1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "classfile/vmSymbols.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/codeCacheExtensions.hpp" 31 #include "compiler/compileBroker.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "gc/shared/collectedHeap.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "interpreter/interpreterRuntime.hpp" 36 #include "interpreter/linkResolver.hpp" 37 #include "interpreter/templateTable.hpp" 38 #include "logging/log.hpp" 39 #include "memory/oopFactory.hpp" 40 #include "memory/universe.inline.hpp" 41 #include "oops/constantPool.hpp" 42 #include "oops/instanceKlass.hpp" 43 #include "oops/methodData.hpp" 44 #include "oops/objArrayKlass.hpp" 45 #include "oops/objArrayOop.inline.hpp" 46 #include "oops/oop.inline.hpp" 47 #include "oops/symbol.hpp" 48 #include "prims/jvmtiExport.hpp" 49 #include "prims/nativeLookup.hpp" 50 #include "runtime/atomic.inline.hpp" 51 #include "runtime/biasedLocking.hpp" 52 #include "runtime/compilationPolicy.hpp" 53 #include "runtime/deoptimization.hpp" 54 #include "runtime/fieldDescriptor.hpp" 55 #include "runtime/handles.inline.hpp" 56 #include "runtime/icache.hpp" 57 #include "runtime/interfaceSupport.hpp" 58 #include "runtime/java.hpp" 59 #include "runtime/jfieldIDWorkaround.hpp" 60 #include "runtime/osThread.hpp" 61 #include "runtime/sharedRuntime.hpp" 62 #include "runtime/stubRoutines.hpp" 63 #include "runtime/synchronizer.hpp" 64 #include "runtime/threadCritical.hpp" 65 #include "utilities/events.hpp" 66 #ifdef COMPILER2 67 #include "opto/runtime.hpp" 68 #endif 69 70 class UnlockFlagSaver { 71 private: 72 JavaThread* _thread; 73 bool _do_not_unlock; 74 public: 75 UnlockFlagSaver(JavaThread* t) { 76 _thread = t; 77 _do_not_unlock = t->do_not_unlock_if_synchronized(); 78 t->set_do_not_unlock_if_synchronized(false); 79 } 80 ~UnlockFlagSaver() { 81 _thread->set_do_not_unlock_if_synchronized(_do_not_unlock); 82 } 83 }; 84 85 //------------------------------------------------------------------------------------------------------------------------ 86 // State accessors 87 88 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) { 89 last_frame(thread).interpreter_frame_set_bcp(bcp); 90 if (ProfileInterpreter) { 91 // ProfileTraps uses MDOs independently of ProfileInterpreter. 92 // That is why we must check both ProfileInterpreter and mdo != NULL. 93 MethodData* mdo = last_frame(thread).interpreter_frame_method()->method_data(); 94 if (mdo != NULL) { 95 NEEDS_CLEANUP; 96 last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci())); 97 } 98 } 99 } 100 101 //------------------------------------------------------------------------------------------------------------------------ 102 // Constants 103 104 105 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide)) 106 // access constant pool 107 ConstantPool* pool = method(thread)->constants(); 108 int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc); 109 constantTag tag = pool->tag_at(index); 110 111 assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call"); 112 Klass* klass = pool->klass_at(index, CHECK); 113 oop java_class = klass->java_mirror(); 114 thread->set_vm_result(java_class); 115 IRT_END 116 117 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) { 118 assert(bytecode == Bytecodes::_fast_aldc || 119 bytecode == Bytecodes::_fast_aldc_w, "wrong bc"); 120 ResourceMark rm(thread); 121 methodHandle m (thread, method(thread)); 122 Bytecode_loadconstant ldc(m, bci(thread)); 123 oop result = ldc.resolve_constant(CHECK); 124 #ifdef ASSERT 125 { 126 // The bytecode wrappers aren't GC-safe so construct a new one 127 Bytecode_loadconstant ldc2(m, bci(thread)); 128 oop coop = m->constants()->resolved_references()->obj_at(ldc2.cache_index()); 129 assert(result == coop, "expected result for assembly code"); 130 } 131 #endif 132 thread->set_vm_result(result); 133 } 134 IRT_END 135 136 137 //------------------------------------------------------------------------------------------------------------------------ 138 // Allocation 139 140 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index)) 141 Klass* k_oop = pool->klass_at(index, CHECK); 142 instanceKlassHandle klass (THREAD, k_oop); 143 144 // Make sure we are not instantiating an abstract klass 145 klass->check_valid_for_instantiation(true, CHECK); 146 147 // Make sure klass is initialized 148 klass->initialize(CHECK); 149 150 // At this point the class may not be fully initialized 151 // because of recursive initialization. If it is fully 152 // initialized & has_finalized is not set, we rewrite 153 // it into its fast version (Note: no locking is needed 154 // here since this is an atomic byte write and can be 155 // done more than once). 156 // 157 // Note: In case of classes with has_finalized we don't 158 // rewrite since that saves us an extra check in 159 // the fast version which then would call the 160 // slow version anyway (and do a call back into 161 // Java). 162 // If we have a breakpoint, then we don't rewrite 163 // because the _breakpoint bytecode would be lost. 164 oop obj = klass->allocate_instance(CHECK); 165 thread->set_vm_result(obj); 166 IRT_END 167 168 169 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size)) 170 oop obj = oopFactory::new_typeArray(type, size, CHECK); 171 thread->set_vm_result(obj); 172 IRT_END 173 174 175 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size)) 176 // Note: no oopHandle for pool & klass needed since they are not used 177 // anymore after new_objArray() and no GC can happen before. 178 // (This may have to change if this code changes!) 179 Klass* klass = pool->klass_at(index, CHECK); 180 objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK); 181 thread->set_vm_result(obj); 182 IRT_END 183 184 185 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address)) 186 // We may want to pass in more arguments - could make this slightly faster 187 ConstantPool* constants = method(thread)->constants(); 188 int i = get_index_u2(thread, Bytecodes::_multianewarray); 189 Klass* klass = constants->klass_at(i, CHECK); 190 int nof_dims = number_of_dimensions(thread); 191 assert(klass->is_klass(), "not a class"); 192 assert(nof_dims >= 1, "multianewarray rank must be nonzero"); 193 194 // We must create an array of jints to pass to multi_allocate. 195 ResourceMark rm(thread); 196 const int small_dims = 10; 197 jint dim_array[small_dims]; 198 jint *dims = &dim_array[0]; 199 if (nof_dims > small_dims) { 200 dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims); 201 } 202 for (int index = 0; index < nof_dims; index++) { 203 // offset from first_size_address is addressed as local[index] 204 int n = Interpreter::local_offset_in_bytes(index)/jintSize; 205 dims[index] = first_size_address[n]; 206 } 207 oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK); 208 thread->set_vm_result(obj); 209 IRT_END 210 211 212 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) 213 assert(obj->is_oop(), "must be a valid oop"); 214 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 215 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 216 IRT_END 217 218 219 // Quicken instance-of and check-cast bytecodes 220 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread)) 221 // Force resolving; quicken the bytecode 222 int which = get_index_u2(thread, Bytecodes::_checkcast); 223 ConstantPool* cpool = method(thread)->constants(); 224 // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded 225 // program we might have seen an unquick'd bytecode in the interpreter but have another 226 // thread quicken the bytecode before we get here. 227 // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" ); 228 Klass* klass = cpool->klass_at(which, CHECK); 229 thread->set_vm_result_2(klass); 230 IRT_END 231 232 233 //------------------------------------------------------------------------------------------------------------------------ 234 // Exceptions 235 236 void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason, 237 methodHandle trap_method, int trap_bci, TRAPS) { 238 if (trap_method.not_null()) { 239 MethodData* trap_mdo = trap_method->method_data(); 240 if (trap_mdo == NULL) { 241 Method::build_interpreter_method_data(trap_method, THREAD); 242 if (HAS_PENDING_EXCEPTION) { 243 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), 244 "we expect only an OOM error here"); 245 CLEAR_PENDING_EXCEPTION; 246 } 247 trap_mdo = trap_method->method_data(); 248 // and fall through... 249 } 250 if (trap_mdo != NULL) { 251 // Update per-method count of trap events. The interpreter 252 // is updating the MDO to simulate the effect of compiler traps. 253 Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason); 254 } 255 } 256 } 257 258 // Assume the compiler is (or will be) interested in this event. 259 // If necessary, create an MDO to hold the information, and record it. 260 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) { 261 assert(ProfileTraps, "call me only if profiling"); 262 methodHandle trap_method(thread, method(thread)); 263 int trap_bci = trap_method->bci_from(bcp(thread)); 264 note_trap_inner(thread, reason, trap_method, trap_bci, THREAD); 265 } 266 267 #ifdef CC_INTERP 268 // As legacy note_trap, but we have more arguments. 269 IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci)) 270 methodHandle trap_method(method); 271 note_trap_inner(thread, reason, trap_method, trap_bci, THREAD); 272 IRT_END 273 274 // Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper 275 // for each exception. 276 void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci) 277 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); } 278 void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci) 279 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); } 280 void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci) 281 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); } 282 void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci) 283 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); } 284 void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci) 285 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); } 286 #endif // CC_INTERP 287 288 289 static Handle get_preinitialized_exception(Klass* k, TRAPS) { 290 // get klass 291 InstanceKlass* klass = InstanceKlass::cast(k); 292 assert(klass->is_initialized(), 293 "this klass should have been initialized during VM initialization"); 294 // create instance - do not call constructor since we may have no 295 // (java) stack space left (should assert constructor is empty) 296 Handle exception; 297 oop exception_oop = klass->allocate_instance(CHECK_(exception)); 298 exception = Handle(THREAD, exception_oop); 299 if (StackTraceInThrowable) { 300 java_lang_Throwable::fill_in_stack_trace(exception); 301 } 302 return exception; 303 } 304 305 // Special handling for stack overflow: since we don't have any (java) stack 306 // space left we use the pre-allocated & pre-initialized StackOverflowError 307 // klass to create an stack overflow error instance. We do not call its 308 // constructor for the same reason (it is empty, anyway). 309 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread)) 310 Handle exception = get_preinitialized_exception( 311 SystemDictionary::StackOverflowError_klass(), 312 CHECK); 313 // Increment counter for hs_err file reporting 314 Atomic::inc(&Exceptions::_stack_overflow_errors); 315 THROW_HANDLE(exception); 316 IRT_END 317 318 319 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message)) 320 // lookup exception klass 321 TempNewSymbol s = SymbolTable::new_symbol(name, CHECK); 322 if (ProfileTraps) { 323 if (s == vmSymbols::java_lang_ArithmeticException()) { 324 note_trap(thread, Deoptimization::Reason_div0_check, CHECK); 325 } else if (s == vmSymbols::java_lang_NullPointerException()) { 326 note_trap(thread, Deoptimization::Reason_null_check, CHECK); 327 } 328 } 329 // create exception 330 Handle exception = Exceptions::new_exception(thread, s, message); 331 thread->set_vm_result(exception()); 332 IRT_END 333 334 335 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj)) 336 ResourceMark rm(thread); 337 const char* klass_name = obj->klass()->external_name(); 338 // lookup exception klass 339 TempNewSymbol s = SymbolTable::new_symbol(name, CHECK); 340 if (ProfileTraps) { 341 note_trap(thread, Deoptimization::Reason_class_check, CHECK); 342 } 343 // create exception, with klass name as detail message 344 Handle exception = Exceptions::new_exception(thread, s, klass_name); 345 thread->set_vm_result(exception()); 346 IRT_END 347 348 349 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index)) 350 char message[jintAsStringSize]; 351 // lookup exception klass 352 TempNewSymbol s = SymbolTable::new_symbol(name, CHECK); 353 if (ProfileTraps) { 354 note_trap(thread, Deoptimization::Reason_range_check, CHECK); 355 } 356 // create exception 357 sprintf(message, "%d", index); 358 THROW_MSG(s, message); 359 IRT_END 360 361 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException( 362 JavaThread* thread, oopDesc* obj)) 363 364 ResourceMark rm(thread); 365 char* message = SharedRuntime::generate_class_cast_message( 366 thread, obj->klass()->external_name()); 367 368 if (ProfileTraps) { 369 note_trap(thread, Deoptimization::Reason_class_check, CHECK); 370 } 371 372 // create exception 373 THROW_MSG(vmSymbols::java_lang_ClassCastException(), message); 374 IRT_END 375 376 // exception_handler_for_exception(...) returns the continuation address, 377 // the exception oop (via TLS) and sets the bci/bcp for the continuation. 378 // The exception oop is returned to make sure it is preserved over GC (it 379 // is only on the stack if the exception was thrown explicitly via athrow). 380 // During this operation, the expression stack contains the values for the 381 // bci where the exception happened. If the exception was propagated back 382 // from a call, the expression stack contains the values for the bci at the 383 // invoke w/o arguments (i.e., as if one were inside the call). 384 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception)) 385 386 Handle h_exception(thread, exception); 387 methodHandle h_method (thread, method(thread)); 388 constantPoolHandle h_constants(thread, h_method->constants()); 389 bool should_repeat; 390 int handler_bci; 391 int current_bci = bci(thread); 392 393 if (thread->frames_to_pop_failed_realloc() > 0) { 394 // Allocation of scalar replaced object used in this frame 395 // failed. Unconditionally pop the frame. 396 thread->dec_frames_to_pop_failed_realloc(); 397 thread->set_vm_result(h_exception()); 398 // If the method is synchronized we already unlocked the monitor 399 // during deoptimization so the interpreter needs to skip it when 400 // the frame is popped. 401 thread->set_do_not_unlock_if_synchronized(true); 402 #ifdef CC_INTERP 403 return (address) -1; 404 #else 405 return Interpreter::remove_activation_entry(); 406 #endif 407 } 408 409 // Need to do this check first since when _do_not_unlock_if_synchronized 410 // is set, we don't want to trigger any classloading which may make calls 411 // into java, or surprisingly find a matching exception handler for bci 0 412 // since at this moment the method hasn't been "officially" entered yet. 413 if (thread->do_not_unlock_if_synchronized()) { 414 ResourceMark rm; 415 assert(current_bci == 0, "bci isn't zero for do_not_unlock_if_synchronized"); 416 thread->set_vm_result(exception); 417 #ifdef CC_INTERP 418 return (address) -1; 419 #else 420 return Interpreter::remove_activation_entry(); 421 #endif 422 } 423 424 do { 425 should_repeat = false; 426 427 // assertions 428 #ifdef ASSERT 429 assert(h_exception.not_null(), "NULL exceptions should be handled by athrow"); 430 assert(h_exception->is_oop(), "just checking"); 431 // Check that exception is a subclass of Throwable, otherwise we have a VerifyError 432 if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) { 433 if (ExitVMOnVerifyError) vm_exit(-1); 434 ShouldNotReachHere(); 435 } 436 #endif 437 438 // tracing 439 if (TraceExceptions) { 440 ResourceMark rm(thread); 441 Symbol* message = java_lang_Throwable::detail_message(h_exception()); 442 ttyLocker ttyl; // Lock after getting the detail message 443 if (message != NULL) { 444 tty->print_cr("Exception <%s: %s> (" INTPTR_FORMAT ")", 445 h_exception->print_value_string(), message->as_C_string(), 446 p2i(h_exception())); 447 } else { 448 tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", 449 h_exception->print_value_string(), 450 p2i(h_exception())); 451 } 452 tty->print_cr(" thrown in interpreter method <%s>", h_method->print_value_string()); 453 tty->print_cr(" at bci %d for thread " INTPTR_FORMAT, current_bci, p2i(thread)); 454 } 455 // Don't go paging in something which won't be used. 456 // else if (extable->length() == 0) { 457 // // disabled for now - interpreter is not using shortcut yet 458 // // (shortcut is not to call runtime if we have no exception handlers) 459 // // warning("performance bug: should not call runtime if method has no exception handlers"); 460 // } 461 // for AbortVMOnException flag 462 Exceptions::debug_check_abort(h_exception); 463 464 // exception handler lookup 465 KlassHandle h_klass(THREAD, h_exception->klass()); 466 handler_bci = Method::fast_exception_handler_bci_for(h_method, h_klass, current_bci, THREAD); 467 if (HAS_PENDING_EXCEPTION) { 468 // We threw an exception while trying to find the exception handler. 469 // Transfer the new exception to the exception handle which will 470 // be set into thread local storage, and do another lookup for an 471 // exception handler for this exception, this time starting at the 472 // BCI of the exception handler which caused the exception to be 473 // thrown (bug 4307310). 474 h_exception = Handle(THREAD, PENDING_EXCEPTION); 475 CLEAR_PENDING_EXCEPTION; 476 if (handler_bci >= 0) { 477 current_bci = handler_bci; 478 should_repeat = true; 479 } 480 } 481 } while (should_repeat == true); 482 483 #if INCLUDE_JVMCI 484 if (EnableJVMCI && h_method->method_data() != NULL) { 485 ResourceMark rm(thread); 486 ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL); 487 if (pdata != NULL && pdata->is_BitData()) { 488 BitData* bit_data = (BitData*) pdata; 489 bit_data->set_exception_seen(); 490 } 491 } 492 #endif 493 494 // notify JVMTI of an exception throw; JVMTI will detect if this is a first 495 // time throw or a stack unwinding throw and accordingly notify the debugger 496 if (JvmtiExport::can_post_on_exceptions()) { 497 JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception()); 498 } 499 500 #ifdef CC_INTERP 501 address continuation = (address)(intptr_t) handler_bci; 502 #else 503 address continuation = NULL; 504 #endif 505 address handler_pc = NULL; 506 if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) { 507 // Forward exception to callee (leaving bci/bcp untouched) because (a) no 508 // handler in this method, or (b) after a stack overflow there is not yet 509 // enough stack space available to reprotect the stack. 510 #ifndef CC_INTERP 511 continuation = Interpreter::remove_activation_entry(); 512 #endif 513 // Count this for compilation purposes 514 h_method->interpreter_throwout_increment(THREAD); 515 } else { 516 // handler in this method => change bci/bcp to handler bci/bcp and continue there 517 handler_pc = h_method->code_base() + handler_bci; 518 #ifndef CC_INTERP 519 set_bcp_and_mdp(handler_pc, thread); 520 continuation = Interpreter::dispatch_table(vtos)[*handler_pc]; 521 #endif 522 } 523 // notify debugger of an exception catch 524 // (this is good for exceptions caught in native methods as well) 525 if (JvmtiExport::can_post_on_exceptions()) { 526 JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL)); 527 } 528 529 thread->set_vm_result(h_exception()); 530 return continuation; 531 IRT_END 532 533 534 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread)) 535 assert(thread->has_pending_exception(), "must only ne called if there's an exception pending"); 536 // nothing to do - eventually we should remove this code entirely (see comments @ call sites) 537 IRT_END 538 539 540 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread)) 541 THROW(vmSymbols::java_lang_AbstractMethodError()); 542 IRT_END 543 544 545 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) 546 THROW(vmSymbols::java_lang_IncompatibleClassChangeError()); 547 IRT_END 548 549 550 //------------------------------------------------------------------------------------------------------------------------ 551 // Fields 552 // 553 554 void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) { 555 Thread* THREAD = thread; 556 // resolve field 557 fieldDescriptor info; 558 constantPoolHandle pool(thread, method(thread)->constants()); 559 bool is_put = (bytecode == Bytecodes::_putfield || bytecode == Bytecodes::_nofast_putfield || 560 bytecode == Bytecodes::_putstatic); 561 bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic); 562 563 { 564 JvmtiHideSingleStepping jhss(thread); 565 LinkResolver::resolve_field_access(info, pool, get_index_u2_cpcache(thread, bytecode), 566 bytecode, CHECK); 567 } // end JvmtiHideSingleStepping 568 569 // check if link resolution caused cpCache to be updated 570 ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread); 571 if (cp_cache_entry->is_resolved(bytecode)) return; 572 573 // compute auxiliary field attributes 574 TosState state = as_TosState(info.field_type()); 575 576 // We need to delay resolving put instructions on final fields 577 // until we actually invoke one. This is required so we throw 578 // exceptions at the correct place. If we do not resolve completely 579 // in the current pass, leaving the put_code set to zero will 580 // cause the next put instruction to reresolve. 581 Bytecodes::Code put_code = (Bytecodes::Code)0; 582 583 // We also need to delay resolving getstatic instructions until the 584 // class is intitialized. This is required so that access to the static 585 // field will call the initialization function every time until the class 586 // is completely initialized ala. in 2.17.5 in JVM Specification. 587 InstanceKlass* klass = InstanceKlass::cast(info.field_holder()); 588 bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) && 589 !klass->is_initialized()); 590 Bytecodes::Code get_code = (Bytecodes::Code)0; 591 592 if (!uninitialized_static) { 593 get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield); 594 if (is_put || !info.access_flags().is_final()) { 595 put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield); 596 } 597 } 598 599 cp_cache_entry->set_field( 600 get_code, 601 put_code, 602 info.field_holder(), 603 info.index(), 604 info.offset(), 605 state, 606 info.access_flags().is_final(), 607 info.access_flags().is_volatile(), 608 pool->pool_holder() 609 ); 610 } 611 612 613 //------------------------------------------------------------------------------------------------------------------------ 614 // Synchronization 615 // 616 // The interpreter's synchronization code is factored out so that it can 617 // be shared by method invocation and synchronized blocks. 618 //%note synchronization_3 619 620 //%note monitor_1 621 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem)) 622 #ifdef ASSERT 623 thread->last_frame().interpreter_frame_verify_monitor(elem); 624 #endif 625 if (PrintBiasedLockingStatistics) { 626 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 627 } 628 Handle h_obj(thread, elem->obj()); 629 assert(Universe::heap()->is_in_reserved_or_null(h_obj()), 630 "must be NULL or an object"); 631 if (UseBiasedLocking) { 632 // Retry fast entry if bias is revoked to avoid unnecessary inflation 633 ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK); 634 } else { 635 ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK); 636 } 637 assert(Universe::heap()->is_in_reserved_or_null(elem->obj()), 638 "must be NULL or an object"); 639 #ifdef ASSERT 640 thread->last_frame().interpreter_frame_verify_monitor(elem); 641 #endif 642 IRT_END 643 644 645 //%note monitor_1 646 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem)) 647 #ifdef ASSERT 648 thread->last_frame().interpreter_frame_verify_monitor(elem); 649 #endif 650 Handle h_obj(thread, elem->obj()); 651 assert(Universe::heap()->is_in_reserved_or_null(h_obj()), 652 "must be NULL or an object"); 653 if (elem == NULL || h_obj()->is_unlocked()) { 654 THROW(vmSymbols::java_lang_IllegalMonitorStateException()); 655 } 656 ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread); 657 // Free entry. This must be done here, since a pending exception might be installed on 658 // exit. If it is not cleared, the exception handling code will try to unlock the monitor again. 659 elem->set_obj(NULL); 660 #ifdef ASSERT 661 thread->last_frame().interpreter_frame_verify_monitor(elem); 662 #endif 663 IRT_END 664 665 666 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread)) 667 THROW(vmSymbols::java_lang_IllegalMonitorStateException()); 668 IRT_END 669 670 671 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread)) 672 // Returns an illegal exception to install into the current thread. The 673 // pending_exception flag is cleared so normal exception handling does not 674 // trigger. Any current installed exception will be overwritten. This 675 // method will be called during an exception unwind. 676 677 assert(!HAS_PENDING_EXCEPTION, "no pending exception"); 678 Handle exception(thread, thread->vm_result()); 679 assert(exception() != NULL, "vm result should be set"); 680 thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures) 681 if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) { 682 exception = get_preinitialized_exception( 683 SystemDictionary::IllegalMonitorStateException_klass(), 684 CATCH); 685 } 686 thread->set_vm_result(exception()); 687 IRT_END 688 689 690 //------------------------------------------------------------------------------------------------------------------------ 691 // Invokes 692 693 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp)) 694 return method->orig_bytecode_at(method->bci_from(bcp)); 695 IRT_END 696 697 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code)) 698 method->set_orig_bytecode_at(method->bci_from(bcp), new_code); 699 IRT_END 700 701 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp)) 702 JvmtiExport::post_raw_breakpoint(thread, method, bcp); 703 IRT_END 704 705 void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) { 706 Thread* THREAD = thread; 707 // extract receiver from the outgoing argument list if necessary 708 Handle receiver(thread, NULL); 709 if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) { 710 ResourceMark rm(thread); 711 methodHandle m (thread, method(thread)); 712 Bytecode_invoke call(m, bci(thread)); 713 Symbol* signature = call.signature(); 714 receiver = Handle(thread, 715 thread->last_frame().interpreter_callee_receiver(signature)); 716 assert(Universe::heap()->is_in_reserved_or_null(receiver()), 717 "sanity check"); 718 assert(receiver.is_null() || 719 !Universe::heap()->is_in_reserved(receiver->klass()), 720 "sanity check"); 721 } 722 723 // resolve method 724 CallInfo info; 725 constantPoolHandle pool(thread, method(thread)->constants()); 726 727 { 728 JvmtiHideSingleStepping jhss(thread); 729 LinkResolver::resolve_invoke(info, receiver, pool, 730 get_index_u2_cpcache(thread, bytecode), bytecode, 731 CHECK); 732 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 733 int retry_count = 0; 734 while (info.resolved_method()->is_old()) { 735 // It is very unlikely that method is redefined more than 100 times 736 // in the middle of resolve. If it is looping here more than 100 times 737 // means then there could be a bug here. 738 guarantee((retry_count++ < 100), 739 "Could not resolve to latest version of redefined method"); 740 // method is redefined in the middle of resolve so re-try. 741 LinkResolver::resolve_invoke(info, receiver, pool, 742 get_index_u2_cpcache(thread, bytecode), bytecode, 743 CHECK); 744 } 745 } 746 } // end JvmtiHideSingleStepping 747 748 // check if link resolution caused cpCache to be updated 749 ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread); 750 if (cp_cache_entry->is_resolved(bytecode)) return; 751 752 if (bytecode == Bytecodes::_invokeinterface) { 753 ResourceMark rm(thread); 754 log_develop_trace(itables)("Resolving: klass: %s to method: %s", 755 info.resolved_klass()->name()->as_C_string(), 756 info.resolved_method()->name()->as_C_string()); 757 } 758 #ifdef ASSERT 759 if (bytecode == Bytecodes::_invokeinterface) { 760 if (info.resolved_method()->method_holder() == 761 SystemDictionary::Object_klass()) { 762 // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec 763 // (see also CallInfo::set_interface for details) 764 assert(info.call_kind() == CallInfo::vtable_call || 765 info.call_kind() == CallInfo::direct_call, ""); 766 methodHandle rm = info.resolved_method(); 767 assert(rm->is_final() || info.has_vtable_index(), 768 "should have been set already"); 769 } else if (!info.resolved_method()->has_itable_index()) { 770 // Resolved something like CharSequence.toString. Use vtable not itable. 771 assert(info.call_kind() != CallInfo::itable_call, ""); 772 } else { 773 // Setup itable entry 774 assert(info.call_kind() == CallInfo::itable_call, ""); 775 int index = info.resolved_method()->itable_index(); 776 assert(info.itable_index() == index, ""); 777 } 778 } else { 779 assert(info.call_kind() == CallInfo::direct_call || 780 info.call_kind() == CallInfo::vtable_call, ""); 781 } 782 #endif 783 switch (info.call_kind()) { 784 case CallInfo::direct_call: 785 cp_cache_entry->set_direct_call( 786 bytecode, 787 info.resolved_method()); 788 break; 789 case CallInfo::vtable_call: 790 cp_cache_entry->set_vtable_call( 791 bytecode, 792 info.resolved_method(), 793 info.vtable_index()); 794 break; 795 case CallInfo::itable_call: 796 cp_cache_entry->set_itable_call( 797 bytecode, 798 info.resolved_method(), 799 info.itable_index()); 800 break; 801 default: ShouldNotReachHere(); 802 } 803 } 804 805 806 // First time execution: Resolve symbols, create a permanent MethodType object. 807 void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) { 808 Thread* THREAD = thread; 809 const Bytecodes::Code bytecode = Bytecodes::_invokehandle; 810 811 // resolve method 812 CallInfo info; 813 constantPoolHandle pool(thread, method(thread)->constants()); 814 { 815 JvmtiHideSingleStepping jhss(thread); 816 LinkResolver::resolve_invoke(info, Handle(), pool, 817 get_index_u2_cpcache(thread, bytecode), bytecode, 818 CHECK); 819 } // end JvmtiHideSingleStepping 820 821 ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread); 822 cp_cache_entry->set_method_handle(pool, info); 823 } 824 825 // First time execution: Resolve symbols, create a permanent CallSite object. 826 void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) { 827 Thread* THREAD = thread; 828 const Bytecodes::Code bytecode = Bytecodes::_invokedynamic; 829 830 //TO DO: consider passing BCI to Java. 831 // int caller_bci = method(thread)->bci_from(bcp(thread)); 832 833 // resolve method 834 CallInfo info; 835 constantPoolHandle pool(thread, method(thread)->constants()); 836 int index = get_index_u4(thread, bytecode); 837 { 838 JvmtiHideSingleStepping jhss(thread); 839 LinkResolver::resolve_invoke(info, Handle(), pool, 840 index, bytecode, CHECK); 841 } // end JvmtiHideSingleStepping 842 843 ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index); 844 cp_cache_entry->set_dynamic_call(pool, info); 845 } 846 847 // This function is the interface to the assembly code. It returns the resolved 848 // cpCache entry. This doesn't safepoint, but the helper routines safepoint. 849 // This function will check for redefinition! 850 IRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) { 851 switch (bytecode) { 852 case Bytecodes::_getstatic: 853 case Bytecodes::_putstatic: 854 case Bytecodes::_getfield: 855 case Bytecodes::_putfield: 856 resolve_get_put(thread, bytecode); 857 break; 858 case Bytecodes::_invokevirtual: 859 case Bytecodes::_invokespecial: 860 case Bytecodes::_invokestatic: 861 case Bytecodes::_invokeinterface: 862 resolve_invoke(thread, bytecode); 863 break; 864 case Bytecodes::_invokehandle: 865 resolve_invokehandle(thread); 866 break; 867 case Bytecodes::_invokedynamic: 868 resolve_invokedynamic(thread); 869 break; 870 default: 871 fatal("unexpected bytecode: %s", Bytecodes::name(bytecode)); 872 break; 873 } 874 } 875 IRT_END 876 877 //------------------------------------------------------------------------------------------------------------------------ 878 // Miscellaneous 879 880 881 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) { 882 nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp); 883 assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests"); 884 if (branch_bcp != NULL && nm != NULL) { 885 // This was a successful request for an OSR nmethod. Because 886 // frequency_counter_overflow_inner ends with a safepoint check, 887 // nm could have been unloaded so look it up again. It's unsafe 888 // to examine nm directly since it might have been freed and used 889 // for something else. 890 frame fr = thread->last_frame(); 891 Method* method = fr.interpreter_frame_method(); 892 int bci = method->bci_from(fr.interpreter_frame_bcp()); 893 nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false); 894 } 895 #ifndef PRODUCT 896 if (TraceOnStackReplacement) { 897 if (nm != NULL) { 898 tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry())); 899 nm->print(); 900 } 901 } 902 #endif 903 return nm; 904 } 905 906 IRT_ENTRY(nmethod*, 907 InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp)) 908 // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized 909 // flag, in case this method triggers classloading which will call into Java. 910 UnlockFlagSaver fs(thread); 911 912 frame fr = thread->last_frame(); 913 assert(fr.is_interpreted_frame(), "must come from interpreter"); 914 methodHandle method(thread, fr.interpreter_frame_method()); 915 const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci; 916 const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci; 917 918 assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending"); 919 nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread); 920 assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions"); 921 922 if (osr_nm != NULL) { 923 // We may need to do on-stack replacement which requires that no 924 // monitors in the activation are biased because their 925 // BasicObjectLocks will need to migrate during OSR. Force 926 // unbiasing of all monitors in the activation now (even though 927 // the OSR nmethod might be invalidated) because we don't have a 928 // safepoint opportunity later once the migration begins. 929 if (UseBiasedLocking) { 930 ResourceMark rm; 931 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>(); 932 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 933 kptr < fr.interpreter_frame_monitor_begin(); 934 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 935 if( kptr->obj() != NULL ) { 936 objects_to_revoke->append(Handle(THREAD, kptr->obj())); 937 } 938 } 939 BiasedLocking::revoke(objects_to_revoke); 940 } 941 } 942 return osr_nm; 943 IRT_END 944 945 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp)) 946 assert(ProfileInterpreter, "must be profiling interpreter"); 947 int bci = method->bci_from(cur_bcp); 948 MethodData* mdo = method->method_data(); 949 if (mdo == NULL) return 0; 950 return mdo->bci_to_di(bci); 951 IRT_END 952 953 IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread)) 954 // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized 955 // flag, in case this method triggers classloading which will call into Java. 956 UnlockFlagSaver fs(thread); 957 958 assert(ProfileInterpreter, "must be profiling interpreter"); 959 frame fr = thread->last_frame(); 960 assert(fr.is_interpreted_frame(), "must come from interpreter"); 961 methodHandle method(thread, fr.interpreter_frame_method()); 962 Method::build_interpreter_method_data(method, THREAD); 963 if (HAS_PENDING_EXCEPTION) { 964 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); 965 CLEAR_PENDING_EXCEPTION; 966 // and fall through... 967 } 968 IRT_END 969 970 971 #ifdef ASSERT 972 IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp)) 973 assert(ProfileInterpreter, "must be profiling interpreter"); 974 975 MethodData* mdo = method->method_data(); 976 assert(mdo != NULL, "must not be null"); 977 978 int bci = method->bci_from(bcp); 979 980 address mdp2 = mdo->bci_to_dp(bci); 981 if (mdp != mdp2) { 982 ResourceMark rm; 983 ResetNoHandleMark rnm; // In a LEAF entry. 984 HandleMark hm; 985 tty->print_cr("FAILED verify : actual mdp %p expected mdp %p @ bci %d", mdp, mdp2, bci); 986 int current_di = mdo->dp_to_di(mdp); 987 int expected_di = mdo->dp_to_di(mdp2); 988 tty->print_cr(" actual di %d expected di %d", current_di, expected_di); 989 int expected_approx_bci = mdo->data_at(expected_di)->bci(); 990 int approx_bci = -1; 991 if (current_di >= 0) { 992 approx_bci = mdo->data_at(current_di)->bci(); 993 } 994 tty->print_cr(" actual bci is %d expected bci %d", approx_bci, expected_approx_bci); 995 mdo->print_on(tty); 996 method->print_codes(); 997 } 998 assert(mdp == mdp2, "wrong mdp"); 999 IRT_END 1000 #endif // ASSERT 1001 1002 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci)) 1003 assert(ProfileInterpreter, "must be profiling interpreter"); 1004 ResourceMark rm(thread); 1005 HandleMark hm(thread); 1006 frame fr = thread->last_frame(); 1007 assert(fr.is_interpreted_frame(), "must come from interpreter"); 1008 MethodData* h_mdo = fr.interpreter_frame_method()->method_data(); 1009 1010 // Grab a lock to ensure atomic access to setting the return bci and 1011 // the displacement. This can block and GC, invalidating all naked oops. 1012 MutexLocker ml(RetData_lock); 1013 1014 // ProfileData is essentially a wrapper around a derived oop, so we 1015 // need to take the lock before making any ProfileData structures. 1016 ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp())); 1017 RetData* rdata = data->as_RetData(); 1018 address new_mdp = rdata->fixup_ret(return_bci, h_mdo); 1019 fr.interpreter_frame_set_mdp(new_mdp); 1020 IRT_END 1021 1022 IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m)) 1023 MethodCounters* mcs = Method::build_method_counters(m, thread); 1024 if (HAS_PENDING_EXCEPTION) { 1025 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1026 CLEAR_PENDING_EXCEPTION; 1027 } 1028 return mcs; 1029 IRT_END 1030 1031 1032 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread)) 1033 // We used to need an explict preserve_arguments here for invoke bytecodes. However, 1034 // stack traversal automatically takes care of preserving arguments for invoke, so 1035 // this is no longer needed. 1036 1037 // IRT_END does an implicit safepoint check, hence we are guaranteed to block 1038 // if this is called during a safepoint 1039 1040 if (JvmtiExport::should_post_single_step()) { 1041 // We are called during regular safepoints and when the VM is 1042 // single stepping. If any thread is marked for single stepping, 1043 // then we may have JVMTI work to do. 1044 JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread)); 1045 } 1046 IRT_END 1047 1048 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj, 1049 ConstantPoolCacheEntry *cp_entry)) 1050 1051 // check the access_flags for the field in the klass 1052 1053 InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass()); 1054 int index = cp_entry->field_index(); 1055 if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return; 1056 1057 bool is_static = (obj == NULL); 1058 HandleMark hm(thread); 1059 1060 Handle h_obj; 1061 if (!is_static) { 1062 // non-static field accessors have an object, but we need a handle 1063 h_obj = Handle(thread, obj); 1064 } 1065 instanceKlassHandle h_cp_entry_f1(thread, (Klass*)cp_entry->f1_as_klass()); 1066 jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_cp_entry_f1, cp_entry->f2_as_index(), is_static); 1067 JvmtiExport::post_field_access(thread, method(thread), bcp(thread), h_cp_entry_f1, h_obj, fid); 1068 IRT_END 1069 1070 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread, 1071 oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value)) 1072 1073 Klass* k = (Klass*)cp_entry->f1_as_klass(); 1074 1075 // check the access_flags for the field in the klass 1076 InstanceKlass* ik = InstanceKlass::cast(k); 1077 int index = cp_entry->field_index(); 1078 // bail out if field modifications are not watched 1079 if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return; 1080 1081 char sig_type = '\0'; 1082 1083 switch(cp_entry->flag_state()) { 1084 case btos: sig_type = 'Z'; break; 1085 case ctos: sig_type = 'C'; break; 1086 case stos: sig_type = 'S'; break; 1087 case itos: sig_type = 'I'; break; 1088 case ftos: sig_type = 'F'; break; 1089 case atos: sig_type = 'L'; break; 1090 case ltos: sig_type = 'J'; break; 1091 case dtos: sig_type = 'D'; break; 1092 default: ShouldNotReachHere(); return; 1093 } 1094 bool is_static = (obj == NULL); 1095 1096 HandleMark hm(thread); 1097 instanceKlassHandle h_klass(thread, k); 1098 jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_klass, cp_entry->f2_as_index(), is_static); 1099 jvalue fvalue; 1100 #ifdef _LP64 1101 fvalue = *value; 1102 #else 1103 // Long/double values are stored unaligned and also noncontiguously with 1104 // tagged stacks. We can't just do a simple assignment even in the non- 1105 // J/D cases because a C++ compiler is allowed to assume that a jvalue is 1106 // 8-byte aligned, and interpreter stack slots are only 4-byte aligned. 1107 // We assume that the two halves of longs/doubles are stored in interpreter 1108 // stack slots in platform-endian order. 1109 jlong_accessor u; 1110 jint* newval = (jint*)value; 1111 u.words[0] = newval[0]; 1112 u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag 1113 fvalue.j = u.long_value; 1114 #endif // _LP64 1115 1116 Handle h_obj; 1117 if (!is_static) { 1118 // non-static field accessors have an object, but we need a handle 1119 h_obj = Handle(thread, obj); 1120 } 1121 1122 JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), h_klass, h_obj, 1123 fid, sig_type, &fvalue); 1124 IRT_END 1125 1126 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread)) 1127 JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread)); 1128 IRT_END 1129 1130 1131 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread)) 1132 JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread)); 1133 IRT_END 1134 1135 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc)) 1136 { 1137 return (Interpreter::contains(pc) ? 1 : 0); 1138 } 1139 IRT_END 1140 1141 1142 // Implementation of SignatureHandlerLibrary 1143 1144 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS 1145 // Dummy definition (else normalization method is defined in CPU 1146 // dependant code) 1147 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) { 1148 return fingerprint; 1149 } 1150 #endif 1151 1152 address SignatureHandlerLibrary::set_handler_blob() { 1153 BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size); 1154 if (handler_blob == NULL) { 1155 return NULL; 1156 } 1157 address handler = handler_blob->code_begin(); 1158 _handler_blob = handler_blob; 1159 _handler = handler; 1160 return handler; 1161 } 1162 1163 void SignatureHandlerLibrary::initialize() { 1164 if (_fingerprints != NULL) { 1165 return; 1166 } 1167 if (set_handler_blob() == NULL) { 1168 vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers"); 1169 } 1170 1171 BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer", 1172 SignatureHandlerLibrary::buffer_size); 1173 _buffer = bb->code_begin(); 1174 1175 _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true); 1176 _handlers = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true); 1177 } 1178 1179 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) { 1180 address handler = _handler; 1181 int insts_size = buffer->pure_insts_size(); 1182 if (handler + insts_size > _handler_blob->code_end()) { 1183 // get a new handler blob 1184 handler = set_handler_blob(); 1185 } 1186 if (handler != NULL) { 1187 memcpy(handler, buffer->insts_begin(), insts_size); 1188 pd_set_handler(handler); 1189 ICache::invalidate_range(handler, insts_size); 1190 _handler = handler + insts_size; 1191 } 1192 CodeCacheExtensions::handle_generated_handler(handler, buffer->name(), _handler); 1193 return handler; 1194 } 1195 1196 void SignatureHandlerLibrary::add(const methodHandle& method) { 1197 if (method->signature_handler() == NULL) { 1198 // use slow signature handler if we can't do better 1199 int handler_index = -1; 1200 // check if we can use customized (fast) signature handler 1201 if (UseFastSignatureHandlers && CodeCacheExtensions::support_fast_signature_handlers() && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) { 1202 // use customized signature handler 1203 MutexLocker mu(SignatureHandlerLibrary_lock); 1204 // make sure data structure is initialized 1205 initialize(); 1206 // lookup method signature's fingerprint 1207 uint64_t fingerprint = Fingerprinter(method).fingerprint(); 1208 // allow CPU dependant code to optimize the fingerprints for the fast handler 1209 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1210 handler_index = _fingerprints->find(fingerprint); 1211 // create handler if necessary 1212 if (handler_index < 0) { 1213 ResourceMark rm; 1214 ptrdiff_t align_offset = (address) 1215 round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer; 1216 CodeBuffer buffer((address)(_buffer + align_offset), 1217 SignatureHandlerLibrary::buffer_size - align_offset); 1218 if (!CodeCacheExtensions::support_dynamic_code()) { 1219 // we need a name for the signature (for lookups or saving) 1220 const int SYMBOL_SIZE = 50; 1221 char *symbolName = NEW_RESOURCE_ARRAY(char, SYMBOL_SIZE); 1222 // support for named signatures 1223 jio_snprintf(symbolName, SYMBOL_SIZE, 1224 "native_" UINT64_FORMAT, fingerprint); 1225 buffer.set_name(symbolName); 1226 } 1227 InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint); 1228 // copy into code heap 1229 address handler = set_handler(&buffer); 1230 if (handler == NULL) { 1231 // use slow signature handler (without memorizing it in the fingerprints) 1232 } else { 1233 // debugging suppport 1234 if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) { 1235 tty->cr(); 1236 tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)", 1237 _handlers->length(), 1238 (method->is_static() ? "static" : "receiver"), 1239 method->name_and_sig_as_C_string(), 1240 fingerprint, 1241 buffer.insts_size()); 1242 if (buffer.insts_size() > 0) { 1243 // buffer may be empty for pregenerated handlers 1244 Disassembler::decode(handler, handler + buffer.insts_size()); 1245 } 1246 #ifndef PRODUCT 1247 address rh_begin = Interpreter::result_handler(method()->result_type()); 1248 if (CodeCache::contains(rh_begin)) { 1249 // else it might be special platform dependent values 1250 tty->print_cr(" --- associated result handler ---"); 1251 address rh_end = rh_begin; 1252 while (*(int*)rh_end != 0) { 1253 rh_end += sizeof(int); 1254 } 1255 Disassembler::decode(rh_begin, rh_end); 1256 } else { 1257 tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin)); 1258 } 1259 #endif 1260 } 1261 // add handler to library 1262 _fingerprints->append(fingerprint); 1263 _handlers->append(handler); 1264 // set handler index 1265 assert(_fingerprints->length() == _handlers->length(), "sanity check"); 1266 handler_index = _fingerprints->length() - 1; 1267 } 1268 } 1269 // Set handler under SignatureHandlerLibrary_lock 1270 if (handler_index < 0) { 1271 // use generic signature handler 1272 method->set_signature_handler(Interpreter::slow_signature_handler()); 1273 } else { 1274 // set handler 1275 method->set_signature_handler(_handlers->at(handler_index)); 1276 } 1277 } else { 1278 CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops()); 1279 // use generic signature handler 1280 method->set_signature_handler(Interpreter::slow_signature_handler()); 1281 } 1282 } 1283 #ifdef ASSERT 1284 int handler_index = -1; 1285 int fingerprint_index = -2; 1286 { 1287 // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized 1288 // in any way if accessed from multiple threads. To avoid races with another 1289 // thread which may change the arrays in the above, mutex protected block, we 1290 // have to protect this read access here with the same mutex as well! 1291 MutexLocker mu(SignatureHandlerLibrary_lock); 1292 if (_handlers != NULL) { 1293 handler_index = _handlers->find(method->signature_handler()); 1294 uint64_t fingerprint = Fingerprinter(method).fingerprint(); 1295 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1296 fingerprint_index = _fingerprints->find(fingerprint); 1297 } 1298 } 1299 assert(method->signature_handler() == Interpreter::slow_signature_handler() || 1300 handler_index == fingerprint_index, "sanity check"); 1301 #endif // ASSERT 1302 } 1303 1304 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) { 1305 int handler_index = -1; 1306 // use customized signature handler 1307 MutexLocker mu(SignatureHandlerLibrary_lock); 1308 // make sure data structure is initialized 1309 initialize(); 1310 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1311 handler_index = _fingerprints->find(fingerprint); 1312 // create handler if necessary 1313 if (handler_index < 0) { 1314 if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) { 1315 tty->cr(); 1316 tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT, 1317 _handlers->length(), 1318 p2i(handler), 1319 fingerprint); 1320 } 1321 _fingerprints->append(fingerprint); 1322 _handlers->append(handler); 1323 } else { 1324 if (PrintSignatureHandlers) { 1325 tty->cr(); 1326 tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")", 1327 _handlers->length(), 1328 fingerprint, 1329 p2i(_handlers->at(handler_index)), 1330 p2i(handler)); 1331 } 1332 } 1333 } 1334 1335 1336 BufferBlob* SignatureHandlerLibrary::_handler_blob = NULL; 1337 address SignatureHandlerLibrary::_handler = NULL; 1338 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL; 1339 GrowableArray<address>* SignatureHandlerLibrary::_handlers = NULL; 1340 address SignatureHandlerLibrary::_buffer = NULL; 1341 1342 1343 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method)) 1344 methodHandle m(thread, method); 1345 assert(m->is_native(), "sanity check"); 1346 // lookup native function entry point if it doesn't exist 1347 bool in_base_library; 1348 if (!m->has_native_function()) { 1349 NativeLookup::lookup(m, in_base_library, CHECK); 1350 } 1351 // make sure signature handler is installed 1352 SignatureHandlerLibrary::add(m); 1353 // The interpreter entry point checks the signature handler first, 1354 // before trying to fetch the native entry point and klass mirror. 1355 // We must set the signature handler last, so that multiple processors 1356 // preparing the same method will be sure to see non-null entry & mirror. 1357 IRT_END 1358 1359 #if defined(IA32) || defined(AMD64) || defined(ARM) 1360 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address)) 1361 if (src_address == dest_address) { 1362 return; 1363 } 1364 ResetNoHandleMark rnm; // In a LEAF entry. 1365 HandleMark hm; 1366 ResourceMark rm; 1367 frame fr = thread->last_frame(); 1368 assert(fr.is_interpreted_frame(), ""); 1369 jint bci = fr.interpreter_frame_bci(); 1370 methodHandle mh(thread, fr.interpreter_frame_method()); 1371 Bytecode_invoke invoke(mh, bci); 1372 ArgumentSizeComputer asc(invoke.signature()); 1373 int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver 1374 Copy::conjoint_jbytes(src_address, dest_address, 1375 size_of_arguments * Interpreter::stackElementSize); 1376 IRT_END 1377 #endif 1378 1379 #if INCLUDE_JVMTI 1380 // This is a support of the JVMTI PopFrame interface. 1381 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument 1382 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters. 1383 // The member_name argument is a saved reference (in local#0) to the member_name. 1384 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle. 1385 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated. 1386 IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name, 1387 Method* method, address bcp)) 1388 Bytecodes::Code code = Bytecodes::code_at(method, bcp); 1389 if (code != Bytecodes::_invokestatic) { 1390 return; 1391 } 1392 ConstantPool* cpool = method->constants(); 1393 int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG; 1394 Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index)); 1395 Symbol* mname = cpool->name_ref_at(cp_index); 1396 1397 if (MethodHandles::has_member_arg(cname, mname)) { 1398 oop member_name_oop = (oop) member_name; 1399 if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) { 1400 // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated. 1401 member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop); 1402 } 1403 thread->set_vm_result(member_name_oop); 1404 } else { 1405 thread->set_vm_result(NULL); 1406 } 1407 IRT_END 1408 #endif // INCLUDE_JVMTI