1 /* 2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "classfile/vmSymbols.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/codeCacheExtensions.hpp" 31 #include "compiler/compileBroker.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "gc/shared/collectedHeap.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "interpreter/interpreterRuntime.hpp" 36 #include "interpreter/linkResolver.hpp" 37 #include "interpreter/templateTable.hpp" 38 #include "logging/log.hpp" 39 #include "memory/oopFactory.hpp" 40 #include "memory/universe.inline.hpp" 41 #include "oops/constantPool.hpp" 42 #include "oops/instanceKlass.hpp" 43 #include "oops/methodData.hpp" 44 #include "oops/objArrayKlass.hpp" 45 #include "oops/objArrayOop.inline.hpp" 46 #include "oops/oop.inline.hpp" 47 #include "oops/symbol.hpp" 48 #include "prims/jvmtiExport.hpp" 49 #include "prims/nativeLookup.hpp" 50 #include "runtime/atomic.inline.hpp" 51 #include "runtime/biasedLocking.hpp" 52 #include "runtime/compilationPolicy.hpp" 53 #include "runtime/deoptimization.hpp" 54 #include "runtime/fieldDescriptor.hpp" 55 #include "runtime/handles.inline.hpp" 56 #include "runtime/icache.hpp" 57 #include "runtime/interfaceSupport.hpp" 58 #include "runtime/java.hpp" 59 #include "runtime/jfieldIDWorkaround.hpp" 60 #include "runtime/osThread.hpp" 61 #include "runtime/sharedRuntime.hpp" 62 #include "runtime/stubRoutines.hpp" 63 #include "runtime/synchronizer.hpp" 64 #include "runtime/threadCritical.hpp" 65 #include "utilities/events.hpp" 66 #ifdef COMPILER2 67 #include "opto/runtime.hpp" 68 #endif 69 70 class UnlockFlagSaver { 71 private: 72 JavaThread* _thread; 73 bool _do_not_unlock; 74 public: 75 UnlockFlagSaver(JavaThread* t) { 76 _thread = t; 77 _do_not_unlock = t->do_not_unlock_if_synchronized(); 78 t->set_do_not_unlock_if_synchronized(false); 79 } 80 ~UnlockFlagSaver() { 81 _thread->set_do_not_unlock_if_synchronized(_do_not_unlock); 82 } 83 }; 84 85 //------------------------------------------------------------------------------------------------------------------------ 86 // State accessors 87 88 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) { 89 last_frame(thread).interpreter_frame_set_bcp(bcp); 90 if (ProfileInterpreter) { 91 // ProfileTraps uses MDOs independently of ProfileInterpreter. 92 // That is why we must check both ProfileInterpreter and mdo != NULL. 93 MethodData* mdo = last_frame(thread).interpreter_frame_method()->method_data(); 94 if (mdo != NULL) { 95 NEEDS_CLEANUP; 96 last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci())); 97 } 98 } 99 } 100 101 //------------------------------------------------------------------------------------------------------------------------ 102 // Constants 103 104 105 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide)) 106 // access constant pool 107 ConstantPool* pool = method(thread)->constants(); 108 int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc); 109 constantTag tag = pool->tag_at(index); 110 111 assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call"); 112 Klass* klass = pool->klass_at(index, CHECK); 113 oop java_class = klass->java_mirror(); 114 thread->set_vm_result(java_class); 115 IRT_END 116 117 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) { 118 assert(bytecode == Bytecodes::_fast_aldc || 119 bytecode == Bytecodes::_fast_aldc_w, "wrong bc"); 120 ResourceMark rm(thread); 121 methodHandle m (thread, method(thread)); 122 Bytecode_loadconstant ldc(m, bci(thread)); 123 oop result = ldc.resolve_constant(CHECK); 124 #ifdef ASSERT 125 { 126 // The bytecode wrappers aren't GC-safe so construct a new one 127 Bytecode_loadconstant ldc2(m, bci(thread)); 128 oop coop = m->constants()->resolved_references()->obj_at(ldc2.cache_index()); 129 assert(result == coop, "expected result for assembly code"); 130 } 131 #endif 132 thread->set_vm_result(result); 133 } 134 IRT_END 135 136 137 //------------------------------------------------------------------------------------------------------------------------ 138 // Allocation 139 140 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index)) 141 Klass* k_oop = pool->klass_at(index, CHECK); 142 instanceKlassHandle klass (THREAD, k_oop); 143 144 // Make sure we are not instantiating an abstract klass 145 klass->check_valid_for_instantiation(true, CHECK); 146 147 // Make sure klass is initialized 148 klass->initialize(CHECK); 149 150 // At this point the class may not be fully initialized 151 // because of recursive initialization. If it is fully 152 // initialized & has_finalized is not set, we rewrite 153 // it into its fast version (Note: no locking is needed 154 // here since this is an atomic byte write and can be 155 // done more than once). 156 // 157 // Note: In case of classes with has_finalized we don't 158 // rewrite since that saves us an extra check in 159 // the fast version which then would call the 160 // slow version anyway (and do a call back into 161 // Java). 162 // If we have a breakpoint, then we don't rewrite 163 // because the _breakpoint bytecode would be lost. 164 oop obj = klass->allocate_instance(CHECK); 165 thread->set_vm_result(obj); 166 IRT_END 167 168 169 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size)) 170 oop obj = oopFactory::new_typeArray(type, size, CHECK); 171 thread->set_vm_result(obj); 172 IRT_END 173 174 175 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size)) 176 // Note: no oopHandle for pool & klass needed since they are not used 177 // anymore after new_objArray() and no GC can happen before. 178 // (This may have to change if this code changes!) 179 Klass* klass = pool->klass_at(index, CHECK); 180 objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK); 181 thread->set_vm_result(obj); 182 IRT_END 183 184 185 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address)) 186 // We may want to pass in more arguments - could make this slightly faster 187 ConstantPool* constants = method(thread)->constants(); 188 int i = get_index_u2(thread, Bytecodes::_multianewarray); 189 Klass* klass = constants->klass_at(i, CHECK); 190 int nof_dims = number_of_dimensions(thread); 191 assert(klass->is_klass(), "not a class"); 192 assert(nof_dims >= 1, "multianewarray rank must be nonzero"); 193 194 // We must create an array of jints to pass to multi_allocate. 195 ResourceMark rm(thread); 196 const int small_dims = 10; 197 jint dim_array[small_dims]; 198 jint *dims = &dim_array[0]; 199 if (nof_dims > small_dims) { 200 dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims); 201 } 202 for (int index = 0; index < nof_dims; index++) { 203 // offset from first_size_address is addressed as local[index] 204 int n = Interpreter::local_offset_in_bytes(index)/jintSize; 205 dims[index] = first_size_address[n]; 206 } 207 oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK); 208 thread->set_vm_result(obj); 209 IRT_END 210 211 212 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) 213 assert(obj->is_oop(), "must be a valid oop"); 214 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 215 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 216 IRT_END 217 218 219 // Quicken instance-of and check-cast bytecodes 220 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread)) 221 // Force resolving; quicken the bytecode 222 int which = get_index_u2(thread, Bytecodes::_checkcast); 223 ConstantPool* cpool = method(thread)->constants(); 224 // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded 225 // program we might have seen an unquick'd bytecode in the interpreter but have another 226 // thread quicken the bytecode before we get here. 227 // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" ); 228 Klass* klass = cpool->klass_at(which, CHECK); 229 thread->set_vm_result_2(klass); 230 IRT_END 231 232 233 //------------------------------------------------------------------------------------------------------------------------ 234 // Exceptions 235 236 void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason, 237 methodHandle trap_method, int trap_bci, TRAPS) { 238 if (trap_method.not_null()) { 239 MethodData* trap_mdo = trap_method->method_data(); 240 if (trap_mdo == NULL) { 241 Method::build_interpreter_method_data(trap_method, THREAD); 242 if (HAS_PENDING_EXCEPTION) { 243 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), 244 "we expect only an OOM error here"); 245 CLEAR_PENDING_EXCEPTION; 246 } 247 trap_mdo = trap_method->method_data(); 248 // and fall through... 249 } 250 if (trap_mdo != NULL) { 251 // Update per-method count of trap events. The interpreter 252 // is updating the MDO to simulate the effect of compiler traps. 253 Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason); 254 } 255 } 256 } 257 258 // Assume the compiler is (or will be) interested in this event. 259 // If necessary, create an MDO to hold the information, and record it. 260 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) { 261 assert(ProfileTraps, "call me only if profiling"); 262 methodHandle trap_method(thread, method(thread)); 263 int trap_bci = trap_method->bci_from(bcp(thread)); 264 note_trap_inner(thread, reason, trap_method, trap_bci, THREAD); 265 } 266 267 #ifdef CC_INTERP 268 // As legacy note_trap, but we have more arguments. 269 IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci)) 270 methodHandle trap_method(method); 271 note_trap_inner(thread, reason, trap_method, trap_bci, THREAD); 272 IRT_END 273 274 // Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper 275 // for each exception. 276 void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci) 277 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); } 278 void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci) 279 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); } 280 void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci) 281 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); } 282 void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci) 283 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); } 284 void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci) 285 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); } 286 #endif // CC_INTERP 287 288 289 static Handle get_preinitialized_exception(Klass* k, TRAPS) { 290 // get klass 291 InstanceKlass* klass = InstanceKlass::cast(k); 292 assert(klass->is_initialized(), 293 "this klass should have been initialized during VM initialization"); 294 // create instance - do not call constructor since we may have no 295 // (java) stack space left (should assert constructor is empty) 296 Handle exception; 297 oop exception_oop = klass->allocate_instance(CHECK_(exception)); 298 exception = Handle(THREAD, exception_oop); 299 if (StackTraceInThrowable) { 300 java_lang_Throwable::fill_in_stack_trace(exception); 301 } 302 return exception; 303 } 304 305 // Special handling for stack overflow: since we don't have any (java) stack 306 // space left we use the pre-allocated & pre-initialized StackOverflowError 307 // klass to create an stack overflow error instance. We do not call its 308 // constructor for the same reason (it is empty, anyway). 309 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread)) 310 Handle exception = get_preinitialized_exception( 311 SystemDictionary::StackOverflowError_klass(), 312 CHECK); 313 // Increment counter for hs_err file reporting 314 Atomic::inc(&Exceptions::_stack_overflow_errors); 315 THROW_HANDLE(exception); 316 IRT_END 317 318 IRT_ENTRY(address, InterpreterRuntime::check_ReservedStackAccess_annotated_methods(JavaThread* thread)) 319 frame fr = thread->last_frame(); 320 assert(fr.is_java_frame(), "Must be a Java frame"); 321 frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr); 322 if (activation.sp() != NULL) { 323 thread->disable_stack_reserved_zone(); 324 thread->set_reserved_stack_activation((address)activation.unextended_sp()); 325 } 326 return (address)activation.sp(); 327 IRT_END 328 329 IRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* thread)) 330 Handle exception = get_preinitialized_exception( 331 SystemDictionary::StackOverflowError_klass(), 332 CHECK); 333 java_lang_Throwable::set_message(exception(), 334 Universe::delayed_stack_overflow_error_message()); 335 // Increment counter for hs_err file reporting 336 Atomic::inc(&Exceptions::_stack_overflow_errors); 337 THROW_HANDLE(exception); 338 IRT_END 339 340 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message)) 341 // lookup exception klass 342 TempNewSymbol s = SymbolTable::new_symbol(name, CHECK); 343 if (ProfileTraps) { 344 if (s == vmSymbols::java_lang_ArithmeticException()) { 345 note_trap(thread, Deoptimization::Reason_div0_check, CHECK); 346 } else if (s == vmSymbols::java_lang_NullPointerException()) { 347 note_trap(thread, Deoptimization::Reason_null_check, CHECK); 348 } 349 } 350 // create exception 351 Handle exception = Exceptions::new_exception(thread, s, message); 352 thread->set_vm_result(exception()); 353 IRT_END 354 355 356 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj)) 357 ResourceMark rm(thread); 358 const char* klass_name = obj->klass()->external_name(); 359 // lookup exception klass 360 TempNewSymbol s = SymbolTable::new_symbol(name, CHECK); 361 if (ProfileTraps) { 362 note_trap(thread, Deoptimization::Reason_class_check, CHECK); 363 } 364 // create exception, with klass name as detail message 365 Handle exception = Exceptions::new_exception(thread, s, klass_name); 366 thread->set_vm_result(exception()); 367 IRT_END 368 369 370 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index)) 371 char message[jintAsStringSize]; 372 // lookup exception klass 373 TempNewSymbol s = SymbolTable::new_symbol(name, CHECK); 374 if (ProfileTraps) { 375 note_trap(thread, Deoptimization::Reason_range_check, CHECK); 376 } 377 // create exception 378 sprintf(message, "%d", index); 379 THROW_MSG(s, message); 380 IRT_END 381 382 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException( 383 JavaThread* thread, oopDesc* obj)) 384 385 ResourceMark rm(thread); 386 char* message = SharedRuntime::generate_class_cast_message( 387 thread, obj->klass()->external_name()); 388 389 if (ProfileTraps) { 390 note_trap(thread, Deoptimization::Reason_class_check, CHECK); 391 } 392 393 // create exception 394 THROW_MSG(vmSymbols::java_lang_ClassCastException(), message); 395 IRT_END 396 397 // exception_handler_for_exception(...) returns the continuation address, 398 // the exception oop (via TLS) and sets the bci/bcp for the continuation. 399 // The exception oop is returned to make sure it is preserved over GC (it 400 // is only on the stack if the exception was thrown explicitly via athrow). 401 // During this operation, the expression stack contains the values for the 402 // bci where the exception happened. If the exception was propagated back 403 // from a call, the expression stack contains the values for the bci at the 404 // invoke w/o arguments (i.e., as if one were inside the call). 405 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception)) 406 407 Handle h_exception(thread, exception); 408 methodHandle h_method (thread, method(thread)); 409 constantPoolHandle h_constants(thread, h_method->constants()); 410 bool should_repeat; 411 int handler_bci; 412 int current_bci = bci(thread); 413 414 if (thread->frames_to_pop_failed_realloc() > 0) { 415 // Allocation of scalar replaced object used in this frame 416 // failed. Unconditionally pop the frame. 417 thread->dec_frames_to_pop_failed_realloc(); 418 thread->set_vm_result(h_exception()); 419 // If the method is synchronized we already unlocked the monitor 420 // during deoptimization so the interpreter needs to skip it when 421 // the frame is popped. 422 thread->set_do_not_unlock_if_synchronized(true); 423 #ifdef CC_INTERP 424 return (address) -1; 425 #else 426 return Interpreter::remove_activation_entry(); 427 #endif 428 } 429 430 // Need to do this check first since when _do_not_unlock_if_synchronized 431 // is set, we don't want to trigger any classloading which may make calls 432 // into java, or surprisingly find a matching exception handler for bci 0 433 // since at this moment the method hasn't been "officially" entered yet. 434 if (thread->do_not_unlock_if_synchronized()) { 435 ResourceMark rm; 436 assert(current_bci == 0, "bci isn't zero for do_not_unlock_if_synchronized"); 437 thread->set_vm_result(exception); 438 #ifdef CC_INTERP 439 return (address) -1; 440 #else 441 return Interpreter::remove_activation_entry(); 442 #endif 443 } 444 445 do { 446 should_repeat = false; 447 448 // assertions 449 #ifdef ASSERT 450 assert(h_exception.not_null(), "NULL exceptions should be handled by athrow"); 451 assert(h_exception->is_oop(), "just checking"); 452 // Check that exception is a subclass of Throwable, otherwise we have a VerifyError 453 if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) { 454 if (ExitVMOnVerifyError) vm_exit(-1); 455 ShouldNotReachHere(); 456 } 457 #endif 458 459 // tracing 460 if (log_is_enabled(Info, exceptions)) { 461 ResourceMark rm(thread); 462 stringStream tempst; 463 tempst.print("interpreter method <%s>\n" 464 " at bci %d for thread " INTPTR_FORMAT, 465 h_method->print_value_string(), current_bci, p2i(thread)); 466 Exceptions::log_exception(h_exception, tempst); 467 } 468 // Don't go paging in something which won't be used. 469 // else if (extable->length() == 0) { 470 // // disabled for now - interpreter is not using shortcut yet 471 // // (shortcut is not to call runtime if we have no exception handlers) 472 // // warning("performance bug: should not call runtime if method has no exception handlers"); 473 // } 474 // for AbortVMOnException flag 475 Exceptions::debug_check_abort(h_exception); 476 477 // exception handler lookup 478 KlassHandle h_klass(THREAD, h_exception->klass()); 479 handler_bci = Method::fast_exception_handler_bci_for(h_method, h_klass, current_bci, THREAD); 480 if (HAS_PENDING_EXCEPTION) { 481 // We threw an exception while trying to find the exception handler. 482 // Transfer the new exception to the exception handle which will 483 // be set into thread local storage, and do another lookup for an 484 // exception handler for this exception, this time starting at the 485 // BCI of the exception handler which caused the exception to be 486 // thrown (bug 4307310). 487 h_exception = Handle(THREAD, PENDING_EXCEPTION); 488 CLEAR_PENDING_EXCEPTION; 489 if (handler_bci >= 0) { 490 current_bci = handler_bci; 491 should_repeat = true; 492 } 493 } 494 } while (should_repeat == true); 495 496 #if INCLUDE_JVMCI 497 if (EnableJVMCI && h_method->method_data() != NULL) { 498 ResourceMark rm(thread); 499 ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL); 500 if (pdata != NULL && pdata->is_BitData()) { 501 BitData* bit_data = (BitData*) pdata; 502 bit_data->set_exception_seen(); 503 } 504 } 505 #endif 506 507 // notify JVMTI of an exception throw; JVMTI will detect if this is a first 508 // time throw or a stack unwinding throw and accordingly notify the debugger 509 if (JvmtiExport::can_post_on_exceptions()) { 510 JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception()); 511 } 512 513 #ifdef CC_INTERP 514 address continuation = (address)(intptr_t) handler_bci; 515 #else 516 address continuation = NULL; 517 #endif 518 address handler_pc = NULL; 519 if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) { 520 // Forward exception to callee (leaving bci/bcp untouched) because (a) no 521 // handler in this method, or (b) after a stack overflow there is not yet 522 // enough stack space available to reprotect the stack. 523 #ifndef CC_INTERP 524 continuation = Interpreter::remove_activation_entry(); 525 #endif 526 // Count this for compilation purposes 527 h_method->interpreter_throwout_increment(THREAD); 528 } else { 529 // handler in this method => change bci/bcp to handler bci/bcp and continue there 530 handler_pc = h_method->code_base() + handler_bci; 531 #ifndef CC_INTERP 532 set_bcp_and_mdp(handler_pc, thread); 533 continuation = Interpreter::dispatch_table(vtos)[*handler_pc]; 534 #endif 535 } 536 // notify debugger of an exception catch 537 // (this is good for exceptions caught in native methods as well) 538 if (JvmtiExport::can_post_on_exceptions()) { 539 JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL)); 540 } 541 542 thread->set_vm_result(h_exception()); 543 return continuation; 544 IRT_END 545 546 547 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread)) 548 assert(thread->has_pending_exception(), "must only ne called if there's an exception pending"); 549 // nothing to do - eventually we should remove this code entirely (see comments @ call sites) 550 IRT_END 551 552 553 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread)) 554 THROW(vmSymbols::java_lang_AbstractMethodError()); 555 IRT_END 556 557 558 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) 559 THROW(vmSymbols::java_lang_IncompatibleClassChangeError()); 560 IRT_END 561 562 563 //------------------------------------------------------------------------------------------------------------------------ 564 // Fields 565 // 566 567 void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) { 568 Thread* THREAD = thread; 569 // resolve field 570 fieldDescriptor info; 571 constantPoolHandle pool(thread, method(thread)->constants()); 572 bool is_put = (bytecode == Bytecodes::_putfield || bytecode == Bytecodes::_nofast_putfield || 573 bytecode == Bytecodes::_putstatic); 574 bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic); 575 576 { 577 JvmtiHideSingleStepping jhss(thread); 578 LinkResolver::resolve_field_access(info, pool, get_index_u2_cpcache(thread, bytecode), 579 bytecode, CHECK); 580 } // end JvmtiHideSingleStepping 581 582 // check if link resolution caused cpCache to be updated 583 ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread); 584 if (cp_cache_entry->is_resolved(bytecode)) return; 585 586 // compute auxiliary field attributes 587 TosState state = as_TosState(info.field_type()); 588 589 // We need to delay resolving put instructions on final fields 590 // until we actually invoke one. This is required so we throw 591 // exceptions at the correct place. If we do not resolve completely 592 // in the current pass, leaving the put_code set to zero will 593 // cause the next put instruction to reresolve. 594 Bytecodes::Code put_code = (Bytecodes::Code)0; 595 596 // We also need to delay resolving getstatic instructions until the 597 // class is intitialized. This is required so that access to the static 598 // field will call the initialization function every time until the class 599 // is completely initialized ala. in 2.17.5 in JVM Specification. 600 InstanceKlass* klass = InstanceKlass::cast(info.field_holder()); 601 bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) && 602 !klass->is_initialized()); 603 Bytecodes::Code get_code = (Bytecodes::Code)0; 604 605 if (!uninitialized_static) { 606 get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield); 607 if (is_put || !info.access_flags().is_final()) { 608 put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield); 609 } 610 } 611 612 cp_cache_entry->set_field( 613 get_code, 614 put_code, 615 info.field_holder(), 616 info.index(), 617 info.offset(), 618 state, 619 info.access_flags().is_final(), 620 info.access_flags().is_volatile(), 621 pool->pool_holder() 622 ); 623 } 624 625 626 //------------------------------------------------------------------------------------------------------------------------ 627 // Synchronization 628 // 629 // The interpreter's synchronization code is factored out so that it can 630 // be shared by method invocation and synchronized blocks. 631 //%note synchronization_3 632 633 //%note monitor_1 634 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem)) 635 #ifdef ASSERT 636 thread->last_frame().interpreter_frame_verify_monitor(elem); 637 #endif 638 if (PrintBiasedLockingStatistics) { 639 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 640 } 641 Handle h_obj(thread, elem->obj()); 642 assert(Universe::heap()->is_in_reserved_or_null(h_obj()), 643 "must be NULL or an object"); 644 if (UseBiasedLocking) { 645 // Retry fast entry if bias is revoked to avoid unnecessary inflation 646 ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK); 647 } else { 648 ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK); 649 } 650 assert(Universe::heap()->is_in_reserved_or_null(elem->obj()), 651 "must be NULL or an object"); 652 #ifdef ASSERT 653 thread->last_frame().interpreter_frame_verify_monitor(elem); 654 #endif 655 IRT_END 656 657 658 //%note monitor_1 659 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem)) 660 #ifdef ASSERT 661 thread->last_frame().interpreter_frame_verify_monitor(elem); 662 #endif 663 Handle h_obj(thread, elem->obj()); 664 assert(Universe::heap()->is_in_reserved_or_null(h_obj()), 665 "must be NULL or an object"); 666 if (elem == NULL || h_obj()->is_unlocked()) { 667 THROW(vmSymbols::java_lang_IllegalMonitorStateException()); 668 } 669 ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread); 670 // Free entry. This must be done here, since a pending exception might be installed on 671 // exit. If it is not cleared, the exception handling code will try to unlock the monitor again. 672 elem->set_obj(NULL); 673 #ifdef ASSERT 674 thread->last_frame().interpreter_frame_verify_monitor(elem); 675 #endif 676 IRT_END 677 678 679 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread)) 680 THROW(vmSymbols::java_lang_IllegalMonitorStateException()); 681 IRT_END 682 683 684 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread)) 685 // Returns an illegal exception to install into the current thread. The 686 // pending_exception flag is cleared so normal exception handling does not 687 // trigger. Any current installed exception will be overwritten. This 688 // method will be called during an exception unwind. 689 690 assert(!HAS_PENDING_EXCEPTION, "no pending exception"); 691 Handle exception(thread, thread->vm_result()); 692 assert(exception() != NULL, "vm result should be set"); 693 thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures) 694 if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) { 695 exception = get_preinitialized_exception( 696 SystemDictionary::IllegalMonitorStateException_klass(), 697 CATCH); 698 } 699 thread->set_vm_result(exception()); 700 IRT_END 701 702 703 //------------------------------------------------------------------------------------------------------------------------ 704 // Invokes 705 706 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp)) 707 return method->orig_bytecode_at(method->bci_from(bcp)); 708 IRT_END 709 710 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code)) 711 method->set_orig_bytecode_at(method->bci_from(bcp), new_code); 712 IRT_END 713 714 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp)) 715 JvmtiExport::post_raw_breakpoint(thread, method, bcp); 716 IRT_END 717 718 void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) { 719 Thread* THREAD = thread; 720 // extract receiver from the outgoing argument list if necessary 721 Handle receiver(thread, NULL); 722 if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) { 723 ResourceMark rm(thread); 724 methodHandle m (thread, method(thread)); 725 Bytecode_invoke call(m, bci(thread)); 726 Symbol* signature = call.signature(); 727 receiver = Handle(thread, 728 thread->last_frame().interpreter_callee_receiver(signature)); 729 assert(Universe::heap()->is_in_reserved_or_null(receiver()), 730 "sanity check"); 731 assert(receiver.is_null() || 732 !Universe::heap()->is_in_reserved(receiver->klass()), 733 "sanity check"); 734 } 735 736 // resolve method 737 CallInfo info; 738 constantPoolHandle pool(thread, method(thread)->constants()); 739 740 { 741 JvmtiHideSingleStepping jhss(thread); 742 LinkResolver::resolve_invoke(info, receiver, pool, 743 get_index_u2_cpcache(thread, bytecode), bytecode, 744 CHECK); 745 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 746 int retry_count = 0; 747 while (info.resolved_method()->is_old()) { 748 // It is very unlikely that method is redefined more than 100 times 749 // in the middle of resolve. If it is looping here more than 100 times 750 // means then there could be a bug here. 751 guarantee((retry_count++ < 100), 752 "Could not resolve to latest version of redefined method"); 753 // method is redefined in the middle of resolve so re-try. 754 LinkResolver::resolve_invoke(info, receiver, pool, 755 get_index_u2_cpcache(thread, bytecode), bytecode, 756 CHECK); 757 } 758 } 759 } // end JvmtiHideSingleStepping 760 761 // check if link resolution caused cpCache to be updated 762 ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread); 763 if (cp_cache_entry->is_resolved(bytecode)) return; 764 765 if (bytecode == Bytecodes::_invokeinterface) { 766 if (log_develop_is_enabled(Trace, itables)) { 767 ResourceMark rm(thread); 768 log_develop_trace(itables)("Resolving: klass: %s to method: %s", 769 info.resolved_klass()->name()->as_C_string(), 770 info.resolved_method()->name()->as_C_string()); 771 } 772 } 773 #ifdef ASSERT 774 if (bytecode == Bytecodes::_invokeinterface) { 775 if (info.resolved_method()->method_holder() == 776 SystemDictionary::Object_klass()) { 777 // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec 778 // (see also CallInfo::set_interface for details) 779 assert(info.call_kind() == CallInfo::vtable_call || 780 info.call_kind() == CallInfo::direct_call, ""); 781 methodHandle rm = info.resolved_method(); 782 assert(rm->is_final() || info.has_vtable_index(), 783 "should have been set already"); 784 } else if (!info.resolved_method()->has_itable_index()) { 785 // Resolved something like CharSequence.toString. Use vtable not itable. 786 assert(info.call_kind() != CallInfo::itable_call, ""); 787 } else { 788 // Setup itable entry 789 assert(info.call_kind() == CallInfo::itable_call, ""); 790 int index = info.resolved_method()->itable_index(); 791 assert(info.itable_index() == index, ""); 792 } 793 } else { 794 assert(info.call_kind() == CallInfo::direct_call || 795 info.call_kind() == CallInfo::vtable_call, ""); 796 } 797 #endif 798 switch (info.call_kind()) { 799 case CallInfo::direct_call: 800 cp_cache_entry->set_direct_call( 801 bytecode, 802 info.resolved_method()); 803 break; 804 case CallInfo::vtable_call: 805 cp_cache_entry->set_vtable_call( 806 bytecode, 807 info.resolved_method(), 808 info.vtable_index()); 809 break; 810 case CallInfo::itable_call: 811 cp_cache_entry->set_itable_call( 812 bytecode, 813 info.resolved_method(), 814 info.itable_index()); 815 break; 816 default: ShouldNotReachHere(); 817 } 818 } 819 820 821 // First time execution: Resolve symbols, create a permanent MethodType object. 822 void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) { 823 Thread* THREAD = thread; 824 const Bytecodes::Code bytecode = Bytecodes::_invokehandle; 825 826 // resolve method 827 CallInfo info; 828 constantPoolHandle pool(thread, method(thread)->constants()); 829 { 830 JvmtiHideSingleStepping jhss(thread); 831 LinkResolver::resolve_invoke(info, Handle(), pool, 832 get_index_u2_cpcache(thread, bytecode), bytecode, 833 CHECK); 834 } // end JvmtiHideSingleStepping 835 836 ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread); 837 cp_cache_entry->set_method_handle(pool, info); 838 } 839 840 // First time execution: Resolve symbols, create a permanent CallSite object. 841 void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) { 842 Thread* THREAD = thread; 843 const Bytecodes::Code bytecode = Bytecodes::_invokedynamic; 844 845 //TO DO: consider passing BCI to Java. 846 // int caller_bci = method(thread)->bci_from(bcp(thread)); 847 848 // resolve method 849 CallInfo info; 850 constantPoolHandle pool(thread, method(thread)->constants()); 851 int index = get_index_u4(thread, bytecode); 852 { 853 JvmtiHideSingleStepping jhss(thread); 854 LinkResolver::resolve_invoke(info, Handle(), pool, 855 index, bytecode, CHECK); 856 } // end JvmtiHideSingleStepping 857 858 ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index); 859 cp_cache_entry->set_dynamic_call(pool, info); 860 } 861 862 // This function is the interface to the assembly code. It returns the resolved 863 // cpCache entry. This doesn't safepoint, but the helper routines safepoint. 864 // This function will check for redefinition! 865 IRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) { 866 switch (bytecode) { 867 case Bytecodes::_getstatic: 868 case Bytecodes::_putstatic: 869 case Bytecodes::_getfield: 870 case Bytecodes::_putfield: 871 resolve_get_put(thread, bytecode); 872 break; 873 case Bytecodes::_invokevirtual: 874 case Bytecodes::_invokespecial: 875 case Bytecodes::_invokestatic: 876 case Bytecodes::_invokeinterface: 877 resolve_invoke(thread, bytecode); 878 break; 879 case Bytecodes::_invokehandle: 880 resolve_invokehandle(thread); 881 break; 882 case Bytecodes::_invokedynamic: 883 resolve_invokedynamic(thread); 884 break; 885 default: 886 fatal("unexpected bytecode: %s", Bytecodes::name(bytecode)); 887 break; 888 } 889 } 890 IRT_END 891 892 //------------------------------------------------------------------------------------------------------------------------ 893 // Miscellaneous 894 895 896 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) { 897 nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp); 898 assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests"); 899 if (branch_bcp != NULL && nm != NULL) { 900 // This was a successful request for an OSR nmethod. Because 901 // frequency_counter_overflow_inner ends with a safepoint check, 902 // nm could have been unloaded so look it up again. It's unsafe 903 // to examine nm directly since it might have been freed and used 904 // for something else. 905 frame fr = thread->last_frame(); 906 Method* method = fr.interpreter_frame_method(); 907 int bci = method->bci_from(fr.interpreter_frame_bcp()); 908 nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false); 909 } 910 #ifndef PRODUCT 911 if (TraceOnStackReplacement) { 912 if (nm != NULL) { 913 tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry())); 914 nm->print(); 915 } 916 } 917 #endif 918 return nm; 919 } 920 921 IRT_ENTRY(nmethod*, 922 InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp)) 923 // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized 924 // flag, in case this method triggers classloading which will call into Java. 925 UnlockFlagSaver fs(thread); 926 927 frame fr = thread->last_frame(); 928 assert(fr.is_interpreted_frame(), "must come from interpreter"); 929 methodHandle method(thread, fr.interpreter_frame_method()); 930 const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci; 931 const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci; 932 933 assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending"); 934 nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread); 935 assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions"); 936 937 if (osr_nm != NULL) { 938 // We may need to do on-stack replacement which requires that no 939 // monitors in the activation are biased because their 940 // BasicObjectLocks will need to migrate during OSR. Force 941 // unbiasing of all monitors in the activation now (even though 942 // the OSR nmethod might be invalidated) because we don't have a 943 // safepoint opportunity later once the migration begins. 944 if (UseBiasedLocking) { 945 ResourceMark rm; 946 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>(); 947 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 948 kptr < fr.interpreter_frame_monitor_begin(); 949 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 950 if( kptr->obj() != NULL ) { 951 objects_to_revoke->append(Handle(THREAD, kptr->obj())); 952 } 953 } 954 BiasedLocking::revoke(objects_to_revoke); 955 } 956 } 957 return osr_nm; 958 IRT_END 959 960 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp)) 961 assert(ProfileInterpreter, "must be profiling interpreter"); 962 int bci = method->bci_from(cur_bcp); 963 MethodData* mdo = method->method_data(); 964 if (mdo == NULL) return 0; 965 return mdo->bci_to_di(bci); 966 IRT_END 967 968 IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread)) 969 // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized 970 // flag, in case this method triggers classloading which will call into Java. 971 UnlockFlagSaver fs(thread); 972 973 assert(ProfileInterpreter, "must be profiling interpreter"); 974 frame fr = thread->last_frame(); 975 assert(fr.is_interpreted_frame(), "must come from interpreter"); 976 methodHandle method(thread, fr.interpreter_frame_method()); 977 Method::build_interpreter_method_data(method, THREAD); 978 if (HAS_PENDING_EXCEPTION) { 979 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); 980 CLEAR_PENDING_EXCEPTION; 981 // and fall through... 982 } 983 IRT_END 984 985 986 #ifdef ASSERT 987 IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp)) 988 assert(ProfileInterpreter, "must be profiling interpreter"); 989 990 MethodData* mdo = method->method_data(); 991 assert(mdo != NULL, "must not be null"); 992 993 int bci = method->bci_from(bcp); 994 995 address mdp2 = mdo->bci_to_dp(bci); 996 if (mdp != mdp2) { 997 ResourceMark rm; 998 ResetNoHandleMark rnm; // In a LEAF entry. 999 HandleMark hm; 1000 tty->print_cr("FAILED verify : actual mdp %p expected mdp %p @ bci %d", mdp, mdp2, bci); 1001 int current_di = mdo->dp_to_di(mdp); 1002 int expected_di = mdo->dp_to_di(mdp2); 1003 tty->print_cr(" actual di %d expected di %d", current_di, expected_di); 1004 int expected_approx_bci = mdo->data_at(expected_di)->bci(); 1005 int approx_bci = -1; 1006 if (current_di >= 0) { 1007 approx_bci = mdo->data_at(current_di)->bci(); 1008 } 1009 tty->print_cr(" actual bci is %d expected bci %d", approx_bci, expected_approx_bci); 1010 mdo->print_on(tty); 1011 method->print_codes(); 1012 } 1013 assert(mdp == mdp2, "wrong mdp"); 1014 IRT_END 1015 #endif // ASSERT 1016 1017 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci)) 1018 assert(ProfileInterpreter, "must be profiling interpreter"); 1019 ResourceMark rm(thread); 1020 HandleMark hm(thread); 1021 frame fr = thread->last_frame(); 1022 assert(fr.is_interpreted_frame(), "must come from interpreter"); 1023 MethodData* h_mdo = fr.interpreter_frame_method()->method_data(); 1024 1025 // Grab a lock to ensure atomic access to setting the return bci and 1026 // the displacement. This can block and GC, invalidating all naked oops. 1027 MutexLocker ml(RetData_lock); 1028 1029 // ProfileData is essentially a wrapper around a derived oop, so we 1030 // need to take the lock before making any ProfileData structures. 1031 ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp())); 1032 RetData* rdata = data->as_RetData(); 1033 address new_mdp = rdata->fixup_ret(return_bci, h_mdo); 1034 fr.interpreter_frame_set_mdp(new_mdp); 1035 IRT_END 1036 1037 IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m)) 1038 MethodCounters* mcs = Method::build_method_counters(m, thread); 1039 if (HAS_PENDING_EXCEPTION) { 1040 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1041 CLEAR_PENDING_EXCEPTION; 1042 } 1043 return mcs; 1044 IRT_END 1045 1046 1047 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread)) 1048 // We used to need an explict preserve_arguments here for invoke bytecodes. However, 1049 // stack traversal automatically takes care of preserving arguments for invoke, so 1050 // this is no longer needed. 1051 1052 // IRT_END does an implicit safepoint check, hence we are guaranteed to block 1053 // if this is called during a safepoint 1054 1055 if (JvmtiExport::should_post_single_step()) { 1056 // We are called during regular safepoints and when the VM is 1057 // single stepping. If any thread is marked for single stepping, 1058 // then we may have JVMTI work to do. 1059 JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread)); 1060 } 1061 IRT_END 1062 1063 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj, 1064 ConstantPoolCacheEntry *cp_entry)) 1065 1066 // check the access_flags for the field in the klass 1067 1068 InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass()); 1069 int index = cp_entry->field_index(); 1070 if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return; 1071 1072 bool is_static = (obj == NULL); 1073 HandleMark hm(thread); 1074 1075 Handle h_obj; 1076 if (!is_static) { 1077 // non-static field accessors have an object, but we need a handle 1078 h_obj = Handle(thread, obj); 1079 } 1080 instanceKlassHandle h_cp_entry_f1(thread, (Klass*)cp_entry->f1_as_klass()); 1081 jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_cp_entry_f1, cp_entry->f2_as_index(), is_static); 1082 JvmtiExport::post_field_access(thread, method(thread), bcp(thread), h_cp_entry_f1, h_obj, fid); 1083 IRT_END 1084 1085 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread, 1086 oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value)) 1087 1088 Klass* k = (Klass*)cp_entry->f1_as_klass(); 1089 1090 // check the access_flags for the field in the klass 1091 InstanceKlass* ik = InstanceKlass::cast(k); 1092 int index = cp_entry->field_index(); 1093 // bail out if field modifications are not watched 1094 if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return; 1095 1096 char sig_type = '\0'; 1097 1098 switch(cp_entry->flag_state()) { 1099 case btos: sig_type = 'Z'; break; 1100 case ctos: sig_type = 'C'; break; 1101 case stos: sig_type = 'S'; break; 1102 case itos: sig_type = 'I'; break; 1103 case ftos: sig_type = 'F'; break; 1104 case atos: sig_type = 'L'; break; 1105 case ltos: sig_type = 'J'; break; 1106 case dtos: sig_type = 'D'; break; 1107 default: ShouldNotReachHere(); return; 1108 } 1109 bool is_static = (obj == NULL); 1110 1111 HandleMark hm(thread); 1112 instanceKlassHandle h_klass(thread, k); 1113 jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_klass, cp_entry->f2_as_index(), is_static); 1114 jvalue fvalue; 1115 #ifdef _LP64 1116 fvalue = *value; 1117 #else 1118 // Long/double values are stored unaligned and also noncontiguously with 1119 // tagged stacks. We can't just do a simple assignment even in the non- 1120 // J/D cases because a C++ compiler is allowed to assume that a jvalue is 1121 // 8-byte aligned, and interpreter stack slots are only 4-byte aligned. 1122 // We assume that the two halves of longs/doubles are stored in interpreter 1123 // stack slots in platform-endian order. 1124 jlong_accessor u; 1125 jint* newval = (jint*)value; 1126 u.words[0] = newval[0]; 1127 u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag 1128 fvalue.j = u.long_value; 1129 #endif // _LP64 1130 1131 Handle h_obj; 1132 if (!is_static) { 1133 // non-static field accessors have an object, but we need a handle 1134 h_obj = Handle(thread, obj); 1135 } 1136 1137 JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), h_klass, h_obj, 1138 fid, sig_type, &fvalue); 1139 IRT_END 1140 1141 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread)) 1142 JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread)); 1143 IRT_END 1144 1145 1146 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread)) 1147 JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread)); 1148 IRT_END 1149 1150 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc)) 1151 { 1152 return (Interpreter::contains(pc) ? 1 : 0); 1153 } 1154 IRT_END 1155 1156 1157 // Implementation of SignatureHandlerLibrary 1158 1159 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS 1160 // Dummy definition (else normalization method is defined in CPU 1161 // dependant code) 1162 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) { 1163 return fingerprint; 1164 } 1165 #endif 1166 1167 address SignatureHandlerLibrary::set_handler_blob() { 1168 BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size); 1169 if (handler_blob == NULL) { 1170 return NULL; 1171 } 1172 address handler = handler_blob->code_begin(); 1173 _handler_blob = handler_blob; 1174 _handler = handler; 1175 return handler; 1176 } 1177 1178 void SignatureHandlerLibrary::initialize() { 1179 if (_fingerprints != NULL) { 1180 return; 1181 } 1182 if (set_handler_blob() == NULL) { 1183 vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers"); 1184 } 1185 1186 BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer", 1187 SignatureHandlerLibrary::buffer_size); 1188 _buffer = bb->code_begin(); 1189 1190 _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true); 1191 _handlers = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true); 1192 } 1193 1194 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) { 1195 address handler = _handler; 1196 int insts_size = buffer->pure_insts_size(); 1197 if (handler + insts_size > _handler_blob->code_end()) { 1198 // get a new handler blob 1199 handler = set_handler_blob(); 1200 } 1201 if (handler != NULL) { 1202 memcpy(handler, buffer->insts_begin(), insts_size); 1203 pd_set_handler(handler); 1204 ICache::invalidate_range(handler, insts_size); 1205 _handler = handler + insts_size; 1206 } 1207 CodeCacheExtensions::handle_generated_handler(handler, buffer->name(), _handler); 1208 return handler; 1209 } 1210 1211 void SignatureHandlerLibrary::add(const methodHandle& method) { 1212 if (method->signature_handler() == NULL) { 1213 // use slow signature handler if we can't do better 1214 int handler_index = -1; 1215 // check if we can use customized (fast) signature handler 1216 if (UseFastSignatureHandlers && CodeCacheExtensions::support_fast_signature_handlers() && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) { 1217 // use customized signature handler 1218 MutexLocker mu(SignatureHandlerLibrary_lock); 1219 // make sure data structure is initialized 1220 initialize(); 1221 // lookup method signature's fingerprint 1222 uint64_t fingerprint = Fingerprinter(method).fingerprint(); 1223 // allow CPU dependant code to optimize the fingerprints for the fast handler 1224 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1225 handler_index = _fingerprints->find(fingerprint); 1226 // create handler if necessary 1227 if (handler_index < 0) { 1228 ResourceMark rm; 1229 ptrdiff_t align_offset = (address) 1230 round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer; 1231 CodeBuffer buffer((address)(_buffer + align_offset), 1232 SignatureHandlerLibrary::buffer_size - align_offset); 1233 if (!CodeCacheExtensions::support_dynamic_code()) { 1234 // we need a name for the signature (for lookups or saving) 1235 const int SYMBOL_SIZE = 50; 1236 char *symbolName = NEW_RESOURCE_ARRAY(char, SYMBOL_SIZE); 1237 // support for named signatures 1238 jio_snprintf(symbolName, SYMBOL_SIZE, 1239 "native_" UINT64_FORMAT, fingerprint); 1240 buffer.set_name(symbolName); 1241 } 1242 InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint); 1243 // copy into code heap 1244 address handler = set_handler(&buffer); 1245 if (handler == NULL) { 1246 // use slow signature handler (without memorizing it in the fingerprints) 1247 } else { 1248 // debugging suppport 1249 if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) { 1250 ttyLocker ttyl; 1251 tty->cr(); 1252 tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)", 1253 _handlers->length(), 1254 (method->is_static() ? "static" : "receiver"), 1255 method->name_and_sig_as_C_string(), 1256 fingerprint, 1257 buffer.insts_size()); 1258 if (buffer.insts_size() > 0) { 1259 // buffer may be empty for pregenerated handlers 1260 Disassembler::decode(handler, handler + buffer.insts_size()); 1261 } 1262 #ifndef PRODUCT 1263 address rh_begin = Interpreter::result_handler(method()->result_type()); 1264 if (CodeCache::contains(rh_begin)) { 1265 // else it might be special platform dependent values 1266 tty->print_cr(" --- associated result handler ---"); 1267 address rh_end = rh_begin; 1268 while (*(int*)rh_end != 0) { 1269 rh_end += sizeof(int); 1270 } 1271 Disassembler::decode(rh_begin, rh_end); 1272 } else { 1273 tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin)); 1274 } 1275 #endif 1276 } 1277 // add handler to library 1278 _fingerprints->append(fingerprint); 1279 _handlers->append(handler); 1280 // set handler index 1281 assert(_fingerprints->length() == _handlers->length(), "sanity check"); 1282 handler_index = _fingerprints->length() - 1; 1283 } 1284 } 1285 // Set handler under SignatureHandlerLibrary_lock 1286 if (handler_index < 0) { 1287 // use generic signature handler 1288 method->set_signature_handler(Interpreter::slow_signature_handler()); 1289 } else { 1290 // set handler 1291 method->set_signature_handler(_handlers->at(handler_index)); 1292 } 1293 } else { 1294 CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops()); 1295 // use generic signature handler 1296 method->set_signature_handler(Interpreter::slow_signature_handler()); 1297 } 1298 } 1299 #ifdef ASSERT 1300 int handler_index = -1; 1301 int fingerprint_index = -2; 1302 { 1303 // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized 1304 // in any way if accessed from multiple threads. To avoid races with another 1305 // thread which may change the arrays in the above, mutex protected block, we 1306 // have to protect this read access here with the same mutex as well! 1307 MutexLocker mu(SignatureHandlerLibrary_lock); 1308 if (_handlers != NULL) { 1309 handler_index = _handlers->find(method->signature_handler()); 1310 uint64_t fingerprint = Fingerprinter(method).fingerprint(); 1311 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1312 fingerprint_index = _fingerprints->find(fingerprint); 1313 } 1314 } 1315 assert(method->signature_handler() == Interpreter::slow_signature_handler() || 1316 handler_index == fingerprint_index, "sanity check"); 1317 #endif // ASSERT 1318 } 1319 1320 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) { 1321 int handler_index = -1; 1322 // use customized signature handler 1323 MutexLocker mu(SignatureHandlerLibrary_lock); 1324 // make sure data structure is initialized 1325 initialize(); 1326 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1327 handler_index = _fingerprints->find(fingerprint); 1328 // create handler if necessary 1329 if (handler_index < 0) { 1330 if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) { 1331 tty->cr(); 1332 tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT, 1333 _handlers->length(), 1334 p2i(handler), 1335 fingerprint); 1336 } 1337 _fingerprints->append(fingerprint); 1338 _handlers->append(handler); 1339 } else { 1340 if (PrintSignatureHandlers) { 1341 tty->cr(); 1342 tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")", 1343 _handlers->length(), 1344 fingerprint, 1345 p2i(_handlers->at(handler_index)), 1346 p2i(handler)); 1347 } 1348 } 1349 } 1350 1351 1352 BufferBlob* SignatureHandlerLibrary::_handler_blob = NULL; 1353 address SignatureHandlerLibrary::_handler = NULL; 1354 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL; 1355 GrowableArray<address>* SignatureHandlerLibrary::_handlers = NULL; 1356 address SignatureHandlerLibrary::_buffer = NULL; 1357 1358 1359 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method)) 1360 methodHandle m(thread, method); 1361 assert(m->is_native(), "sanity check"); 1362 // lookup native function entry point if it doesn't exist 1363 bool in_base_library; 1364 if (!m->has_native_function()) { 1365 NativeLookup::lookup(m, in_base_library, CHECK); 1366 } 1367 // make sure signature handler is installed 1368 SignatureHandlerLibrary::add(m); 1369 // The interpreter entry point checks the signature handler first, 1370 // before trying to fetch the native entry point and klass mirror. 1371 // We must set the signature handler last, so that multiple processors 1372 // preparing the same method will be sure to see non-null entry & mirror. 1373 IRT_END 1374 1375 #if defined(IA32) || defined(AMD64) || defined(ARM) 1376 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address)) 1377 if (src_address == dest_address) { 1378 return; 1379 } 1380 ResetNoHandleMark rnm; // In a LEAF entry. 1381 HandleMark hm; 1382 ResourceMark rm; 1383 frame fr = thread->last_frame(); 1384 assert(fr.is_interpreted_frame(), ""); 1385 jint bci = fr.interpreter_frame_bci(); 1386 methodHandle mh(thread, fr.interpreter_frame_method()); 1387 Bytecode_invoke invoke(mh, bci); 1388 ArgumentSizeComputer asc(invoke.signature()); 1389 int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver 1390 Copy::conjoint_jbytes(src_address, dest_address, 1391 size_of_arguments * Interpreter::stackElementSize); 1392 IRT_END 1393 #endif 1394 1395 #if INCLUDE_JVMTI 1396 // This is a support of the JVMTI PopFrame interface. 1397 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument 1398 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters. 1399 // The member_name argument is a saved reference (in local#0) to the member_name. 1400 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle. 1401 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated. 1402 IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name, 1403 Method* method, address bcp)) 1404 Bytecodes::Code code = Bytecodes::code_at(method, bcp); 1405 if (code != Bytecodes::_invokestatic) { 1406 return; 1407 } 1408 ConstantPool* cpool = method->constants(); 1409 int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG; 1410 Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index)); 1411 Symbol* mname = cpool->name_ref_at(cp_index); 1412 1413 if (MethodHandles::has_member_arg(cname, mname)) { 1414 oop member_name_oop = (oop) member_name; 1415 if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) { 1416 // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated. 1417 member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop); 1418 } 1419 thread->set_vm_result(member_name_oop); 1420 } else { 1421 thread->set_vm_result(NULL); 1422 } 1423 IRT_END 1424 #endif // INCLUDE_JVMTI