1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "gc/shared/gcId.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "gc/shared/workgroup.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "interpreter/linkResolver.hpp"
  39 #include "interpreter/oopMapCache.hpp"
  40 #include "jvmtifiles/jvmtiEnv.hpp"
  41 #include "logging/log.hpp"
  42 #include "logging/logConfiguration.hpp"
  43 #include "memory/metaspaceShared.hpp"
  44 #include "memory/oopFactory.hpp"
  45 #include "memory/universe.inline.hpp"
  46 #include "oops/instanceKlass.hpp"
  47 #include "oops/objArrayOop.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "oops/symbol.hpp"
  50 #include "oops/verifyOopClosure.hpp"
  51 #include "prims/jvm_misc.hpp"
  52 #include "prims/jvmtiExport.hpp"
  53 #include "prims/jvmtiThreadState.hpp"
  54 #include "prims/privilegedStack.hpp"
  55 #include "runtime/arguments.hpp"
  56 #include "runtime/atomic.inline.hpp"
  57 #include "runtime/biasedLocking.hpp"
  58 #include "runtime/commandLineFlagConstraintList.hpp"
  59 #include "runtime/commandLineFlagRangeList.hpp"
  60 #include "runtime/deoptimization.hpp"
  61 #include "runtime/fprofiler.hpp"
  62 #include "runtime/frame.inline.hpp"
  63 #include "runtime/globals.hpp"
  64 #include "runtime/init.hpp"
  65 #include "runtime/interfaceSupport.hpp"
  66 #include "runtime/java.hpp"
  67 #include "runtime/javaCalls.hpp"
  68 #include "runtime/jniPeriodicChecker.hpp"
  69 #include "runtime/memprofiler.hpp"
  70 #include "runtime/mutexLocker.hpp"
  71 #include "runtime/objectMonitor.hpp"
  72 #include "runtime/orderAccess.inline.hpp"
  73 #include "runtime/osThread.hpp"
  74 #include "runtime/safepoint.hpp"
  75 #include "runtime/sharedRuntime.hpp"
  76 #include "runtime/statSampler.hpp"
  77 #include "runtime/stubRoutines.hpp"
  78 #include "runtime/sweeper.hpp"
  79 #include "runtime/task.hpp"
  80 #include "runtime/thread.inline.hpp"
  81 #include "runtime/threadCritical.hpp"
  82 #include "runtime/vframe.hpp"
  83 #include "runtime/vframeArray.hpp"
  84 #include "runtime/vframe_hp.hpp"
  85 #include "runtime/vmThread.hpp"
  86 #include "runtime/vm_operations.hpp"
  87 #include "runtime/vm_version.hpp"
  88 #include "services/attachListener.hpp"
  89 #include "services/management.hpp"
  90 #include "services/memTracker.hpp"
  91 #include "services/threadService.hpp"
  92 #include "trace/traceMacros.hpp"
  93 #include "trace/tracing.hpp"
  94 #include "utilities/defaultStream.hpp"
  95 #include "utilities/dtrace.hpp"
  96 #include "utilities/events.hpp"
  97 #include "utilities/macros.hpp"
  98 #include "utilities/preserveException.hpp"
  99 #if INCLUDE_ALL_GCS
 100 #include "gc/cms/concurrentMarkSweepThread.hpp"
 101 #include "gc/g1/concurrentMarkThread.inline.hpp"
 102 #include "gc/parallel/pcTasks.hpp"
 103 #endif // INCLUDE_ALL_GCS
 104 #if INCLUDE_JVMCI
 105 #include "jvmci/jvmciCompiler.hpp"
 106 #include "jvmci/jvmciRuntime.hpp"
 107 #endif
 108 #ifdef COMPILER1
 109 #include "c1/c1_Compiler.hpp"
 110 #endif
 111 #ifdef COMPILER2
 112 #include "opto/c2compiler.hpp"
 113 #include "opto/idealGraphPrinter.hpp"
 114 #endif
 115 #if INCLUDE_RTM_OPT
 116 #include "runtime/rtmLocking.hpp"
 117 #endif
 118 
 119 #ifdef DTRACE_ENABLED
 120 
 121 // Only bother with this argument setup if dtrace is available
 122 
 123   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 124   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 125 
 126   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 127     {                                                                      \
 128       ResourceMark rm(this);                                               \
 129       int len = 0;                                                         \
 130       const char* name = (javathread)->get_thread_name();                  \
 131       len = strlen(name);                                                  \
 132       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 133         (char *) name, len,                                                \
 134         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 135         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 136         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 137     }
 138 
 139 #else //  ndef DTRACE_ENABLED
 140 
 141   #define DTRACE_THREAD_PROBE(probe, javathread)
 142 
 143 #endif // ndef DTRACE_ENABLED
 144 
 145 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 146 // Current thread is maintained as a thread-local variable
 147 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 148 #endif
 149 
 150 // Class hierarchy
 151 // - Thread
 152 //   - VMThread
 153 //   - WatcherThread
 154 //   - ConcurrentMarkSweepThread
 155 //   - JavaThread
 156 //     - CompilerThread
 157 
 158 // ======= Thread ========
 159 // Support for forcing alignment of thread objects for biased locking
 160 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 161   if (UseBiasedLocking) {
 162     const int alignment = markOopDesc::biased_lock_alignment;
 163     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 164     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 165                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 166                                                          AllocFailStrategy::RETURN_NULL);
 167     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 168     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 169            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 170            "JavaThread alignment code overflowed allocated storage");
 171     if (TraceBiasedLocking) {
 172       if (aligned_addr != real_malloc_addr) {
 173         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 174                       p2i(real_malloc_addr), p2i(aligned_addr));
 175       }
 176     }
 177     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 178     return aligned_addr;
 179   } else {
 180     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 181                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 182   }
 183 }
 184 
 185 void Thread::operator delete(void* p) {
 186   if (UseBiasedLocking) {
 187     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 188     FreeHeap(real_malloc_addr);
 189   } else {
 190     FreeHeap(p);
 191   }
 192 }
 193 
 194 
 195 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 196 // JavaThread
 197 
 198 
 199 Thread::Thread() {
 200   // stack and get_thread
 201   set_stack_base(NULL);
 202   set_stack_size(0);
 203   set_self_raw_id(0);
 204   set_lgrp_id(-1);
 205   DEBUG_ONLY(clear_suspendible_thread();)
 206 
 207   // allocated data structures
 208   set_osthread(NULL);
 209   set_resource_area(new (mtThread)ResourceArea());
 210   DEBUG_ONLY(_current_resource_mark = NULL;)
 211   set_handle_area(new (mtThread) HandleArea(NULL));
 212   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 213   set_active_handles(NULL);
 214   set_free_handle_block(NULL);
 215   set_last_handle_mark(NULL);
 216 
 217   // This initial value ==> never claimed.
 218   _oops_do_parity = 0;
 219 
 220   // the handle mark links itself to last_handle_mark
 221   new HandleMark(this);
 222 
 223   // plain initialization
 224   debug_only(_owned_locks = NULL;)
 225   debug_only(_allow_allocation_count = 0;)
 226   NOT_PRODUCT(_allow_safepoint_count = 0;)
 227   NOT_PRODUCT(_skip_gcalot = false;)
 228   _jvmti_env_iteration_count = 0;
 229   set_allocated_bytes(0);
 230   _vm_operation_started_count = 0;
 231   _vm_operation_completed_count = 0;
 232   _current_pending_monitor = NULL;
 233   _current_pending_monitor_is_from_java = true;
 234   _current_waiting_monitor = NULL;
 235   _num_nested_signal = 0;
 236   omFreeList = NULL;
 237   omFreeCount = 0;
 238   omFreeProvision = 32;
 239   omInUseList = NULL;
 240   omInUseCount = 0;
 241 
 242 #ifdef ASSERT
 243   _visited_for_critical_count = false;
 244 #endif
 245 
 246   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 247                          Monitor::_safepoint_check_sometimes);
 248   _suspend_flags = 0;
 249 
 250   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 251   _hashStateX = os::random();
 252   _hashStateY = 842502087;
 253   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 254   _hashStateW = 273326509;
 255 
 256   _OnTrap   = 0;
 257   _schedctl = NULL;
 258   _Stalled  = 0;
 259   _TypeTag  = 0x2BAD;
 260 
 261   // Many of the following fields are effectively final - immutable
 262   // Note that nascent threads can't use the Native Monitor-Mutex
 263   // construct until the _MutexEvent is initialized ...
 264   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 265   // we might instead use a stack of ParkEvents that we could provision on-demand.
 266   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 267   // and ::Release()
 268   _ParkEvent   = ParkEvent::Allocate(this);
 269   _SleepEvent  = ParkEvent::Allocate(this);
 270   _MutexEvent  = ParkEvent::Allocate(this);
 271   _MuxEvent    = ParkEvent::Allocate(this);
 272 
 273 #ifdef CHECK_UNHANDLED_OOPS
 274   if (CheckUnhandledOops) {
 275     _unhandled_oops = new UnhandledOops(this);
 276   }
 277 #endif // CHECK_UNHANDLED_OOPS
 278 #ifdef ASSERT
 279   if (UseBiasedLocking) {
 280     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 281     assert(this == _real_malloc_address ||
 282            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 283            "bug in forced alignment of thread objects");
 284   }
 285 #endif // ASSERT
 286 }
 287 
 288 void Thread::initialize_thread_current() {
 289 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 290   assert(_thr_current == NULL, "Thread::current already initialized");
 291   _thr_current = this;
 292 #endif
 293   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 294   ThreadLocalStorage::set_thread(this);
 295   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 296 }
 297 
 298 void Thread::clear_thread_current() {
 299   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 300 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 301   _thr_current = NULL;
 302 #endif
 303   ThreadLocalStorage::set_thread(NULL);
 304 }
 305 
 306 void Thread::record_stack_base_and_size() {
 307   set_stack_base(os::current_stack_base());
 308   set_stack_size(os::current_stack_size());
 309   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 310   // in initialize_thread(). Without the adjustment, stack size is
 311   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 312   // So far, only Solaris has real implementation of initialize_thread().
 313   //
 314   // set up any platform-specific state.
 315   os::initialize_thread(this);
 316 
 317   // Set stack limits after thread is initialized.
 318   if (is_Java_thread()) {
 319     ((JavaThread*) this)->set_stack_overflow_limit();
 320     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 321   }
 322 #if INCLUDE_NMT
 323   // record thread's native stack, stack grows downward
 324   MemTracker::record_thread_stack(stack_end(), stack_size());
 325 #endif // INCLUDE_NMT
 326 }
 327 
 328 
 329 Thread::~Thread() {
 330   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 331   ObjectSynchronizer::omFlush(this);
 332 
 333   EVENT_THREAD_DESTRUCT(this);
 334 
 335   // stack_base can be NULL if the thread is never started or exited before
 336   // record_stack_base_and_size called. Although, we would like to ensure
 337   // that all started threads do call record_stack_base_and_size(), there is
 338   // not proper way to enforce that.
 339 #if INCLUDE_NMT
 340   if (_stack_base != NULL) {
 341     MemTracker::release_thread_stack(stack_end(), stack_size());
 342 #ifdef ASSERT
 343     set_stack_base(NULL);
 344 #endif
 345   }
 346 #endif // INCLUDE_NMT
 347 
 348   // deallocate data structures
 349   delete resource_area();
 350   // since the handle marks are using the handle area, we have to deallocated the root
 351   // handle mark before deallocating the thread's handle area,
 352   assert(last_handle_mark() != NULL, "check we have an element");
 353   delete last_handle_mark();
 354   assert(last_handle_mark() == NULL, "check we have reached the end");
 355 
 356   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 357   // We NULL out the fields for good hygiene.
 358   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 359   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 360   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 361   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 362 
 363   delete handle_area();
 364   delete metadata_handles();
 365 
 366   // osthread() can be NULL, if creation of thread failed.
 367   if (osthread() != NULL) os::free_thread(osthread());
 368 
 369   delete _SR_lock;
 370 
 371   // clear Thread::current if thread is deleting itself.
 372   // Needed to ensure JNI correctly detects non-attached threads.
 373   if (this == Thread::current()) {
 374     clear_thread_current();
 375   }
 376 
 377   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 378 }
 379 
 380 // NOTE: dummy function for assertion purpose.
 381 void Thread::run() {
 382   ShouldNotReachHere();
 383 }
 384 
 385 #ifdef ASSERT
 386 // Private method to check for dangling thread pointer
 387 void check_for_dangling_thread_pointer(Thread *thread) {
 388   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 389          "possibility of dangling Thread pointer");
 390 }
 391 #endif
 392 
 393 ThreadPriority Thread::get_priority(const Thread* const thread) {
 394   ThreadPriority priority;
 395   // Can return an error!
 396   (void)os::get_priority(thread, priority);
 397   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 398   return priority;
 399 }
 400 
 401 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 402   debug_only(check_for_dangling_thread_pointer(thread);)
 403   // Can return an error!
 404   (void)os::set_priority(thread, priority);
 405 }
 406 
 407 
 408 void Thread::start(Thread* thread) {
 409   // Start is different from resume in that its safety is guaranteed by context or
 410   // being called from a Java method synchronized on the Thread object.
 411   if (!DisableStartThread) {
 412     if (thread->is_Java_thread()) {
 413       // Initialize the thread state to RUNNABLE before starting this thread.
 414       // Can not set it after the thread started because we do not know the
 415       // exact thread state at that time. It could be in MONITOR_WAIT or
 416       // in SLEEPING or some other state.
 417       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 418                                           java_lang_Thread::RUNNABLE);
 419     }
 420     os::start_thread(thread);
 421   }
 422 }
 423 
 424 // Enqueue a VM_Operation to do the job for us - sometime later
 425 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 426   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 427   VMThread::execute(vm_stop);
 428 }
 429 
 430 
 431 // Check if an external suspend request has completed (or has been
 432 // cancelled). Returns true if the thread is externally suspended and
 433 // false otherwise.
 434 //
 435 // The bits parameter returns information about the code path through
 436 // the routine. Useful for debugging:
 437 //
 438 // set in is_ext_suspend_completed():
 439 // 0x00000001 - routine was entered
 440 // 0x00000010 - routine return false at end
 441 // 0x00000100 - thread exited (return false)
 442 // 0x00000200 - suspend request cancelled (return false)
 443 // 0x00000400 - thread suspended (return true)
 444 // 0x00001000 - thread is in a suspend equivalent state (return true)
 445 // 0x00002000 - thread is native and walkable (return true)
 446 // 0x00004000 - thread is native_trans and walkable (needed retry)
 447 //
 448 // set in wait_for_ext_suspend_completion():
 449 // 0x00010000 - routine was entered
 450 // 0x00020000 - suspend request cancelled before loop (return false)
 451 // 0x00040000 - thread suspended before loop (return true)
 452 // 0x00080000 - suspend request cancelled in loop (return false)
 453 // 0x00100000 - thread suspended in loop (return true)
 454 // 0x00200000 - suspend not completed during retry loop (return false)
 455 
 456 // Helper class for tracing suspend wait debug bits.
 457 //
 458 // 0x00000100 indicates that the target thread exited before it could
 459 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 460 // 0x00080000 each indicate a cancelled suspend request so they don't
 461 // count as wait failures either.
 462 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 463 
 464 class TraceSuspendDebugBits : public StackObj {
 465  private:
 466   JavaThread * jt;
 467   bool         is_wait;
 468   bool         called_by_wait;  // meaningful when !is_wait
 469   uint32_t *   bits;
 470 
 471  public:
 472   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 473                         uint32_t *_bits) {
 474     jt             = _jt;
 475     is_wait        = _is_wait;
 476     called_by_wait = _called_by_wait;
 477     bits           = _bits;
 478   }
 479 
 480   ~TraceSuspendDebugBits() {
 481     if (!is_wait) {
 482 #if 1
 483       // By default, don't trace bits for is_ext_suspend_completed() calls.
 484       // That trace is very chatty.
 485       return;
 486 #else
 487       if (!called_by_wait) {
 488         // If tracing for is_ext_suspend_completed() is enabled, then only
 489         // trace calls to it from wait_for_ext_suspend_completion()
 490         return;
 491       }
 492 #endif
 493     }
 494 
 495     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 496       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 497         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 498         ResourceMark rm;
 499 
 500         tty->print_cr(
 501                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 502                       jt->get_thread_name(), *bits);
 503 
 504         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 505       }
 506     }
 507   }
 508 };
 509 #undef DEBUG_FALSE_BITS
 510 
 511 
 512 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 513                                           uint32_t *bits) {
 514   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 515 
 516   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 517   bool do_trans_retry;           // flag to force the retry
 518 
 519   *bits |= 0x00000001;
 520 
 521   do {
 522     do_trans_retry = false;
 523 
 524     if (is_exiting()) {
 525       // Thread is in the process of exiting. This is always checked
 526       // first to reduce the risk of dereferencing a freed JavaThread.
 527       *bits |= 0x00000100;
 528       return false;
 529     }
 530 
 531     if (!is_external_suspend()) {
 532       // Suspend request is cancelled. This is always checked before
 533       // is_ext_suspended() to reduce the risk of a rogue resume
 534       // confusing the thread that made the suspend request.
 535       *bits |= 0x00000200;
 536       return false;
 537     }
 538 
 539     if (is_ext_suspended()) {
 540       // thread is suspended
 541       *bits |= 0x00000400;
 542       return true;
 543     }
 544 
 545     // Now that we no longer do hard suspends of threads running
 546     // native code, the target thread can be changing thread state
 547     // while we are in this routine:
 548     //
 549     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 550     //
 551     // We save a copy of the thread state as observed at this moment
 552     // and make our decision about suspend completeness based on the
 553     // copy. This closes the race where the thread state is seen as
 554     // _thread_in_native_trans in the if-thread_blocked check, but is
 555     // seen as _thread_blocked in if-thread_in_native_trans check.
 556     JavaThreadState save_state = thread_state();
 557 
 558     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 559       // If the thread's state is _thread_blocked and this blocking
 560       // condition is known to be equivalent to a suspend, then we can
 561       // consider the thread to be externally suspended. This means that
 562       // the code that sets _thread_blocked has been modified to do
 563       // self-suspension if the blocking condition releases. We also
 564       // used to check for CONDVAR_WAIT here, but that is now covered by
 565       // the _thread_blocked with self-suspension check.
 566       //
 567       // Return true since we wouldn't be here unless there was still an
 568       // external suspend request.
 569       *bits |= 0x00001000;
 570       return true;
 571     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 572       // Threads running native code will self-suspend on native==>VM/Java
 573       // transitions. If its stack is walkable (should always be the case
 574       // unless this function is called before the actual java_suspend()
 575       // call), then the wait is done.
 576       *bits |= 0x00002000;
 577       return true;
 578     } else if (!called_by_wait && !did_trans_retry &&
 579                save_state == _thread_in_native_trans &&
 580                frame_anchor()->walkable()) {
 581       // The thread is transitioning from thread_in_native to another
 582       // thread state. check_safepoint_and_suspend_for_native_trans()
 583       // will force the thread to self-suspend. If it hasn't gotten
 584       // there yet we may have caught the thread in-between the native
 585       // code check above and the self-suspend. Lucky us. If we were
 586       // called by wait_for_ext_suspend_completion(), then it
 587       // will be doing the retries so we don't have to.
 588       //
 589       // Since we use the saved thread state in the if-statement above,
 590       // there is a chance that the thread has already transitioned to
 591       // _thread_blocked by the time we get here. In that case, we will
 592       // make a single unnecessary pass through the logic below. This
 593       // doesn't hurt anything since we still do the trans retry.
 594 
 595       *bits |= 0x00004000;
 596 
 597       // Once the thread leaves thread_in_native_trans for another
 598       // thread state, we break out of this retry loop. We shouldn't
 599       // need this flag to prevent us from getting back here, but
 600       // sometimes paranoia is good.
 601       did_trans_retry = true;
 602 
 603       // We wait for the thread to transition to a more usable state.
 604       for (int i = 1; i <= SuspendRetryCount; i++) {
 605         // We used to do an "os::yield_all(i)" call here with the intention
 606         // that yielding would increase on each retry. However, the parameter
 607         // is ignored on Linux which means the yield didn't scale up. Waiting
 608         // on the SR_lock below provides a much more predictable scale up for
 609         // the delay. It also provides a simple/direct point to check for any
 610         // safepoint requests from the VMThread
 611 
 612         // temporarily drops SR_lock while doing wait with safepoint check
 613         // (if we're a JavaThread - the WatcherThread can also call this)
 614         // and increase delay with each retry
 615         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 616 
 617         // check the actual thread state instead of what we saved above
 618         if (thread_state() != _thread_in_native_trans) {
 619           // the thread has transitioned to another thread state so
 620           // try all the checks (except this one) one more time.
 621           do_trans_retry = true;
 622           break;
 623         }
 624       } // end retry loop
 625 
 626 
 627     }
 628   } while (do_trans_retry);
 629 
 630   *bits |= 0x00000010;
 631   return false;
 632 }
 633 
 634 // Wait for an external suspend request to complete (or be cancelled).
 635 // Returns true if the thread is externally suspended and false otherwise.
 636 //
 637 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 638                                                  uint32_t *bits) {
 639   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 640                              false /* !called_by_wait */, bits);
 641 
 642   // local flag copies to minimize SR_lock hold time
 643   bool is_suspended;
 644   bool pending;
 645   uint32_t reset_bits;
 646 
 647   // set a marker so is_ext_suspend_completed() knows we are the caller
 648   *bits |= 0x00010000;
 649 
 650   // We use reset_bits to reinitialize the bits value at the top of
 651   // each retry loop. This allows the caller to make use of any
 652   // unused bits for their own marking purposes.
 653   reset_bits = *bits;
 654 
 655   {
 656     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 657     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 658                                             delay, bits);
 659     pending = is_external_suspend();
 660   }
 661   // must release SR_lock to allow suspension to complete
 662 
 663   if (!pending) {
 664     // A cancelled suspend request is the only false return from
 665     // is_ext_suspend_completed() that keeps us from entering the
 666     // retry loop.
 667     *bits |= 0x00020000;
 668     return false;
 669   }
 670 
 671   if (is_suspended) {
 672     *bits |= 0x00040000;
 673     return true;
 674   }
 675 
 676   for (int i = 1; i <= retries; i++) {
 677     *bits = reset_bits;  // reinit to only track last retry
 678 
 679     // We used to do an "os::yield_all(i)" call here with the intention
 680     // that yielding would increase on each retry. However, the parameter
 681     // is ignored on Linux which means the yield didn't scale up. Waiting
 682     // on the SR_lock below provides a much more predictable scale up for
 683     // the delay. It also provides a simple/direct point to check for any
 684     // safepoint requests from the VMThread
 685 
 686     {
 687       MutexLocker ml(SR_lock());
 688       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 689       // can also call this)  and increase delay with each retry
 690       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 691 
 692       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 693                                               delay, bits);
 694 
 695       // It is possible for the external suspend request to be cancelled
 696       // (by a resume) before the actual suspend operation is completed.
 697       // Refresh our local copy to see if we still need to wait.
 698       pending = is_external_suspend();
 699     }
 700 
 701     if (!pending) {
 702       // A cancelled suspend request is the only false return from
 703       // is_ext_suspend_completed() that keeps us from staying in the
 704       // retry loop.
 705       *bits |= 0x00080000;
 706       return false;
 707     }
 708 
 709     if (is_suspended) {
 710       *bits |= 0x00100000;
 711       return true;
 712     }
 713   } // end retry loop
 714 
 715   // thread did not suspend after all our retries
 716   *bits |= 0x00200000;
 717   return false;
 718 }
 719 
 720 #ifndef PRODUCT
 721 void JavaThread::record_jump(address target, address instr, const char* file,
 722                              int line) {
 723 
 724   // This should not need to be atomic as the only way for simultaneous
 725   // updates is via interrupts. Even then this should be rare or non-existent
 726   // and we don't care that much anyway.
 727 
 728   int index = _jmp_ring_index;
 729   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 730   _jmp_ring[index]._target = (intptr_t) target;
 731   _jmp_ring[index]._instruction = (intptr_t) instr;
 732   _jmp_ring[index]._file = file;
 733   _jmp_ring[index]._line = line;
 734 }
 735 #endif // PRODUCT
 736 
 737 // Called by flat profiler
 738 // Callers have already called wait_for_ext_suspend_completion
 739 // The assertion for that is currently too complex to put here:
 740 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 741   bool gotframe = false;
 742   // self suspension saves needed state.
 743   if (has_last_Java_frame() && _anchor.walkable()) {
 744     *_fr = pd_last_frame();
 745     gotframe = true;
 746   }
 747   return gotframe;
 748 }
 749 
 750 void Thread::interrupt(Thread* thread) {
 751   debug_only(check_for_dangling_thread_pointer(thread);)
 752   os::interrupt(thread);
 753 }
 754 
 755 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 756   debug_only(check_for_dangling_thread_pointer(thread);)
 757   // Note:  If clear_interrupted==false, this simply fetches and
 758   // returns the value of the field osthread()->interrupted().
 759   return os::is_interrupted(thread, clear_interrupted);
 760 }
 761 
 762 
 763 // GC Support
 764 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 765   jint thread_parity = _oops_do_parity;
 766   if (thread_parity != strong_roots_parity) {
 767     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 768     if (res == thread_parity) {
 769       return true;
 770     } else {
 771       guarantee(res == strong_roots_parity, "Or else what?");
 772       return false;
 773     }
 774   }
 775   return false;
 776 }
 777 
 778 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 779   active_handles()->oops_do(f);
 780   // Do oop for ThreadShadow
 781   f->do_oop((oop*)&_pending_exception);
 782   handle_area()->oops_do(f);
 783 }
 784 
 785 void Thread::nmethods_do(CodeBlobClosure* cf) {
 786   // no nmethods in a generic thread...
 787 }
 788 
 789 void Thread::metadata_handles_do(void f(Metadata*)) {
 790   // Only walk the Handles in Thread.
 791   if (metadata_handles() != NULL) {
 792     for (int i = 0; i< metadata_handles()->length(); i++) {
 793       f(metadata_handles()->at(i));
 794     }
 795   }
 796 }
 797 
 798 void Thread::print_on(outputStream* st) const {
 799   // get_priority assumes osthread initialized
 800   if (osthread() != NULL) {
 801     int os_prio;
 802     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 803       st->print("os_prio=%d ", os_prio);
 804     }
 805     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 806     ext().print_on(st);
 807     osthread()->print_on(st);
 808   }
 809   debug_only(if (WizardMode) print_owned_locks_on(st);)
 810 }
 811 
 812 // Thread::print_on_error() is called by fatal error handler. Don't use
 813 // any lock or allocate memory.
 814 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 815   if (is_VM_thread())                 st->print("VMThread");
 816   else if (is_Compiler_thread())      st->print("CompilerThread");
 817   else if (is_Java_thread())          st->print("JavaThread");
 818   else if (is_GC_task_thread())       st->print("GCTaskThread");
 819   else if (is_Watcher_thread())       st->print("WatcherThread");
 820   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 821   else                                st->print("Thread");
 822 
 823   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 824             p2i(stack_end()), p2i(stack_base()));
 825 
 826   if (osthread()) {
 827     st->print(" [id=%d]", osthread()->thread_id());
 828   }
 829 }
 830 
 831 #ifdef ASSERT
 832 void Thread::print_owned_locks_on(outputStream* st) const {
 833   Monitor *cur = _owned_locks;
 834   if (cur == NULL) {
 835     st->print(" (no locks) ");
 836   } else {
 837     st->print_cr(" Locks owned:");
 838     while (cur) {
 839       cur->print_on(st);
 840       cur = cur->next();
 841     }
 842   }
 843 }
 844 
 845 static int ref_use_count  = 0;
 846 
 847 bool Thread::owns_locks_but_compiled_lock() const {
 848   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 849     if (cur != Compile_lock) return true;
 850   }
 851   return false;
 852 }
 853 
 854 
 855 #endif
 856 
 857 #ifndef PRODUCT
 858 
 859 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 860 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 861 // no threads which allow_vm_block's are held
 862 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 863   // Check if current thread is allowed to block at a safepoint
 864   if (!(_allow_safepoint_count == 0)) {
 865     fatal("Possible safepoint reached by thread that does not allow it");
 866   }
 867   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 868     fatal("LEAF method calling lock?");
 869   }
 870 
 871 #ifdef ASSERT
 872   if (potential_vm_operation && is_Java_thread()
 873       && !Universe::is_bootstrapping()) {
 874     // Make sure we do not hold any locks that the VM thread also uses.
 875     // This could potentially lead to deadlocks
 876     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 877       // Threads_lock is special, since the safepoint synchronization will not start before this is
 878       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 879       // since it is used to transfer control between JavaThreads and the VMThread
 880       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 881       if ((cur->allow_vm_block() &&
 882            cur != Threads_lock &&
 883            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 884            cur != VMOperationRequest_lock &&
 885            cur != VMOperationQueue_lock) ||
 886            cur->rank() == Mutex::special) {
 887         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 888       }
 889     }
 890   }
 891 
 892   if (GCALotAtAllSafepoints) {
 893     // We could enter a safepoint here and thus have a gc
 894     InterfaceSupport::check_gc_alot();
 895   }
 896 #endif
 897 }
 898 #endif
 899 
 900 bool Thread::is_in_stack(address adr) const {
 901   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 902   address end = os::current_stack_pointer();
 903   // Allow non Java threads to call this without stack_base
 904   if (_stack_base == NULL) return true;
 905   if (stack_base() >= adr && adr >= end) return true;
 906 
 907   return false;
 908 }
 909 
 910 bool Thread::is_in_usable_stack(address adr) const {
 911   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 912   size_t usable_stack_size = _stack_size - stack_guard_size;
 913 
 914   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 915 }
 916 
 917 
 918 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 919 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 920 // used for compilation in the future. If that change is made, the need for these methods
 921 // should be revisited, and they should be removed if possible.
 922 
 923 bool Thread::is_lock_owned(address adr) const {
 924   return on_local_stack(adr);
 925 }
 926 
 927 bool Thread::set_as_starting_thread() {
 928   // NOTE: this must be called inside the main thread.
 929   return os::create_main_thread((JavaThread*)this);
 930 }
 931 
 932 static void initialize_class(Symbol* class_name, TRAPS) {
 933   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 934   InstanceKlass::cast(klass)->initialize(CHECK);
 935 }
 936 
 937 
 938 // Creates the initial ThreadGroup
 939 static Handle create_initial_thread_group(TRAPS) {
 940   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 941   instanceKlassHandle klass (THREAD, k);
 942 
 943   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 944   {
 945     JavaValue result(T_VOID);
 946     JavaCalls::call_special(&result,
 947                             system_instance,
 948                             klass,
 949                             vmSymbols::object_initializer_name(),
 950                             vmSymbols::void_method_signature(),
 951                             CHECK_NH);
 952   }
 953   Universe::set_system_thread_group(system_instance());
 954 
 955   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 956   {
 957     JavaValue result(T_VOID);
 958     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 959     JavaCalls::call_special(&result,
 960                             main_instance,
 961                             klass,
 962                             vmSymbols::object_initializer_name(),
 963                             vmSymbols::threadgroup_string_void_signature(),
 964                             system_instance,
 965                             string,
 966                             CHECK_NH);
 967   }
 968   return main_instance;
 969 }
 970 
 971 // Creates the initial Thread
 972 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 973                                  TRAPS) {
 974   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 975   instanceKlassHandle klass (THREAD, k);
 976   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 977 
 978   java_lang_Thread::set_thread(thread_oop(), thread);
 979   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 980   thread->set_threadObj(thread_oop());
 981 
 982   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 983 
 984   JavaValue result(T_VOID);
 985   JavaCalls::call_special(&result, thread_oop,
 986                           klass,
 987                           vmSymbols::object_initializer_name(),
 988                           vmSymbols::threadgroup_string_void_signature(),
 989                           thread_group,
 990                           string,
 991                           CHECK_NULL);
 992   return thread_oop();
 993 }
 994 
 995 static void call_initializeSystemClass(TRAPS) {
 996   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 997   instanceKlassHandle klass (THREAD, k);
 998 
 999   JavaValue result(T_VOID);
1000   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1001                          vmSymbols::void_method_signature(), CHECK);
1002 }
1003 
1004 char java_runtime_name[128] = "";
1005 char java_runtime_version[128] = "";
1006 
1007 // extract the JRE name from sun.misc.Version.java_runtime_name
1008 static const char* get_java_runtime_name(TRAPS) {
1009   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1010                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1011   fieldDescriptor fd;
1012   bool found = k != NULL &&
1013                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1014                                                         vmSymbols::string_signature(), &fd);
1015   if (found) {
1016     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1017     if (name_oop == NULL) {
1018       return NULL;
1019     }
1020     const char* name = java_lang_String::as_utf8_string(name_oop,
1021                                                         java_runtime_name,
1022                                                         sizeof(java_runtime_name));
1023     return name;
1024   } else {
1025     return NULL;
1026   }
1027 }
1028 
1029 // extract the JRE version from sun.misc.Version.java_runtime_version
1030 static const char* get_java_runtime_version(TRAPS) {
1031   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1032                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1033   fieldDescriptor fd;
1034   bool found = k != NULL &&
1035                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1036                                                         vmSymbols::string_signature(), &fd);
1037   if (found) {
1038     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1039     if (name_oop == NULL) {
1040       return NULL;
1041     }
1042     const char* name = java_lang_String::as_utf8_string(name_oop,
1043                                                         java_runtime_version,
1044                                                         sizeof(java_runtime_version));
1045     return name;
1046   } else {
1047     return NULL;
1048   }
1049 }
1050 
1051 // General purpose hook into Java code, run once when the VM is initialized.
1052 // The Java library method itself may be changed independently from the VM.
1053 static void call_postVMInitHook(TRAPS) {
1054   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1055   instanceKlassHandle klass (THREAD, k);
1056   if (klass.not_null()) {
1057     JavaValue result(T_VOID);
1058     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1059                            vmSymbols::void_method_signature(),
1060                            CHECK);
1061   }
1062 }
1063 
1064 static void reset_vm_info_property(TRAPS) {
1065   // the vm info string
1066   ResourceMark rm(THREAD);
1067   const char *vm_info = VM_Version::vm_info_string();
1068 
1069   // java.lang.System class
1070   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1071   instanceKlassHandle klass (THREAD, k);
1072 
1073   // setProperty arguments
1074   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1075   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1076 
1077   // return value
1078   JavaValue r(T_OBJECT);
1079 
1080   // public static String setProperty(String key, String value);
1081   JavaCalls::call_static(&r,
1082                          klass,
1083                          vmSymbols::setProperty_name(),
1084                          vmSymbols::string_string_string_signature(),
1085                          key_str,
1086                          value_str,
1087                          CHECK);
1088 }
1089 
1090 
1091 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1092                                     bool daemon, TRAPS) {
1093   assert(thread_group.not_null(), "thread group should be specified");
1094   assert(threadObj() == NULL, "should only create Java thread object once");
1095 
1096   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1097   instanceKlassHandle klass (THREAD, k);
1098   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1099 
1100   java_lang_Thread::set_thread(thread_oop(), this);
1101   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1102   set_threadObj(thread_oop());
1103 
1104   JavaValue result(T_VOID);
1105   if (thread_name != NULL) {
1106     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1107     // Thread gets assigned specified name and null target
1108     JavaCalls::call_special(&result,
1109                             thread_oop,
1110                             klass,
1111                             vmSymbols::object_initializer_name(),
1112                             vmSymbols::threadgroup_string_void_signature(),
1113                             thread_group, // Argument 1
1114                             name,         // Argument 2
1115                             THREAD);
1116   } else {
1117     // Thread gets assigned name "Thread-nnn" and null target
1118     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1119     JavaCalls::call_special(&result,
1120                             thread_oop,
1121                             klass,
1122                             vmSymbols::object_initializer_name(),
1123                             vmSymbols::threadgroup_runnable_void_signature(),
1124                             thread_group, // Argument 1
1125                             Handle(),     // Argument 2
1126                             THREAD);
1127   }
1128 
1129 
1130   if (daemon) {
1131     java_lang_Thread::set_daemon(thread_oop());
1132   }
1133 
1134   if (HAS_PENDING_EXCEPTION) {
1135     return;
1136   }
1137 
1138   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1139   Handle threadObj(THREAD, this->threadObj());
1140 
1141   JavaCalls::call_special(&result,
1142                           thread_group,
1143                           group,
1144                           vmSymbols::add_method_name(),
1145                           vmSymbols::thread_void_signature(),
1146                           threadObj,          // Arg 1
1147                           THREAD);
1148 }
1149 
1150 // NamedThread --  non-JavaThread subclasses with multiple
1151 // uniquely named instances should derive from this.
1152 NamedThread::NamedThread() : Thread() {
1153   _name = NULL;
1154   _processed_thread = NULL;
1155   _gc_id = GCId::undefined();
1156 }
1157 
1158 NamedThread::~NamedThread() {
1159   if (_name != NULL) {
1160     FREE_C_HEAP_ARRAY(char, _name);
1161     _name = NULL;
1162   }
1163 }
1164 
1165 void NamedThread::set_name(const char* format, ...) {
1166   guarantee(_name == NULL, "Only get to set name once.");
1167   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1168   guarantee(_name != NULL, "alloc failure");
1169   va_list ap;
1170   va_start(ap, format);
1171   jio_vsnprintf(_name, max_name_len, format, ap);
1172   va_end(ap);
1173 }
1174 
1175 void NamedThread::initialize_named_thread() {
1176   set_native_thread_name(name());
1177 }
1178 
1179 void NamedThread::print_on(outputStream* st) const {
1180   st->print("\"%s\" ", name());
1181   Thread::print_on(st);
1182   st->cr();
1183 }
1184 
1185 
1186 // ======= WatcherThread ========
1187 
1188 // The watcher thread exists to simulate timer interrupts.  It should
1189 // be replaced by an abstraction over whatever native support for
1190 // timer interrupts exists on the platform.
1191 
1192 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1193 bool WatcherThread::_startable = false;
1194 volatile bool  WatcherThread::_should_terminate = false;
1195 
1196 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1197   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1198   if (os::create_thread(this, os::watcher_thread)) {
1199     _watcher_thread = this;
1200 
1201     // Set the watcher thread to the highest OS priority which should not be
1202     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1203     // is created. The only normal thread using this priority is the reference
1204     // handler thread, which runs for very short intervals only.
1205     // If the VMThread's priority is not lower than the WatcherThread profiling
1206     // will be inaccurate.
1207     os::set_priority(this, MaxPriority);
1208     if (!DisableStartThread) {
1209       os::start_thread(this);
1210     }
1211   }
1212 }
1213 
1214 int WatcherThread::sleep() const {
1215   // The WatcherThread does not participate in the safepoint protocol
1216   // for the PeriodicTask_lock because it is not a JavaThread.
1217   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1218 
1219   if (_should_terminate) {
1220     // check for termination before we do any housekeeping or wait
1221     return 0;  // we did not sleep.
1222   }
1223 
1224   // remaining will be zero if there are no tasks,
1225   // causing the WatcherThread to sleep until a task is
1226   // enrolled
1227   int remaining = PeriodicTask::time_to_wait();
1228   int time_slept = 0;
1229 
1230   // we expect this to timeout - we only ever get unparked when
1231   // we should terminate or when a new task has been enrolled
1232   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1233 
1234   jlong time_before_loop = os::javaTimeNanos();
1235 
1236   while (true) {
1237     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1238                                             remaining);
1239     jlong now = os::javaTimeNanos();
1240 
1241     if (remaining == 0) {
1242       // if we didn't have any tasks we could have waited for a long time
1243       // consider the time_slept zero and reset time_before_loop
1244       time_slept = 0;
1245       time_before_loop = now;
1246     } else {
1247       // need to recalculate since we might have new tasks in _tasks
1248       time_slept = (int) ((now - time_before_loop) / 1000000);
1249     }
1250 
1251     // Change to task list or spurious wakeup of some kind
1252     if (timedout || _should_terminate) {
1253       break;
1254     }
1255 
1256     remaining = PeriodicTask::time_to_wait();
1257     if (remaining == 0) {
1258       // Last task was just disenrolled so loop around and wait until
1259       // another task gets enrolled
1260       continue;
1261     }
1262 
1263     remaining -= time_slept;
1264     if (remaining <= 0) {
1265       break;
1266     }
1267   }
1268 
1269   return time_slept;
1270 }
1271 
1272 void WatcherThread::run() {
1273   assert(this == watcher_thread(), "just checking");
1274 
1275   this->record_stack_base_and_size();
1276   this->set_native_thread_name(this->name());
1277   this->set_active_handles(JNIHandleBlock::allocate_block());
1278   while (true) {
1279     assert(watcher_thread() == Thread::current(), "thread consistency check");
1280     assert(watcher_thread() == this, "thread consistency check");
1281 
1282     // Calculate how long it'll be until the next PeriodicTask work
1283     // should be done, and sleep that amount of time.
1284     int time_waited = sleep();
1285 
1286     if (is_error_reported()) {
1287       // A fatal error has happened, the error handler(VMError::report_and_die)
1288       // should abort JVM after creating an error log file. However in some
1289       // rare cases, the error handler itself might deadlock. Here we try to
1290       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1291       //
1292       // This code is in WatcherThread because WatcherThread wakes up
1293       // periodically so the fatal error handler doesn't need to do anything;
1294       // also because the WatcherThread is less likely to crash than other
1295       // threads.
1296 
1297       for (;;) {
1298         if (!ShowMessageBoxOnError
1299             && (OnError == NULL || OnError[0] == '\0')
1300             && Arguments::abort_hook() == NULL) {
1301           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1302           fdStream err(defaultStream::output_fd());
1303           err.print_raw_cr("# [ timer expired, abort... ]");
1304           // skip atexit/vm_exit/vm_abort hooks
1305           os::die();
1306         }
1307 
1308         // Wake up 5 seconds later, the fatal handler may reset OnError or
1309         // ShowMessageBoxOnError when it is ready to abort.
1310         os::sleep(this, 5 * 1000, false);
1311       }
1312     }
1313 
1314     if (_should_terminate) {
1315       // check for termination before posting the next tick
1316       break;
1317     }
1318 
1319     PeriodicTask::real_time_tick(time_waited);
1320   }
1321 
1322   // Signal that it is terminated
1323   {
1324     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1325     _watcher_thread = NULL;
1326     Terminator_lock->notify();
1327   }
1328 }
1329 
1330 void WatcherThread::start() {
1331   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1332 
1333   if (watcher_thread() == NULL && _startable) {
1334     _should_terminate = false;
1335     // Create the single instance of WatcherThread
1336     new WatcherThread();
1337   }
1338 }
1339 
1340 void WatcherThread::make_startable() {
1341   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1342   _startable = true;
1343 }
1344 
1345 void WatcherThread::stop() {
1346   {
1347     // Follow normal safepoint aware lock enter protocol since the
1348     // WatcherThread is stopped by another JavaThread.
1349     MutexLocker ml(PeriodicTask_lock);
1350     _should_terminate = true;
1351 
1352     WatcherThread* watcher = watcher_thread();
1353     if (watcher != NULL) {
1354       // unpark the WatcherThread so it can see that it should terminate
1355       watcher->unpark();
1356     }
1357   }
1358 
1359   MutexLocker mu(Terminator_lock);
1360 
1361   while (watcher_thread() != NULL) {
1362     // This wait should make safepoint checks, wait without a timeout,
1363     // and wait as a suspend-equivalent condition.
1364     //
1365     // Note: If the FlatProfiler is running, then this thread is waiting
1366     // for the WatcherThread to terminate and the WatcherThread, via the
1367     // FlatProfiler task, is waiting for the external suspend request on
1368     // this thread to complete. wait_for_ext_suspend_completion() will
1369     // eventually timeout, but that takes time. Making this wait a
1370     // suspend-equivalent condition solves that timeout problem.
1371     //
1372     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1373                           Mutex::_as_suspend_equivalent_flag);
1374   }
1375 }
1376 
1377 void WatcherThread::unpark() {
1378   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1379   PeriodicTask_lock->notify();
1380 }
1381 
1382 void WatcherThread::print_on(outputStream* st) const {
1383   st->print("\"%s\" ", name());
1384   Thread::print_on(st);
1385   st->cr();
1386 }
1387 
1388 // ======= JavaThread ========
1389 
1390 #if INCLUDE_JVMCI
1391 
1392 jlong* JavaThread::_jvmci_old_thread_counters;
1393 
1394 bool jvmci_counters_include(JavaThread* thread) {
1395   oop threadObj = thread->threadObj();
1396   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1397 }
1398 
1399 void JavaThread::collect_counters(typeArrayOop array) {
1400   if (JVMCICounterSize > 0) {
1401     MutexLocker tl(Threads_lock);
1402     for (int i = 0; i < array->length(); i++) {
1403       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1404     }
1405     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1406       if (jvmci_counters_include(tp)) {
1407         for (int i = 0; i < array->length(); i++) {
1408           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1409         }
1410       }
1411     }
1412   }
1413 }
1414 
1415 #endif // INCLUDE_JVMCI
1416 
1417 // A JavaThread is a normal Java thread
1418 
1419 void JavaThread::initialize() {
1420   // Initialize fields
1421 
1422   set_saved_exception_pc(NULL);
1423   set_threadObj(NULL);
1424   _anchor.clear();
1425   set_entry_point(NULL);
1426   set_jni_functions(jni_functions());
1427   set_callee_target(NULL);
1428   set_vm_result(NULL);
1429   set_vm_result_2(NULL);
1430   set_vframe_array_head(NULL);
1431   set_vframe_array_last(NULL);
1432   set_deferred_locals(NULL);
1433   set_deopt_mark(NULL);
1434   set_deopt_nmethod(NULL);
1435   clear_must_deopt_id();
1436   set_monitor_chunks(NULL);
1437   set_next(NULL);
1438   set_thread_state(_thread_new);
1439   _terminated = _not_terminated;
1440   _privileged_stack_top = NULL;
1441   _array_for_gc = NULL;
1442   _suspend_equivalent = false;
1443   _in_deopt_handler = 0;
1444   _doing_unsafe_access = false;
1445   _stack_guard_state = stack_guard_unused;
1446 #if INCLUDE_JVMCI
1447   _pending_monitorenter = false;
1448   _pending_deoptimization = -1;
1449   _pending_failed_speculation = NULL;
1450   _pending_transfer_to_interpreter = false;
1451   _jvmci._alternate_call_target = NULL;
1452   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1453   if (JVMCICounterSize > 0) {
1454     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1455     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1456   } else {
1457     _jvmci_counters = NULL;
1458   }
1459 #endif // INCLUDE_JVMCI
1460   _reserved_stack_activation = NULL;  // stack base not known yet
1461   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1462   _exception_pc  = 0;
1463   _exception_handler_pc = 0;
1464   _is_method_handle_return = 0;
1465   _jvmti_thread_state= NULL;
1466   _should_post_on_exceptions_flag = JNI_FALSE;
1467   _jvmti_get_loaded_classes_closure = NULL;
1468   _interp_only_mode    = 0;
1469   _special_runtime_exit_condition = _no_async_condition;
1470   _pending_async_exception = NULL;
1471   _thread_stat = NULL;
1472   _thread_stat = new ThreadStatistics();
1473   _blocked_on_compilation = false;
1474   _jni_active_critical = 0;
1475   _pending_jni_exception_check_fn = NULL;
1476   _do_not_unlock_if_synchronized = false;
1477   _cached_monitor_info = NULL;
1478   _parker = Parker::Allocate(this);
1479 
1480 #ifndef PRODUCT
1481   _jmp_ring_index = 0;
1482   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1483     record_jump(NULL, NULL, NULL, 0);
1484   }
1485 #endif // PRODUCT
1486 
1487   set_thread_profiler(NULL);
1488   if (FlatProfiler::is_active()) {
1489     // This is where we would decide to either give each thread it's own profiler
1490     // or use one global one from FlatProfiler,
1491     // or up to some count of the number of profiled threads, etc.
1492     ThreadProfiler* pp = new ThreadProfiler();
1493     pp->engage();
1494     set_thread_profiler(pp);
1495   }
1496 
1497   // Setup safepoint state info for this thread
1498   ThreadSafepointState::create(this);
1499 
1500   debug_only(_java_call_counter = 0);
1501 
1502   // JVMTI PopFrame support
1503   _popframe_condition = popframe_inactive;
1504   _popframe_preserved_args = NULL;
1505   _popframe_preserved_args_size = 0;
1506   _frames_to_pop_failed_realloc = 0;
1507 
1508   pd_initialize();
1509 }
1510 
1511 #if INCLUDE_ALL_GCS
1512 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1513 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1514 #endif // INCLUDE_ALL_GCS
1515 
1516 JavaThread::JavaThread(bool is_attaching_via_jni) :
1517                        Thread()
1518 #if INCLUDE_ALL_GCS
1519                        , _satb_mark_queue(&_satb_mark_queue_set),
1520                        _dirty_card_queue(&_dirty_card_queue_set)
1521 #endif // INCLUDE_ALL_GCS
1522 {
1523   initialize();
1524   if (is_attaching_via_jni) {
1525     _jni_attach_state = _attaching_via_jni;
1526   } else {
1527     _jni_attach_state = _not_attaching_via_jni;
1528   }
1529   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1530 }
1531 
1532 bool JavaThread::reguard_stack(address cur_sp) {
1533   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1534       && _stack_guard_state != stack_guard_reserved_disabled) {
1535     return true; // Stack already guarded or guard pages not needed.
1536   }
1537 
1538   if (register_stack_overflow()) {
1539     // For those architectures which have separate register and
1540     // memory stacks, we must check the register stack to see if
1541     // it has overflowed.
1542     return false;
1543   }
1544 
1545   // Java code never executes within the yellow zone: the latter is only
1546   // there to provoke an exception during stack banging.  If java code
1547   // is executing there, either StackShadowPages should be larger, or
1548   // some exception code in c1, c2 or the interpreter isn't unwinding
1549   // when it should.
1550   guarantee(cur_sp > stack_reserved_zone_base(),
1551             "not enough space to reguard - increase StackShadowPages");
1552   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1553     enable_stack_yellow_reserved_zone();
1554     if (reserved_stack_activation() != stack_base()) {
1555       set_reserved_stack_activation(stack_base());
1556     }
1557   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1558     set_reserved_stack_activation(stack_base());
1559     enable_stack_reserved_zone();
1560   }
1561   return true;
1562 }
1563 
1564 bool JavaThread::reguard_stack(void) {
1565   return reguard_stack(os::current_stack_pointer());
1566 }
1567 
1568 
1569 void JavaThread::block_if_vm_exited() {
1570   if (_terminated == _vm_exited) {
1571     // _vm_exited is set at safepoint, and Threads_lock is never released
1572     // we will block here forever
1573     Threads_lock->lock_without_safepoint_check();
1574     ShouldNotReachHere();
1575   }
1576 }
1577 
1578 
1579 // Remove this ifdef when C1 is ported to the compiler interface.
1580 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1581 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1582 
1583 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1584                        Thread()
1585 #if INCLUDE_ALL_GCS
1586                        , _satb_mark_queue(&_satb_mark_queue_set),
1587                        _dirty_card_queue(&_dirty_card_queue_set)
1588 #endif // INCLUDE_ALL_GCS
1589 {
1590   initialize();
1591   _jni_attach_state = _not_attaching_via_jni;
1592   set_entry_point(entry_point);
1593   // Create the native thread itself.
1594   // %note runtime_23
1595   os::ThreadType thr_type = os::java_thread;
1596   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1597                                                      os::java_thread;
1598   os::create_thread(this, thr_type, stack_sz);
1599   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1600   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1601   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1602   // the exception consists of creating the exception object & initializing it, initialization
1603   // will leave the VM via a JavaCall and then all locks must be unlocked).
1604   //
1605   // The thread is still suspended when we reach here. Thread must be explicit started
1606   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1607   // by calling Threads:add. The reason why this is not done here, is because the thread
1608   // object must be fully initialized (take a look at JVM_Start)
1609 }
1610 
1611 JavaThread::~JavaThread() {
1612 
1613   // JSR166 -- return the parker to the free list
1614   Parker::Release(_parker);
1615   _parker = NULL;
1616 
1617   // Free any remaining  previous UnrollBlock
1618   vframeArray* old_array = vframe_array_last();
1619 
1620   if (old_array != NULL) {
1621     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1622     old_array->set_unroll_block(NULL);
1623     delete old_info;
1624     delete old_array;
1625   }
1626 
1627   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1628   if (deferred != NULL) {
1629     // This can only happen if thread is destroyed before deoptimization occurs.
1630     assert(deferred->length() != 0, "empty array!");
1631     do {
1632       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1633       deferred->remove_at(0);
1634       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1635       delete dlv;
1636     } while (deferred->length() != 0);
1637     delete deferred;
1638   }
1639 
1640   // All Java related clean up happens in exit
1641   ThreadSafepointState::destroy(this);
1642   if (_thread_profiler != NULL) delete _thread_profiler;
1643   if (_thread_stat != NULL) delete _thread_stat;
1644 
1645 #if INCLUDE_JVMCI
1646   if (JVMCICounterSize > 0) {
1647     if (jvmci_counters_include(this)) {
1648       for (int i = 0; i < JVMCICounterSize; i++) {
1649         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1650       }
1651     }
1652     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1653   }
1654 #endif // INCLUDE_JVMCI
1655 }
1656 
1657 
1658 // The first routine called by a new Java thread
1659 void JavaThread::run() {
1660   // initialize thread-local alloc buffer related fields
1661   this->initialize_tlab();
1662 
1663   // used to test validity of stack trace backs
1664   this->record_base_of_stack_pointer();
1665 
1666   // Record real stack base and size.
1667   this->record_stack_base_and_size();
1668 
1669   this->create_stack_guard_pages();
1670 
1671   this->cache_global_variables();
1672 
1673   // Thread is now sufficient initialized to be handled by the safepoint code as being
1674   // in the VM. Change thread state from _thread_new to _thread_in_vm
1675   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1676 
1677   assert(JavaThread::current() == this, "sanity check");
1678   assert(!Thread::current()->owns_locks(), "sanity check");
1679 
1680   DTRACE_THREAD_PROBE(start, this);
1681 
1682   // This operation might block. We call that after all safepoint checks for a new thread has
1683   // been completed.
1684   this->set_active_handles(JNIHandleBlock::allocate_block());
1685 
1686   if (JvmtiExport::should_post_thread_life()) {
1687     JvmtiExport::post_thread_start(this);
1688   }
1689 
1690   EventThreadStart event;
1691   if (event.should_commit()) {
1692     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1693     event.commit();
1694   }
1695 
1696   // We call another function to do the rest so we are sure that the stack addresses used
1697   // from there will be lower than the stack base just computed
1698   thread_main_inner();
1699 
1700   // Note, thread is no longer valid at this point!
1701 }
1702 
1703 
1704 void JavaThread::thread_main_inner() {
1705   assert(JavaThread::current() == this, "sanity check");
1706   assert(this->threadObj() != NULL, "just checking");
1707 
1708   // Execute thread entry point unless this thread has a pending exception
1709   // or has been stopped before starting.
1710   // Note: Due to JVM_StopThread we can have pending exceptions already!
1711   if (!this->has_pending_exception() &&
1712       !java_lang_Thread::is_stillborn(this->threadObj())) {
1713     {
1714       ResourceMark rm(this);
1715       this->set_native_thread_name(this->get_thread_name());
1716     }
1717     HandleMark hm(this);
1718     this->entry_point()(this, this);
1719   }
1720 
1721   DTRACE_THREAD_PROBE(stop, this);
1722 
1723   this->exit(false);
1724   delete this;
1725 }
1726 
1727 
1728 static void ensure_join(JavaThread* thread) {
1729   // We do not need to grap the Threads_lock, since we are operating on ourself.
1730   Handle threadObj(thread, thread->threadObj());
1731   assert(threadObj.not_null(), "java thread object must exist");
1732   ObjectLocker lock(threadObj, thread);
1733   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1734   thread->clear_pending_exception();
1735   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1736   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1737   // Clear the native thread instance - this makes isAlive return false and allows the join()
1738   // to complete once we've done the notify_all below
1739   java_lang_Thread::set_thread(threadObj(), NULL);
1740   lock.notify_all(thread);
1741   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1742   thread->clear_pending_exception();
1743 }
1744 
1745 
1746 // For any new cleanup additions, please check to see if they need to be applied to
1747 // cleanup_failed_attach_current_thread as well.
1748 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1749   assert(this == JavaThread::current(), "thread consistency check");
1750 
1751   HandleMark hm(this);
1752   Handle uncaught_exception(this, this->pending_exception());
1753   this->clear_pending_exception();
1754   Handle threadObj(this, this->threadObj());
1755   assert(threadObj.not_null(), "Java thread object should be created");
1756 
1757   if (get_thread_profiler() != NULL) {
1758     get_thread_profiler()->disengage();
1759     ResourceMark rm;
1760     get_thread_profiler()->print(get_thread_name());
1761   }
1762 
1763 
1764   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1765   {
1766     EXCEPTION_MARK;
1767 
1768     CLEAR_PENDING_EXCEPTION;
1769   }
1770   if (!destroy_vm) {
1771     if (uncaught_exception.not_null()) {
1772       EXCEPTION_MARK;
1773       // Call method Thread.dispatchUncaughtException().
1774       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1775       JavaValue result(T_VOID);
1776       JavaCalls::call_virtual(&result,
1777                               threadObj, thread_klass,
1778                               vmSymbols::dispatchUncaughtException_name(),
1779                               vmSymbols::throwable_void_signature(),
1780                               uncaught_exception,
1781                               THREAD);
1782       if (HAS_PENDING_EXCEPTION) {
1783         ResourceMark rm(this);
1784         jio_fprintf(defaultStream::error_stream(),
1785                     "\nException: %s thrown from the UncaughtExceptionHandler"
1786                     " in thread \"%s\"\n",
1787                     pending_exception()->klass()->external_name(),
1788                     get_thread_name());
1789         CLEAR_PENDING_EXCEPTION;
1790       }
1791     }
1792 
1793     // Called before the java thread exit since we want to read info
1794     // from java_lang_Thread object
1795     EventThreadEnd event;
1796     if (event.should_commit()) {
1797       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1798       event.commit();
1799     }
1800 
1801     // Call after last event on thread
1802     EVENT_THREAD_EXIT(this);
1803 
1804     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1805     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1806     // is deprecated anyhow.
1807     if (!is_Compiler_thread()) {
1808       int count = 3;
1809       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1810         EXCEPTION_MARK;
1811         JavaValue result(T_VOID);
1812         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1813         JavaCalls::call_virtual(&result,
1814                                 threadObj, thread_klass,
1815                                 vmSymbols::exit_method_name(),
1816                                 vmSymbols::void_method_signature(),
1817                                 THREAD);
1818         CLEAR_PENDING_EXCEPTION;
1819       }
1820     }
1821     // notify JVMTI
1822     if (JvmtiExport::should_post_thread_life()) {
1823       JvmtiExport::post_thread_end(this);
1824     }
1825 
1826     // We have notified the agents that we are exiting, before we go on,
1827     // we must check for a pending external suspend request and honor it
1828     // in order to not surprise the thread that made the suspend request.
1829     while (true) {
1830       {
1831         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1832         if (!is_external_suspend()) {
1833           set_terminated(_thread_exiting);
1834           ThreadService::current_thread_exiting(this);
1835           break;
1836         }
1837         // Implied else:
1838         // Things get a little tricky here. We have a pending external
1839         // suspend request, but we are holding the SR_lock so we
1840         // can't just self-suspend. So we temporarily drop the lock
1841         // and then self-suspend.
1842       }
1843 
1844       ThreadBlockInVM tbivm(this);
1845       java_suspend_self();
1846 
1847       // We're done with this suspend request, but we have to loop around
1848       // and check again. Eventually we will get SR_lock without a pending
1849       // external suspend request and will be able to mark ourselves as
1850       // exiting.
1851     }
1852     // no more external suspends are allowed at this point
1853   } else {
1854     // before_exit() has already posted JVMTI THREAD_END events
1855   }
1856 
1857   // Notify waiters on thread object. This has to be done after exit() is called
1858   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1859   // group should have the destroyed bit set before waiters are notified).
1860   ensure_join(this);
1861   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1862 
1863   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1864   // held by this thread must be released. The spec does not distinguish
1865   // between JNI-acquired and regular Java monitors. We can only see
1866   // regular Java monitors here if monitor enter-exit matching is broken.
1867   //
1868   // Optionally release any monitors for regular JavaThread exits. This
1869   // is provided as a work around for any bugs in monitor enter-exit
1870   // matching. This can be expensive so it is not enabled by default.
1871   //
1872   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1873   // ObjectSynchronizer::release_monitors_owned_by_thread().
1874   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1875     // Sanity check even though JNI DetachCurrentThread() would have
1876     // returned JNI_ERR if there was a Java frame. JavaThread exit
1877     // should be done executing Java code by the time we get here.
1878     assert(!this->has_last_Java_frame(),
1879            "should not have a Java frame when detaching or exiting");
1880     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1881     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1882   }
1883 
1884   // These things needs to be done while we are still a Java Thread. Make sure that thread
1885   // is in a consistent state, in case GC happens
1886   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1887 
1888   if (active_handles() != NULL) {
1889     JNIHandleBlock* block = active_handles();
1890     set_active_handles(NULL);
1891     JNIHandleBlock::release_block(block);
1892   }
1893 
1894   if (free_handle_block() != NULL) {
1895     JNIHandleBlock* block = free_handle_block();
1896     set_free_handle_block(NULL);
1897     JNIHandleBlock::release_block(block);
1898   }
1899 
1900   // These have to be removed while this is still a valid thread.
1901   remove_stack_guard_pages();
1902 
1903   if (UseTLAB) {
1904     tlab().make_parsable(true);  // retire TLAB
1905   }
1906 
1907   if (JvmtiEnv::environments_might_exist()) {
1908     JvmtiExport::cleanup_thread(this);
1909   }
1910 
1911   // We must flush any deferred card marks before removing a thread from
1912   // the list of active threads.
1913   Universe::heap()->flush_deferred_store_barrier(this);
1914   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1915 
1916 #if INCLUDE_ALL_GCS
1917   // We must flush the G1-related buffers before removing a thread
1918   // from the list of active threads. We must do this after any deferred
1919   // card marks have been flushed (above) so that any entries that are
1920   // added to the thread's dirty card queue as a result are not lost.
1921   if (UseG1GC) {
1922     flush_barrier_queues();
1923   }
1924 #endif // INCLUDE_ALL_GCS
1925 
1926   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1927   Threads::remove(this);
1928 }
1929 
1930 #if INCLUDE_ALL_GCS
1931 // Flush G1-related queues.
1932 void JavaThread::flush_barrier_queues() {
1933   satb_mark_queue().flush();
1934   dirty_card_queue().flush();
1935 }
1936 
1937 void JavaThread::initialize_queues() {
1938   assert(!SafepointSynchronize::is_at_safepoint(),
1939          "we should not be at a safepoint");
1940 
1941   SATBMarkQueue& satb_queue = satb_mark_queue();
1942   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1943   // The SATB queue should have been constructed with its active
1944   // field set to false.
1945   assert(!satb_queue.is_active(), "SATB queue should not be active");
1946   assert(satb_queue.is_empty(), "SATB queue should be empty");
1947   // If we are creating the thread during a marking cycle, we should
1948   // set the active field of the SATB queue to true.
1949   if (satb_queue_set.is_active()) {
1950     satb_queue.set_active(true);
1951   }
1952 
1953   DirtyCardQueue& dirty_queue = dirty_card_queue();
1954   // The dirty card queue should have been constructed with its
1955   // active field set to true.
1956   assert(dirty_queue.is_active(), "dirty card queue should be active");
1957 }
1958 #endif // INCLUDE_ALL_GCS
1959 
1960 void JavaThread::cleanup_failed_attach_current_thread() {
1961   if (get_thread_profiler() != NULL) {
1962     get_thread_profiler()->disengage();
1963     ResourceMark rm;
1964     get_thread_profiler()->print(get_thread_name());
1965   }
1966 
1967   if (active_handles() != NULL) {
1968     JNIHandleBlock* block = active_handles();
1969     set_active_handles(NULL);
1970     JNIHandleBlock::release_block(block);
1971   }
1972 
1973   if (free_handle_block() != NULL) {
1974     JNIHandleBlock* block = free_handle_block();
1975     set_free_handle_block(NULL);
1976     JNIHandleBlock::release_block(block);
1977   }
1978 
1979   // These have to be removed while this is still a valid thread.
1980   remove_stack_guard_pages();
1981 
1982   if (UseTLAB) {
1983     tlab().make_parsable(true);  // retire TLAB, if any
1984   }
1985 
1986 #if INCLUDE_ALL_GCS
1987   if (UseG1GC) {
1988     flush_barrier_queues();
1989   }
1990 #endif // INCLUDE_ALL_GCS
1991 
1992   Threads::remove(this);
1993   delete this;
1994 }
1995 
1996 
1997 
1998 
1999 JavaThread* JavaThread::active() {
2000   Thread* thread = Thread::current();
2001   if (thread->is_Java_thread()) {
2002     return (JavaThread*) thread;
2003   } else {
2004     assert(thread->is_VM_thread(), "this must be a vm thread");
2005     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2006     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2007     assert(ret->is_Java_thread(), "must be a Java thread");
2008     return ret;
2009   }
2010 }
2011 
2012 bool JavaThread::is_lock_owned(address adr) const {
2013   if (Thread::is_lock_owned(adr)) return true;
2014 
2015   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2016     if (chunk->contains(adr)) return true;
2017   }
2018 
2019   return false;
2020 }
2021 
2022 
2023 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2024   chunk->set_next(monitor_chunks());
2025   set_monitor_chunks(chunk);
2026 }
2027 
2028 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2029   guarantee(monitor_chunks() != NULL, "must be non empty");
2030   if (monitor_chunks() == chunk) {
2031     set_monitor_chunks(chunk->next());
2032   } else {
2033     MonitorChunk* prev = monitor_chunks();
2034     while (prev->next() != chunk) prev = prev->next();
2035     prev->set_next(chunk->next());
2036   }
2037 }
2038 
2039 // JVM support.
2040 
2041 // Note: this function shouldn't block if it's called in
2042 // _thread_in_native_trans state (such as from
2043 // check_special_condition_for_native_trans()).
2044 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2045 
2046   if (has_last_Java_frame() && has_async_condition()) {
2047     // If we are at a polling page safepoint (not a poll return)
2048     // then we must defer async exception because live registers
2049     // will be clobbered by the exception path. Poll return is
2050     // ok because the call we a returning from already collides
2051     // with exception handling registers and so there is no issue.
2052     // (The exception handling path kills call result registers but
2053     //  this is ok since the exception kills the result anyway).
2054 
2055     if (is_at_poll_safepoint()) {
2056       // if the code we are returning to has deoptimized we must defer
2057       // the exception otherwise live registers get clobbered on the
2058       // exception path before deoptimization is able to retrieve them.
2059       //
2060       RegisterMap map(this, false);
2061       frame caller_fr = last_frame().sender(&map);
2062       assert(caller_fr.is_compiled_frame(), "what?");
2063       if (caller_fr.is_deoptimized_frame()) {
2064         log_info(exceptions)("deferred async exception at compiled safepoint");
2065         return;
2066       }
2067     }
2068   }
2069 
2070   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2071   if (condition == _no_async_condition) {
2072     // Conditions have changed since has_special_runtime_exit_condition()
2073     // was called:
2074     // - if we were here only because of an external suspend request,
2075     //   then that was taken care of above (or cancelled) so we are done
2076     // - if we were here because of another async request, then it has
2077     //   been cleared between the has_special_runtime_exit_condition()
2078     //   and now so again we are done
2079     return;
2080   }
2081 
2082   // Check for pending async. exception
2083   if (_pending_async_exception != NULL) {
2084     // Only overwrite an already pending exception, if it is not a threadDeath.
2085     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2086 
2087       // We cannot call Exceptions::_throw(...) here because we cannot block
2088       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2089 
2090       if (log_is_enabled(Info, exceptions)) {
2091         ResourceMark rm;
2092         outputStream* logstream = LogHandle(exceptions)::info_stream();
2093         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2094           if (has_last_Java_frame()) {
2095             frame f = last_frame();
2096            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2097           }
2098         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2099       }
2100       _pending_async_exception = NULL;
2101       clear_has_async_exception();
2102     }
2103   }
2104 
2105   if (check_unsafe_error &&
2106       condition == _async_unsafe_access_error && !has_pending_exception()) {
2107     condition = _no_async_condition;  // done
2108     switch (thread_state()) {
2109     case _thread_in_vm: {
2110       JavaThread* THREAD = this;
2111       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2112     }
2113     case _thread_in_native: {
2114       ThreadInVMfromNative tiv(this);
2115       JavaThread* THREAD = this;
2116       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2117     }
2118     case _thread_in_Java: {
2119       ThreadInVMfromJava tiv(this);
2120       JavaThread* THREAD = this;
2121       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2122     }
2123     default:
2124       ShouldNotReachHere();
2125     }
2126   }
2127 
2128   assert(condition == _no_async_condition || has_pending_exception() ||
2129          (!check_unsafe_error && condition == _async_unsafe_access_error),
2130          "must have handled the async condition, if no exception");
2131 }
2132 
2133 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2134   //
2135   // Check for pending external suspend. Internal suspend requests do
2136   // not use handle_special_runtime_exit_condition().
2137   // If JNIEnv proxies are allowed, don't self-suspend if the target
2138   // thread is not the current thread. In older versions of jdbx, jdbx
2139   // threads could call into the VM with another thread's JNIEnv so we
2140   // can be here operating on behalf of a suspended thread (4432884).
2141   bool do_self_suspend = is_external_suspend_with_lock();
2142   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2143     //
2144     // Because thread is external suspended the safepoint code will count
2145     // thread as at a safepoint. This can be odd because we can be here
2146     // as _thread_in_Java which would normally transition to _thread_blocked
2147     // at a safepoint. We would like to mark the thread as _thread_blocked
2148     // before calling java_suspend_self like all other callers of it but
2149     // we must then observe proper safepoint protocol. (We can't leave
2150     // _thread_blocked with a safepoint in progress). However we can be
2151     // here as _thread_in_native_trans so we can't use a normal transition
2152     // constructor/destructor pair because they assert on that type of
2153     // transition. We could do something like:
2154     //
2155     // JavaThreadState state = thread_state();
2156     // set_thread_state(_thread_in_vm);
2157     // {
2158     //   ThreadBlockInVM tbivm(this);
2159     //   java_suspend_self()
2160     // }
2161     // set_thread_state(_thread_in_vm_trans);
2162     // if (safepoint) block;
2163     // set_thread_state(state);
2164     //
2165     // but that is pretty messy. Instead we just go with the way the
2166     // code has worked before and note that this is the only path to
2167     // java_suspend_self that doesn't put the thread in _thread_blocked
2168     // mode.
2169 
2170     frame_anchor()->make_walkable(this);
2171     java_suspend_self();
2172 
2173     // We might be here for reasons in addition to the self-suspend request
2174     // so check for other async requests.
2175   }
2176 
2177   if (check_asyncs) {
2178     check_and_handle_async_exceptions();
2179   }
2180 }
2181 
2182 void JavaThread::send_thread_stop(oop java_throwable)  {
2183   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2184   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2185   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2186 
2187   // Do not throw asynchronous exceptions against the compiler thread
2188   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2189   if (!can_call_java()) return;
2190 
2191   {
2192     // Actually throw the Throwable against the target Thread - however
2193     // only if there is no thread death exception installed already.
2194     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2195       // If the topmost frame is a runtime stub, then we are calling into
2196       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2197       // must deoptimize the caller before continuing, as the compiled  exception handler table
2198       // may not be valid
2199       if (has_last_Java_frame()) {
2200         frame f = last_frame();
2201         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2202           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2203           RegisterMap reg_map(this, UseBiasedLocking);
2204           frame compiled_frame = f.sender(&reg_map);
2205           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2206             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2207           }
2208         }
2209       }
2210 
2211       // Set async. pending exception in thread.
2212       set_pending_async_exception(java_throwable);
2213 
2214       if (log_is_enabled(Info, exceptions)) {
2215          ResourceMark rm;
2216         log_info(exceptions)("Pending Async. exception installed of type: %s",
2217                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2218       }
2219       // for AbortVMOnException flag
2220       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2221     }
2222   }
2223 
2224 
2225   // Interrupt thread so it will wake up from a potential wait()
2226   Thread::interrupt(this);
2227 }
2228 
2229 // External suspension mechanism.
2230 //
2231 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2232 // to any VM_locks and it is at a transition
2233 // Self-suspension will happen on the transition out of the vm.
2234 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2235 //
2236 // Guarantees on return:
2237 //   + Target thread will not execute any new bytecode (that's why we need to
2238 //     force a safepoint)
2239 //   + Target thread will not enter any new monitors
2240 //
2241 void JavaThread::java_suspend() {
2242   { MutexLocker mu(Threads_lock);
2243     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2244       return;
2245     }
2246   }
2247 
2248   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2249     if (!is_external_suspend()) {
2250       // a racing resume has cancelled us; bail out now
2251       return;
2252     }
2253 
2254     // suspend is done
2255     uint32_t debug_bits = 0;
2256     // Warning: is_ext_suspend_completed() may temporarily drop the
2257     // SR_lock to allow the thread to reach a stable thread state if
2258     // it is currently in a transient thread state.
2259     if (is_ext_suspend_completed(false /* !called_by_wait */,
2260                                  SuspendRetryDelay, &debug_bits)) {
2261       return;
2262     }
2263   }
2264 
2265   VM_ForceSafepoint vm_suspend;
2266   VMThread::execute(&vm_suspend);
2267 }
2268 
2269 // Part II of external suspension.
2270 // A JavaThread self suspends when it detects a pending external suspend
2271 // request. This is usually on transitions. It is also done in places
2272 // where continuing to the next transition would surprise the caller,
2273 // e.g., monitor entry.
2274 //
2275 // Returns the number of times that the thread self-suspended.
2276 //
2277 // Note: DO NOT call java_suspend_self() when you just want to block current
2278 //       thread. java_suspend_self() is the second stage of cooperative
2279 //       suspension for external suspend requests and should only be used
2280 //       to complete an external suspend request.
2281 //
2282 int JavaThread::java_suspend_self() {
2283   int ret = 0;
2284 
2285   // we are in the process of exiting so don't suspend
2286   if (is_exiting()) {
2287     clear_external_suspend();
2288     return ret;
2289   }
2290 
2291   assert(_anchor.walkable() ||
2292          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2293          "must have walkable stack");
2294 
2295   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2296 
2297   assert(!this->is_ext_suspended(),
2298          "a thread trying to self-suspend should not already be suspended");
2299 
2300   if (this->is_suspend_equivalent()) {
2301     // If we are self-suspending as a result of the lifting of a
2302     // suspend equivalent condition, then the suspend_equivalent
2303     // flag is not cleared until we set the ext_suspended flag so
2304     // that wait_for_ext_suspend_completion() returns consistent
2305     // results.
2306     this->clear_suspend_equivalent();
2307   }
2308 
2309   // A racing resume may have cancelled us before we grabbed SR_lock
2310   // above. Or another external suspend request could be waiting for us
2311   // by the time we return from SR_lock()->wait(). The thread
2312   // that requested the suspension may already be trying to walk our
2313   // stack and if we return now, we can change the stack out from under
2314   // it. This would be a "bad thing (TM)" and cause the stack walker
2315   // to crash. We stay self-suspended until there are no more pending
2316   // external suspend requests.
2317   while (is_external_suspend()) {
2318     ret++;
2319     this->set_ext_suspended();
2320 
2321     // _ext_suspended flag is cleared by java_resume()
2322     while (is_ext_suspended()) {
2323       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2324     }
2325   }
2326 
2327   return ret;
2328 }
2329 
2330 #ifdef ASSERT
2331 // verify the JavaThread has not yet been published in the Threads::list, and
2332 // hence doesn't need protection from concurrent access at this stage
2333 void JavaThread::verify_not_published() {
2334   if (!Threads_lock->owned_by_self()) {
2335     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2336     assert(!Threads::includes(this),
2337            "java thread shouldn't have been published yet!");
2338   } else {
2339     assert(!Threads::includes(this),
2340            "java thread shouldn't have been published yet!");
2341   }
2342 }
2343 #endif
2344 
2345 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2346 // progress or when _suspend_flags is non-zero.
2347 // Current thread needs to self-suspend if there is a suspend request and/or
2348 // block if a safepoint is in progress.
2349 // Async exception ISN'T checked.
2350 // Note only the ThreadInVMfromNative transition can call this function
2351 // directly and when thread state is _thread_in_native_trans
2352 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2353   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2354 
2355   JavaThread *curJT = JavaThread::current();
2356   bool do_self_suspend = thread->is_external_suspend();
2357 
2358   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2359 
2360   // If JNIEnv proxies are allowed, don't self-suspend if the target
2361   // thread is not the current thread. In older versions of jdbx, jdbx
2362   // threads could call into the VM with another thread's JNIEnv so we
2363   // can be here operating on behalf of a suspended thread (4432884).
2364   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2365     JavaThreadState state = thread->thread_state();
2366 
2367     // We mark this thread_blocked state as a suspend-equivalent so
2368     // that a caller to is_ext_suspend_completed() won't be confused.
2369     // The suspend-equivalent state is cleared by java_suspend_self().
2370     thread->set_suspend_equivalent();
2371 
2372     // If the safepoint code sees the _thread_in_native_trans state, it will
2373     // wait until the thread changes to other thread state. There is no
2374     // guarantee on how soon we can obtain the SR_lock and complete the
2375     // self-suspend request. It would be a bad idea to let safepoint wait for
2376     // too long. Temporarily change the state to _thread_blocked to
2377     // let the VM thread know that this thread is ready for GC. The problem
2378     // of changing thread state is that safepoint could happen just after
2379     // java_suspend_self() returns after being resumed, and VM thread will
2380     // see the _thread_blocked state. We must check for safepoint
2381     // after restoring the state and make sure we won't leave while a safepoint
2382     // is in progress.
2383     thread->set_thread_state(_thread_blocked);
2384     thread->java_suspend_self();
2385     thread->set_thread_state(state);
2386     // Make sure new state is seen by VM thread
2387     if (os::is_MP()) {
2388       if (UseMembar) {
2389         // Force a fence between the write above and read below
2390         OrderAccess::fence();
2391       } else {
2392         // Must use this rather than serialization page in particular on Windows
2393         InterfaceSupport::serialize_memory(thread);
2394       }
2395     }
2396   }
2397 
2398   if (SafepointSynchronize::do_call_back()) {
2399     // If we are safepointing, then block the caller which may not be
2400     // the same as the target thread (see above).
2401     SafepointSynchronize::block(curJT);
2402   }
2403 
2404   if (thread->is_deopt_suspend()) {
2405     thread->clear_deopt_suspend();
2406     RegisterMap map(thread, false);
2407     frame f = thread->last_frame();
2408     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2409       f = f.sender(&map);
2410     }
2411     if (f.id() == thread->must_deopt_id()) {
2412       thread->clear_must_deopt_id();
2413       f.deoptimize(thread);
2414     } else {
2415       fatal("missed deoptimization!");
2416     }
2417   }
2418 }
2419 
2420 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2421 // progress or when _suspend_flags is non-zero.
2422 // Current thread needs to self-suspend if there is a suspend request and/or
2423 // block if a safepoint is in progress.
2424 // Also check for pending async exception (not including unsafe access error).
2425 // Note only the native==>VM/Java barriers can call this function and when
2426 // thread state is _thread_in_native_trans.
2427 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2428   check_safepoint_and_suspend_for_native_trans(thread);
2429 
2430   if (thread->has_async_exception()) {
2431     // We are in _thread_in_native_trans state, don't handle unsafe
2432     // access error since that may block.
2433     thread->check_and_handle_async_exceptions(false);
2434   }
2435 }
2436 
2437 // This is a variant of the normal
2438 // check_special_condition_for_native_trans with slightly different
2439 // semantics for use by critical native wrappers.  It does all the
2440 // normal checks but also performs the transition back into
2441 // thread_in_Java state.  This is required so that critical natives
2442 // can potentially block and perform a GC if they are the last thread
2443 // exiting the GCLocker.
2444 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2445   check_special_condition_for_native_trans(thread);
2446 
2447   // Finish the transition
2448   thread->set_thread_state(_thread_in_Java);
2449 
2450   if (thread->do_critical_native_unlock()) {
2451     ThreadInVMfromJavaNoAsyncException tiv(thread);
2452     GCLocker::unlock_critical(thread);
2453     thread->clear_critical_native_unlock();
2454   }
2455 }
2456 
2457 // We need to guarantee the Threads_lock here, since resumes are not
2458 // allowed during safepoint synchronization
2459 // Can only resume from an external suspension
2460 void JavaThread::java_resume() {
2461   assert_locked_or_safepoint(Threads_lock);
2462 
2463   // Sanity check: thread is gone, has started exiting or the thread
2464   // was not externally suspended.
2465   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2466     return;
2467   }
2468 
2469   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2470 
2471   clear_external_suspend();
2472 
2473   if (is_ext_suspended()) {
2474     clear_ext_suspended();
2475     SR_lock()->notify_all();
2476   }
2477 }
2478 
2479 size_t JavaThread::_stack_red_zone_size = 0;
2480 size_t JavaThread::_stack_yellow_zone_size = 0;
2481 size_t JavaThread::_stack_reserved_zone_size = 0;
2482 size_t JavaThread::_stack_shadow_zone_size = 0;
2483 
2484 void JavaThread::create_stack_guard_pages() {
2485   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2486   address low_addr = stack_end();
2487   size_t len = stack_guard_zone_size();
2488 
2489   int allocate = os::allocate_stack_guard_pages();
2490   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2491 
2492   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2493     warning("Attempt to allocate stack guard pages failed.");
2494     return;
2495   }
2496 
2497   if (os::guard_memory((char *) low_addr, len)) {
2498     _stack_guard_state = stack_guard_enabled;
2499   } else {
2500     warning("Attempt to protect stack guard pages failed.");
2501     if (os::uncommit_memory((char *) low_addr, len)) {
2502       warning("Attempt to deallocate stack guard pages failed.");
2503     }
2504   }
2505 }
2506 
2507 void JavaThread::remove_stack_guard_pages() {
2508   assert(Thread::current() == this, "from different thread");
2509   if (_stack_guard_state == stack_guard_unused) return;
2510   address low_addr = stack_end();
2511   size_t len = stack_guard_zone_size();
2512 
2513   if (os::allocate_stack_guard_pages()) {
2514     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2515       _stack_guard_state = stack_guard_unused;
2516     } else {
2517       warning("Attempt to deallocate stack guard pages failed.");
2518     }
2519   } else {
2520     if (_stack_guard_state == stack_guard_unused) return;
2521     if (os::unguard_memory((char *) low_addr, len)) {
2522       _stack_guard_state = stack_guard_unused;
2523     } else {
2524       warning("Attempt to unprotect stack guard pages failed.");
2525     }
2526   }
2527 }
2528 
2529 void JavaThread::enable_stack_reserved_zone() {
2530   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2531   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2532 
2533   // The base notation is from the stack's point of view, growing downward.
2534   // We need to adjust it to work correctly with guard_memory()
2535   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2536 
2537   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2538   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2539 
2540   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2541     _stack_guard_state = stack_guard_enabled;
2542   } else {
2543     warning("Attempt to guard stack reserved zone failed.");
2544   }
2545   enable_register_stack_guard();
2546 }
2547 
2548 void JavaThread::disable_stack_reserved_zone() {
2549   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2550   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2551 
2552   // Simply return if called for a thread that does not use guard pages.
2553   if (_stack_guard_state == stack_guard_unused) return;
2554 
2555   // The base notation is from the stack's point of view, growing downward.
2556   // We need to adjust it to work correctly with guard_memory()
2557   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2558 
2559   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2560     _stack_guard_state = stack_guard_reserved_disabled;
2561   } else {
2562     warning("Attempt to unguard stack reserved zone failed.");
2563   }
2564   disable_register_stack_guard();
2565 }
2566 
2567 void JavaThread::enable_stack_yellow_reserved_zone() {
2568   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2569   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2570 
2571   // The base notation is from the stacks point of view, growing downward.
2572   // We need to adjust it to work correctly with guard_memory()
2573   address base = stack_red_zone_base();
2574 
2575   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2576   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2577 
2578   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2579     _stack_guard_state = stack_guard_enabled;
2580   } else {
2581     warning("Attempt to guard stack yellow zone failed.");
2582   }
2583   enable_register_stack_guard();
2584 }
2585 
2586 void JavaThread::disable_stack_yellow_reserved_zone() {
2587   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2588   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2589 
2590   // Simply return if called for a thread that does not use guard pages.
2591   if (_stack_guard_state == stack_guard_unused) return;
2592 
2593   // The base notation is from the stacks point of view, growing downward.
2594   // We need to adjust it to work correctly with guard_memory()
2595   address base = stack_red_zone_base();
2596 
2597   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2598     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2599   } else {
2600     warning("Attempt to unguard stack yellow zone failed.");
2601   }
2602   disable_register_stack_guard();
2603 }
2604 
2605 void JavaThread::enable_stack_red_zone() {
2606   // The base notation is from the stacks point of view, growing downward.
2607   // We need to adjust it to work correctly with guard_memory()
2608   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2609   address base = stack_red_zone_base() - stack_red_zone_size();
2610 
2611   guarantee(base < stack_base(), "Error calculating stack red zone");
2612   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2613 
2614   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2615     warning("Attempt to guard stack red zone failed.");
2616   }
2617 }
2618 
2619 void JavaThread::disable_stack_red_zone() {
2620   // The base notation is from the stacks point of view, growing downward.
2621   // We need to adjust it to work correctly with guard_memory()
2622   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2623   address base = stack_red_zone_base() - stack_red_zone_size();
2624   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2625     warning("Attempt to unguard stack red zone failed.");
2626   }
2627 }
2628 
2629 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2630   // ignore is there is no stack
2631   if (!has_last_Java_frame()) return;
2632   // traverse the stack frames. Starts from top frame.
2633   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2634     frame* fr = fst.current();
2635     f(fr, fst.register_map());
2636   }
2637 }
2638 
2639 
2640 #ifndef PRODUCT
2641 // Deoptimization
2642 // Function for testing deoptimization
2643 void JavaThread::deoptimize() {
2644   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2645   StackFrameStream fst(this, UseBiasedLocking);
2646   bool deopt = false;           // Dump stack only if a deopt actually happens.
2647   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2648   // Iterate over all frames in the thread and deoptimize
2649   for (; !fst.is_done(); fst.next()) {
2650     if (fst.current()->can_be_deoptimized()) {
2651 
2652       if (only_at) {
2653         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2654         // consists of comma or carriage return separated numbers so
2655         // search for the current bci in that string.
2656         address pc = fst.current()->pc();
2657         nmethod* nm =  (nmethod*) fst.current()->cb();
2658         ScopeDesc* sd = nm->scope_desc_at(pc);
2659         char buffer[8];
2660         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2661         size_t len = strlen(buffer);
2662         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2663         while (found != NULL) {
2664           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2665               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2666             // Check that the bci found is bracketed by terminators.
2667             break;
2668           }
2669           found = strstr(found + 1, buffer);
2670         }
2671         if (!found) {
2672           continue;
2673         }
2674       }
2675 
2676       if (DebugDeoptimization && !deopt) {
2677         deopt = true; // One-time only print before deopt
2678         tty->print_cr("[BEFORE Deoptimization]");
2679         trace_frames();
2680         trace_stack();
2681       }
2682       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2683     }
2684   }
2685 
2686   if (DebugDeoptimization && deopt) {
2687     tty->print_cr("[AFTER Deoptimization]");
2688     trace_frames();
2689   }
2690 }
2691 
2692 
2693 // Make zombies
2694 void JavaThread::make_zombies() {
2695   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2696     if (fst.current()->can_be_deoptimized()) {
2697       // it is a Java nmethod
2698       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2699       nm->make_not_entrant();
2700     }
2701   }
2702 }
2703 #endif // PRODUCT
2704 
2705 
2706 void JavaThread::deoptimized_wrt_marked_nmethods() {
2707   if (!has_last_Java_frame()) return;
2708   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2709   StackFrameStream fst(this, UseBiasedLocking);
2710   for (; !fst.is_done(); fst.next()) {
2711     if (fst.current()->should_be_deoptimized()) {
2712       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2713     }
2714   }
2715 }
2716 
2717 
2718 // If the caller is a NamedThread, then remember, in the current scope,
2719 // the given JavaThread in its _processed_thread field.
2720 class RememberProcessedThread: public StackObj {
2721   NamedThread* _cur_thr;
2722  public:
2723   RememberProcessedThread(JavaThread* jthr) {
2724     Thread* thread = Thread::current();
2725     if (thread->is_Named_thread()) {
2726       _cur_thr = (NamedThread *)thread;
2727       _cur_thr->set_processed_thread(jthr);
2728     } else {
2729       _cur_thr = NULL;
2730     }
2731   }
2732 
2733   ~RememberProcessedThread() {
2734     if (_cur_thr) {
2735       _cur_thr->set_processed_thread(NULL);
2736     }
2737   }
2738 };
2739 
2740 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2741   // Verify that the deferred card marks have been flushed.
2742   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2743 
2744   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2745   // since there may be more than one thread using each ThreadProfiler.
2746 
2747   // Traverse the GCHandles
2748   Thread::oops_do(f, cld_f, cf);
2749 
2750   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2751 
2752   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2753          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2754 
2755   if (has_last_Java_frame()) {
2756     // Record JavaThread to GC thread
2757     RememberProcessedThread rpt(this);
2758 
2759     // Traverse the privileged stack
2760     if (_privileged_stack_top != NULL) {
2761       _privileged_stack_top->oops_do(f);
2762     }
2763 
2764     // traverse the registered growable array
2765     if (_array_for_gc != NULL) {
2766       for (int index = 0; index < _array_for_gc->length(); index++) {
2767         f->do_oop(_array_for_gc->adr_at(index));
2768       }
2769     }
2770 
2771     // Traverse the monitor chunks
2772     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2773       chunk->oops_do(f);
2774     }
2775 
2776     // Traverse the execution stack
2777     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2778       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2779     }
2780   }
2781 
2782   // callee_target is never live across a gc point so NULL it here should
2783   // it still contain a methdOop.
2784 
2785   set_callee_target(NULL);
2786 
2787   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2788   // If we have deferred set_locals there might be oops waiting to be
2789   // written
2790   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2791   if (list != NULL) {
2792     for (int i = 0; i < list->length(); i++) {
2793       list->at(i)->oops_do(f);
2794     }
2795   }
2796 
2797   // Traverse instance variables at the end since the GC may be moving things
2798   // around using this function
2799   f->do_oop((oop*) &_threadObj);
2800   f->do_oop((oop*) &_vm_result);
2801   f->do_oop((oop*) &_exception_oop);
2802   f->do_oop((oop*) &_pending_async_exception);
2803 
2804   if (jvmti_thread_state() != NULL) {
2805     jvmti_thread_state()->oops_do(f);
2806   }
2807 }
2808 
2809 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2810   Thread::nmethods_do(cf);  // (super method is a no-op)
2811 
2812   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2813          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2814 
2815   if (has_last_Java_frame()) {
2816     // Traverse the execution stack
2817     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2818       fst.current()->nmethods_do(cf);
2819     }
2820   }
2821 }
2822 
2823 void JavaThread::metadata_do(void f(Metadata*)) {
2824   if (has_last_Java_frame()) {
2825     // Traverse the execution stack to call f() on the methods in the stack
2826     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2827       fst.current()->metadata_do(f);
2828     }
2829   } else if (is_Compiler_thread()) {
2830     // need to walk ciMetadata in current compile tasks to keep alive.
2831     CompilerThread* ct = (CompilerThread*)this;
2832     if (ct->env() != NULL) {
2833       ct->env()->metadata_do(f);
2834     }
2835     if (ct->task() != NULL) {
2836       ct->task()->metadata_do(f);
2837     }
2838   }
2839 }
2840 
2841 // Printing
2842 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2843   switch (_thread_state) {
2844   case _thread_uninitialized:     return "_thread_uninitialized";
2845   case _thread_new:               return "_thread_new";
2846   case _thread_new_trans:         return "_thread_new_trans";
2847   case _thread_in_native:         return "_thread_in_native";
2848   case _thread_in_native_trans:   return "_thread_in_native_trans";
2849   case _thread_in_vm:             return "_thread_in_vm";
2850   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2851   case _thread_in_Java:           return "_thread_in_Java";
2852   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2853   case _thread_blocked:           return "_thread_blocked";
2854   case _thread_blocked_trans:     return "_thread_blocked_trans";
2855   default:                        return "unknown thread state";
2856   }
2857 }
2858 
2859 #ifndef PRODUCT
2860 void JavaThread::print_thread_state_on(outputStream *st) const {
2861   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2862 };
2863 void JavaThread::print_thread_state() const {
2864   print_thread_state_on(tty);
2865 }
2866 #endif // PRODUCT
2867 
2868 // Called by Threads::print() for VM_PrintThreads operation
2869 void JavaThread::print_on(outputStream *st) const {
2870   st->print("\"%s\" ", get_thread_name());
2871   oop thread_oop = threadObj();
2872   if (thread_oop != NULL) {
2873     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2874     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2875     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2876   }
2877   Thread::print_on(st);
2878   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2879   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2880   if (thread_oop != NULL) {
2881     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2882   }
2883 #ifndef PRODUCT
2884   print_thread_state_on(st);
2885   _safepoint_state->print_on(st);
2886 #endif // PRODUCT
2887 }
2888 
2889 // Called by fatal error handler. The difference between this and
2890 // JavaThread::print() is that we can't grab lock or allocate memory.
2891 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2892   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2893   oop thread_obj = threadObj();
2894   if (thread_obj != NULL) {
2895     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2896   }
2897   st->print(" [");
2898   st->print("%s", _get_thread_state_name(_thread_state));
2899   if (osthread()) {
2900     st->print(", id=%d", osthread()->thread_id());
2901   }
2902   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2903             p2i(stack_end()), p2i(stack_base()));
2904   st->print("]");
2905   return;
2906 }
2907 
2908 // Verification
2909 
2910 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2911 
2912 void JavaThread::verify() {
2913   // Verify oops in the thread.
2914   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2915 
2916   // Verify the stack frames.
2917   frames_do(frame_verify);
2918 }
2919 
2920 // CR 6300358 (sub-CR 2137150)
2921 // Most callers of this method assume that it can't return NULL but a
2922 // thread may not have a name whilst it is in the process of attaching to
2923 // the VM - see CR 6412693, and there are places where a JavaThread can be
2924 // seen prior to having it's threadObj set (eg JNI attaching threads and
2925 // if vm exit occurs during initialization). These cases can all be accounted
2926 // for such that this method never returns NULL.
2927 const char* JavaThread::get_thread_name() const {
2928 #ifdef ASSERT
2929   // early safepoints can hit while current thread does not yet have TLS
2930   if (!SafepointSynchronize::is_at_safepoint()) {
2931     Thread *cur = Thread::current();
2932     if (!(cur->is_Java_thread() && cur == this)) {
2933       // Current JavaThreads are allowed to get their own name without
2934       // the Threads_lock.
2935       assert_locked_or_safepoint(Threads_lock);
2936     }
2937   }
2938 #endif // ASSERT
2939   return get_thread_name_string();
2940 }
2941 
2942 // Returns a non-NULL representation of this thread's name, or a suitable
2943 // descriptive string if there is no set name
2944 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2945   const char* name_str;
2946   oop thread_obj = threadObj();
2947   if (thread_obj != NULL) {
2948     oop name = java_lang_Thread::name(thread_obj);
2949     if (name != NULL) {
2950       if (buf == NULL) {
2951         name_str = java_lang_String::as_utf8_string(name);
2952       } else {
2953         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2954       }
2955     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2956       name_str = "<no-name - thread is attaching>";
2957     } else {
2958       name_str = Thread::name();
2959     }
2960   } else {
2961     name_str = Thread::name();
2962   }
2963   assert(name_str != NULL, "unexpected NULL thread name");
2964   return name_str;
2965 }
2966 
2967 
2968 const char* JavaThread::get_threadgroup_name() const {
2969   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2970   oop thread_obj = threadObj();
2971   if (thread_obj != NULL) {
2972     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2973     if (thread_group != NULL) {
2974       // ThreadGroup.name can be null
2975       return java_lang_ThreadGroup::name(thread_group);
2976     }
2977   }
2978   return NULL;
2979 }
2980 
2981 const char* JavaThread::get_parent_name() const {
2982   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2983   oop thread_obj = threadObj();
2984   if (thread_obj != NULL) {
2985     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2986     if (thread_group != NULL) {
2987       oop parent = java_lang_ThreadGroup::parent(thread_group);
2988       if (parent != NULL) {
2989         // ThreadGroup.name can be null
2990         return java_lang_ThreadGroup::name(parent);
2991       }
2992     }
2993   }
2994   return NULL;
2995 }
2996 
2997 ThreadPriority JavaThread::java_priority() const {
2998   oop thr_oop = threadObj();
2999   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3000   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3001   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3002   return priority;
3003 }
3004 
3005 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3006 
3007   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3008   // Link Java Thread object <-> C++ Thread
3009 
3010   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3011   // and put it into a new Handle.  The Handle "thread_oop" can then
3012   // be used to pass the C++ thread object to other methods.
3013 
3014   // Set the Java level thread object (jthread) field of the
3015   // new thread (a JavaThread *) to C++ thread object using the
3016   // "thread_oop" handle.
3017 
3018   // Set the thread field (a JavaThread *) of the
3019   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3020 
3021   Handle thread_oop(Thread::current(),
3022                     JNIHandles::resolve_non_null(jni_thread));
3023   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3024          "must be initialized");
3025   set_threadObj(thread_oop());
3026   java_lang_Thread::set_thread(thread_oop(), this);
3027 
3028   if (prio == NoPriority) {
3029     prio = java_lang_Thread::priority(thread_oop());
3030     assert(prio != NoPriority, "A valid priority should be present");
3031   }
3032 
3033   // Push the Java priority down to the native thread; needs Threads_lock
3034   Thread::set_priority(this, prio);
3035 
3036   prepare_ext();
3037 
3038   // Add the new thread to the Threads list and set it in motion.
3039   // We must have threads lock in order to call Threads::add.
3040   // It is crucial that we do not block before the thread is
3041   // added to the Threads list for if a GC happens, then the java_thread oop
3042   // will not be visited by GC.
3043   Threads::add(this);
3044 }
3045 
3046 oop JavaThread::current_park_blocker() {
3047   // Support for JSR-166 locks
3048   oop thread_oop = threadObj();
3049   if (thread_oop != NULL &&
3050       JDK_Version::current().supports_thread_park_blocker()) {
3051     return java_lang_Thread::park_blocker(thread_oop);
3052   }
3053   return NULL;
3054 }
3055 
3056 
3057 void JavaThread::print_stack_on(outputStream* st) {
3058   if (!has_last_Java_frame()) return;
3059   ResourceMark rm;
3060   HandleMark   hm;
3061 
3062   RegisterMap reg_map(this);
3063   vframe* start_vf = last_java_vframe(&reg_map);
3064   int count = 0;
3065   for (vframe* f = start_vf; f; f = f->sender()) {
3066     if (f->is_java_frame()) {
3067       javaVFrame* jvf = javaVFrame::cast(f);
3068       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3069 
3070       // Print out lock information
3071       if (JavaMonitorsInStackTrace) {
3072         jvf->print_lock_info_on(st, count);
3073       }
3074     } else {
3075       // Ignore non-Java frames
3076     }
3077 
3078     // Bail-out case for too deep stacks
3079     count++;
3080     if (MaxJavaStackTraceDepth == count) return;
3081   }
3082 }
3083 
3084 
3085 // JVMTI PopFrame support
3086 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3087   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3088   if (in_bytes(size_in_bytes) != 0) {
3089     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3090     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3091     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3092   }
3093 }
3094 
3095 void* JavaThread::popframe_preserved_args() {
3096   return _popframe_preserved_args;
3097 }
3098 
3099 ByteSize JavaThread::popframe_preserved_args_size() {
3100   return in_ByteSize(_popframe_preserved_args_size);
3101 }
3102 
3103 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3104   int sz = in_bytes(popframe_preserved_args_size());
3105   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3106   return in_WordSize(sz / wordSize);
3107 }
3108 
3109 void JavaThread::popframe_free_preserved_args() {
3110   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3111   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3112   _popframe_preserved_args = NULL;
3113   _popframe_preserved_args_size = 0;
3114 }
3115 
3116 #ifndef PRODUCT
3117 
3118 void JavaThread::trace_frames() {
3119   tty->print_cr("[Describe stack]");
3120   int frame_no = 1;
3121   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3122     tty->print("  %d. ", frame_no++);
3123     fst.current()->print_value_on(tty, this);
3124     tty->cr();
3125   }
3126 }
3127 
3128 class PrintAndVerifyOopClosure: public OopClosure {
3129  protected:
3130   template <class T> inline void do_oop_work(T* p) {
3131     oop obj = oopDesc::load_decode_heap_oop(p);
3132     if (obj == NULL) return;
3133     tty->print(INTPTR_FORMAT ": ", p2i(p));
3134     if (obj->is_oop_or_null()) {
3135       if (obj->is_objArray()) {
3136         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3137       } else {
3138         obj->print();
3139       }
3140     } else {
3141       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3142     }
3143     tty->cr();
3144   }
3145  public:
3146   virtual void do_oop(oop* p) { do_oop_work(p); }
3147   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3148 };
3149 
3150 
3151 static void oops_print(frame* f, const RegisterMap *map) {
3152   PrintAndVerifyOopClosure print;
3153   f->print_value();
3154   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3155 }
3156 
3157 // Print our all the locations that contain oops and whether they are
3158 // valid or not.  This useful when trying to find the oldest frame
3159 // where an oop has gone bad since the frame walk is from youngest to
3160 // oldest.
3161 void JavaThread::trace_oops() {
3162   tty->print_cr("[Trace oops]");
3163   frames_do(oops_print);
3164 }
3165 
3166 
3167 #ifdef ASSERT
3168 // Print or validate the layout of stack frames
3169 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3170   ResourceMark rm;
3171   PRESERVE_EXCEPTION_MARK;
3172   FrameValues values;
3173   int frame_no = 0;
3174   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3175     fst.current()->describe(values, ++frame_no);
3176     if (depth == frame_no) break;
3177   }
3178   if (validate_only) {
3179     values.validate();
3180   } else {
3181     tty->print_cr("[Describe stack layout]");
3182     values.print(this);
3183   }
3184 }
3185 #endif
3186 
3187 void JavaThread::trace_stack_from(vframe* start_vf) {
3188   ResourceMark rm;
3189   int vframe_no = 1;
3190   for (vframe* f = start_vf; f; f = f->sender()) {
3191     if (f->is_java_frame()) {
3192       javaVFrame::cast(f)->print_activation(vframe_no++);
3193     } else {
3194       f->print();
3195     }
3196     if (vframe_no > StackPrintLimit) {
3197       tty->print_cr("...<more frames>...");
3198       return;
3199     }
3200   }
3201 }
3202 
3203 
3204 void JavaThread::trace_stack() {
3205   if (!has_last_Java_frame()) return;
3206   ResourceMark rm;
3207   HandleMark   hm;
3208   RegisterMap reg_map(this);
3209   trace_stack_from(last_java_vframe(&reg_map));
3210 }
3211 
3212 
3213 #endif // PRODUCT
3214 
3215 
3216 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3217   assert(reg_map != NULL, "a map must be given");
3218   frame f = last_frame();
3219   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3220     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3221   }
3222   return NULL;
3223 }
3224 
3225 
3226 Klass* JavaThread::security_get_caller_class(int depth) {
3227   vframeStream vfst(this);
3228   vfst.security_get_caller_frame(depth);
3229   if (!vfst.at_end()) {
3230     return vfst.method()->method_holder();
3231   }
3232   return NULL;
3233 }
3234 
3235 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3236   assert(thread->is_Compiler_thread(), "must be compiler thread");
3237   CompileBroker::compiler_thread_loop();
3238 }
3239 
3240 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3241   NMethodSweeper::sweeper_loop();
3242 }
3243 
3244 // Create a CompilerThread
3245 CompilerThread::CompilerThread(CompileQueue* queue,
3246                                CompilerCounters* counters)
3247                                : JavaThread(&compiler_thread_entry) {
3248   _env   = NULL;
3249   _log   = NULL;
3250   _task  = NULL;
3251   _queue = queue;
3252   _counters = counters;
3253   _buffer_blob = NULL;
3254   _compiler = NULL;
3255 
3256 #ifndef PRODUCT
3257   _ideal_graph_printer = NULL;
3258 #endif
3259 }
3260 
3261 bool CompilerThread::can_call_java() const {
3262   return _compiler != NULL && _compiler->is_jvmci();
3263 }
3264 
3265 // Create sweeper thread
3266 CodeCacheSweeperThread::CodeCacheSweeperThread()
3267 : JavaThread(&sweeper_thread_entry) {
3268   _scanned_nmethod = NULL;
3269 }
3270 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3271   JavaThread::oops_do(f, cld_f, cf);
3272   if (_scanned_nmethod != NULL && cf != NULL) {
3273     // Safepoints can occur when the sweeper is scanning an nmethod so
3274     // process it here to make sure it isn't unloaded in the middle of
3275     // a scan.
3276     cf->do_code_blob(_scanned_nmethod);
3277   }
3278 }
3279 
3280 
3281 // ======= Threads ========
3282 
3283 // The Threads class links together all active threads, and provides
3284 // operations over all threads.  It is protected by its own Mutex
3285 // lock, which is also used in other contexts to protect thread
3286 // operations from having the thread being operated on from exiting
3287 // and going away unexpectedly (e.g., safepoint synchronization)
3288 
3289 JavaThread* Threads::_thread_list = NULL;
3290 int         Threads::_number_of_threads = 0;
3291 int         Threads::_number_of_non_daemon_threads = 0;
3292 int         Threads::_return_code = 0;
3293 int         Threads::_thread_claim_parity = 0;
3294 size_t      JavaThread::_stack_size_at_create = 0;
3295 #ifdef ASSERT
3296 bool        Threads::_vm_complete = false;
3297 #endif
3298 
3299 // All JavaThreads
3300 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3301 
3302 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3303 void Threads::threads_do(ThreadClosure* tc) {
3304   assert_locked_or_safepoint(Threads_lock);
3305   // ALL_JAVA_THREADS iterates through all JavaThreads
3306   ALL_JAVA_THREADS(p) {
3307     tc->do_thread(p);
3308   }
3309   // Someday we could have a table or list of all non-JavaThreads.
3310   // For now, just manually iterate through them.
3311   tc->do_thread(VMThread::vm_thread());
3312   Universe::heap()->gc_threads_do(tc);
3313   WatcherThread *wt = WatcherThread::watcher_thread();
3314   // Strictly speaking, the following NULL check isn't sufficient to make sure
3315   // the data for WatcherThread is still valid upon being examined. However,
3316   // considering that WatchThread terminates when the VM is on the way to
3317   // exit at safepoint, the chance of the above is extremely small. The right
3318   // way to prevent termination of WatcherThread would be to acquire
3319   // Terminator_lock, but we can't do that without violating the lock rank
3320   // checking in some cases.
3321   if (wt != NULL) {
3322     tc->do_thread(wt);
3323   }
3324 
3325   // If CompilerThreads ever become non-JavaThreads, add them here
3326 }
3327 
3328 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3329   TraceTime timer("Initialize java.lang classes",
3330                   log_is_enabled(Info, startuptime),
3331                   LogTag::_startuptime);
3332 
3333   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3334     create_vm_init_libraries();
3335   }
3336 
3337   initialize_class(vmSymbols::java_lang_String(), CHECK);
3338 
3339   // Inject CompactStrings value after the static initializers for String ran.
3340   java_lang_String::set_compact_strings(CompactStrings);
3341 
3342   // Initialize java_lang.System (needed before creating the thread)
3343   initialize_class(vmSymbols::java_lang_System(), CHECK);
3344   // The VM creates & returns objects of this class. Make sure it's initialized.
3345   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3346   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3347   Handle thread_group = create_initial_thread_group(CHECK);
3348   Universe::set_main_thread_group(thread_group());
3349   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3350   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3351   main_thread->set_threadObj(thread_object);
3352   // Set thread status to running since main thread has
3353   // been started and running.
3354   java_lang_Thread::set_thread_status(thread_object,
3355                                       java_lang_Thread::RUNNABLE);
3356 
3357   // The VM preresolves methods to these classes. Make sure that they get initialized
3358   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3359   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3360   call_initializeSystemClass(CHECK);
3361 
3362   // get the Java runtime name after java.lang.System is initialized
3363   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3364   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3365 
3366   // an instance of OutOfMemory exception has been allocated earlier
3367   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3368   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3369   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3370   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3371   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3372   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3373   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3374   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3375 }
3376 
3377 void Threads::initialize_jsr292_core_classes(TRAPS) {
3378   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3379   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3380   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3381 }
3382 
3383 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3384   extern void JDK_Version_init();
3385 
3386   // Preinitialize version info.
3387   VM_Version::early_initialize();
3388 
3389   // Check version
3390   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3391 
3392   // Initialize library-based TLS
3393   ThreadLocalStorage::init();
3394 
3395   // Initialize the output stream module
3396   ostream_init();
3397 
3398   // Process java launcher properties.
3399   Arguments::process_sun_java_launcher_properties(args);
3400 
3401   // Initialize the os module
3402   os::init();
3403 
3404   // Record VM creation timing statistics
3405   TraceVmCreationTime create_vm_timer;
3406   create_vm_timer.start();
3407 
3408   // Initialize system properties.
3409   Arguments::init_system_properties();
3410 
3411   // So that JDK version can be used as a discriminator when parsing arguments
3412   JDK_Version_init();
3413 
3414   // Update/Initialize System properties after JDK version number is known
3415   Arguments::init_version_specific_system_properties();
3416 
3417   // Make sure to initialize log configuration *before* parsing arguments
3418   LogConfiguration::initialize(create_vm_timer.begin_time());
3419 
3420   // Parse arguments
3421   jint parse_result = Arguments::parse(args);
3422   if (parse_result != JNI_OK) return parse_result;
3423 
3424   os::init_before_ergo();
3425 
3426   jint ergo_result = Arguments::apply_ergo();
3427   if (ergo_result != JNI_OK) return ergo_result;
3428 
3429   // Final check of all ranges after ergonomics which may change values.
3430   if (!CommandLineFlagRangeList::check_ranges()) {
3431     return JNI_EINVAL;
3432   }
3433 
3434   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3435   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3436   if (!constraint_result) {
3437     return JNI_EINVAL;
3438   }
3439 
3440   if (PauseAtStartup) {
3441     os::pause();
3442   }
3443 
3444   HOTSPOT_VM_INIT_BEGIN();
3445 
3446   // Timing (must come after argument parsing)
3447   TraceTime timer("Create VM",
3448                   log_is_enabled(Info, startuptime),
3449                   LogTag::_startuptime);
3450 
3451   // Initialize the os module after parsing the args
3452   jint os_init_2_result = os::init_2();
3453   if (os_init_2_result != JNI_OK) return os_init_2_result;
3454 
3455   jint adjust_after_os_result = Arguments::adjust_after_os();
3456   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3457 
3458   // Initialize output stream logging
3459   ostream_init_log();
3460 
3461   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3462   // Must be before create_vm_init_agents()
3463   if (Arguments::init_libraries_at_startup()) {
3464     convert_vm_init_libraries_to_agents();
3465   }
3466 
3467   // Launch -agentlib/-agentpath and converted -Xrun agents
3468   if (Arguments::init_agents_at_startup()) {
3469     create_vm_init_agents();
3470   }
3471 
3472   // Initialize Threads state
3473   _thread_list = NULL;
3474   _number_of_threads = 0;
3475   _number_of_non_daemon_threads = 0;
3476 
3477   // Initialize global data structures and create system classes in heap
3478   vm_init_globals();
3479 
3480 #if INCLUDE_JVMCI
3481   if (JVMCICounterSize > 0) {
3482     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3483     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3484   } else {
3485     JavaThread::_jvmci_old_thread_counters = NULL;
3486   }
3487 #endif // INCLUDE_JVMCI
3488 
3489   // Attach the main thread to this os thread
3490   JavaThread* main_thread = new JavaThread();
3491   main_thread->set_thread_state(_thread_in_vm);
3492   main_thread->initialize_thread_current();
3493   // must do this before set_active_handles
3494   main_thread->record_stack_base_and_size();
3495   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3496 
3497   if (!main_thread->set_as_starting_thread()) {
3498     vm_shutdown_during_initialization(
3499                                       "Failed necessary internal allocation. Out of swap space");
3500     delete main_thread;
3501     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3502     return JNI_ENOMEM;
3503   }
3504 
3505   // Enable guard page *after* os::create_main_thread(), otherwise it would
3506   // crash Linux VM, see notes in os_linux.cpp.
3507   main_thread->create_stack_guard_pages();
3508 
3509   // Initialize Java-Level synchronization subsystem
3510   ObjectMonitor::Initialize();
3511 
3512   // Initialize global modules
3513   jint status = init_globals();
3514   if (status != JNI_OK) {
3515     delete main_thread;
3516     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3517     return status;
3518   }
3519 
3520   // Should be done after the heap is fully created
3521   main_thread->cache_global_variables();
3522 
3523   HandleMark hm;
3524 
3525   { MutexLocker mu(Threads_lock);
3526     Threads::add(main_thread);
3527   }
3528 
3529   // Any JVMTI raw monitors entered in onload will transition into
3530   // real raw monitor. VM is setup enough here for raw monitor enter.
3531   JvmtiExport::transition_pending_onload_raw_monitors();
3532 
3533   // Create the VMThread
3534   { TraceTime timer("Start VMThread",
3535                     log_is_enabled(Info, startuptime),
3536                     LogTag::_startuptime);
3537 
3538   VMThread::create();
3539     Thread* vmthread = VMThread::vm_thread();
3540 
3541     if (!os::create_thread(vmthread, os::vm_thread)) {
3542       vm_exit_during_initialization("Cannot create VM thread. "
3543                                     "Out of system resources.");
3544     }
3545 
3546     // Wait for the VM thread to become ready, and VMThread::run to initialize
3547     // Monitors can have spurious returns, must always check another state flag
3548     {
3549       MutexLocker ml(Notify_lock);
3550       os::start_thread(vmthread);
3551       while (vmthread->active_handles() == NULL) {
3552         Notify_lock->wait();
3553       }
3554     }
3555   }
3556 
3557   assert(Universe::is_fully_initialized(), "not initialized");
3558   if (VerifyDuringStartup) {
3559     // Make sure we're starting with a clean slate.
3560     VM_Verify verify_op;
3561     VMThread::execute(&verify_op);
3562   }
3563 
3564   Thread* THREAD = Thread::current();
3565 
3566   // At this point, the Universe is initialized, but we have not executed
3567   // any byte code.  Now is a good time (the only time) to dump out the
3568   // internal state of the JVM for sharing.
3569   if (DumpSharedSpaces) {
3570     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3571     ShouldNotReachHere();
3572   }
3573 
3574   // Always call even when there are not JVMTI environments yet, since environments
3575   // may be attached late and JVMTI must track phases of VM execution
3576   JvmtiExport::enter_start_phase();
3577 
3578   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3579   JvmtiExport::post_vm_start();
3580 
3581   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3582 
3583   // We need this for ClassDataSharing - the initial vm.info property is set
3584   // with the default value of CDS "sharing" which may be reset through
3585   // command line options.
3586   reset_vm_info_property(CHECK_JNI_ERR);
3587 
3588   quicken_jni_functions();
3589 
3590   // Must be run after init_ft which initializes ft_enabled
3591   if (TRACE_INITIALIZE() != JNI_OK) {
3592     vm_exit_during_initialization("Failed to initialize tracing backend");
3593   }
3594 
3595   // Set flag that basic initialization has completed. Used by exceptions and various
3596   // debug stuff, that does not work until all basic classes have been initialized.
3597   set_init_completed();
3598 
3599   LogConfiguration::post_initialize();
3600   Metaspace::post_initialize();
3601 
3602   HOTSPOT_VM_INIT_END();
3603 
3604   // record VM initialization completion time
3605 #if INCLUDE_MANAGEMENT
3606   Management::record_vm_init_completed();
3607 #endif // INCLUDE_MANAGEMENT
3608 
3609   // Compute system loader. Note that this has to occur after set_init_completed, since
3610   // valid exceptions may be thrown in the process.
3611   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3612   // set_init_completed has just been called, causing exceptions not to be shortcut
3613   // anymore. We call vm_exit_during_initialization directly instead.
3614   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3615 
3616 #if INCLUDE_ALL_GCS
3617   // Support for ConcurrentMarkSweep. This should be cleaned up
3618   // and better encapsulated. The ugly nested if test would go away
3619   // once things are properly refactored. XXX YSR
3620   if (UseConcMarkSweepGC || UseG1GC) {
3621     if (UseConcMarkSweepGC) {
3622       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3623     } else {
3624       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3625     }
3626   }
3627 #endif // INCLUDE_ALL_GCS
3628 
3629   // Always call even when there are not JVMTI environments yet, since environments
3630   // may be attached late and JVMTI must track phases of VM execution
3631   JvmtiExport::enter_live_phase();
3632 
3633   // Signal Dispatcher needs to be started before VMInit event is posted
3634   os::signal_init();
3635 
3636   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3637   if (!DisableAttachMechanism) {
3638     AttachListener::vm_start();
3639     if (StartAttachListener || AttachListener::init_at_startup()) {
3640       AttachListener::init();
3641     }
3642   }
3643 
3644   // Launch -Xrun agents
3645   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3646   // back-end can launch with -Xdebug -Xrunjdwp.
3647   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3648     create_vm_init_libraries();
3649   }
3650 
3651   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3652   JvmtiExport::post_vm_initialized();
3653 
3654   if (TRACE_START() != JNI_OK) {
3655     vm_exit_during_initialization("Failed to start tracing backend.");
3656   }
3657 
3658   if (CleanChunkPoolAsync) {
3659     Chunk::start_chunk_pool_cleaner_task();
3660   }
3661 
3662 #if INCLUDE_JVMCI
3663   if (EnableJVMCI) {
3664     const char* jvmciCompiler = Arguments::PropertyList_get_value(Arguments::system_properties(), "jvmci.compiler");
3665     if (jvmciCompiler != NULL) {
3666       JVMCIRuntime::save_compiler(jvmciCompiler);
3667     }
3668   }
3669 #endif // INCLUDE_JVMCI
3670 
3671   // initialize compiler(s)
3672 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3673   CompileBroker::compilation_init(CHECK_JNI_ERR);
3674 #endif
3675 
3676   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3677   // It is done after compilers are initialized, because otherwise compilations of
3678   // signature polymorphic MH intrinsics can be missed
3679   // (see SystemDictionary::find_method_handle_intrinsic).
3680   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3681 
3682 #if INCLUDE_MANAGEMENT
3683   Management::initialize(THREAD);
3684 
3685   if (HAS_PENDING_EXCEPTION) {
3686     // management agent fails to start possibly due to
3687     // configuration problem and is responsible for printing
3688     // stack trace if appropriate. Simply exit VM.
3689     vm_exit(1);
3690   }
3691 #endif // INCLUDE_MANAGEMENT
3692 
3693   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3694   if (MemProfiling)                   MemProfiler::engage();
3695   StatSampler::engage();
3696   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3697 
3698   BiasedLocking::init();
3699 
3700 #if INCLUDE_RTM_OPT
3701   RTMLockingCounters::init();
3702 #endif
3703 
3704   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3705     call_postVMInitHook(THREAD);
3706     // The Java side of PostVMInitHook.run must deal with all
3707     // exceptions and provide means of diagnosis.
3708     if (HAS_PENDING_EXCEPTION) {
3709       CLEAR_PENDING_EXCEPTION;
3710     }
3711   }
3712 
3713   {
3714     MutexLocker ml(PeriodicTask_lock);
3715     // Make sure the WatcherThread can be started by WatcherThread::start()
3716     // or by dynamic enrollment.
3717     WatcherThread::make_startable();
3718     // Start up the WatcherThread if there are any periodic tasks
3719     // NOTE:  All PeriodicTasks should be registered by now. If they
3720     //   aren't, late joiners might appear to start slowly (we might
3721     //   take a while to process their first tick).
3722     if (PeriodicTask::num_tasks() > 0) {
3723       WatcherThread::start();
3724     }
3725   }
3726 
3727   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3728 
3729   create_vm_timer.end();
3730 #ifdef ASSERT
3731   _vm_complete = true;
3732 #endif
3733   return JNI_OK;
3734 }
3735 
3736 // type for the Agent_OnLoad and JVM_OnLoad entry points
3737 extern "C" {
3738   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3739 }
3740 // Find a command line agent library and return its entry point for
3741 //         -agentlib:  -agentpath:   -Xrun
3742 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3743 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3744                                     const char *on_load_symbols[],
3745                                     size_t num_symbol_entries) {
3746   OnLoadEntry_t on_load_entry = NULL;
3747   void *library = NULL;
3748 
3749   if (!agent->valid()) {
3750     char buffer[JVM_MAXPATHLEN];
3751     char ebuf[1024] = "";
3752     const char *name = agent->name();
3753     const char *msg = "Could not find agent library ";
3754 
3755     // First check to see if agent is statically linked into executable
3756     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3757       library = agent->os_lib();
3758     } else if (agent->is_absolute_path()) {
3759       library = os::dll_load(name, ebuf, sizeof ebuf);
3760       if (library == NULL) {
3761         const char *sub_msg = " in absolute path, with error: ";
3762         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3763         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3764         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3765         // If we can't find the agent, exit.
3766         vm_exit_during_initialization(buf, NULL);
3767         FREE_C_HEAP_ARRAY(char, buf);
3768       }
3769     } else {
3770       // Try to load the agent from the standard dll directory
3771       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3772                              name)) {
3773         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3774       }
3775       if (library == NULL) { // Try the local directory
3776         char ns[1] = {0};
3777         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3778           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3779         }
3780         if (library == NULL) {
3781           const char *sub_msg = " on the library path, with error: ";
3782           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3783           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3784           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3785           // If we can't find the agent, exit.
3786           vm_exit_during_initialization(buf, NULL);
3787           FREE_C_HEAP_ARRAY(char, buf);
3788         }
3789       }
3790     }
3791     agent->set_os_lib(library);
3792     agent->set_valid();
3793   }
3794 
3795   // Find the OnLoad function.
3796   on_load_entry =
3797     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3798                                                           false,
3799                                                           on_load_symbols,
3800                                                           num_symbol_entries));
3801   return on_load_entry;
3802 }
3803 
3804 // Find the JVM_OnLoad entry point
3805 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3806   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3807   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3808 }
3809 
3810 // Find the Agent_OnLoad entry point
3811 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3812   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3813   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3814 }
3815 
3816 // For backwards compatibility with -Xrun
3817 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3818 // treated like -agentpath:
3819 // Must be called before agent libraries are created
3820 void Threads::convert_vm_init_libraries_to_agents() {
3821   AgentLibrary* agent;
3822   AgentLibrary* next;
3823 
3824   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3825     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3826     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3827 
3828     // If there is an JVM_OnLoad function it will get called later,
3829     // otherwise see if there is an Agent_OnLoad
3830     if (on_load_entry == NULL) {
3831       on_load_entry = lookup_agent_on_load(agent);
3832       if (on_load_entry != NULL) {
3833         // switch it to the agent list -- so that Agent_OnLoad will be called,
3834         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3835         Arguments::convert_library_to_agent(agent);
3836       } else {
3837         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3838       }
3839     }
3840   }
3841 }
3842 
3843 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3844 // Invokes Agent_OnLoad
3845 // Called very early -- before JavaThreads exist
3846 void Threads::create_vm_init_agents() {
3847   extern struct JavaVM_ main_vm;
3848   AgentLibrary* agent;
3849 
3850   JvmtiExport::enter_onload_phase();
3851 
3852   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3853     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3854 
3855     if (on_load_entry != NULL) {
3856       // Invoke the Agent_OnLoad function
3857       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3858       if (err != JNI_OK) {
3859         vm_exit_during_initialization("agent library failed to init", agent->name());
3860       }
3861     } else {
3862       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3863     }
3864   }
3865   JvmtiExport::enter_primordial_phase();
3866 }
3867 
3868 extern "C" {
3869   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3870 }
3871 
3872 void Threads::shutdown_vm_agents() {
3873   // Send any Agent_OnUnload notifications
3874   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3875   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3876   extern struct JavaVM_ main_vm;
3877   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3878 
3879     // Find the Agent_OnUnload function.
3880     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3881                                                    os::find_agent_function(agent,
3882                                                    false,
3883                                                    on_unload_symbols,
3884                                                    num_symbol_entries));
3885 
3886     // Invoke the Agent_OnUnload function
3887     if (unload_entry != NULL) {
3888       JavaThread* thread = JavaThread::current();
3889       ThreadToNativeFromVM ttn(thread);
3890       HandleMark hm(thread);
3891       (*unload_entry)(&main_vm);
3892     }
3893   }
3894 }
3895 
3896 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3897 // Invokes JVM_OnLoad
3898 void Threads::create_vm_init_libraries() {
3899   extern struct JavaVM_ main_vm;
3900   AgentLibrary* agent;
3901 
3902   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3903     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3904 
3905     if (on_load_entry != NULL) {
3906       // Invoke the JVM_OnLoad function
3907       JavaThread* thread = JavaThread::current();
3908       ThreadToNativeFromVM ttn(thread);
3909       HandleMark hm(thread);
3910       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3911       if (err != JNI_OK) {
3912         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3913       }
3914     } else {
3915       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3916     }
3917   }
3918 }
3919 
3920 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3921   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3922 
3923   JavaThread* java_thread = NULL;
3924   // Sequential search for now.  Need to do better optimization later.
3925   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3926     oop tobj = thread->threadObj();
3927     if (!thread->is_exiting() &&
3928         tobj != NULL &&
3929         java_tid == java_lang_Thread::thread_id(tobj)) {
3930       java_thread = thread;
3931       break;
3932     }
3933   }
3934   return java_thread;
3935 }
3936 
3937 
3938 // Last thread running calls java.lang.Shutdown.shutdown()
3939 void JavaThread::invoke_shutdown_hooks() {
3940   HandleMark hm(this);
3941 
3942   // We could get here with a pending exception, if so clear it now.
3943   if (this->has_pending_exception()) {
3944     this->clear_pending_exception();
3945   }
3946 
3947   EXCEPTION_MARK;
3948   Klass* k =
3949     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3950                                       THREAD);
3951   if (k != NULL) {
3952     // SystemDictionary::resolve_or_null will return null if there was
3953     // an exception.  If we cannot load the Shutdown class, just don't
3954     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3955     // and finalizers (if runFinalizersOnExit is set) won't be run.
3956     // Note that if a shutdown hook was registered or runFinalizersOnExit
3957     // was called, the Shutdown class would have already been loaded
3958     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3959     instanceKlassHandle shutdown_klass (THREAD, k);
3960     JavaValue result(T_VOID);
3961     JavaCalls::call_static(&result,
3962                            shutdown_klass,
3963                            vmSymbols::shutdown_method_name(),
3964                            vmSymbols::void_method_signature(),
3965                            THREAD);
3966   }
3967   CLEAR_PENDING_EXCEPTION;
3968 }
3969 
3970 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3971 // the program falls off the end of main(). Another VM exit path is through
3972 // vm_exit() when the program calls System.exit() to return a value or when
3973 // there is a serious error in VM. The two shutdown paths are not exactly
3974 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3975 // and VM_Exit op at VM level.
3976 //
3977 // Shutdown sequence:
3978 //   + Shutdown native memory tracking if it is on
3979 //   + Wait until we are the last non-daemon thread to execute
3980 //     <-- every thing is still working at this moment -->
3981 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3982 //        shutdown hooks, run finalizers if finalization-on-exit
3983 //   + Call before_exit(), prepare for VM exit
3984 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3985 //        currently the only user of this mechanism is File.deleteOnExit())
3986 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3987 //        post thread end and vm death events to JVMTI,
3988 //        stop signal thread
3989 //   + Call JavaThread::exit(), it will:
3990 //      > release JNI handle blocks, remove stack guard pages
3991 //      > remove this thread from Threads list
3992 //     <-- no more Java code from this thread after this point -->
3993 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3994 //     the compiler threads at safepoint
3995 //     <-- do not use anything that could get blocked by Safepoint -->
3996 //   + Disable tracing at JNI/JVM barriers
3997 //   + Set _vm_exited flag for threads that are still running native code
3998 //   + Delete this thread
3999 //   + Call exit_globals()
4000 //      > deletes tty
4001 //      > deletes PerfMemory resources
4002 //   + Return to caller
4003 
4004 bool Threads::destroy_vm() {
4005   JavaThread* thread = JavaThread::current();
4006 
4007 #ifdef ASSERT
4008   _vm_complete = false;
4009 #endif
4010   // Wait until we are the last non-daemon thread to execute
4011   { MutexLocker nu(Threads_lock);
4012     while (Threads::number_of_non_daemon_threads() > 1)
4013       // This wait should make safepoint checks, wait without a timeout,
4014       // and wait as a suspend-equivalent condition.
4015       //
4016       // Note: If the FlatProfiler is running and this thread is waiting
4017       // for another non-daemon thread to finish, then the FlatProfiler
4018       // is waiting for the external suspend request on this thread to
4019       // complete. wait_for_ext_suspend_completion() will eventually
4020       // timeout, but that takes time. Making this wait a suspend-
4021       // equivalent condition solves that timeout problem.
4022       //
4023       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4024                          Mutex::_as_suspend_equivalent_flag);
4025   }
4026 
4027   // Hang forever on exit if we are reporting an error.
4028   if (ShowMessageBoxOnError && is_error_reported()) {
4029     os::infinite_sleep();
4030   }
4031   os::wait_for_keypress_at_exit();
4032 
4033   // run Java level shutdown hooks
4034   thread->invoke_shutdown_hooks();
4035 
4036   before_exit(thread);
4037 
4038   thread->exit(true);
4039 
4040   // Stop VM thread.
4041   {
4042     // 4945125 The vm thread comes to a safepoint during exit.
4043     // GC vm_operations can get caught at the safepoint, and the
4044     // heap is unparseable if they are caught. Grab the Heap_lock
4045     // to prevent this. The GC vm_operations will not be able to
4046     // queue until after the vm thread is dead. After this point,
4047     // we'll never emerge out of the safepoint before the VM exits.
4048 
4049     MutexLocker ml(Heap_lock);
4050 
4051     VMThread::wait_for_vm_thread_exit();
4052     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4053     VMThread::destroy();
4054   }
4055 
4056   // clean up ideal graph printers
4057 #if defined(COMPILER2) && !defined(PRODUCT)
4058   IdealGraphPrinter::clean_up();
4059 #endif
4060 
4061   // Now, all Java threads are gone except daemon threads. Daemon threads
4062   // running Java code or in VM are stopped by the Safepoint. However,
4063   // daemon threads executing native code are still running.  But they
4064   // will be stopped at native=>Java/VM barriers. Note that we can't
4065   // simply kill or suspend them, as it is inherently deadlock-prone.
4066 
4067   VM_Exit::set_vm_exited();
4068 
4069   notify_vm_shutdown();
4070 
4071   delete thread;
4072 
4073 #if INCLUDE_JVMCI
4074   if (JVMCICounterSize > 0) {
4075     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4076   }
4077 #endif
4078 
4079   // exit_globals() will delete tty
4080   exit_globals();
4081 
4082   LogConfiguration::finalize();
4083 
4084   return true;
4085 }
4086 
4087 
4088 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4089   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4090   return is_supported_jni_version(version);
4091 }
4092 
4093 
4094 jboolean Threads::is_supported_jni_version(jint version) {
4095   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4096   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4097   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4098   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4099   return JNI_FALSE;
4100 }
4101 
4102 
4103 void Threads::add(JavaThread* p, bool force_daemon) {
4104   // The threads lock must be owned at this point
4105   assert_locked_or_safepoint(Threads_lock);
4106 
4107   // See the comment for this method in thread.hpp for its purpose and
4108   // why it is called here.
4109   p->initialize_queues();
4110   p->set_next(_thread_list);
4111   _thread_list = p;
4112   _number_of_threads++;
4113   oop threadObj = p->threadObj();
4114   bool daemon = true;
4115   // Bootstrapping problem: threadObj can be null for initial
4116   // JavaThread (or for threads attached via JNI)
4117   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4118     _number_of_non_daemon_threads++;
4119     daemon = false;
4120   }
4121 
4122   ThreadService::add_thread(p, daemon);
4123 
4124   // Possible GC point.
4125   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4126 }
4127 
4128 void Threads::remove(JavaThread* p) {
4129   // Extra scope needed for Thread_lock, so we can check
4130   // that we do not remove thread without safepoint code notice
4131   { MutexLocker ml(Threads_lock);
4132 
4133     assert(includes(p), "p must be present");
4134 
4135     JavaThread* current = _thread_list;
4136     JavaThread* prev    = NULL;
4137 
4138     while (current != p) {
4139       prev    = current;
4140       current = current->next();
4141     }
4142 
4143     if (prev) {
4144       prev->set_next(current->next());
4145     } else {
4146       _thread_list = p->next();
4147     }
4148     _number_of_threads--;
4149     oop threadObj = p->threadObj();
4150     bool daemon = true;
4151     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4152       _number_of_non_daemon_threads--;
4153       daemon = false;
4154 
4155       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4156       // on destroy_vm will wake up.
4157       if (number_of_non_daemon_threads() == 1) {
4158         Threads_lock->notify_all();
4159       }
4160     }
4161     ThreadService::remove_thread(p, daemon);
4162 
4163     // Make sure that safepoint code disregard this thread. This is needed since
4164     // the thread might mess around with locks after this point. This can cause it
4165     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4166     // of this thread since it is removed from the queue.
4167     p->set_terminated_value();
4168   } // unlock Threads_lock
4169 
4170   // Since Events::log uses a lock, we grab it outside the Threads_lock
4171   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4172 }
4173 
4174 // Threads_lock must be held when this is called (or must be called during a safepoint)
4175 bool Threads::includes(JavaThread* p) {
4176   assert(Threads_lock->is_locked(), "sanity check");
4177   ALL_JAVA_THREADS(q) {
4178     if (q == p) {
4179       return true;
4180     }
4181   }
4182   return false;
4183 }
4184 
4185 // Operations on the Threads list for GC.  These are not explicitly locked,
4186 // but the garbage collector must provide a safe context for them to run.
4187 // In particular, these things should never be called when the Threads_lock
4188 // is held by some other thread. (Note: the Safepoint abstraction also
4189 // uses the Threads_lock to guarantee this property. It also makes sure that
4190 // all threads gets blocked when exiting or starting).
4191 
4192 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4193   ALL_JAVA_THREADS(p) {
4194     p->oops_do(f, cld_f, cf);
4195   }
4196   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4197 }
4198 
4199 void Threads::change_thread_claim_parity() {
4200   // Set the new claim parity.
4201   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4202          "Not in range.");
4203   _thread_claim_parity++;
4204   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4205   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4206          "Not in range.");
4207 }
4208 
4209 #ifdef ASSERT
4210 void Threads::assert_all_threads_claimed() {
4211   ALL_JAVA_THREADS(p) {
4212     const int thread_parity = p->oops_do_parity();
4213     assert((thread_parity == _thread_claim_parity),
4214            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4215   }
4216 }
4217 #endif // ASSERT
4218 
4219 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4220   int cp = Threads::thread_claim_parity();
4221   ALL_JAVA_THREADS(p) {
4222     if (p->claim_oops_do(is_par, cp)) {
4223       p->oops_do(f, cld_f, cf);
4224     }
4225   }
4226   VMThread* vmt = VMThread::vm_thread();
4227   if (vmt->claim_oops_do(is_par, cp)) {
4228     vmt->oops_do(f, cld_f, cf);
4229   }
4230 }
4231 
4232 #if INCLUDE_ALL_GCS
4233 // Used by ParallelScavenge
4234 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4235   ALL_JAVA_THREADS(p) {
4236     q->enqueue(new ThreadRootsTask(p));
4237   }
4238   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4239 }
4240 
4241 // Used by Parallel Old
4242 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4243   ALL_JAVA_THREADS(p) {
4244     q->enqueue(new ThreadRootsMarkingTask(p));
4245   }
4246   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4247 }
4248 #endif // INCLUDE_ALL_GCS
4249 
4250 void Threads::nmethods_do(CodeBlobClosure* cf) {
4251   ALL_JAVA_THREADS(p) {
4252     p->nmethods_do(cf);
4253   }
4254   VMThread::vm_thread()->nmethods_do(cf);
4255 }
4256 
4257 void Threads::metadata_do(void f(Metadata*)) {
4258   ALL_JAVA_THREADS(p) {
4259     p->metadata_do(f);
4260   }
4261 }
4262 
4263 class ThreadHandlesClosure : public ThreadClosure {
4264   void (*_f)(Metadata*);
4265  public:
4266   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4267   virtual void do_thread(Thread* thread) {
4268     thread->metadata_handles_do(_f);
4269   }
4270 };
4271 
4272 void Threads::metadata_handles_do(void f(Metadata*)) {
4273   // Only walk the Handles in Thread.
4274   ThreadHandlesClosure handles_closure(f);
4275   threads_do(&handles_closure);
4276 }
4277 
4278 void Threads::deoptimized_wrt_marked_nmethods() {
4279   ALL_JAVA_THREADS(p) {
4280     p->deoptimized_wrt_marked_nmethods();
4281   }
4282 }
4283 
4284 
4285 // Get count Java threads that are waiting to enter the specified monitor.
4286 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4287                                                          address monitor,
4288                                                          bool doLock) {
4289   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4290          "must grab Threads_lock or be at safepoint");
4291   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4292 
4293   int i = 0;
4294   {
4295     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4296     ALL_JAVA_THREADS(p) {
4297       if (!p->can_call_java()) continue;
4298 
4299       address pending = (address)p->current_pending_monitor();
4300       if (pending == monitor) {             // found a match
4301         if (i < count) result->append(p);   // save the first count matches
4302         i++;
4303       }
4304     }
4305   }
4306   return result;
4307 }
4308 
4309 
4310 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4311                                                       bool doLock) {
4312   assert(doLock ||
4313          Threads_lock->owned_by_self() ||
4314          SafepointSynchronize::is_at_safepoint(),
4315          "must grab Threads_lock or be at safepoint");
4316 
4317   // NULL owner means not locked so we can skip the search
4318   if (owner == NULL) return NULL;
4319 
4320   {
4321     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4322     ALL_JAVA_THREADS(p) {
4323       // first, see if owner is the address of a Java thread
4324       if (owner == (address)p) return p;
4325     }
4326   }
4327   // Cannot assert on lack of success here since this function may be
4328   // used by code that is trying to report useful problem information
4329   // like deadlock detection.
4330   if (UseHeavyMonitors) return NULL;
4331 
4332   // If we didn't find a matching Java thread and we didn't force use of
4333   // heavyweight monitors, then the owner is the stack address of the
4334   // Lock Word in the owning Java thread's stack.
4335   //
4336   JavaThread* the_owner = NULL;
4337   {
4338     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4339     ALL_JAVA_THREADS(q) {
4340       if (q->is_lock_owned(owner)) {
4341         the_owner = q;
4342         break;
4343       }
4344     }
4345   }
4346   // cannot assert on lack of success here; see above comment
4347   return the_owner;
4348 }
4349 
4350 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4351 void Threads::print_on(outputStream* st, bool print_stacks,
4352                        bool internal_format, bool print_concurrent_locks) {
4353   char buf[32];
4354   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4355 
4356   st->print_cr("Full thread dump %s (%s %s):",
4357                Abstract_VM_Version::vm_name(),
4358                Abstract_VM_Version::vm_release(),
4359                Abstract_VM_Version::vm_info_string());
4360   st->cr();
4361 
4362 #if INCLUDE_SERVICES
4363   // Dump concurrent locks
4364   ConcurrentLocksDump concurrent_locks;
4365   if (print_concurrent_locks) {
4366     concurrent_locks.dump_at_safepoint();
4367   }
4368 #endif // INCLUDE_SERVICES
4369 
4370   ALL_JAVA_THREADS(p) {
4371     ResourceMark rm;
4372     p->print_on(st);
4373     if (print_stacks) {
4374       if (internal_format) {
4375         p->trace_stack();
4376       } else {
4377         p->print_stack_on(st);
4378       }
4379     }
4380     st->cr();
4381 #if INCLUDE_SERVICES
4382     if (print_concurrent_locks) {
4383       concurrent_locks.print_locks_on(p, st);
4384     }
4385 #endif // INCLUDE_SERVICES
4386   }
4387 
4388   VMThread::vm_thread()->print_on(st);
4389   st->cr();
4390   Universe::heap()->print_gc_threads_on(st);
4391   WatcherThread* wt = WatcherThread::watcher_thread();
4392   if (wt != NULL) {
4393     wt->print_on(st);
4394     st->cr();
4395   }
4396   CompileBroker::print_compiler_threads_on(st);
4397   st->flush();
4398 }
4399 
4400 // Threads::print_on_error() is called by fatal error handler. It's possible
4401 // that VM is not at safepoint and/or current thread is inside signal handler.
4402 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4403 // memory (even in resource area), it might deadlock the error handler.
4404 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4405                              int buflen) {
4406   bool found_current = false;
4407   st->print_cr("Java Threads: ( => current thread )");
4408   ALL_JAVA_THREADS(thread) {
4409     bool is_current = (current == thread);
4410     found_current = found_current || is_current;
4411 
4412     st->print("%s", is_current ? "=>" : "  ");
4413 
4414     st->print(PTR_FORMAT, p2i(thread));
4415     st->print(" ");
4416     thread->print_on_error(st, buf, buflen);
4417     st->cr();
4418   }
4419   st->cr();
4420 
4421   st->print_cr("Other Threads:");
4422   if (VMThread::vm_thread()) {
4423     bool is_current = (current == VMThread::vm_thread());
4424     found_current = found_current || is_current;
4425     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4426 
4427     st->print(PTR_FORMAT, p2i(VMThread::vm_thread()));
4428     st->print(" ");
4429     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4430     st->cr();
4431   }
4432   WatcherThread* wt = WatcherThread::watcher_thread();
4433   if (wt != NULL) {
4434     bool is_current = (current == wt);
4435     found_current = found_current || is_current;
4436     st->print("%s", is_current ? "=>" : "  ");
4437 
4438     st->print(PTR_FORMAT, p2i(wt));
4439     st->print(" ");
4440     wt->print_on_error(st, buf, buflen);
4441     st->cr();
4442   }
4443   if (!found_current) {
4444     st->cr();
4445     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4446     current->print_on_error(st, buf, buflen);
4447     st->cr();
4448   }
4449 }
4450 
4451 // Internal SpinLock and Mutex
4452 // Based on ParkEvent
4453 
4454 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4455 //
4456 // We employ SpinLocks _only for low-contention, fixed-length
4457 // short-duration critical sections where we're concerned
4458 // about native mutex_t or HotSpot Mutex:: latency.
4459 // The mux construct provides a spin-then-block mutual exclusion
4460 // mechanism.
4461 //
4462 // Testing has shown that contention on the ListLock guarding gFreeList
4463 // is common.  If we implement ListLock as a simple SpinLock it's common
4464 // for the JVM to devolve to yielding with little progress.  This is true
4465 // despite the fact that the critical sections protected by ListLock are
4466 // extremely short.
4467 //
4468 // TODO-FIXME: ListLock should be of type SpinLock.
4469 // We should make this a 1st-class type, integrated into the lock
4470 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4471 // should have sufficient padding to avoid false-sharing and excessive
4472 // cache-coherency traffic.
4473 
4474 
4475 typedef volatile int SpinLockT;
4476 
4477 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4478   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4479     return;   // normal fast-path return
4480   }
4481 
4482   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4483   TEVENT(SpinAcquire - ctx);
4484   int ctr = 0;
4485   int Yields = 0;
4486   for (;;) {
4487     while (*adr != 0) {
4488       ++ctr;
4489       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4490         if (Yields > 5) {
4491           os::naked_short_sleep(1);
4492         } else {
4493           os::naked_yield();
4494           ++Yields;
4495         }
4496       } else {
4497         SpinPause();
4498       }
4499     }
4500     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4501   }
4502 }
4503 
4504 void Thread::SpinRelease(volatile int * adr) {
4505   assert(*adr != 0, "invariant");
4506   OrderAccess::fence();      // guarantee at least release consistency.
4507   // Roach-motel semantics.
4508   // It's safe if subsequent LDs and STs float "up" into the critical section,
4509   // but prior LDs and STs within the critical section can't be allowed
4510   // to reorder or float past the ST that releases the lock.
4511   // Loads and stores in the critical section - which appear in program
4512   // order before the store that releases the lock - must also appear
4513   // before the store that releases the lock in memory visibility order.
4514   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4515   // the ST of 0 into the lock-word which releases the lock, so fence
4516   // more than covers this on all platforms.
4517   *adr = 0;
4518 }
4519 
4520 // muxAcquire and muxRelease:
4521 //
4522 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4523 //    The LSB of the word is set IFF the lock is held.
4524 //    The remainder of the word points to the head of a singly-linked list
4525 //    of threads blocked on the lock.
4526 //
4527 // *  The current implementation of muxAcquire-muxRelease uses its own
4528 //    dedicated Thread._MuxEvent instance.  If we're interested in
4529 //    minimizing the peak number of extant ParkEvent instances then
4530 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4531 //    as certain invariants were satisfied.  Specifically, care would need
4532 //    to be taken with regards to consuming unpark() "permits".
4533 //    A safe rule of thumb is that a thread would never call muxAcquire()
4534 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4535 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4536 //    consume an unpark() permit intended for monitorenter, for instance.
4537 //    One way around this would be to widen the restricted-range semaphore
4538 //    implemented in park().  Another alternative would be to provide
4539 //    multiple instances of the PlatformEvent() for each thread.  One
4540 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4541 //
4542 // *  Usage:
4543 //    -- Only as leaf locks
4544 //    -- for short-term locking only as muxAcquire does not perform
4545 //       thread state transitions.
4546 //
4547 // Alternatives:
4548 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4549 //    but with parking or spin-then-park instead of pure spinning.
4550 // *  Use Taura-Oyama-Yonenzawa locks.
4551 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4552 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4553 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4554 //    acquiring threads use timers (ParkTimed) to detect and recover from
4555 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4556 //    boundaries by using placement-new.
4557 // *  Augment MCS with advisory back-link fields maintained with CAS().
4558 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4559 //    The validity of the backlinks must be ratified before we trust the value.
4560 //    If the backlinks are invalid the exiting thread must back-track through the
4561 //    the forward links, which are always trustworthy.
4562 // *  Add a successor indication.  The LockWord is currently encoded as
4563 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4564 //    to provide the usual futile-wakeup optimization.
4565 //    See RTStt for details.
4566 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4567 //
4568 
4569 
4570 typedef volatile intptr_t MutexT;      // Mux Lock-word
4571 enum MuxBits { LOCKBIT = 1 };
4572 
4573 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4574   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4575   if (w == 0) return;
4576   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4577     return;
4578   }
4579 
4580   TEVENT(muxAcquire - Contention);
4581   ParkEvent * const Self = Thread::current()->_MuxEvent;
4582   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4583   for (;;) {
4584     int its = (os::is_MP() ? 100 : 0) + 1;
4585 
4586     // Optional spin phase: spin-then-park strategy
4587     while (--its >= 0) {
4588       w = *Lock;
4589       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4590         return;
4591       }
4592     }
4593 
4594     Self->reset();
4595     Self->OnList = intptr_t(Lock);
4596     // The following fence() isn't _strictly necessary as the subsequent
4597     // CAS() both serializes execution and ratifies the fetched *Lock value.
4598     OrderAccess::fence();
4599     for (;;) {
4600       w = *Lock;
4601       if ((w & LOCKBIT) == 0) {
4602         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4603           Self->OnList = 0;   // hygiene - allows stronger asserts
4604           return;
4605         }
4606         continue;      // Interference -- *Lock changed -- Just retry
4607       }
4608       assert(w & LOCKBIT, "invariant");
4609       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4610       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4611     }
4612 
4613     while (Self->OnList != 0) {
4614       Self->park();
4615     }
4616   }
4617 }
4618 
4619 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4620   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4621   if (w == 0) return;
4622   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4623     return;
4624   }
4625 
4626   TEVENT(muxAcquire - Contention);
4627   ParkEvent * ReleaseAfter = NULL;
4628   if (ev == NULL) {
4629     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4630   }
4631   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4632   for (;;) {
4633     guarantee(ev->OnList == 0, "invariant");
4634     int its = (os::is_MP() ? 100 : 0) + 1;
4635 
4636     // Optional spin phase: spin-then-park strategy
4637     while (--its >= 0) {
4638       w = *Lock;
4639       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4640         if (ReleaseAfter != NULL) {
4641           ParkEvent::Release(ReleaseAfter);
4642         }
4643         return;
4644       }
4645     }
4646 
4647     ev->reset();
4648     ev->OnList = intptr_t(Lock);
4649     // The following fence() isn't _strictly necessary as the subsequent
4650     // CAS() both serializes execution and ratifies the fetched *Lock value.
4651     OrderAccess::fence();
4652     for (;;) {
4653       w = *Lock;
4654       if ((w & LOCKBIT) == 0) {
4655         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4656           ev->OnList = 0;
4657           // We call ::Release while holding the outer lock, thus
4658           // artificially lengthening the critical section.
4659           // Consider deferring the ::Release() until the subsequent unlock(),
4660           // after we've dropped the outer lock.
4661           if (ReleaseAfter != NULL) {
4662             ParkEvent::Release(ReleaseAfter);
4663           }
4664           return;
4665         }
4666         continue;      // Interference -- *Lock changed -- Just retry
4667       }
4668       assert(w & LOCKBIT, "invariant");
4669       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4670       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4671     }
4672 
4673     while (ev->OnList != 0) {
4674       ev->park();
4675     }
4676   }
4677 }
4678 
4679 // Release() must extract a successor from the list and then wake that thread.
4680 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4681 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4682 // Release() would :
4683 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4684 // (B) Extract a successor from the private list "in-hand"
4685 // (C) attempt to CAS() the residual back into *Lock over null.
4686 //     If there were any newly arrived threads and the CAS() would fail.
4687 //     In that case Release() would detach the RATs, re-merge the list in-hand
4688 //     with the RATs and repeat as needed.  Alternately, Release() might
4689 //     detach and extract a successor, but then pass the residual list to the wakee.
4690 //     The wakee would be responsible for reattaching and remerging before it
4691 //     competed for the lock.
4692 //
4693 // Both "pop" and DMR are immune from ABA corruption -- there can be
4694 // multiple concurrent pushers, but only one popper or detacher.
4695 // This implementation pops from the head of the list.  This is unfair,
4696 // but tends to provide excellent throughput as hot threads remain hot.
4697 // (We wake recently run threads first).
4698 //
4699 // All paths through muxRelease() will execute a CAS.
4700 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4701 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4702 // executed within the critical section are complete and globally visible before the
4703 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4704 void Thread::muxRelease(volatile intptr_t * Lock)  {
4705   for (;;) {
4706     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4707     assert(w & LOCKBIT, "invariant");
4708     if (w == LOCKBIT) return;
4709     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4710     assert(List != NULL, "invariant");
4711     assert(List->OnList == intptr_t(Lock), "invariant");
4712     ParkEvent * const nxt = List->ListNext;
4713     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4714 
4715     // The following CAS() releases the lock and pops the head element.
4716     // The CAS() also ratifies the previously fetched lock-word value.
4717     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4718       continue;
4719     }
4720     List->OnList = 0;
4721     OrderAccess::fence();
4722     List->unpark();
4723     return;
4724   }
4725 }
4726 
4727 
4728 void Threads::verify() {
4729   ALL_JAVA_THREADS(p) {
4730     p->verify();
4731   }
4732   VMThread* thread = VMThread::vm_thread();
4733   if (thread != NULL) thread->verify();
4734 }