1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/gcLocker.hpp"
  34 #include "libadt/dict.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/instanceKlass.hpp"
  38 #include "oops/instanceMirrorKlass.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/typeArrayKlass.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/node.hpp"
  43 #include "opto/opcodes.hpp"
  44 #include "opto/type.hpp"
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = NULL;
  52 
  53 // Array which maps compiler types to Basic Types
  54 Type::TypeInfo Type::_type_info[Type::lastype] = {
  55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  65 
  66 #ifdef SPARC
  67   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  68   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  69   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  70   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  71   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  72 #elif defined(PPC64)
  73   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  74   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  75   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  76   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  77   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  78 #else // all other
  79   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  80   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  81   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  82   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  83   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  84 #endif
  85   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
  86   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  87   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  88   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  89   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  90   { Bad,             T_OBJECT,     "valueptr:",     true,  Op_RegP,              relocInfo::oop_type      },  // ValueTypePtr
  91   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  92   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  93   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  94   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  95   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  96   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  97   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  98   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  99   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 100   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 101   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 102   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 103   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 104   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 105 };
 106 
 107 // Map ideal registers (machine types) to ideal types
 108 const Type *Type::mreg2type[_last_machine_leaf];
 109 
 110 // Map basic types to canonical Type* pointers.
 111 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 112 
 113 // Map basic types to constant-zero Types.
 114 const Type* Type::            _zero_type[T_CONFLICT+1];
 115 
 116 // Map basic types to array-body alias types.
 117 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 118 
 119 //=============================================================================
 120 // Convenience common pre-built types.
 121 const Type *Type::ABIO;         // State-of-machine only
 122 const Type *Type::BOTTOM;       // All values
 123 const Type *Type::CONTROL;      // Control only
 124 const Type *Type::DOUBLE;       // All doubles
 125 const Type *Type::FLOAT;        // All floats
 126 const Type *Type::HALF;         // Placeholder half of doublewide type
 127 const Type *Type::MEMORY;       // Abstract store only
 128 const Type *Type::RETURN_ADDRESS;
 129 const Type *Type::TOP;          // No values in set
 130 
 131 //------------------------------get_const_type---------------------------
 132 const Type* Type::get_const_type(ciType* type) {
 133   if (type == NULL) {
 134     return NULL;
 135   } else if (type->is_primitive_type()) {
 136     return get_const_basic_type(type->basic_type());
 137   } else {
 138     return TypeOopPtr::make_from_klass(type->as_klass());
 139   }
 140 }
 141 
 142 //---------------------------array_element_basic_type---------------------------------
 143 // Mapping to the array element's basic type.
 144 BasicType Type::array_element_basic_type() const {
 145   BasicType bt = basic_type();
 146   if (bt == T_INT) {
 147     if (this == TypeInt::INT)   return T_INT;
 148     if (this == TypeInt::CHAR)  return T_CHAR;
 149     if (this == TypeInt::BYTE)  return T_BYTE;
 150     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 151     if (this == TypeInt::SHORT) return T_SHORT;
 152     return T_VOID;
 153   }
 154   return bt;
 155 }
 156 
 157 // For two instance arrays of same dimension, return the base element types.
 158 // Otherwise or if the arrays have different dimensions, return NULL.
 159 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 160                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 161 
 162   if (e1) *e1 = NULL;
 163   if (e2) *e2 = NULL;
 164   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 165   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 166 
 167   if (a1tap != NULL && a2tap != NULL) {
 168     // Handle multidimensional arrays
 169     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 170     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 171     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 172       a1tap = a1tp->is_aryptr();
 173       a2tap = a2tp->is_aryptr();
 174       a1tp = a1tap->elem()->make_ptr();
 175       a2tp = a2tap->elem()->make_ptr();
 176     }
 177     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 178       if (e1) *e1 = a1tp->is_instptr();
 179       if (e2) *e2 = a2tp->is_instptr();
 180     }
 181   }
 182 }
 183 
 184 //---------------------------get_typeflow_type---------------------------------
 185 // Import a type produced by ciTypeFlow.
 186 const Type* Type::get_typeflow_type(ciType* type) {
 187   switch (type->basic_type()) {
 188 
 189   case ciTypeFlow::StateVector::T_BOTTOM:
 190     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 191     return Type::BOTTOM;
 192 
 193   case ciTypeFlow::StateVector::T_TOP:
 194     assert(type == ciTypeFlow::StateVector::top_type(), "");
 195     return Type::TOP;
 196 
 197   case ciTypeFlow::StateVector::T_NULL:
 198     assert(type == ciTypeFlow::StateVector::null_type(), "");
 199     return TypePtr::NULL_PTR;
 200 
 201   case ciTypeFlow::StateVector::T_LONG2:
 202     // The ciTypeFlow pass pushes a long, then the half.
 203     // We do the same.
 204     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 205     return TypeInt::TOP;
 206 
 207   case ciTypeFlow::StateVector::T_DOUBLE2:
 208     // The ciTypeFlow pass pushes double, then the half.
 209     // Our convention is the same.
 210     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 211     return Type::TOP;
 212 
 213   case T_ADDRESS:
 214     assert(type->is_return_address(), "");
 215     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 216 
 217   case T_VALUETYPE:
 218     return TypeValueType::make(type->as_value_klass());
 219 
 220   default:
 221     // make sure we did not mix up the cases:
 222     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 223     assert(type != ciTypeFlow::StateVector::top_type(), "");
 224     assert(type != ciTypeFlow::StateVector::null_type(), "");
 225     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 226     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 227     assert(!type->is_return_address(), "");
 228 
 229     return Type::get_const_type(type);
 230   }
 231 }
 232 
 233 
 234 //-----------------------make_from_constant------------------------------------
 235 const Type* Type::make_from_constant(ciConstant constant, bool require_constant) {
 236   switch (constant.basic_type()) {
 237   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 238   case T_CHAR:     return TypeInt::make(constant.as_char());
 239   case T_BYTE:     return TypeInt::make(constant.as_byte());
 240   case T_SHORT:    return TypeInt::make(constant.as_short());
 241   case T_INT:      return TypeInt::make(constant.as_int());
 242   case T_LONG:     return TypeLong::make(constant.as_long());
 243   case T_FLOAT:    return TypeF::make(constant.as_float());
 244   case T_DOUBLE:   return TypeD::make(constant.as_double());
 245   case T_ARRAY:
 246   case T_VALUETYPE:
 247   case T_OBJECT:
 248     {
 249       // cases:
 250       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 251       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 252       // An oop is not scavengable if it is in the perm gen.
 253       ciObject* oop_constant = constant.as_object();
 254       if (oop_constant->is_null_object()) {
 255         return Type::get_zero_type(T_OBJECT);
 256       } else if (require_constant || oop_constant->should_be_constant()) {
 257         return TypeOopPtr::make_from_constant(oop_constant, require_constant);
 258       }
 259     }
 260   case T_ILLEGAL:
 261     // Invalid ciConstant returned due to OutOfMemoryError in the CI
 262     assert(Compile::current()->env()->failing(), "otherwise should not see this");
 263     return NULL;
 264   }
 265   // Fall through to failure
 266   return NULL;
 267 }
 268 
 269 
 270 const Type* Type::make_constant(ciField* field, Node* obj) {
 271   if (!field->is_constant())  return NULL;
 272 
 273   const Type* con_type = NULL;
 274   if (field->is_static()) {
 275     // final static field
 276     con_type = Type::make_from_constant(field->constant_value(), /*require_const=*/true);
 277     if (Compile::current()->eliminate_boxing() && field->is_autobox_cache() && con_type != NULL) {
 278       con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 279     }
 280   } else {
 281     // final or stable non-static field
 282     // Treat final non-static fields of trusted classes (classes in
 283     // java.lang.invoke and sun.invoke packages and subpackages) as
 284     // compile time constants.
 285     if (obj->is_Con()) {
 286       const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
 287       ciObject* constant_oop = oop_ptr->const_oop();
 288       ciConstant constant = field->constant_value_of(constant_oop);
 289       con_type = Type::make_from_constant(constant, /*require_const=*/true);
 290     }
 291   }
 292   if (FoldStableValues && field->is_stable() && con_type != NULL) {
 293     if (con_type->is_zero_type()) {
 294       return NULL; // the field hasn't been initialized yet
 295     } else if (con_type->isa_oopptr()) {
 296       const Type* stable_type = Type::get_const_type(field->type());
 297       if (field->type()->is_array_klass()) {
 298         int stable_dimension = field->type()->as_array_klass()->dimension();
 299         stable_type = stable_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 300       }
 301       if (stable_type != NULL) {
 302         con_type = con_type->join_speculative(stable_type);
 303       }
 304     }
 305   }
 306   return con_type;
 307 }
 308 
 309 //------------------------------make-------------------------------------------
 310 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 311 // and look for an existing copy in the type dictionary.
 312 const Type *Type::make( enum TYPES t ) {
 313   return (new Type(t))->hashcons();
 314 }
 315 
 316 //------------------------------cmp--------------------------------------------
 317 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 318   if( t1->_base != t2->_base )
 319     return 1;                   // Missed badly
 320   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 321   return !t1->eq(t2);           // Return ZERO if equal
 322 }
 323 
 324 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 325   if (!include_speculative) {
 326     return remove_speculative();
 327   }
 328   return this;
 329 }
 330 
 331 //------------------------------hash-------------------------------------------
 332 int Type::uhash( const Type *const t ) {
 333   return t->hash();
 334 }
 335 
 336 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 337 
 338 //--------------------------Initialize_shared----------------------------------
 339 void Type::Initialize_shared(Compile* current) {
 340   // This method does not need to be locked because the first system
 341   // compilations (stub compilations) occur serially.  If they are
 342   // changed to proceed in parallel, then this section will need
 343   // locking.
 344 
 345   Arena* save = current->type_arena();
 346   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 347 
 348   current->set_type_arena(shared_type_arena);
 349   _shared_type_dict =
 350     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 351                                   shared_type_arena, 128 );
 352   current->set_type_dict(_shared_type_dict);
 353 
 354   // Make shared pre-built types.
 355   CONTROL = make(Control);      // Control only
 356   TOP     = make(Top);          // No values in set
 357   MEMORY  = make(Memory);       // Abstract store only
 358   ABIO    = make(Abio);         // State-of-machine only
 359   RETURN_ADDRESS=make(Return_Address);
 360   FLOAT   = make(FloatBot);     // All floats
 361   DOUBLE  = make(DoubleBot);    // All doubles
 362   BOTTOM  = make(Bottom);       // Everything
 363   HALF    = make(Half);         // Placeholder half of doublewide type
 364 
 365   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 366   TypeF::ONE  = TypeF::make(1.0); // Float 1
 367 
 368   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 369   TypeD::ONE  = TypeD::make(1.0); // Double 1
 370 
 371   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 372   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 373   TypeInt::ONE     = TypeInt::make( 1);  //  1
 374   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 375   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 376   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 377   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 378   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 379   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 380   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 381   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 382   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 383   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 384   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 385   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 386   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 387   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 388   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 389   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 390   // CmpL is overloaded both as the bytecode computation returning
 391   // a trinary (-1,0,+1) integer result AND as an efficient long
 392   // compare returning optimizer ideal-type flags.
 393   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 394   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 395   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 396   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 397   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 398 
 399   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 400   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 401   TypeLong::ONE     = TypeLong::make( 1);        //  1
 402   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 403   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 404   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 405   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 406   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 407 
 408   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 409   fboth[0] = Type::CONTROL;
 410   fboth[1] = Type::CONTROL;
 411   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 412 
 413   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 414   ffalse[0] = Type::CONTROL;
 415   ffalse[1] = Type::TOP;
 416   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 417 
 418   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 419   fneither[0] = Type::TOP;
 420   fneither[1] = Type::TOP;
 421   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 422 
 423   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 424   ftrue[0] = Type::TOP;
 425   ftrue[1] = Type::CONTROL;
 426   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 427 
 428   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 429   floop[0] = Type::CONTROL;
 430   floop[1] = TypeInt::INT;
 431   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 432 
 433   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 434   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 435   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 436 
 437   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 438   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 439 
 440   const Type **fmembar = TypeTuple::fields(0);
 441   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 442 
 443   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 444   fsc[0] = TypeInt::CC;
 445   fsc[1] = Type::MEMORY;
 446   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 447 
 448   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 449   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 450   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 451   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 452                                            false, 0, oopDesc::mark_offset_in_bytes());
 453   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 454                                            false, 0, oopDesc::klass_offset_in_bytes());
 455   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 456 
 457   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 458 
 459   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 460   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 461 
 462   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 463 
 464   mreg2type[Op_Node] = Type::BOTTOM;
 465   mreg2type[Op_Set ] = 0;
 466   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 467   mreg2type[Op_RegI] = TypeInt::INT;
 468   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 469   mreg2type[Op_RegF] = Type::FLOAT;
 470   mreg2type[Op_RegD] = Type::DOUBLE;
 471   mreg2type[Op_RegL] = TypeLong::LONG;
 472   mreg2type[Op_RegFlags] = TypeInt::CC;
 473 
 474   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 475 
 476   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 477 
 478 #ifdef _LP64
 479   if (UseCompressedOops) {
 480     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 481     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 482   } else
 483 #endif
 484   {
 485     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 486     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 487   }
 488   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 489   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 490   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 491   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 492   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 493   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 494   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 495 
 496   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 497   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 498   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 499   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 500   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 501   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 502   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 503   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 504   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 505   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 506   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 507   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 508   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 509 
 510   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 511   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 512 
 513   const Type **fi2c = TypeTuple::fields(2);
 514   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 515   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 516   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 517 
 518   const Type **intpair = TypeTuple::fields(2);
 519   intpair[0] = TypeInt::INT;
 520   intpair[1] = TypeInt::INT;
 521   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 522 
 523   const Type **longpair = TypeTuple::fields(2);
 524   longpair[0] = TypeLong::LONG;
 525   longpair[1] = TypeLong::LONG;
 526   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 527 
 528   const Type **intccpair = TypeTuple::fields(2);
 529   intccpair[0] = TypeInt::INT;
 530   intccpair[1] = TypeInt::CC;
 531   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 532 
 533   const Type **longccpair = TypeTuple::fields(2);
 534   longccpair[0] = TypeLong::LONG;
 535   longccpair[1] = TypeInt::CC;
 536   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 537 
 538   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 539   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 540   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 541   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 542   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 543   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 544   _const_basic_type[T_INT]         = TypeInt::INT;
 545   _const_basic_type[T_LONG]        = TypeLong::LONG;
 546   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 547   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 548   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 549   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 550   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 551   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 552   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 553   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 554 
 555   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 556   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 557   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 558   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 559   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 560   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 561   _zero_type[T_INT]         = TypeInt::ZERO;
 562   _zero_type[T_LONG]        = TypeLong::ZERO;
 563   _zero_type[T_FLOAT]       = TypeF::ZERO;
 564   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 565   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 566   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 567   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 568   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 569   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 570 
 571   // get_zero_type() should not happen for T_CONFLICT
 572   _zero_type[T_CONFLICT]= NULL;
 573 
 574   // Vector predefined types, it needs initialized _const_basic_type[].
 575   if (Matcher::vector_size_supported(T_BYTE,4)) {
 576     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 577   }
 578   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 579     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 580   }
 581   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 582     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 583   }
 584   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 585     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 586   }
 587   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 588     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 589   }
 590   mreg2type[Op_VecS] = TypeVect::VECTS;
 591   mreg2type[Op_VecD] = TypeVect::VECTD;
 592   mreg2type[Op_VecX] = TypeVect::VECTX;
 593   mreg2type[Op_VecY] = TypeVect::VECTY;
 594   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 595 
 596   // Restore working type arena.
 597   current->set_type_arena(save);
 598   current->set_type_dict(NULL);
 599 }
 600 
 601 //------------------------------Initialize-------------------------------------
 602 void Type::Initialize(Compile* current) {
 603   assert(current->type_arena() != NULL, "must have created type arena");
 604 
 605   if (_shared_type_dict == NULL) {
 606     Initialize_shared(current);
 607   }
 608 
 609   Arena* type_arena = current->type_arena();
 610 
 611   // Create the hash-cons'ing dictionary with top-level storage allocation
 612   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 613   current->set_type_dict(tdic);
 614 
 615   // Transfer the shared types.
 616   DictI i(_shared_type_dict);
 617   for( ; i.test(); ++i ) {
 618     Type* t = (Type*)i._value;
 619     tdic->Insert(t,t);  // New Type, insert into Type table
 620   }
 621 }
 622 
 623 //------------------------------hashcons---------------------------------------
 624 // Do the hash-cons trick.  If the Type already exists in the type table,
 625 // delete the current Type and return the existing Type.  Otherwise stick the
 626 // current Type in the Type table.
 627 const Type *Type::hashcons(void) {
 628   debug_only(base());           // Check the assertion in Type::base().
 629   // Look up the Type in the Type dictionary
 630   Dict *tdic = type_dict();
 631   Type* old = (Type*)(tdic->Insert(this, this, false));
 632   if( old ) {                   // Pre-existing Type?
 633     if( old != this )           // Yes, this guy is not the pre-existing?
 634       delete this;              // Yes, Nuke this guy
 635     assert( old->_dual, "" );
 636     return old;                 // Return pre-existing
 637   }
 638 
 639   // Every type has a dual (to make my lattice symmetric).
 640   // Since we just discovered a new Type, compute its dual right now.
 641   assert( !_dual, "" );         // No dual yet
 642   _dual = xdual();              // Compute the dual
 643   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 644     _dual = this;
 645     return this;
 646   }
 647   assert( !_dual->_dual, "" );  // No reverse dual yet
 648   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 649   // New Type, insert into Type table
 650   tdic->Insert((void*)_dual,(void*)_dual);
 651   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 652 #ifdef ASSERT
 653   Type *dual_dual = (Type*)_dual->xdual();
 654   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 655   delete dual_dual;
 656 #endif
 657   return this;                  // Return new Type
 658 }
 659 
 660 //------------------------------eq---------------------------------------------
 661 // Structural equality check for Type representations
 662 bool Type::eq( const Type * ) const {
 663   return true;                  // Nothing else can go wrong
 664 }
 665 
 666 //------------------------------hash-------------------------------------------
 667 // Type-specific hashing function.
 668 int Type::hash(void) const {
 669   return _base;
 670 }
 671 
 672 //------------------------------is_finite--------------------------------------
 673 // Has a finite value
 674 bool Type::is_finite() const {
 675   return false;
 676 }
 677 
 678 //------------------------------is_nan-----------------------------------------
 679 // Is not a number (NaN)
 680 bool Type::is_nan()    const {
 681   return false;
 682 }
 683 
 684 //----------------------interface_vs_oop---------------------------------------
 685 #ifdef ASSERT
 686 bool Type::interface_vs_oop_helper(const Type *t) const {
 687   bool result = false;
 688 
 689   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 690   const TypePtr*    t_ptr =    t->make_ptr();
 691   if( this_ptr == NULL || t_ptr == NULL )
 692     return result;
 693 
 694   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 695   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 696   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 697     bool this_interface = this_inst->klass()->is_interface();
 698     bool    t_interface =    t_inst->klass()->is_interface();
 699     result = this_interface ^ t_interface;
 700   }
 701 
 702   return result;
 703 }
 704 
 705 bool Type::interface_vs_oop(const Type *t) const {
 706   if (interface_vs_oop_helper(t)) {
 707     return true;
 708   }
 709   // Now check the speculative parts as well
 710   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 711   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 712   if (this_spec != NULL && t_spec != NULL) {
 713     if (this_spec->interface_vs_oop_helper(t_spec)) {
 714       return true;
 715     }
 716     return false;
 717   }
 718   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 719     return true;
 720   }
 721   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 722     return true;
 723   }
 724   return false;
 725 }
 726 
 727 #endif
 728 
 729 //------------------------------meet-------------------------------------------
 730 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 731 // commutative and the lattice is symmetric.
 732 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 733   if (isa_narrowoop() && t->isa_narrowoop()) {
 734     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 735     return result->make_narrowoop();
 736   }
 737   if (isa_narrowklass() && t->isa_narrowklass()) {
 738     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 739     return result->make_narrowklass();
 740   }
 741 
 742   const Type *this_t = maybe_remove_speculative(include_speculative);
 743   t = t->maybe_remove_speculative(include_speculative);
 744 
 745   const Type *mt = this_t->xmeet(t);
 746   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 747   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 748 #ifdef ASSERT
 749   assert(mt == t->xmeet(this_t), "meet not commutative");
 750   const Type* dual_join = mt->_dual;
 751   const Type *t2t    = dual_join->xmeet(t->_dual);
 752   const Type *t2this = dual_join->xmeet(this_t->_dual);
 753 
 754   // Interface meet Oop is Not Symmetric:
 755   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 756   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 757 
 758   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 759     tty->print_cr("=== Meet Not Symmetric ===");
 760     tty->print("t   =                   ");              t->dump(); tty->cr();
 761     tty->print("this=                   ");         this_t->dump(); tty->cr();
 762     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 763 
 764     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 765     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 766     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 767 
 768     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 769     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 770 
 771     fatal("meet not symmetric" );
 772   }
 773 #endif
 774   return mt;
 775 }
 776 
 777 //------------------------------xmeet------------------------------------------
 778 // Compute the MEET of two types.  It returns a new Type object.
 779 const Type *Type::xmeet( const Type *t ) const {
 780   // Perform a fast test for common case; meeting the same types together.
 781   if( this == t ) return this;  // Meeting same type-rep?
 782 
 783   // Meeting TOP with anything?
 784   if( _base == Top ) return t;
 785 
 786   // Meeting BOTTOM with anything?
 787   if( _base == Bottom ) return BOTTOM;
 788 
 789   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 790   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 791   switch (t->base()) {  // Switch on original type
 792 
 793   // Cut in half the number of cases I must handle.  Only need cases for when
 794   // the given enum "t->type" is less than or equal to the local enum "type".
 795   case FloatCon:
 796   case DoubleCon:
 797   case Int:
 798   case Long:
 799     return t->xmeet(this);
 800 
 801   case OopPtr:
 802     return t->xmeet(this);
 803 
 804   case InstPtr:
 805   case ValueTypePtr:
 806     return t->xmeet(this);
 807 
 808   case MetadataPtr:
 809   case KlassPtr:
 810     return t->xmeet(this);
 811 
 812   case AryPtr:
 813     return t->xmeet(this);
 814 
 815   case NarrowOop:
 816     return t->xmeet(this);
 817 
 818   case NarrowKlass:
 819     return t->xmeet(this);
 820 
 821   case ValueType:
 822     return t->xmeet(this);
 823 
 824   case Bad:                     // Type check
 825   default:                      // Bogus type not in lattice
 826     typerr(t);
 827     return Type::BOTTOM;
 828 
 829   case Bottom:                  // Ye Olde Default
 830     return t;
 831 
 832   case FloatTop:
 833     if( _base == FloatTop ) return this;
 834   case FloatBot:                // Float
 835     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 836     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 837     typerr(t);
 838     return Type::BOTTOM;
 839 
 840   case DoubleTop:
 841     if( _base == DoubleTop ) return this;
 842   case DoubleBot:               // Double
 843     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 844     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 845     typerr(t);
 846     return Type::BOTTOM;
 847 
 848   // These next few cases must match exactly or it is a compile-time error.
 849   case Control:                 // Control of code
 850   case Abio:                    // State of world outside of program
 851   case Memory:
 852     if( _base == t->_base )  return this;
 853     typerr(t);
 854     return Type::BOTTOM;
 855 
 856   case Top:                     // Top of the lattice
 857     return this;
 858   }
 859 
 860   // The type is unchanged
 861   return this;
 862 }
 863 
 864 //-----------------------------filter------------------------------------------
 865 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 866   const Type* ft = join_helper(kills, include_speculative);
 867   if (ft->empty())
 868     return Type::TOP;           // Canonical empty value
 869   return ft;
 870 }
 871 
 872 //------------------------------xdual------------------------------------------
 873 // Compute dual right now.
 874 const Type::TYPES Type::dual_type[Type::lastype] = {
 875   Bad,          // Bad
 876   Control,      // Control
 877   Bottom,       // Top
 878   Bad,          // Int - handled in v-call
 879   Bad,          // Long - handled in v-call
 880   Half,         // Half
 881   Bad,          // NarrowOop - handled in v-call
 882   Bad,          // NarrowKlass - handled in v-call
 883 
 884   Bad,          // Tuple - handled in v-call
 885   Bad,          // Array - handled in v-call
 886   Bad,          // VectorS - handled in v-call
 887   Bad,          // VectorD - handled in v-call
 888   Bad,          // VectorX - handled in v-call
 889   Bad,          // VectorY - handled in v-call
 890   Bad,          // VectorZ - handled in v-call
 891   Bad,          // ValueType - handled in v-call
 892 
 893   Bad,          // AnyPtr - handled in v-call
 894   Bad,          // RawPtr - handled in v-call
 895   Bad,          // OopPtr - handled in v-call
 896   Bad,          // InstPtr - handled in v-call
 897   Bad,          // ValueTypePtr - handled in v-call
 898   Bad,          // AryPtr - handled in v-call
 899 
 900   Bad,          //  MetadataPtr - handled in v-call
 901   Bad,          // KlassPtr - handled in v-call
 902 
 903   Bad,          // Function - handled in v-call
 904   Abio,         // Abio
 905   Return_Address,// Return_Address
 906   Memory,       // Memory
 907   FloatBot,     // FloatTop
 908   FloatCon,     // FloatCon
 909   FloatTop,     // FloatBot
 910   DoubleBot,    // DoubleTop
 911   DoubleCon,    // DoubleCon
 912   DoubleTop,    // DoubleBot
 913   Top           // Bottom
 914 };
 915 
 916 const Type *Type::xdual() const {
 917   // Note: the base() accessor asserts the sanity of _base.
 918   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 919   return new Type(_type_info[_base].dual_type);
 920 }
 921 
 922 //------------------------------has_memory-------------------------------------
 923 bool Type::has_memory() const {
 924   Type::TYPES tx = base();
 925   if (tx == Memory) return true;
 926   if (tx == Tuple) {
 927     const TypeTuple *t = is_tuple();
 928     for (uint i=0; i < t->cnt(); i++) {
 929       tx = t->field_at(i)->base();
 930       if (tx == Memory)  return true;
 931     }
 932   }
 933   return false;
 934 }
 935 
 936 #ifndef PRODUCT
 937 //------------------------------dump2------------------------------------------
 938 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 939   st->print("%s", _type_info[_base].msg);
 940 }
 941 
 942 //------------------------------dump-------------------------------------------
 943 void Type::dump_on(outputStream *st) const {
 944   ResourceMark rm;
 945   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 946   dump2(d,1, st);
 947   if (is_ptr_to_narrowoop()) {
 948     st->print(" [narrow]");
 949   } else if (is_ptr_to_narrowklass()) {
 950     st->print(" [narrowklass]");
 951   }
 952 }
 953 #endif
 954 
 955 //------------------------------singleton--------------------------------------
 956 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 957 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 958 bool Type::singleton(void) const {
 959   return _base == Top || _base == Half;
 960 }
 961 
 962 //------------------------------empty------------------------------------------
 963 // TRUE if Type is a type with no values, FALSE otherwise.
 964 bool Type::empty(void) const {
 965   switch (_base) {
 966   case DoubleTop:
 967   case FloatTop:
 968   case Top:
 969     return true;
 970 
 971   case Half:
 972   case Abio:
 973   case Return_Address:
 974   case Memory:
 975   case Bottom:
 976   case FloatBot:
 977   case DoubleBot:
 978     return false;  // never a singleton, therefore never empty
 979   }
 980 
 981   ShouldNotReachHere();
 982   return false;
 983 }
 984 
 985 //------------------------------dump_stats-------------------------------------
 986 // Dump collected statistics to stderr
 987 #ifndef PRODUCT
 988 void Type::dump_stats() {
 989   tty->print("Types made: %d\n", type_dict()->Size());
 990 }
 991 #endif
 992 
 993 //------------------------------typerr-----------------------------------------
 994 void Type::typerr( const Type *t ) const {
 995 #ifndef PRODUCT
 996   tty->print("\nError mixing types: ");
 997   dump();
 998   tty->print(" and ");
 999   t->dump();
1000   tty->print("\n");
1001 #endif
1002   ShouldNotReachHere();
1003 }
1004 
1005 
1006 //=============================================================================
1007 // Convenience common pre-built types.
1008 const TypeF *TypeF::ZERO;       // Floating point zero
1009 const TypeF *TypeF::ONE;        // Floating point one
1010 
1011 //------------------------------make-------------------------------------------
1012 // Create a float constant
1013 const TypeF *TypeF::make(float f) {
1014   return (TypeF*)(new TypeF(f))->hashcons();
1015 }
1016 
1017 //------------------------------meet-------------------------------------------
1018 // Compute the MEET of two types.  It returns a new Type object.
1019 const Type *TypeF::xmeet( const Type *t ) const {
1020   // Perform a fast test for common case; meeting the same types together.
1021   if( this == t ) return this;  // Meeting same type-rep?
1022 
1023   // Current "this->_base" is FloatCon
1024   switch (t->base()) {          // Switch on original type
1025   case AnyPtr:                  // Mixing with oops happens when javac
1026   case RawPtr:                  // reuses local variables
1027   case OopPtr:
1028   case InstPtr:
1029   case ValueTypePtr:
1030   case AryPtr:
1031   case MetadataPtr:
1032   case KlassPtr:
1033   case NarrowOop:
1034   case NarrowKlass:
1035   case Int:
1036   case Long:
1037   case DoubleTop:
1038   case DoubleCon:
1039   case DoubleBot:
1040   case Bottom:                  // Ye Olde Default
1041     return Type::BOTTOM;
1042 
1043   case FloatBot:
1044     return t;
1045 
1046   default:                      // All else is a mistake
1047     typerr(t);
1048 
1049   case FloatCon:                // Float-constant vs Float-constant?
1050     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1051                                 // must compare bitwise as positive zero, negative zero and NaN have
1052                                 // all the same representation in C++
1053       return FLOAT;             // Return generic float
1054                                 // Equal constants
1055   case Top:
1056   case FloatTop:
1057     break;                      // Return the float constant
1058   }
1059   return this;                  // Return the float constant
1060 }
1061 
1062 //------------------------------xdual------------------------------------------
1063 // Dual: symmetric
1064 const Type *TypeF::xdual() const {
1065   return this;
1066 }
1067 
1068 //------------------------------eq---------------------------------------------
1069 // Structural equality check for Type representations
1070 bool TypeF::eq(const Type *t) const {
1071   // Bitwise comparison to distinguish between +/-0. These values must be treated
1072   // as different to be consistent with C1 and the interpreter.
1073   return (jint_cast(_f) == jint_cast(t->getf()));
1074 }
1075 
1076 //------------------------------hash-------------------------------------------
1077 // Type-specific hashing function.
1078 int TypeF::hash(void) const {
1079   return *(int*)(&_f);
1080 }
1081 
1082 //------------------------------is_finite--------------------------------------
1083 // Has a finite value
1084 bool TypeF::is_finite() const {
1085   return g_isfinite(getf()) != 0;
1086 }
1087 
1088 //------------------------------is_nan-----------------------------------------
1089 // Is not a number (NaN)
1090 bool TypeF::is_nan()    const {
1091   return g_isnan(getf()) != 0;
1092 }
1093 
1094 //------------------------------dump2------------------------------------------
1095 // Dump float constant Type
1096 #ifndef PRODUCT
1097 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1098   Type::dump2(d,depth, st);
1099   st->print("%f", _f);
1100 }
1101 #endif
1102 
1103 //------------------------------singleton--------------------------------------
1104 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1105 // constants (Ldi nodes).  Singletons are integer, float or double constants
1106 // or a single symbol.
1107 bool TypeF::singleton(void) const {
1108   return true;                  // Always a singleton
1109 }
1110 
1111 bool TypeF::empty(void) const {
1112   return false;                 // always exactly a singleton
1113 }
1114 
1115 //=============================================================================
1116 // Convenience common pre-built types.
1117 const TypeD *TypeD::ZERO;       // Floating point zero
1118 const TypeD *TypeD::ONE;        // Floating point one
1119 
1120 //------------------------------make-------------------------------------------
1121 const TypeD *TypeD::make(double d) {
1122   return (TypeD*)(new TypeD(d))->hashcons();
1123 }
1124 
1125 //------------------------------meet-------------------------------------------
1126 // Compute the MEET of two types.  It returns a new Type object.
1127 const Type *TypeD::xmeet( const Type *t ) const {
1128   // Perform a fast test for common case; meeting the same types together.
1129   if( this == t ) return this;  // Meeting same type-rep?
1130 
1131   // Current "this->_base" is DoubleCon
1132   switch (t->base()) {          // Switch on original type
1133   case AnyPtr:                  // Mixing with oops happens when javac
1134   case RawPtr:                  // reuses local variables
1135   case OopPtr:
1136   case InstPtr:
1137   case ValueTypePtr:
1138   case AryPtr:
1139   case MetadataPtr:
1140   case KlassPtr:
1141   case NarrowOop:
1142   case NarrowKlass:
1143   case Int:
1144   case Long:
1145   case FloatTop:
1146   case FloatCon:
1147   case FloatBot:
1148   case Bottom:                  // Ye Olde Default
1149     return Type::BOTTOM;
1150 
1151   case DoubleBot:
1152     return t;
1153 
1154   default:                      // All else is a mistake
1155     typerr(t);
1156 
1157   case DoubleCon:               // Double-constant vs Double-constant?
1158     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1159       return DOUBLE;            // Return generic double
1160   case Top:
1161   case DoubleTop:
1162     break;
1163   }
1164   return this;                  // Return the double constant
1165 }
1166 
1167 //------------------------------xdual------------------------------------------
1168 // Dual: symmetric
1169 const Type *TypeD::xdual() const {
1170   return this;
1171 }
1172 
1173 //------------------------------eq---------------------------------------------
1174 // Structural equality check for Type representations
1175 bool TypeD::eq(const Type *t) const {
1176   // Bitwise comparison to distinguish between +/-0. These values must be treated
1177   // as different to be consistent with C1 and the interpreter.
1178   return (jlong_cast(_d) == jlong_cast(t->getd()));
1179 }
1180 
1181 //------------------------------hash-------------------------------------------
1182 // Type-specific hashing function.
1183 int TypeD::hash(void) const {
1184   return *(int*)(&_d);
1185 }
1186 
1187 //------------------------------is_finite--------------------------------------
1188 // Has a finite value
1189 bool TypeD::is_finite() const {
1190   return g_isfinite(getd()) != 0;
1191 }
1192 
1193 //------------------------------is_nan-----------------------------------------
1194 // Is not a number (NaN)
1195 bool TypeD::is_nan()    const {
1196   return g_isnan(getd()) != 0;
1197 }
1198 
1199 //------------------------------dump2------------------------------------------
1200 // Dump double constant Type
1201 #ifndef PRODUCT
1202 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1203   Type::dump2(d,depth,st);
1204   st->print("%f", _d);
1205 }
1206 #endif
1207 
1208 //------------------------------singleton--------------------------------------
1209 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1210 // constants (Ldi nodes).  Singletons are integer, float or double constants
1211 // or a single symbol.
1212 bool TypeD::singleton(void) const {
1213   return true;                  // Always a singleton
1214 }
1215 
1216 bool TypeD::empty(void) const {
1217   return false;                 // always exactly a singleton
1218 }
1219 
1220 //=============================================================================
1221 // Convience common pre-built types.
1222 const TypeInt *TypeInt::MINUS_1;// -1
1223 const TypeInt *TypeInt::ZERO;   // 0
1224 const TypeInt *TypeInt::ONE;    // 1
1225 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1226 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1227 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1228 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1229 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1230 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1231 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1232 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1233 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1234 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1235 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1236 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1237 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1238 const TypeInt *TypeInt::INT;    // 32-bit integers
1239 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1240 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1241 
1242 //------------------------------TypeInt----------------------------------------
1243 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1244 }
1245 
1246 //------------------------------make-------------------------------------------
1247 const TypeInt *TypeInt::make( jint lo ) {
1248   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1249 }
1250 
1251 static int normalize_int_widen( jint lo, jint hi, int w ) {
1252   // Certain normalizations keep us sane when comparing types.
1253   // The 'SMALLINT' covers constants and also CC and its relatives.
1254   if (lo <= hi) {
1255     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1256     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1257   } else {
1258     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1259     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1260   }
1261   return w;
1262 }
1263 
1264 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1265   w = normalize_int_widen(lo, hi, w);
1266   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1267 }
1268 
1269 //------------------------------meet-------------------------------------------
1270 // Compute the MEET of two types.  It returns a new Type representation object
1271 // with reference count equal to the number of Types pointing at it.
1272 // Caller should wrap a Types around it.
1273 const Type *TypeInt::xmeet( const Type *t ) const {
1274   // Perform a fast test for common case; meeting the same types together.
1275   if( this == t ) return this;  // Meeting same type?
1276 
1277   // Currently "this->_base" is a TypeInt
1278   switch (t->base()) {          // Switch on original type
1279   case AnyPtr:                  // Mixing with oops happens when javac
1280   case RawPtr:                  // reuses local variables
1281   case OopPtr:
1282   case InstPtr:
1283   case ValueTypePtr:
1284   case AryPtr:
1285   case MetadataPtr:
1286   case KlassPtr:
1287   case NarrowOop:
1288   case NarrowKlass:
1289   case Long:
1290   case FloatTop:
1291   case FloatCon:
1292   case FloatBot:
1293   case DoubleTop:
1294   case DoubleCon:
1295   case DoubleBot:
1296   case Bottom:                  // Ye Olde Default
1297     return Type::BOTTOM;
1298   default:                      // All else is a mistake
1299     typerr(t);
1300   case Top:                     // No change
1301     return this;
1302   case Int:                     // Int vs Int?
1303     break;
1304   }
1305 
1306   // Expand covered set
1307   const TypeInt *r = t->is_int();
1308   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1309 }
1310 
1311 //------------------------------xdual------------------------------------------
1312 // Dual: reverse hi & lo; flip widen
1313 const Type *TypeInt::xdual() const {
1314   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1315   return new TypeInt(_hi,_lo,w);
1316 }
1317 
1318 //------------------------------widen------------------------------------------
1319 // Only happens for optimistic top-down optimizations.
1320 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1321   // Coming from TOP or such; no widening
1322   if( old->base() != Int ) return this;
1323   const TypeInt *ot = old->is_int();
1324 
1325   // If new guy is equal to old guy, no widening
1326   if( _lo == ot->_lo && _hi == ot->_hi )
1327     return old;
1328 
1329   // If new guy contains old, then we widened
1330   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1331     // New contains old
1332     // If new guy is already wider than old, no widening
1333     if( _widen > ot->_widen ) return this;
1334     // If old guy was a constant, do not bother
1335     if (ot->_lo == ot->_hi)  return this;
1336     // Now widen new guy.
1337     // Check for widening too far
1338     if (_widen == WidenMax) {
1339       int max = max_jint;
1340       int min = min_jint;
1341       if (limit->isa_int()) {
1342         max = limit->is_int()->_hi;
1343         min = limit->is_int()->_lo;
1344       }
1345       if (min < _lo && _hi < max) {
1346         // If neither endpoint is extremal yet, push out the endpoint
1347         // which is closer to its respective limit.
1348         if (_lo >= 0 ||                 // easy common case
1349             (juint)(_lo - min) >= (juint)(max - _hi)) {
1350           // Try to widen to an unsigned range type of 31 bits:
1351           return make(_lo, max, WidenMax);
1352         } else {
1353           return make(min, _hi, WidenMax);
1354         }
1355       }
1356       return TypeInt::INT;
1357     }
1358     // Returned widened new guy
1359     return make(_lo,_hi,_widen+1);
1360   }
1361 
1362   // If old guy contains new, then we probably widened too far & dropped to
1363   // bottom.  Return the wider fellow.
1364   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1365     return old;
1366 
1367   //fatal("Integer value range is not subset");
1368   //return this;
1369   return TypeInt::INT;
1370 }
1371 
1372 //------------------------------narrow---------------------------------------
1373 // Only happens for pessimistic optimizations.
1374 const Type *TypeInt::narrow( const Type *old ) const {
1375   if (_lo >= _hi)  return this;   // already narrow enough
1376   if (old == NULL)  return this;
1377   const TypeInt* ot = old->isa_int();
1378   if (ot == NULL)  return this;
1379   jint olo = ot->_lo;
1380   jint ohi = ot->_hi;
1381 
1382   // If new guy is equal to old guy, no narrowing
1383   if (_lo == olo && _hi == ohi)  return old;
1384 
1385   // If old guy was maximum range, allow the narrowing
1386   if (olo == min_jint && ohi == max_jint)  return this;
1387 
1388   if (_lo < olo || _hi > ohi)
1389     return this;                // doesn't narrow; pretty wierd
1390 
1391   // The new type narrows the old type, so look for a "death march".
1392   // See comments on PhaseTransform::saturate.
1393   juint nrange = (juint)_hi - _lo;
1394   juint orange = (juint)ohi - olo;
1395   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1396     // Use the new type only if the range shrinks a lot.
1397     // We do not want the optimizer computing 2^31 point by point.
1398     return old;
1399   }
1400 
1401   return this;
1402 }
1403 
1404 //-----------------------------filter------------------------------------------
1405 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1406   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1407   if (ft == NULL || ft->empty())
1408     return Type::TOP;           // Canonical empty value
1409   if (ft->_widen < this->_widen) {
1410     // Do not allow the value of kill->_widen to affect the outcome.
1411     // The widen bits must be allowed to run freely through the graph.
1412     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1413   }
1414   return ft;
1415 }
1416 
1417 //------------------------------eq---------------------------------------------
1418 // Structural equality check for Type representations
1419 bool TypeInt::eq( const Type *t ) const {
1420   const TypeInt *r = t->is_int(); // Handy access
1421   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1422 }
1423 
1424 //------------------------------hash-------------------------------------------
1425 // Type-specific hashing function.
1426 int TypeInt::hash(void) const {
1427   return java_add(java_add(_lo, _hi), java_add(_widen, (int)Type::Int));
1428 }
1429 
1430 //------------------------------is_finite--------------------------------------
1431 // Has a finite value
1432 bool TypeInt::is_finite() const {
1433   return true;
1434 }
1435 
1436 //------------------------------dump2------------------------------------------
1437 // Dump TypeInt
1438 #ifndef PRODUCT
1439 static const char* intname(char* buf, jint n) {
1440   if (n == min_jint)
1441     return "min";
1442   else if (n < min_jint + 10000)
1443     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1444   else if (n == max_jint)
1445     return "max";
1446   else if (n > max_jint - 10000)
1447     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1448   else
1449     sprintf(buf, INT32_FORMAT, n);
1450   return buf;
1451 }
1452 
1453 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1454   char buf[40], buf2[40];
1455   if (_lo == min_jint && _hi == max_jint)
1456     st->print("int");
1457   else if (is_con())
1458     st->print("int:%s", intname(buf, get_con()));
1459   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1460     st->print("bool");
1461   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1462     st->print("byte");
1463   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1464     st->print("char");
1465   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1466     st->print("short");
1467   else if (_hi == max_jint)
1468     st->print("int:>=%s", intname(buf, _lo));
1469   else if (_lo == min_jint)
1470     st->print("int:<=%s", intname(buf, _hi));
1471   else
1472     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1473 
1474   if (_widen != 0 && this != TypeInt::INT)
1475     st->print(":%.*s", _widen, "wwww");
1476 }
1477 #endif
1478 
1479 //------------------------------singleton--------------------------------------
1480 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1481 // constants.
1482 bool TypeInt::singleton(void) const {
1483   return _lo >= _hi;
1484 }
1485 
1486 bool TypeInt::empty(void) const {
1487   return _lo > _hi;
1488 }
1489 
1490 //=============================================================================
1491 // Convenience common pre-built types.
1492 const TypeLong *TypeLong::MINUS_1;// -1
1493 const TypeLong *TypeLong::ZERO; // 0
1494 const TypeLong *TypeLong::ONE;  // 1
1495 const TypeLong *TypeLong::POS;  // >=0
1496 const TypeLong *TypeLong::LONG; // 64-bit integers
1497 const TypeLong *TypeLong::INT;  // 32-bit subrange
1498 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1499 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1500 
1501 //------------------------------TypeLong---------------------------------------
1502 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1503 }
1504 
1505 //------------------------------make-------------------------------------------
1506 const TypeLong *TypeLong::make( jlong lo ) {
1507   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1508 }
1509 
1510 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1511   // Certain normalizations keep us sane when comparing types.
1512   // The 'SMALLINT' covers constants.
1513   if (lo <= hi) {
1514     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1515     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1516   } else {
1517     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1518     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1519   }
1520   return w;
1521 }
1522 
1523 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1524   w = normalize_long_widen(lo, hi, w);
1525   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1526 }
1527 
1528 
1529 //------------------------------meet-------------------------------------------
1530 // Compute the MEET of two types.  It returns a new Type representation object
1531 // with reference count equal to the number of Types pointing at it.
1532 // Caller should wrap a Types around it.
1533 const Type *TypeLong::xmeet( const Type *t ) const {
1534   // Perform a fast test for common case; meeting the same types together.
1535   if( this == t ) return this;  // Meeting same type?
1536 
1537   // Currently "this->_base" is a TypeLong
1538   switch (t->base()) {          // Switch on original type
1539   case AnyPtr:                  // Mixing with oops happens when javac
1540   case RawPtr:                  // reuses local variables
1541   case OopPtr:
1542   case InstPtr:
1543   case ValueTypePtr:
1544   case AryPtr:
1545   case MetadataPtr:
1546   case KlassPtr:
1547   case NarrowOop:
1548   case NarrowKlass:
1549   case Int:
1550   case FloatTop:
1551   case FloatCon:
1552   case FloatBot:
1553   case DoubleTop:
1554   case DoubleCon:
1555   case DoubleBot:
1556   case Bottom:                  // Ye Olde Default
1557     return Type::BOTTOM;
1558   default:                      // All else is a mistake
1559     typerr(t);
1560   case Top:                     // No change
1561     return this;
1562   case Long:                    // Long vs Long?
1563     break;
1564   }
1565 
1566   // Expand covered set
1567   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1568   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1569 }
1570 
1571 //------------------------------xdual------------------------------------------
1572 // Dual: reverse hi & lo; flip widen
1573 const Type *TypeLong::xdual() const {
1574   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1575   return new TypeLong(_hi,_lo,w);
1576 }
1577 
1578 //------------------------------widen------------------------------------------
1579 // Only happens for optimistic top-down optimizations.
1580 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1581   // Coming from TOP or such; no widening
1582   if( old->base() != Long ) return this;
1583   const TypeLong *ot = old->is_long();
1584 
1585   // If new guy is equal to old guy, no widening
1586   if( _lo == ot->_lo && _hi == ot->_hi )
1587     return old;
1588 
1589   // If new guy contains old, then we widened
1590   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1591     // New contains old
1592     // If new guy is already wider than old, no widening
1593     if( _widen > ot->_widen ) return this;
1594     // If old guy was a constant, do not bother
1595     if (ot->_lo == ot->_hi)  return this;
1596     // Now widen new guy.
1597     // Check for widening too far
1598     if (_widen == WidenMax) {
1599       jlong max = max_jlong;
1600       jlong min = min_jlong;
1601       if (limit->isa_long()) {
1602         max = limit->is_long()->_hi;
1603         min = limit->is_long()->_lo;
1604       }
1605       if (min < _lo && _hi < max) {
1606         // If neither endpoint is extremal yet, push out the endpoint
1607         // which is closer to its respective limit.
1608         if (_lo >= 0 ||                 // easy common case
1609             ((julong)_lo - min) >= ((julong)max - _hi)) {
1610           // Try to widen to an unsigned range type of 32/63 bits:
1611           if (max >= max_juint && _hi < max_juint)
1612             return make(_lo, max_juint, WidenMax);
1613           else
1614             return make(_lo, max, WidenMax);
1615         } else {
1616           return make(min, _hi, WidenMax);
1617         }
1618       }
1619       return TypeLong::LONG;
1620     }
1621     // Returned widened new guy
1622     return make(_lo,_hi,_widen+1);
1623   }
1624 
1625   // If old guy contains new, then we probably widened too far & dropped to
1626   // bottom.  Return the wider fellow.
1627   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1628     return old;
1629 
1630   //  fatal("Long value range is not subset");
1631   // return this;
1632   return TypeLong::LONG;
1633 }
1634 
1635 //------------------------------narrow----------------------------------------
1636 // Only happens for pessimistic optimizations.
1637 const Type *TypeLong::narrow( const Type *old ) const {
1638   if (_lo >= _hi)  return this;   // already narrow enough
1639   if (old == NULL)  return this;
1640   const TypeLong* ot = old->isa_long();
1641   if (ot == NULL)  return this;
1642   jlong olo = ot->_lo;
1643   jlong ohi = ot->_hi;
1644 
1645   // If new guy is equal to old guy, no narrowing
1646   if (_lo == olo && _hi == ohi)  return old;
1647 
1648   // If old guy was maximum range, allow the narrowing
1649   if (olo == min_jlong && ohi == max_jlong)  return this;
1650 
1651   if (_lo < olo || _hi > ohi)
1652     return this;                // doesn't narrow; pretty wierd
1653 
1654   // The new type narrows the old type, so look for a "death march".
1655   // See comments on PhaseTransform::saturate.
1656   julong nrange = _hi - _lo;
1657   julong orange = ohi - olo;
1658   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1659     // Use the new type only if the range shrinks a lot.
1660     // We do not want the optimizer computing 2^31 point by point.
1661     return old;
1662   }
1663 
1664   return this;
1665 }
1666 
1667 //-----------------------------filter------------------------------------------
1668 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1669   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1670   if (ft == NULL || ft->empty())
1671     return Type::TOP;           // Canonical empty value
1672   if (ft->_widen < this->_widen) {
1673     // Do not allow the value of kill->_widen to affect the outcome.
1674     // The widen bits must be allowed to run freely through the graph.
1675     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1676   }
1677   return ft;
1678 }
1679 
1680 //------------------------------eq---------------------------------------------
1681 // Structural equality check for Type representations
1682 bool TypeLong::eq( const Type *t ) const {
1683   const TypeLong *r = t->is_long(); // Handy access
1684   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1685 }
1686 
1687 //------------------------------hash-------------------------------------------
1688 // Type-specific hashing function.
1689 int TypeLong::hash(void) const {
1690   return (int)(_lo+_hi+_widen+(int)Type::Long);
1691 }
1692 
1693 //------------------------------is_finite--------------------------------------
1694 // Has a finite value
1695 bool TypeLong::is_finite() const {
1696   return true;
1697 }
1698 
1699 //------------------------------dump2------------------------------------------
1700 // Dump TypeLong
1701 #ifndef PRODUCT
1702 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1703   if (n > x) {
1704     if (n >= x + 10000)  return NULL;
1705     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1706   } else if (n < x) {
1707     if (n <= x - 10000)  return NULL;
1708     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1709   } else {
1710     return xname;
1711   }
1712   return buf;
1713 }
1714 
1715 static const char* longname(char* buf, jlong n) {
1716   const char* str;
1717   if (n == min_jlong)
1718     return "min";
1719   else if (n < min_jlong + 10000)
1720     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1721   else if (n == max_jlong)
1722     return "max";
1723   else if (n > max_jlong - 10000)
1724     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1725   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1726     return str;
1727   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1728     return str;
1729   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1730     return str;
1731   else
1732     sprintf(buf, JLONG_FORMAT, n);
1733   return buf;
1734 }
1735 
1736 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1737   char buf[80], buf2[80];
1738   if (_lo == min_jlong && _hi == max_jlong)
1739     st->print("long");
1740   else if (is_con())
1741     st->print("long:%s", longname(buf, get_con()));
1742   else if (_hi == max_jlong)
1743     st->print("long:>=%s", longname(buf, _lo));
1744   else if (_lo == min_jlong)
1745     st->print("long:<=%s", longname(buf, _hi));
1746   else
1747     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1748 
1749   if (_widen != 0 && this != TypeLong::LONG)
1750     st->print(":%.*s", _widen, "wwww");
1751 }
1752 #endif
1753 
1754 //------------------------------singleton--------------------------------------
1755 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1756 // constants
1757 bool TypeLong::singleton(void) const {
1758   return _lo >= _hi;
1759 }
1760 
1761 bool TypeLong::empty(void) const {
1762   return _lo > _hi;
1763 }
1764 
1765 //=============================================================================
1766 // Convenience common pre-built types.
1767 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1768 const TypeTuple *TypeTuple::IFFALSE;
1769 const TypeTuple *TypeTuple::IFTRUE;
1770 const TypeTuple *TypeTuple::IFNEITHER;
1771 const TypeTuple *TypeTuple::LOOPBODY;
1772 const TypeTuple *TypeTuple::MEMBAR;
1773 const TypeTuple *TypeTuple::STORECONDITIONAL;
1774 const TypeTuple *TypeTuple::START_I2C;
1775 const TypeTuple *TypeTuple::INT_PAIR;
1776 const TypeTuple *TypeTuple::LONG_PAIR;
1777 const TypeTuple *TypeTuple::INT_CC_PAIR;
1778 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1779 
1780 
1781 //------------------------------make-------------------------------------------
1782 // Make a TypeTuple from the range of a method signature
1783 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1784   ciType* return_type = sig->return_type();
1785   uint arg_cnt = return_type->size();
1786   const Type **field_array = fields(arg_cnt);
1787   switch (return_type->basic_type()) {
1788   case T_LONG:
1789     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1790     field_array[TypeFunc::Parms+1] = Type::HALF;
1791     break;
1792   case T_DOUBLE:
1793     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1794     field_array[TypeFunc::Parms+1] = Type::HALF;
1795     break;
1796   case T_OBJECT:
1797   case T_VALUETYPE:
1798   case T_ARRAY:
1799   case T_BOOLEAN:
1800   case T_CHAR:
1801   case T_FLOAT:
1802   case T_BYTE:
1803   case T_SHORT:
1804   case T_INT:
1805     field_array[TypeFunc::Parms] = get_const_type(return_type);
1806     break;
1807   case T_VOID:
1808     break;
1809   default:
1810     ShouldNotReachHere();
1811   }
1812   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1813 }
1814 
1815 static void collect_value_fields(ciValueKlass* vk, const Type**& field_array, uint& pos) {
1816   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1817     ciField* f = vk->nonstatic_field_at(j);
1818     BasicType bt = f->type()->basic_type();
1819     assert(bt < T_VALUETYPE && bt >= T_BOOLEAN, "not yet supported");
1820     field_array[pos++] = Type::get_const_type(f->type());
1821     if (bt == T_LONG || bt == T_DOUBLE) {
1822       field_array[pos++] = Type::HALF;
1823     }
1824   }
1825 }
1826 
1827 // Make a TypeTuple from the domain of a method signature
1828 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, bool vt_fields_as_args) {
1829   uint arg_cnt = sig->size();
1830 
1831   int vt_extra = 0;
1832   if (vt_fields_as_args) {
1833     for (int i = 0; i < sig->count(); i++) {
1834       ciType* type = sig->type_at(i);
1835       if (type->basic_type() == T_VALUETYPE) {
1836         assert(type->is_valuetype(), "inconsistent type");
1837         ciValueKlass* vk = (ciValueKlass*)type;
1838         vt_extra += vk->value_arg_slots()-1;
1839       }
1840     }
1841     assert(((int)arg_cnt) + vt_extra >= 0, "negative number of actual arguments?");
1842   }
1843 
1844   uint pos = TypeFunc::Parms;
1845   const Type **field_array;
1846   if (recv != NULL) {
1847     arg_cnt++;
1848     if (vt_fields_as_args && recv->is_valuetype()) {
1849       ciValueKlass* vk = (ciValueKlass*)recv;
1850       vt_extra += vk->value_arg_slots()-1;
1851     }
1852     field_array = fields(arg_cnt + vt_extra);
1853     // Use get_const_type here because it respects UseUniqueSubclasses:
1854     if (vt_fields_as_args && recv->is_valuetype()) {
1855       ciValueKlass* vk = (ciValueKlass*)recv;
1856       collect_value_fields(vk, field_array, pos);
1857     } else {
1858       field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1859     }
1860   } else {
1861     field_array = fields(arg_cnt + vt_extra);
1862   }
1863 
1864   int i = 0;
1865   while (pos < TypeFunc::Parms + arg_cnt + vt_extra) {
1866     ciType* type = sig->type_at(i);
1867 
1868     switch (type->basic_type()) {
1869     case T_LONG:
1870       field_array[pos++] = TypeLong::LONG;
1871       field_array[pos++] = Type::HALF;
1872       break;
1873     case T_DOUBLE:
1874       field_array[pos++] = Type::DOUBLE;
1875       field_array[pos++] = Type::HALF;
1876       break;
1877     case T_OBJECT:
1878     case T_ARRAY:
1879     case T_BOOLEAN:
1880     case T_CHAR:
1881     case T_FLOAT:
1882     case T_BYTE:
1883     case T_SHORT:
1884     case T_INT:
1885       field_array[pos++] = get_const_type(type);
1886       break;
1887     case T_VALUETYPE: {
1888       assert(type->is_valuetype(), "inconsistent type");
1889       if (vt_fields_as_args) {
1890         ciValueKlass* vk = (ciValueKlass*)type;
1891         collect_value_fields(vk, field_array, pos);
1892       } else {
1893         field_array[pos++] = get_const_type(type);
1894       }
1895       break;
1896     }
1897     default:
1898       ShouldNotReachHere();
1899     }
1900     i++;
1901   }
1902   assert(pos == TypeFunc::Parms + arg_cnt + vt_extra, "wrong number of arguments");
1903 
1904   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt + vt_extra, field_array))->hashcons();
1905 }
1906 
1907 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1908   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1909 }
1910 
1911 //------------------------------fields-----------------------------------------
1912 // Subroutine call type with space allocated for argument types
1913 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1914 const Type **TypeTuple::fields( uint arg_cnt ) {
1915   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1916   flds[TypeFunc::Control  ] = Type::CONTROL;
1917   flds[TypeFunc::I_O      ] = Type::ABIO;
1918   flds[TypeFunc::Memory   ] = Type::MEMORY;
1919   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1920   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1921 
1922   return flds;
1923 }
1924 
1925 //------------------------------meet-------------------------------------------
1926 // Compute the MEET of two types.  It returns a new Type object.
1927 const Type *TypeTuple::xmeet( const Type *t ) const {
1928   // Perform a fast test for common case; meeting the same types together.
1929   if( this == t ) return this;  // Meeting same type-rep?
1930 
1931   // Current "this->_base" is Tuple
1932   switch (t->base()) {          // switch on original type
1933 
1934   case Bottom:                  // Ye Olde Default
1935     return t;
1936 
1937   default:                      // All else is a mistake
1938     typerr(t);
1939 
1940   case Tuple: {                 // Meeting 2 signatures?
1941     const TypeTuple *x = t->is_tuple();
1942     assert( _cnt == x->_cnt, "" );
1943     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1944     for( uint i=0; i<_cnt; i++ )
1945       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1946     return TypeTuple::make(_cnt,fields);
1947   }
1948   case Top:
1949     break;
1950   }
1951   return this;                  // Return the double constant
1952 }
1953 
1954 //------------------------------xdual------------------------------------------
1955 // Dual: compute field-by-field dual
1956 const Type *TypeTuple::xdual() const {
1957   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1958   for( uint i=0; i<_cnt; i++ )
1959     fields[i] = _fields[i]->dual();
1960   return new TypeTuple(_cnt,fields);
1961 }
1962 
1963 //------------------------------eq---------------------------------------------
1964 // Structural equality check for Type representations
1965 bool TypeTuple::eq( const Type *t ) const {
1966   const TypeTuple *s = (const TypeTuple *)t;
1967   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1968   for (uint i = 0; i < _cnt; i++)
1969     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1970       return false;             // Missed
1971   return true;
1972 }
1973 
1974 //------------------------------hash-------------------------------------------
1975 // Type-specific hashing function.
1976 int TypeTuple::hash(void) const {
1977   intptr_t sum = _cnt;
1978   for( uint i=0; i<_cnt; i++ )
1979     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1980   return sum;
1981 }
1982 
1983 //------------------------------dump2------------------------------------------
1984 // Dump signature Type
1985 #ifndef PRODUCT
1986 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1987   st->print("{");
1988   if( !depth || d[this] ) {     // Check for recursive print
1989     st->print("...}");
1990     return;
1991   }
1992   d.Insert((void*)this, (void*)this);   // Stop recursion
1993   if( _cnt ) {
1994     uint i;
1995     for( i=0; i<_cnt-1; i++ ) {
1996       st->print("%d:", i);
1997       _fields[i]->dump2(d, depth-1, st);
1998       st->print(", ");
1999     }
2000     st->print("%d:", i);
2001     _fields[i]->dump2(d, depth-1, st);
2002   }
2003   st->print("}");
2004 }
2005 #endif
2006 
2007 //------------------------------singleton--------------------------------------
2008 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2009 // constants (Ldi nodes).  Singletons are integer, float or double constants
2010 // or a single symbol.
2011 bool TypeTuple::singleton(void) const {
2012   return false;                 // Never a singleton
2013 }
2014 
2015 bool TypeTuple::empty(void) const {
2016   for( uint i=0; i<_cnt; i++ ) {
2017     if (_fields[i]->empty())  return true;
2018   }
2019   return false;
2020 }
2021 
2022 //=============================================================================
2023 // Convenience common pre-built types.
2024 
2025 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2026   // Certain normalizations keep us sane when comparing types.
2027   // We do not want arrayOop variables to differ only by the wideness
2028   // of their index types.  Pick minimum wideness, since that is the
2029   // forced wideness of small ranges anyway.
2030   if (size->_widen != Type::WidenMin)
2031     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2032   else
2033     return size;
2034 }
2035 
2036 //------------------------------make-------------------------------------------
2037 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2038   if (UseCompressedOops && elem->isa_oopptr()) {
2039     elem = elem->make_narrowoop();
2040   }
2041   size = normalize_array_size(size);
2042   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2043 }
2044 
2045 //------------------------------meet-------------------------------------------
2046 // Compute the MEET of two types.  It returns a new Type object.
2047 const Type *TypeAry::xmeet( const Type *t ) const {
2048   // Perform a fast test for common case; meeting the same types together.
2049   if( this == t ) return this;  // Meeting same type-rep?
2050 
2051   // Current "this->_base" is Ary
2052   switch (t->base()) {          // switch on original type
2053 
2054   case Bottom:                  // Ye Olde Default
2055     return t;
2056 
2057   default:                      // All else is a mistake
2058     typerr(t);
2059 
2060   case Array: {                 // Meeting 2 arrays?
2061     const TypeAry *a = t->is_ary();
2062     return TypeAry::make(_elem->meet_speculative(a->_elem),
2063                          _size->xmeet(a->_size)->is_int(),
2064                          _stable & a->_stable);
2065   }
2066   case Top:
2067     break;
2068   }
2069   return this;                  // Return the double constant
2070 }
2071 
2072 //------------------------------xdual------------------------------------------
2073 // Dual: compute field-by-field dual
2074 const Type *TypeAry::xdual() const {
2075   const TypeInt* size_dual = _size->dual()->is_int();
2076   size_dual = normalize_array_size(size_dual);
2077   return new TypeAry(_elem->dual(), size_dual, !_stable);
2078 }
2079 
2080 //------------------------------eq---------------------------------------------
2081 // Structural equality check for Type representations
2082 bool TypeAry::eq( const Type *t ) const {
2083   const TypeAry *a = (const TypeAry*)t;
2084   return _elem == a->_elem &&
2085     _stable == a->_stable &&
2086     _size == a->_size;
2087 }
2088 
2089 //------------------------------hash-------------------------------------------
2090 // Type-specific hashing function.
2091 int TypeAry::hash(void) const {
2092   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2093 }
2094 
2095 /**
2096  * Return same type without a speculative part in the element
2097  */
2098 const Type* TypeAry::remove_speculative() const {
2099   return make(_elem->remove_speculative(), _size, _stable);
2100 }
2101 
2102 /**
2103  * Return same type with cleaned up speculative part of element
2104  */
2105 const Type* TypeAry::cleanup_speculative() const {
2106   return make(_elem->cleanup_speculative(), _size, _stable);
2107 }
2108 
2109 /**
2110  * Return same type but with a different inline depth (used for speculation)
2111  *
2112  * @param depth  depth to meet with
2113  */
2114 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2115   if (!UseInlineDepthForSpeculativeTypes) {
2116     return this;
2117   }
2118   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2119 }
2120 
2121 //----------------------interface_vs_oop---------------------------------------
2122 #ifdef ASSERT
2123 bool TypeAry::interface_vs_oop(const Type *t) const {
2124   const TypeAry* t_ary = t->is_ary();
2125   if (t_ary) {
2126     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2127     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2128     if(this_ptr != NULL && t_ptr != NULL) {
2129       return this_ptr->interface_vs_oop(t_ptr);
2130     }
2131   }
2132   return false;
2133 }
2134 #endif
2135 
2136 //------------------------------dump2------------------------------------------
2137 #ifndef PRODUCT
2138 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2139   if (_stable)  st->print("stable:");
2140   _elem->dump2(d, depth, st);
2141   st->print("[");
2142   _size->dump2(d, depth, st);
2143   st->print("]");
2144 }
2145 #endif
2146 
2147 //------------------------------singleton--------------------------------------
2148 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2149 // constants (Ldi nodes).  Singletons are integer, float or double constants
2150 // or a single symbol.
2151 bool TypeAry::singleton(void) const {
2152   return false;                 // Never a singleton
2153 }
2154 
2155 bool TypeAry::empty(void) const {
2156   return _elem->empty() || _size->empty();
2157 }
2158 
2159 //--------------------------ary_must_be_exact----------------------------------
2160 bool TypeAry::ary_must_be_exact() const {
2161   if (!UseExactTypes)       return false;
2162   // This logic looks at the element type of an array, and returns true
2163   // if the element type is either a primitive or a final instance class.
2164   // In such cases, an array built on this ary must have no subclasses.
2165   if (_elem == BOTTOM)      return false;  // general array not exact
2166   if (_elem == TOP   )      return false;  // inverted general array not exact
2167   const TypeOopPtr*  toop = NULL;
2168   if (UseCompressedOops && _elem->isa_narrowoop()) {
2169     toop = _elem->make_ptr()->isa_oopptr();
2170   } else {
2171     toop = _elem->isa_oopptr();
2172   }
2173   if (!toop)                return true;   // a primitive type, like int
2174   ciKlass* tklass = toop->klass();
2175   if (tklass == NULL)       return false;  // unloaded class
2176   if (!tklass->is_loaded()) return false;  // unloaded class
2177   const TypeInstPtr* tinst;
2178   if (_elem->isa_narrowoop())
2179     tinst = _elem->make_ptr()->isa_instptr();
2180   else
2181     tinst = _elem->isa_instptr();
2182   if (tinst)
2183     return tklass->as_instance_klass()->is_final();
2184   const TypeAryPtr*  tap;
2185   if (_elem->isa_narrowoop())
2186     tap = _elem->make_ptr()->isa_aryptr();
2187   else
2188     tap = _elem->isa_aryptr();
2189   if (tap)
2190     return tap->ary()->ary_must_be_exact();
2191   return false;
2192 }
2193 
2194 //==============================TypeValueType=======================================
2195 
2196 //------------------------------make-------------------------------------------
2197 const TypeValueType* TypeValueType::make(ciValueKlass* vk) {
2198   return (TypeValueType*)(new TypeValueType(vk))->hashcons();
2199 }
2200 
2201 //------------------------------meet-------------------------------------------
2202 // Compute the MEET of two types.  It returns a new Type object.
2203 const Type* TypeValueType::xmeet(const Type* t) const {
2204   // Perform a fast test for common case; meeting the same types together.
2205   if(this == t) return this;  // Meeting same type-rep?
2206 
2207   // Current "this->_base" is ValueType
2208   switch (t->base()) {          // switch on original type
2209 
2210   case Top:
2211     break;
2212 
2213   case Bottom:
2214     return t;
2215 
2216   default:                      // All else is a mistake
2217     typerr(t);
2218 
2219   }
2220   return this;
2221 }
2222 
2223 //------------------------------xdual------------------------------------------
2224 const Type* TypeValueType::xdual() const {
2225   // FIXME
2226   return new TypeValueType(_vk);
2227 }
2228 
2229 //------------------------------eq---------------------------------------------
2230 // Structural equality check for Type representations
2231 bool TypeValueType::eq(const Type* t) const {
2232   const TypeValueType* vt = t->is_valuetype();
2233   return (_vk == vt->value_klass());
2234 }
2235 
2236 //------------------------------hash-------------------------------------------
2237 // Type-specific hashing function.
2238 int TypeValueType::hash(void) const {
2239   return (intptr_t)_vk;
2240 }
2241 
2242 //------------------------------singleton--------------------------------------
2243 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2244 bool TypeValueType::singleton(void) const {
2245   // FIXME
2246   return false;
2247 }
2248 
2249 //------------------------------empty------------------------------------------
2250 // TRUE if Type is a type with no values, FALSE otherwise.
2251 bool TypeValueType::empty(void) const {
2252   // FIXME
2253   return false;
2254 }
2255 
2256 //------------------------------dump2------------------------------------------
2257 #ifndef PRODUCT
2258 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2259   st->print("valuetype[%d]:{", _vk->field_count());
2260   st->print("%s", _vk->field_type_by_index(0)->name());
2261   for (int i = 1; i < _vk->field_count(); ++i) {
2262     st->print(", %s", _vk->field_type_by_index(i)->name());
2263   }
2264   st->print("}");
2265 }
2266 #endif
2267 
2268 //==============================TypeVect=======================================
2269 // Convenience common pre-built types.
2270 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2271 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2272 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2273 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2274 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2275 
2276 //------------------------------make-------------------------------------------
2277 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2278   BasicType elem_bt = elem->array_element_basic_type();
2279   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2280   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2281   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2282   int size = length * type2aelembytes(elem_bt);
2283   switch (Matcher::vector_ideal_reg(size)) {
2284   case Op_VecS:
2285     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2286   case Op_RegL:
2287   case Op_VecD:
2288   case Op_RegD:
2289     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2290   case Op_VecX:
2291     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2292   case Op_VecY:
2293     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2294   case Op_VecZ:
2295     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2296   }
2297  ShouldNotReachHere();
2298   return NULL;
2299 }
2300 
2301 //------------------------------meet-------------------------------------------
2302 // Compute the MEET of two types.  It returns a new Type object.
2303 const Type *TypeVect::xmeet( const Type *t ) const {
2304   // Perform a fast test for common case; meeting the same types together.
2305   if( this == t ) return this;  // Meeting same type-rep?
2306 
2307   // Current "this->_base" is Vector
2308   switch (t->base()) {          // switch on original type
2309 
2310   case Bottom:                  // Ye Olde Default
2311     return t;
2312 
2313   default:                      // All else is a mistake
2314     typerr(t);
2315 
2316   case VectorS:
2317   case VectorD:
2318   case VectorX:
2319   case VectorY:
2320   case VectorZ: {                // Meeting 2 vectors?
2321     const TypeVect* v = t->is_vect();
2322     assert(  base() == v->base(), "");
2323     assert(length() == v->length(), "");
2324     assert(element_basic_type() == v->element_basic_type(), "");
2325     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2326   }
2327   case Top:
2328     break;
2329   }
2330   return this;
2331 }
2332 
2333 //------------------------------xdual------------------------------------------
2334 // Dual: compute field-by-field dual
2335 const Type *TypeVect::xdual() const {
2336   return new TypeVect(base(), _elem->dual(), _length);
2337 }
2338 
2339 //------------------------------eq---------------------------------------------
2340 // Structural equality check for Type representations
2341 bool TypeVect::eq(const Type *t) const {
2342   const TypeVect *v = t->is_vect();
2343   return (_elem == v->_elem) && (_length == v->_length);
2344 }
2345 
2346 //------------------------------hash-------------------------------------------
2347 // Type-specific hashing function.
2348 int TypeVect::hash(void) const {
2349   return (intptr_t)_elem + (intptr_t)_length;
2350 }
2351 
2352 //------------------------------singleton--------------------------------------
2353 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2354 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2355 // constant value (when vector is created with Replicate code).
2356 bool TypeVect::singleton(void) const {
2357 // There is no Con node for vectors yet.
2358 //  return _elem->singleton();
2359   return false;
2360 }
2361 
2362 bool TypeVect::empty(void) const {
2363   return _elem->empty();
2364 }
2365 
2366 //------------------------------dump2------------------------------------------
2367 #ifndef PRODUCT
2368 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2369   switch (base()) {
2370   case VectorS:
2371     st->print("vectors["); break;
2372   case VectorD:
2373     st->print("vectord["); break;
2374   case VectorX:
2375     st->print("vectorx["); break;
2376   case VectorY:
2377     st->print("vectory["); break;
2378   case VectorZ:
2379     st->print("vectorz["); break;
2380   default:
2381     ShouldNotReachHere();
2382   }
2383   st->print("%d]:{", _length);
2384   _elem->dump2(d, depth, st);
2385   st->print("}");
2386 }
2387 #endif
2388 
2389 
2390 //=============================================================================
2391 // Convenience common pre-built types.
2392 const TypePtr *TypePtr::NULL_PTR;
2393 const TypePtr *TypePtr::NOTNULL;
2394 const TypePtr *TypePtr::BOTTOM;
2395 
2396 //------------------------------meet-------------------------------------------
2397 // Meet over the PTR enum
2398 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2399   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2400   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2401   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2402   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2403   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2404   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2405   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2406 };
2407 
2408 //------------------------------make-------------------------------------------
2409 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2410   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2411 }
2412 
2413 //------------------------------cast_to_ptr_type-------------------------------
2414 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2415   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2416   if( ptr == _ptr ) return this;
2417   return make(_base, ptr, _offset, _speculative, _inline_depth);
2418 }
2419 
2420 //------------------------------get_con----------------------------------------
2421 intptr_t TypePtr::get_con() const {
2422   assert( _ptr == Null, "" );
2423   return _offset;
2424 }
2425 
2426 //------------------------------meet-------------------------------------------
2427 // Compute the MEET of two types.  It returns a new Type object.
2428 const Type *TypePtr::xmeet(const Type *t) const {
2429   const Type* res = xmeet_helper(t);
2430   if (res->isa_ptr() == NULL) {
2431     return res;
2432   }
2433 
2434   const TypePtr* res_ptr = res->is_ptr();
2435   if (res_ptr->speculative() != NULL) {
2436     // type->speculative() == NULL means that speculation is no better
2437     // than type, i.e. type->speculative() == type. So there are 2
2438     // ways to represent the fact that we have no useful speculative
2439     // data and we should use a single one to be able to test for
2440     // equality between types. Check whether type->speculative() ==
2441     // type and set speculative to NULL if it is the case.
2442     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2443       return res_ptr->remove_speculative();
2444     }
2445   }
2446 
2447   return res;
2448 }
2449 
2450 const Type *TypePtr::xmeet_helper(const Type *t) const {
2451   // Perform a fast test for common case; meeting the same types together.
2452   if( this == t ) return this;  // Meeting same type-rep?
2453 
2454   // Current "this->_base" is AnyPtr
2455   switch (t->base()) {          // switch on original type
2456   case Int:                     // Mixing ints & oops happens when javac
2457   case Long:                    // reuses local variables
2458   case FloatTop:
2459   case FloatCon:
2460   case FloatBot:
2461   case DoubleTop:
2462   case DoubleCon:
2463   case DoubleBot:
2464   case NarrowOop:
2465   case NarrowKlass:
2466   case Bottom:                  // Ye Olde Default
2467     return Type::BOTTOM;
2468   case Top:
2469     return this;
2470 
2471   case AnyPtr: {                // Meeting to AnyPtrs
2472     const TypePtr *tp = t->is_ptr();
2473     const TypePtr* speculative = xmeet_speculative(tp);
2474     int depth = meet_inline_depth(tp->inline_depth());
2475     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2476   }
2477   case RawPtr:                  // For these, flip the call around to cut down
2478   case OopPtr:
2479   case InstPtr:                 // on the cases I have to handle.
2480   case ValueTypePtr:
2481   case AryPtr:
2482   case MetadataPtr:
2483   case KlassPtr:
2484     return t->xmeet(this);      // Call in reverse direction
2485   default:                      // All else is a mistake
2486     typerr(t);
2487 
2488   }
2489   return this;
2490 }
2491 
2492 //------------------------------meet_offset------------------------------------
2493 int TypePtr::meet_offset( int offset ) const {
2494   // Either is 'TOP' offset?  Return the other offset!
2495   if( _offset == OffsetTop ) return offset;
2496   if( offset == OffsetTop ) return _offset;
2497   // If either is different, return 'BOTTOM' offset
2498   if( _offset != offset ) return OffsetBot;
2499   return _offset;
2500 }
2501 
2502 //------------------------------dual_offset------------------------------------
2503 int TypePtr::dual_offset( ) const {
2504   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2505   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2506   return _offset;               // Map everything else into self
2507 }
2508 
2509 //------------------------------xdual------------------------------------------
2510 // Dual: compute field-by-field dual
2511 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2512   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2513 };
2514 const Type *TypePtr::xdual() const {
2515   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2516 }
2517 
2518 //------------------------------xadd_offset------------------------------------
2519 int TypePtr::xadd_offset( intptr_t offset ) const {
2520   // Adding to 'TOP' offset?  Return 'TOP'!
2521   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2522   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2523   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2524   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2525   offset += (intptr_t)_offset;
2526   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2527 
2528   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2529   // It is possible to construct a negative offset during PhaseCCP
2530 
2531   return (int)offset;        // Sum valid offsets
2532 }
2533 
2534 //------------------------------add_offset-------------------------------------
2535 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2536   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2537 }
2538 
2539 //------------------------------eq---------------------------------------------
2540 // Structural equality check for Type representations
2541 bool TypePtr::eq( const Type *t ) const {
2542   const TypePtr *a = (const TypePtr*)t;
2543   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2544 }
2545 
2546 //------------------------------hash-------------------------------------------
2547 // Type-specific hashing function.
2548 int TypePtr::hash(void) const {
2549   return java_add(java_add(_ptr, _offset), java_add( hash_speculative(), _inline_depth));
2550 ;
2551 }
2552 
2553 /**
2554  * Return same type without a speculative part
2555  */
2556 const Type* TypePtr::remove_speculative() const {
2557   if (_speculative == NULL) {
2558     return this;
2559   }
2560   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2561   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2562 }
2563 
2564 /**
2565  * Return same type but drop speculative part if we know we won't use
2566  * it
2567  */
2568 const Type* TypePtr::cleanup_speculative() const {
2569   if (speculative() == NULL) {
2570     return this;
2571   }
2572   const Type* no_spec = remove_speculative();
2573   // If this is NULL_PTR then we don't need the speculative type
2574   // (with_inline_depth in case the current type inline depth is
2575   // InlineDepthTop)
2576   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2577     return no_spec;
2578   }
2579   if (above_centerline(speculative()->ptr())) {
2580     return no_spec;
2581   }
2582   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2583   // If the speculative may be null and is an inexact klass then it
2584   // doesn't help
2585   if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2586     return no_spec;
2587   }
2588   return this;
2589 }
2590 
2591 /**
2592  * dual of the speculative part of the type
2593  */
2594 const TypePtr* TypePtr::dual_speculative() const {
2595   if (_speculative == NULL) {
2596     return NULL;
2597   }
2598   return _speculative->dual()->is_ptr();
2599 }
2600 
2601 /**
2602  * meet of the speculative parts of 2 types
2603  *
2604  * @param other  type to meet with
2605  */
2606 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2607   bool this_has_spec = (_speculative != NULL);
2608   bool other_has_spec = (other->speculative() != NULL);
2609 
2610   if (!this_has_spec && !other_has_spec) {
2611     return NULL;
2612   }
2613 
2614   // If we are at a point where control flow meets and one branch has
2615   // a speculative type and the other has not, we meet the speculative
2616   // type of one branch with the actual type of the other. If the
2617   // actual type is exact and the speculative is as well, then the
2618   // result is a speculative type which is exact and we can continue
2619   // speculation further.
2620   const TypePtr* this_spec = _speculative;
2621   const TypePtr* other_spec = other->speculative();
2622 
2623   if (!this_has_spec) {
2624     this_spec = this;
2625   }
2626 
2627   if (!other_has_spec) {
2628     other_spec = other;
2629   }
2630 
2631   return this_spec->meet(other_spec)->is_ptr();
2632 }
2633 
2634 /**
2635  * dual of the inline depth for this type (used for speculation)
2636  */
2637 int TypePtr::dual_inline_depth() const {
2638   return -inline_depth();
2639 }
2640 
2641 /**
2642  * meet of 2 inline depths (used for speculation)
2643  *
2644  * @param depth  depth to meet with
2645  */
2646 int TypePtr::meet_inline_depth(int depth) const {
2647   return MAX2(inline_depth(), depth);
2648 }
2649 
2650 /**
2651  * Are the speculative parts of 2 types equal?
2652  *
2653  * @param other  type to compare this one to
2654  */
2655 bool TypePtr::eq_speculative(const TypePtr* other) const {
2656   if (_speculative == NULL || other->speculative() == NULL) {
2657     return _speculative == other->speculative();
2658   }
2659 
2660   if (_speculative->base() != other->speculative()->base()) {
2661     return false;
2662   }
2663 
2664   return _speculative->eq(other->speculative());
2665 }
2666 
2667 /**
2668  * Hash of the speculative part of the type
2669  */
2670 int TypePtr::hash_speculative() const {
2671   if (_speculative == NULL) {
2672     return 0;
2673   }
2674 
2675   return _speculative->hash();
2676 }
2677 
2678 /**
2679  * add offset to the speculative part of the type
2680  *
2681  * @param offset  offset to add
2682  */
2683 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2684   if (_speculative == NULL) {
2685     return NULL;
2686   }
2687   return _speculative->add_offset(offset)->is_ptr();
2688 }
2689 
2690 /**
2691  * return exact klass from the speculative type if there's one
2692  */
2693 ciKlass* TypePtr::speculative_type() const {
2694   if (_speculative != NULL && _speculative->isa_oopptr()) {
2695     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2696     if (speculative->klass_is_exact()) {
2697       return speculative->klass();
2698     }
2699   }
2700   return NULL;
2701 }
2702 
2703 /**
2704  * return true if speculative type may be null
2705  */
2706 bool TypePtr::speculative_maybe_null() const {
2707   if (_speculative != NULL) {
2708     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2709     return speculative->maybe_null();
2710   }
2711   return true;
2712 }
2713 
2714 /**
2715  * Same as TypePtr::speculative_type() but return the klass only if
2716  * the speculative tells us is not null
2717  */
2718 ciKlass* TypePtr::speculative_type_not_null() const {
2719   if (speculative_maybe_null()) {
2720     return NULL;
2721   }
2722   return speculative_type();
2723 }
2724 
2725 /**
2726  * Check whether new profiling would improve speculative type
2727  *
2728  * @param   exact_kls    class from profiling
2729  * @param   inline_depth inlining depth of profile point
2730  *
2731  * @return  true if type profile is valuable
2732  */
2733 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2734   // no profiling?
2735   if (exact_kls == NULL) {
2736     return false;
2737   }
2738   // no speculative type or non exact speculative type?
2739   if (speculative_type() == NULL) {
2740     return true;
2741   }
2742   // If the node already has an exact speculative type keep it,
2743   // unless it was provided by profiling that is at a deeper
2744   // inlining level. Profiling at a higher inlining depth is
2745   // expected to be less accurate.
2746   if (_speculative->inline_depth() == InlineDepthBottom) {
2747     return false;
2748   }
2749   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2750   return inline_depth < _speculative->inline_depth();
2751 }
2752 
2753 /**
2754  * Check whether new profiling would improve ptr (= tells us it is non
2755  * null)
2756  *
2757  * @param   maybe_null true if profiling tells the ptr may be null
2758  *
2759  * @return  true if ptr profile is valuable
2760  */
2761 bool TypePtr::would_improve_ptr(bool maybe_null) const {
2762   // profiling doesn't tell us anything useful
2763   if (maybe_null) {
2764     return false;
2765   }
2766   // We already know this is not be null
2767   if (!this->maybe_null()) {
2768     return false;
2769   }
2770   // We already know the speculative type cannot be null
2771   if (!speculative_maybe_null()) {
2772     return false;
2773   }
2774   return true;
2775 }
2776 
2777 //------------------------------dump2------------------------------------------
2778 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2779   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2780 };
2781 
2782 #ifndef PRODUCT
2783 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2784   if( _ptr == Null ) st->print("NULL");
2785   else st->print("%s *", ptr_msg[_ptr]);
2786   if( _offset == OffsetTop ) st->print("+top");
2787   else if( _offset == OffsetBot ) st->print("+bot");
2788   else if( _offset ) st->print("+%d", _offset);
2789   dump_inline_depth(st);
2790   dump_speculative(st);
2791 }
2792 
2793 /**
2794  *dump the speculative part of the type
2795  */
2796 void TypePtr::dump_speculative(outputStream *st) const {
2797   if (_speculative != NULL) {
2798     st->print(" (speculative=");
2799     _speculative->dump_on(st);
2800     st->print(")");
2801   }
2802 }
2803 
2804 /**
2805  *dump the inline depth of the type
2806  */
2807 void TypePtr::dump_inline_depth(outputStream *st) const {
2808   if (_inline_depth != InlineDepthBottom) {
2809     if (_inline_depth == InlineDepthTop) {
2810       st->print(" (inline_depth=InlineDepthTop)");
2811     } else {
2812       st->print(" (inline_depth=%d)", _inline_depth);
2813     }
2814   }
2815 }
2816 #endif
2817 
2818 //------------------------------singleton--------------------------------------
2819 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2820 // constants
2821 bool TypePtr::singleton(void) const {
2822   // TopPTR, Null, AnyNull, Constant are all singletons
2823   return (_offset != OffsetBot) && !below_centerline(_ptr);
2824 }
2825 
2826 bool TypePtr::empty(void) const {
2827   return (_offset == OffsetTop) || above_centerline(_ptr);
2828 }
2829 
2830 //=============================================================================
2831 // Convenience common pre-built types.
2832 const TypeRawPtr *TypeRawPtr::BOTTOM;
2833 const TypeRawPtr *TypeRawPtr::NOTNULL;
2834 
2835 //------------------------------make-------------------------------------------
2836 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2837   assert( ptr != Constant, "what is the constant?" );
2838   assert( ptr != Null, "Use TypePtr for NULL" );
2839   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2840 }
2841 
2842 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2843   assert( bits, "Use TypePtr for NULL" );
2844   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2845 }
2846 
2847 //------------------------------cast_to_ptr_type-------------------------------
2848 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2849   assert( ptr != Constant, "what is the constant?" );
2850   assert( ptr != Null, "Use TypePtr for NULL" );
2851   assert( _bits==0, "Why cast a constant address?");
2852   if( ptr == _ptr ) return this;
2853   return make(ptr);
2854 }
2855 
2856 //------------------------------get_con----------------------------------------
2857 intptr_t TypeRawPtr::get_con() const {
2858   assert( _ptr == Null || _ptr == Constant, "" );
2859   return (intptr_t)_bits;
2860 }
2861 
2862 //------------------------------meet-------------------------------------------
2863 // Compute the MEET of two types.  It returns a new Type object.
2864 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2865   // Perform a fast test for common case; meeting the same types together.
2866   if( this == t ) return this;  // Meeting same type-rep?
2867 
2868   // Current "this->_base" is RawPtr
2869   switch( t->base() ) {         // switch on original type
2870   case Bottom:                  // Ye Olde Default
2871     return t;
2872   case Top:
2873     return this;
2874   case AnyPtr:                  // Meeting to AnyPtrs
2875     break;
2876   case RawPtr: {                // might be top, bot, any/not or constant
2877     enum PTR tptr = t->is_ptr()->ptr();
2878     enum PTR ptr = meet_ptr( tptr );
2879     if( ptr == Constant ) {     // Cannot be equal constants, so...
2880       if( tptr == Constant && _ptr != Constant)  return t;
2881       if( _ptr == Constant && tptr != Constant)  return this;
2882       ptr = NotNull;            // Fall down in lattice
2883     }
2884     return make( ptr );
2885   }
2886 
2887   case OopPtr:
2888   case InstPtr:
2889   case ValueTypePtr:
2890   case AryPtr:
2891   case MetadataPtr:
2892   case KlassPtr:
2893     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2894   default:                      // All else is a mistake
2895     typerr(t);
2896   }
2897 
2898   // Found an AnyPtr type vs self-RawPtr type
2899   const TypePtr *tp = t->is_ptr();
2900   switch (tp->ptr()) {
2901   case TypePtr::TopPTR:  return this;
2902   case TypePtr::BotPTR:  return t;
2903   case TypePtr::Null:
2904     if( _ptr == TypePtr::TopPTR ) return t;
2905     return TypeRawPtr::BOTTOM;
2906   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2907   case TypePtr::AnyNull:
2908     if( _ptr == TypePtr::Constant) return this;
2909     return make( meet_ptr(TypePtr::AnyNull) );
2910   default: ShouldNotReachHere();
2911   }
2912   return this;
2913 }
2914 
2915 //------------------------------xdual------------------------------------------
2916 // Dual: compute field-by-field dual
2917 const Type *TypeRawPtr::xdual() const {
2918   return new TypeRawPtr( dual_ptr(), _bits );
2919 }
2920 
2921 //------------------------------add_offset-------------------------------------
2922 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2923   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2924   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2925   if( offset == 0 ) return this; // No change
2926   switch (_ptr) {
2927   case TypePtr::TopPTR:
2928   case TypePtr::BotPTR:
2929   case TypePtr::NotNull:
2930     return this;
2931   case TypePtr::Null:
2932   case TypePtr::Constant: {
2933     address bits = _bits+offset;
2934     if ( bits == 0 ) return TypePtr::NULL_PTR;
2935     return make( bits );
2936   }
2937   default:  ShouldNotReachHere();
2938   }
2939   return NULL;                  // Lint noise
2940 }
2941 
2942 //------------------------------eq---------------------------------------------
2943 // Structural equality check for Type representations
2944 bool TypeRawPtr::eq( const Type *t ) const {
2945   const TypeRawPtr *a = (const TypeRawPtr*)t;
2946   return _bits == a->_bits && TypePtr::eq(t);
2947 }
2948 
2949 //------------------------------hash-------------------------------------------
2950 // Type-specific hashing function.
2951 int TypeRawPtr::hash(void) const {
2952   return (intptr_t)_bits + TypePtr::hash();
2953 }
2954 
2955 //------------------------------dump2------------------------------------------
2956 #ifndef PRODUCT
2957 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2958   if( _ptr == Constant )
2959     st->print(INTPTR_FORMAT, p2i(_bits));
2960   else
2961     st->print("rawptr:%s", ptr_msg[_ptr]);
2962 }
2963 #endif
2964 
2965 //=============================================================================
2966 // Convenience common pre-built type.
2967 const TypeOopPtr *TypeOopPtr::BOTTOM;
2968 
2969 //------------------------------TypeOopPtr-------------------------------------
2970 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2971                        int instance_id, const TypePtr* speculative, int inline_depth)
2972   : TypePtr(t, ptr, offset, speculative, inline_depth),
2973     _const_oop(o), _klass(k),
2974     _klass_is_exact(xk),
2975     _is_ptr_to_narrowoop(false),
2976     _is_ptr_to_narrowklass(false),
2977     _is_ptr_to_boxed_value(false),
2978     _instance_id(instance_id) {
2979   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2980       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2981     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2982   }
2983 #ifdef _LP64
2984   if (_offset != 0) {
2985     if (_offset == oopDesc::klass_offset_in_bytes()) {
2986       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2987     } else if (klass() == NULL) {
2988       // Array with unknown body type
2989       assert(this->isa_aryptr(), "only arrays without klass");
2990       _is_ptr_to_narrowoop = UseCompressedOops;
2991     } else if (this->isa_aryptr()) {
2992       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2993                              _offset != arrayOopDesc::length_offset_in_bytes());
2994     } else if (klass()->is_instance_klass()) {
2995       ciInstanceKlass* ik = klass()->as_instance_klass();
2996       ciField* field = NULL;
2997       if (this->isa_klassptr()) {
2998         // Perm objects don't use compressed references
2999       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3000         // unsafe access
3001         _is_ptr_to_narrowoop = UseCompressedOops;
3002       } else { // exclude unsafe ops
3003         assert(this->isa_instptr() || this->isa_valuetypeptr(), "must be an instance ptr.");
3004 
3005         if (klass() == ciEnv::current()->Class_klass() &&
3006             (_offset == java_lang_Class::klass_offset_in_bytes() ||
3007              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
3008           // Special hidden fields from the Class.
3009           assert(this->isa_instptr(), "must be an instance ptr.");
3010           _is_ptr_to_narrowoop = false;
3011         } else if (klass() == ciEnv::current()->Class_klass() &&
3012                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3013           // Static fields
3014           assert(o != NULL, "must be constant");
3015           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3016           ciField* field = k->get_field_by_offset(_offset, true);
3017           assert(field != NULL, "missing field");
3018           BasicType basic_elem_type = field->layout_type();
3019           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3020                                                        basic_elem_type == T_ARRAY);
3021         } else {
3022           // Instance fields which contains a compressed oop references.
3023           field = ik->get_field_by_offset(_offset, false);
3024           if (field != NULL) {
3025             BasicType basic_elem_type = field->layout_type();
3026             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3027                                                          basic_elem_type == T_ARRAY);
3028           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3029             // Compile::find_alias_type() cast exactness on all types to verify
3030             // that it does not affect alias type.
3031             _is_ptr_to_narrowoop = UseCompressedOops;
3032           } else {
3033             // Type for the copy start in LibraryCallKit::inline_native_clone().
3034             _is_ptr_to_narrowoop = UseCompressedOops;
3035           }
3036         }
3037       }
3038     }
3039   }
3040 #endif
3041 }
3042 
3043 //------------------------------make-------------------------------------------
3044 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3045                                      const TypePtr* speculative, int inline_depth) {
3046   assert(ptr != Constant, "no constant generic pointers");
3047   ciKlass*  k = Compile::current()->env()->Object_klass();
3048   bool      xk = false;
3049   ciObject* o = NULL;
3050   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3051 }
3052 
3053 
3054 //------------------------------cast_to_ptr_type-------------------------------
3055 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3056   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3057   if( ptr == _ptr ) return this;
3058   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3059 }
3060 
3061 //-----------------------------cast_to_instance_id----------------------------
3062 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3063   // There are no instances of a general oop.
3064   // Return self unchanged.
3065   return this;
3066 }
3067 
3068 //-----------------------------cast_to_exactness-------------------------------
3069 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3070   // There is no such thing as an exact general oop.
3071   // Return self unchanged.
3072   return this;
3073 }
3074 
3075 
3076 //------------------------------as_klass_type----------------------------------
3077 // Return the klass type corresponding to this instance or array type.
3078 // It is the type that is loaded from an object of this type.
3079 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3080   ciKlass* k = klass();
3081   bool    xk = klass_is_exact();
3082   if (k == NULL)
3083     return TypeKlassPtr::OBJECT;
3084   else
3085     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
3086 }
3087 
3088 //------------------------------meet-------------------------------------------
3089 // Compute the MEET of two types.  It returns a new Type object.
3090 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3091   // Perform a fast test for common case; meeting the same types together.
3092   if( this == t ) return this;  // Meeting same type-rep?
3093 
3094   // Current "this->_base" is OopPtr
3095   switch (t->base()) {          // switch on original type
3096 
3097   case Int:                     // Mixing ints & oops happens when javac
3098   case Long:                    // reuses local variables
3099   case FloatTop:
3100   case FloatCon:
3101   case FloatBot:
3102   case DoubleTop:
3103   case DoubleCon:
3104   case DoubleBot:
3105   case NarrowOop:
3106   case NarrowKlass:
3107   case Bottom:                  // Ye Olde Default
3108     return Type::BOTTOM;
3109   case Top:
3110     return this;
3111 
3112   default:                      // All else is a mistake
3113     typerr(t);
3114 
3115   case RawPtr:
3116   case MetadataPtr:
3117   case KlassPtr:
3118     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3119 
3120   case AnyPtr: {
3121     // Found an AnyPtr type vs self-OopPtr type
3122     const TypePtr *tp = t->is_ptr();
3123     int offset = meet_offset(tp->offset());
3124     PTR ptr = meet_ptr(tp->ptr());
3125     const TypePtr* speculative = xmeet_speculative(tp);
3126     int depth = meet_inline_depth(tp->inline_depth());
3127     switch (tp->ptr()) {
3128     case Null:
3129       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3130       // else fall through:
3131     case TopPTR:
3132     case AnyNull: {
3133       int instance_id = meet_instance_id(InstanceTop);
3134       return make(ptr, offset, instance_id, speculative, depth);
3135     }
3136     case BotPTR:
3137     case NotNull:
3138       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3139     default: typerr(t);
3140     }
3141   }
3142 
3143   case OopPtr: {                 // Meeting to other OopPtrs
3144     const TypeOopPtr *tp = t->is_oopptr();
3145     int instance_id = meet_instance_id(tp->instance_id());
3146     const TypePtr* speculative = xmeet_speculative(tp);
3147     int depth = meet_inline_depth(tp->inline_depth());
3148     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3149   }
3150 
3151   case InstPtr:                  // For these, flip the call around to cut down
3152   case ValueTypePtr:
3153   case AryPtr:
3154     return t->xmeet(this);      // Call in reverse direction
3155 
3156   } // End of switch
3157   return this;                  // Return the double constant
3158 }
3159 
3160 
3161 //------------------------------xdual------------------------------------------
3162 // Dual of a pure heap pointer.  No relevant klass or oop information.
3163 const Type *TypeOopPtr::xdual() const {
3164   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3165   assert(const_oop() == NULL,             "no constants here");
3166   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3167 }
3168 
3169 //--------------------------make_from_klass_common-----------------------------
3170 // Computes the element-type given a klass.
3171 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3172   if (klass->is_valuetype()) {
3173     return TypeValueTypePtr::make(TypePtr::NotNull, klass->as_value_klass());
3174   } else if (klass->is_instance_klass()) {
3175     Compile* C = Compile::current();
3176     Dependencies* deps = C->dependencies();
3177     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3178     // Element is an instance
3179     bool klass_is_exact = false;
3180     if (klass->is_loaded()) {
3181       // Try to set klass_is_exact.
3182       ciInstanceKlass* ik = klass->as_instance_klass();
3183       klass_is_exact = ik->is_final();
3184       if (!klass_is_exact && klass_change
3185           && deps != NULL && UseUniqueSubclasses) {
3186         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3187         if (sub != NULL) {
3188           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3189           klass = ik = sub;
3190           klass_is_exact = sub->is_final();
3191         }
3192       }
3193       if (!klass_is_exact && try_for_exact
3194           && deps != NULL && UseExactTypes) {
3195         if (!ik->is_interface() && !ik->has_subklass()) {
3196           // Add a dependence; if concrete subclass added we need to recompile
3197           deps->assert_leaf_type(ik);
3198           klass_is_exact = true;
3199         }
3200       }
3201     }
3202     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3203   } else if (klass->is_obj_array_klass()) {
3204     // Element is an object array. Recursively call ourself.
3205     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3206     bool xk = etype->klass_is_exact();
3207     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3208     // We used to pass NotNull in here, asserting that the sub-arrays
3209     // are all not-null.  This is not true in generally, as code can
3210     // slam NULLs down in the subarrays.
3211     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3212     return arr;
3213   } else if (klass->is_type_array_klass()) {
3214     // Element is an typeArray
3215     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3216     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3217     // We used to pass NotNull in here, asserting that the array pointer
3218     // is not-null. That was not true in general.
3219     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3220     return arr;
3221   } else {
3222     ShouldNotReachHere();
3223     return NULL;
3224   }
3225 }
3226 
3227 //------------------------------make_from_constant-----------------------------
3228 // Make a java pointer from an oop constant
3229 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3230   assert(!o->is_null_object(), "null object not yet handled here.");
3231   ciKlass* klass = o->klass();
3232   if (klass->is_valuetype()) {
3233     // Element is a value type
3234     if (require_constant) {
3235       if (!o->can_be_constant())  return NULL;
3236     } else if (!o->should_be_constant()) {
3237       return TypeValueTypePtr::make(TypePtr::NotNull, klass->as_value_klass());
3238     }
3239     return TypeValueTypePtr::make(o);
3240   } else if (klass->is_instance_klass()) {
3241     // Element is an instance
3242     if (require_constant) {
3243       if (!o->can_be_constant())  return NULL;
3244     } else if (!o->should_be_constant()) {
3245       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3246     }
3247     return TypeInstPtr::make(o);
3248   } else if (klass->is_obj_array_klass()) {
3249     // Element is an object array. Recursively call ourself.
3250     const TypeOopPtr *etype =
3251       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3252     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3253     // We used to pass NotNull in here, asserting that the sub-arrays
3254     // are all not-null.  This is not true in generally, as code can
3255     // slam NULLs down in the subarrays.
3256     if (require_constant) {
3257       if (!o->can_be_constant())  return NULL;
3258     } else if (!o->should_be_constant()) {
3259       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3260     }
3261     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3262     return arr;
3263   } else if (klass->is_type_array_klass()) {
3264     // Element is an typeArray
3265     const Type* etype =
3266       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3267     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3268     // We used to pass NotNull in here, asserting that the array pointer
3269     // is not-null. That was not true in general.
3270     if (require_constant) {
3271       if (!o->can_be_constant())  return NULL;
3272     } else if (!o->should_be_constant()) {
3273       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3274     }
3275     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3276     return arr;
3277   }
3278 
3279   fatal("unhandled object type");
3280   return NULL;
3281 }
3282 
3283 //------------------------------get_con----------------------------------------
3284 intptr_t TypeOopPtr::get_con() const {
3285   assert( _ptr == Null || _ptr == Constant, "" );
3286   assert( _offset >= 0, "" );
3287 
3288   if (_offset != 0) {
3289     // After being ported to the compiler interface, the compiler no longer
3290     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3291     // to a handle at compile time.  This handle is embedded in the generated
3292     // code and dereferenced at the time the nmethod is made.  Until that time,
3293     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3294     // have access to the addresses!).  This does not seem to currently happen,
3295     // but this assertion here is to help prevent its occurence.
3296     tty->print_cr("Found oop constant with non-zero offset");
3297     ShouldNotReachHere();
3298   }
3299 
3300   return (intptr_t)const_oop()->constant_encoding();
3301 }
3302 
3303 
3304 //-----------------------------filter------------------------------------------
3305 // Do not allow interface-vs.-noninterface joins to collapse to top.
3306 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3307 
3308   const Type* ft = join_helper(kills, include_speculative);
3309   const TypeInstPtr* ftip = ft->isa_instptr();
3310   const TypeInstPtr* ktip = kills->isa_instptr();
3311 
3312   if (ft->empty()) {
3313     // Check for evil case of 'this' being a class and 'kills' expecting an
3314     // interface.  This can happen because the bytecodes do not contain
3315     // enough type info to distinguish a Java-level interface variable
3316     // from a Java-level object variable.  If we meet 2 classes which
3317     // both implement interface I, but their meet is at 'j/l/O' which
3318     // doesn't implement I, we have no way to tell if the result should
3319     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3320     // into a Phi which "knows" it's an Interface type we'll have to
3321     // uplift the type.
3322     if (!empty()) {
3323       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3324         return kills;           // Uplift to interface
3325       }
3326       // Also check for evil cases of 'this' being a class array
3327       // and 'kills' expecting an array of interfaces.
3328       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3329       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3330         return kills;           // Uplift to array of interface
3331       }
3332     }
3333 
3334     return Type::TOP;           // Canonical empty value
3335   }
3336 
3337   // If we have an interface-typed Phi or cast and we narrow to a class type,
3338   // the join should report back the class.  However, if we have a J/L/Object
3339   // class-typed Phi and an interface flows in, it's possible that the meet &
3340   // join report an interface back out.  This isn't possible but happens
3341   // because the type system doesn't interact well with interfaces.
3342   if (ftip != NULL && ktip != NULL &&
3343       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3344       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3345     assert(!ftip->klass_is_exact(), "interface could not be exact");
3346     return ktip->cast_to_ptr_type(ftip->ptr());
3347   }
3348 
3349   return ft;
3350 }
3351 
3352 //------------------------------eq---------------------------------------------
3353 // Structural equality check for Type representations
3354 bool TypeOopPtr::eq( const Type *t ) const {
3355   const TypeOopPtr *a = (const TypeOopPtr*)t;
3356   if (_klass_is_exact != a->_klass_is_exact ||
3357       _instance_id != a->_instance_id)  return false;
3358   ciObject* one = const_oop();
3359   ciObject* two = a->const_oop();
3360   if (one == NULL || two == NULL) {
3361     return (one == two) && TypePtr::eq(t);
3362   } else {
3363     return one->equals(two) && TypePtr::eq(t);
3364   }
3365 }
3366 
3367 //------------------------------hash-------------------------------------------
3368 // Type-specific hashing function.
3369 int TypeOopPtr::hash(void) const {
3370   return
3371     java_add(java_add(const_oop() ? const_oop()->hash() : 0, _klass_is_exact),
3372              java_add(_instance_id, TypePtr::hash()));
3373 }
3374 
3375 //------------------------------dump2------------------------------------------
3376 #ifndef PRODUCT
3377 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3378   st->print("oopptr:%s", ptr_msg[_ptr]);
3379   if( _klass_is_exact ) st->print(":exact");
3380   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3381   switch( _offset ) {
3382   case OffsetTop: st->print("+top"); break;
3383   case OffsetBot: st->print("+any"); break;
3384   case         0: break;
3385   default:        st->print("+%d",_offset); break;
3386   }
3387   if (_instance_id == InstanceTop)
3388     st->print(",iid=top");
3389   else if (_instance_id != InstanceBot)
3390     st->print(",iid=%d",_instance_id);
3391 
3392   dump_inline_depth(st);
3393   dump_speculative(st);
3394 }
3395 #endif
3396 
3397 //------------------------------singleton--------------------------------------
3398 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3399 // constants
3400 bool TypeOopPtr::singleton(void) const {
3401   // detune optimizer to not generate constant oop + constant offset as a constant!
3402   // TopPTR, Null, AnyNull, Constant are all singletons
3403   return (_offset == 0) && !below_centerline(_ptr);
3404 }
3405 
3406 //------------------------------add_offset-------------------------------------
3407 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3408   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3409 }
3410 
3411 /**
3412  * Return same type without a speculative part
3413  */
3414 const Type* TypeOopPtr::remove_speculative() const {
3415   if (_speculative == NULL) {
3416     return this;
3417   }
3418   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3419   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3420 }
3421 
3422 /**
3423  * Return same type but drop speculative part if we know we won't use
3424  * it
3425  */
3426 const Type* TypeOopPtr::cleanup_speculative() const {
3427   // If the klass is exact and the ptr is not null then there's
3428   // nothing that the speculative type can help us with
3429   if (klass_is_exact() && !maybe_null()) {
3430     return remove_speculative();
3431   }
3432   return TypePtr::cleanup_speculative();
3433 }
3434 
3435 /**
3436  * Return same type but with a different inline depth (used for speculation)
3437  *
3438  * @param depth  depth to meet with
3439  */
3440 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3441   if (!UseInlineDepthForSpeculativeTypes) {
3442     return this;
3443   }
3444   return make(_ptr, _offset, _instance_id, _speculative, depth);
3445 }
3446 
3447 //------------------------------meet_instance_id--------------------------------
3448 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3449   // Either is 'TOP' instance?  Return the other instance!
3450   if( _instance_id == InstanceTop ) return  instance_id;
3451   if(  instance_id == InstanceTop ) return _instance_id;
3452   // If either is different, return 'BOTTOM' instance
3453   if( _instance_id != instance_id ) return InstanceBot;
3454   return _instance_id;
3455 }
3456 
3457 //------------------------------dual_instance_id--------------------------------
3458 int TypeOopPtr::dual_instance_id( ) const {
3459   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3460   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3461   return _instance_id;              // Map everything else into self
3462 }
3463 
3464 /**
3465  * Check whether new profiling would improve speculative type
3466  *
3467  * @param   exact_kls    class from profiling
3468  * @param   inline_depth inlining depth of profile point
3469  *
3470  * @return  true if type profile is valuable
3471  */
3472 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3473   // no way to improve an already exact type
3474   if (klass_is_exact()) {
3475     return false;
3476   }
3477   return TypePtr::would_improve_type(exact_kls, inline_depth);
3478 }
3479 
3480 //=============================================================================
3481 // Convenience common pre-built types.
3482 const TypeInstPtr *TypeInstPtr::NOTNULL;
3483 const TypeInstPtr *TypeInstPtr::BOTTOM;
3484 const TypeInstPtr *TypeInstPtr::MIRROR;
3485 const TypeInstPtr *TypeInstPtr::MARK;
3486 const TypeInstPtr *TypeInstPtr::KLASS;
3487 
3488 //------------------------------TypeInstPtr-------------------------------------
3489 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3490                          int instance_id, const TypePtr* speculative, int inline_depth)
3491   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3492     _name(k->name()) {
3493    assert(k != NULL &&
3494           (k->is_loaded() || o == NULL),
3495           "cannot have constants with non-loaded klass");
3496 };
3497 
3498 //------------------------------make-------------------------------------------
3499 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3500                                      ciKlass* k,
3501                                      bool xk,
3502                                      ciObject* o,
3503                                      int offset,
3504                                      int instance_id,
3505                                      const TypePtr* speculative,
3506                                      int inline_depth) {
3507   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3508   // Either const_oop() is NULL or else ptr is Constant
3509   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3510           "constant pointers must have a value supplied" );
3511   // Ptr is never Null
3512   assert( ptr != Null, "NULL pointers are not typed" );
3513 
3514   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3515   if (!UseExactTypes)  xk = false;
3516   if (ptr == Constant) {
3517     // Note:  This case includes meta-object constants, such as methods.
3518     xk = true;
3519   } else if (k->is_loaded()) {
3520     ciInstanceKlass* ik = k->as_instance_klass();
3521     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3522     if (xk && ik->is_interface())  xk = false;  // no exact interface
3523   }
3524 
3525   // Now hash this baby
3526   TypeInstPtr *result =
3527     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3528 
3529   return result;
3530 }
3531 
3532 /**
3533  *  Create constant type for a constant boxed value
3534  */
3535 const Type* TypeInstPtr::get_const_boxed_value() const {
3536   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3537   assert((const_oop() != NULL), "should be called only for constant object");
3538   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3539   BasicType bt = constant.basic_type();
3540   switch (bt) {
3541     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3542     case T_INT:      return TypeInt::make(constant.as_int());
3543     case T_CHAR:     return TypeInt::make(constant.as_char());
3544     case T_BYTE:     return TypeInt::make(constant.as_byte());
3545     case T_SHORT:    return TypeInt::make(constant.as_short());
3546     case T_FLOAT:    return TypeF::make(constant.as_float());
3547     case T_DOUBLE:   return TypeD::make(constant.as_double());
3548     case T_LONG:     return TypeLong::make(constant.as_long());
3549     default:         break;
3550   }
3551   fatal("Invalid boxed value type '%s'", type2name(bt));
3552   return NULL;
3553 }
3554 
3555 //------------------------------cast_to_ptr_type-------------------------------
3556 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3557   if( ptr == _ptr ) return this;
3558   // Reconstruct _sig info here since not a problem with later lazy
3559   // construction, _sig will show up on demand.
3560   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3561 }
3562 
3563 
3564 //-----------------------------cast_to_exactness-------------------------------
3565 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3566   if( klass_is_exact == _klass_is_exact ) return this;
3567   if (!UseExactTypes)  return this;
3568   if (!_klass->is_loaded())  return this;
3569   ciInstanceKlass* ik = _klass->as_instance_klass();
3570   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3571   if( ik->is_interface() )              return this;  // cannot set xk
3572   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3573 }
3574 
3575 //-----------------------------cast_to_instance_id----------------------------
3576 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3577   if( instance_id == _instance_id ) return this;
3578   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3579 }
3580 
3581 //------------------------------xmeet_unloaded---------------------------------
3582 // Compute the MEET of two InstPtrs when at least one is unloaded.
3583 // Assume classes are different since called after check for same name/class-loader
3584 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3585     int off = meet_offset(tinst->offset());
3586     PTR ptr = meet_ptr(tinst->ptr());
3587     int instance_id = meet_instance_id(tinst->instance_id());
3588     const TypePtr* speculative = xmeet_speculative(tinst);
3589     int depth = meet_inline_depth(tinst->inline_depth());
3590 
3591     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3592     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3593     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3594       //
3595       // Meet unloaded class with java/lang/Object
3596       //
3597       // Meet
3598       //          |                     Unloaded Class
3599       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3600       //  ===================================================================
3601       //   TOP    | ..........................Unloaded......................|
3602       //  AnyNull |  U-AN    |................Unloaded......................|
3603       // Constant | ... O-NN .................................. |   O-BOT   |
3604       //  NotNull | ... O-NN .................................. |   O-BOT   |
3605       //  BOTTOM  | ........................Object-BOTTOM ..................|
3606       //
3607       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3608       //
3609       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3610       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3611       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3612       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3613         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3614         else                                      { return TypeInstPtr::NOTNULL; }
3615       }
3616       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3617 
3618       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3619     }
3620 
3621     // Both are unloaded, not the same class, not Object
3622     // Or meet unloaded with a different loaded class, not java/lang/Object
3623     if( ptr != TypePtr::BotPTR ) {
3624       return TypeInstPtr::NOTNULL;
3625     }
3626     return TypeInstPtr::BOTTOM;
3627 }
3628 
3629 
3630 //------------------------------meet-------------------------------------------
3631 // Compute the MEET of two types.  It returns a new Type object.
3632 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3633   // Perform a fast test for common case; meeting the same types together.
3634   if( this == t ) return this;  // Meeting same type-rep?
3635 
3636   // Current "this->_base" is Pointer
3637   switch (t->base()) {          // switch on original type
3638 
3639   case Int:                     // Mixing ints & oops happens when javac
3640   case Long:                    // reuses local variables
3641   case FloatTop:
3642   case FloatCon:
3643   case FloatBot:
3644   case DoubleTop:
3645   case DoubleCon:
3646   case DoubleBot:
3647   case NarrowOop:
3648   case NarrowKlass:
3649   case Bottom:                  // Ye Olde Default
3650     return Type::BOTTOM;
3651   case Top:
3652     return this;
3653 
3654   default:                      // All else is a mistake
3655     typerr(t);
3656 
3657   case MetadataPtr:
3658   case KlassPtr:
3659   case RawPtr: return TypePtr::BOTTOM;
3660 
3661   case AryPtr: {                // All arrays inherit from Object class
3662     const TypeAryPtr *tp = t->is_aryptr();
3663     int offset = meet_offset(tp->offset());
3664     PTR ptr = meet_ptr(tp->ptr());
3665     int instance_id = meet_instance_id(tp->instance_id());
3666     const TypePtr* speculative = xmeet_speculative(tp);
3667     int depth = meet_inline_depth(tp->inline_depth());
3668     switch (ptr) {
3669     case TopPTR:
3670     case AnyNull:                // Fall 'down' to dual of object klass
3671       // For instances when a subclass meets a superclass we fall
3672       // below the centerline when the superclass is exact. We need to
3673       // do the same here.
3674       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3675         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3676       } else {
3677         // cannot subclass, so the meet has to fall badly below the centerline
3678         ptr = NotNull;
3679         instance_id = InstanceBot;
3680         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3681       }
3682     case Constant:
3683     case NotNull:
3684     case BotPTR:                // Fall down to object klass
3685       // LCA is object_klass, but if we subclass from the top we can do better
3686       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3687         // If 'this' (InstPtr) is above the centerline and it is Object class
3688         // then we can subclass in the Java class hierarchy.
3689         // For instances when a subclass meets a superclass we fall
3690         // below the centerline when the superclass is exact. We need
3691         // to do the same here.
3692         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3693           // that is, tp's array type is a subtype of my klass
3694           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3695                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3696         }
3697       }
3698       // The other case cannot happen, since I cannot be a subtype of an array.
3699       // The meet falls down to Object class below centerline.
3700       if( ptr == Constant )
3701          ptr = NotNull;
3702       instance_id = InstanceBot;
3703       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3704     default: typerr(t);
3705     }
3706   }
3707 
3708   case OopPtr: {                // Meeting to OopPtrs
3709     // Found a OopPtr type vs self-InstPtr type
3710     const TypeOopPtr *tp = t->is_oopptr();
3711     int offset = meet_offset(tp->offset());
3712     PTR ptr = meet_ptr(tp->ptr());
3713     switch (tp->ptr()) {
3714     case TopPTR:
3715     case AnyNull: {
3716       int instance_id = meet_instance_id(InstanceTop);
3717       const TypePtr* speculative = xmeet_speculative(tp);
3718       int depth = meet_inline_depth(tp->inline_depth());
3719       return make(ptr, klass(), klass_is_exact(),
3720                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3721     }
3722     case NotNull:
3723     case BotPTR: {
3724       int instance_id = meet_instance_id(tp->instance_id());
3725       const TypePtr* speculative = xmeet_speculative(tp);
3726       int depth = meet_inline_depth(tp->inline_depth());
3727       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3728     }
3729     default: typerr(t);
3730     }
3731   }
3732 
3733   case AnyPtr: {                // Meeting to AnyPtrs
3734     // Found an AnyPtr type vs self-InstPtr type
3735     const TypePtr *tp = t->is_ptr();
3736     int offset = meet_offset(tp->offset());
3737     PTR ptr = meet_ptr(tp->ptr());
3738     int instance_id = meet_instance_id(InstanceTop);
3739     const TypePtr* speculative = xmeet_speculative(tp);
3740     int depth = meet_inline_depth(tp->inline_depth());
3741     switch (tp->ptr()) {
3742     case Null:
3743       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3744       // else fall through to AnyNull
3745     case TopPTR:
3746     case AnyNull: {
3747       return make(ptr, klass(), klass_is_exact(),
3748                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3749     }
3750     case NotNull:
3751     case BotPTR:
3752       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3753     default: typerr(t);
3754     }
3755   }
3756 
3757   /*
3758                  A-top         }
3759                /   |   \       }  Tops
3760            B-top A-any C-top   }
3761               | /  |  \ |      }  Any-nulls
3762            B-any   |   C-any   }
3763               |    |    |
3764            B-con A-con C-con   } constants; not comparable across classes
3765               |    |    |
3766            B-not   |   C-not   }
3767               | \  |  / |      }  not-nulls
3768            B-bot A-not C-bot   }
3769                \   |   /       }  Bottoms
3770                  A-bot         }
3771   */
3772 
3773   case InstPtr: {                // Meeting 2 Oops?
3774     // Found an InstPtr sub-type vs self-InstPtr type
3775     const TypeInstPtr *tinst = t->is_instptr();
3776     int off = meet_offset( tinst->offset() );
3777     PTR ptr = meet_ptr( tinst->ptr() );
3778     int instance_id = meet_instance_id(tinst->instance_id());
3779     const TypePtr* speculative = xmeet_speculative(tinst);
3780     int depth = meet_inline_depth(tinst->inline_depth());
3781 
3782     // Check for easy case; klasses are equal (and perhaps not loaded!)
3783     // If we have constants, then we created oops so classes are loaded
3784     // and we can handle the constants further down.  This case handles
3785     // both-not-loaded or both-loaded classes
3786     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3787       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3788     }
3789 
3790     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3791     ciKlass* tinst_klass = tinst->klass();
3792     ciKlass* this_klass  = this->klass();
3793     bool tinst_xk = tinst->klass_is_exact();
3794     bool this_xk  = this->klass_is_exact();
3795     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3796       // One of these classes has not been loaded
3797       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3798 #ifndef PRODUCT
3799       if( PrintOpto && Verbose ) {
3800         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3801         tty->print("  this == "); this->dump(); tty->cr();
3802         tty->print(" tinst == "); tinst->dump(); tty->cr();
3803       }
3804 #endif
3805       return unloaded_meet;
3806     }
3807 
3808     // Handle mixing oops and interfaces first.
3809     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3810                                         tinst_klass == ciEnv::current()->Object_klass())) {
3811       ciKlass *tmp = tinst_klass; // Swap interface around
3812       tinst_klass = this_klass;
3813       this_klass = tmp;
3814       bool tmp2 = tinst_xk;
3815       tinst_xk = this_xk;
3816       this_xk = tmp2;
3817     }
3818     if (tinst_klass->is_interface() &&
3819         !(this_klass->is_interface() ||
3820           // Treat java/lang/Object as an honorary interface,
3821           // because we need a bottom for the interface hierarchy.
3822           this_klass == ciEnv::current()->Object_klass())) {
3823       // Oop meets interface!
3824 
3825       // See if the oop subtypes (implements) interface.
3826       ciKlass *k;
3827       bool xk;
3828       if( this_klass->is_subtype_of( tinst_klass ) ) {
3829         // Oop indeed subtypes.  Now keep oop or interface depending
3830         // on whether we are both above the centerline or either is
3831         // below the centerline.  If we are on the centerline
3832         // (e.g., Constant vs. AnyNull interface), use the constant.
3833         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3834         // If we are keeping this_klass, keep its exactness too.
3835         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3836       } else {                  // Does not implement, fall to Object
3837         // Oop does not implement interface, so mixing falls to Object
3838         // just like the verifier does (if both are above the
3839         // centerline fall to interface)
3840         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3841         xk = above_centerline(ptr) ? tinst_xk : false;
3842         // Watch out for Constant vs. AnyNull interface.
3843         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3844         instance_id = InstanceBot;
3845       }
3846       ciObject* o = NULL;  // the Constant value, if any
3847       if (ptr == Constant) {
3848         // Find out which constant.
3849         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3850       }
3851       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3852     }
3853 
3854     // Either oop vs oop or interface vs interface or interface vs Object
3855 
3856     // !!! Here's how the symmetry requirement breaks down into invariants:
3857     // If we split one up & one down AND they subtype, take the down man.
3858     // If we split one up & one down AND they do NOT subtype, "fall hard".
3859     // If both are up and they subtype, take the subtype class.
3860     // If both are up and they do NOT subtype, "fall hard".
3861     // If both are down and they subtype, take the supertype class.
3862     // If both are down and they do NOT subtype, "fall hard".
3863     // Constants treated as down.
3864 
3865     // Now, reorder the above list; observe that both-down+subtype is also
3866     // "fall hard"; "fall hard" becomes the default case:
3867     // If we split one up & one down AND they subtype, take the down man.
3868     // If both are up and they subtype, take the subtype class.
3869 
3870     // If both are down and they subtype, "fall hard".
3871     // If both are down and they do NOT subtype, "fall hard".
3872     // If both are up and they do NOT subtype, "fall hard".
3873     // If we split one up & one down AND they do NOT subtype, "fall hard".
3874 
3875     // If a proper subtype is exact, and we return it, we return it exactly.
3876     // If a proper supertype is exact, there can be no subtyping relationship!
3877     // If both types are equal to the subtype, exactness is and-ed below the
3878     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3879 
3880     // Check for subtyping:
3881     ciKlass *subtype = NULL;
3882     bool subtype_exact = false;
3883     if( tinst_klass->equals(this_klass) ) {
3884       subtype = this_klass;
3885       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3886     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3887       subtype = this_klass;     // Pick subtyping class
3888       subtype_exact = this_xk;
3889     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3890       subtype = tinst_klass;    // Pick subtyping class
3891       subtype_exact = tinst_xk;
3892     }
3893 
3894     if( subtype ) {
3895       if( above_centerline(ptr) ) { // both are up?
3896         this_klass = tinst_klass = subtype;
3897         this_xk = tinst_xk = subtype_exact;
3898       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3899         this_klass = tinst_klass; // tinst is down; keep down man
3900         this_xk = tinst_xk;
3901       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3902         tinst_klass = this_klass; // this is down; keep down man
3903         tinst_xk = this_xk;
3904       } else {
3905         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3906       }
3907     }
3908 
3909     // Check for classes now being equal
3910     if (tinst_klass->equals(this_klass)) {
3911       // If the klasses are equal, the constants may still differ.  Fall to
3912       // NotNull if they do (neither constant is NULL; that is a special case
3913       // handled elsewhere).
3914       ciObject* o = NULL;             // Assume not constant when done
3915       ciObject* this_oop  = const_oop();
3916       ciObject* tinst_oop = tinst->const_oop();
3917       if( ptr == Constant ) {
3918         if (this_oop != NULL && tinst_oop != NULL &&
3919             this_oop->equals(tinst_oop) )
3920           o = this_oop;
3921         else if (above_centerline(this ->_ptr))
3922           o = tinst_oop;
3923         else if (above_centerline(tinst ->_ptr))
3924           o = this_oop;
3925         else
3926           ptr = NotNull;
3927       }
3928       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3929     } // Else classes are not equal
3930 
3931     // Since klasses are different, we require a LCA in the Java
3932     // class hierarchy - which means we have to fall to at least NotNull.
3933     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3934       ptr = NotNull;
3935 
3936     instance_id = InstanceBot;
3937 
3938     // Now we find the LCA of Java classes
3939     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3940     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3941   } // End of case InstPtr
3942 
3943   } // End of switch
3944   return this;                  // Return the double constant
3945 }
3946 
3947 
3948 //------------------------java_mirror_type--------------------------------------
3949 ciType* TypeInstPtr::java_mirror_type() const {
3950   // must be a singleton type
3951   if( const_oop() == NULL )  return NULL;
3952 
3953   // must be of type java.lang.Class
3954   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3955 
3956   return const_oop()->as_instance()->java_mirror_type();
3957 }
3958 
3959 
3960 //------------------------------xdual------------------------------------------
3961 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3962 // inheritance mechanism.
3963 const Type *TypeInstPtr::xdual() const {
3964   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3965 }
3966 
3967 //------------------------------eq---------------------------------------------
3968 // Structural equality check for Type representations
3969 bool TypeInstPtr::eq( const Type *t ) const {
3970   const TypeInstPtr *p = t->is_instptr();
3971   return
3972     klass()->equals(p->klass()) &&
3973     TypeOopPtr::eq(p);          // Check sub-type stuff
3974 }
3975 
3976 //------------------------------hash-------------------------------------------
3977 // Type-specific hashing function.
3978 int TypeInstPtr::hash(void) const {
3979   int hash = java_add(klass()->hash(), TypeOopPtr::hash());
3980   return hash;
3981 }
3982 
3983 //------------------------------dump2------------------------------------------
3984 // Dump oop Type
3985 #ifndef PRODUCT
3986 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3987   // Print the name of the klass.
3988   klass()->print_name_on(st);
3989 
3990   switch( _ptr ) {
3991   case Constant:
3992     // TO DO: Make CI print the hex address of the underlying oop.
3993     if (WizardMode || Verbose) {
3994       const_oop()->print_oop(st);
3995     }
3996   case BotPTR:
3997     if (!WizardMode && !Verbose) {
3998       if( _klass_is_exact ) st->print(":exact");
3999       break;
4000     }
4001   case TopPTR:
4002   case AnyNull:
4003   case NotNull:
4004     st->print(":%s", ptr_msg[_ptr]);
4005     if( _klass_is_exact ) st->print(":exact");
4006     break;
4007   }
4008 
4009   if( _offset ) {               // Dump offset, if any
4010     if( _offset == OffsetBot )      st->print("+any");
4011     else if( _offset == OffsetTop ) st->print("+unknown");
4012     else st->print("+%d", _offset);
4013   }
4014 
4015   st->print(" *");
4016   if (_instance_id == InstanceTop)
4017     st->print(",iid=top");
4018   else if (_instance_id != InstanceBot)
4019     st->print(",iid=%d",_instance_id);
4020 
4021   dump_inline_depth(st);
4022   dump_speculative(st);
4023 }
4024 #endif
4025 
4026 //------------------------------add_offset-------------------------------------
4027 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4028   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4029               _instance_id, add_offset_speculative(offset), _inline_depth);
4030 }
4031 
4032 const Type *TypeInstPtr::remove_speculative() const {
4033   if (_speculative == NULL) {
4034     return this;
4035   }
4036   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4037   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4038               _instance_id, NULL, _inline_depth);
4039 }
4040 
4041 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4042   if (!UseInlineDepthForSpeculativeTypes) {
4043     return this;
4044   }
4045   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4046 }
4047 
4048 //=============================================================================
4049 // Convenience common pre-built types.
4050 const TypeAryPtr *TypeAryPtr::RANGE;
4051 const TypeAryPtr *TypeAryPtr::OOPS;
4052 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4053 const TypeAryPtr *TypeAryPtr::BYTES;
4054 const TypeAryPtr *TypeAryPtr::SHORTS;
4055 const TypeAryPtr *TypeAryPtr::CHARS;
4056 const TypeAryPtr *TypeAryPtr::INTS;
4057 const TypeAryPtr *TypeAryPtr::LONGS;
4058 const TypeAryPtr *TypeAryPtr::FLOATS;
4059 const TypeAryPtr *TypeAryPtr::DOUBLES;
4060 
4061 //------------------------------make-------------------------------------------
4062 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4063                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4064   assert(!(k == NULL && ary->_elem->isa_int()),
4065          "integral arrays must be pre-equipped with a class");
4066   if (!xk)  xk = ary->ary_must_be_exact();
4067   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4068   if (!UseExactTypes)  xk = (ptr == Constant);
4069   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4070 }
4071 
4072 //------------------------------make-------------------------------------------
4073 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4074                                    int instance_id, const TypePtr* speculative, int inline_depth,
4075                                    bool is_autobox_cache) {
4076   assert(!(k == NULL && ary->_elem->isa_int()),
4077          "integral arrays must be pre-equipped with a class");
4078   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4079   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4080   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4081   if (!UseExactTypes)  xk = (ptr == Constant);
4082   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4083 }
4084 
4085 //------------------------------cast_to_ptr_type-------------------------------
4086 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4087   if( ptr == _ptr ) return this;
4088   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4089 }
4090 
4091 
4092 //-----------------------------cast_to_exactness-------------------------------
4093 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4094   if( klass_is_exact == _klass_is_exact ) return this;
4095   if (!UseExactTypes)  return this;
4096   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4097   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4098 }
4099 
4100 //-----------------------------cast_to_instance_id----------------------------
4101 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4102   if( instance_id == _instance_id ) return this;
4103   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4104 }
4105 
4106 //-----------------------------narrow_size_type-------------------------------
4107 // Local cache for arrayOopDesc::max_array_length(etype),
4108 // which is kind of slow (and cached elsewhere by other users).
4109 static jint max_array_length_cache[T_CONFLICT+1];
4110 static jint max_array_length(BasicType etype) {
4111   jint& cache = max_array_length_cache[etype];
4112   jint res = cache;
4113   if (res == 0) {
4114     switch (etype) {
4115     case T_NARROWOOP:
4116       etype = T_OBJECT;
4117       break;
4118     case T_NARROWKLASS:
4119     case T_CONFLICT:
4120     case T_ILLEGAL:
4121     case T_VOID:
4122       etype = T_BYTE;           // will produce conservatively high value
4123     }
4124     cache = res = arrayOopDesc::max_array_length(etype);
4125   }
4126   return res;
4127 }
4128 
4129 // Narrow the given size type to the index range for the given array base type.
4130 // Return NULL if the resulting int type becomes empty.
4131 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4132   jint hi = size->_hi;
4133   jint lo = size->_lo;
4134   jint min_lo = 0;
4135   jint max_hi = max_array_length(elem()->basic_type());
4136   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4137   bool chg = false;
4138   if (lo < min_lo) {
4139     lo = min_lo;
4140     if (size->is_con()) {
4141       hi = lo;
4142     }
4143     chg = true;
4144   }
4145   if (hi > max_hi) {
4146     hi = max_hi;
4147     if (size->is_con()) {
4148       lo = hi;
4149     }
4150     chg = true;
4151   }
4152   // Negative length arrays will produce weird intermediate dead fast-path code
4153   if (lo > hi)
4154     return TypeInt::ZERO;
4155   if (!chg)
4156     return size;
4157   return TypeInt::make(lo, hi, Type::WidenMin);
4158 }
4159 
4160 //-------------------------------cast_to_size----------------------------------
4161 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4162   assert(new_size != NULL, "");
4163   new_size = narrow_size_type(new_size);
4164   if (new_size == size())  return this;
4165   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4166   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4167 }
4168 
4169 //------------------------------cast_to_stable---------------------------------
4170 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4171   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4172     return this;
4173 
4174   const Type* elem = this->elem();
4175   const TypePtr* elem_ptr = elem->make_ptr();
4176 
4177   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4178     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4179     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4180   }
4181 
4182   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4183 
4184   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4185 }
4186 
4187 //-----------------------------stable_dimension--------------------------------
4188 int TypeAryPtr::stable_dimension() const {
4189   if (!is_stable())  return 0;
4190   int dim = 1;
4191   const TypePtr* elem_ptr = elem()->make_ptr();
4192   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4193     dim += elem_ptr->is_aryptr()->stable_dimension();
4194   return dim;
4195 }
4196 
4197 //----------------------cast_to_autobox_cache-----------------------------------
4198 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4199   if (is_autobox_cache() == cache)  return this;
4200   const TypeOopPtr* etype = elem()->make_oopptr();
4201   if (etype == NULL)  return this;
4202   // The pointers in the autobox arrays are always non-null.
4203   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4204   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4205   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4206   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache);
4207 }
4208 
4209 //------------------------------eq---------------------------------------------
4210 // Structural equality check for Type representations
4211 bool TypeAryPtr::eq( const Type *t ) const {
4212   const TypeAryPtr *p = t->is_aryptr();
4213   return
4214     _ary == p->_ary &&  // Check array
4215     TypeOopPtr::eq(p);  // Check sub-parts
4216 }
4217 
4218 //------------------------------hash-------------------------------------------
4219 // Type-specific hashing function.
4220 int TypeAryPtr::hash(void) const {
4221   return (intptr_t)_ary + TypeOopPtr::hash();
4222 }
4223 
4224 //------------------------------meet-------------------------------------------
4225 // Compute the MEET of two types.  It returns a new Type object.
4226 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4227   // Perform a fast test for common case; meeting the same types together.
4228   if( this == t ) return this;  // Meeting same type-rep?
4229   // Current "this->_base" is Pointer
4230   switch (t->base()) {          // switch on original type
4231 
4232   // Mixing ints & oops happens when javac reuses local variables
4233   case Int:
4234   case Long:
4235   case FloatTop:
4236   case FloatCon:
4237   case FloatBot:
4238   case DoubleTop:
4239   case DoubleCon:
4240   case DoubleBot:
4241   case NarrowOop:
4242   case NarrowKlass:
4243   case Bottom:                  // Ye Olde Default
4244     return Type::BOTTOM;
4245   case Top:
4246     return this;
4247 
4248   default:                      // All else is a mistake
4249     typerr(t);
4250 
4251   case OopPtr: {                // Meeting to OopPtrs
4252     // Found a OopPtr type vs self-AryPtr type
4253     const TypeOopPtr *tp = t->is_oopptr();
4254     int offset = meet_offset(tp->offset());
4255     PTR ptr = meet_ptr(tp->ptr());
4256     int depth = meet_inline_depth(tp->inline_depth());
4257     const TypePtr* speculative = xmeet_speculative(tp);
4258     switch (tp->ptr()) {
4259     case TopPTR:
4260     case AnyNull: {
4261       int instance_id = meet_instance_id(InstanceTop);
4262       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4263                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4264     }
4265     case BotPTR:
4266     case NotNull: {
4267       int instance_id = meet_instance_id(tp->instance_id());
4268       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4269     }
4270     default: ShouldNotReachHere();
4271     }
4272   }
4273 
4274   case AnyPtr: {                // Meeting two AnyPtrs
4275     // Found an AnyPtr type vs self-AryPtr type
4276     const TypePtr *tp = t->is_ptr();
4277     int offset = meet_offset(tp->offset());
4278     PTR ptr = meet_ptr(tp->ptr());
4279     const TypePtr* speculative = xmeet_speculative(tp);
4280     int depth = meet_inline_depth(tp->inline_depth());
4281     switch (tp->ptr()) {
4282     case TopPTR:
4283       return this;
4284     case BotPTR:
4285     case NotNull:
4286       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4287     case Null:
4288       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4289       // else fall through to AnyNull
4290     case AnyNull: {
4291       int instance_id = meet_instance_id(InstanceTop);
4292       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4293                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4294     }
4295     default: ShouldNotReachHere();
4296     }
4297   }
4298 
4299   case MetadataPtr:
4300   case KlassPtr:
4301   case RawPtr: return TypePtr::BOTTOM;
4302 
4303   case AryPtr: {                // Meeting 2 references?
4304     const TypeAryPtr *tap = t->is_aryptr();
4305     int off = meet_offset(tap->offset());
4306     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4307     PTR ptr = meet_ptr(tap->ptr());
4308     int instance_id = meet_instance_id(tap->instance_id());
4309     const TypePtr* speculative = xmeet_speculative(tap);
4310     int depth = meet_inline_depth(tap->inline_depth());
4311     ciKlass* lazy_klass = NULL;
4312     if (tary->_elem->isa_int()) {
4313       // Integral array element types have irrelevant lattice relations.
4314       // It is the klass that determines array layout, not the element type.
4315       if (_klass == NULL)
4316         lazy_klass = tap->_klass;
4317       else if (tap->_klass == NULL || tap->_klass == _klass) {
4318         lazy_klass = _klass;
4319       } else {
4320         // Something like byte[int+] meets char[int+].
4321         // This must fall to bottom, not (int[-128..65535])[int+].
4322         instance_id = InstanceBot;
4323         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4324       }
4325     } else // Non integral arrays.
4326       // Must fall to bottom if exact klasses in upper lattice
4327       // are not equal or super klass is exact.
4328       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4329           // meet with top[] and bottom[] are processed further down:
4330           tap->_klass != NULL  && this->_klass != NULL   &&
4331           // both are exact and not equal:
4332           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4333            // 'tap'  is exact and super or unrelated:
4334            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4335            // 'this' is exact and super or unrelated:
4336            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4337       if (above_centerline(ptr)) {
4338         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4339       }
4340       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4341     }
4342 
4343     bool xk = false;
4344     switch (tap->ptr()) {
4345     case AnyNull:
4346     case TopPTR:
4347       // Compute new klass on demand, do not use tap->_klass
4348       if (below_centerline(this->_ptr)) {
4349         xk = this->_klass_is_exact;
4350       } else {
4351         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4352       }
4353       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4354     case Constant: {
4355       ciObject* o = const_oop();
4356       if( _ptr == Constant ) {
4357         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4358           xk = (klass() == tap->klass());
4359           ptr = NotNull;
4360           o = NULL;
4361           instance_id = InstanceBot;
4362         } else {
4363           xk = true;
4364         }
4365       } else if(above_centerline(_ptr)) {
4366         o = tap->const_oop();
4367         xk = true;
4368       } else {
4369         // Only precise for identical arrays
4370         xk = this->_klass_is_exact && (klass() == tap->klass());
4371       }
4372       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4373     }
4374     case NotNull:
4375     case BotPTR:
4376       // Compute new klass on demand, do not use tap->_klass
4377       if (above_centerline(this->_ptr))
4378             xk = tap->_klass_is_exact;
4379       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4380               (klass() == tap->klass()); // Only precise for identical arrays
4381       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4382     default: ShouldNotReachHere();
4383     }
4384   }
4385 
4386   // All arrays inherit from Object class
4387   case InstPtr: {
4388     const TypeInstPtr *tp = t->is_instptr();
4389     int offset = meet_offset(tp->offset());
4390     PTR ptr = meet_ptr(tp->ptr());
4391     int instance_id = meet_instance_id(tp->instance_id());
4392     const TypePtr* speculative = xmeet_speculative(tp);
4393     int depth = meet_inline_depth(tp->inline_depth());
4394     switch (ptr) {
4395     case TopPTR:
4396     case AnyNull:                // Fall 'down' to dual of object klass
4397       // For instances when a subclass meets a superclass we fall
4398       // below the centerline when the superclass is exact. We need to
4399       // do the same here.
4400       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4401         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4402       } else {
4403         // cannot subclass, so the meet has to fall badly below the centerline
4404         ptr = NotNull;
4405         instance_id = InstanceBot;
4406         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4407       }
4408     case Constant:
4409     case NotNull:
4410     case BotPTR:                // Fall down to object klass
4411       // LCA is object_klass, but if we subclass from the top we can do better
4412       if (above_centerline(tp->ptr())) {
4413         // If 'tp'  is above the centerline and it is Object class
4414         // then we can subclass in the Java class hierarchy.
4415         // For instances when a subclass meets a superclass we fall
4416         // below the centerline when the superclass is exact. We need
4417         // to do the same here.
4418         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4419           // that is, my array type is a subtype of 'tp' klass
4420           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4421                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4422         }
4423       }
4424       // The other case cannot happen, since t cannot be a subtype of an array.
4425       // The meet falls down to Object class below centerline.
4426       if( ptr == Constant )
4427          ptr = NotNull;
4428       instance_id = InstanceBot;
4429       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4430     default: typerr(t);
4431     }
4432   }
4433   }
4434   return this;                  // Lint noise
4435 }
4436 
4437 //------------------------------xdual------------------------------------------
4438 // Dual: compute field-by-field dual
4439 const Type *TypeAryPtr::xdual() const {
4440   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4441 }
4442 
4443 //----------------------interface_vs_oop---------------------------------------
4444 #ifdef ASSERT
4445 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4446   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4447   if (t_aryptr) {
4448     return _ary->interface_vs_oop(t_aryptr->_ary);
4449   }
4450   return false;
4451 }
4452 #endif
4453 
4454 //------------------------------dump2------------------------------------------
4455 #ifndef PRODUCT
4456 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4457   _ary->dump2(d,depth,st);
4458   switch( _ptr ) {
4459   case Constant:
4460     const_oop()->print(st);
4461     break;
4462   case BotPTR:
4463     if (!WizardMode && !Verbose) {
4464       if( _klass_is_exact ) st->print(":exact");
4465       break;
4466     }
4467   case TopPTR:
4468   case AnyNull:
4469   case NotNull:
4470     st->print(":%s", ptr_msg[_ptr]);
4471     if( _klass_is_exact ) st->print(":exact");
4472     break;
4473   }
4474 
4475   if( _offset != 0 ) {
4476     int header_size = objArrayOopDesc::header_size() * wordSize;
4477     if( _offset == OffsetTop )       st->print("+undefined");
4478     else if( _offset == OffsetBot )  st->print("+any");
4479     else if( _offset < header_size ) st->print("+%d", _offset);
4480     else {
4481       BasicType basic_elem_type = elem()->basic_type();
4482       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4483       int elem_size = type2aelembytes(basic_elem_type);
4484       st->print("[%d]", (_offset - array_base)/elem_size);
4485     }
4486   }
4487   st->print(" *");
4488   if (_instance_id == InstanceTop)
4489     st->print(",iid=top");
4490   else if (_instance_id != InstanceBot)
4491     st->print(",iid=%d",_instance_id);
4492 
4493   dump_inline_depth(st);
4494   dump_speculative(st);
4495 }
4496 #endif
4497 
4498 bool TypeAryPtr::empty(void) const {
4499   if (_ary->empty())       return true;
4500   return TypeOopPtr::empty();
4501 }
4502 
4503 //------------------------------add_offset-------------------------------------
4504 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4505   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4506 }
4507 
4508 const Type *TypeAryPtr::remove_speculative() const {
4509   if (_speculative == NULL) {
4510     return this;
4511   }
4512   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4513   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4514 }
4515 
4516 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4517   if (!UseInlineDepthForSpeculativeTypes) {
4518     return this;
4519   }
4520   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4521 }
4522 
4523 //=============================================================================
4524 
4525 
4526 //=============================================================================
4527 
4528 //------------------------------make-------------------------------------------
4529 const TypeValueTypePtr* TypeValueTypePtr::make(const TypeValueType* vt, PTR ptr, ciObject* o, int offset, int instance_id, const TypePtr* speculative, int inline_depth) {
4530   return (TypeValueTypePtr*)(new TypeValueTypePtr(vt, ptr, o, offset, instance_id, speculative, inline_depth))->hashcons();
4531 };
4532 
4533 const TypePtr* TypeValueTypePtr::add_offset(intptr_t offset) const {
4534   return make(_vt, _ptr, _const_oop, offset, _instance_id, _speculative, _inline_depth);
4535 }
4536 
4537 //------------------------------cast_to_ptr_type-------------------------------
4538 const Type* TypeValueTypePtr::cast_to_ptr_type(PTR ptr) const {
4539   if (ptr == _ptr) return this;
4540   return make(_vt, ptr, _const_oop, _offset, _instance_id, _speculative, _inline_depth);
4541 }
4542 
4543 //-----------------------------cast_to_instance_id----------------------------
4544 const TypeOopPtr* TypeValueTypePtr::cast_to_instance_id(int instance_id) const {
4545   if (instance_id == _instance_id) return this;
4546   return make(_vt, _ptr, _const_oop, _offset, instance_id, _speculative, _inline_depth);
4547 }
4548 
4549 //------------------------------meet-------------------------------------------
4550 // Compute the MEET of two types.  It returns a new Type object.
4551 const Type* TypeValueTypePtr::xmeet_helper(const Type* t) const {
4552   // Perform a fast test for common case; meeting the same types together.
4553   if (this == t) return this;  // Meeting same type-rep?
4554 
4555   switch (t->base()) {          // switch on original type
4556     case Int:                     // Mixing ints & oops happens when javac
4557     case Long:                    // reuses local variables
4558     case FloatTop:
4559     case FloatCon:
4560     case FloatBot:
4561     case DoubleTop:
4562     case DoubleCon:
4563     case DoubleBot:
4564     case NarrowOop:
4565     case NarrowKlass:
4566     case MetadataPtr:
4567     case KlassPtr:
4568     case RawPtr:
4569     case AryPtr:
4570     case InstPtr:
4571     case Bottom:                  // Ye Olde Default
4572       return Type::BOTTOM;
4573     case Top:
4574       return this;
4575 
4576     default:                      // All else is a mistake
4577       typerr(t);
4578 
4579     case OopPtr: {
4580       // Found a OopPtr type vs self-ValueTypePtr type
4581       const TypeOopPtr* tp = t->is_oopptr();
4582       int offset = meet_offset(tp->offset());
4583       PTR ptr = meet_ptr(tp->ptr());
4584       int instance_id = meet_instance_id(tp->instance_id());
4585       const TypePtr* speculative = xmeet_speculative(tp);
4586       int depth = meet_inline_depth(tp->inline_depth());
4587       switch (tp->ptr()) {
4588       case TopPTR:
4589       case AnyNull: {
4590         return make(_vt, ptr, NULL, offset, instance_id, speculative, depth);
4591       }
4592       case NotNull:
4593       case BotPTR: {
4594         return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4595       }
4596       default: typerr(t);
4597       }
4598     }
4599 
4600     case AnyPtr: {
4601       // Found an AnyPtr type vs self-ValueTypePtr type
4602       const TypePtr* tp = t->is_ptr();
4603       int offset = meet_offset(tp->offset());
4604       PTR ptr = meet_ptr(tp->ptr());
4605       int instance_id = meet_instance_id(InstanceTop);
4606       const TypePtr* speculative = xmeet_speculative(tp);
4607       int depth = meet_inline_depth(tp->inline_depth());
4608       switch (tp->ptr()) {
4609       case Null:
4610         if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4611         // else fall through to AnyNull
4612       case TopPTR:
4613       case AnyNull: {
4614         return make(_vt, ptr, NULL, offset, instance_id, speculative, depth);
4615       }
4616       case NotNull:
4617       case BotPTR:
4618         return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4619       default: typerr(t);
4620       }
4621     }
4622 
4623     case ValueTypePtr: {
4624       // Found an ValueTypePtr type vs self-ValueTypePtr type
4625       const TypeValueTypePtr* tp = t->is_valuetypeptr();
4626       int offset = meet_offset(tp->offset());
4627       PTR ptr = meet_ptr(tp->ptr());
4628       int instance_id = meet_instance_id(InstanceTop);
4629       const TypePtr* speculative = xmeet_speculative(tp);
4630       int depth = meet_inline_depth(tp->inline_depth());
4631       // Compute constant oop
4632       ciObject* o = NULL;
4633       ciObject* this_oop  = const_oop();
4634       ciObject* tp_oop = tp->const_oop();
4635       if (ptr == Constant) {
4636         if (this_oop != NULL && tp_oop != NULL &&
4637             this_oop->equals(tp_oop) ) {
4638           o = this_oop;
4639         } else if (above_centerline(this ->_ptr)) {
4640           o = tp_oop;
4641         } else if (above_centerline(tp ->_ptr)) {
4642           o = this_oop;
4643         } else {
4644           ptr = NotNull;
4645         }
4646       }
4647       return make(_vt, ptr, o, offset, instance_id, speculative, depth);
4648     }
4649     }
4650 }
4651 
4652 // Dual: compute field-by-field dual
4653 const Type* TypeValueTypePtr::xdual() const {
4654   return new TypeValueTypePtr(_vt, dual_ptr(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4655 }
4656 
4657 //------------------------------eq---------------------------------------------
4658 // Structural equality check for Type representations
4659 bool TypeValueTypePtr::eq(const Type* t) const {
4660   const TypeValueTypePtr* p = t->is_valuetypeptr();
4661   return _vt->eq(p->value_type()) && TypeOopPtr::eq(p);
4662 }
4663 
4664 //------------------------------hash-------------------------------------------
4665 // Type-specific hashing function.
4666 int TypeValueTypePtr::hash(void) const {
4667   return java_add(_vt->hash(), TypeOopPtr::hash());
4668 }
4669 
4670 //------------------------------empty------------------------------------------
4671 // TRUE if Type is a type with no values, FALSE otherwise.
4672 bool TypeValueTypePtr::empty(void) const {
4673   // FIXME
4674   return false;
4675 }
4676 
4677 //------------------------------dump2------------------------------------------
4678 #ifndef PRODUCT
4679 void TypeValueTypePtr::dump2(Dict &d, uint depth, outputStream *st) const {
4680   st->print("valuetype*");
4681   st->print(":%s", ptr_msg[_ptr]);
4682   switch (_offset) {
4683   case 0:
4684     break;
4685   case OffsetTop:
4686     st->print("+undefined");
4687     break;
4688   case OffsetBot:
4689     st->print("+any");
4690     break;
4691   default:
4692     st->print("+%d", _offset);
4693   }
4694 }
4695 #endif
4696 
4697 //=============================================================================
4698 
4699 //------------------------------hash-------------------------------------------
4700 // Type-specific hashing function.
4701 int TypeNarrowPtr::hash(void) const {
4702   return _ptrtype->hash() + 7;
4703 }
4704 
4705 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4706   return _ptrtype->singleton();
4707 }
4708 
4709 bool TypeNarrowPtr::empty(void) const {
4710   return _ptrtype->empty();
4711 }
4712 
4713 intptr_t TypeNarrowPtr::get_con() const {
4714   return _ptrtype->get_con();
4715 }
4716 
4717 bool TypeNarrowPtr::eq( const Type *t ) const {
4718   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4719   if (tc != NULL) {
4720     if (_ptrtype->base() != tc->_ptrtype->base()) {
4721       return false;
4722     }
4723     return tc->_ptrtype->eq(_ptrtype);
4724   }
4725   return false;
4726 }
4727 
4728 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4729   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4730   return make_same_narrowptr(odual);
4731 }
4732 
4733 
4734 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4735   if (isa_same_narrowptr(kills)) {
4736     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4737     if (ft->empty())
4738       return Type::TOP;           // Canonical empty value
4739     if (ft->isa_ptr()) {
4740       return make_hash_same_narrowptr(ft->isa_ptr());
4741     }
4742     return ft;
4743   } else if (kills->isa_ptr()) {
4744     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4745     if (ft->empty())
4746       return Type::TOP;           // Canonical empty value
4747     return ft;
4748   } else {
4749     return Type::TOP;
4750   }
4751 }
4752 
4753 //------------------------------xmeet------------------------------------------
4754 // Compute the MEET of two types.  It returns a new Type object.
4755 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4756   // Perform a fast test for common case; meeting the same types together.
4757   if( this == t ) return this;  // Meeting same type-rep?
4758 
4759   if (t->base() == base()) {
4760     const Type* result = _ptrtype->xmeet(t->make_ptr());
4761     if (result->isa_ptr()) {
4762       return make_hash_same_narrowptr(result->is_ptr());
4763     }
4764     return result;
4765   }
4766 
4767   // Current "this->_base" is NarrowKlass or NarrowOop
4768   switch (t->base()) {          // switch on original type
4769 
4770   case Int:                     // Mixing ints & oops happens when javac
4771   case Long:                    // reuses local variables
4772   case FloatTop:
4773   case FloatCon:
4774   case FloatBot:
4775   case DoubleTop:
4776   case DoubleCon:
4777   case DoubleBot:
4778   case AnyPtr:
4779   case RawPtr:
4780   case OopPtr:
4781   case InstPtr:
4782   case ValueTypePtr:
4783   case AryPtr:
4784   case MetadataPtr:
4785   case KlassPtr:
4786   case NarrowOop:
4787   case NarrowKlass:
4788 
4789   case Bottom:                  // Ye Olde Default
4790     return Type::BOTTOM;
4791   case Top:
4792     return this;
4793 
4794   default:                      // All else is a mistake
4795     typerr(t);
4796 
4797   } // End of switch
4798 
4799   return this;
4800 }
4801 
4802 #ifndef PRODUCT
4803 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4804   _ptrtype->dump2(d, depth, st);
4805 }
4806 #endif
4807 
4808 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4809 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4810 
4811 
4812 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4813   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4814 }
4815 
4816 const Type* TypeNarrowOop::remove_speculative() const {
4817   return make(_ptrtype->remove_speculative()->is_ptr());
4818 }
4819 
4820 const Type* TypeNarrowOop::cleanup_speculative() const {
4821   return make(_ptrtype->cleanup_speculative()->is_ptr());
4822 }
4823 
4824 #ifndef PRODUCT
4825 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4826   st->print("narrowoop: ");
4827   TypeNarrowPtr::dump2(d, depth, st);
4828 }
4829 #endif
4830 
4831 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4832 
4833 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4834   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4835 }
4836 
4837 #ifndef PRODUCT
4838 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4839   st->print("narrowklass: ");
4840   TypeNarrowPtr::dump2(d, depth, st);
4841 }
4842 #endif
4843 
4844 
4845 //------------------------------eq---------------------------------------------
4846 // Structural equality check for Type representations
4847 bool TypeMetadataPtr::eq( const Type *t ) const {
4848   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4849   ciMetadata* one = metadata();
4850   ciMetadata* two = a->metadata();
4851   if (one == NULL || two == NULL) {
4852     return (one == two) && TypePtr::eq(t);
4853   } else {
4854     return one->equals(two) && TypePtr::eq(t);
4855   }
4856 }
4857 
4858 //------------------------------hash-------------------------------------------
4859 // Type-specific hashing function.
4860 int TypeMetadataPtr::hash(void) const {
4861   return
4862     (metadata() ? metadata()->hash() : 0) +
4863     TypePtr::hash();
4864 }
4865 
4866 //------------------------------singleton--------------------------------------
4867 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4868 // constants
4869 bool TypeMetadataPtr::singleton(void) const {
4870   // detune optimizer to not generate constant metadata + constant offset as a constant!
4871   // TopPTR, Null, AnyNull, Constant are all singletons
4872   return (_offset == 0) && !below_centerline(_ptr);
4873 }
4874 
4875 //------------------------------add_offset-------------------------------------
4876 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4877   return make( _ptr, _metadata, xadd_offset(offset));
4878 }
4879 
4880 //-----------------------------filter------------------------------------------
4881 // Do not allow interface-vs.-noninterface joins to collapse to top.
4882 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4883   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4884   if (ft == NULL || ft->empty())
4885     return Type::TOP;           // Canonical empty value
4886   return ft;
4887 }
4888 
4889  //------------------------------get_con----------------------------------------
4890 intptr_t TypeMetadataPtr::get_con() const {
4891   assert( _ptr == Null || _ptr == Constant, "" );
4892   assert( _offset >= 0, "" );
4893 
4894   if (_offset != 0) {
4895     // After being ported to the compiler interface, the compiler no longer
4896     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4897     // to a handle at compile time.  This handle is embedded in the generated
4898     // code and dereferenced at the time the nmethod is made.  Until that time,
4899     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4900     // have access to the addresses!).  This does not seem to currently happen,
4901     // but this assertion here is to help prevent its occurence.
4902     tty->print_cr("Found oop constant with non-zero offset");
4903     ShouldNotReachHere();
4904   }
4905 
4906   return (intptr_t)metadata()->constant_encoding();
4907 }
4908 
4909 //------------------------------cast_to_ptr_type-------------------------------
4910 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4911   if( ptr == _ptr ) return this;
4912   return make(ptr, metadata(), _offset);
4913 }
4914 
4915 //------------------------------meet-------------------------------------------
4916 // Compute the MEET of two types.  It returns a new Type object.
4917 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4918   // Perform a fast test for common case; meeting the same types together.
4919   if( this == t ) return this;  // Meeting same type-rep?
4920 
4921   // Current "this->_base" is OopPtr
4922   switch (t->base()) {          // switch on original type
4923 
4924   case Int:                     // Mixing ints & oops happens when javac
4925   case Long:                    // reuses local variables
4926   case FloatTop:
4927   case FloatCon:
4928   case FloatBot:
4929   case DoubleTop:
4930   case DoubleCon:
4931   case DoubleBot:
4932   case NarrowOop:
4933   case NarrowKlass:
4934   case Bottom:                  // Ye Olde Default
4935     return Type::BOTTOM;
4936   case Top:
4937     return this;
4938 
4939   default:                      // All else is a mistake
4940     typerr(t);
4941 
4942   case AnyPtr: {
4943     // Found an AnyPtr type vs self-OopPtr type
4944     const TypePtr *tp = t->is_ptr();
4945     int offset = meet_offset(tp->offset());
4946     PTR ptr = meet_ptr(tp->ptr());
4947     switch (tp->ptr()) {
4948     case Null:
4949       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4950       // else fall through:
4951     case TopPTR:
4952     case AnyNull: {
4953       return make(ptr, _metadata, offset);
4954     }
4955     case BotPTR:
4956     case NotNull:
4957       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4958     default: typerr(t);
4959     }
4960   }
4961 
4962   case RawPtr:
4963   case KlassPtr:
4964   case OopPtr:
4965   case InstPtr:
4966   case ValueTypePtr:
4967   case AryPtr:
4968     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4969 
4970   case MetadataPtr: {
4971     const TypeMetadataPtr *tp = t->is_metadataptr();
4972     int offset = meet_offset(tp->offset());
4973     PTR tptr = tp->ptr();
4974     PTR ptr = meet_ptr(tptr);
4975     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4976     if (tptr == TopPTR || _ptr == TopPTR ||
4977         metadata()->equals(tp->metadata())) {
4978       return make(ptr, md, offset);
4979     }
4980     // metadata is different
4981     if( ptr == Constant ) {  // Cannot be equal constants, so...
4982       if( tptr == Constant && _ptr != Constant)  return t;
4983       if( _ptr == Constant && tptr != Constant)  return this;
4984       ptr = NotNull;            // Fall down in lattice
4985     }
4986     return make(ptr, NULL, offset);
4987     break;
4988   }
4989   } // End of switch
4990   return this;                  // Return the double constant
4991 }
4992 
4993 
4994 //------------------------------xdual------------------------------------------
4995 // Dual of a pure metadata pointer.
4996 const Type *TypeMetadataPtr::xdual() const {
4997   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4998 }
4999 
5000 //------------------------------dump2------------------------------------------
5001 #ifndef PRODUCT
5002 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5003   st->print("metadataptr:%s", ptr_msg[_ptr]);
5004   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5005   switch( _offset ) {
5006   case OffsetTop: st->print("+top"); break;
5007   case OffsetBot: st->print("+any"); break;
5008   case         0: break;
5009   default:        st->print("+%d",_offset); break;
5010   }
5011 }
5012 #endif
5013 
5014 
5015 //=============================================================================
5016 // Convenience common pre-built type.
5017 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5018 
5019 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5020   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5021 }
5022 
5023 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5024   return make(Constant, m, 0);
5025 }
5026 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5027   return make(Constant, m, 0);
5028 }
5029 
5030 //------------------------------make-------------------------------------------
5031 // Create a meta data constant
5032 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5033   assert(m == NULL || !m->is_klass(), "wrong type");
5034   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5035 }
5036 
5037 
5038 //=============================================================================
5039 // Convenience common pre-built types.
5040 
5041 // Not-null object klass or below
5042 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5043 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5044 
5045 //------------------------------TypeKlassPtr-----------------------------------
5046 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
5047   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5048 }
5049 
5050 //------------------------------make-------------------------------------------
5051 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5052 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
5053   assert( k != NULL, "Expect a non-NULL klass");
5054   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5055   TypeKlassPtr *r =
5056     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5057 
5058   return r;
5059 }
5060 
5061 //------------------------------eq---------------------------------------------
5062 // Structural equality check for Type representations
5063 bool TypeKlassPtr::eq( const Type *t ) const {
5064   const TypeKlassPtr *p = t->is_klassptr();
5065   return
5066     klass()->equals(p->klass()) &&
5067     TypePtr::eq(p);
5068 }
5069 
5070 //------------------------------hash-------------------------------------------
5071 // Type-specific hashing function.
5072 int TypeKlassPtr::hash(void) const {
5073   return java_add(klass()->hash(), TypePtr::hash());
5074 }
5075 
5076 //------------------------------singleton--------------------------------------
5077 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5078 // constants
5079 bool TypeKlassPtr::singleton(void) const {
5080   // detune optimizer to not generate constant klass + constant offset as a constant!
5081   // TopPTR, Null, AnyNull, Constant are all singletons
5082   return (_offset == 0) && !below_centerline(_ptr);
5083 }
5084 
5085 // Do not allow interface-vs.-noninterface joins to collapse to top.
5086 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5087   // logic here mirrors the one from TypeOopPtr::filter. See comments
5088   // there.
5089   const Type* ft = join_helper(kills, include_speculative);
5090   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5091   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5092 
5093   if (ft->empty()) {
5094     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
5095       return kills;             // Uplift to interface
5096 
5097     return Type::TOP;           // Canonical empty value
5098   }
5099 
5100   // Interface klass type could be exact in opposite to interface type,
5101   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5102   if (ftkp != NULL && ktkp != NULL &&
5103       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5104       !ftkp->klass_is_exact() && // Keep exact interface klass
5105       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5106     return ktkp->cast_to_ptr_type(ftkp->ptr());
5107   }
5108 
5109   return ft;
5110 }
5111 
5112 //----------------------compute_klass------------------------------------------
5113 // Compute the defining klass for this class
5114 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5115   // Compute _klass based on element type.
5116   ciKlass* k_ary = NULL;
5117   const TypeInstPtr *tinst;
5118   const TypeAryPtr *tary;
5119   const Type* el = elem();
5120   if (el->isa_narrowoop()) {
5121     el = el->make_ptr();
5122   }
5123 
5124   // Get element klass
5125   if ((tinst = el->isa_instptr()) != NULL) {
5126     // Compute array klass from element klass
5127     k_ary = ciObjArrayKlass::make(tinst->klass());
5128   } else if ((tary = el->isa_aryptr()) != NULL) {
5129     // Compute array klass from element klass
5130     ciKlass* k_elem = tary->klass();
5131     // If element type is something like bottom[], k_elem will be null.
5132     if (k_elem != NULL)
5133       k_ary = ciObjArrayKlass::make(k_elem);
5134   } else if ((el->base() == Type::Top) ||
5135              (el->base() == Type::Bottom)) {
5136     // element type of Bottom occurs from meet of basic type
5137     // and object; Top occurs when doing join on Bottom.
5138     // Leave k_ary at NULL.
5139   } else {
5140     // Cannot compute array klass directly from basic type,
5141     // since subtypes of TypeInt all have basic type T_INT.
5142 #ifdef ASSERT
5143     if (verify && el->isa_int()) {
5144       // Check simple cases when verifying klass.
5145       BasicType bt = T_ILLEGAL;
5146       if (el == TypeInt::BYTE) {
5147         bt = T_BYTE;
5148       } else if (el == TypeInt::SHORT) {
5149         bt = T_SHORT;
5150       } else if (el == TypeInt::CHAR) {
5151         bt = T_CHAR;
5152       } else if (el == TypeInt::INT) {
5153         bt = T_INT;
5154       } else {
5155         return _klass; // just return specified klass
5156       }
5157       return ciTypeArrayKlass::make(bt);
5158     }
5159 #endif
5160     assert(!el->isa_int(),
5161            "integral arrays must be pre-equipped with a class");
5162     // Compute array klass directly from basic type
5163     k_ary = ciTypeArrayKlass::make(el->basic_type());
5164   }
5165   return k_ary;
5166 }
5167 
5168 //------------------------------klass------------------------------------------
5169 // Return the defining klass for this class
5170 ciKlass* TypeAryPtr::klass() const {
5171   if( _klass ) return _klass;   // Return cached value, if possible
5172 
5173   // Oops, need to compute _klass and cache it
5174   ciKlass* k_ary = compute_klass();
5175 
5176   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5177     // The _klass field acts as a cache of the underlying
5178     // ciKlass for this array type.  In order to set the field,
5179     // we need to cast away const-ness.
5180     //
5181     // IMPORTANT NOTE: we *never* set the _klass field for the
5182     // type TypeAryPtr::OOPS.  This Type is shared between all
5183     // active compilations.  However, the ciKlass which represents
5184     // this Type is *not* shared between compilations, so caching
5185     // this value would result in fetching a dangling pointer.
5186     //
5187     // Recomputing the underlying ciKlass for each request is
5188     // a bit less efficient than caching, but calls to
5189     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5190     ((TypeAryPtr*)this)->_klass = k_ary;
5191     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5192         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
5193       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5194     }
5195   }
5196   return k_ary;
5197 }
5198 
5199 
5200 //------------------------------add_offset-------------------------------------
5201 // Access internals of klass object
5202 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5203   return make( _ptr, klass(), xadd_offset(offset) );
5204 }
5205 
5206 //------------------------------cast_to_ptr_type-------------------------------
5207 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5208   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5209   if( ptr == _ptr ) return this;
5210   return make(ptr, _klass, _offset);
5211 }
5212 
5213 
5214 //-----------------------------cast_to_exactness-------------------------------
5215 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5216   if( klass_is_exact == _klass_is_exact ) return this;
5217   if (!UseExactTypes)  return this;
5218   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5219 }
5220 
5221 
5222 //-----------------------------as_instance_type--------------------------------
5223 // Corresponding type for an instance of the given class.
5224 // It will be NotNull, and exact if and only if the klass type is exact.
5225 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5226   ciKlass* k = klass();
5227   bool    xk = klass_is_exact();
5228   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5229   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5230   guarantee(toop != NULL, "need type for given klass");
5231   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5232   return toop->cast_to_exactness(xk)->is_oopptr();
5233 }
5234 
5235 
5236 //------------------------------xmeet------------------------------------------
5237 // Compute the MEET of two types, return a new Type object.
5238 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5239   // Perform a fast test for common case; meeting the same types together.
5240   if( this == t ) return this;  // Meeting same type-rep?
5241 
5242   // Current "this->_base" is Pointer
5243   switch (t->base()) {          // switch on original type
5244 
5245   case Int:                     // Mixing ints & oops happens when javac
5246   case Long:                    // reuses local variables
5247   case FloatTop:
5248   case FloatCon:
5249   case FloatBot:
5250   case DoubleTop:
5251   case DoubleCon:
5252   case DoubleBot:
5253   case NarrowOop:
5254   case NarrowKlass:
5255   case Bottom:                  // Ye Olde Default
5256     return Type::BOTTOM;
5257   case Top:
5258     return this;
5259 
5260   default:                      // All else is a mistake
5261     typerr(t);
5262 
5263   case AnyPtr: {                // Meeting to AnyPtrs
5264     // Found an AnyPtr type vs self-KlassPtr type
5265     const TypePtr *tp = t->is_ptr();
5266     int offset = meet_offset(tp->offset());
5267     PTR ptr = meet_ptr(tp->ptr());
5268     switch (tp->ptr()) {
5269     case TopPTR:
5270       return this;
5271     case Null:
5272       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5273     case AnyNull:
5274       return make( ptr, klass(), offset );
5275     case BotPTR:
5276     case NotNull:
5277       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5278     default: typerr(t);
5279     }
5280   }
5281 
5282   case RawPtr:
5283   case MetadataPtr:
5284   case OopPtr:
5285   case AryPtr:                  // Meet with AryPtr
5286   case InstPtr:                 // Meet with InstPtr
5287   case ValueTypePtr:
5288     return TypePtr::BOTTOM;
5289 
5290   //
5291   //             A-top         }
5292   //           /   |   \       }  Tops
5293   //       B-top A-any C-top   }
5294   //          | /  |  \ |      }  Any-nulls
5295   //       B-any   |   C-any   }
5296   //          |    |    |
5297   //       B-con A-con C-con   } constants; not comparable across classes
5298   //          |    |    |
5299   //       B-not   |   C-not   }
5300   //          | \  |  / |      }  not-nulls
5301   //       B-bot A-not C-bot   }
5302   //           \   |   /       }  Bottoms
5303   //             A-bot         }
5304   //
5305 
5306   case KlassPtr: {  // Meet two KlassPtr types
5307     const TypeKlassPtr *tkls = t->is_klassptr();
5308     int  off     = meet_offset(tkls->offset());
5309     PTR  ptr     = meet_ptr(tkls->ptr());
5310 
5311     // Check for easy case; klasses are equal (and perhaps not loaded!)
5312     // If we have constants, then we created oops so classes are loaded
5313     // and we can handle the constants further down.  This case handles
5314     // not-loaded classes
5315     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5316       return make( ptr, klass(), off );
5317     }
5318 
5319     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5320     ciKlass* tkls_klass = tkls->klass();
5321     ciKlass* this_klass = this->klass();
5322     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5323     assert( this_klass->is_loaded(), "This class should have been loaded.");
5324 
5325     // If 'this' type is above the centerline and is a superclass of the
5326     // other, we can treat 'this' as having the same type as the other.
5327     if ((above_centerline(this->ptr())) &&
5328         tkls_klass->is_subtype_of(this_klass)) {
5329       this_klass = tkls_klass;
5330     }
5331     // If 'tinst' type is above the centerline and is a superclass of the
5332     // other, we can treat 'tinst' as having the same type as the other.
5333     if ((above_centerline(tkls->ptr())) &&
5334         this_klass->is_subtype_of(tkls_klass)) {
5335       tkls_klass = this_klass;
5336     }
5337 
5338     // Check for classes now being equal
5339     if (tkls_klass->equals(this_klass)) {
5340       // If the klasses are equal, the constants may still differ.  Fall to
5341       // NotNull if they do (neither constant is NULL; that is a special case
5342       // handled elsewhere).
5343       if( ptr == Constant ) {
5344         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5345             this->klass()->equals(tkls->klass()));
5346         else if (above_centerline(this->ptr()));
5347         else if (above_centerline(tkls->ptr()));
5348         else
5349           ptr = NotNull;
5350       }
5351       return make( ptr, this_klass, off );
5352     } // Else classes are not equal
5353 
5354     // Since klasses are different, we require the LCA in the Java
5355     // class hierarchy - which means we have to fall to at least NotNull.
5356     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5357       ptr = NotNull;
5358     // Now we find the LCA of Java classes
5359     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5360     return   make( ptr, k, off );
5361   } // End of case KlassPtr
5362 
5363   } // End of switch
5364   return this;                  // Return the double constant
5365 }
5366 
5367 //------------------------------xdual------------------------------------------
5368 // Dual: compute field-by-field dual
5369 const Type    *TypeKlassPtr::xdual() const {
5370   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5371 }
5372 
5373 //------------------------------get_con----------------------------------------
5374 intptr_t TypeKlassPtr::get_con() const {
5375   assert( _ptr == Null || _ptr == Constant, "" );
5376   assert( _offset >= 0, "" );
5377 
5378   if (_offset != 0) {
5379     // After being ported to the compiler interface, the compiler no longer
5380     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5381     // to a handle at compile time.  This handle is embedded in the generated
5382     // code and dereferenced at the time the nmethod is made.  Until that time,
5383     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5384     // have access to the addresses!).  This does not seem to currently happen,
5385     // but this assertion here is to help prevent its occurence.
5386     tty->print_cr("Found oop constant with non-zero offset");
5387     ShouldNotReachHere();
5388   }
5389 
5390   return (intptr_t)klass()->constant_encoding();
5391 }
5392 //------------------------------dump2------------------------------------------
5393 // Dump Klass Type
5394 #ifndef PRODUCT
5395 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5396   switch( _ptr ) {
5397   case Constant:
5398     st->print("precise ");
5399   case NotNull:
5400     {
5401       const char *name = klass()->name()->as_utf8();
5402       if( name ) {
5403         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5404       } else {
5405         ShouldNotReachHere();
5406       }
5407     }
5408   case BotPTR:
5409     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5410   case TopPTR:
5411   case AnyNull:
5412     st->print(":%s", ptr_msg[_ptr]);
5413     if( _klass_is_exact ) st->print(":exact");
5414     break;
5415   }
5416 
5417   if( _offset ) {               // Dump offset, if any
5418     if( _offset == OffsetBot )      { st->print("+any"); }
5419     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5420     else                            { st->print("+%d", _offset); }
5421   }
5422 
5423   st->print(" *");
5424 }
5425 #endif
5426 
5427 
5428 
5429 //=============================================================================
5430 // Convenience common pre-built types.
5431 
5432 //------------------------------make-------------------------------------------
5433 const TypeFunc *TypeFunc::make( const TypeTuple *domain_sig, const TypeTuple* domain_cc, const TypeTuple *range ) {
5434   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range))->hashcons();
5435 }
5436 
5437 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5438   return make(domain, domain, range);
5439 }
5440 
5441 //------------------------------make-------------------------------------------
5442 const TypeFunc *TypeFunc::make(ciMethod* method) {
5443   Compile* C = Compile::current();
5444   const TypeFunc* tf = C->last_tf(method); // check cache
5445   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5446   const TypeTuple *domain_sig, *domain_cc;
5447   // Value type arguments are not passed by reference, instead each
5448   // field of the value type is passed as an argument. We maintain 2
5449   // views of the argument list here: one based on the signature (with
5450   // a value type argument as a single slot), one based on the actual
5451   // calling convention (with a value type argument as a list of its
5452   // fields).
5453   if (method->is_static()) {
5454     domain_sig = TypeTuple::make_domain(NULL, method->signature(), false);
5455     domain_cc = TypeTuple::make_domain(NULL, method->signature(), ValueTypePassFieldsAsArgs);
5456   } else {
5457     domain_sig = TypeTuple::make_domain(method->holder(), method->signature(), false);
5458     domain_cc = TypeTuple::make_domain(method->holder(), method->signature(), ValueTypePassFieldsAsArgs);
5459   }
5460   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5461   tf = TypeFunc::make(domain_sig, domain_cc, range);
5462   C->set_last_tf(method, tf);  // fill cache
5463   return tf;
5464 }
5465 
5466 //------------------------------meet-------------------------------------------
5467 // Compute the MEET of two types.  It returns a new Type object.
5468 const Type *TypeFunc::xmeet( const Type *t ) const {
5469   // Perform a fast test for common case; meeting the same types together.
5470   if( this == t ) return this;  // Meeting same type-rep?
5471 
5472   // Current "this->_base" is Func
5473   switch (t->base()) {          // switch on original type
5474 
5475   case Bottom:                  // Ye Olde Default
5476     return t;
5477 
5478   default:                      // All else is a mistake
5479     typerr(t);
5480 
5481   case Top:
5482     break;
5483   }
5484   return this;                  // Return the double constant
5485 }
5486 
5487 //------------------------------xdual------------------------------------------
5488 // Dual: compute field-by-field dual
5489 const Type *TypeFunc::xdual() const {
5490   return this;
5491 }
5492 
5493 //------------------------------eq---------------------------------------------
5494 // Structural equality check for Type representations
5495 bool TypeFunc::eq( const Type *t ) const {
5496   const TypeFunc *a = (const TypeFunc*)t;
5497   return _domain_sig == a->_domain_sig &&
5498     _domain_cc == a->_domain_cc &&
5499     _range == a->_range;
5500 }
5501 
5502 //------------------------------hash-------------------------------------------
5503 // Type-specific hashing function.
5504 int TypeFunc::hash(void) const {
5505   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range;
5506 }
5507 
5508 //------------------------------dump2------------------------------------------
5509 // Dump Function Type
5510 #ifndef PRODUCT
5511 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5512   if( _range->cnt() <= Parms )
5513     st->print("void");
5514   else {
5515     uint i;
5516     for (i = Parms; i < _range->cnt()-1; i++) {
5517       _range->field_at(i)->dump2(d,depth,st);
5518       st->print("/");
5519     }
5520     _range->field_at(i)->dump2(d,depth,st);
5521   }
5522   st->print(" ");
5523   st->print("( ");
5524   if( !depth || d[this] ) {     // Check for recursive dump
5525     st->print("...)");
5526     return;
5527   }
5528   d.Insert((void*)this,(void*)this);    // Stop recursion
5529   if (Parms < _domain_sig->cnt())
5530     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5531   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5532     st->print(", ");
5533     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5534   }
5535   st->print(" )");
5536 }
5537 #endif
5538 
5539 //------------------------------singleton--------------------------------------
5540 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5541 // constants (Ldi nodes).  Singletons are integer, float or double constants
5542 // or a single symbol.
5543 bool TypeFunc::singleton(void) const {
5544   return false;                 // Never a singleton
5545 }
5546 
5547 bool TypeFunc::empty(void) const {
5548   return false;                 // Never empty
5549 }
5550 
5551 
5552 BasicType TypeFunc::return_type() const{
5553   if (range()->cnt() == TypeFunc::Parms) {
5554     return T_VOID;
5555   }
5556   return range()->field_at(TypeFunc::Parms)->basic_type();
5557 }