1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/gcLocker.hpp"
  34 #include "libadt/dict.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/instanceKlass.hpp"
  38 #include "oops/instanceMirrorKlass.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/typeArrayKlass.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/node.hpp"
  43 #include "opto/opcodes.hpp"
  44 #include "opto/type.hpp"
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = NULL;
  52 
  53 // Array which maps compiler types to Basic Types
  54 Type::TypeInfo Type::_type_info[Type::lastype] = {
  55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  65 
  66 #ifdef SPARC
  67   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  68   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  69   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  70   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  71   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  72 #elif defined(PPC64)
  73   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  74   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  75   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  76   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  77   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  78 #else // all other
  79   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  80   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  81   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  82   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  83   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  84 #endif
  85   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
  86   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  87   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  88   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  89   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  90   { Bad,             T_OBJECT,     "valueptr:",     true,  Op_RegP,              relocInfo::oop_type      },  // ValueTypePtr
  91   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  92   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  93   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  94   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  95   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  96   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  97   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  98   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  99   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 100   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 101   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 102   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 103   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 104   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 105 };
 106 
 107 // Map ideal registers (machine types) to ideal types
 108 const Type *Type::mreg2type[_last_machine_leaf];
 109 
 110 // Map basic types to canonical Type* pointers.
 111 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 112 
 113 // Map basic types to constant-zero Types.
 114 const Type* Type::            _zero_type[T_CONFLICT+1];
 115 
 116 // Map basic types to array-body alias types.
 117 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 118 
 119 //=============================================================================
 120 // Convenience common pre-built types.
 121 const Type *Type::ABIO;         // State-of-machine only
 122 const Type *Type::BOTTOM;       // All values
 123 const Type *Type::CONTROL;      // Control only
 124 const Type *Type::DOUBLE;       // All doubles
 125 const Type *Type::FLOAT;        // All floats
 126 const Type *Type::HALF;         // Placeholder half of doublewide type
 127 const Type *Type::MEMORY;       // Abstract store only
 128 const Type *Type::RETURN_ADDRESS;
 129 const Type *Type::TOP;          // No values in set
 130 
 131 //------------------------------get_const_type---------------------------
 132 const Type* Type::get_const_type(ciType* type) {
 133   if (type == NULL) {
 134     return NULL;
 135   } else if (type->is_primitive_type()) {
 136     return get_const_basic_type(type->basic_type());
 137   } else {
 138     return TypeOopPtr::make_from_klass(type->as_klass());
 139   }
 140 }
 141 
 142 //---------------------------array_element_basic_type---------------------------------
 143 // Mapping to the array element's basic type.
 144 BasicType Type::array_element_basic_type() const {
 145   BasicType bt = basic_type();
 146   if (bt == T_INT) {
 147     if (this == TypeInt::INT)   return T_INT;
 148     if (this == TypeInt::CHAR)  return T_CHAR;
 149     if (this == TypeInt::BYTE)  return T_BYTE;
 150     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 151     if (this == TypeInt::SHORT) return T_SHORT;
 152     return T_VOID;
 153   }
 154   return bt;
 155 }
 156 
 157 // For two instance arrays of same dimension, return the base element types.
 158 // Otherwise or if the arrays have different dimensions, return NULL.
 159 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 160                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 161 
 162   if (e1) *e1 = NULL;
 163   if (e2) *e2 = NULL;
 164   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 165   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 166 
 167   if (a1tap != NULL && a2tap != NULL) {
 168     // Handle multidimensional arrays
 169     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 170     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 171     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 172       a1tap = a1tp->is_aryptr();
 173       a2tap = a2tp->is_aryptr();
 174       a1tp = a1tap->elem()->make_ptr();
 175       a2tp = a2tap->elem()->make_ptr();
 176     }
 177     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 178       if (e1) *e1 = a1tp->is_instptr();
 179       if (e2) *e2 = a2tp->is_instptr();
 180     }
 181   }
 182 }
 183 
 184 //---------------------------get_typeflow_type---------------------------------
 185 // Import a type produced by ciTypeFlow.
 186 const Type* Type::get_typeflow_type(ciType* type) {
 187   switch (type->basic_type()) {
 188 
 189   case ciTypeFlow::StateVector::T_BOTTOM:
 190     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 191     return Type::BOTTOM;
 192 
 193   case ciTypeFlow::StateVector::T_TOP:
 194     assert(type == ciTypeFlow::StateVector::top_type(), "");
 195     return Type::TOP;
 196 
 197   case ciTypeFlow::StateVector::T_NULL:
 198     assert(type == ciTypeFlow::StateVector::null_type(), "");
 199     return TypePtr::NULL_PTR;
 200 
 201   case ciTypeFlow::StateVector::T_LONG2:
 202     // The ciTypeFlow pass pushes a long, then the half.
 203     // We do the same.
 204     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 205     return TypeInt::TOP;
 206 
 207   case ciTypeFlow::StateVector::T_DOUBLE2:
 208     // The ciTypeFlow pass pushes double, then the half.
 209     // Our convention is the same.
 210     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 211     return Type::TOP;
 212 
 213   case T_ADDRESS:
 214     assert(type->is_return_address(), "");
 215     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 216 
 217   case T_VALUETYPE:
 218     return TypeValueType::make(type->as_value_klass());
 219 
 220   default:
 221     // make sure we did not mix up the cases:
 222     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 223     assert(type != ciTypeFlow::StateVector::top_type(), "");
 224     assert(type != ciTypeFlow::StateVector::null_type(), "");
 225     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 226     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 227     assert(!type->is_return_address(), "");
 228 
 229     return Type::get_const_type(type);
 230   }
 231 }
 232 
 233 
 234 //-----------------------make_from_constant------------------------------------
 235 const Type* Type::make_from_constant(ciConstant constant, bool require_constant) {
 236   switch (constant.basic_type()) {
 237   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 238   case T_CHAR:     return TypeInt::make(constant.as_char());
 239   case T_BYTE:     return TypeInt::make(constant.as_byte());
 240   case T_SHORT:    return TypeInt::make(constant.as_short());
 241   case T_INT:      return TypeInt::make(constant.as_int());
 242   case T_LONG:     return TypeLong::make(constant.as_long());
 243   case T_FLOAT:    return TypeF::make(constant.as_float());
 244   case T_DOUBLE:   return TypeD::make(constant.as_double());
 245   case T_ARRAY:
 246   case T_OBJECT:
 247     {
 248       // cases:
 249       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 250       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 251       // An oop is not scavengable if it is in the perm gen.
 252       ciObject* oop_constant = constant.as_object();
 253       if (oop_constant->is_null_object()) {
 254         return Type::get_zero_type(T_OBJECT);
 255       } else if (require_constant || oop_constant->should_be_constant()) {
 256         return TypeOopPtr::make_from_constant(oop_constant, require_constant);
 257       }
 258     }
 259   case T_ILLEGAL:
 260     // Invalid ciConstant returned due to OutOfMemoryError in the CI
 261     assert(Compile::current()->env()->failing(), "otherwise should not see this");
 262     return NULL;
 263   }
 264   // Fall through to failure
 265   return NULL;
 266 }
 267 
 268 
 269 const Type* Type::make_constant(ciField* field, Node* obj) {
 270   if (!field->is_constant())  return NULL;
 271 
 272   const Type* con_type = NULL;
 273   if (field->is_static()) {
 274     // final static field
 275     con_type = Type::make_from_constant(field->constant_value(), /*require_const=*/true);
 276     if (Compile::current()->eliminate_boxing() && field->is_autobox_cache() && con_type != NULL) {
 277       con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 278     }
 279   } else {
 280     // final or stable non-static field
 281     // Treat final non-static fields of trusted classes (classes in
 282     // java.lang.invoke and sun.invoke packages and subpackages) as
 283     // compile time constants.
 284     if (obj->is_Con()) {
 285       const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
 286       ciObject* constant_oop = oop_ptr->const_oop();
 287       ciConstant constant = field->constant_value_of(constant_oop);
 288       con_type = Type::make_from_constant(constant, /*require_const=*/true);
 289     }
 290   }
 291   if (FoldStableValues && field->is_stable() && con_type != NULL) {
 292     if (con_type->is_zero_type()) {
 293       return NULL; // the field hasn't been initialized yet
 294     } else if (con_type->isa_oopptr()) {
 295       const Type* stable_type = Type::get_const_type(field->type());
 296       if (field->type()->is_array_klass()) {
 297         int stable_dimension = field->type()->as_array_klass()->dimension();
 298         stable_type = stable_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 299       }
 300       if (stable_type != NULL) {
 301         con_type = con_type->join_speculative(stable_type);
 302       }
 303     }
 304   }
 305   return con_type;
 306 }
 307 
 308 //------------------------------make-------------------------------------------
 309 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 310 // and look for an existing copy in the type dictionary.
 311 const Type *Type::make( enum TYPES t ) {
 312   return (new Type(t))->hashcons();
 313 }
 314 
 315 //------------------------------cmp--------------------------------------------
 316 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 317   if( t1->_base != t2->_base )
 318     return 1;                   // Missed badly
 319   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 320   return !t1->eq(t2);           // Return ZERO if equal
 321 }
 322 
 323 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 324   if (!include_speculative) {
 325     return remove_speculative();
 326   }
 327   return this;
 328 }
 329 
 330 //------------------------------hash-------------------------------------------
 331 int Type::uhash( const Type *const t ) {
 332   return t->hash();
 333 }
 334 
 335 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 336 
 337 //--------------------------Initialize_shared----------------------------------
 338 void Type::Initialize_shared(Compile* current) {
 339   // This method does not need to be locked because the first system
 340   // compilations (stub compilations) occur serially.  If they are
 341   // changed to proceed in parallel, then this section will need
 342   // locking.
 343 
 344   Arena* save = current->type_arena();
 345   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 346 
 347   current->set_type_arena(shared_type_arena);
 348   _shared_type_dict =
 349     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 350                                   shared_type_arena, 128 );
 351   current->set_type_dict(_shared_type_dict);
 352 
 353   // Make shared pre-built types.
 354   CONTROL = make(Control);      // Control only
 355   TOP     = make(Top);          // No values in set
 356   MEMORY  = make(Memory);       // Abstract store only
 357   ABIO    = make(Abio);         // State-of-machine only
 358   RETURN_ADDRESS=make(Return_Address);
 359   FLOAT   = make(FloatBot);     // All floats
 360   DOUBLE  = make(DoubleBot);    // All doubles
 361   BOTTOM  = make(Bottom);       // Everything
 362   HALF    = make(Half);         // Placeholder half of doublewide type
 363 
 364   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 365   TypeF::ONE  = TypeF::make(1.0); // Float 1
 366 
 367   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 368   TypeD::ONE  = TypeD::make(1.0); // Double 1
 369 
 370   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 371   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 372   TypeInt::ONE     = TypeInt::make( 1);  //  1
 373   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 374   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 375   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 376   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 377   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 378   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 379   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 380   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 381   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 382   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 383   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 384   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 385   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 386   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 387   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 388   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 389   // CmpL is overloaded both as the bytecode computation returning
 390   // a trinary (-1,0,+1) integer result AND as an efficient long
 391   // compare returning optimizer ideal-type flags.
 392   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 393   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 394   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 395   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 396   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 397 
 398   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 399   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 400   TypeLong::ONE     = TypeLong::make( 1);        //  1
 401   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 402   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 403   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 404   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 405   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 406 
 407   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 408   fboth[0] = Type::CONTROL;
 409   fboth[1] = Type::CONTROL;
 410   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 411 
 412   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 413   ffalse[0] = Type::CONTROL;
 414   ffalse[1] = Type::TOP;
 415   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 416 
 417   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 418   fneither[0] = Type::TOP;
 419   fneither[1] = Type::TOP;
 420   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 421 
 422   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 423   ftrue[0] = Type::TOP;
 424   ftrue[1] = Type::CONTROL;
 425   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 426 
 427   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 428   floop[0] = Type::CONTROL;
 429   floop[1] = TypeInt::INT;
 430   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 431 
 432   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 433   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 434   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 435 
 436   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 437   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 438 
 439   const Type **fmembar = TypeTuple::fields(0);
 440   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 441 
 442   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 443   fsc[0] = TypeInt::CC;
 444   fsc[1] = Type::MEMORY;
 445   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 446 
 447   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 448   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 449   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 450   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 451                                            false, 0, oopDesc::mark_offset_in_bytes());
 452   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 453                                            false, 0, oopDesc::klass_offset_in_bytes());
 454   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 455 
 456   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 457 
 458   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 459   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 460 
 461   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 462 
 463   mreg2type[Op_Node] = Type::BOTTOM;
 464   mreg2type[Op_Set ] = 0;
 465   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 466   mreg2type[Op_RegI] = TypeInt::INT;
 467   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 468   mreg2type[Op_RegF] = Type::FLOAT;
 469   mreg2type[Op_RegD] = Type::DOUBLE;
 470   mreg2type[Op_RegL] = TypeLong::LONG;
 471   mreg2type[Op_RegFlags] = TypeInt::CC;
 472 
 473   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 474 
 475   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 476 
 477 #ifdef _LP64
 478   if (UseCompressedOops) {
 479     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 480     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 481   } else
 482 #endif
 483   {
 484     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 485     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 486   }
 487   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 488   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 489   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 490   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 491   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 492   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 493   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 494 
 495   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 496   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 497   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 498   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 499   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 500   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 501   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 502   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 503   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 504   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 505   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 506   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 507   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 508 
 509   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 510   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 511 
 512   const Type **fi2c = TypeTuple::fields(2);
 513   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 514   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 515   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 516 
 517   const Type **intpair = TypeTuple::fields(2);
 518   intpair[0] = TypeInt::INT;
 519   intpair[1] = TypeInt::INT;
 520   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 521 
 522   const Type **longpair = TypeTuple::fields(2);
 523   longpair[0] = TypeLong::LONG;
 524   longpair[1] = TypeLong::LONG;
 525   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 526 
 527   const Type **intccpair = TypeTuple::fields(2);
 528   intccpair[0] = TypeInt::INT;
 529   intccpair[1] = TypeInt::CC;
 530   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 531 
 532   const Type **longccpair = TypeTuple::fields(2);
 533   longccpair[0] = TypeLong::LONG;
 534   longccpair[1] = TypeInt::CC;
 535   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 536 
 537   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 538   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 539   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 540   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 541   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 542   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 543   _const_basic_type[T_INT]         = TypeInt::INT;
 544   _const_basic_type[T_LONG]        = TypeLong::LONG;
 545   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 546   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 547   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 548   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 549   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 550   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 551   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 552   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 553 
 554   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 555   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 556   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 557   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 558   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 559   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 560   _zero_type[T_INT]         = TypeInt::ZERO;
 561   _zero_type[T_LONG]        = TypeLong::ZERO;
 562   _zero_type[T_FLOAT]       = TypeF::ZERO;
 563   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 564   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 565   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 566   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 567   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 568   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 569 
 570   // get_zero_type() should not happen for T_CONFLICT
 571   _zero_type[T_CONFLICT]= NULL;
 572 
 573   // Vector predefined types, it needs initialized _const_basic_type[].
 574   if (Matcher::vector_size_supported(T_BYTE,4)) {
 575     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 576   }
 577   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 578     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 579   }
 580   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 581     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 582   }
 583   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 584     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 585   }
 586   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 587     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 588   }
 589   mreg2type[Op_VecS] = TypeVect::VECTS;
 590   mreg2type[Op_VecD] = TypeVect::VECTD;
 591   mreg2type[Op_VecX] = TypeVect::VECTX;
 592   mreg2type[Op_VecY] = TypeVect::VECTY;
 593   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 594 
 595   // Restore working type arena.
 596   current->set_type_arena(save);
 597   current->set_type_dict(NULL);
 598 }
 599 
 600 //------------------------------Initialize-------------------------------------
 601 void Type::Initialize(Compile* current) {
 602   assert(current->type_arena() != NULL, "must have created type arena");
 603 
 604   if (_shared_type_dict == NULL) {
 605     Initialize_shared(current);
 606   }
 607 
 608   Arena* type_arena = current->type_arena();
 609 
 610   // Create the hash-cons'ing dictionary with top-level storage allocation
 611   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 612   current->set_type_dict(tdic);
 613 
 614   // Transfer the shared types.
 615   DictI i(_shared_type_dict);
 616   for( ; i.test(); ++i ) {
 617     Type* t = (Type*)i._value;
 618     tdic->Insert(t,t);  // New Type, insert into Type table
 619   }
 620 }
 621 
 622 //------------------------------hashcons---------------------------------------
 623 // Do the hash-cons trick.  If the Type already exists in the type table,
 624 // delete the current Type and return the existing Type.  Otherwise stick the
 625 // current Type in the Type table.
 626 const Type *Type::hashcons(void) {
 627   debug_only(base());           // Check the assertion in Type::base().
 628   // Look up the Type in the Type dictionary
 629   Dict *tdic = type_dict();
 630   Type* old = (Type*)(tdic->Insert(this, this, false));
 631   if( old ) {                   // Pre-existing Type?
 632     if( old != this )           // Yes, this guy is not the pre-existing?
 633       delete this;              // Yes, Nuke this guy
 634     assert( old->_dual, "" );
 635     return old;                 // Return pre-existing
 636   }
 637 
 638   // Every type has a dual (to make my lattice symmetric).
 639   // Since we just discovered a new Type, compute its dual right now.
 640   assert( !_dual, "" );         // No dual yet
 641   _dual = xdual();              // Compute the dual
 642   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 643     _dual = this;
 644     return this;
 645   }
 646   assert( !_dual->_dual, "" );  // No reverse dual yet
 647   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 648   // New Type, insert into Type table
 649   tdic->Insert((void*)_dual,(void*)_dual);
 650   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 651 #ifdef ASSERT
 652   Type *dual_dual = (Type*)_dual->xdual();
 653   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 654   delete dual_dual;
 655 #endif
 656   return this;                  // Return new Type
 657 }
 658 
 659 //------------------------------eq---------------------------------------------
 660 // Structural equality check for Type representations
 661 bool Type::eq( const Type * ) const {
 662   return true;                  // Nothing else can go wrong
 663 }
 664 
 665 //------------------------------hash-------------------------------------------
 666 // Type-specific hashing function.
 667 int Type::hash(void) const {
 668   return _base;
 669 }
 670 
 671 //------------------------------is_finite--------------------------------------
 672 // Has a finite value
 673 bool Type::is_finite() const {
 674   return false;
 675 }
 676 
 677 //------------------------------is_nan-----------------------------------------
 678 // Is not a number (NaN)
 679 bool Type::is_nan()    const {
 680   return false;
 681 }
 682 
 683 //----------------------interface_vs_oop---------------------------------------
 684 #ifdef ASSERT
 685 bool Type::interface_vs_oop_helper(const Type *t) const {
 686   bool result = false;
 687 
 688   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 689   const TypePtr*    t_ptr =    t->make_ptr();
 690   if( this_ptr == NULL || t_ptr == NULL )
 691     return result;
 692 
 693   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 694   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 695   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 696     bool this_interface = this_inst->klass()->is_interface();
 697     bool    t_interface =    t_inst->klass()->is_interface();
 698     result = this_interface ^ t_interface;
 699   }
 700 
 701   return result;
 702 }
 703 
 704 bool Type::interface_vs_oop(const Type *t) const {
 705   if (interface_vs_oop_helper(t)) {
 706     return true;
 707   }
 708   // Now check the speculative parts as well
 709   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 710   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 711   if (this_spec != NULL && t_spec != NULL) {
 712     if (this_spec->interface_vs_oop_helper(t_spec)) {
 713       return true;
 714     }
 715     return false;
 716   }
 717   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 718     return true;
 719   }
 720   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 721     return true;
 722   }
 723   return false;
 724 }
 725 
 726 #endif
 727 
 728 //------------------------------meet-------------------------------------------
 729 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 730 // commutative and the lattice is symmetric.
 731 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 732   if (isa_narrowoop() && t->isa_narrowoop()) {
 733     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 734     return result->make_narrowoop();
 735   }
 736   if (isa_narrowklass() && t->isa_narrowklass()) {
 737     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 738     return result->make_narrowklass();
 739   }
 740 
 741   const Type *this_t = maybe_remove_speculative(include_speculative);
 742   t = t->maybe_remove_speculative(include_speculative);
 743 
 744   const Type *mt = this_t->xmeet(t);
 745   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 746   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 747 #ifdef ASSERT
 748   assert(mt == t->xmeet(this_t), "meet not commutative");
 749   const Type* dual_join = mt->_dual;
 750   const Type *t2t    = dual_join->xmeet(t->_dual);
 751   const Type *t2this = dual_join->xmeet(this_t->_dual);
 752 
 753   // Interface meet Oop is Not Symmetric:
 754   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 755   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 756 
 757   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 758     tty->print_cr("=== Meet Not Symmetric ===");
 759     tty->print("t   =                   ");              t->dump(); tty->cr();
 760     tty->print("this=                   ");         this_t->dump(); tty->cr();
 761     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 762 
 763     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 764     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 765     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 766 
 767     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 768     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 769 
 770     fatal("meet not symmetric" );
 771   }
 772 #endif
 773   return mt;
 774 }
 775 
 776 //------------------------------xmeet------------------------------------------
 777 // Compute the MEET of two types.  It returns a new Type object.
 778 const Type *Type::xmeet( const Type *t ) const {
 779   // Perform a fast test for common case; meeting the same types together.
 780   if( this == t ) return this;  // Meeting same type-rep?
 781 
 782   // Meeting TOP with anything?
 783   if( _base == Top ) return t;
 784 
 785   // Meeting BOTTOM with anything?
 786   if( _base == Bottom ) return BOTTOM;
 787 
 788   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 789   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 790   switch (t->base()) {  // Switch on original type
 791 
 792   // Cut in half the number of cases I must handle.  Only need cases for when
 793   // the given enum "t->type" is less than or equal to the local enum "type".
 794   case FloatCon:
 795   case DoubleCon:
 796   case Int:
 797   case Long:
 798     return t->xmeet(this);
 799 
 800   case OopPtr:
 801     return t->xmeet(this);
 802 
 803   case InstPtr:
 804   case ValueTypePtr:
 805     return t->xmeet(this);
 806 
 807   case MetadataPtr:
 808   case KlassPtr:
 809     return t->xmeet(this);
 810 
 811   case AryPtr:
 812     return t->xmeet(this);
 813 
 814   case NarrowOop:
 815     return t->xmeet(this);
 816 
 817   case NarrowKlass:
 818     return t->xmeet(this);
 819 
 820   case ValueType:
 821     return t->xmeet(this);
 822 
 823   case Bad:                     // Type check
 824   default:                      // Bogus type not in lattice
 825     typerr(t);
 826     return Type::BOTTOM;
 827 
 828   case Bottom:                  // Ye Olde Default
 829     return t;
 830 
 831   case FloatTop:
 832     if( _base == FloatTop ) return this;
 833   case FloatBot:                // Float
 834     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 835     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 836     typerr(t);
 837     return Type::BOTTOM;
 838 
 839   case DoubleTop:
 840     if( _base == DoubleTop ) return this;
 841   case DoubleBot:               // Double
 842     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 843     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 844     typerr(t);
 845     return Type::BOTTOM;
 846 
 847   // These next few cases must match exactly or it is a compile-time error.
 848   case Control:                 // Control of code
 849   case Abio:                    // State of world outside of program
 850   case Memory:
 851     if( _base == t->_base )  return this;
 852     typerr(t);
 853     return Type::BOTTOM;
 854 
 855   case Top:                     // Top of the lattice
 856     return this;
 857   }
 858 
 859   // The type is unchanged
 860   return this;
 861 }
 862 
 863 //-----------------------------filter------------------------------------------
 864 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 865   const Type* ft = join_helper(kills, include_speculative);
 866   if (ft->empty())
 867     return Type::TOP;           // Canonical empty value
 868   return ft;
 869 }
 870 
 871 //------------------------------xdual------------------------------------------
 872 // Compute dual right now.
 873 const Type::TYPES Type::dual_type[Type::lastype] = {
 874   Bad,          // Bad
 875   Control,      // Control
 876   Bottom,       // Top
 877   Bad,          // Int - handled in v-call
 878   Bad,          // Long - handled in v-call
 879   Half,         // Half
 880   Bad,          // NarrowOop - handled in v-call
 881   Bad,          // NarrowKlass - handled in v-call
 882 
 883   Bad,          // Tuple - handled in v-call
 884   Bad,          // Array - handled in v-call
 885   Bad,          // VectorS - handled in v-call
 886   Bad,          // VectorD - handled in v-call
 887   Bad,          // VectorX - handled in v-call
 888   Bad,          // VectorY - handled in v-call
 889   Bad,          // VectorZ - handled in v-call
 890   Bad,          // ValueType - handled in v-call
 891 
 892   Bad,          // AnyPtr - handled in v-call
 893   Bad,          // RawPtr - handled in v-call
 894   Bad,          // OopPtr - handled in v-call
 895   Bad,          // InstPtr - handled in v-call
 896   Bad,          // ValueTypePtr - handled in v-call
 897   Bad,          // AryPtr - handled in v-call
 898 
 899   Bad,          //  MetadataPtr - handled in v-call
 900   Bad,          // KlassPtr - handled in v-call
 901 
 902   Bad,          // Function - handled in v-call
 903   Abio,         // Abio
 904   Return_Address,// Return_Address
 905   Memory,       // Memory
 906   FloatBot,     // FloatTop
 907   FloatCon,     // FloatCon
 908   FloatTop,     // FloatBot
 909   DoubleBot,    // DoubleTop
 910   DoubleCon,    // DoubleCon
 911   DoubleTop,    // DoubleBot
 912   Top           // Bottom
 913 };
 914 
 915 const Type *Type::xdual() const {
 916   // Note: the base() accessor asserts the sanity of _base.
 917   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 918   return new Type(_type_info[_base].dual_type);
 919 }
 920 
 921 //------------------------------has_memory-------------------------------------
 922 bool Type::has_memory() const {
 923   Type::TYPES tx = base();
 924   if (tx == Memory) return true;
 925   if (tx == Tuple) {
 926     const TypeTuple *t = is_tuple();
 927     for (uint i=0; i < t->cnt(); i++) {
 928       tx = t->field_at(i)->base();
 929       if (tx == Memory)  return true;
 930     }
 931   }
 932   return false;
 933 }
 934 
 935 #ifndef PRODUCT
 936 //------------------------------dump2------------------------------------------
 937 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 938   st->print("%s", _type_info[_base].msg);
 939 }
 940 
 941 //------------------------------dump-------------------------------------------
 942 void Type::dump_on(outputStream *st) const {
 943   ResourceMark rm;
 944   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 945   dump2(d,1, st);
 946   if (is_ptr_to_narrowoop()) {
 947     st->print(" [narrow]");
 948   } else if (is_ptr_to_narrowklass()) {
 949     st->print(" [narrowklass]");
 950   }
 951 }
 952 #endif
 953 
 954 //------------------------------singleton--------------------------------------
 955 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 956 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 957 bool Type::singleton(void) const {
 958   return _base == Top || _base == Half;
 959 }
 960 
 961 //------------------------------empty------------------------------------------
 962 // TRUE if Type is a type with no values, FALSE otherwise.
 963 bool Type::empty(void) const {
 964   switch (_base) {
 965   case DoubleTop:
 966   case FloatTop:
 967   case Top:
 968     return true;
 969 
 970   case Half:
 971   case Abio:
 972   case Return_Address:
 973   case Memory:
 974   case Bottom:
 975   case FloatBot:
 976   case DoubleBot:
 977     return false;  // never a singleton, therefore never empty
 978   }
 979 
 980   ShouldNotReachHere();
 981   return false;
 982 }
 983 
 984 //------------------------------dump_stats-------------------------------------
 985 // Dump collected statistics to stderr
 986 #ifndef PRODUCT
 987 void Type::dump_stats() {
 988   tty->print("Types made: %d\n", type_dict()->Size());
 989 }
 990 #endif
 991 
 992 //------------------------------typerr-----------------------------------------
 993 void Type::typerr( const Type *t ) const {
 994 #ifndef PRODUCT
 995   tty->print("\nError mixing types: ");
 996   dump();
 997   tty->print(" and ");
 998   t->dump();
 999   tty->print("\n");
1000 #endif
1001   ShouldNotReachHere();
1002 }
1003 
1004 
1005 //=============================================================================
1006 // Convenience common pre-built types.
1007 const TypeF *TypeF::ZERO;       // Floating point zero
1008 const TypeF *TypeF::ONE;        // Floating point one
1009 
1010 //------------------------------make-------------------------------------------
1011 // Create a float constant
1012 const TypeF *TypeF::make(float f) {
1013   return (TypeF*)(new TypeF(f))->hashcons();
1014 }
1015 
1016 //------------------------------meet-------------------------------------------
1017 // Compute the MEET of two types.  It returns a new Type object.
1018 const Type *TypeF::xmeet( const Type *t ) const {
1019   // Perform a fast test for common case; meeting the same types together.
1020   if( this == t ) return this;  // Meeting same type-rep?
1021 
1022   // Current "this->_base" is FloatCon
1023   switch (t->base()) {          // Switch on original type
1024   case AnyPtr:                  // Mixing with oops happens when javac
1025   case RawPtr:                  // reuses local variables
1026   case OopPtr:
1027   case InstPtr:
1028   case ValueTypePtr:
1029   case AryPtr:
1030   case MetadataPtr:
1031   case KlassPtr:
1032   case NarrowOop:
1033   case NarrowKlass:
1034   case Int:
1035   case Long:
1036   case DoubleTop:
1037   case DoubleCon:
1038   case DoubleBot:
1039   case Bottom:                  // Ye Olde Default
1040     return Type::BOTTOM;
1041 
1042   case FloatBot:
1043     return t;
1044 
1045   default:                      // All else is a mistake
1046     typerr(t);
1047 
1048   case FloatCon:                // Float-constant vs Float-constant?
1049     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1050                                 // must compare bitwise as positive zero, negative zero and NaN have
1051                                 // all the same representation in C++
1052       return FLOAT;             // Return generic float
1053                                 // Equal constants
1054   case Top:
1055   case FloatTop:
1056     break;                      // Return the float constant
1057   }
1058   return this;                  // Return the float constant
1059 }
1060 
1061 //------------------------------xdual------------------------------------------
1062 // Dual: symmetric
1063 const Type *TypeF::xdual() const {
1064   return this;
1065 }
1066 
1067 //------------------------------eq---------------------------------------------
1068 // Structural equality check for Type representations
1069 bool TypeF::eq(const Type *t) const {
1070   // Bitwise comparison to distinguish between +/-0. These values must be treated
1071   // as different to be consistent with C1 and the interpreter.
1072   return (jint_cast(_f) == jint_cast(t->getf()));
1073 }
1074 
1075 //------------------------------hash-------------------------------------------
1076 // Type-specific hashing function.
1077 int TypeF::hash(void) const {
1078   return *(int*)(&_f);
1079 }
1080 
1081 //------------------------------is_finite--------------------------------------
1082 // Has a finite value
1083 bool TypeF::is_finite() const {
1084   return g_isfinite(getf()) != 0;
1085 }
1086 
1087 //------------------------------is_nan-----------------------------------------
1088 // Is not a number (NaN)
1089 bool TypeF::is_nan()    const {
1090   return g_isnan(getf()) != 0;
1091 }
1092 
1093 //------------------------------dump2------------------------------------------
1094 // Dump float constant Type
1095 #ifndef PRODUCT
1096 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1097   Type::dump2(d,depth, st);
1098   st->print("%f", _f);
1099 }
1100 #endif
1101 
1102 //------------------------------singleton--------------------------------------
1103 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1104 // constants (Ldi nodes).  Singletons are integer, float or double constants
1105 // or a single symbol.
1106 bool TypeF::singleton(void) const {
1107   return true;                  // Always a singleton
1108 }
1109 
1110 bool TypeF::empty(void) const {
1111   return false;                 // always exactly a singleton
1112 }
1113 
1114 //=============================================================================
1115 // Convenience common pre-built types.
1116 const TypeD *TypeD::ZERO;       // Floating point zero
1117 const TypeD *TypeD::ONE;        // Floating point one
1118 
1119 //------------------------------make-------------------------------------------
1120 const TypeD *TypeD::make(double d) {
1121   return (TypeD*)(new TypeD(d))->hashcons();
1122 }
1123 
1124 //------------------------------meet-------------------------------------------
1125 // Compute the MEET of two types.  It returns a new Type object.
1126 const Type *TypeD::xmeet( const Type *t ) const {
1127   // Perform a fast test for common case; meeting the same types together.
1128   if( this == t ) return this;  // Meeting same type-rep?
1129 
1130   // Current "this->_base" is DoubleCon
1131   switch (t->base()) {          // Switch on original type
1132   case AnyPtr:                  // Mixing with oops happens when javac
1133   case RawPtr:                  // reuses local variables
1134   case OopPtr:
1135   case InstPtr:
1136   case ValueTypePtr:
1137   case AryPtr:
1138   case MetadataPtr:
1139   case KlassPtr:
1140   case NarrowOop:
1141   case NarrowKlass:
1142   case Int:
1143   case Long:
1144   case FloatTop:
1145   case FloatCon:
1146   case FloatBot:
1147   case Bottom:                  // Ye Olde Default
1148     return Type::BOTTOM;
1149 
1150   case DoubleBot:
1151     return t;
1152 
1153   default:                      // All else is a mistake
1154     typerr(t);
1155 
1156   case DoubleCon:               // Double-constant vs Double-constant?
1157     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1158       return DOUBLE;            // Return generic double
1159   case Top:
1160   case DoubleTop:
1161     break;
1162   }
1163   return this;                  // Return the double constant
1164 }
1165 
1166 //------------------------------xdual------------------------------------------
1167 // Dual: symmetric
1168 const Type *TypeD::xdual() const {
1169   return this;
1170 }
1171 
1172 //------------------------------eq---------------------------------------------
1173 // Structural equality check for Type representations
1174 bool TypeD::eq(const Type *t) const {
1175   // Bitwise comparison to distinguish between +/-0. These values must be treated
1176   // as different to be consistent with C1 and the interpreter.
1177   return (jlong_cast(_d) == jlong_cast(t->getd()));
1178 }
1179 
1180 //------------------------------hash-------------------------------------------
1181 // Type-specific hashing function.
1182 int TypeD::hash(void) const {
1183   return *(int*)(&_d);
1184 }
1185 
1186 //------------------------------is_finite--------------------------------------
1187 // Has a finite value
1188 bool TypeD::is_finite() const {
1189   return g_isfinite(getd()) != 0;
1190 }
1191 
1192 //------------------------------is_nan-----------------------------------------
1193 // Is not a number (NaN)
1194 bool TypeD::is_nan()    const {
1195   return g_isnan(getd()) != 0;
1196 }
1197 
1198 //------------------------------dump2------------------------------------------
1199 // Dump double constant Type
1200 #ifndef PRODUCT
1201 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1202   Type::dump2(d,depth,st);
1203   st->print("%f", _d);
1204 }
1205 #endif
1206 
1207 //------------------------------singleton--------------------------------------
1208 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1209 // constants (Ldi nodes).  Singletons are integer, float or double constants
1210 // or a single symbol.
1211 bool TypeD::singleton(void) const {
1212   return true;                  // Always a singleton
1213 }
1214 
1215 bool TypeD::empty(void) const {
1216   return false;                 // always exactly a singleton
1217 }
1218 
1219 //=============================================================================
1220 // Convience common pre-built types.
1221 const TypeInt *TypeInt::MINUS_1;// -1
1222 const TypeInt *TypeInt::ZERO;   // 0
1223 const TypeInt *TypeInt::ONE;    // 1
1224 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1225 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1226 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1227 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1228 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1229 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1230 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1231 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1232 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1233 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1234 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1235 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1236 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1237 const TypeInt *TypeInt::INT;    // 32-bit integers
1238 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1239 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1240 
1241 //------------------------------TypeInt----------------------------------------
1242 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1243 }
1244 
1245 //------------------------------make-------------------------------------------
1246 const TypeInt *TypeInt::make( jint lo ) {
1247   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1248 }
1249 
1250 static int normalize_int_widen( jint lo, jint hi, int w ) {
1251   // Certain normalizations keep us sane when comparing types.
1252   // The 'SMALLINT' covers constants and also CC and its relatives.
1253   if (lo <= hi) {
1254     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1255     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1256   } else {
1257     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1258     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1259   }
1260   return w;
1261 }
1262 
1263 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1264   w = normalize_int_widen(lo, hi, w);
1265   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1266 }
1267 
1268 //------------------------------meet-------------------------------------------
1269 // Compute the MEET of two types.  It returns a new Type representation object
1270 // with reference count equal to the number of Types pointing at it.
1271 // Caller should wrap a Types around it.
1272 const Type *TypeInt::xmeet( const Type *t ) const {
1273   // Perform a fast test for common case; meeting the same types together.
1274   if( this == t ) return this;  // Meeting same type?
1275 
1276   // Currently "this->_base" is a TypeInt
1277   switch (t->base()) {          // Switch on original type
1278   case AnyPtr:                  // Mixing with oops happens when javac
1279   case RawPtr:                  // reuses local variables
1280   case OopPtr:
1281   case InstPtr:
1282   case ValueTypePtr:
1283   case AryPtr:
1284   case MetadataPtr:
1285   case KlassPtr:
1286   case NarrowOop:
1287   case NarrowKlass:
1288   case Long:
1289   case FloatTop:
1290   case FloatCon:
1291   case FloatBot:
1292   case DoubleTop:
1293   case DoubleCon:
1294   case DoubleBot:
1295   case Bottom:                  // Ye Olde Default
1296     return Type::BOTTOM;
1297   default:                      // All else is a mistake
1298     typerr(t);
1299   case Top:                     // No change
1300     return this;
1301   case Int:                     // Int vs Int?
1302     break;
1303   }
1304 
1305   // Expand covered set
1306   const TypeInt *r = t->is_int();
1307   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1308 }
1309 
1310 //------------------------------xdual------------------------------------------
1311 // Dual: reverse hi & lo; flip widen
1312 const Type *TypeInt::xdual() const {
1313   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1314   return new TypeInt(_hi,_lo,w);
1315 }
1316 
1317 //------------------------------widen------------------------------------------
1318 // Only happens for optimistic top-down optimizations.
1319 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1320   // Coming from TOP or such; no widening
1321   if( old->base() != Int ) return this;
1322   const TypeInt *ot = old->is_int();
1323 
1324   // If new guy is equal to old guy, no widening
1325   if( _lo == ot->_lo && _hi == ot->_hi )
1326     return old;
1327 
1328   // If new guy contains old, then we widened
1329   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1330     // New contains old
1331     // If new guy is already wider than old, no widening
1332     if( _widen > ot->_widen ) return this;
1333     // If old guy was a constant, do not bother
1334     if (ot->_lo == ot->_hi)  return this;
1335     // Now widen new guy.
1336     // Check for widening too far
1337     if (_widen == WidenMax) {
1338       int max = max_jint;
1339       int min = min_jint;
1340       if (limit->isa_int()) {
1341         max = limit->is_int()->_hi;
1342         min = limit->is_int()->_lo;
1343       }
1344       if (min < _lo && _hi < max) {
1345         // If neither endpoint is extremal yet, push out the endpoint
1346         // which is closer to its respective limit.
1347         if (_lo >= 0 ||                 // easy common case
1348             (juint)(_lo - min) >= (juint)(max - _hi)) {
1349           // Try to widen to an unsigned range type of 31 bits:
1350           return make(_lo, max, WidenMax);
1351         } else {
1352           return make(min, _hi, WidenMax);
1353         }
1354       }
1355       return TypeInt::INT;
1356     }
1357     // Returned widened new guy
1358     return make(_lo,_hi,_widen+1);
1359   }
1360 
1361   // If old guy contains new, then we probably widened too far & dropped to
1362   // bottom.  Return the wider fellow.
1363   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1364     return old;
1365 
1366   //fatal("Integer value range is not subset");
1367   //return this;
1368   return TypeInt::INT;
1369 }
1370 
1371 //------------------------------narrow---------------------------------------
1372 // Only happens for pessimistic optimizations.
1373 const Type *TypeInt::narrow( const Type *old ) const {
1374   if (_lo >= _hi)  return this;   // already narrow enough
1375   if (old == NULL)  return this;
1376   const TypeInt* ot = old->isa_int();
1377   if (ot == NULL)  return this;
1378   jint olo = ot->_lo;
1379   jint ohi = ot->_hi;
1380 
1381   // If new guy is equal to old guy, no narrowing
1382   if (_lo == olo && _hi == ohi)  return old;
1383 
1384   // If old guy was maximum range, allow the narrowing
1385   if (olo == min_jint && ohi == max_jint)  return this;
1386 
1387   if (_lo < olo || _hi > ohi)
1388     return this;                // doesn't narrow; pretty wierd
1389 
1390   // The new type narrows the old type, so look for a "death march".
1391   // See comments on PhaseTransform::saturate.
1392   juint nrange = (juint)_hi - _lo;
1393   juint orange = (juint)ohi - olo;
1394   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1395     // Use the new type only if the range shrinks a lot.
1396     // We do not want the optimizer computing 2^31 point by point.
1397     return old;
1398   }
1399 
1400   return this;
1401 }
1402 
1403 //-----------------------------filter------------------------------------------
1404 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1405   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1406   if (ft == NULL || ft->empty())
1407     return Type::TOP;           // Canonical empty value
1408   if (ft->_widen < this->_widen) {
1409     // Do not allow the value of kill->_widen to affect the outcome.
1410     // The widen bits must be allowed to run freely through the graph.
1411     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1412   }
1413   return ft;
1414 }
1415 
1416 //------------------------------eq---------------------------------------------
1417 // Structural equality check for Type representations
1418 bool TypeInt::eq( const Type *t ) const {
1419   const TypeInt *r = t->is_int(); // Handy access
1420   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1421 }
1422 
1423 //------------------------------hash-------------------------------------------
1424 // Type-specific hashing function.
1425 int TypeInt::hash(void) const {
1426   return java_add(java_add(_lo, _hi), java_add(_widen, (int)Type::Int));
1427 }
1428 
1429 //------------------------------is_finite--------------------------------------
1430 // Has a finite value
1431 bool TypeInt::is_finite() const {
1432   return true;
1433 }
1434 
1435 //------------------------------dump2------------------------------------------
1436 // Dump TypeInt
1437 #ifndef PRODUCT
1438 static const char* intname(char* buf, jint n) {
1439   if (n == min_jint)
1440     return "min";
1441   else if (n < min_jint + 10000)
1442     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1443   else if (n == max_jint)
1444     return "max";
1445   else if (n > max_jint - 10000)
1446     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1447   else
1448     sprintf(buf, INT32_FORMAT, n);
1449   return buf;
1450 }
1451 
1452 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1453   char buf[40], buf2[40];
1454   if (_lo == min_jint && _hi == max_jint)
1455     st->print("int");
1456   else if (is_con())
1457     st->print("int:%s", intname(buf, get_con()));
1458   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1459     st->print("bool");
1460   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1461     st->print("byte");
1462   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1463     st->print("char");
1464   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1465     st->print("short");
1466   else if (_hi == max_jint)
1467     st->print("int:>=%s", intname(buf, _lo));
1468   else if (_lo == min_jint)
1469     st->print("int:<=%s", intname(buf, _hi));
1470   else
1471     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1472 
1473   if (_widen != 0 && this != TypeInt::INT)
1474     st->print(":%.*s", _widen, "wwww");
1475 }
1476 #endif
1477 
1478 //------------------------------singleton--------------------------------------
1479 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1480 // constants.
1481 bool TypeInt::singleton(void) const {
1482   return _lo >= _hi;
1483 }
1484 
1485 bool TypeInt::empty(void) const {
1486   return _lo > _hi;
1487 }
1488 
1489 //=============================================================================
1490 // Convenience common pre-built types.
1491 const TypeLong *TypeLong::MINUS_1;// -1
1492 const TypeLong *TypeLong::ZERO; // 0
1493 const TypeLong *TypeLong::ONE;  // 1
1494 const TypeLong *TypeLong::POS;  // >=0
1495 const TypeLong *TypeLong::LONG; // 64-bit integers
1496 const TypeLong *TypeLong::INT;  // 32-bit subrange
1497 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1498 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1499 
1500 //------------------------------TypeLong---------------------------------------
1501 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1502 }
1503 
1504 //------------------------------make-------------------------------------------
1505 const TypeLong *TypeLong::make( jlong lo ) {
1506   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1507 }
1508 
1509 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1510   // Certain normalizations keep us sane when comparing types.
1511   // The 'SMALLINT' covers constants.
1512   if (lo <= hi) {
1513     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1514     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1515   } else {
1516     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1517     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1518   }
1519   return w;
1520 }
1521 
1522 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1523   w = normalize_long_widen(lo, hi, w);
1524   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1525 }
1526 
1527 
1528 //------------------------------meet-------------------------------------------
1529 // Compute the MEET of two types.  It returns a new Type representation object
1530 // with reference count equal to the number of Types pointing at it.
1531 // Caller should wrap a Types around it.
1532 const Type *TypeLong::xmeet( const Type *t ) const {
1533   // Perform a fast test for common case; meeting the same types together.
1534   if( this == t ) return this;  // Meeting same type?
1535 
1536   // Currently "this->_base" is a TypeLong
1537   switch (t->base()) {          // Switch on original type
1538   case AnyPtr:                  // Mixing with oops happens when javac
1539   case RawPtr:                  // reuses local variables
1540   case OopPtr:
1541   case InstPtr:
1542   case ValueTypePtr:
1543   case AryPtr:
1544   case MetadataPtr:
1545   case KlassPtr:
1546   case NarrowOop:
1547   case NarrowKlass:
1548   case Int:
1549   case FloatTop:
1550   case FloatCon:
1551   case FloatBot:
1552   case DoubleTop:
1553   case DoubleCon:
1554   case DoubleBot:
1555   case Bottom:                  // Ye Olde Default
1556     return Type::BOTTOM;
1557   default:                      // All else is a mistake
1558     typerr(t);
1559   case Top:                     // No change
1560     return this;
1561   case Long:                    // Long vs Long?
1562     break;
1563   }
1564 
1565   // Expand covered set
1566   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1567   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1568 }
1569 
1570 //------------------------------xdual------------------------------------------
1571 // Dual: reverse hi & lo; flip widen
1572 const Type *TypeLong::xdual() const {
1573   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1574   return new TypeLong(_hi,_lo,w);
1575 }
1576 
1577 //------------------------------widen------------------------------------------
1578 // Only happens for optimistic top-down optimizations.
1579 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1580   // Coming from TOP or such; no widening
1581   if( old->base() != Long ) return this;
1582   const TypeLong *ot = old->is_long();
1583 
1584   // If new guy is equal to old guy, no widening
1585   if( _lo == ot->_lo && _hi == ot->_hi )
1586     return old;
1587 
1588   // If new guy contains old, then we widened
1589   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1590     // New contains old
1591     // If new guy is already wider than old, no widening
1592     if( _widen > ot->_widen ) return this;
1593     // If old guy was a constant, do not bother
1594     if (ot->_lo == ot->_hi)  return this;
1595     // Now widen new guy.
1596     // Check for widening too far
1597     if (_widen == WidenMax) {
1598       jlong max = max_jlong;
1599       jlong min = min_jlong;
1600       if (limit->isa_long()) {
1601         max = limit->is_long()->_hi;
1602         min = limit->is_long()->_lo;
1603       }
1604       if (min < _lo && _hi < max) {
1605         // If neither endpoint is extremal yet, push out the endpoint
1606         // which is closer to its respective limit.
1607         if (_lo >= 0 ||                 // easy common case
1608             ((julong)_lo - min) >= ((julong)max - _hi)) {
1609           // Try to widen to an unsigned range type of 32/63 bits:
1610           if (max >= max_juint && _hi < max_juint)
1611             return make(_lo, max_juint, WidenMax);
1612           else
1613             return make(_lo, max, WidenMax);
1614         } else {
1615           return make(min, _hi, WidenMax);
1616         }
1617       }
1618       return TypeLong::LONG;
1619     }
1620     // Returned widened new guy
1621     return make(_lo,_hi,_widen+1);
1622   }
1623 
1624   // If old guy contains new, then we probably widened too far & dropped to
1625   // bottom.  Return the wider fellow.
1626   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1627     return old;
1628 
1629   //  fatal("Long value range is not subset");
1630   // return this;
1631   return TypeLong::LONG;
1632 }
1633 
1634 //------------------------------narrow----------------------------------------
1635 // Only happens for pessimistic optimizations.
1636 const Type *TypeLong::narrow( const Type *old ) const {
1637   if (_lo >= _hi)  return this;   // already narrow enough
1638   if (old == NULL)  return this;
1639   const TypeLong* ot = old->isa_long();
1640   if (ot == NULL)  return this;
1641   jlong olo = ot->_lo;
1642   jlong ohi = ot->_hi;
1643 
1644   // If new guy is equal to old guy, no narrowing
1645   if (_lo == olo && _hi == ohi)  return old;
1646 
1647   // If old guy was maximum range, allow the narrowing
1648   if (olo == min_jlong && ohi == max_jlong)  return this;
1649 
1650   if (_lo < olo || _hi > ohi)
1651     return this;                // doesn't narrow; pretty wierd
1652 
1653   // The new type narrows the old type, so look for a "death march".
1654   // See comments on PhaseTransform::saturate.
1655   julong nrange = _hi - _lo;
1656   julong orange = ohi - olo;
1657   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1658     // Use the new type only if the range shrinks a lot.
1659     // We do not want the optimizer computing 2^31 point by point.
1660     return old;
1661   }
1662 
1663   return this;
1664 }
1665 
1666 //-----------------------------filter------------------------------------------
1667 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1668   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1669   if (ft == NULL || ft->empty())
1670     return Type::TOP;           // Canonical empty value
1671   if (ft->_widen < this->_widen) {
1672     // Do not allow the value of kill->_widen to affect the outcome.
1673     // The widen bits must be allowed to run freely through the graph.
1674     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1675   }
1676   return ft;
1677 }
1678 
1679 //------------------------------eq---------------------------------------------
1680 // Structural equality check for Type representations
1681 bool TypeLong::eq( const Type *t ) const {
1682   const TypeLong *r = t->is_long(); // Handy access
1683   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1684 }
1685 
1686 //------------------------------hash-------------------------------------------
1687 // Type-specific hashing function.
1688 int TypeLong::hash(void) const {
1689   return (int)(_lo+_hi+_widen+(int)Type::Long);
1690 }
1691 
1692 //------------------------------is_finite--------------------------------------
1693 // Has a finite value
1694 bool TypeLong::is_finite() const {
1695   return true;
1696 }
1697 
1698 //------------------------------dump2------------------------------------------
1699 // Dump TypeLong
1700 #ifndef PRODUCT
1701 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1702   if (n > x) {
1703     if (n >= x + 10000)  return NULL;
1704     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1705   } else if (n < x) {
1706     if (n <= x - 10000)  return NULL;
1707     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1708   } else {
1709     return xname;
1710   }
1711   return buf;
1712 }
1713 
1714 static const char* longname(char* buf, jlong n) {
1715   const char* str;
1716   if (n == min_jlong)
1717     return "min";
1718   else if (n < min_jlong + 10000)
1719     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1720   else if (n == max_jlong)
1721     return "max";
1722   else if (n > max_jlong - 10000)
1723     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1724   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1725     return str;
1726   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1727     return str;
1728   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1729     return str;
1730   else
1731     sprintf(buf, JLONG_FORMAT, n);
1732   return buf;
1733 }
1734 
1735 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1736   char buf[80], buf2[80];
1737   if (_lo == min_jlong && _hi == max_jlong)
1738     st->print("long");
1739   else if (is_con())
1740     st->print("long:%s", longname(buf, get_con()));
1741   else if (_hi == max_jlong)
1742     st->print("long:>=%s", longname(buf, _lo));
1743   else if (_lo == min_jlong)
1744     st->print("long:<=%s", longname(buf, _hi));
1745   else
1746     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1747 
1748   if (_widen != 0 && this != TypeLong::LONG)
1749     st->print(":%.*s", _widen, "wwww");
1750 }
1751 #endif
1752 
1753 //------------------------------singleton--------------------------------------
1754 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1755 // constants
1756 bool TypeLong::singleton(void) const {
1757   return _lo >= _hi;
1758 }
1759 
1760 bool TypeLong::empty(void) const {
1761   return _lo > _hi;
1762 }
1763 
1764 //=============================================================================
1765 // Convenience common pre-built types.
1766 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1767 const TypeTuple *TypeTuple::IFFALSE;
1768 const TypeTuple *TypeTuple::IFTRUE;
1769 const TypeTuple *TypeTuple::IFNEITHER;
1770 const TypeTuple *TypeTuple::LOOPBODY;
1771 const TypeTuple *TypeTuple::MEMBAR;
1772 const TypeTuple *TypeTuple::STORECONDITIONAL;
1773 const TypeTuple *TypeTuple::START_I2C;
1774 const TypeTuple *TypeTuple::INT_PAIR;
1775 const TypeTuple *TypeTuple::LONG_PAIR;
1776 const TypeTuple *TypeTuple::INT_CC_PAIR;
1777 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1778 
1779 
1780 //------------------------------make-------------------------------------------
1781 // Make a TypeTuple from the range of a method signature
1782 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1783   ciType* return_type = sig->return_type();
1784   uint arg_cnt = return_type->size();
1785   const Type **field_array = fields(arg_cnt);
1786   switch (return_type->basic_type()) {
1787   case T_LONG:
1788     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1789     field_array[TypeFunc::Parms+1] = Type::HALF;
1790     break;
1791   case T_DOUBLE:
1792     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1793     field_array[TypeFunc::Parms+1] = Type::HALF;
1794     break;
1795   case T_OBJECT:
1796   case T_VALUETYPE:
1797   case T_ARRAY:
1798   case T_BOOLEAN:
1799   case T_CHAR:
1800   case T_FLOAT:
1801   case T_BYTE:
1802   case T_SHORT:
1803   case T_INT:
1804     field_array[TypeFunc::Parms] = get_const_type(return_type);
1805     break;
1806   case T_VOID:
1807     break;
1808   default:
1809     ShouldNotReachHere();
1810   }
1811   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1812 }
1813 
1814 static int extra_value_fields(ciValueKlass* vk) {
1815   int vt_extra = vk->nof_nonstatic_fields() - 1;
1816   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1817     ciField* f = vk->nonstatic_field_at(j);
1818     BasicType bt = f->type()->basic_type();
1819     assert(bt != T_VALUETYPE, "embedded");
1820     if (bt == T_LONG || bt == T_DOUBLE) {
1821       vt_extra++;
1822     }
1823   }
1824   return vt_extra;
1825 }
1826 
1827 static void collect_value_fields(ciValueKlass* vk, const Type**& field_array, uint& pos) {
1828   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1829     ciField* f = vk->nonstatic_field_at(j);
1830     BasicType bt = f->type()->basic_type();
1831     assert(bt < T_VALUETYPE && bt >= T_BOOLEAN, "not yet supported");
1832     field_array[pos++] = Type::get_const_type(f->type());
1833     if (bt == T_LONG || bt == T_DOUBLE) {
1834       field_array[pos++] = Type::HALF;
1835     }
1836   }
1837 }
1838 
1839 // Make a TypeTuple from the domain of a method signature
1840 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, bool is_cc) {
1841   uint arg_cnt = sig->size();
1842 
1843   int vt_extra = 0;
1844   if (is_cc) {
1845     for (int i = 0; i < sig->count(); i++) {
1846       ciType* type = sig->type_at(i);
1847       if (type->basic_type() == T_VALUETYPE) {
1848         assert(type->is_valuetype(), "");
1849         ciValueKlass* vk = (ciValueKlass*)type;
1850         vt_extra += extra_value_fields(vk);
1851       }
1852     }
1853     assert(((int)arg_cnt) + vt_extra >= 0, "");
1854   }
1855 
1856   uint pos = TypeFunc::Parms;
1857   const Type **field_array;
1858   if (recv != NULL) {
1859     arg_cnt++;
1860     if (is_cc && recv->is_valuetype()) {
1861       ciValueKlass* vk = (ciValueKlass*)recv;
1862       vt_extra += extra_value_fields(vk);
1863     }
1864     field_array = fields(arg_cnt + vt_extra);
1865     // Use get_const_type here because it respects UseUniqueSubclasses:
1866     if (is_cc && recv->is_valuetype()) {
1867       ciValueKlass* vk = (ciValueKlass*)recv;
1868       collect_value_fields(vk, field_array, pos);
1869     } else {
1870       field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1871     }
1872   } else {
1873     field_array = fields(arg_cnt + vt_extra);
1874   }
1875 
1876   int i = 0;
1877   while (pos < TypeFunc::Parms + arg_cnt + vt_extra) {
1878     ciType* type = sig->type_at(i);
1879 
1880     switch (type->basic_type()) {
1881     case T_LONG:
1882       field_array[pos++] = TypeLong::LONG;
1883       field_array[pos++] = Type::HALF;
1884       break;
1885     case T_DOUBLE:
1886       field_array[pos++] = Type::DOUBLE;
1887       field_array[pos++] = Type::HALF;
1888       break;
1889     case T_OBJECT:
1890     case T_ARRAY:
1891     case T_BOOLEAN:
1892     case T_CHAR:
1893     case T_FLOAT:
1894     case T_BYTE:
1895     case T_SHORT:
1896     case T_INT:
1897       field_array[pos++] = get_const_type(type);
1898       break;
1899     case T_VALUETYPE: {
1900       assert(type->is_valuetype(), "");
1901       if (is_cc) {
1902         ciValueKlass* vk = (ciValueKlass*)type;
1903         collect_value_fields(vk, field_array, pos);
1904       } else {
1905         field_array[pos++] = get_const_type(type);
1906       }
1907       break;
1908     }
1909     default:
1910       ShouldNotReachHere();
1911     }
1912     i++;
1913   }
1914   assert(pos == TypeFunc::Parms + arg_cnt + vt_extra, "");
1915 
1916   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt + vt_extra, field_array))->hashcons();
1917 }
1918 
1919 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1920   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1921 }
1922 
1923 //------------------------------fields-----------------------------------------
1924 // Subroutine call type with space allocated for argument types
1925 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1926 const Type **TypeTuple::fields( uint arg_cnt ) {
1927   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1928   flds[TypeFunc::Control  ] = Type::CONTROL;
1929   flds[TypeFunc::I_O      ] = Type::ABIO;
1930   flds[TypeFunc::Memory   ] = Type::MEMORY;
1931   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1932   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1933 
1934   return flds;
1935 }
1936 
1937 //------------------------------meet-------------------------------------------
1938 // Compute the MEET of two types.  It returns a new Type object.
1939 const Type *TypeTuple::xmeet( const Type *t ) const {
1940   // Perform a fast test for common case; meeting the same types together.
1941   if( this == t ) return this;  // Meeting same type-rep?
1942 
1943   // Current "this->_base" is Tuple
1944   switch (t->base()) {          // switch on original type
1945 
1946   case Bottom:                  // Ye Olde Default
1947     return t;
1948 
1949   default:                      // All else is a mistake
1950     typerr(t);
1951 
1952   case Tuple: {                 // Meeting 2 signatures?
1953     const TypeTuple *x = t->is_tuple();
1954     assert( _cnt == x->_cnt, "" );
1955     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1956     for( uint i=0; i<_cnt; i++ )
1957       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1958     return TypeTuple::make(_cnt,fields);
1959   }
1960   case Top:
1961     break;
1962   }
1963   return this;                  // Return the double constant
1964 }
1965 
1966 //------------------------------xdual------------------------------------------
1967 // Dual: compute field-by-field dual
1968 const Type *TypeTuple::xdual() const {
1969   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1970   for( uint i=0; i<_cnt; i++ )
1971     fields[i] = _fields[i]->dual();
1972   return new TypeTuple(_cnt,fields);
1973 }
1974 
1975 //------------------------------eq---------------------------------------------
1976 // Structural equality check for Type representations
1977 bool TypeTuple::eq( const Type *t ) const {
1978   const TypeTuple *s = (const TypeTuple *)t;
1979   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1980   for (uint i = 0; i < _cnt; i++)
1981     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1982       return false;             // Missed
1983   return true;
1984 }
1985 
1986 //------------------------------hash-------------------------------------------
1987 // Type-specific hashing function.
1988 int TypeTuple::hash(void) const {
1989   intptr_t sum = _cnt;
1990   for( uint i=0; i<_cnt; i++ )
1991     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1992   return sum;
1993 }
1994 
1995 //------------------------------dump2------------------------------------------
1996 // Dump signature Type
1997 #ifndef PRODUCT
1998 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1999   st->print("{");
2000   if( !depth || d[this] ) {     // Check for recursive print
2001     st->print("...}");
2002     return;
2003   }
2004   d.Insert((void*)this, (void*)this);   // Stop recursion
2005   if( _cnt ) {
2006     uint i;
2007     for( i=0; i<_cnt-1; i++ ) {
2008       st->print("%d:", i);
2009       _fields[i]->dump2(d, depth-1, st);
2010       st->print(", ");
2011     }
2012     st->print("%d:", i);
2013     _fields[i]->dump2(d, depth-1, st);
2014   }
2015   st->print("}");
2016 }
2017 #endif
2018 
2019 //------------------------------singleton--------------------------------------
2020 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2021 // constants (Ldi nodes).  Singletons are integer, float or double constants
2022 // or a single symbol.
2023 bool TypeTuple::singleton(void) const {
2024   return false;                 // Never a singleton
2025 }
2026 
2027 bool TypeTuple::empty(void) const {
2028   for( uint i=0; i<_cnt; i++ ) {
2029     if (_fields[i]->empty())  return true;
2030   }
2031   return false;
2032 }
2033 
2034 //=============================================================================
2035 // Convenience common pre-built types.
2036 
2037 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2038   // Certain normalizations keep us sane when comparing types.
2039   // We do not want arrayOop variables to differ only by the wideness
2040   // of their index types.  Pick minimum wideness, since that is the
2041   // forced wideness of small ranges anyway.
2042   if (size->_widen != Type::WidenMin)
2043     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2044   else
2045     return size;
2046 }
2047 
2048 //------------------------------make-------------------------------------------
2049 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2050   if (UseCompressedOops && elem->isa_oopptr()) {
2051     elem = elem->make_narrowoop();
2052   }
2053   size = normalize_array_size(size);
2054   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2055 }
2056 
2057 //------------------------------meet-------------------------------------------
2058 // Compute the MEET of two types.  It returns a new Type object.
2059 const Type *TypeAry::xmeet( const Type *t ) const {
2060   // Perform a fast test for common case; meeting the same types together.
2061   if( this == t ) return this;  // Meeting same type-rep?
2062 
2063   // Current "this->_base" is Ary
2064   switch (t->base()) {          // switch on original type
2065 
2066   case Bottom:                  // Ye Olde Default
2067     return t;
2068 
2069   default:                      // All else is a mistake
2070     typerr(t);
2071 
2072   case Array: {                 // Meeting 2 arrays?
2073     const TypeAry *a = t->is_ary();
2074     return TypeAry::make(_elem->meet_speculative(a->_elem),
2075                          _size->xmeet(a->_size)->is_int(),
2076                          _stable & a->_stable);
2077   }
2078   case Top:
2079     break;
2080   }
2081   return this;                  // Return the double constant
2082 }
2083 
2084 //------------------------------xdual------------------------------------------
2085 // Dual: compute field-by-field dual
2086 const Type *TypeAry::xdual() const {
2087   const TypeInt* size_dual = _size->dual()->is_int();
2088   size_dual = normalize_array_size(size_dual);
2089   return new TypeAry(_elem->dual(), size_dual, !_stable);
2090 }
2091 
2092 //------------------------------eq---------------------------------------------
2093 // Structural equality check for Type representations
2094 bool TypeAry::eq( const Type *t ) const {
2095   const TypeAry *a = (const TypeAry*)t;
2096   return _elem == a->_elem &&
2097     _stable == a->_stable &&
2098     _size == a->_size;
2099 }
2100 
2101 //------------------------------hash-------------------------------------------
2102 // Type-specific hashing function.
2103 int TypeAry::hash(void) const {
2104   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2105 }
2106 
2107 /**
2108  * Return same type without a speculative part in the element
2109  */
2110 const Type* TypeAry::remove_speculative() const {
2111   return make(_elem->remove_speculative(), _size, _stable);
2112 }
2113 
2114 /**
2115  * Return same type with cleaned up speculative part of element
2116  */
2117 const Type* TypeAry::cleanup_speculative() const {
2118   return make(_elem->cleanup_speculative(), _size, _stable);
2119 }
2120 
2121 /**
2122  * Return same type but with a different inline depth (used for speculation)
2123  *
2124  * @param depth  depth to meet with
2125  */
2126 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2127   if (!UseInlineDepthForSpeculativeTypes) {
2128     return this;
2129   }
2130   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2131 }
2132 
2133 //----------------------interface_vs_oop---------------------------------------
2134 #ifdef ASSERT
2135 bool TypeAry::interface_vs_oop(const Type *t) const {
2136   const TypeAry* t_ary = t->is_ary();
2137   if (t_ary) {
2138     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2139     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2140     if(this_ptr != NULL && t_ptr != NULL) {
2141       return this_ptr->interface_vs_oop(t_ptr);
2142     }
2143   }
2144   return false;
2145 }
2146 #endif
2147 
2148 //------------------------------dump2------------------------------------------
2149 #ifndef PRODUCT
2150 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2151   if (_stable)  st->print("stable:");
2152   _elem->dump2(d, depth, st);
2153   st->print("[");
2154   _size->dump2(d, depth, st);
2155   st->print("]");
2156 }
2157 #endif
2158 
2159 //------------------------------singleton--------------------------------------
2160 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2161 // constants (Ldi nodes).  Singletons are integer, float or double constants
2162 // or a single symbol.
2163 bool TypeAry::singleton(void) const {
2164   return false;                 // Never a singleton
2165 }
2166 
2167 bool TypeAry::empty(void) const {
2168   return _elem->empty() || _size->empty();
2169 }
2170 
2171 //--------------------------ary_must_be_exact----------------------------------
2172 bool TypeAry::ary_must_be_exact() const {
2173   if (!UseExactTypes)       return false;
2174   // This logic looks at the element type of an array, and returns true
2175   // if the element type is either a primitive or a final instance class.
2176   // In such cases, an array built on this ary must have no subclasses.
2177   if (_elem == BOTTOM)      return false;  // general array not exact
2178   if (_elem == TOP   )      return false;  // inverted general array not exact
2179   const TypeOopPtr*  toop = NULL;
2180   if (UseCompressedOops && _elem->isa_narrowoop()) {
2181     toop = _elem->make_ptr()->isa_oopptr();
2182   } else {
2183     toop = _elem->isa_oopptr();
2184   }
2185   if (!toop)                return true;   // a primitive type, like int
2186   ciKlass* tklass = toop->klass();
2187   if (tklass == NULL)       return false;  // unloaded class
2188   if (!tklass->is_loaded()) return false;  // unloaded class
2189   const TypeInstPtr* tinst;
2190   if (_elem->isa_narrowoop())
2191     tinst = _elem->make_ptr()->isa_instptr();
2192   else
2193     tinst = _elem->isa_instptr();
2194   if (tinst)
2195     return tklass->as_instance_klass()->is_final();
2196   const TypeAryPtr*  tap;
2197   if (_elem->isa_narrowoop())
2198     tap = _elem->make_ptr()->isa_aryptr();
2199   else
2200     tap = _elem->isa_aryptr();
2201   if (tap)
2202     return tap->ary()->ary_must_be_exact();
2203   return false;
2204 }
2205 
2206 //==============================TypeValueType=======================================
2207 
2208 //------------------------------make-------------------------------------------
2209 const TypeValueType* TypeValueType::make(ciValueKlass* vk) {
2210   return (TypeValueType*)(new TypeValueType(vk))->hashcons();
2211 }
2212 
2213 //------------------------------meet-------------------------------------------
2214 // Compute the MEET of two types.  It returns a new Type object.
2215 const Type* TypeValueType::xmeet(const Type* t) const {
2216   // Perform a fast test for common case; meeting the same types together.
2217   if(this == t) return this;  // Meeting same type-rep?
2218 
2219   // Current "this->_base" is ValueType
2220   switch (t->base()) {          // switch on original type
2221 
2222   case Top:
2223     break;
2224 
2225   case Bottom:
2226     return t;
2227 
2228   default:                      // All else is a mistake
2229     typerr(t);
2230 
2231   }
2232   return this;
2233 }
2234 
2235 //------------------------------xdual------------------------------------------
2236 const Type* TypeValueType::xdual() const {
2237   // FIXME
2238   return new TypeValueType(_vk);
2239 }
2240 
2241 //------------------------------eq---------------------------------------------
2242 // Structural equality check for Type representations
2243 bool TypeValueType::eq(const Type* t) const {
2244   const TypeValueType* vt = t->is_valuetype();
2245   return (_vk == vt->value_klass());
2246 }
2247 
2248 //------------------------------hash-------------------------------------------
2249 // Type-specific hashing function.
2250 int TypeValueType::hash(void) const {
2251   return (intptr_t)_vk;
2252 }
2253 
2254 //------------------------------singleton--------------------------------------
2255 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2256 bool TypeValueType::singleton(void) const {
2257   // FIXME
2258   return false;
2259 }
2260 
2261 //------------------------------empty------------------------------------------
2262 // TRUE if Type is a type with no values, FALSE otherwise.
2263 bool TypeValueType::empty(void) const {
2264   // FIXME
2265   return false;
2266 }
2267 
2268 //------------------------------dump2------------------------------------------
2269 #ifndef PRODUCT
2270 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2271   st->print("valuetype[%d]:{", _vk->param_count());
2272   st->print("%s", _vk->get_field_type_by_index(0)->name());
2273   for (int i = 1; i < _vk->param_count(); ++i) {
2274     st->print(", %s", _vk->get_field_type_by_index(i)->name());
2275   }
2276   st->print("}");
2277 }
2278 #endif
2279 
2280 //==============================TypeVect=======================================
2281 // Convenience common pre-built types.
2282 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2283 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2284 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2285 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2286 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2287 
2288 //------------------------------make-------------------------------------------
2289 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2290   BasicType elem_bt = elem->array_element_basic_type();
2291   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2292   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2293   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2294   int size = length * type2aelembytes(elem_bt);
2295   switch (Matcher::vector_ideal_reg(size)) {
2296   case Op_VecS:
2297     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2298   case Op_RegL:
2299   case Op_VecD:
2300   case Op_RegD:
2301     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2302   case Op_VecX:
2303     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2304   case Op_VecY:
2305     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2306   case Op_VecZ:
2307     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2308   }
2309  ShouldNotReachHere();
2310   return NULL;
2311 }
2312 
2313 //------------------------------meet-------------------------------------------
2314 // Compute the MEET of two types.  It returns a new Type object.
2315 const Type *TypeVect::xmeet( const Type *t ) const {
2316   // Perform a fast test for common case; meeting the same types together.
2317   if( this == t ) return this;  // Meeting same type-rep?
2318 
2319   // Current "this->_base" is Vector
2320   switch (t->base()) {          // switch on original type
2321 
2322   case Bottom:                  // Ye Olde Default
2323     return t;
2324 
2325   default:                      // All else is a mistake
2326     typerr(t);
2327 
2328   case VectorS:
2329   case VectorD:
2330   case VectorX:
2331   case VectorY:
2332   case VectorZ: {                // Meeting 2 vectors?
2333     const TypeVect* v = t->is_vect();
2334     assert(  base() == v->base(), "");
2335     assert(length() == v->length(), "");
2336     assert(element_basic_type() == v->element_basic_type(), "");
2337     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2338   }
2339   case Top:
2340     break;
2341   }
2342   return this;
2343 }
2344 
2345 //------------------------------xdual------------------------------------------
2346 // Dual: compute field-by-field dual
2347 const Type *TypeVect::xdual() const {
2348   return new TypeVect(base(), _elem->dual(), _length);
2349 }
2350 
2351 //------------------------------eq---------------------------------------------
2352 // Structural equality check for Type representations
2353 bool TypeVect::eq(const Type *t) const {
2354   const TypeVect *v = t->is_vect();
2355   return (_elem == v->_elem) && (_length == v->_length);
2356 }
2357 
2358 //------------------------------hash-------------------------------------------
2359 // Type-specific hashing function.
2360 int TypeVect::hash(void) const {
2361   return (intptr_t)_elem + (intptr_t)_length;
2362 }
2363 
2364 //------------------------------singleton--------------------------------------
2365 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2366 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2367 // constant value (when vector is created with Replicate code).
2368 bool TypeVect::singleton(void) const {
2369 // There is no Con node for vectors yet.
2370 //  return _elem->singleton();
2371   return false;
2372 }
2373 
2374 bool TypeVect::empty(void) const {
2375   return _elem->empty();
2376 }
2377 
2378 //------------------------------dump2------------------------------------------
2379 #ifndef PRODUCT
2380 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2381   switch (base()) {
2382   case VectorS:
2383     st->print("vectors["); break;
2384   case VectorD:
2385     st->print("vectord["); break;
2386   case VectorX:
2387     st->print("vectorx["); break;
2388   case VectorY:
2389     st->print("vectory["); break;
2390   case VectorZ:
2391     st->print("vectorz["); break;
2392   default:
2393     ShouldNotReachHere();
2394   }
2395   st->print("%d]:{", _length);
2396   _elem->dump2(d, depth, st);
2397   st->print("}");
2398 }
2399 #endif
2400 
2401 
2402 //=============================================================================
2403 // Convenience common pre-built types.
2404 const TypePtr *TypePtr::NULL_PTR;
2405 const TypePtr *TypePtr::NOTNULL;
2406 const TypePtr *TypePtr::BOTTOM;
2407 
2408 //------------------------------meet-------------------------------------------
2409 // Meet over the PTR enum
2410 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2411   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2412   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2413   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2414   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2415   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2416   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2417   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2418 };
2419 
2420 //------------------------------make-------------------------------------------
2421 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2422   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2423 }
2424 
2425 //------------------------------cast_to_ptr_type-------------------------------
2426 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2427   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2428   if( ptr == _ptr ) return this;
2429   return make(_base, ptr, _offset, _speculative, _inline_depth);
2430 }
2431 
2432 //------------------------------get_con----------------------------------------
2433 intptr_t TypePtr::get_con() const {
2434   assert( _ptr == Null, "" );
2435   return _offset;
2436 }
2437 
2438 //------------------------------meet-------------------------------------------
2439 // Compute the MEET of two types.  It returns a new Type object.
2440 const Type *TypePtr::xmeet(const Type *t) const {
2441   const Type* res = xmeet_helper(t);
2442   if (res->isa_ptr() == NULL) {
2443     return res;
2444   }
2445 
2446   const TypePtr* res_ptr = res->is_ptr();
2447   if (res_ptr->speculative() != NULL) {
2448     // type->speculative() == NULL means that speculation is no better
2449     // than type, i.e. type->speculative() == type. So there are 2
2450     // ways to represent the fact that we have no useful speculative
2451     // data and we should use a single one to be able to test for
2452     // equality between types. Check whether type->speculative() ==
2453     // type and set speculative to NULL if it is the case.
2454     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2455       return res_ptr->remove_speculative();
2456     }
2457   }
2458 
2459   return res;
2460 }
2461 
2462 const Type *TypePtr::xmeet_helper(const Type *t) const {
2463   // Perform a fast test for common case; meeting the same types together.
2464   if( this == t ) return this;  // Meeting same type-rep?
2465 
2466   // Current "this->_base" is AnyPtr
2467   switch (t->base()) {          // switch on original type
2468   case Int:                     // Mixing ints & oops happens when javac
2469   case Long:                    // reuses local variables
2470   case FloatTop:
2471   case FloatCon:
2472   case FloatBot:
2473   case DoubleTop:
2474   case DoubleCon:
2475   case DoubleBot:
2476   case NarrowOop:
2477   case NarrowKlass:
2478   case Bottom:                  // Ye Olde Default
2479     return Type::BOTTOM;
2480   case Top:
2481     return this;
2482 
2483   case AnyPtr: {                // Meeting to AnyPtrs
2484     const TypePtr *tp = t->is_ptr();
2485     const TypePtr* speculative = xmeet_speculative(tp);
2486     int depth = meet_inline_depth(tp->inline_depth());
2487     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2488   }
2489   case RawPtr:                  // For these, flip the call around to cut down
2490   case OopPtr:
2491   case InstPtr:                 // on the cases I have to handle.
2492   case ValueTypePtr:
2493   case AryPtr:
2494   case MetadataPtr:
2495   case KlassPtr:
2496     return t->xmeet(this);      // Call in reverse direction
2497   default:                      // All else is a mistake
2498     typerr(t);
2499 
2500   }
2501   return this;
2502 }
2503 
2504 //------------------------------meet_offset------------------------------------
2505 int TypePtr::meet_offset( int offset ) const {
2506   // Either is 'TOP' offset?  Return the other offset!
2507   if( _offset == OffsetTop ) return offset;
2508   if( offset == OffsetTop ) return _offset;
2509   // If either is different, return 'BOTTOM' offset
2510   if( _offset != offset ) return OffsetBot;
2511   return _offset;
2512 }
2513 
2514 //------------------------------dual_offset------------------------------------
2515 int TypePtr::dual_offset( ) const {
2516   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2517   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2518   return _offset;               // Map everything else into self
2519 }
2520 
2521 //------------------------------xdual------------------------------------------
2522 // Dual: compute field-by-field dual
2523 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2524   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2525 };
2526 const Type *TypePtr::xdual() const {
2527   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2528 }
2529 
2530 //------------------------------xadd_offset------------------------------------
2531 int TypePtr::xadd_offset( intptr_t offset ) const {
2532   // Adding to 'TOP' offset?  Return 'TOP'!
2533   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2534   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2535   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2536   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2537   offset += (intptr_t)_offset;
2538   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2539 
2540   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2541   // It is possible to construct a negative offset during PhaseCCP
2542 
2543   return (int)offset;        // Sum valid offsets
2544 }
2545 
2546 //------------------------------add_offset-------------------------------------
2547 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2548   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2549 }
2550 
2551 //------------------------------eq---------------------------------------------
2552 // Structural equality check for Type representations
2553 bool TypePtr::eq( const Type *t ) const {
2554   const TypePtr *a = (const TypePtr*)t;
2555   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2556 }
2557 
2558 //------------------------------hash-------------------------------------------
2559 // Type-specific hashing function.
2560 int TypePtr::hash(void) const {
2561   return java_add(java_add(_ptr, _offset), java_add( hash_speculative(), _inline_depth));
2562 ;
2563 }
2564 
2565 /**
2566  * Return same type without a speculative part
2567  */
2568 const Type* TypePtr::remove_speculative() const {
2569   if (_speculative == NULL) {
2570     return this;
2571   }
2572   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2573   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2574 }
2575 
2576 /**
2577  * Return same type but drop speculative part if we know we won't use
2578  * it
2579  */
2580 const Type* TypePtr::cleanup_speculative() const {
2581   if (speculative() == NULL) {
2582     return this;
2583   }
2584   const Type* no_spec = remove_speculative();
2585   // If this is NULL_PTR then we don't need the speculative type
2586   // (with_inline_depth in case the current type inline depth is
2587   // InlineDepthTop)
2588   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2589     return no_spec;
2590   }
2591   if (above_centerline(speculative()->ptr())) {
2592     return no_spec;
2593   }
2594   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2595   // If the speculative may be null and is an inexact klass then it
2596   // doesn't help
2597   if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2598     return no_spec;
2599   }
2600   return this;
2601 }
2602 
2603 /**
2604  * dual of the speculative part of the type
2605  */
2606 const TypePtr* TypePtr::dual_speculative() const {
2607   if (_speculative == NULL) {
2608     return NULL;
2609   }
2610   return _speculative->dual()->is_ptr();
2611 }
2612 
2613 /**
2614  * meet of the speculative parts of 2 types
2615  *
2616  * @param other  type to meet with
2617  */
2618 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2619   bool this_has_spec = (_speculative != NULL);
2620   bool other_has_spec = (other->speculative() != NULL);
2621 
2622   if (!this_has_spec && !other_has_spec) {
2623     return NULL;
2624   }
2625 
2626   // If we are at a point where control flow meets and one branch has
2627   // a speculative type and the other has not, we meet the speculative
2628   // type of one branch with the actual type of the other. If the
2629   // actual type is exact and the speculative is as well, then the
2630   // result is a speculative type which is exact and we can continue
2631   // speculation further.
2632   const TypePtr* this_spec = _speculative;
2633   const TypePtr* other_spec = other->speculative();
2634 
2635   if (!this_has_spec) {
2636     this_spec = this;
2637   }
2638 
2639   if (!other_has_spec) {
2640     other_spec = other;
2641   }
2642 
2643   return this_spec->meet(other_spec)->is_ptr();
2644 }
2645 
2646 /**
2647  * dual of the inline depth for this type (used for speculation)
2648  */
2649 int TypePtr::dual_inline_depth() const {
2650   return -inline_depth();
2651 }
2652 
2653 /**
2654  * meet of 2 inline depths (used for speculation)
2655  *
2656  * @param depth  depth to meet with
2657  */
2658 int TypePtr::meet_inline_depth(int depth) const {
2659   return MAX2(inline_depth(), depth);
2660 }
2661 
2662 /**
2663  * Are the speculative parts of 2 types equal?
2664  *
2665  * @param other  type to compare this one to
2666  */
2667 bool TypePtr::eq_speculative(const TypePtr* other) const {
2668   if (_speculative == NULL || other->speculative() == NULL) {
2669     return _speculative == other->speculative();
2670   }
2671 
2672   if (_speculative->base() != other->speculative()->base()) {
2673     return false;
2674   }
2675 
2676   return _speculative->eq(other->speculative());
2677 }
2678 
2679 /**
2680  * Hash of the speculative part of the type
2681  */
2682 int TypePtr::hash_speculative() const {
2683   if (_speculative == NULL) {
2684     return 0;
2685   }
2686 
2687   return _speculative->hash();
2688 }
2689 
2690 /**
2691  * add offset to the speculative part of the type
2692  *
2693  * @param offset  offset to add
2694  */
2695 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2696   if (_speculative == NULL) {
2697     return NULL;
2698   }
2699   return _speculative->add_offset(offset)->is_ptr();
2700 }
2701 
2702 /**
2703  * return exact klass from the speculative type if there's one
2704  */
2705 ciKlass* TypePtr::speculative_type() const {
2706   if (_speculative != NULL && _speculative->isa_oopptr()) {
2707     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2708     if (speculative->klass_is_exact()) {
2709       return speculative->klass();
2710     }
2711   }
2712   return NULL;
2713 }
2714 
2715 /**
2716  * return true if speculative type may be null
2717  */
2718 bool TypePtr::speculative_maybe_null() const {
2719   if (_speculative != NULL) {
2720     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2721     return speculative->maybe_null();
2722   }
2723   return true;
2724 }
2725 
2726 /**
2727  * Same as TypePtr::speculative_type() but return the klass only if
2728  * the speculative tells us is not null
2729  */
2730 ciKlass* TypePtr::speculative_type_not_null() const {
2731   if (speculative_maybe_null()) {
2732     return NULL;
2733   }
2734   return speculative_type();
2735 }
2736 
2737 /**
2738  * Check whether new profiling would improve speculative type
2739  *
2740  * @param   exact_kls    class from profiling
2741  * @param   inline_depth inlining depth of profile point
2742  *
2743  * @return  true if type profile is valuable
2744  */
2745 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2746   // no profiling?
2747   if (exact_kls == NULL) {
2748     return false;
2749   }
2750   // no speculative type or non exact speculative type?
2751   if (speculative_type() == NULL) {
2752     return true;
2753   }
2754   // If the node already has an exact speculative type keep it,
2755   // unless it was provided by profiling that is at a deeper
2756   // inlining level. Profiling at a higher inlining depth is
2757   // expected to be less accurate.
2758   if (_speculative->inline_depth() == InlineDepthBottom) {
2759     return false;
2760   }
2761   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2762   return inline_depth < _speculative->inline_depth();
2763 }
2764 
2765 /**
2766  * Check whether new profiling would improve ptr (= tells us it is non
2767  * null)
2768  *
2769  * @param   maybe_null true if profiling tells the ptr may be null
2770  *
2771  * @return  true if ptr profile is valuable
2772  */
2773 bool TypePtr::would_improve_ptr(bool maybe_null) const {
2774   // profiling doesn't tell us anything useful
2775   if (maybe_null) {
2776     return false;
2777   }
2778   // We already know this is not be null
2779   if (!this->maybe_null()) {
2780     return false;
2781   }
2782   // We already know the speculative type cannot be null
2783   if (!speculative_maybe_null()) {
2784     return false;
2785   }
2786   return true;
2787 }
2788 
2789 //------------------------------dump2------------------------------------------
2790 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2791   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2792 };
2793 
2794 #ifndef PRODUCT
2795 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2796   if( _ptr == Null ) st->print("NULL");
2797   else st->print("%s *", ptr_msg[_ptr]);
2798   if( _offset == OffsetTop ) st->print("+top");
2799   else if( _offset == OffsetBot ) st->print("+bot");
2800   else if( _offset ) st->print("+%d", _offset);
2801   dump_inline_depth(st);
2802   dump_speculative(st);
2803 }
2804 
2805 /**
2806  *dump the speculative part of the type
2807  */
2808 void TypePtr::dump_speculative(outputStream *st) const {
2809   if (_speculative != NULL) {
2810     st->print(" (speculative=");
2811     _speculative->dump_on(st);
2812     st->print(")");
2813   }
2814 }
2815 
2816 /**
2817  *dump the inline depth of the type
2818  */
2819 void TypePtr::dump_inline_depth(outputStream *st) const {
2820   if (_inline_depth != InlineDepthBottom) {
2821     if (_inline_depth == InlineDepthTop) {
2822       st->print(" (inline_depth=InlineDepthTop)");
2823     } else {
2824       st->print(" (inline_depth=%d)", _inline_depth);
2825     }
2826   }
2827 }
2828 #endif
2829 
2830 //------------------------------singleton--------------------------------------
2831 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2832 // constants
2833 bool TypePtr::singleton(void) const {
2834   // TopPTR, Null, AnyNull, Constant are all singletons
2835   return (_offset != OffsetBot) && !below_centerline(_ptr);
2836 }
2837 
2838 bool TypePtr::empty(void) const {
2839   return (_offset == OffsetTop) || above_centerline(_ptr);
2840 }
2841 
2842 //=============================================================================
2843 // Convenience common pre-built types.
2844 const TypeRawPtr *TypeRawPtr::BOTTOM;
2845 const TypeRawPtr *TypeRawPtr::NOTNULL;
2846 
2847 //------------------------------make-------------------------------------------
2848 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2849   assert( ptr != Constant, "what is the constant?" );
2850   assert( ptr != Null, "Use TypePtr for NULL" );
2851   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2852 }
2853 
2854 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2855   assert( bits, "Use TypePtr for NULL" );
2856   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2857 }
2858 
2859 //------------------------------cast_to_ptr_type-------------------------------
2860 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2861   assert( ptr != Constant, "what is the constant?" );
2862   assert( ptr != Null, "Use TypePtr for NULL" );
2863   assert( _bits==0, "Why cast a constant address?");
2864   if( ptr == _ptr ) return this;
2865   return make(ptr);
2866 }
2867 
2868 //------------------------------get_con----------------------------------------
2869 intptr_t TypeRawPtr::get_con() const {
2870   assert( _ptr == Null || _ptr == Constant, "" );
2871   return (intptr_t)_bits;
2872 }
2873 
2874 //------------------------------meet-------------------------------------------
2875 // Compute the MEET of two types.  It returns a new Type object.
2876 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2877   // Perform a fast test for common case; meeting the same types together.
2878   if( this == t ) return this;  // Meeting same type-rep?
2879 
2880   // Current "this->_base" is RawPtr
2881   switch( t->base() ) {         // switch on original type
2882   case Bottom:                  // Ye Olde Default
2883     return t;
2884   case Top:
2885     return this;
2886   case AnyPtr:                  // Meeting to AnyPtrs
2887     break;
2888   case RawPtr: {                // might be top, bot, any/not or constant
2889     enum PTR tptr = t->is_ptr()->ptr();
2890     enum PTR ptr = meet_ptr( tptr );
2891     if( ptr == Constant ) {     // Cannot be equal constants, so...
2892       if( tptr == Constant && _ptr != Constant)  return t;
2893       if( _ptr == Constant && tptr != Constant)  return this;
2894       ptr = NotNull;            // Fall down in lattice
2895     }
2896     return make( ptr );
2897   }
2898 
2899   case OopPtr:
2900   case InstPtr:
2901   case ValueTypePtr:
2902   case AryPtr:
2903   case MetadataPtr:
2904   case KlassPtr:
2905     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2906   default:                      // All else is a mistake
2907     typerr(t);
2908   }
2909 
2910   // Found an AnyPtr type vs self-RawPtr type
2911   const TypePtr *tp = t->is_ptr();
2912   switch (tp->ptr()) {
2913   case TypePtr::TopPTR:  return this;
2914   case TypePtr::BotPTR:  return t;
2915   case TypePtr::Null:
2916     if( _ptr == TypePtr::TopPTR ) return t;
2917     return TypeRawPtr::BOTTOM;
2918   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2919   case TypePtr::AnyNull:
2920     if( _ptr == TypePtr::Constant) return this;
2921     return make( meet_ptr(TypePtr::AnyNull) );
2922   default: ShouldNotReachHere();
2923   }
2924   return this;
2925 }
2926 
2927 //------------------------------xdual------------------------------------------
2928 // Dual: compute field-by-field dual
2929 const Type *TypeRawPtr::xdual() const {
2930   return new TypeRawPtr( dual_ptr(), _bits );
2931 }
2932 
2933 //------------------------------add_offset-------------------------------------
2934 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2935   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2936   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2937   if( offset == 0 ) return this; // No change
2938   switch (_ptr) {
2939   case TypePtr::TopPTR:
2940   case TypePtr::BotPTR:
2941   case TypePtr::NotNull:
2942     return this;
2943   case TypePtr::Null:
2944   case TypePtr::Constant: {
2945     address bits = _bits+offset;
2946     if ( bits == 0 ) return TypePtr::NULL_PTR;
2947     return make( bits );
2948   }
2949   default:  ShouldNotReachHere();
2950   }
2951   return NULL;                  // Lint noise
2952 }
2953 
2954 //------------------------------eq---------------------------------------------
2955 // Structural equality check for Type representations
2956 bool TypeRawPtr::eq( const Type *t ) const {
2957   const TypeRawPtr *a = (const TypeRawPtr*)t;
2958   return _bits == a->_bits && TypePtr::eq(t);
2959 }
2960 
2961 //------------------------------hash-------------------------------------------
2962 // Type-specific hashing function.
2963 int TypeRawPtr::hash(void) const {
2964   return (intptr_t)_bits + TypePtr::hash();
2965 }
2966 
2967 //------------------------------dump2------------------------------------------
2968 #ifndef PRODUCT
2969 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2970   if( _ptr == Constant )
2971     st->print(INTPTR_FORMAT, p2i(_bits));
2972   else
2973     st->print("rawptr:%s", ptr_msg[_ptr]);
2974 }
2975 #endif
2976 
2977 //=============================================================================
2978 // Convenience common pre-built type.
2979 const TypeOopPtr *TypeOopPtr::BOTTOM;
2980 
2981 //------------------------------TypeOopPtr-------------------------------------
2982 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2983                        int instance_id, const TypePtr* speculative, int inline_depth)
2984   : TypePtr(t, ptr, offset, speculative, inline_depth),
2985     _const_oop(o), _klass(k),
2986     _klass_is_exact(xk),
2987     _is_ptr_to_narrowoop(false),
2988     _is_ptr_to_narrowklass(false),
2989     _is_ptr_to_boxed_value(false),
2990     _instance_id(instance_id) {
2991   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2992       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2993     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2994   }
2995 #ifdef _LP64
2996   if (_offset != 0) {
2997     if (_offset == oopDesc::klass_offset_in_bytes()) {
2998       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2999     } else if (klass() == NULL) {
3000       // Array with unknown body type
3001       assert(this->isa_aryptr(), "only arrays without klass");
3002       _is_ptr_to_narrowoop = UseCompressedOops;
3003     } else if (this->isa_aryptr()) {
3004       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3005                              _offset != arrayOopDesc::length_offset_in_bytes());
3006     } else if (klass()->is_instance_klass()) {
3007       ciInstanceKlass* ik = klass()->as_instance_klass();
3008       ciField* field = NULL;
3009       if (this->isa_klassptr()) {
3010         // Perm objects don't use compressed references
3011       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3012         // unsafe access
3013         _is_ptr_to_narrowoop = UseCompressedOops;
3014       } else { // exclude unsafe ops
3015         assert(this->isa_instptr() || this->isa_valuetypeptr(), "must be an instance ptr.");
3016 
3017         if (klass() == ciEnv::current()->Class_klass() &&
3018             (_offset == java_lang_Class::klass_offset_in_bytes() ||
3019              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
3020           // Special hidden fields from the Class.
3021           assert(this->isa_instptr(), "must be an instance ptr.");
3022           _is_ptr_to_narrowoop = false;
3023         } else if (klass() == ciEnv::current()->Class_klass() &&
3024                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3025           // Static fields
3026           assert(o != NULL, "must be constant");
3027           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3028           ciField* field = k->get_field_by_offset(_offset, true);
3029           assert(field != NULL, "missing field");
3030           BasicType basic_elem_type = field->layout_type();
3031           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3032                                                        basic_elem_type == T_ARRAY);
3033         } else {
3034           // Instance fields which contains a compressed oop references.
3035           field = ik->get_field_by_offset(_offset, false);
3036           if (field != NULL) {
3037             BasicType basic_elem_type = field->layout_type();
3038             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3039                                                          basic_elem_type == T_ARRAY);
3040           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3041             // Compile::find_alias_type() cast exactness on all types to verify
3042             // that it does not affect alias type.
3043             _is_ptr_to_narrowoop = UseCompressedOops;
3044           } else {
3045             // Type for the copy start in LibraryCallKit::inline_native_clone().
3046             _is_ptr_to_narrowoop = UseCompressedOops;
3047           }
3048         }
3049       }
3050     }
3051   }
3052 #endif
3053 }
3054 
3055 //------------------------------make-------------------------------------------
3056 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3057                                      const TypePtr* speculative, int inline_depth) {
3058   assert(ptr != Constant, "no constant generic pointers");
3059   ciKlass*  k = Compile::current()->env()->Object_klass();
3060   bool      xk = false;
3061   ciObject* o = NULL;
3062   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3063 }
3064 
3065 
3066 //------------------------------cast_to_ptr_type-------------------------------
3067 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3068   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3069   if( ptr == _ptr ) return this;
3070   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3071 }
3072 
3073 //-----------------------------cast_to_instance_id----------------------------
3074 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3075   // There are no instances of a general oop.
3076   // Return self unchanged.
3077   return this;
3078 }
3079 
3080 //-----------------------------cast_to_exactness-------------------------------
3081 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3082   // There is no such thing as an exact general oop.
3083   // Return self unchanged.
3084   return this;
3085 }
3086 
3087 
3088 //------------------------------as_klass_type----------------------------------
3089 // Return the klass type corresponding to this instance or array type.
3090 // It is the type that is loaded from an object of this type.
3091 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3092   ciKlass* k = klass();
3093   bool    xk = klass_is_exact();
3094   if (k == NULL)
3095     return TypeKlassPtr::OBJECT;
3096   else
3097     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
3098 }
3099 
3100 //------------------------------meet-------------------------------------------
3101 // Compute the MEET of two types.  It returns a new Type object.
3102 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3103   // Perform a fast test for common case; meeting the same types together.
3104   if( this == t ) return this;  // Meeting same type-rep?
3105 
3106   // Current "this->_base" is OopPtr
3107   switch (t->base()) {          // switch on original type
3108 
3109   case Int:                     // Mixing ints & oops happens when javac
3110   case Long:                    // reuses local variables
3111   case FloatTop:
3112   case FloatCon:
3113   case FloatBot:
3114   case DoubleTop:
3115   case DoubleCon:
3116   case DoubleBot:
3117   case NarrowOop:
3118   case NarrowKlass:
3119   case Bottom:                  // Ye Olde Default
3120     return Type::BOTTOM;
3121   case Top:
3122     return this;
3123 
3124   default:                      // All else is a mistake
3125     typerr(t);
3126 
3127   case RawPtr:
3128   case MetadataPtr:
3129   case KlassPtr:
3130     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3131 
3132   case AnyPtr: {
3133     // Found an AnyPtr type vs self-OopPtr type
3134     const TypePtr *tp = t->is_ptr();
3135     int offset = meet_offset(tp->offset());
3136     PTR ptr = meet_ptr(tp->ptr());
3137     const TypePtr* speculative = xmeet_speculative(tp);
3138     int depth = meet_inline_depth(tp->inline_depth());
3139     switch (tp->ptr()) {
3140     case Null:
3141       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3142       // else fall through:
3143     case TopPTR:
3144     case AnyNull: {
3145       int instance_id = meet_instance_id(InstanceTop);
3146       return make(ptr, offset, instance_id, speculative, depth);
3147     }
3148     case BotPTR:
3149     case NotNull:
3150       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3151     default: typerr(t);
3152     }
3153   }
3154 
3155   case OopPtr: {                 // Meeting to other OopPtrs
3156     const TypeOopPtr *tp = t->is_oopptr();
3157     int instance_id = meet_instance_id(tp->instance_id());
3158     const TypePtr* speculative = xmeet_speculative(tp);
3159     int depth = meet_inline_depth(tp->inline_depth());
3160     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3161   }
3162 
3163   case InstPtr:                  // For these, flip the call around to cut down
3164   case ValueTypePtr:
3165   case AryPtr:
3166     return t->xmeet(this);      // Call in reverse direction
3167 
3168   } // End of switch
3169   return this;                  // Return the double constant
3170 }
3171 
3172 
3173 //------------------------------xdual------------------------------------------
3174 // Dual of a pure heap pointer.  No relevant klass or oop information.
3175 const Type *TypeOopPtr::xdual() const {
3176   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3177   assert(const_oop() == NULL,             "no constants here");
3178   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3179 }
3180 
3181 //--------------------------make_from_klass_common-----------------------------
3182 // Computes the element-type given a klass.
3183 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3184   if (klass->is_valuetype()) {
3185     return TypeValueTypePtr::make(TypeValueType::make(klass->as_value_klass()), TypePtr::NotNull);
3186   } else if (klass->is_instance_klass()) {
3187     Compile* C = Compile::current();
3188     Dependencies* deps = C->dependencies();
3189     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3190     // Element is an instance
3191     bool klass_is_exact = false;
3192     if (klass->is_loaded()) {
3193       // Try to set klass_is_exact.
3194       ciInstanceKlass* ik = klass->as_instance_klass();
3195       klass_is_exact = ik->is_final();
3196       if (!klass_is_exact && klass_change
3197           && deps != NULL && UseUniqueSubclasses) {
3198         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3199         if (sub != NULL) {
3200           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3201           klass = ik = sub;
3202           klass_is_exact = sub->is_final();
3203         }
3204       }
3205       if (!klass_is_exact && try_for_exact
3206           && deps != NULL && UseExactTypes) {
3207         if (!ik->is_interface() && !ik->has_subklass()) {
3208           // Add a dependence; if concrete subclass added we need to recompile
3209           deps->assert_leaf_type(ik);
3210           klass_is_exact = true;
3211         }
3212       }
3213     }
3214     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3215   } else if (klass->is_obj_array_klass()) {
3216     // Element is an object array. Recursively call ourself.
3217     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3218     bool xk = etype->klass_is_exact();
3219     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3220     // We used to pass NotNull in here, asserting that the sub-arrays
3221     // are all not-null.  This is not true in generally, as code can
3222     // slam NULLs down in the subarrays.
3223     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3224     return arr;
3225   } else if (klass->is_type_array_klass()) {
3226     // Element is an typeArray
3227     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3228     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3229     // We used to pass NotNull in here, asserting that the array pointer
3230     // is not-null. That was not true in general.
3231     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3232     return arr;
3233   } else {
3234     ShouldNotReachHere();
3235     return NULL;
3236   }
3237 }
3238 
3239 //------------------------------make_from_constant-----------------------------
3240 // Make a java pointer from an oop constant
3241 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3242   assert(!o->is_null_object(), "null object not yet handled here.");
3243   ciKlass* klass = o->klass();
3244   if (klass->is_instance_klass()) {
3245     // Element is an instance
3246     if (require_constant) {
3247       if (!o->can_be_constant())  return NULL;
3248     } else if (!o->should_be_constant()) {
3249       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3250     }
3251     return TypeInstPtr::make(o);
3252   } else if (klass->is_obj_array_klass()) {
3253     // Element is an object array. Recursively call ourself.
3254     const TypeOopPtr *etype =
3255       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3256     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3257     // We used to pass NotNull in here, asserting that the sub-arrays
3258     // are all not-null.  This is not true in generally, as code can
3259     // slam NULLs down in the subarrays.
3260     if (require_constant) {
3261       if (!o->can_be_constant())  return NULL;
3262     } else if (!o->should_be_constant()) {
3263       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3264     }
3265     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3266     return arr;
3267   } else if (klass->is_type_array_klass()) {
3268     // Element is an typeArray
3269     const Type* etype =
3270       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3271     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3272     // We used to pass NotNull in here, asserting that the array pointer
3273     // is not-null. That was not true in general.
3274     if (require_constant) {
3275       if (!o->can_be_constant())  return NULL;
3276     } else if (!o->should_be_constant()) {
3277       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3278     }
3279     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3280     return arr;
3281   }
3282 
3283   fatal("unhandled object type");
3284   return NULL;
3285 }
3286 
3287 //------------------------------get_con----------------------------------------
3288 intptr_t TypeOopPtr::get_con() const {
3289   assert( _ptr == Null || _ptr == Constant, "" );
3290   assert( _offset >= 0, "" );
3291 
3292   if (_offset != 0) {
3293     // After being ported to the compiler interface, the compiler no longer
3294     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3295     // to a handle at compile time.  This handle is embedded in the generated
3296     // code and dereferenced at the time the nmethod is made.  Until that time,
3297     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3298     // have access to the addresses!).  This does not seem to currently happen,
3299     // but this assertion here is to help prevent its occurence.
3300     tty->print_cr("Found oop constant with non-zero offset");
3301     ShouldNotReachHere();
3302   }
3303 
3304   return (intptr_t)const_oop()->constant_encoding();
3305 }
3306 
3307 
3308 //-----------------------------filter------------------------------------------
3309 // Do not allow interface-vs.-noninterface joins to collapse to top.
3310 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3311 
3312   const Type* ft = join_helper(kills, include_speculative);
3313   const TypeInstPtr* ftip = ft->isa_instptr();
3314   const TypeInstPtr* ktip = kills->isa_instptr();
3315 
3316   if (ft->empty()) {
3317     // Check for evil case of 'this' being a class and 'kills' expecting an
3318     // interface.  This can happen because the bytecodes do not contain
3319     // enough type info to distinguish a Java-level interface variable
3320     // from a Java-level object variable.  If we meet 2 classes which
3321     // both implement interface I, but their meet is at 'j/l/O' which
3322     // doesn't implement I, we have no way to tell if the result should
3323     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3324     // into a Phi which "knows" it's an Interface type we'll have to
3325     // uplift the type.
3326     if (!empty()) {
3327       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3328         return kills;           // Uplift to interface
3329       }
3330       // Also check for evil cases of 'this' being a class array
3331       // and 'kills' expecting an array of interfaces.
3332       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3333       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3334         return kills;           // Uplift to array of interface
3335       }
3336     }
3337 
3338     return Type::TOP;           // Canonical empty value
3339   }
3340 
3341   // If we have an interface-typed Phi or cast and we narrow to a class type,
3342   // the join should report back the class.  However, if we have a J/L/Object
3343   // class-typed Phi and an interface flows in, it's possible that the meet &
3344   // join report an interface back out.  This isn't possible but happens
3345   // because the type system doesn't interact well with interfaces.
3346   if (ftip != NULL && ktip != NULL &&
3347       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3348       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3349     assert(!ftip->klass_is_exact(), "interface could not be exact");
3350     return ktip->cast_to_ptr_type(ftip->ptr());
3351   }
3352 
3353   return ft;
3354 }
3355 
3356 //------------------------------eq---------------------------------------------
3357 // Structural equality check for Type representations
3358 bool TypeOopPtr::eq( const Type *t ) const {
3359   const TypeOopPtr *a = (const TypeOopPtr*)t;
3360   if (_klass_is_exact != a->_klass_is_exact ||
3361       _instance_id != a->_instance_id)  return false;
3362   ciObject* one = const_oop();
3363   ciObject* two = a->const_oop();
3364   if (one == NULL || two == NULL) {
3365     return (one == two) && TypePtr::eq(t);
3366   } else {
3367     return one->equals(two) && TypePtr::eq(t);
3368   }
3369 }
3370 
3371 //------------------------------hash-------------------------------------------
3372 // Type-specific hashing function.
3373 int TypeOopPtr::hash(void) const {
3374   return
3375     java_add(java_add(const_oop() ? const_oop()->hash() : 0, _klass_is_exact),
3376              java_add(_instance_id, TypePtr::hash()));
3377 }
3378 
3379 //------------------------------dump2------------------------------------------
3380 #ifndef PRODUCT
3381 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3382   st->print("oopptr:%s", ptr_msg[_ptr]);
3383   if( _klass_is_exact ) st->print(":exact");
3384   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3385   switch( _offset ) {
3386   case OffsetTop: st->print("+top"); break;
3387   case OffsetBot: st->print("+any"); break;
3388   case         0: break;
3389   default:        st->print("+%d",_offset); break;
3390   }
3391   if (_instance_id == InstanceTop)
3392     st->print(",iid=top");
3393   else if (_instance_id != InstanceBot)
3394     st->print(",iid=%d",_instance_id);
3395 
3396   dump_inline_depth(st);
3397   dump_speculative(st);
3398 }
3399 #endif
3400 
3401 //------------------------------singleton--------------------------------------
3402 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3403 // constants
3404 bool TypeOopPtr::singleton(void) const {
3405   // detune optimizer to not generate constant oop + constant offset as a constant!
3406   // TopPTR, Null, AnyNull, Constant are all singletons
3407   return (_offset == 0) && !below_centerline(_ptr);
3408 }
3409 
3410 //------------------------------add_offset-------------------------------------
3411 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3412   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3413 }
3414 
3415 /**
3416  * Return same type without a speculative part
3417  */
3418 const Type* TypeOopPtr::remove_speculative() const {
3419   if (_speculative == NULL) {
3420     return this;
3421   }
3422   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3423   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3424 }
3425 
3426 /**
3427  * Return same type but drop speculative part if we know we won't use
3428  * it
3429  */
3430 const Type* TypeOopPtr::cleanup_speculative() const {
3431   // If the klass is exact and the ptr is not null then there's
3432   // nothing that the speculative type can help us with
3433   if (klass_is_exact() && !maybe_null()) {
3434     return remove_speculative();
3435   }
3436   return TypePtr::cleanup_speculative();
3437 }
3438 
3439 /**
3440  * Return same type but with a different inline depth (used for speculation)
3441  *
3442  * @param depth  depth to meet with
3443  */
3444 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3445   if (!UseInlineDepthForSpeculativeTypes) {
3446     return this;
3447   }
3448   return make(_ptr, _offset, _instance_id, _speculative, depth);
3449 }
3450 
3451 //------------------------------meet_instance_id--------------------------------
3452 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3453   // Either is 'TOP' instance?  Return the other instance!
3454   if( _instance_id == InstanceTop ) return  instance_id;
3455   if(  instance_id == InstanceTop ) return _instance_id;
3456   // If either is different, return 'BOTTOM' instance
3457   if( _instance_id != instance_id ) return InstanceBot;
3458   return _instance_id;
3459 }
3460 
3461 //------------------------------dual_instance_id--------------------------------
3462 int TypeOopPtr::dual_instance_id( ) const {
3463   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3464   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3465   return _instance_id;              // Map everything else into self
3466 }
3467 
3468 /**
3469  * Check whether new profiling would improve speculative type
3470  *
3471  * @param   exact_kls    class from profiling
3472  * @param   inline_depth inlining depth of profile point
3473  *
3474  * @return  true if type profile is valuable
3475  */
3476 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3477   // no way to improve an already exact type
3478   if (klass_is_exact()) {
3479     return false;
3480   }
3481   return TypePtr::would_improve_type(exact_kls, inline_depth);
3482 }
3483 
3484 //=============================================================================
3485 // Convenience common pre-built types.
3486 const TypeInstPtr *TypeInstPtr::NOTNULL;
3487 const TypeInstPtr *TypeInstPtr::BOTTOM;
3488 const TypeInstPtr *TypeInstPtr::MIRROR;
3489 const TypeInstPtr *TypeInstPtr::MARK;
3490 const TypeInstPtr *TypeInstPtr::KLASS;
3491 
3492 //------------------------------TypeInstPtr-------------------------------------
3493 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3494                          int instance_id, const TypePtr* speculative, int inline_depth)
3495   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3496     _name(k->name()) {
3497    assert(k != NULL &&
3498           (k->is_loaded() || o == NULL),
3499           "cannot have constants with non-loaded klass");
3500 };
3501 
3502 //------------------------------make-------------------------------------------
3503 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3504                                      ciKlass* k,
3505                                      bool xk,
3506                                      ciObject* o,
3507                                      int offset,
3508                                      int instance_id,
3509                                      const TypePtr* speculative,
3510                                      int inline_depth) {
3511   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3512   // Either const_oop() is NULL or else ptr is Constant
3513   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3514           "constant pointers must have a value supplied" );
3515   // Ptr is never Null
3516   assert( ptr != Null, "NULL pointers are not typed" );
3517 
3518   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3519   if (!UseExactTypes)  xk = false;
3520   if (ptr == Constant) {
3521     // Note:  This case includes meta-object constants, such as methods.
3522     xk = true;
3523   } else if (k->is_loaded()) {
3524     ciInstanceKlass* ik = k->as_instance_klass();
3525     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3526     if (xk && ik->is_interface())  xk = false;  // no exact interface
3527   }
3528 
3529   // Now hash this baby
3530   TypeInstPtr *result =
3531     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3532 
3533   return result;
3534 }
3535 
3536 /**
3537  *  Create constant type for a constant boxed value
3538  */
3539 const Type* TypeInstPtr::get_const_boxed_value() const {
3540   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3541   assert((const_oop() != NULL), "should be called only for constant object");
3542   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3543   BasicType bt = constant.basic_type();
3544   switch (bt) {
3545     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3546     case T_INT:      return TypeInt::make(constant.as_int());
3547     case T_CHAR:     return TypeInt::make(constant.as_char());
3548     case T_BYTE:     return TypeInt::make(constant.as_byte());
3549     case T_SHORT:    return TypeInt::make(constant.as_short());
3550     case T_FLOAT:    return TypeF::make(constant.as_float());
3551     case T_DOUBLE:   return TypeD::make(constant.as_double());
3552     case T_LONG:     return TypeLong::make(constant.as_long());
3553     default:         break;
3554   }
3555   fatal("Invalid boxed value type '%s'", type2name(bt));
3556   return NULL;
3557 }
3558 
3559 //------------------------------cast_to_ptr_type-------------------------------
3560 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3561   if( ptr == _ptr ) return this;
3562   // Reconstruct _sig info here since not a problem with later lazy
3563   // construction, _sig will show up on demand.
3564   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3565 }
3566 
3567 
3568 //-----------------------------cast_to_exactness-------------------------------
3569 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3570   if( klass_is_exact == _klass_is_exact ) return this;
3571   if (!UseExactTypes)  return this;
3572   if (!_klass->is_loaded())  return this;
3573   ciInstanceKlass* ik = _klass->as_instance_klass();
3574   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3575   if( ik->is_interface() )              return this;  // cannot set xk
3576   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3577 }
3578 
3579 //-----------------------------cast_to_instance_id----------------------------
3580 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3581   if( instance_id == _instance_id ) return this;
3582   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3583 }
3584 
3585 //------------------------------xmeet_unloaded---------------------------------
3586 // Compute the MEET of two InstPtrs when at least one is unloaded.
3587 // Assume classes are different since called after check for same name/class-loader
3588 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3589     int off = meet_offset(tinst->offset());
3590     PTR ptr = meet_ptr(tinst->ptr());
3591     int instance_id = meet_instance_id(tinst->instance_id());
3592     const TypePtr* speculative = xmeet_speculative(tinst);
3593     int depth = meet_inline_depth(tinst->inline_depth());
3594 
3595     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3596     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3597     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3598       //
3599       // Meet unloaded class with java/lang/Object
3600       //
3601       // Meet
3602       //          |                     Unloaded Class
3603       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3604       //  ===================================================================
3605       //   TOP    | ..........................Unloaded......................|
3606       //  AnyNull |  U-AN    |................Unloaded......................|
3607       // Constant | ... O-NN .................................. |   O-BOT   |
3608       //  NotNull | ... O-NN .................................. |   O-BOT   |
3609       //  BOTTOM  | ........................Object-BOTTOM ..................|
3610       //
3611       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3612       //
3613       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3614       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3615       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3616       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3617         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3618         else                                      { return TypeInstPtr::NOTNULL; }
3619       }
3620       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3621 
3622       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3623     }
3624 
3625     // Both are unloaded, not the same class, not Object
3626     // Or meet unloaded with a different loaded class, not java/lang/Object
3627     if( ptr != TypePtr::BotPTR ) {
3628       return TypeInstPtr::NOTNULL;
3629     }
3630     return TypeInstPtr::BOTTOM;
3631 }
3632 
3633 
3634 //------------------------------meet-------------------------------------------
3635 // Compute the MEET of two types.  It returns a new Type object.
3636 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3637   // Perform a fast test for common case; meeting the same types together.
3638   if( this == t ) return this;  // Meeting same type-rep?
3639 
3640   // Current "this->_base" is Pointer
3641   switch (t->base()) {          // switch on original type
3642 
3643   case Int:                     // Mixing ints & oops happens when javac
3644   case Long:                    // reuses local variables
3645   case FloatTop:
3646   case FloatCon:
3647   case FloatBot:
3648   case DoubleTop:
3649   case DoubleCon:
3650   case DoubleBot:
3651   case NarrowOop:
3652   case NarrowKlass:
3653   case Bottom:                  // Ye Olde Default
3654     return Type::BOTTOM;
3655   case Top:
3656     return this;
3657 
3658   default:                      // All else is a mistake
3659     typerr(t);
3660 
3661   case MetadataPtr:
3662   case KlassPtr:
3663   case RawPtr: return TypePtr::BOTTOM;
3664 
3665   case AryPtr: {                // All arrays inherit from Object class
3666     const TypeAryPtr *tp = t->is_aryptr();
3667     int offset = meet_offset(tp->offset());
3668     PTR ptr = meet_ptr(tp->ptr());
3669     int instance_id = meet_instance_id(tp->instance_id());
3670     const TypePtr* speculative = xmeet_speculative(tp);
3671     int depth = meet_inline_depth(tp->inline_depth());
3672     switch (ptr) {
3673     case TopPTR:
3674     case AnyNull:                // Fall 'down' to dual of object klass
3675       // For instances when a subclass meets a superclass we fall
3676       // below the centerline when the superclass is exact. We need to
3677       // do the same here.
3678       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3679         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3680       } else {
3681         // cannot subclass, so the meet has to fall badly below the centerline
3682         ptr = NotNull;
3683         instance_id = InstanceBot;
3684         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3685       }
3686     case Constant:
3687     case NotNull:
3688     case BotPTR:                // Fall down to object klass
3689       // LCA is object_klass, but if we subclass from the top we can do better
3690       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3691         // If 'this' (InstPtr) is above the centerline and it is Object class
3692         // then we can subclass in the Java class hierarchy.
3693         // For instances when a subclass meets a superclass we fall
3694         // below the centerline when the superclass is exact. We need
3695         // to do the same here.
3696         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3697           // that is, tp's array type is a subtype of my klass
3698           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3699                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3700         }
3701       }
3702       // The other case cannot happen, since I cannot be a subtype of an array.
3703       // The meet falls down to Object class below centerline.
3704       if( ptr == Constant )
3705          ptr = NotNull;
3706       instance_id = InstanceBot;
3707       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3708     default: typerr(t);
3709     }
3710   }
3711 
3712   case OopPtr: {                // Meeting to OopPtrs
3713     // Found a OopPtr type vs self-InstPtr type
3714     const TypeOopPtr *tp = t->is_oopptr();
3715     int offset = meet_offset(tp->offset());
3716     PTR ptr = meet_ptr(tp->ptr());
3717     switch (tp->ptr()) {
3718     case TopPTR:
3719     case AnyNull: {
3720       int instance_id = meet_instance_id(InstanceTop);
3721       const TypePtr* speculative = xmeet_speculative(tp);
3722       int depth = meet_inline_depth(tp->inline_depth());
3723       return make(ptr, klass(), klass_is_exact(),
3724                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3725     }
3726     case NotNull:
3727     case BotPTR: {
3728       int instance_id = meet_instance_id(tp->instance_id());
3729       const TypePtr* speculative = xmeet_speculative(tp);
3730       int depth = meet_inline_depth(tp->inline_depth());
3731       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3732     }
3733     default: typerr(t);
3734     }
3735   }
3736 
3737   case AnyPtr: {                // Meeting to AnyPtrs
3738     // Found an AnyPtr type vs self-InstPtr type
3739     const TypePtr *tp = t->is_ptr();
3740     int offset = meet_offset(tp->offset());
3741     PTR ptr = meet_ptr(tp->ptr());
3742     int instance_id = meet_instance_id(InstanceTop);
3743     const TypePtr* speculative = xmeet_speculative(tp);
3744     int depth = meet_inline_depth(tp->inline_depth());
3745     switch (tp->ptr()) {
3746     case Null:
3747       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3748       // else fall through to AnyNull
3749     case TopPTR:
3750     case AnyNull: {
3751       return make(ptr, klass(), klass_is_exact(),
3752                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3753     }
3754     case NotNull:
3755     case BotPTR:
3756       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3757     default: typerr(t);
3758     }
3759   }
3760 
3761   /*
3762                  A-top         }
3763                /   |   \       }  Tops
3764            B-top A-any C-top   }
3765               | /  |  \ |      }  Any-nulls
3766            B-any   |   C-any   }
3767               |    |    |
3768            B-con A-con C-con   } constants; not comparable across classes
3769               |    |    |
3770            B-not   |   C-not   }
3771               | \  |  / |      }  not-nulls
3772            B-bot A-not C-bot   }
3773                \   |   /       }  Bottoms
3774                  A-bot         }
3775   */
3776 
3777   case InstPtr: {                // Meeting 2 Oops?
3778     // Found an InstPtr sub-type vs self-InstPtr type
3779     const TypeInstPtr *tinst = t->is_instptr();
3780     int off = meet_offset( tinst->offset() );
3781     PTR ptr = meet_ptr( tinst->ptr() );
3782     int instance_id = meet_instance_id(tinst->instance_id());
3783     const TypePtr* speculative = xmeet_speculative(tinst);
3784     int depth = meet_inline_depth(tinst->inline_depth());
3785 
3786     // Check for easy case; klasses are equal (and perhaps not loaded!)
3787     // If we have constants, then we created oops so classes are loaded
3788     // and we can handle the constants further down.  This case handles
3789     // both-not-loaded or both-loaded classes
3790     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3791       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3792     }
3793 
3794     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3795     ciKlass* tinst_klass = tinst->klass();
3796     ciKlass* this_klass  = this->klass();
3797     bool tinst_xk = tinst->klass_is_exact();
3798     bool this_xk  = this->klass_is_exact();
3799     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3800       // One of these classes has not been loaded
3801       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3802 #ifndef PRODUCT
3803       if( PrintOpto && Verbose ) {
3804         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3805         tty->print("  this == "); this->dump(); tty->cr();
3806         tty->print(" tinst == "); tinst->dump(); tty->cr();
3807       }
3808 #endif
3809       return unloaded_meet;
3810     }
3811 
3812     // Handle mixing oops and interfaces first.
3813     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3814                                         tinst_klass == ciEnv::current()->Object_klass())) {
3815       ciKlass *tmp = tinst_klass; // Swap interface around
3816       tinst_klass = this_klass;
3817       this_klass = tmp;
3818       bool tmp2 = tinst_xk;
3819       tinst_xk = this_xk;
3820       this_xk = tmp2;
3821     }
3822     if (tinst_klass->is_interface() &&
3823         !(this_klass->is_interface() ||
3824           // Treat java/lang/Object as an honorary interface,
3825           // because we need a bottom for the interface hierarchy.
3826           this_klass == ciEnv::current()->Object_klass())) {
3827       // Oop meets interface!
3828 
3829       // See if the oop subtypes (implements) interface.
3830       ciKlass *k;
3831       bool xk;
3832       if( this_klass->is_subtype_of( tinst_klass ) ) {
3833         // Oop indeed subtypes.  Now keep oop or interface depending
3834         // on whether we are both above the centerline or either is
3835         // below the centerline.  If we are on the centerline
3836         // (e.g., Constant vs. AnyNull interface), use the constant.
3837         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3838         // If we are keeping this_klass, keep its exactness too.
3839         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3840       } else {                  // Does not implement, fall to Object
3841         // Oop does not implement interface, so mixing falls to Object
3842         // just like the verifier does (if both are above the
3843         // centerline fall to interface)
3844         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3845         xk = above_centerline(ptr) ? tinst_xk : false;
3846         // Watch out for Constant vs. AnyNull interface.
3847         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3848         instance_id = InstanceBot;
3849       }
3850       ciObject* o = NULL;  // the Constant value, if any
3851       if (ptr == Constant) {
3852         // Find out which constant.
3853         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3854       }
3855       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3856     }
3857 
3858     // Either oop vs oop or interface vs interface or interface vs Object
3859 
3860     // !!! Here's how the symmetry requirement breaks down into invariants:
3861     // If we split one up & one down AND they subtype, take the down man.
3862     // If we split one up & one down AND they do NOT subtype, "fall hard".
3863     // If both are up and they subtype, take the subtype class.
3864     // If both are up and they do NOT subtype, "fall hard".
3865     // If both are down and they subtype, take the supertype class.
3866     // If both are down and they do NOT subtype, "fall hard".
3867     // Constants treated as down.
3868 
3869     // Now, reorder the above list; observe that both-down+subtype is also
3870     // "fall hard"; "fall hard" becomes the default case:
3871     // If we split one up & one down AND they subtype, take the down man.
3872     // If both are up and they subtype, take the subtype class.
3873 
3874     // If both are down and they subtype, "fall hard".
3875     // If both are down and they do NOT subtype, "fall hard".
3876     // If both are up and they do NOT subtype, "fall hard".
3877     // If we split one up & one down AND they do NOT subtype, "fall hard".
3878 
3879     // If a proper subtype is exact, and we return it, we return it exactly.
3880     // If a proper supertype is exact, there can be no subtyping relationship!
3881     // If both types are equal to the subtype, exactness is and-ed below the
3882     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3883 
3884     // Check for subtyping:
3885     ciKlass *subtype = NULL;
3886     bool subtype_exact = false;
3887     if( tinst_klass->equals(this_klass) ) {
3888       subtype = this_klass;
3889       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3890     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3891       subtype = this_klass;     // Pick subtyping class
3892       subtype_exact = this_xk;
3893     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3894       subtype = tinst_klass;    // Pick subtyping class
3895       subtype_exact = tinst_xk;
3896     }
3897 
3898     if( subtype ) {
3899       if( above_centerline(ptr) ) { // both are up?
3900         this_klass = tinst_klass = subtype;
3901         this_xk = tinst_xk = subtype_exact;
3902       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3903         this_klass = tinst_klass; // tinst is down; keep down man
3904         this_xk = tinst_xk;
3905       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3906         tinst_klass = this_klass; // this is down; keep down man
3907         tinst_xk = this_xk;
3908       } else {
3909         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3910       }
3911     }
3912 
3913     // Check for classes now being equal
3914     if (tinst_klass->equals(this_klass)) {
3915       // If the klasses are equal, the constants may still differ.  Fall to
3916       // NotNull if they do (neither constant is NULL; that is a special case
3917       // handled elsewhere).
3918       ciObject* o = NULL;             // Assume not constant when done
3919       ciObject* this_oop  = const_oop();
3920       ciObject* tinst_oop = tinst->const_oop();
3921       if( ptr == Constant ) {
3922         if (this_oop != NULL && tinst_oop != NULL &&
3923             this_oop->equals(tinst_oop) )
3924           o = this_oop;
3925         else if (above_centerline(this ->_ptr))
3926           o = tinst_oop;
3927         else if (above_centerline(tinst ->_ptr))
3928           o = this_oop;
3929         else
3930           ptr = NotNull;
3931       }
3932       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3933     } // Else classes are not equal
3934 
3935     // Since klasses are different, we require a LCA in the Java
3936     // class hierarchy - which means we have to fall to at least NotNull.
3937     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3938       ptr = NotNull;
3939 
3940     instance_id = InstanceBot;
3941 
3942     // Now we find the LCA of Java classes
3943     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3944     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3945   } // End of case InstPtr
3946 
3947   } // End of switch
3948   return this;                  // Return the double constant
3949 }
3950 
3951 
3952 //------------------------java_mirror_type--------------------------------------
3953 ciType* TypeInstPtr::java_mirror_type() const {
3954   // must be a singleton type
3955   if( const_oop() == NULL )  return NULL;
3956 
3957   // must be of type java.lang.Class
3958   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3959 
3960   return const_oop()->as_instance()->java_mirror_type();
3961 }
3962 
3963 
3964 //------------------------------xdual------------------------------------------
3965 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3966 // inheritance mechanism.
3967 const Type *TypeInstPtr::xdual() const {
3968   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3969 }
3970 
3971 //------------------------------eq---------------------------------------------
3972 // Structural equality check for Type representations
3973 bool TypeInstPtr::eq( const Type *t ) const {
3974   const TypeInstPtr *p = t->is_instptr();
3975   return
3976     klass()->equals(p->klass()) &&
3977     TypeOopPtr::eq(p);          // Check sub-type stuff
3978 }
3979 
3980 //------------------------------hash-------------------------------------------
3981 // Type-specific hashing function.
3982 int TypeInstPtr::hash(void) const {
3983   int hash = java_add(klass()->hash(), TypeOopPtr::hash());
3984   return hash;
3985 }
3986 
3987 //------------------------------dump2------------------------------------------
3988 // Dump oop Type
3989 #ifndef PRODUCT
3990 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3991   // Print the name of the klass.
3992   klass()->print_name_on(st);
3993 
3994   switch( _ptr ) {
3995   case Constant:
3996     // TO DO: Make CI print the hex address of the underlying oop.
3997     if (WizardMode || Verbose) {
3998       const_oop()->print_oop(st);
3999     }
4000   case BotPTR:
4001     if (!WizardMode && !Verbose) {
4002       if( _klass_is_exact ) st->print(":exact");
4003       break;
4004     }
4005   case TopPTR:
4006   case AnyNull:
4007   case NotNull:
4008     st->print(":%s", ptr_msg[_ptr]);
4009     if( _klass_is_exact ) st->print(":exact");
4010     break;
4011   }
4012 
4013   if( _offset ) {               // Dump offset, if any
4014     if( _offset == OffsetBot )      st->print("+any");
4015     else if( _offset == OffsetTop ) st->print("+unknown");
4016     else st->print("+%d", _offset);
4017   }
4018 
4019   st->print(" *");
4020   if (_instance_id == InstanceTop)
4021     st->print(",iid=top");
4022   else if (_instance_id != InstanceBot)
4023     st->print(",iid=%d",_instance_id);
4024 
4025   dump_inline_depth(st);
4026   dump_speculative(st);
4027 }
4028 #endif
4029 
4030 //------------------------------add_offset-------------------------------------
4031 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4032   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4033               _instance_id, add_offset_speculative(offset), _inline_depth);
4034 }
4035 
4036 const Type *TypeInstPtr::remove_speculative() const {
4037   if (_speculative == NULL) {
4038     return this;
4039   }
4040   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4041   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4042               _instance_id, NULL, _inline_depth);
4043 }
4044 
4045 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4046   if (!UseInlineDepthForSpeculativeTypes) {
4047     return this;
4048   }
4049   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4050 }
4051 
4052 //=============================================================================
4053 // Convenience common pre-built types.
4054 const TypeAryPtr *TypeAryPtr::RANGE;
4055 const TypeAryPtr *TypeAryPtr::OOPS;
4056 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4057 const TypeAryPtr *TypeAryPtr::BYTES;
4058 const TypeAryPtr *TypeAryPtr::SHORTS;
4059 const TypeAryPtr *TypeAryPtr::CHARS;
4060 const TypeAryPtr *TypeAryPtr::INTS;
4061 const TypeAryPtr *TypeAryPtr::LONGS;
4062 const TypeAryPtr *TypeAryPtr::FLOATS;
4063 const TypeAryPtr *TypeAryPtr::DOUBLES;
4064 
4065 //------------------------------make-------------------------------------------
4066 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4067                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4068   assert(!(k == NULL && ary->_elem->isa_int()),
4069          "integral arrays must be pre-equipped with a class");
4070   if (!xk)  xk = ary->ary_must_be_exact();
4071   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4072   if (!UseExactTypes)  xk = (ptr == Constant);
4073   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4074 }
4075 
4076 //------------------------------make-------------------------------------------
4077 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4078                                    int instance_id, const TypePtr* speculative, int inline_depth,
4079                                    bool is_autobox_cache) {
4080   assert(!(k == NULL && ary->_elem->isa_int()),
4081          "integral arrays must be pre-equipped with a class");
4082   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4083   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4084   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4085   if (!UseExactTypes)  xk = (ptr == Constant);
4086   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4087 }
4088 
4089 //------------------------------cast_to_ptr_type-------------------------------
4090 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4091   if( ptr == _ptr ) return this;
4092   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4093 }
4094 
4095 
4096 //-----------------------------cast_to_exactness-------------------------------
4097 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4098   if( klass_is_exact == _klass_is_exact ) return this;
4099   if (!UseExactTypes)  return this;
4100   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4101   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4102 }
4103 
4104 //-----------------------------cast_to_instance_id----------------------------
4105 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4106   if( instance_id == _instance_id ) return this;
4107   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4108 }
4109 
4110 //-----------------------------narrow_size_type-------------------------------
4111 // Local cache for arrayOopDesc::max_array_length(etype),
4112 // which is kind of slow (and cached elsewhere by other users).
4113 static jint max_array_length_cache[T_CONFLICT+1];
4114 static jint max_array_length(BasicType etype) {
4115   jint& cache = max_array_length_cache[etype];
4116   jint res = cache;
4117   if (res == 0) {
4118     switch (etype) {
4119     case T_NARROWOOP:
4120       etype = T_OBJECT;
4121       break;
4122     case T_NARROWKLASS:
4123     case T_CONFLICT:
4124     case T_ILLEGAL:
4125     case T_VOID:
4126       etype = T_BYTE;           // will produce conservatively high value
4127     }
4128     cache = res = arrayOopDesc::max_array_length(etype);
4129   }
4130   return res;
4131 }
4132 
4133 // Narrow the given size type to the index range for the given array base type.
4134 // Return NULL if the resulting int type becomes empty.
4135 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4136   jint hi = size->_hi;
4137   jint lo = size->_lo;
4138   jint min_lo = 0;
4139   jint max_hi = max_array_length(elem()->basic_type());
4140   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4141   bool chg = false;
4142   if (lo < min_lo) {
4143     lo = min_lo;
4144     if (size->is_con()) {
4145       hi = lo;
4146     }
4147     chg = true;
4148   }
4149   if (hi > max_hi) {
4150     hi = max_hi;
4151     if (size->is_con()) {
4152       lo = hi;
4153     }
4154     chg = true;
4155   }
4156   // Negative length arrays will produce weird intermediate dead fast-path code
4157   if (lo > hi)
4158     return TypeInt::ZERO;
4159   if (!chg)
4160     return size;
4161   return TypeInt::make(lo, hi, Type::WidenMin);
4162 }
4163 
4164 //-------------------------------cast_to_size----------------------------------
4165 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4166   assert(new_size != NULL, "");
4167   new_size = narrow_size_type(new_size);
4168   if (new_size == size())  return this;
4169   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4170   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4171 }
4172 
4173 //------------------------------cast_to_stable---------------------------------
4174 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4175   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4176     return this;
4177 
4178   const Type* elem = this->elem();
4179   const TypePtr* elem_ptr = elem->make_ptr();
4180 
4181   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4182     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4183     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4184   }
4185 
4186   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4187 
4188   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4189 }
4190 
4191 //-----------------------------stable_dimension--------------------------------
4192 int TypeAryPtr::stable_dimension() const {
4193   if (!is_stable())  return 0;
4194   int dim = 1;
4195   const TypePtr* elem_ptr = elem()->make_ptr();
4196   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4197     dim += elem_ptr->is_aryptr()->stable_dimension();
4198   return dim;
4199 }
4200 
4201 //----------------------cast_to_autobox_cache-----------------------------------
4202 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4203   if (is_autobox_cache() == cache)  return this;
4204   const TypeOopPtr* etype = elem()->make_oopptr();
4205   if (etype == NULL)  return this;
4206   // The pointers in the autobox arrays are always non-null.
4207   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4208   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4209   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4210   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache);
4211 }
4212 
4213 //------------------------------eq---------------------------------------------
4214 // Structural equality check for Type representations
4215 bool TypeAryPtr::eq( const Type *t ) const {
4216   const TypeAryPtr *p = t->is_aryptr();
4217   return
4218     _ary == p->_ary &&  // Check array
4219     TypeOopPtr::eq(p);  // Check sub-parts
4220 }
4221 
4222 //------------------------------hash-------------------------------------------
4223 // Type-specific hashing function.
4224 int TypeAryPtr::hash(void) const {
4225   return (intptr_t)_ary + TypeOopPtr::hash();
4226 }
4227 
4228 //------------------------------meet-------------------------------------------
4229 // Compute the MEET of two types.  It returns a new Type object.
4230 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4231   // Perform a fast test for common case; meeting the same types together.
4232   if( this == t ) return this;  // Meeting same type-rep?
4233   // Current "this->_base" is Pointer
4234   switch (t->base()) {          // switch on original type
4235 
4236   // Mixing ints & oops happens when javac reuses local variables
4237   case Int:
4238   case Long:
4239   case FloatTop:
4240   case FloatCon:
4241   case FloatBot:
4242   case DoubleTop:
4243   case DoubleCon:
4244   case DoubleBot:
4245   case NarrowOop:
4246   case NarrowKlass:
4247   case Bottom:                  // Ye Olde Default
4248     return Type::BOTTOM;
4249   case Top:
4250     return this;
4251 
4252   default:                      // All else is a mistake
4253     typerr(t);
4254 
4255   case OopPtr: {                // Meeting to OopPtrs
4256     // Found a OopPtr type vs self-AryPtr type
4257     const TypeOopPtr *tp = t->is_oopptr();
4258     int offset = meet_offset(tp->offset());
4259     PTR ptr = meet_ptr(tp->ptr());
4260     int depth = meet_inline_depth(tp->inline_depth());
4261     const TypePtr* speculative = xmeet_speculative(tp);
4262     switch (tp->ptr()) {
4263     case TopPTR:
4264     case AnyNull: {
4265       int instance_id = meet_instance_id(InstanceTop);
4266       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4267                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4268     }
4269     case BotPTR:
4270     case NotNull: {
4271       int instance_id = meet_instance_id(tp->instance_id());
4272       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4273     }
4274     default: ShouldNotReachHere();
4275     }
4276   }
4277 
4278   case AnyPtr: {                // Meeting two AnyPtrs
4279     // Found an AnyPtr type vs self-AryPtr type
4280     const TypePtr *tp = t->is_ptr();
4281     int offset = meet_offset(tp->offset());
4282     PTR ptr = meet_ptr(tp->ptr());
4283     const TypePtr* speculative = xmeet_speculative(tp);
4284     int depth = meet_inline_depth(tp->inline_depth());
4285     switch (tp->ptr()) {
4286     case TopPTR:
4287       return this;
4288     case BotPTR:
4289     case NotNull:
4290       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4291     case Null:
4292       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4293       // else fall through to AnyNull
4294     case AnyNull: {
4295       int instance_id = meet_instance_id(InstanceTop);
4296       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4297                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4298     }
4299     default: ShouldNotReachHere();
4300     }
4301   }
4302 
4303   case MetadataPtr:
4304   case KlassPtr:
4305   case RawPtr: return TypePtr::BOTTOM;
4306 
4307   case AryPtr: {                // Meeting 2 references?
4308     const TypeAryPtr *tap = t->is_aryptr();
4309     int off = meet_offset(tap->offset());
4310     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4311     PTR ptr = meet_ptr(tap->ptr());
4312     int instance_id = meet_instance_id(tap->instance_id());
4313     const TypePtr* speculative = xmeet_speculative(tap);
4314     int depth = meet_inline_depth(tap->inline_depth());
4315     ciKlass* lazy_klass = NULL;
4316     if (tary->_elem->isa_int()) {
4317       // Integral array element types have irrelevant lattice relations.
4318       // It is the klass that determines array layout, not the element type.
4319       if (_klass == NULL)
4320         lazy_klass = tap->_klass;
4321       else if (tap->_klass == NULL || tap->_klass == _klass) {
4322         lazy_klass = _klass;
4323       } else {
4324         // Something like byte[int+] meets char[int+].
4325         // This must fall to bottom, not (int[-128..65535])[int+].
4326         instance_id = InstanceBot;
4327         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4328       }
4329     } else // Non integral arrays.
4330       // Must fall to bottom if exact klasses in upper lattice
4331       // are not equal or super klass is exact.
4332       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4333           // meet with top[] and bottom[] are processed further down:
4334           tap->_klass != NULL  && this->_klass != NULL   &&
4335           // both are exact and not equal:
4336           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4337            // 'tap'  is exact and super or unrelated:
4338            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4339            // 'this' is exact and super or unrelated:
4340            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4341       if (above_centerline(ptr)) {
4342         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4343       }
4344       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4345     }
4346 
4347     bool xk = false;
4348     switch (tap->ptr()) {
4349     case AnyNull:
4350     case TopPTR:
4351       // Compute new klass on demand, do not use tap->_klass
4352       if (below_centerline(this->_ptr)) {
4353         xk = this->_klass_is_exact;
4354       } else {
4355         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4356       }
4357       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4358     case Constant: {
4359       ciObject* o = const_oop();
4360       if( _ptr == Constant ) {
4361         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4362           xk = (klass() == tap->klass());
4363           ptr = NotNull;
4364           o = NULL;
4365           instance_id = InstanceBot;
4366         } else {
4367           xk = true;
4368         }
4369       } else if(above_centerline(_ptr)) {
4370         o = tap->const_oop();
4371         xk = true;
4372       } else {
4373         // Only precise for identical arrays
4374         xk = this->_klass_is_exact && (klass() == tap->klass());
4375       }
4376       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4377     }
4378     case NotNull:
4379     case BotPTR:
4380       // Compute new klass on demand, do not use tap->_klass
4381       if (above_centerline(this->_ptr))
4382             xk = tap->_klass_is_exact;
4383       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4384               (klass() == tap->klass()); // Only precise for identical arrays
4385       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4386     default: ShouldNotReachHere();
4387     }
4388   }
4389 
4390   // All arrays inherit from Object class
4391   case InstPtr: {
4392     const TypeInstPtr *tp = t->is_instptr();
4393     int offset = meet_offset(tp->offset());
4394     PTR ptr = meet_ptr(tp->ptr());
4395     int instance_id = meet_instance_id(tp->instance_id());
4396     const TypePtr* speculative = xmeet_speculative(tp);
4397     int depth = meet_inline_depth(tp->inline_depth());
4398     switch (ptr) {
4399     case TopPTR:
4400     case AnyNull:                // Fall 'down' to dual of object klass
4401       // For instances when a subclass meets a superclass we fall
4402       // below the centerline when the superclass is exact. We need to
4403       // do the same here.
4404       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4405         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4406       } else {
4407         // cannot subclass, so the meet has to fall badly below the centerline
4408         ptr = NotNull;
4409         instance_id = InstanceBot;
4410         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4411       }
4412     case Constant:
4413     case NotNull:
4414     case BotPTR:                // Fall down to object klass
4415       // LCA is object_klass, but if we subclass from the top we can do better
4416       if (above_centerline(tp->ptr())) {
4417         // If 'tp'  is above the centerline and it is Object class
4418         // then we can subclass in the Java class hierarchy.
4419         // For instances when a subclass meets a superclass we fall
4420         // below the centerline when the superclass is exact. We need
4421         // to do the same here.
4422         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4423           // that is, my array type is a subtype of 'tp' klass
4424           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4425                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4426         }
4427       }
4428       // The other case cannot happen, since t cannot be a subtype of an array.
4429       // The meet falls down to Object class below centerline.
4430       if( ptr == Constant )
4431          ptr = NotNull;
4432       instance_id = InstanceBot;
4433       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4434     default: typerr(t);
4435     }
4436   }
4437   }
4438   return this;                  // Lint noise
4439 }
4440 
4441 //------------------------------xdual------------------------------------------
4442 // Dual: compute field-by-field dual
4443 const Type *TypeAryPtr::xdual() const {
4444   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4445 }
4446 
4447 //----------------------interface_vs_oop---------------------------------------
4448 #ifdef ASSERT
4449 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4450   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4451   if (t_aryptr) {
4452     return _ary->interface_vs_oop(t_aryptr->_ary);
4453   }
4454   return false;
4455 }
4456 #endif
4457 
4458 //------------------------------dump2------------------------------------------
4459 #ifndef PRODUCT
4460 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4461   _ary->dump2(d,depth,st);
4462   switch( _ptr ) {
4463   case Constant:
4464     const_oop()->print(st);
4465     break;
4466   case BotPTR:
4467     if (!WizardMode && !Verbose) {
4468       if( _klass_is_exact ) st->print(":exact");
4469       break;
4470     }
4471   case TopPTR:
4472   case AnyNull:
4473   case NotNull:
4474     st->print(":%s", ptr_msg[_ptr]);
4475     if( _klass_is_exact ) st->print(":exact");
4476     break;
4477   }
4478 
4479   if( _offset != 0 ) {
4480     int header_size = objArrayOopDesc::header_size() * wordSize;
4481     if( _offset == OffsetTop )       st->print("+undefined");
4482     else if( _offset == OffsetBot )  st->print("+any");
4483     else if( _offset < header_size ) st->print("+%d", _offset);
4484     else {
4485       BasicType basic_elem_type = elem()->basic_type();
4486       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4487       int elem_size = type2aelembytes(basic_elem_type);
4488       st->print("[%d]", (_offset - array_base)/elem_size);
4489     }
4490   }
4491   st->print(" *");
4492   if (_instance_id == InstanceTop)
4493     st->print(",iid=top");
4494   else if (_instance_id != InstanceBot)
4495     st->print(",iid=%d",_instance_id);
4496 
4497   dump_inline_depth(st);
4498   dump_speculative(st);
4499 }
4500 #endif
4501 
4502 bool TypeAryPtr::empty(void) const {
4503   if (_ary->empty())       return true;
4504   return TypeOopPtr::empty();
4505 }
4506 
4507 //------------------------------add_offset-------------------------------------
4508 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4509   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4510 }
4511 
4512 const Type *TypeAryPtr::remove_speculative() const {
4513   if (_speculative == NULL) {
4514     return this;
4515   }
4516   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4517   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4518 }
4519 
4520 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4521   if (!UseInlineDepthForSpeculativeTypes) {
4522     return this;
4523   }
4524   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4525 }
4526 
4527 //=============================================================================
4528 
4529 
4530 //=============================================================================
4531 
4532 //------------------------------make-------------------------------------------
4533 const TypeValueTypePtr* TypeValueTypePtr::make(const TypeValueType* vt, PTR ptr, int offset, int instance_id, const TypePtr* speculative, int inline_depth) {
4534   return (TypeValueTypePtr*)(new TypeValueTypePtr(vt, ptr, offset, instance_id, speculative, inline_depth))->hashcons();
4535 };
4536 
4537 const TypePtr* TypeValueTypePtr::add_offset(intptr_t offset) const {
4538   return make(_vt, _ptr, offset, _instance_id, _speculative, _inline_depth);
4539 }
4540 
4541 //------------------------------cast_to_ptr_type-------------------------------
4542 const Type* TypeValueTypePtr::cast_to_ptr_type(PTR ptr) const {
4543   if (ptr == _ptr) return this;
4544   return make(_vt, ptr, _offset, _instance_id, _speculative, _inline_depth);
4545 }
4546 
4547 //-----------------------------cast_to_instance_id----------------------------
4548 const TypeOopPtr* TypeValueTypePtr::cast_to_instance_id(int instance_id) const {
4549   if (instance_id == _instance_id) return this;
4550   return make(_vt, _ptr, _offset, instance_id, _speculative, _inline_depth);
4551 }
4552 
4553 //------------------------------meet-------------------------------------------
4554 // Compute the MEET of two types.  It returns a new Type object.
4555 const Type* TypeValueTypePtr::xmeet_helper(const Type* t) const {
4556   // Perform a fast test for common case; meeting the same types together.
4557   if (this == t) return this;  // Meeting same type-rep?
4558 
4559   switch (t->base()) {          // switch on original type
4560     case Int:                     // Mixing ints & oops happens when javac
4561     case Long:                    // reuses local variables
4562     case FloatTop:
4563     case FloatCon:
4564     case FloatBot:
4565     case DoubleTop:
4566     case DoubleCon:
4567     case DoubleBot:
4568     case NarrowOop:
4569     case NarrowKlass:
4570     case MetadataPtr:
4571     case KlassPtr:
4572     case RawPtr:
4573     case AryPtr:
4574     case InstPtr:
4575     case Bottom:                  // Ye Olde Default
4576       return Type::BOTTOM;
4577     case Top:
4578       return this;
4579 
4580     default:                      // All else is a mistake
4581       typerr(t);
4582 
4583     case OopPtr: {
4584       // Found a OopPtr type vs self-ValueTypePtr type
4585       const TypeOopPtr* tp = t->is_oopptr();
4586       int offset = meet_offset(tp->offset());
4587       PTR ptr = meet_ptr(tp->ptr());
4588       int instance_id = meet_instance_id(tp->instance_id());
4589       const TypePtr* speculative = xmeet_speculative(tp);
4590       int depth = meet_inline_depth(tp->inline_depth());
4591       switch (tp->ptr()) {
4592       case TopPTR:
4593       case AnyNull: {
4594         return make(_vt, ptr, offset, instance_id, speculative, depth);
4595       }
4596       case NotNull:
4597       case BotPTR: {
4598         return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4599       }
4600       default: typerr(t);
4601       }
4602     }
4603 
4604     case AnyPtr: {
4605       // Found an AnyPtr type vs self-ValueTypePtr type
4606       const TypePtr* tp = t->is_ptr();
4607       int offset = meet_offset(tp->offset());
4608       PTR ptr = meet_ptr(tp->ptr());
4609       int instance_id = meet_instance_id(InstanceTop);
4610       const TypePtr* speculative = xmeet_speculative(tp);
4611       int depth = meet_inline_depth(tp->inline_depth());
4612       switch (tp->ptr()) {
4613       case Null:
4614         if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4615         // else fall through to AnyNull
4616       case TopPTR:
4617       case AnyNull: {
4618         return make(_vt, ptr, offset, instance_id, speculative, depth);
4619       }
4620       case NotNull:
4621       case BotPTR:
4622         return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4623       default: typerr(t);
4624       }
4625     }
4626 
4627     case ValueTypePtr: {
4628       // Found an ValueTypePtr type vs self-ValueTypePtr type
4629       const TypeValueTypePtr* tp = t->is_valuetypeptr();
4630       int offset = meet_offset(tp->offset());
4631       PTR ptr = meet_ptr(tp->ptr());
4632       int instance_id = meet_instance_id(InstanceTop);
4633       const TypePtr* speculative = xmeet_speculative(tp);
4634       int depth = meet_inline_depth(tp->inline_depth());
4635       return make(_vt, ptr, offset, instance_id, speculative, depth);
4636     }
4637     }
4638 }
4639 
4640 // Dual: compute field-by-field dual
4641 const Type* TypeValueTypePtr::xdual() const {
4642   return new TypeValueTypePtr(_vt, dual_ptr(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4643 }
4644 
4645 //------------------------------eq---------------------------------------------
4646 // Structural equality check for Type representations
4647 bool TypeValueTypePtr::eq(const Type* t) const {
4648   const TypeValueTypePtr* p = t->is_valuetypeptr();
4649   return _vt->eq(p->value_type()) && TypeOopPtr::eq(p);
4650 }
4651 
4652 //------------------------------hash-------------------------------------------
4653 // Type-specific hashing function.
4654 int TypeValueTypePtr::hash(void) const {
4655   return java_add(_vt->hash(), TypeOopPtr::hash());
4656 }
4657 
4658 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants
4659 bool TypeValueTypePtr::singleton(void) const {
4660   // FIXME
4661   return false;
4662 }
4663 
4664 //------------------------------empty------------------------------------------
4665 // TRUE if Type is a type with no values, FALSE otherwise.
4666 bool TypeValueTypePtr::empty(void) const {
4667   // FIXME
4668   return false;
4669 }
4670 
4671 //------------------------------dump2------------------------------------------
4672 #ifndef PRODUCT
4673 void TypeValueTypePtr::dump2(Dict &d, uint depth, outputStream *st) const {
4674   st->print("valuetype*");
4675   st->print(":%s", ptr_msg[_ptr]);
4676   switch (_offset) {
4677   case 0:
4678     break;
4679   case OffsetTop:
4680     st->print("+undefined");
4681     break;
4682   case OffsetBot:
4683     st->print("+any");
4684     break;
4685   default:
4686     st->print("+%d", _offset);
4687   }
4688 }
4689 #endif
4690 
4691 //=============================================================================
4692 
4693 //------------------------------hash-------------------------------------------
4694 // Type-specific hashing function.
4695 int TypeNarrowPtr::hash(void) const {
4696   return _ptrtype->hash() + 7;
4697 }
4698 
4699 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4700   return _ptrtype->singleton();
4701 }
4702 
4703 bool TypeNarrowPtr::empty(void) const {
4704   return _ptrtype->empty();
4705 }
4706 
4707 intptr_t TypeNarrowPtr::get_con() const {
4708   return _ptrtype->get_con();
4709 }
4710 
4711 bool TypeNarrowPtr::eq( const Type *t ) const {
4712   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4713   if (tc != NULL) {
4714     if (_ptrtype->base() != tc->_ptrtype->base()) {
4715       return false;
4716     }
4717     return tc->_ptrtype->eq(_ptrtype);
4718   }
4719   return false;
4720 }
4721 
4722 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4723   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4724   return make_same_narrowptr(odual);
4725 }
4726 
4727 
4728 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4729   if (isa_same_narrowptr(kills)) {
4730     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4731     if (ft->empty())
4732       return Type::TOP;           // Canonical empty value
4733     if (ft->isa_ptr()) {
4734       return make_hash_same_narrowptr(ft->isa_ptr());
4735     }
4736     return ft;
4737   } else if (kills->isa_ptr()) {
4738     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4739     if (ft->empty())
4740       return Type::TOP;           // Canonical empty value
4741     return ft;
4742   } else {
4743     return Type::TOP;
4744   }
4745 }
4746 
4747 //------------------------------xmeet------------------------------------------
4748 // Compute the MEET of two types.  It returns a new Type object.
4749 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4750   // Perform a fast test for common case; meeting the same types together.
4751   if( this == t ) return this;  // Meeting same type-rep?
4752 
4753   if (t->base() == base()) {
4754     const Type* result = _ptrtype->xmeet(t->make_ptr());
4755     if (result->isa_ptr()) {
4756       return make_hash_same_narrowptr(result->is_ptr());
4757     }
4758     return result;
4759   }
4760 
4761   // Current "this->_base" is NarrowKlass or NarrowOop
4762   switch (t->base()) {          // switch on original type
4763 
4764   case Int:                     // Mixing ints & oops happens when javac
4765   case Long:                    // reuses local variables
4766   case FloatTop:
4767   case FloatCon:
4768   case FloatBot:
4769   case DoubleTop:
4770   case DoubleCon:
4771   case DoubleBot:
4772   case AnyPtr:
4773   case RawPtr:
4774   case OopPtr:
4775   case InstPtr:
4776   case ValueTypePtr:
4777   case AryPtr:
4778   case MetadataPtr:
4779   case KlassPtr:
4780   case NarrowOop:
4781   case NarrowKlass:
4782 
4783   case Bottom:                  // Ye Olde Default
4784     return Type::BOTTOM;
4785   case Top:
4786     return this;
4787 
4788   default:                      // All else is a mistake
4789     typerr(t);
4790 
4791   } // End of switch
4792 
4793   return this;
4794 }
4795 
4796 #ifndef PRODUCT
4797 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4798   _ptrtype->dump2(d, depth, st);
4799 }
4800 #endif
4801 
4802 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4803 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4804 
4805 
4806 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4807   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4808 }
4809 
4810 const Type* TypeNarrowOop::remove_speculative() const {
4811   return make(_ptrtype->remove_speculative()->is_ptr());
4812 }
4813 
4814 const Type* TypeNarrowOop::cleanup_speculative() const {
4815   return make(_ptrtype->cleanup_speculative()->is_ptr());
4816 }
4817 
4818 #ifndef PRODUCT
4819 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4820   st->print("narrowoop: ");
4821   TypeNarrowPtr::dump2(d, depth, st);
4822 }
4823 #endif
4824 
4825 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4826 
4827 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4828   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4829 }
4830 
4831 #ifndef PRODUCT
4832 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4833   st->print("narrowklass: ");
4834   TypeNarrowPtr::dump2(d, depth, st);
4835 }
4836 #endif
4837 
4838 
4839 //------------------------------eq---------------------------------------------
4840 // Structural equality check for Type representations
4841 bool TypeMetadataPtr::eq( const Type *t ) const {
4842   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4843   ciMetadata* one = metadata();
4844   ciMetadata* two = a->metadata();
4845   if (one == NULL || two == NULL) {
4846     return (one == two) && TypePtr::eq(t);
4847   } else {
4848     return one->equals(two) && TypePtr::eq(t);
4849   }
4850 }
4851 
4852 //------------------------------hash-------------------------------------------
4853 // Type-specific hashing function.
4854 int TypeMetadataPtr::hash(void) const {
4855   return
4856     (metadata() ? metadata()->hash() : 0) +
4857     TypePtr::hash();
4858 }
4859 
4860 //------------------------------singleton--------------------------------------
4861 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4862 // constants
4863 bool TypeMetadataPtr::singleton(void) const {
4864   // detune optimizer to not generate constant metadata + constant offset as a constant!
4865   // TopPTR, Null, AnyNull, Constant are all singletons
4866   return (_offset == 0) && !below_centerline(_ptr);
4867 }
4868 
4869 //------------------------------add_offset-------------------------------------
4870 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4871   return make( _ptr, _metadata, xadd_offset(offset));
4872 }
4873 
4874 //-----------------------------filter------------------------------------------
4875 // Do not allow interface-vs.-noninterface joins to collapse to top.
4876 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4877   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4878   if (ft == NULL || ft->empty())
4879     return Type::TOP;           // Canonical empty value
4880   return ft;
4881 }
4882 
4883  //------------------------------get_con----------------------------------------
4884 intptr_t TypeMetadataPtr::get_con() const {
4885   assert( _ptr == Null || _ptr == Constant, "" );
4886   assert( _offset >= 0, "" );
4887 
4888   if (_offset != 0) {
4889     // After being ported to the compiler interface, the compiler no longer
4890     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4891     // to a handle at compile time.  This handle is embedded in the generated
4892     // code and dereferenced at the time the nmethod is made.  Until that time,
4893     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4894     // have access to the addresses!).  This does not seem to currently happen,
4895     // but this assertion here is to help prevent its occurence.
4896     tty->print_cr("Found oop constant with non-zero offset");
4897     ShouldNotReachHere();
4898   }
4899 
4900   return (intptr_t)metadata()->constant_encoding();
4901 }
4902 
4903 //------------------------------cast_to_ptr_type-------------------------------
4904 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4905   if( ptr == _ptr ) return this;
4906   return make(ptr, metadata(), _offset);
4907 }
4908 
4909 //------------------------------meet-------------------------------------------
4910 // Compute the MEET of two types.  It returns a new Type object.
4911 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4912   // Perform a fast test for common case; meeting the same types together.
4913   if( this == t ) return this;  // Meeting same type-rep?
4914 
4915   // Current "this->_base" is OopPtr
4916   switch (t->base()) {          // switch on original type
4917 
4918   case Int:                     // Mixing ints & oops happens when javac
4919   case Long:                    // reuses local variables
4920   case FloatTop:
4921   case FloatCon:
4922   case FloatBot:
4923   case DoubleTop:
4924   case DoubleCon:
4925   case DoubleBot:
4926   case NarrowOop:
4927   case NarrowKlass:
4928   case Bottom:                  // Ye Olde Default
4929     return Type::BOTTOM;
4930   case Top:
4931     return this;
4932 
4933   default:                      // All else is a mistake
4934     typerr(t);
4935 
4936   case AnyPtr: {
4937     // Found an AnyPtr type vs self-OopPtr type
4938     const TypePtr *tp = t->is_ptr();
4939     int offset = meet_offset(tp->offset());
4940     PTR ptr = meet_ptr(tp->ptr());
4941     switch (tp->ptr()) {
4942     case Null:
4943       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4944       // else fall through:
4945     case TopPTR:
4946     case AnyNull: {
4947       return make(ptr, _metadata, offset);
4948     }
4949     case BotPTR:
4950     case NotNull:
4951       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4952     default: typerr(t);
4953     }
4954   }
4955 
4956   case RawPtr:
4957   case KlassPtr:
4958   case OopPtr:
4959   case InstPtr:
4960   case ValueTypePtr:
4961   case AryPtr:
4962     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4963 
4964   case MetadataPtr: {
4965     const TypeMetadataPtr *tp = t->is_metadataptr();
4966     int offset = meet_offset(tp->offset());
4967     PTR tptr = tp->ptr();
4968     PTR ptr = meet_ptr(tptr);
4969     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4970     if (tptr == TopPTR || _ptr == TopPTR ||
4971         metadata()->equals(tp->metadata())) {
4972       return make(ptr, md, offset);
4973     }
4974     // metadata is different
4975     if( ptr == Constant ) {  // Cannot be equal constants, so...
4976       if( tptr == Constant && _ptr != Constant)  return t;
4977       if( _ptr == Constant && tptr != Constant)  return this;
4978       ptr = NotNull;            // Fall down in lattice
4979     }
4980     return make(ptr, NULL, offset);
4981     break;
4982   }
4983   } // End of switch
4984   return this;                  // Return the double constant
4985 }
4986 
4987 
4988 //------------------------------xdual------------------------------------------
4989 // Dual of a pure metadata pointer.
4990 const Type *TypeMetadataPtr::xdual() const {
4991   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4992 }
4993 
4994 //------------------------------dump2------------------------------------------
4995 #ifndef PRODUCT
4996 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4997   st->print("metadataptr:%s", ptr_msg[_ptr]);
4998   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
4999   switch( _offset ) {
5000   case OffsetTop: st->print("+top"); break;
5001   case OffsetBot: st->print("+any"); break;
5002   case         0: break;
5003   default:        st->print("+%d",_offset); break;
5004   }
5005 }
5006 #endif
5007 
5008 
5009 //=============================================================================
5010 // Convenience common pre-built type.
5011 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5012 
5013 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5014   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5015 }
5016 
5017 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5018   return make(Constant, m, 0);
5019 }
5020 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5021   return make(Constant, m, 0);
5022 }
5023 
5024 //------------------------------make-------------------------------------------
5025 // Create a meta data constant
5026 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5027   assert(m == NULL || !m->is_klass(), "wrong type");
5028   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5029 }
5030 
5031 
5032 //=============================================================================
5033 // Convenience common pre-built types.
5034 
5035 // Not-null object klass or below
5036 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5037 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5038 
5039 //------------------------------TypeKlassPtr-----------------------------------
5040 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
5041   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5042 }
5043 
5044 //------------------------------make-------------------------------------------
5045 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5046 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
5047   assert( k != NULL, "Expect a non-NULL klass");
5048   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5049   TypeKlassPtr *r =
5050     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5051 
5052   return r;
5053 }
5054 
5055 //------------------------------eq---------------------------------------------
5056 // Structural equality check for Type representations
5057 bool TypeKlassPtr::eq( const Type *t ) const {
5058   const TypeKlassPtr *p = t->is_klassptr();
5059   return
5060     klass()->equals(p->klass()) &&
5061     TypePtr::eq(p);
5062 }
5063 
5064 //------------------------------hash-------------------------------------------
5065 // Type-specific hashing function.
5066 int TypeKlassPtr::hash(void) const {
5067   return java_add(klass()->hash(), TypePtr::hash());
5068 }
5069 
5070 //------------------------------singleton--------------------------------------
5071 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5072 // constants
5073 bool TypeKlassPtr::singleton(void) const {
5074   // detune optimizer to not generate constant klass + constant offset as a constant!
5075   // TopPTR, Null, AnyNull, Constant are all singletons
5076   return (_offset == 0) && !below_centerline(_ptr);
5077 }
5078 
5079 // Do not allow interface-vs.-noninterface joins to collapse to top.
5080 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5081   // logic here mirrors the one from TypeOopPtr::filter. See comments
5082   // there.
5083   const Type* ft = join_helper(kills, include_speculative);
5084   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5085   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5086 
5087   if (ft->empty()) {
5088     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
5089       return kills;             // Uplift to interface
5090 
5091     return Type::TOP;           // Canonical empty value
5092   }
5093 
5094   // Interface klass type could be exact in opposite to interface type,
5095   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5096   if (ftkp != NULL && ktkp != NULL &&
5097       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5098       !ftkp->klass_is_exact() && // Keep exact interface klass
5099       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5100     return ktkp->cast_to_ptr_type(ftkp->ptr());
5101   }
5102 
5103   return ft;
5104 }
5105 
5106 //----------------------compute_klass------------------------------------------
5107 // Compute the defining klass for this class
5108 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5109   // Compute _klass based on element type.
5110   ciKlass* k_ary = NULL;
5111   const TypeInstPtr *tinst;
5112   const TypeAryPtr *tary;
5113   const Type* el = elem();
5114   if (el->isa_narrowoop()) {
5115     el = el->make_ptr();
5116   }
5117 
5118   // Get element klass
5119   if ((tinst = el->isa_instptr()) != NULL) {
5120     // Compute array klass from element klass
5121     k_ary = ciObjArrayKlass::make(tinst->klass());
5122   } else if ((tary = el->isa_aryptr()) != NULL) {
5123     // Compute array klass from element klass
5124     ciKlass* k_elem = tary->klass();
5125     // If element type is something like bottom[], k_elem will be null.
5126     if (k_elem != NULL)
5127       k_ary = ciObjArrayKlass::make(k_elem);
5128   } else if ((el->base() == Type::Top) ||
5129              (el->base() == Type::Bottom)) {
5130     // element type of Bottom occurs from meet of basic type
5131     // and object; Top occurs when doing join on Bottom.
5132     // Leave k_ary at NULL.
5133   } else {
5134     // Cannot compute array klass directly from basic type,
5135     // since subtypes of TypeInt all have basic type T_INT.
5136 #ifdef ASSERT
5137     if (verify && el->isa_int()) {
5138       // Check simple cases when verifying klass.
5139       BasicType bt = T_ILLEGAL;
5140       if (el == TypeInt::BYTE) {
5141         bt = T_BYTE;
5142       } else if (el == TypeInt::SHORT) {
5143         bt = T_SHORT;
5144       } else if (el == TypeInt::CHAR) {
5145         bt = T_CHAR;
5146       } else if (el == TypeInt::INT) {
5147         bt = T_INT;
5148       } else {
5149         return _klass; // just return specified klass
5150       }
5151       return ciTypeArrayKlass::make(bt);
5152     }
5153 #endif
5154     assert(!el->isa_int(),
5155            "integral arrays must be pre-equipped with a class");
5156     // Compute array klass directly from basic type
5157     k_ary = ciTypeArrayKlass::make(el->basic_type());
5158   }
5159   return k_ary;
5160 }
5161 
5162 //------------------------------klass------------------------------------------
5163 // Return the defining klass for this class
5164 ciKlass* TypeAryPtr::klass() const {
5165   if( _klass ) return _klass;   // Return cached value, if possible
5166 
5167   // Oops, need to compute _klass and cache it
5168   ciKlass* k_ary = compute_klass();
5169 
5170   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5171     // The _klass field acts as a cache of the underlying
5172     // ciKlass for this array type.  In order to set the field,
5173     // we need to cast away const-ness.
5174     //
5175     // IMPORTANT NOTE: we *never* set the _klass field for the
5176     // type TypeAryPtr::OOPS.  This Type is shared between all
5177     // active compilations.  However, the ciKlass which represents
5178     // this Type is *not* shared between compilations, so caching
5179     // this value would result in fetching a dangling pointer.
5180     //
5181     // Recomputing the underlying ciKlass for each request is
5182     // a bit less efficient than caching, but calls to
5183     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5184     ((TypeAryPtr*)this)->_klass = k_ary;
5185     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5186         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
5187       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5188     }
5189   }
5190   return k_ary;
5191 }
5192 
5193 
5194 //------------------------------add_offset-------------------------------------
5195 // Access internals of klass object
5196 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5197   return make( _ptr, klass(), xadd_offset(offset) );
5198 }
5199 
5200 //------------------------------cast_to_ptr_type-------------------------------
5201 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5202   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5203   if( ptr == _ptr ) return this;
5204   return make(ptr, _klass, _offset);
5205 }
5206 
5207 
5208 //-----------------------------cast_to_exactness-------------------------------
5209 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5210   if( klass_is_exact == _klass_is_exact ) return this;
5211   if (!UseExactTypes)  return this;
5212   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5213 }
5214 
5215 
5216 //-----------------------------as_instance_type--------------------------------
5217 // Corresponding type for an instance of the given class.
5218 // It will be NotNull, and exact if and only if the klass type is exact.
5219 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5220   ciKlass* k = klass();
5221   bool    xk = klass_is_exact();
5222   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5223   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5224   guarantee(toop != NULL, "need type for given klass");
5225   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5226   return toop->cast_to_exactness(xk)->is_oopptr();
5227 }
5228 
5229 
5230 //------------------------------xmeet------------------------------------------
5231 // Compute the MEET of two types, return a new Type object.
5232 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5233   // Perform a fast test for common case; meeting the same types together.
5234   if( this == t ) return this;  // Meeting same type-rep?
5235 
5236   // Current "this->_base" is Pointer
5237   switch (t->base()) {          // switch on original type
5238 
5239   case Int:                     // Mixing ints & oops happens when javac
5240   case Long:                    // reuses local variables
5241   case FloatTop:
5242   case FloatCon:
5243   case FloatBot:
5244   case DoubleTop:
5245   case DoubleCon:
5246   case DoubleBot:
5247   case NarrowOop:
5248   case NarrowKlass:
5249   case Bottom:                  // Ye Olde Default
5250     return Type::BOTTOM;
5251   case Top:
5252     return this;
5253 
5254   default:                      // All else is a mistake
5255     typerr(t);
5256 
5257   case AnyPtr: {                // Meeting to AnyPtrs
5258     // Found an AnyPtr type vs self-KlassPtr type
5259     const TypePtr *tp = t->is_ptr();
5260     int offset = meet_offset(tp->offset());
5261     PTR ptr = meet_ptr(tp->ptr());
5262     switch (tp->ptr()) {
5263     case TopPTR:
5264       return this;
5265     case Null:
5266       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5267     case AnyNull:
5268       return make( ptr, klass(), offset );
5269     case BotPTR:
5270     case NotNull:
5271       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5272     default: typerr(t);
5273     }
5274   }
5275 
5276   case RawPtr:
5277   case MetadataPtr:
5278   case OopPtr:
5279   case AryPtr:                  // Meet with AryPtr
5280   case InstPtr:                 // Meet with InstPtr
5281   case ValueTypePtr:
5282     return TypePtr::BOTTOM;
5283 
5284   //
5285   //             A-top         }
5286   //           /   |   \       }  Tops
5287   //       B-top A-any C-top   }
5288   //          | /  |  \ |      }  Any-nulls
5289   //       B-any   |   C-any   }
5290   //          |    |    |
5291   //       B-con A-con C-con   } constants; not comparable across classes
5292   //          |    |    |
5293   //       B-not   |   C-not   }
5294   //          | \  |  / |      }  not-nulls
5295   //       B-bot A-not C-bot   }
5296   //           \   |   /       }  Bottoms
5297   //             A-bot         }
5298   //
5299 
5300   case KlassPtr: {  // Meet two KlassPtr types
5301     const TypeKlassPtr *tkls = t->is_klassptr();
5302     int  off     = meet_offset(tkls->offset());
5303     PTR  ptr     = meet_ptr(tkls->ptr());
5304 
5305     // Check for easy case; klasses are equal (and perhaps not loaded!)
5306     // If we have constants, then we created oops so classes are loaded
5307     // and we can handle the constants further down.  This case handles
5308     // not-loaded classes
5309     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5310       return make( ptr, klass(), off );
5311     }
5312 
5313     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5314     ciKlass* tkls_klass = tkls->klass();
5315     ciKlass* this_klass = this->klass();
5316     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5317     assert( this_klass->is_loaded(), "This class should have been loaded.");
5318 
5319     // If 'this' type is above the centerline and is a superclass of the
5320     // other, we can treat 'this' as having the same type as the other.
5321     if ((above_centerline(this->ptr())) &&
5322         tkls_klass->is_subtype_of(this_klass)) {
5323       this_klass = tkls_klass;
5324     }
5325     // If 'tinst' type is above the centerline and is a superclass of the
5326     // other, we can treat 'tinst' as having the same type as the other.
5327     if ((above_centerline(tkls->ptr())) &&
5328         this_klass->is_subtype_of(tkls_klass)) {
5329       tkls_klass = this_klass;
5330     }
5331 
5332     // Check for classes now being equal
5333     if (tkls_klass->equals(this_klass)) {
5334       // If the klasses are equal, the constants may still differ.  Fall to
5335       // NotNull if they do (neither constant is NULL; that is a special case
5336       // handled elsewhere).
5337       if( ptr == Constant ) {
5338         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5339             this->klass()->equals(tkls->klass()));
5340         else if (above_centerline(this->ptr()));
5341         else if (above_centerline(tkls->ptr()));
5342         else
5343           ptr = NotNull;
5344       }
5345       return make( ptr, this_klass, off );
5346     } // Else classes are not equal
5347 
5348     // Since klasses are different, we require the LCA in the Java
5349     // class hierarchy - which means we have to fall to at least NotNull.
5350     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5351       ptr = NotNull;
5352     // Now we find the LCA of Java classes
5353     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5354     return   make( ptr, k, off );
5355   } // End of case KlassPtr
5356 
5357   } // End of switch
5358   return this;                  // Return the double constant
5359 }
5360 
5361 //------------------------------xdual------------------------------------------
5362 // Dual: compute field-by-field dual
5363 const Type    *TypeKlassPtr::xdual() const {
5364   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5365 }
5366 
5367 //------------------------------get_con----------------------------------------
5368 intptr_t TypeKlassPtr::get_con() const {
5369   assert( _ptr == Null || _ptr == Constant, "" );
5370   assert( _offset >= 0, "" );
5371 
5372   if (_offset != 0) {
5373     // After being ported to the compiler interface, the compiler no longer
5374     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5375     // to a handle at compile time.  This handle is embedded in the generated
5376     // code and dereferenced at the time the nmethod is made.  Until that time,
5377     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5378     // have access to the addresses!).  This does not seem to currently happen,
5379     // but this assertion here is to help prevent its occurence.
5380     tty->print_cr("Found oop constant with non-zero offset");
5381     ShouldNotReachHere();
5382   }
5383 
5384   return (intptr_t)klass()->constant_encoding();
5385 }
5386 //------------------------------dump2------------------------------------------
5387 // Dump Klass Type
5388 #ifndef PRODUCT
5389 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5390   switch( _ptr ) {
5391   case Constant:
5392     st->print("precise ");
5393   case NotNull:
5394     {
5395       const char *name = klass()->name()->as_utf8();
5396       if( name ) {
5397         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5398       } else {
5399         ShouldNotReachHere();
5400       }
5401     }
5402   case BotPTR:
5403     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5404   case TopPTR:
5405   case AnyNull:
5406     st->print(":%s", ptr_msg[_ptr]);
5407     if( _klass_is_exact ) st->print(":exact");
5408     break;
5409   }
5410 
5411   if( _offset ) {               // Dump offset, if any
5412     if( _offset == OffsetBot )      { st->print("+any"); }
5413     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5414     else                            { st->print("+%d", _offset); }
5415   }
5416 
5417   st->print(" *");
5418 }
5419 #endif
5420 
5421 
5422 
5423 //=============================================================================
5424 // Convenience common pre-built types.
5425 
5426 //------------------------------make-------------------------------------------
5427 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple* domain_cc, const TypeTuple *range ) {
5428   return (TypeFunc*)(new TypeFunc(domain, domain_cc, range))->hashcons();
5429 }
5430 
5431 //------------------------------make-------------------------------------------
5432 const TypeFunc *TypeFunc::make(ciMethod* method) {
5433   Compile* C = Compile::current();
5434   const TypeFunc* tf = C->last_tf(method); // check cache
5435   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5436   const TypeTuple *domain_sig, *domain_cc;
5437   // Value type arguments are not passed by reference, instead each
5438   // field of the value type is passed as an argument. We maintain 2
5439   // views of the argument list here: one based on the signature (with
5440   // a value type argument as a single slot), one based on the actual
5441   // calling convention (with a value type argument as a list of its
5442   // fields).
5443   if (method->is_static()) {
5444     domain_sig = TypeTuple::make_domain(NULL, method->signature(), false);
5445     domain_cc = TypeTuple::make_domain(NULL, method->signature(), ValueTypePassFieldsAsArgs);
5446   } else {
5447     domain_sig = TypeTuple::make_domain(method->holder(), method->signature(), false);
5448     domain_cc = TypeTuple::make_domain(method->holder(), method->signature(), ValueTypePassFieldsAsArgs);
5449   }
5450   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5451   tf = TypeFunc::make(domain_sig, domain_cc, range);
5452   C->set_last_tf(method, tf);  // fill cache
5453   return tf;
5454 }
5455 
5456 //------------------------------meet-------------------------------------------
5457 // Compute the MEET of two types.  It returns a new Type object.
5458 const Type *TypeFunc::xmeet( const Type *t ) const {
5459   // Perform a fast test for common case; meeting the same types together.
5460   if( this == t ) return this;  // Meeting same type-rep?
5461 
5462   // Current "this->_base" is Func
5463   switch (t->base()) {          // switch on original type
5464 
5465   case Bottom:                  // Ye Olde Default
5466     return t;
5467 
5468   default:                      // All else is a mistake
5469     typerr(t);
5470 
5471   case Top:
5472     break;
5473   }
5474   return this;                  // Return the double constant
5475 }
5476 
5477 //------------------------------xdual------------------------------------------
5478 // Dual: compute field-by-field dual
5479 const Type *TypeFunc::xdual() const {
5480   return this;
5481 }
5482 
5483 //------------------------------eq---------------------------------------------
5484 // Structural equality check for Type representations
5485 bool TypeFunc::eq( const Type *t ) const {
5486   const TypeFunc *a = (const TypeFunc*)t;
5487   return _domain_sig == a->_domain_sig &&
5488     _domain_cc == a->_domain_cc &&
5489     _range == a->_range;
5490 }
5491 
5492 //------------------------------hash-------------------------------------------
5493 // Type-specific hashing function.
5494 int TypeFunc::hash(void) const {
5495   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range;
5496 }
5497 
5498 //------------------------------dump2------------------------------------------
5499 // Dump Function Type
5500 #ifndef PRODUCT
5501 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5502   if( _range->cnt() <= Parms )
5503     st->print("void");
5504   else {
5505     uint i;
5506     for (i = Parms; i < _range->cnt()-1; i++) {
5507       _range->field_at(i)->dump2(d,depth,st);
5508       st->print("/");
5509     }
5510     _range->field_at(i)->dump2(d,depth,st);
5511   }
5512   st->print(" ");
5513   st->print("( ");
5514   if( !depth || d[this] ) {     // Check for recursive dump
5515     st->print("...)");
5516     return;
5517   }
5518   d.Insert((void*)this,(void*)this);    // Stop recursion
5519   if (Parms < _domain_sig->cnt())
5520     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5521   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5522     st->print(", ");
5523     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5524   }
5525   st->print(" )");
5526 }
5527 #endif
5528 
5529 //------------------------------singleton--------------------------------------
5530 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5531 // constants (Ldi nodes).  Singletons are integer, float or double constants
5532 // or a single symbol.
5533 bool TypeFunc::singleton(void) const {
5534   return false;                 // Never a singleton
5535 }
5536 
5537 bool TypeFunc::empty(void) const {
5538   return false;                 // Never empty
5539 }
5540 
5541 
5542 BasicType TypeFunc::return_type() const{
5543   if (range()->cnt() == TypeFunc::Parms) {
5544     return T_VOID;
5545   }
5546   return range()->field_at(TypeFunc::Parms)->basic_type();
5547 }