point, but we only patch the stub if the call has 1334 // not been deoptimized. Return values: For a virtual call this is an 1335 // (cached_oop, destination address) pair. For a static call/optimized 1336 // virtual this is just a destination address. 1337 1338 StaticCallInfo static_call_info; 1339 CompiledICInfo virtual_call_info; 1340 1341 // Make sure the callee nmethod does not get deoptimized and removed before 1342 // we are done patching the code. 1343 CompiledMethod* callee = callee_method->code(); 1344 1345 if (callee != NULL) { 1346 assert(callee->is_compiled(), "must be nmethod for patching"); 1347 } 1348 1349 if (callee != NULL && !callee->is_in_use()) { 1350 // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded. 1351 callee = NULL; 1352 } 1353 nmethodLocker nl_callee(callee); 1354 #ifdef ASSERT 1355 address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below 1356 #endif 1357 1358 if (is_virtual) { 1359 assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check"); 1360 bool static_bound = call_info.resolved_method()->can_be_statically_bound(); 1361 KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass()); 1362 CompiledIC::compute_monomorphic_entry(callee_method, h_klass, 1363 is_optimized, static_bound, virtual_call_info, 1364 CHECK_(methodHandle())); 1365 } else { 1366 // static call 1367 CompiledStaticCall::compute_entry(callee_method, static_call_info); 1368 } 1369 1370 // grab lock, check for deoptimization and potentially patch caller 1371 { 1372 MutexLocker ml_patch(CompiledIC_lock); 1373 1374 // Lock blocks for safepoint during which both nmethods can change state. 1375 1376 // Now that we are ready to patch if the Method* was redefined then 1377 // don't update call site and let the caller retry. 1378 // Don't update call site if callee nmethod was unloaded or deoptimized. 1379 // Don't update call site if callee nmethod was replaced by an other nmethod 1380 // which may happen when multiply alive nmethod (tiered compilation) 1381 // will be supported. 1382 if (!callee_method->is_old() && 1383 (callee == NULL || callee->is_in_use() && (callee_method->code() == callee))) { 1384 #ifdef ASSERT 1385 // We must not try to patch to jump to an already unloaded method. 1386 if (dest_entry_point != 0) { 1387 CodeBlob* cb = CodeCache::find_blob(dest_entry_point); 1388 assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee), 1389 "should not call unloaded nmethod"); 1390 } 1391 #endif 1392 if (is_virtual) { 1393 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1394 if (inline_cache->is_clean()) { 1395 inline_cache->set_to_monomorphic(virtual_call_info); 1396 } 1397 } else { 1398 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc()); 1399 if (ssc->is_clean()) ssc->set(static_call_info); 1400 } 1401 } 1402 1403 } // unlock CompiledIC_lock 1404 1405 return callee_method; 1406 } 1407 1408 1409 // Inline caches exist only in compiled code 1410 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread)) 1411 #ifdef ASSERT 1412 RegisterMap reg_map(thread, false); 1413 frame stub_frame = thread->last_frame(); 1414 assert(stub_frame.is_runtime_frame(), "sanity check"); 1415 frame caller_frame = stub_frame.sender(®_map); 1416 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame"); 1417 #endif /* ASSERT */ 1418 1419 methodHandle callee_method; 1420 JRT_BLOCK 1421 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL); 1422 // Return Method* through TLS 1423 thread->set_vm_result_2(callee_method()); 1424 JRT_BLOCK_END 1425 // return compiled code entry point after potential safepoints 1426 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1427 return callee_method->verified_code_entry(); 1428 JRT_END 1429 1430 1431 // Handle call site that has been made non-entrant 1432 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread)) 1433 // 6243940 We might end up in here if the callee is deoptimized 1434 // as we race to call it. We don't want to take a safepoint if 1435 // the caller was interpreted because the caller frame will look 1436 // interpreted to the stack walkers and arguments are now 1437 // "compiled" so it is much better to make this transition 1438 // invisible to the stack walking code. The i2c path will 1439 // place the callee method in the callee_target. It is stashed 1440 // there because if we try and find the callee by normal means a 1441 // safepoint is possible and have trouble gc'ing the compiled args. 1442 RegisterMap reg_map(thread, false); 1443 frame stub_frame = thread->last_frame(); 1444 assert(stub_frame.is_runtime_frame(), "sanity check"); 1445 frame caller_frame = stub_frame.sender(®_map); 1446 1447 if (caller_frame.is_interpreted_frame() || 1448 caller_frame.is_entry_frame()) { 1449 Method* callee = thread->callee_target(); 1450 guarantee(callee != NULL && callee->is_method(), "bad handshake"); 1451 thread->set_vm_result_2(callee); 1452 thread->set_callee_target(NULL); 1453 return callee->get_c2i_entry(); 1454 } 1455 1456 // Must be compiled to compiled path which is safe to stackwalk 1457 methodHandle callee_method; 1458 JRT_BLOCK 1459 // Force resolving of caller (if we called from compiled frame) 1460 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL); 1461 thread->set_vm_result_2(callee_method()); 1462 JRT_BLOCK_END 1463 // return compiled code entry point after potential safepoints 1464 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1465 return callee_method->verified_code_entry(); 1466 JRT_END 1467 1468 // Handle abstract method call 1469 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread)) 1470 return StubRoutines::throw_AbstractMethodError_entry(); 1471 JRT_END 1472 1473 1474 // resolve a static call and patch code 1475 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread )) 1476 methodHandle callee_method; 1477 JRT_BLOCK 1478 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL); 1479 thread->set_vm_result_2(callee_method()); 1480 JRT_BLOCK_END 1481 // return compiled code entry point after potential safepoints 1482 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1483 return callee_method->verified_code_entry(); 1484 JRT_END 1485 1486 1487 // resolve virtual call and update inline cache to monomorphic 1488 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread )) 1489 methodHandle callee_method; 1490 JRT_BLOCK 1491 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL); 1492 thread->set_vm_result_2(callee_method()); 1493 JRT_BLOCK_END 1494 // return compiled code entry point after potential safepoints 1495 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1496 return callee_method->verified_code_entry(); 1497 JRT_END 1498 1499 1500 // Resolve a virtual call that can be statically bound (e.g., always 1501 // monomorphic, so it has no inline cache). Patch code to resolved target. 1502 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread)) 1503 methodHandle callee_method; 1504 JRT_BLOCK 1505 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL); 1506 thread->set_vm_result_2(callee_method()); 1507 JRT_BLOCK_END 1508 // return compiled code entry point after potential safepoints 1509 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1510 return callee_method->verified_code_entry(); 1511 JRT_END 1512 1513 1514 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) { 1515 ResourceMark rm(thread); 1516 CallInfo call_info; 1517 Bytecodes::Code bc; 1518 1519 // receiver is NULL for static calls. An exception is thrown for NULL 1520 // receivers for non-static calls 1521 Handle receiver = find_callee_info(thread, bc, call_info, 1522 CHECK_(methodHandle())); 1523 // Compiler1 can produce virtual call sites that can actually be statically bound 1524 // If we fell thru to below we would think that the site was going megamorphic 1525 // when in fact the site can never miss. Worse because we'd think it was megamorphic 1526 // we'd try and do a vtable dispatch however methods that can be statically bound 1527 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a 1528 // reresolution of the call site (as if we did a handle_wrong_method and not an 1529 // plain ic_miss) and the site will be converted to an optimized virtual call site 1530 // never to miss again. I don't believe C2 will produce code like this but if it 1531 // did this would still be the correct thing to do for it too, hence no ifdef. 1532 // 1533 if (call_info.resolved_method()->can_be_statically_bound()) { 1534 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle())); 1535 if (TraceCallFixup) { 1536 RegisterMap reg_map(thread, false); 1537 frame caller_frame = thread->last_frame().sender(®_map); 1538 ResourceMark rm(thread); 1539 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc)); 1540 callee_method->print_short_name(tty); 1541 tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc())); 1542 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1543 } 1544 return callee_method; 1545 } 1546 1547 methodHandle callee_method = call_info.selected_method(); 1548 1549 bool should_be_mono = false; 1550 1551 #ifndef PRODUCT 1552 Atomic::inc(&_ic_miss_ctr); 1553 1554 // Statistics & Tracing 1555 if (TraceCallFixup) { 1556 ResourceMark rm(thread); 1557 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1558 callee_method->print_short_name(tty); 1559 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1560 } 1561 1562 if (ICMissHistogram) { 1563 MutexLocker m(VMStatistic_lock); 1564 RegisterMap reg_map(thread, false); 1565 frame f = thread->last_frame().real_sender(®_map);// skip runtime stub 1566 // produce statistics under the lock 1567 trace_ic_miss(f.pc()); 1568 } 1569 #endif 1570 1571 // install an event collector so that when a vtable stub is created the 1572 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1573 // event can't be posted when the stub is created as locks are held 1574 // - instead the event will be deferred until the event collector goes 1575 // out of scope. 1576 JvmtiDynamicCodeEventCollector event_collector; 1577 1578 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1579 { MutexLocker ml_patch (CompiledIC_lock); 1580 RegisterMap reg_map(thread, false); 1581 frame caller_frame = thread->last_frame().sender(®_map); 1582 CodeBlob* cb = caller_frame.cb(); 1583 CompiledMethod* caller_nm = cb->as_compiled_method_or_null(); 1584 if (cb->is_compiled()) { 1585 CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc()); 1586 bool should_be_mono = false; 1587 if (inline_cache->is_optimized()) { 1588 if (TraceCallFixup) { 1589 ResourceMark rm(thread); 1590 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc)); 1591 callee_method->print_short_name(tty); 1592 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1593 } 1594 should_be_mono = true; 1595 } else if (inline_cache->is_icholder_call()) { 1596 CompiledICHolder* ic_oop = inline_cache->cached_icholder(); 1597 if (ic_oop != NULL) { 1598 1599 if (receiver()->klass() == ic_oop->holder_klass()) { 1600 // This isn't a real miss. We must have seen that compiled code 1601 // is now available and we want the call site converted to a 1602 // monomorphic compiled call site. 1603 // We can't assert for callee_method->code() != NULL because it 1604 // could have been deoptimized in the meantime 1605 if (TraceCallFixup) { 1606 ResourceMark rm(thread); 1607 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc)); 1608 callee_method->print_short_name(tty); 1609 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1610 } 1611 should_be_mono = true; 1612 } 1613 } 1614 } 1615 1616 if (should_be_mono) { 1617 1618 // We have a path that was monomorphic but was going interpreted 1619 // and now we have (or had) a compiled entry. We correct the IC 1620 // by using a new icBuffer. 1621 CompiledICInfo info; 1622 KlassHandle receiver_klass(THREAD, receiver()->klass()); 1623 inline_cache->compute_monomorphic_entry(callee_method, 1624 receiver_klass, 1625 inline_cache->is_optimized(), 1626 false, 1627 info, CHECK_(methodHandle())); 1628 inline_cache->set_to_monomorphic(info); 1629 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) { 1630 // Potential change to megamorphic 1631 bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle())); 1632 if (!successful) { 1633 inline_cache->set_to_clean(); 1634 } 1635 } else { 1636 // Either clean or megamorphic 1637 } 1638 } else { 1639 fatal("Unimplemented"); 1640 } 1641 } // Release CompiledIC_lock 1642 1643 return callee_method; 1644 } 1645 1646 // 1647 // Resets a call-site in compiled code so it will get resolved again. 1648 // This routines handles both virtual call sites, optimized virtual call 1649 // sites, and static call sites. Typically used to change a call sites 1650 // destination from compiled to interpreted. 1651 // 1652 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) { 1653 ResourceMark rm(thread); 1654 RegisterMap reg_map(thread, false); 1655 frame stub_frame = thread->last_frame(); 1656 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1657 frame caller = stub_frame.sender(®_map); 1658 1659 // Do nothing if the frame isn't a live compiled frame. 1660 // nmethod could be deoptimized by the time we get here 1661 // so no update to the caller is needed. 1662 1663 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) { 1664 1665 address pc = caller.pc(); 1666 1667 // Check for static or virtual call 1668 bool is_static_call = false; 1669 CompiledMethod* caller_nm = CodeCache::find_compiled(pc); 1670 1671 // Default call_addr is the location of the "basic" call. 1672 // Determine the address of the call we a reresolving. With 1673 // Inline Caches we will always find a recognizable call. 1674 // With Inline Caches disabled we may or may not find a 1675 // recognizable call. We will always find a call for static 1676 // calls and for optimized virtual calls. For vanilla virtual 1677 // calls it depends on the state of the UseInlineCaches switch. 1678 // 1679 // With Inline Caches disabled we can get here for a virtual call 1680 // for two reasons: 1681 // 1 - calling an abstract method. The vtable for abstract methods 1682 // will run us thru handle_wrong_method and we will eventually 1683 // end up in the interpreter to throw the ame. 1684 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1685 // call and between the time we fetch the entry address and 1686 // we jump to it the target gets deoptimized. Similar to 1 1687 // we will wind up in the interprter (thru a c2i with c2). 1688 // 1689 address call_addr = NULL; 1690 { 1691 // Get call instruction under lock because another thread may be 1692 // busy patching it. 1693 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); 1694 // Location of call instruction 1695 if (NativeCall::is_call_before(pc)) { 1696 NativeCall *ncall = nativeCall_before(pc); 1697 call_addr = ncall->instruction_address(); 1698 } 1699 } 1700 // Make sure nmethod doesn't get deoptimized and removed until 1701 // this is done with it. 1702 // CLEANUP - with lazy deopt shouldn't need this lock 1703 nmethodLocker nmlock(caller_nm); 1704 1705 if (call_addr != NULL) { 1706 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1707 int ret = iter.next(); // Get item 1708 if (ret) { 1709 assert(iter.addr() == call_addr, "must find call"); 1710 if (iter.type() == relocInfo::static_call_type) { 1711 is_static_call = true; 1712 } else { 1713 assert(iter.type() == relocInfo::virtual_call_type || 1714 iter.type() == relocInfo::opt_virtual_call_type 1715 , "unexpected relocInfo. type"); 1716 } 1717 } else { 1718 assert(!UseInlineCaches, "relocation info. must exist for this address"); 1719 } 1720 1721 // Cleaning the inline cache will force a new resolve. This is more robust 1722 // than directly setting it to the new destination, since resolving of calls 1723 // is always done through the same code path. (experience shows that it 1724 // leads to very hard to track down bugs, if an inline cache gets updated 1725 // to a wrong method). It should not be performance critical, since the 1726 // resolve is only done once. 1727 1728 MutexLocker ml(CompiledIC_lock); 1729 if (is_static_call) { 1730 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr); 1731 ssc->set_to_clean(); 1732 } else { 1733 // compiled, dispatched call (which used to call an interpreted method) 1734 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1735 inline_cache->set_to_clean(); 1736 } 1737 } 1738 } 1739 1740 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle())); 1741 1742 1743 #ifndef PRODUCT 1744 Atomic::inc(&_wrong_method_ctr); 1745 1746 if (TraceCallFixup) { 1747 ResourceMark rm(thread); 1748 tty->print("handle_wrong_method reresolving call to"); 1749 callee_method->print_short_name(tty); 1750 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1751 } 1752 #endif 1753 1754 return callee_method; 1755 } 1756 1757 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1758 // The faulting unsafe accesses should be changed to throw the error 1759 // synchronously instead. Meanwhile the faulting instruction will be 1760 // skipped over (effectively turning it into a no-op) and an 1761 // asynchronous exception will be raised which the thread will 1762 // handle at a later point. If the instruction is a load it will 1763 // return garbage. 1764 1765 // Request an async exception. 1766 thread->set_pending_unsafe_access_error(); 1767 1768 // Return address of next instruction to execute. 1769 return next_pc; 1770 } 1771 1772 #ifdef ASSERT 1773 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1774 const BasicType* sig_bt, 1775 const VMRegPair* regs) { 1776 ResourceMark rm; 1777 const int total_args_passed = method->size_of_parameters(); 1778 const VMRegPair* regs_with_member_name = regs; 1779 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1780 1781 const int member_arg_pos = total_args_passed - 1; 1782 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1783 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1784 1785 const bool is_outgoing = method->is_method_handle_intrinsic(); 1786 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing); 1787 1788 for (int i = 0; i < member_arg_pos; i++) { 1789 VMReg a = regs_with_member_name[i].first(); 1790 VMReg b = regs_without_member_name[i].first(); 1791 assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value()); 1792 } 1793 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1794 } 1795 #endif 1796 1797 // --------------------------------------------------------------------------- 1798 // We are calling the interpreter via a c2i. Normally this would mean that 1799 // we were called by a compiled method. However we could have lost a race 1800 // where we went int -> i2c -> c2i and so the caller could in fact be 1801 // interpreted. If the caller is compiled we attempt to patch the caller 1802 // so he no longer calls into the interpreter. 1803 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1804 Method* moop(method); 1805 1806 address entry_point = moop->from_compiled_entry_no_trampoline(); 1807 1808 // It's possible that deoptimization can occur at a call site which hasn't 1809 // been resolved yet, in which case this function will be called from 1810 // an nmethod that has been patched for deopt and we can ignore the 1811 // request for a fixup. 1812 // Also it is possible that we lost a race in that from_compiled_entry 1813 // is now back to the i2c in that case we don't need to patch and if 1814 // we did we'd leap into space because the callsite needs to use 1815 // "to interpreter" stub in order to load up the Method*. Don't 1816 // ask me how I know this... 1817 1818 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1819 if (!cb->is_compiled() || entry_point == moop->get_c2i_entry()) { 1820 return; 1821 } 1822 1823 // The check above makes sure this is a nmethod. 1824 CompiledMethod* nm = cb->as_compiled_method_or_null(); 1825 assert(nm, "must be"); 1826 1827 // Get the return PC for the passed caller PC. 1828 address return_pc = caller_pc + frame::pc_return_offset; 1829 1830 // There is a benign race here. We could be attempting to patch to a compiled 1831 // entry point at the same time the callee is being deoptimized. If that is 1832 // the case then entry_point may in fact point to a c2i and we'd patch the 1833 // call site with the same old data. clear_code will set code() to NULL 1834 // at the end of it. If we happen to see that NULL then we can skip trying 1835 // to patch. If we hit the window where the callee has a c2i in the 1836 // from_compiled_entry and the NULL isn't present yet then we lose the race 1837 // and patch the code with the same old data. Asi es la vida. 1838 1839 if (moop->code() == NULL) return; 1840 1841 if (nm->is_in_use()) { 1842 1843 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1844 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); 1845 if (NativeCall::is_call_before(return_pc)) { 1846 NativeCall *call = nativeCall_before(return_pc); 1847 // 1848 // bug 6281185. We might get here after resolving a call site to a vanilla 1849 // virtual call. Because the resolvee uses the verified entry it may then 1850 // see compiled code and attempt to patch the site by calling us. This would 1851 // then incorrectly convert the call site to optimized and its downhill from 1852 // there. If you're lucky you'll get the assert in the bugid, if not you've 1853 // just made a call site that could be megamorphic into a monomorphic site 1854 // for the rest of its life! Just another racing bug in the life of 1855 // fixup_callers_callsite ... 1856 // 1857 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address()); 1858 iter.next(); 1859 assert(iter.has_current(), "must have a reloc at java call site"); 1860 relocInfo::relocType typ = iter.reloc()->type(); 1861 if (typ != relocInfo::static_call_type && 1862 typ != relocInfo::opt_virtual_call_type && 1863 typ != relocInfo::static_stub_type) { 1864 return; 1865 } 1866 address destination = call->destination(); 1867 if (destination != entry_point) { 1868 CodeBlob* callee = CodeCache::find_blob(destination); 1869 // callee == cb seems weird. It means calling interpreter thru stub. 1870 if (callee == cb || callee->is_adapter_blob()) { 1871 // static call or optimized virtual 1872 if (TraceCallFixup) { 1873 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 1874 moop->print_short_name(tty); 1875 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 1876 } 1877 call->set_destination_mt_safe(entry_point); 1878 } else { 1879 if (TraceCallFixup) { 1880 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 1881 moop->print_short_name(tty); 1882 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 1883 } 1884 // assert is too strong could also be resolve destinations. 1885 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be"); 1886 } 1887 } else { 1888 if (TraceCallFixup) { 1889 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 1890 moop->print_short_name(tty); 1891 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 1892 } 1893 } 1894 } 1895 } 1896 IRT_END 1897 1898 1899 // same as JVM_Arraycopy, but called directly from compiled code 1900 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1901 oopDesc* dest, jint dest_pos, 1902 jint length, 1903 JavaThread* thread)) { 1904 #ifndef PRODUCT 1905 _slow_array_copy_ctr++; 1906 #endif 1907 // Check if we have null pointers 1908 if (src == NULL || dest == NULL) { 1909 THROW(vmSymbols::java_lang_NullPointerException()); 1910 } 1911 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1912 // even though the copy_array API also performs dynamic checks to ensure 1913 // that src and dest are truly arrays (and are conformable). 1914 // The copy_array mechanism is awkward and could be removed, but 1915 // the compilers don't call this function except as a last resort, 1916 // so it probably doesn't matter. 1917 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1918 (arrayOopDesc*)dest, dest_pos, 1919 length, thread); 1920 } 1921 JRT_END 1922 1923 // The caller of generate_class_cast_message() (or one of its callers) 1924 // must use a ResourceMark in order to correctly free the result. 1925 char* SharedRuntime::generate_class_cast_message( 1926 JavaThread* thread, Klass* caster_klass) { 1927 1928 // Get target class name from the checkcast instruction 1929 vframeStream vfst(thread, true); 1930 assert(!vfst.at_end(), "Java frame must exist"); 1931 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1932 Klass* target_klass = vfst.method()->constants()->klass_at( 1933 cc.index(), thread); 1934 return generate_class_cast_message(caster_klass, target_klass); 1935 } 1936 1937 // The caller of class_loader_and_module_name() (or one of its callers) 1938 // must use a ResourceMark in order to correctly free the result. 1939 const char* class_loader_and_module_name(Klass* klass) { 1940 const char* delim = "/"; 1941 int delim_len = strlen(delim); 1942 1943 const char* fqn = klass->external_name(); 1944 // Length of message to return; always include FQN 1945 size_t msglen = strlen(fqn) + 1; 1946 1947 bool has_cl_name = false; 1948 bool has_mod_name = false; 1949 bool has_version = false; 1950 1951 // Use class loader name, if exists and not builtin 1952 const char* class_loader_name = ""; 1953 ClassLoaderData* cld = klass->class_loader_data(); 1954 if (cld == NULL || !cld->is_builtin_class_loader_data()) { 1955 // If not builtin, look for internal name 1956 oop loader = klass->class_loader(); 1957 if (loader != NULL) { 1958 oopDesc* class_loader = java_lang_ClassLoader::name(loader); 1959 if (class_loader != NULL && class_loader->klass() != NULL) { 1960 class_loader_name = class_loader->klass()->internal_name(); 1961 if (class_loader_name != NULL && class_loader_name[0] != '\0') { 1962 has_cl_name = true; 1963 msglen += strlen(class_loader_name) + delim_len; 1964 } 1965 } 1966 } 1967 } 1968 1969 const char* module_name = ""; 1970 const char* version = ""; 1971 Klass* bottom_klass = klass->is_objArray_klass() ? 1972 ObjArrayKlass::cast(klass)->bottom_klass() : klass; 1973 if (bottom_klass->is_instance_klass()) { 1974 ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module(); 1975 // Use module name, if exists 1976 if (module->is_named()) { 1977 has_mod_name = true; 1978 module_name = module->name()->as_C_string(); 1979 msglen += strlen(module_name); 1980 // Use version if exists and is not a jdk module 1981 if (module->is_non_jdk_module() && module->version() != NULL) { 1982 has_version = true; 1983 version = module->version()->as_C_string(); 1984 msglen += strlen("@") + strlen(version); 1985 } 1986 } 1987 } else { 1988 // klass is an array of primitives, so its module is java.base 1989 module_name = "java.base"; 1990 } 1991 1992 if (has_cl_name || has_mod_name) { 1993 msglen += delim_len; 1994 } 1995 1996 char* message = NEW_RESOURCE_ARRAY(char, msglen); 1997 1998 // Just return the FQN if error in allocating string 1999 if (message == NULL) { 2000 return fqn; 2001 } 2002 2003 jio_snprintf(message, msglen, "%s%s%s%s%s%s%s", 2004 class_loader_name, 2005 (has_cl_name) ? delim : "", 2006 (has_mod_name) ? module_name : "", 2007 (has_version) ? "@" : "", 2008 (has_version) ? version : "", 2009 (has_cl_name || has_mod_name) ? delim : "", 2010 fqn); 2011 return message; 2012 } 2013 2014 char* SharedRuntime::generate_class_cast_message( 2015 Klass* caster_klass, Klass* target_klass) { 2016 2017 const char* caster_name = class_loader_and_module_name(caster_klass); 2018 2019 const char* target_name = class_loader_and_module_name(target_klass); 2020 2021 size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1; 2022 2023 char* message = NEW_RESOURCE_ARRAY(char, msglen); 2024 if (NULL == message) { 2025 // Shouldn't happen, but don't cause even more problems if it does 2026 message = const_cast<char*>(caster_klass->external_name()); 2027 } else { 2028 jio_snprintf(message, 2029 msglen, 2030 "%s cannot be cast to %s", 2031 caster_name, 2032 target_name); 2033 } 2034 return message; 2035 } 2036 2037 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2038 (void) JavaThread::current()->reguard_stack(); 2039 JRT_END 2040 2041 2042 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2043 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread)) 2044 // Disable ObjectSynchronizer::quick_enter() in default config 2045 // on AARCH64 and ARM until JDK-8153107 is resolved. 2046 if (ARM_ONLY((SyncFlags & 256) != 0 &&) 2047 AARCH64_ONLY((SyncFlags & 256) != 0 &&) 2048 !SafepointSynchronize::is_synchronizing()) { 2049 // Only try quick_enter() if we're not trying to reach a safepoint 2050 // so that the calling thread reaches the safepoint more quickly. 2051 if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return; 2052 } 2053 // NO_ASYNC required because an async exception on the state transition destructor 2054 // would leave you with the lock held and it would never be released. 2055 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2056 // and the model is that an exception implies the method failed. 2057 JRT_BLOCK_NO_ASYNC 2058 oop obj(_obj); 2059 if (PrintBiasedLockingStatistics) { 2060 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 2061 } 2062 Handle h_obj(THREAD, obj); 2063 if (UseBiasedLocking) { 2064 // Retry fast entry if bias is revoked to avoid unnecessary inflation 2065 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK); 2066 } else { 2067 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK); 2068 } 2069 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2070 JRT_BLOCK_END 2071 JRT_END 2072 2073 // Handles the uncommon cases of monitor unlocking in compiled code 2074 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD)) 2075 oop obj(_obj); 2076 assert(JavaThread::current() == THREAD, "invariant"); 2077 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore 2078 // testing was unable to ever fire the assert that guarded it so I have removed it. 2079 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?"); 2080 #undef MIGHT_HAVE_PENDING 2081 #ifdef MIGHT_HAVE_PENDING 2082 // Save and restore any pending_exception around the exception mark. 2083 // While the slow_exit must not throw an exception, we could come into 2084 // this routine with one set. 2085 oop pending_excep = NULL; 2086 const char* pending_file; 2087 int pending_line; 2088 if (HAS_PENDING_EXCEPTION) { 2089 pending_excep = PENDING_EXCEPTION; 2090 pending_file = THREAD->exception_file(); 2091 pending_line = THREAD->exception_line(); 2092 CLEAR_PENDING_EXCEPTION; 2093 } 2094 #endif /* MIGHT_HAVE_PENDING */ 2095 2096 { 2097 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2098 EXCEPTION_MARK; 2099 ObjectSynchronizer::slow_exit(obj, lock, THREAD); 2100 } 2101 2102 #ifdef MIGHT_HAVE_PENDING 2103 if (pending_excep != NULL) { 2104 THREAD->set_pending_exception(pending_excep, pending_file, pending_line); 2105 } 2106 #endif /* MIGHT_HAVE_PENDING */ 2107 JRT_END 2108 2109 #ifndef PRODUCT 2110 2111 void SharedRuntime::print_statistics() { 2112 ttyLocker ttyl; 2113 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'"); 2114 2115 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr); 2116 2117 SharedRuntime::print_ic_miss_histogram(); 2118 2119 if (CountRemovableExceptions) { 2120 if (_nof_removable_exceptions > 0) { 2121 Unimplemented(); // this counter is not yet incremented 2122 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions); 2123 } 2124 } 2125 2126 // Dump the JRT_ENTRY counters 2127 if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr); 2128 if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr); 2129 if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr); 2130 if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr); 2131 if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr); 2132 if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr); 2133 if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr); 2134 2135 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr); 2136 tty->print_cr("%5d wrong method", _wrong_method_ctr); 2137 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr); 2138 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr); 2139 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2140 2141 if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr); 2142 if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr); 2143 if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr); 2144 if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr); 2145 if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr); 2146 if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr); 2147 if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr); 2148 if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr); 2149 if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr); 2150 if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr); 2151 if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr); 2152 if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr); 2153 if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr); 2154 if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr); 2155 if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr); 2156 if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr); 2157 2158 AdapterHandlerLibrary::print_statistics(); 2159 2160 if (xtty != NULL) xtty->tail("statistics"); 2161 } 2162 2163 inline double percent(int x, int y) { 2164 return 100.0 * x / MAX2(y, 1); 2165 } 2166 2167 class MethodArityHistogram { 2168 public: 2169 enum { MAX_ARITY = 256 }; 2170 private: 2171 static int _arity_histogram[MAX_ARITY]; // histogram of #args 2172 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words 2173 static int _max_arity; // max. arity seen 2174 static int _max_size; // max. arg size seen 2175 2176 static void add_method_to_histogram(nmethod* nm) { 2177 Method* m = nm->method(); 2178 ArgumentCount args(m->signature()); 2179 int arity = args.size() + (m->is_static() ? 0 : 1); 2180 int argsize = m->size_of_parameters(); 2181 arity = MIN2(arity, MAX_ARITY-1); 2182 argsize = MIN2(argsize, MAX_ARITY-1); 2183 int count = nm->method()->compiled_invocation_count(); 2184 _arity_histogram[arity] += count; 2185 _size_histogram[argsize] += count; 2186 _max_arity = MAX2(_max_arity, arity); 2187 _max_size = MAX2(_max_size, argsize); 2188 } 2189 2190 void print_histogram_helper(int n, int* histo, const char* name) { 2191 const int N = MIN2(5, n); 2192 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2193 double sum = 0; 2194 double weighted_sum = 0; 2195 int i; 2196 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; } 2197 double rest = sum; 2198 double percent = sum / 100; 2199 for (i = 0; i <= N; i++) { 2200 rest -= histo[i]; 2201 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent); 2202 } 2203 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent); 2204 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2205 } 2206 2207 void print_histogram() { 2208 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2209 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2210 tty->print_cr("\nSame for parameter size (in words):"); 2211 print_histogram_helper(_max_size, _size_histogram, "size"); 2212 tty->cr(); 2213 } 2214 2215 public: 2216 MethodArityHistogram() { 2217 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2218 _max_arity = _max_size = 0; 2219 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2220 CodeCache::nmethods_do(add_method_to_histogram); 2221 print_histogram(); 2222 } 2223 }; 2224 2225 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2226 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2227 int MethodArityHistogram::_max_arity; 2228 int MethodArityHistogram::_max_size; 2229 2230 void SharedRuntime::print_call_statistics(int comp_total) { 2231 tty->print_cr("Calls from compiled code:"); 2232 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2233 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls; 2234 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls; 2235 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total)); 2236 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2237 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2238 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls)); 2239 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2240 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2241 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2242 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2243 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls)); 2244 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2245 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls)); 2246 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2247 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2248 tty->cr(); 2249 tty->print_cr("Note 1: counter updates are not MT-safe."); 2250 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2251 tty->print_cr(" %% in nested categories are relative to their category"); 2252 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2253 tty->cr(); 2254 2255 MethodArityHistogram h; 2256 } 2257 #endif 2258 2259 2260 // A simple wrapper class around the calling convention information 2261 // that allows sharing of adapters for the same calling convention. 2262 class AdapterFingerPrint : public CHeapObj<mtCode> { 2263 private: 2264 enum { 2265 _basic_type_bits = 4, 2266 _basic_type_mask = right_n_bits(_basic_type_bits), 2267 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2268 _compact_int_count = 3 2269 }; 2270 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2271 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2272 2273 union { 2274 int _compact[_compact_int_count]; 2275 int* _fingerprint; 2276 } _value; 2277 int _length; // A negative length indicates the fingerprint is in the compact form, 2278 // Otherwise _value._fingerprint is the array. 2279 2280 // Remap BasicTypes that are handled equivalently by the adapters. 2281 // These are correct for the current system but someday it might be 2282 // necessary to make this mapping platform dependent. 2283 static int adapter_encoding(BasicType in) { 2284 switch (in) { 2285 case T_BOOLEAN: 2286 case T_BYTE: 2287 case T_SHORT: 2288 case T_CHAR: 2289 // There are all promoted to T_INT in the calling convention 2290 return T_INT; 2291 2292 case T_OBJECT: 2293 case T_ARRAY: 2294 // In other words, we assume that any register good enough for 2295 // an int or long is good enough for a managed pointer. 2296 #ifdef _LP64 2297 return T_LONG; 2298 #else 2299 return T_INT; 2300 #endif 2301 2302 case T_INT: 2303 case T_LONG: 2304 case T_FLOAT: 2305 case T_DOUBLE: 2306 case T_VOID: 2307 return in; 2308 2309 default: 2310 ShouldNotReachHere(); 2311 return T_CONFLICT; 2312 } 2313 } 2314 2315 public: 2316 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2317 // The fingerprint is based on the BasicType signature encoded 2318 // into an array of ints with eight entries per int. 2319 int* ptr; 2320 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2321 if (len <= _compact_int_count) { 2322 assert(_compact_int_count == 3, "else change next line"); 2323 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2324 // Storing the signature encoded as signed chars hits about 98% 2325 // of the time. 2326 _length = -len; 2327 ptr = _value._compact; 2328 } else { 2329 _length = len; 2330 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2331 ptr = _value._fingerprint; 2332 } 2333 2334 // Now pack the BasicTypes with 8 per int 2335 int sig_index = 0; 2336 for (int index = 0; index < len; index++) { 2337 int value = 0; 2338 for (int byte = 0; byte < _basic_types_per_int; byte++) { 2339 int bt = ((sig_index < total_args_passed) 2340 ? adapter_encoding(sig_bt[sig_index++]) 2341 : 0); 2342 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2343 value = (value << _basic_type_bits) | bt; 2344 } 2345 ptr[index] = value; 2346 } 2347 } 2348 2349 ~AdapterFingerPrint() { 2350 if (_length > 0) { 2351 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2352 } 2353 } 2354 2355 int value(int index) { 2356 if (_length < 0) { 2357 return _value._compact[index]; 2358 } 2359 return _value._fingerprint[index]; 2360 } 2361 int length() { 2362 if (_length < 0) return -_length; 2363 return _length; 2364 } 2365 2366 bool is_compact() { 2367 return _length <= 0; 2368 } 2369 2370 unsigned int compute_hash() { 2371 int hash = 0; 2372 for (int i = 0; i < length(); i++) { 2373 int v = value(i); 2374 hash = (hash << 8) ^ v ^ (hash >> 5); 2375 } 2376 return (unsigned int)hash; 2377 } 2378 2379 const char* as_string() { 2380 stringStream st; 2381 st.print("0x"); 2382 for (int i = 0; i < length(); i++) { 2383 st.print("%08x", value(i)); 2384 } 2385 return st.as_string(); 2386 } 2387 2388 bool equals(AdapterFingerPrint* other) { 2389 if (other->_length != _length) { 2390 return false; 2391 } 2392 if (_length < 0) { 2393 assert(_compact_int_count == 3, "else change next line"); 2394 return _value._compact[0] == other->_value._compact[0] && 2395 _value._compact[1] == other->_value._compact[1] && 2396 _value._compact[2] == other->_value._compact[2]; 2397 } else { 2398 for (int i = 0; i < _length; i++) { 2399 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2400 return false; 2401 } 2402 } 2403 } 2404 return true; 2405 } 2406 }; 2407 2408 2409 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2410 class AdapterHandlerTable : public BasicHashtable<mtCode> { 2411 friend class AdapterHandlerTableIterator; 2412 2413 private: 2414 2415 #ifndef PRODUCT 2416 static int _lookups; // number of calls to lookup 2417 static int _buckets; // number of buckets checked 2418 static int _equals; // number of buckets checked with matching hash 2419 static int _hits; // number of successful lookups 2420 static int _compact; // number of equals calls with compact signature 2421 #endif 2422 2423 AdapterHandlerEntry* bucket(int i) { 2424 return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i); 2425 } 2426 2427 public: 2428 AdapterHandlerTable() 2429 : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { } 2430 2431 // Create a new entry suitable for insertion in the table 2432 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) { 2433 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash()); 2434 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 2435 if (DumpSharedSpaces) { 2436 ((CDSAdapterHandlerEntry*)entry)->init(); 2437 } 2438 return entry; 2439 } 2440 2441 // Insert an entry into the table 2442 void add(AdapterHandlerEntry* entry) { 2443 int index = hash_to_index(entry->hash()); 2444 add_entry(index, entry); 2445 } 2446 2447 void free_entry(AdapterHandlerEntry* entry) { 2448 entry->deallocate(); 2449 BasicHashtable<mtCode>::free_entry(entry); 2450 } 2451 2452 // Find a entry with the same fingerprint if it exists 2453 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { 2454 NOT_PRODUCT(_lookups++); 2455 AdapterFingerPrint fp(total_args_passed, sig_bt); 2456 unsigned int hash = fp.compute_hash(); 2457 int index = hash_to_index(hash); 2458 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2459 NOT_PRODUCT(_buckets++); 2460 if (e->hash() == hash) { 2461 NOT_PRODUCT(_equals++); 2462 if (fp.equals(e->fingerprint())) { 2463 #ifndef PRODUCT 2464 if (fp.is_compact()) _compact++; 2465 _hits++; 2466 #endif 2467 return e; 2468 } 2469 } 2470 } 2471 return NULL; 2472 } 2473 2474 #ifndef PRODUCT 2475 void print_statistics() { 2476 ResourceMark rm; 2477 int longest = 0; 2478 int empty = 0; 2479 int total = 0; 2480 int nonempty = 0; 2481 for (int index = 0; index < table_size(); index++) { 2482 int count = 0; 2483 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2484 count++; 2485 } 2486 if (count != 0) nonempty++; 2487 if (count == 0) empty++; 2488 if (count > longest) longest = count; 2489 total += count; 2490 } 2491 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f", 2492 empty, longest, total, total / (double)nonempty); 2493 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d", 2494 _lookups, _buckets, _equals, _hits, _compact); 2495 } 2496 #endif 2497 }; 2498 2499 2500 #ifndef PRODUCT 2501 2502 int AdapterHandlerTable::_lookups; 2503 int AdapterHandlerTable::_buckets; 2504 int AdapterHandlerTable::_equals; 2505 int AdapterHandlerTable::_hits; 2506 int AdapterHandlerTable::_compact; 2507 2508 #endif 2509 2510 class AdapterHandlerTableIterator : public StackObj { 2511 private: 2512 AdapterHandlerTable* _table; 2513 int _index; 2514 AdapterHandlerEntry* _current; 2515 2516 void scan() { 2517 while (_index < _table->table_size()) { 2518 AdapterHandlerEntry* a = _table->bucket(_index); 2519 _index++; 2520 if (a != NULL) { 2521 _current = a; 2522 return; 2523 } 2524 } 2525 } 2526 2527 public: 2528 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) { 2529 scan(); 2530 } 2531 bool has_next() { 2532 return _current != NULL; 2533 } 2534 AdapterHandlerEntry* next() { 2535 if (_current != NULL) { 2536 AdapterHandlerEntry* result = _current; 2537 _current = _current->next(); 2538 if (_current == NULL) scan(); 2539 return result; 2540 } else { 2541 return NULL; 2542 } 2543 } 2544 }; 2545 2546 2547 // --------------------------------------------------------------------------- 2548 // Implementation of AdapterHandlerLibrary 2549 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL; 2550 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL; 2551 const int AdapterHandlerLibrary_size = 16*K; 2552 BufferBlob* AdapterHandlerLibrary::_buffer = NULL; 2553 2554 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2555 // Should be called only when AdapterHandlerLibrary_lock is active. 2556 if (_buffer == NULL) // Initialize lazily 2557 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2558 return _buffer; 2559 } 2560 2561 extern "C" void unexpected_adapter_call() { 2562 ShouldNotCallThis(); 2563 } 2564 2565 void AdapterHandlerLibrary::initialize() { 2566 if (_adapters != NULL) return; 2567 _adapters = new AdapterHandlerTable(); 2568 2569 if (!CodeCacheExtensions::skip_compiler_support()) { 2570 // Create a special handler for abstract methods. Abstract methods 2571 // are never compiled so an i2c entry is somewhat meaningless, but 2572 // throw AbstractMethodError just in case. 2573 // Pass wrong_method_abstract for the c2i transitions to return 2574 // AbstractMethodError for invalid invocations. 2575 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2576 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL), 2577 StubRoutines::throw_AbstractMethodError_entry(), 2578 wrong_method_abstract, wrong_method_abstract); 2579 } else { 2580 // Adapters are not supposed to be used. 2581 // Generate a special one to cause an error if used (and store this 2582 // singleton in place of the useless _abstract_method_error adapter). 2583 address entry = (address) &unexpected_adapter_call; 2584 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL), 2585 entry, 2586 entry, 2587 entry); 2588 2589 } 2590 } 2591 2592 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2593 address i2c_entry, 2594 address c2i_entry, 2595 address c2i_unverified_entry) { 2596 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 2597 } 2598 2599 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2600 AdapterHandlerEntry* entry = get_adapter0(method); 2601 if (method->is_shared()) { 2602 MutexLocker mu(AdapterHandlerLibrary_lock); 2603 if (method->adapter() == NULL) { 2604 method->update_adapter_trampoline(entry); 2605 } 2606 address trampoline = method->from_compiled_entry(); 2607 if (*(int*)trampoline == 0) { 2608 CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size()); 2609 MacroAssembler _masm(&buffer); 2610 SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry()); 2611 2612 if (PrintInterpreter) { 2613 Disassembler::decode(buffer.insts_begin(), buffer.insts_end()); 2614 } 2615 } 2616 } 2617 2618 return entry; 2619 } 2620 2621 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) { 2622 // Use customized signature handler. Need to lock around updates to 2623 // the AdapterHandlerTable (it is not safe for concurrent readers 2624 // and a single writer: this could be fixed if it becomes a 2625 // problem). 2626 2627 ResourceMark rm; 2628 2629 NOT_PRODUCT(int insts_size); 2630 AdapterBlob* new_adapter = NULL; 2631 AdapterHandlerEntry* entry = NULL; 2632 AdapterFingerPrint* fingerprint = NULL; 2633 { 2634 MutexLocker mu(AdapterHandlerLibrary_lock); 2635 // make sure data structure is initialized 2636 initialize(); 2637 2638 // during dump time, always generate adapters, even if the 2639 // compiler has been turned off. 2640 if (!DumpSharedSpaces && CodeCacheExtensions::skip_compiler_support()) { 2641 // adapters are useless and should not be used, including the 2642 // abstract_method_handler. However, some callers check that 2643 // an adapter was installed. 2644 // Return the singleton adapter, stored into _abstract_method_handler 2645 // and modified to cause an error if we ever call it. 2646 return _abstract_method_handler; 2647 } 2648 2649 if (method->is_abstract()) { 2650 return _abstract_method_handler; 2651 } 2652 2653 // Fill in the signature array, for the calling-convention call. 2654 int total_args_passed = method->size_of_parameters(); // All args on stack 2655 2656 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2657 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2658 int i = 0; 2659 if (!method->is_static()) // Pass in receiver first 2660 sig_bt[i++] = T_OBJECT; 2661 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) { 2662 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 2663 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) 2664 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 2665 } 2666 assert(i == total_args_passed, ""); 2667 2668 // Lookup method signature's fingerprint 2669 entry = _adapters->lookup(total_args_passed, sig_bt); 2670 2671 #ifdef ASSERT 2672 AdapterHandlerEntry* shared_entry = NULL; 2673 // Start adapter sharing verification only after the VM is booted. 2674 if (VerifyAdapterSharing && (entry != NULL)) { 2675 shared_entry = entry; 2676 entry = NULL; 2677 } 2678 #endif 2679 2680 if (entry != NULL) { 2681 return entry; 2682 } 2683 2684 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2685 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false); 2686 2687 // Make a C heap allocated version of the fingerprint to store in the adapter 2688 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); 2689 2690 // StubRoutines::code2() is initialized after this function can be called. As a result, 2691 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated 2692 // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C 2693 // stub that ensure that an I2C stub is called from an interpreter frame. 2694 bool contains_all_checks = StubRoutines::code2() != NULL; 2695 2696 // Create I2C & C2I handlers 2697 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2698 if (buf != NULL) { 2699 CodeBuffer buffer(buf); 2700 short buffer_locs[20]; 2701 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2702 sizeof(buffer_locs)/sizeof(relocInfo)); 2703 2704 MacroAssembler _masm(&buffer); 2705 entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2706 total_args_passed, 2707 comp_args_on_stack, 2708 sig_bt, 2709 regs, 2710 fingerprint); 2711 #ifdef ASSERT 2712 if (VerifyAdapterSharing) { 2713 if (shared_entry != NULL) { 2714 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match"); 2715 // Release the one just created and return the original 2716 _adapters->free_entry(entry); 2717 return shared_entry; 2718 } else { 2719 entry->save_code(buf->code_begin(), buffer.insts_size()); 2720 } 2721 } 2722 #endif 2723 2724 new_adapter = AdapterBlob::create(&buffer); 2725 NOT_PRODUCT(insts_size = buffer.insts_size()); 2726 } 2727 if (new_adapter == NULL) { 2728 // CodeCache is full, disable compilation 2729 // Ought to log this but compile log is only per compile thread 2730 // and we're some non descript Java thread. 2731 return NULL; // Out of CodeCache space 2732 } 2733 entry->relocate(new_adapter->content_begin()); 2734 #ifndef PRODUCT 2735 // debugging suppport 2736 if (PrintAdapterHandlers || PrintStubCode) { 2737 ttyLocker ttyl; 2738 entry->print_adapter_on(tty); 2739 tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)", 2740 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"), 2741 method->signature()->as_C_string(), fingerprint->as_string(), insts_size); 2742 tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry()); 2743 if (Verbose || PrintStubCode) { 2744 address first_pc = entry->base_address(); 2745 if (first_pc != NULL) { 2746 Disassembler::decode(first_pc, first_pc + insts_size); 2747 tty->cr(); 2748 } 2749 } 2750 } 2751 #endif 2752 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 2753 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 2754 if (contains_all_checks || !VerifyAdapterCalls) { 2755 _adapters->add(entry); 2756 } 2757 } 2758 // Outside of the lock 2759 if (new_adapter != NULL) { 2760 char blob_id[256]; 2761 jio_snprintf(blob_id, 2762 sizeof(blob_id), 2763 "%s(%s)@" PTR_FORMAT, 2764 new_adapter->name(), 2765 fingerprint->as_string(), 2766 new_adapter->content_begin()); 2767 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2768 2769 if (JvmtiExport::should_post_dynamic_code_generated()) { 2770 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2771 } 2772 } 2773 return entry; 2774 } 2775 2776 address AdapterHandlerEntry::base_address() { 2777 address base = _i2c_entry; 2778 if (base == NULL) base = _c2i_entry; 2779 assert(base <= _c2i_entry || _c2i_entry == NULL, ""); 2780 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, ""); 2781 return base; 2782 } 2783 2784 void AdapterHandlerEntry::relocate(address new_base) { 2785 address old_base = base_address(); 2786 assert(old_base != NULL, ""); 2787 ptrdiff_t delta = new_base - old_base; 2788 if (_i2c_entry != NULL) 2789 _i2c_entry += delta; 2790 if (_c2i_entry != NULL) 2791 _c2i_entry += delta; 2792 if (_c2i_unverified_entry != NULL) 2793 _c2i_unverified_entry += delta; 2794 assert(base_address() == new_base, ""); 2795 } 2796 2797 2798 void AdapterHandlerEntry::deallocate() { 2799 delete _fingerprint; 2800 #ifdef ASSERT 2801 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 2802 #endif 2803 } 2804 2805 2806 #ifdef ASSERT 2807 // Capture the code before relocation so that it can be compared 2808 // against other versions. If the code is captured after relocation 2809 // then relative instructions won't be equivalent. 2810 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 2811 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 2812 _saved_code_length = length; 2813 memcpy(_saved_code, buffer, length); 2814 } 2815 2816 2817 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) { 2818 if (length != _saved_code_length) { 2819 return false; 2820 } 2821 2822 return (memcmp(buffer, _saved_code, length) == 0) ? true : false; 2823 } 2824 #endif 2825 2826 2827 /** 2828 * Create a native wrapper for this native method. The wrapper converts the 2829 * Java-compiled calling convention to the native convention, handles 2830 * arguments, and transitions to native. On return from the native we transition 2831 * back to java blocking if a safepoint is in progress. 2832 */ 2833 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 2834 ResourceMark rm; 2835 nmethod* nm = NULL; 2836 2837 assert(method->is_native(), "must be native"); 2838 assert(method->is_method_handle_intrinsic() || 2839 method->has_native_function(), "must have something valid to call!"); 2840 2841 { 2842 // Perform the work while holding the lock, but perform any printing outside the lock 2843 MutexLocker mu(AdapterHandlerLibrary_lock); 2844 // See if somebody beat us to it 2845 if (method->code() != NULL) { 2846 return; 2847 } 2848 2849 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 2850 assert(compile_id > 0, "Must generate native wrapper"); 2851 2852 2853 ResourceMark rm; 2854 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2855 if (buf != NULL) { 2856 CodeBuffer buffer(buf); 2857 double locs_buf[20]; 2858 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 2859 MacroAssembler _masm(&buffer); 2860 2861 // Fill in the signature array, for the calling-convention call. 2862 const int total_args_passed = method->size_of_parameters(); 2863 2864 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2865 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2866 int i=0; 2867 if (!method->is_static()) // Pass in receiver first 2868 sig_bt[i++] = T_OBJECT; 2869 SignatureStream ss(method->signature()); 2870 for (; !ss.at_return_type(); ss.next()) { 2871 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 2872 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) 2873 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 2874 } 2875 assert(i == total_args_passed, ""); 2876 BasicType ret_type = ss.type(); 2877 2878 // Now get the compiled-Java layout as input (or output) arguments. 2879 // NOTE: Stubs for compiled entry points of method handle intrinsics 2880 // are just trampolines so the argument registers must be outgoing ones. 2881 const bool is_outgoing = method->is_method_handle_intrinsic(); 2882 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing); 2883 2884 // Generate the compiled-to-native wrapper code 2885 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 2886 2887 if (nm != NULL) { 2888 method->set_code(method, nm); 2889 2890 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple)); 2891 if (directive->PrintAssemblyOption) { 2892 nm->print_code(); 2893 } 2894 DirectivesStack::release(directive); 2895 } 2896 } 2897 } // Unlock AdapterHandlerLibrary_lock 2898 2899 2900 // Install the generated code. 2901 if (nm != NULL) { 2902 if (PrintCompilation) { 2903 ttyLocker ttyl; 2904 CompileTask::print(tty, nm, method->is_static() ? "(static)" : ""); 2905 } 2906 nm->post_compiled_method_load_event(); 2907 } 2908 } 2909 2910 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread)) 2911 assert(thread == JavaThread::current(), "must be"); 2912 // The code is about to enter a JNI lazy critical native method and 2913 // _needs_gc is true, so if this thread is already in a critical 2914 // section then just return, otherwise this thread should block 2915 // until needs_gc has been cleared. 2916 if (thread->in_critical()) { 2917 return; 2918 } 2919 // Lock and unlock a critical section to give the system a chance to block 2920 GCLocker::lock_critical(thread); 2921 GCLocker::unlock_critical(thread); 2922 JRT_END 2923 2924 // ------------------------------------------------------------------------- 2925 // Java-Java calling convention 2926 // (what you use when Java calls Java) 2927 2928 //------------------------------name_for_receiver---------------------------------- 2929 // For a given signature, return the VMReg for parameter 0. 2930 VMReg SharedRuntime::name_for_receiver() { 2931 VMRegPair regs; 2932 BasicType sig_bt = T_OBJECT; 2933 (void) java_calling_convention(&sig_bt, ®s, 1, true); 2934 // Return argument 0 register. In the LP64 build pointers 2935 // take 2 registers, but the VM wants only the 'main' name. 2936 return regs.first(); 2937 } 2938 2939 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 2940 // This method is returning a data structure allocating as a 2941 // ResourceObject, so do not put any ResourceMarks in here. 2942 char *s = sig->as_C_string(); 2943 int len = (int)strlen(s); 2944 s++; len--; // Skip opening paren 2945 2946 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 2947 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 2948 int cnt = 0; 2949 if (has_receiver) { 2950 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 2951 } 2952 2953 while (*s != ')') { // Find closing right paren 2954 switch (*s++) { // Switch on signature character 2955 case 'B': sig_bt[cnt++] = T_BYTE; break; 2956 case 'C': sig_bt[cnt++] = T_CHAR; break; 2957 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break; 2958 case 'F': sig_bt[cnt++] = T_FLOAT; break; 2959 case 'I': sig_bt[cnt++] = T_INT; break; 2960 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break; 2961 case 'S': sig_bt[cnt++] = T_SHORT; break; 2962 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break; 2963 case 'V': sig_bt[cnt++] = T_VOID; break; 2964 case 'L': // Oop 2965 while (*s++ != ';'); // Skip signature 2966 sig_bt[cnt++] = T_OBJECT; 2967 break; 2968 case '[': { // Array 2969 do { // Skip optional size 2970 while (*s >= '0' && *s <= '9') s++; 2971 } while (*s++ == '['); // Nested arrays? 2972 // Skip element type 2973 if (s[-1] == 'L') 2974 while (*s++ != ';'); // Skip signature 2975 sig_bt[cnt++] = T_ARRAY; 2976 break; 2977 } 2978 default : ShouldNotReachHere(); 2979 } 2980 } 2981 2982 if (has_appendix) { 2983 sig_bt[cnt++] = T_OBJECT; 2984 } 2985 2986 assert(cnt < 256, "grow table size"); 2987 2988 int comp_args_on_stack; 2989 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true); 2990 2991 // the calling convention doesn't count out_preserve_stack_slots so 2992 // we must add that in to get "true" stack offsets. 2993 2994 if (comp_args_on_stack) { 2995 for (int i = 0; i < cnt; i++) { 2996 VMReg reg1 = regs[i].first(); 2997 if (reg1->is_stack()) { 2998 // Yuck 2999 reg1 = reg1->bias(out_preserve_stack_slots()); 3000 } 3001 VMReg reg2 = regs[i].second(); 3002 if (reg2->is_stack()) { 3003 // Yuck 3004 reg2 = reg2->bias(out_preserve_stack_slots()); 3005 } 3006 regs[i].set_pair(reg2, reg1); 3007 } 3008 } 3009 3010 // results 3011 *arg_size = cnt; 3012 return regs; 3013 } 3014 3015 // OSR Migration Code 3016 // 3017 // This code is used convert interpreter frames into compiled frames. It is 3018 // called from very start of a compiled OSR nmethod. A temp array is 3019 // allocated to hold the interesting bits of the interpreter frame. All 3020 // active locks are inflated to allow them to move. The displaced headers and 3021 // active interpreter locals are copied into the temp buffer. Then we return 3022 // back to the compiled code. The compiled code then pops the current 3023 // interpreter frame off the stack and pushes a new compiled frame. Then it 3024 // copies the interpreter locals and displaced headers where it wants. 3025 // Finally it calls back to free the temp buffer. 3026 // 3027 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3028 3029 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) ) 3030 3031 // 3032 // This code is dependent on the memory layout of the interpreter local 3033 // array and the monitors. On all of our platforms the layout is identical 3034 // so this code is shared. If some platform lays the their arrays out 3035 // differently then this code could move to platform specific code or 3036 // the code here could be modified to copy items one at a time using 3037 // frame accessor methods and be platform independent. 3038 3039 frame fr = thread->last_frame(); 3040 assert(fr.is_interpreted_frame(), ""); 3041 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3042 3043 // Figure out how many monitors are active. 3044 int active_monitor_count = 0; 3045 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3046 kptr < fr.interpreter_frame_monitor_begin(); 3047 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3048 if (kptr->obj() != NULL) active_monitor_count++; 3049 } 3050 3051 // QQQ we could place number of active monitors in the array so that compiled code 3052 // could double check it. 3053 3054 Method* moop = fr.interpreter_frame_method(); 3055 int max_locals = moop->max_locals(); 3056 // Allocate temp buffer, 1 word per local & 2 per active monitor 3057 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3058 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3059 3060 // Copy the locals. Order is preserved so that loading of longs works. 3061 // Since there's no GC I can copy the oops blindly. 3062 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3063 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3064 (HeapWord*)&buf[0], 3065 max_locals); 3066 3067 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3068 int i = max_locals; 3069 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3070 kptr2 < fr.interpreter_frame_monitor_begin(); 3071 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3072 if (kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array 3073 BasicLock *lock = kptr2->lock(); 3074 // Inflate so the displaced header becomes position-independent 3075 if (lock->displaced_header()->is_unlocked()) 3076 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3077 // Now the displaced header is free to move 3078 buf[i++] = (intptr_t)lock->displaced_header(); 3079 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3080 } 3081 } 3082 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3083 3084 return buf; 3085 JRT_END 3086 3087 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3088 FREE_C_HEAP_ARRAY(intptr_t, buf); 3089 JRT_END 3090 3091 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3092 AdapterHandlerTableIterator iter(_adapters); 3093 while (iter.has_next()) { 3094 AdapterHandlerEntry* a = iter.next(); 3095 if (b == CodeCache::find_blob(a->get_i2c_entry())) return true; 3096 } 3097 return false; 3098 } 3099 3100 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3101 AdapterHandlerTableIterator iter(_adapters); 3102 while (iter.has_next()) { 3103 AdapterHandlerEntry* a = iter.next(); 3104 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3105 st->print("Adapter for signature: "); 3106 a->print_adapter_on(tty); 3107 return; 3108 } 3109 } 3110 assert(false, "Should have found handler"); 3111 } 3112 3113 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3114 st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT, 3115 p2i(this), fingerprint()->as_string(), 3116 p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry())); 3117 3118 } 3119 3120 #if INCLUDE_CDS 3121 3122 void CDSAdapterHandlerEntry::init() { 3123 assert(DumpSharedSpaces, "used during dump time only"); 3124 _c2i_entry_trampoline = (address)MetaspaceShared::misc_data_space_alloc(SharedRuntime::trampoline_size()); 3125 _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_data_space_alloc(sizeof(AdapterHandlerEntry*)); 3126 }; 3127 3128 #endif // INCLUDE_CDS 3129 3130 3131 #ifndef PRODUCT 3132 3133 void AdapterHandlerLibrary::print_statistics() { 3134 _adapters->print_statistics(); 3135 } 3136 3137 #endif /* PRODUCT */ 3138 3139 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread)) 3140 assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone"); 3141 thread->enable_stack_reserved_zone(); 3142 thread->set_reserved_stack_activation(thread->stack_base()); 3143 JRT_END 3144 3145 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) { 3146 frame activation; 3147 CompiledMethod* nm = NULL; 3148 int count = 1; 3149 3150 assert(fr.is_java_frame(), "Must start on Java frame"); 3151 3152 while (true) { 3153 Method* method = NULL; 3154 if (fr.is_interpreted_frame()) { 3155 method = fr.interpreter_frame_method(); 3156 } else { 3157 CodeBlob* cb = fr.cb(); 3158 if (cb != NULL && cb->is_compiled()) { 3159 nm = cb->as_compiled_method(); 3160 method = nm->method(); 3161 } 3162 } 3163 if ((method != NULL) && method->has_reserved_stack_access()) { 3164 ResourceMark rm(thread); 3165 activation = fr; 3166 warning("Potentially dangerous stack overflow in " 3167 "ReservedStackAccess annotated method %s [%d]", 3168 method->name_and_sig_as_C_string(), count++); 3169 EventReservedStackActivation event; 3170 if (event.should_commit()) { 3171 event.set_method(method); 3172 event.commit(); 3173 } 3174 } 3175 if (fr.is_first_java_frame()) { 3176 break; 3177 } else { 3178 fr = fr.java_sender(); 3179 } 3180 } 3181 return activation; 3182 } 3183