rev 10504 : value type calling convention
1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "memory/allocation.inline.hpp" 27 #include "opto/ad.hpp" 28 #include "opto/addnode.hpp" 29 #include "opto/callnode.hpp" 30 #include "opto/idealGraphPrinter.hpp" 31 #include "opto/matcher.hpp" 32 #include "opto/memnode.hpp" 33 #include "opto/movenode.hpp" 34 #include "opto/opcodes.hpp" 35 #include "opto/regmask.hpp" 36 #include "opto/rootnode.hpp" 37 #include "opto/runtime.hpp" 38 #include "opto/type.hpp" 39 #include "opto/vectornode.hpp" 40 #include "runtime/os.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 43 OptoReg::Name OptoReg::c_frame_pointer; 44 45 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf]; 46 RegMask Matcher::mreg2regmask[_last_Mach_Reg]; 47 RegMask Matcher::STACK_ONLY_mask; 48 RegMask Matcher::c_frame_ptr_mask; 49 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE; 50 const uint Matcher::_end_rematerialize = _END_REMATERIALIZE; 51 52 //---------------------------Matcher------------------------------------------- 53 Matcher::Matcher() 54 : PhaseTransform( Phase::Ins_Select ), 55 #ifdef ASSERT 56 _old2new_map(C->comp_arena()), 57 _new2old_map(C->comp_arena()), 58 #endif 59 _shared_nodes(C->comp_arena()), 60 _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp), 61 _swallowed(swallowed), 62 _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE), 63 _end_inst_chain_rule(_END_INST_CHAIN_RULE), 64 _must_clone(must_clone), 65 _register_save_policy(register_save_policy), 66 _c_reg_save_policy(c_reg_save_policy), 67 _register_save_type(register_save_type), 68 _ruleName(ruleName), 69 _allocation_started(false), 70 _states_arena(Chunk::medium_size), 71 _visited(&_states_arena), 72 _shared(&_states_arena), 73 _dontcare(&_states_arena) { 74 C->set_matcher(this); 75 76 idealreg2spillmask [Op_RegI] = NULL; 77 idealreg2spillmask [Op_RegN] = NULL; 78 idealreg2spillmask [Op_RegL] = NULL; 79 idealreg2spillmask [Op_RegF] = NULL; 80 idealreg2spillmask [Op_RegD] = NULL; 81 idealreg2spillmask [Op_RegP] = NULL; 82 idealreg2spillmask [Op_VecS] = NULL; 83 idealreg2spillmask [Op_VecD] = NULL; 84 idealreg2spillmask [Op_VecX] = NULL; 85 idealreg2spillmask [Op_VecY] = NULL; 86 idealreg2spillmask [Op_VecZ] = NULL; 87 88 idealreg2debugmask [Op_RegI] = NULL; 89 idealreg2debugmask [Op_RegN] = NULL; 90 idealreg2debugmask [Op_RegL] = NULL; 91 idealreg2debugmask [Op_RegF] = NULL; 92 idealreg2debugmask [Op_RegD] = NULL; 93 idealreg2debugmask [Op_RegP] = NULL; 94 idealreg2debugmask [Op_VecS] = NULL; 95 idealreg2debugmask [Op_VecD] = NULL; 96 idealreg2debugmask [Op_VecX] = NULL; 97 idealreg2debugmask [Op_VecY] = NULL; 98 idealreg2debugmask [Op_VecZ] = NULL; 99 100 idealreg2mhdebugmask[Op_RegI] = NULL; 101 idealreg2mhdebugmask[Op_RegN] = NULL; 102 idealreg2mhdebugmask[Op_RegL] = NULL; 103 idealreg2mhdebugmask[Op_RegF] = NULL; 104 idealreg2mhdebugmask[Op_RegD] = NULL; 105 idealreg2mhdebugmask[Op_RegP] = NULL; 106 idealreg2mhdebugmask[Op_VecS] = NULL; 107 idealreg2mhdebugmask[Op_VecD] = NULL; 108 idealreg2mhdebugmask[Op_VecX] = NULL; 109 idealreg2mhdebugmask[Op_VecY] = NULL; 110 idealreg2mhdebugmask[Op_VecZ] = NULL; 111 112 debug_only(_mem_node = NULL;) // Ideal memory node consumed by mach node 113 } 114 115 //------------------------------warp_incoming_stk_arg------------------------ 116 // This warps a VMReg into an OptoReg::Name 117 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) { 118 OptoReg::Name warped; 119 if( reg->is_stack() ) { // Stack slot argument? 120 warped = OptoReg::add(_old_SP, reg->reg2stack() ); 121 warped = OptoReg::add(warped, C->out_preserve_stack_slots()); 122 if( warped >= _in_arg_limit ) 123 _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen 124 if (!RegMask::can_represent_arg(warped)) { 125 // the compiler cannot represent this method's calling sequence 126 C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence"); 127 return OptoReg::Bad; 128 } 129 return warped; 130 } 131 return OptoReg::as_OptoReg(reg); 132 } 133 134 //---------------------------compute_old_SP------------------------------------ 135 OptoReg::Name Compile::compute_old_SP() { 136 int fixed = fixed_slots(); 137 int preserve = in_preserve_stack_slots(); 138 return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots())); 139 } 140 141 142 143 #ifdef ASSERT 144 void Matcher::verify_new_nodes_only(Node* xroot) { 145 // Make sure that the new graph only references new nodes 146 ResourceMark rm; 147 Unique_Node_List worklist; 148 VectorSet visited(Thread::current()->resource_area()); 149 worklist.push(xroot); 150 while (worklist.size() > 0) { 151 Node* n = worklist.pop(); 152 visited <<= n->_idx; 153 assert(C->node_arena()->contains(n), "dead node"); 154 for (uint j = 0; j < n->req(); j++) { 155 Node* in = n->in(j); 156 if (in != NULL) { 157 assert(C->node_arena()->contains(in), "dead node"); 158 if (!visited.test(in->_idx)) { 159 worklist.push(in); 160 } 161 } 162 } 163 } 164 } 165 #endif 166 167 168 //---------------------------match--------------------------------------------- 169 void Matcher::match( ) { 170 if( MaxLabelRootDepth < 100 ) { // Too small? 171 assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum"); 172 MaxLabelRootDepth = 100; 173 } 174 // One-time initialization of some register masks. 175 init_spill_mask( C->root()->in(1) ); 176 _return_addr_mask = return_addr(); 177 #ifdef _LP64 178 // Pointers take 2 slots in 64-bit land 179 _return_addr_mask.Insert(OptoReg::add(return_addr(),1)); 180 #endif 181 182 // Map a Java-signature return type into return register-value 183 // machine registers for 0, 1 and 2 returned values. 184 const TypeTuple *range = C->tf()->range(); 185 if( range->cnt() > TypeFunc::Parms ) { // If not a void function 186 // Get ideal-register return type 187 int ireg = range->field_at(TypeFunc::Parms)->ideal_reg(); 188 // Get machine return register 189 uint sop = C->start()->Opcode(); 190 OptoRegPair regs = return_value(ireg, false); 191 192 // And mask for same 193 _return_value_mask = RegMask(regs.first()); 194 if( OptoReg::is_valid(regs.second()) ) 195 _return_value_mask.Insert(regs.second()); 196 } 197 198 // --------------- 199 // Frame Layout 200 201 // Need the method signature to determine the incoming argument types, 202 // because the types determine which registers the incoming arguments are 203 // in, and this affects the matched code. 204 const TypeTuple *domain = C->tf()->domain_cc(); 205 uint argcnt = domain->cnt() - TypeFunc::Parms; 206 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt ); 207 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt ); 208 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt ); 209 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt ); 210 uint i; 211 for( i = 0; i<argcnt; i++ ) { 212 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); 213 } 214 215 // Pass array of ideal registers and length to USER code (from the AD file) 216 // that will convert this to an array of register numbers. 217 const StartNode *start = C->start(); 218 start->calling_convention( sig_bt, vm_parm_regs, argcnt ); 219 #ifdef ASSERT 220 // Sanity check users' calling convention. Real handy while trying to 221 // get the initial port correct. 222 { for (uint i = 0; i<argcnt; i++) { 223 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { 224 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" ); 225 _parm_regs[i].set_bad(); 226 continue; 227 } 228 VMReg parm_reg = vm_parm_regs[i].first(); 229 assert(parm_reg->is_valid(), "invalid arg?"); 230 if (parm_reg->is_reg()) { 231 OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg); 232 assert(can_be_java_arg(opto_parm_reg) || 233 C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) || 234 opto_parm_reg == inline_cache_reg(), 235 "parameters in register must be preserved by runtime stubs"); 236 } 237 for (uint j = 0; j < i; j++) { 238 assert(parm_reg != vm_parm_regs[j].first(), 239 "calling conv. must produce distinct regs"); 240 } 241 } 242 } 243 #endif 244 245 // Do some initial frame layout. 246 247 // Compute the old incoming SP (may be called FP) as 248 // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2. 249 _old_SP = C->compute_old_SP(); 250 assert( is_even(_old_SP), "must be even" ); 251 252 // Compute highest incoming stack argument as 253 // _old_SP + out_preserve_stack_slots + incoming argument size. 254 _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); 255 assert( is_even(_in_arg_limit), "out_preserve must be even" ); 256 for( i = 0; i < argcnt; i++ ) { 257 // Permit args to have no register 258 _calling_convention_mask[i].Clear(); 259 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { 260 continue; 261 } 262 // calling_convention returns stack arguments as a count of 263 // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to 264 // the allocators point of view, taking into account all the 265 // preserve area, locks & pad2. 266 267 OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first()); 268 if( OptoReg::is_valid(reg1)) 269 _calling_convention_mask[i].Insert(reg1); 270 271 OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second()); 272 if( OptoReg::is_valid(reg2)) 273 _calling_convention_mask[i].Insert(reg2); 274 275 // Saved biased stack-slot register number 276 _parm_regs[i].set_pair(reg2, reg1); 277 } 278 279 // Finally, make sure the incoming arguments take up an even number of 280 // words, in case the arguments or locals need to contain doubleword stack 281 // slots. The rest of the system assumes that stack slot pairs (in 282 // particular, in the spill area) which look aligned will in fact be 283 // aligned relative to the stack pointer in the target machine. Double 284 // stack slots will always be allocated aligned. 285 _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong)); 286 287 // Compute highest outgoing stack argument as 288 // _new_SP + out_preserve_stack_slots + max(outgoing argument size). 289 _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); 290 assert( is_even(_out_arg_limit), "out_preserve must be even" ); 291 292 if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) { 293 // the compiler cannot represent this method's calling sequence 294 C->record_method_not_compilable("must be able to represent all call arguments in reg mask"); 295 } 296 297 if (C->failing()) return; // bailed out on incoming arg failure 298 299 // --------------- 300 // Collect roots of matcher trees. Every node for which 301 // _shared[_idx] is cleared is guaranteed to not be shared, and thus 302 // can be a valid interior of some tree. 303 find_shared( C->root() ); 304 find_shared( C->top() ); 305 306 C->print_method(PHASE_BEFORE_MATCHING); 307 308 // Create new ideal node ConP #NULL even if it does exist in old space 309 // to avoid false sharing if the corresponding mach node is not used. 310 // The corresponding mach node is only used in rare cases for derived 311 // pointers. 312 Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR); 313 314 // Swap out to old-space; emptying new-space 315 Arena *old = C->node_arena()->move_contents(C->old_arena()); 316 317 // Save debug and profile information for nodes in old space: 318 _old_node_note_array = C->node_note_array(); 319 if (_old_node_note_array != NULL) { 320 C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*> 321 (C->comp_arena(), _old_node_note_array->length(), 322 0, NULL)); 323 } 324 325 // Pre-size the new_node table to avoid the need for range checks. 326 grow_new_node_array(C->unique()); 327 328 // Reset node counter so MachNodes start with _idx at 0 329 int live_nodes = C->live_nodes(); 330 C->set_unique(0); 331 C->reset_dead_node_list(); 332 333 // Recursively match trees from old space into new space. 334 // Correct leaves of new-space Nodes; they point to old-space. 335 _visited.Clear(); // Clear visit bits for xform call 336 C->set_cached_top_node(xform( C->top(), live_nodes )); 337 if (!C->failing()) { 338 Node* xroot = xform( C->root(), 1 ); 339 if (xroot == NULL) { 340 Matcher::soft_match_failure(); // recursive matching process failed 341 C->record_method_not_compilable("instruction match failed"); 342 } else { 343 // During matching shared constants were attached to C->root() 344 // because xroot wasn't available yet, so transfer the uses to 345 // the xroot. 346 for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) { 347 Node* n = C->root()->fast_out(j); 348 if (C->node_arena()->contains(n)) { 349 assert(n->in(0) == C->root(), "should be control user"); 350 n->set_req(0, xroot); 351 --j; 352 --jmax; 353 } 354 } 355 356 // Generate new mach node for ConP #NULL 357 assert(new_ideal_null != NULL, "sanity"); 358 _mach_null = match_tree(new_ideal_null); 359 // Don't set control, it will confuse GCM since there are no uses. 360 // The control will be set when this node is used first time 361 // in find_base_for_derived(). 362 assert(_mach_null != NULL, ""); 363 364 C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL); 365 366 #ifdef ASSERT 367 verify_new_nodes_only(xroot); 368 #endif 369 } 370 } 371 if (C->top() == NULL || C->root() == NULL) { 372 C->record_method_not_compilable("graph lost"); // %%% cannot happen? 373 } 374 if (C->failing()) { 375 // delete old; 376 old->destruct_contents(); 377 return; 378 } 379 assert( C->top(), "" ); 380 assert( C->root(), "" ); 381 validate_null_checks(); 382 383 // Now smoke old-space 384 NOT_DEBUG( old->destruct_contents() ); 385 386 // ------------------------ 387 // Set up save-on-entry registers 388 Fixup_Save_On_Entry( ); 389 } 390 391 392 //------------------------------Fixup_Save_On_Entry---------------------------- 393 // The stated purpose of this routine is to take care of save-on-entry 394 // registers. However, the overall goal of the Match phase is to convert into 395 // machine-specific instructions which have RegMasks to guide allocation. 396 // So what this procedure really does is put a valid RegMask on each input 397 // to the machine-specific variations of all Return, TailCall and Halt 398 // instructions. It also adds edgs to define the save-on-entry values (and of 399 // course gives them a mask). 400 401 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) { 402 RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size ); 403 // Do all the pre-defined register masks 404 rms[TypeFunc::Control ] = RegMask::Empty; 405 rms[TypeFunc::I_O ] = RegMask::Empty; 406 rms[TypeFunc::Memory ] = RegMask::Empty; 407 rms[TypeFunc::ReturnAdr] = ret_adr; 408 rms[TypeFunc::FramePtr ] = fp; 409 return rms; 410 } 411 412 //---------------------------init_first_stack_mask----------------------------- 413 // Create the initial stack mask used by values spilling to the stack. 414 // Disallow any debug info in outgoing argument areas by setting the 415 // initial mask accordingly. 416 void Matcher::init_first_stack_mask() { 417 418 // Allocate storage for spill masks as masks for the appropriate load type. 419 RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+5)); 420 421 idealreg2spillmask [Op_RegN] = &rms[0]; 422 idealreg2spillmask [Op_RegI] = &rms[1]; 423 idealreg2spillmask [Op_RegL] = &rms[2]; 424 idealreg2spillmask [Op_RegF] = &rms[3]; 425 idealreg2spillmask [Op_RegD] = &rms[4]; 426 idealreg2spillmask [Op_RegP] = &rms[5]; 427 428 idealreg2debugmask [Op_RegN] = &rms[6]; 429 idealreg2debugmask [Op_RegI] = &rms[7]; 430 idealreg2debugmask [Op_RegL] = &rms[8]; 431 idealreg2debugmask [Op_RegF] = &rms[9]; 432 idealreg2debugmask [Op_RegD] = &rms[10]; 433 idealreg2debugmask [Op_RegP] = &rms[11]; 434 435 idealreg2mhdebugmask[Op_RegN] = &rms[12]; 436 idealreg2mhdebugmask[Op_RegI] = &rms[13]; 437 idealreg2mhdebugmask[Op_RegL] = &rms[14]; 438 idealreg2mhdebugmask[Op_RegF] = &rms[15]; 439 idealreg2mhdebugmask[Op_RegD] = &rms[16]; 440 idealreg2mhdebugmask[Op_RegP] = &rms[17]; 441 442 idealreg2spillmask [Op_VecS] = &rms[18]; 443 idealreg2spillmask [Op_VecD] = &rms[19]; 444 idealreg2spillmask [Op_VecX] = &rms[20]; 445 idealreg2spillmask [Op_VecY] = &rms[21]; 446 idealreg2spillmask [Op_VecZ] = &rms[22]; 447 448 OptoReg::Name i; 449 450 // At first, start with the empty mask 451 C->FIRST_STACK_mask().Clear(); 452 453 // Add in the incoming argument area 454 OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); 455 for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) { 456 C->FIRST_STACK_mask().Insert(i); 457 } 458 // Add in all bits past the outgoing argument area 459 guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)), 460 "must be able to represent all call arguments in reg mask"); 461 OptoReg::Name init = _out_arg_limit; 462 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) { 463 C->FIRST_STACK_mask().Insert(i); 464 } 465 // Finally, set the "infinite stack" bit. 466 C->FIRST_STACK_mask().set_AllStack(); 467 468 // Make spill masks. Registers for their class, plus FIRST_STACK_mask. 469 RegMask aligned_stack_mask = C->FIRST_STACK_mask(); 470 // Keep spill masks aligned. 471 aligned_stack_mask.clear_to_pairs(); 472 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 473 474 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP]; 475 #ifdef _LP64 476 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN]; 477 idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask()); 478 idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask); 479 #else 480 idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask()); 481 #endif 482 *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI]; 483 idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask()); 484 *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL]; 485 idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask); 486 *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF]; 487 idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask()); 488 *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD]; 489 idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask); 490 491 if (Matcher::vector_size_supported(T_BYTE,4)) { 492 *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS]; 493 idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask()); 494 } 495 if (Matcher::vector_size_supported(T_FLOAT,2)) { 496 // For VecD we need dual alignment and 8 bytes (2 slots) for spills. 497 // RA guarantees such alignment since it is needed for Double and Long values. 498 *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD]; 499 idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask); 500 } 501 if (Matcher::vector_size_supported(T_FLOAT,4)) { 502 // For VecX we need quadro alignment and 16 bytes (4 slots) for spills. 503 // 504 // RA can use input arguments stack slots for spills but until RA 505 // we don't know frame size and offset of input arg stack slots. 506 // 507 // Exclude last input arg stack slots to avoid spilling vectors there 508 // otherwise vector spills could stomp over stack slots in caller frame. 509 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 510 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) { 511 aligned_stack_mask.Remove(in); 512 in = OptoReg::add(in, -1); 513 } 514 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX); 515 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 516 *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX]; 517 idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask); 518 } 519 if (Matcher::vector_size_supported(T_FLOAT,8)) { 520 // For VecY we need octo alignment and 32 bytes (8 slots) for spills. 521 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 522 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) { 523 aligned_stack_mask.Remove(in); 524 in = OptoReg::add(in, -1); 525 } 526 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY); 527 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 528 *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY]; 529 idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask); 530 } 531 if (Matcher::vector_size_supported(T_FLOAT,16)) { 532 // For VecZ we need enough alignment and 64 bytes (16 slots) for spills. 533 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 534 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) { 535 aligned_stack_mask.Remove(in); 536 in = OptoReg::add(in, -1); 537 } 538 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ); 539 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 540 *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ]; 541 idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask); 542 } 543 if (UseFPUForSpilling) { 544 // This mask logic assumes that the spill operations are 545 // symmetric and that the registers involved are the same size. 546 // On sparc for instance we may have to use 64 bit moves will 547 // kill 2 registers when used with F0-F31. 548 idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]); 549 idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]); 550 #ifdef _LP64 551 idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]); 552 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); 553 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); 554 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]); 555 #else 556 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]); 557 #ifdef ARM 558 // ARM has support for moving 64bit values between a pair of 559 // integer registers and a double register 560 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); 561 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); 562 #endif 563 #endif 564 } 565 566 // Make up debug masks. Any spill slot plus callee-save registers. 567 // Caller-save registers are assumed to be trashable by the various 568 // inline-cache fixup routines. 569 *idealreg2debugmask [Op_RegN]= *idealreg2spillmask[Op_RegN]; 570 *idealreg2debugmask [Op_RegI]= *idealreg2spillmask[Op_RegI]; 571 *idealreg2debugmask [Op_RegL]= *idealreg2spillmask[Op_RegL]; 572 *idealreg2debugmask [Op_RegF]= *idealreg2spillmask[Op_RegF]; 573 *idealreg2debugmask [Op_RegD]= *idealreg2spillmask[Op_RegD]; 574 *idealreg2debugmask [Op_RegP]= *idealreg2spillmask[Op_RegP]; 575 576 *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN]; 577 *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI]; 578 *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL]; 579 *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF]; 580 *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD]; 581 *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP]; 582 583 // Prevent stub compilations from attempting to reference 584 // callee-saved registers from debug info 585 bool exclude_soe = !Compile::current()->is_method_compilation(); 586 587 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) { 588 // registers the caller has to save do not work 589 if( _register_save_policy[i] == 'C' || 590 _register_save_policy[i] == 'A' || 591 (_register_save_policy[i] == 'E' && exclude_soe) ) { 592 idealreg2debugmask [Op_RegN]->Remove(i); 593 idealreg2debugmask [Op_RegI]->Remove(i); // Exclude save-on-call 594 idealreg2debugmask [Op_RegL]->Remove(i); // registers from debug 595 idealreg2debugmask [Op_RegF]->Remove(i); // masks 596 idealreg2debugmask [Op_RegD]->Remove(i); 597 idealreg2debugmask [Op_RegP]->Remove(i); 598 599 idealreg2mhdebugmask[Op_RegN]->Remove(i); 600 idealreg2mhdebugmask[Op_RegI]->Remove(i); 601 idealreg2mhdebugmask[Op_RegL]->Remove(i); 602 idealreg2mhdebugmask[Op_RegF]->Remove(i); 603 idealreg2mhdebugmask[Op_RegD]->Remove(i); 604 idealreg2mhdebugmask[Op_RegP]->Remove(i); 605 } 606 } 607 608 // Subtract the register we use to save the SP for MethodHandle 609 // invokes to from the debug mask. 610 const RegMask save_mask = method_handle_invoke_SP_save_mask(); 611 idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask); 612 idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask); 613 idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask); 614 idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask); 615 idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask); 616 idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask); 617 } 618 619 //---------------------------is_save_on_entry---------------------------------- 620 bool Matcher::is_save_on_entry( int reg ) { 621 return 622 _register_save_policy[reg] == 'E' || 623 _register_save_policy[reg] == 'A' || // Save-on-entry register? 624 // Also save argument registers in the trampolining stubs 625 (C->save_argument_registers() && is_spillable_arg(reg)); 626 } 627 628 //---------------------------Fixup_Save_On_Entry------------------------------- 629 void Matcher::Fixup_Save_On_Entry( ) { 630 init_first_stack_mask(); 631 632 Node *root = C->root(); // Short name for root 633 // Count number of save-on-entry registers. 634 uint soe_cnt = number_of_saved_registers(); 635 uint i; 636 637 // Find the procedure Start Node 638 StartNode *start = C->start(); 639 assert( start, "Expect a start node" ); 640 641 // Save argument registers in the trampolining stubs 642 if( C->save_argument_registers() ) 643 for( i = 0; i < _last_Mach_Reg; i++ ) 644 if( is_spillable_arg(i) ) 645 soe_cnt++; 646 647 // Input RegMask array shared by all Returns. 648 // The type for doubles and longs has a count of 2, but 649 // there is only 1 returned value 650 uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1); 651 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 652 // Returns have 0 or 1 returned values depending on call signature. 653 // Return register is specified by return_value in the AD file. 654 if (ret_edge_cnt > TypeFunc::Parms) 655 ret_rms[TypeFunc::Parms+0] = _return_value_mask; 656 657 // Input RegMask array shared by all Rethrows. 658 uint reth_edge_cnt = TypeFunc::Parms+1; 659 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 660 // Rethrow takes exception oop only, but in the argument 0 slot. 661 reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)]; 662 #ifdef _LP64 663 // Need two slots for ptrs in 64-bit land 664 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1)); 665 #endif 666 667 // Input RegMask array shared by all TailCalls 668 uint tail_call_edge_cnt = TypeFunc::Parms+2; 669 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 670 671 // Input RegMask array shared by all TailJumps 672 uint tail_jump_edge_cnt = TypeFunc::Parms+2; 673 RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 674 675 // TailCalls have 2 returned values (target & moop), whose masks come 676 // from the usual MachNode/MachOper mechanism. Find a sample 677 // TailCall to extract these masks and put the correct masks into 678 // the tail_call_rms array. 679 for( i=1; i < root->req(); i++ ) { 680 MachReturnNode *m = root->in(i)->as_MachReturn(); 681 if( m->ideal_Opcode() == Op_TailCall ) { 682 tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); 683 tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); 684 break; 685 } 686 } 687 688 // TailJumps have 2 returned values (target & ex_oop), whose masks come 689 // from the usual MachNode/MachOper mechanism. Find a sample 690 // TailJump to extract these masks and put the correct masks into 691 // the tail_jump_rms array. 692 for( i=1; i < root->req(); i++ ) { 693 MachReturnNode *m = root->in(i)->as_MachReturn(); 694 if( m->ideal_Opcode() == Op_TailJump ) { 695 tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); 696 tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); 697 break; 698 } 699 } 700 701 // Input RegMask array shared by all Halts 702 uint halt_edge_cnt = TypeFunc::Parms; 703 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 704 705 // Capture the return input masks into each exit flavor 706 for( i=1; i < root->req(); i++ ) { 707 MachReturnNode *exit = root->in(i)->as_MachReturn(); 708 switch( exit->ideal_Opcode() ) { 709 case Op_Return : exit->_in_rms = ret_rms; break; 710 case Op_Rethrow : exit->_in_rms = reth_rms; break; 711 case Op_TailCall : exit->_in_rms = tail_call_rms; break; 712 case Op_TailJump : exit->_in_rms = tail_jump_rms; break; 713 case Op_Halt : exit->_in_rms = halt_rms; break; 714 default : ShouldNotReachHere(); 715 } 716 } 717 718 // Next unused projection number from Start. 719 int proj_cnt = C->tf()->domain_cc()->cnt(); 720 721 // Do all the save-on-entry registers. Make projections from Start for 722 // them, and give them a use at the exit points. To the allocator, they 723 // look like incoming register arguments. 724 for( i = 0; i < _last_Mach_Reg; i++ ) { 725 if( is_save_on_entry(i) ) { 726 727 // Add the save-on-entry to the mask array 728 ret_rms [ ret_edge_cnt] = mreg2regmask[i]; 729 reth_rms [ reth_edge_cnt] = mreg2regmask[i]; 730 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i]; 731 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i]; 732 // Halts need the SOE registers, but only in the stack as debug info. 733 // A just-prior uncommon-trap or deoptimization will use the SOE regs. 734 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]]; 735 736 Node *mproj; 737 738 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's 739 // into a single RegD. 740 if( (i&1) == 0 && 741 _register_save_type[i ] == Op_RegF && 742 _register_save_type[i+1] == Op_RegF && 743 is_save_on_entry(i+1) ) { 744 // Add other bit for double 745 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); 746 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); 747 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); 748 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); 749 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); 750 mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD ); 751 proj_cnt += 2; // Skip 2 for doubles 752 } 753 else if( (i&1) == 1 && // Else check for high half of double 754 _register_save_type[i-1] == Op_RegF && 755 _register_save_type[i ] == Op_RegF && 756 is_save_on_entry(i-1) ) { 757 ret_rms [ ret_edge_cnt] = RegMask::Empty; 758 reth_rms [ reth_edge_cnt] = RegMask::Empty; 759 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; 760 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; 761 halt_rms [ halt_edge_cnt] = RegMask::Empty; 762 mproj = C->top(); 763 } 764 // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's 765 // into a single RegL. 766 else if( (i&1) == 0 && 767 _register_save_type[i ] == Op_RegI && 768 _register_save_type[i+1] == Op_RegI && 769 is_save_on_entry(i+1) ) { 770 // Add other bit for long 771 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); 772 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); 773 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); 774 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); 775 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); 776 mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL ); 777 proj_cnt += 2; // Skip 2 for longs 778 } 779 else if( (i&1) == 1 && // Else check for high half of long 780 _register_save_type[i-1] == Op_RegI && 781 _register_save_type[i ] == Op_RegI && 782 is_save_on_entry(i-1) ) { 783 ret_rms [ ret_edge_cnt] = RegMask::Empty; 784 reth_rms [ reth_edge_cnt] = RegMask::Empty; 785 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; 786 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; 787 halt_rms [ halt_edge_cnt] = RegMask::Empty; 788 mproj = C->top(); 789 } else { 790 // Make a projection for it off the Start 791 mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] ); 792 } 793 794 ret_edge_cnt ++; 795 reth_edge_cnt ++; 796 tail_call_edge_cnt ++; 797 tail_jump_edge_cnt ++; 798 halt_edge_cnt ++; 799 800 // Add a use of the SOE register to all exit paths 801 for( uint j=1; j < root->req(); j++ ) 802 root->in(j)->add_req(mproj); 803 } // End of if a save-on-entry register 804 } // End of for all machine registers 805 } 806 807 //------------------------------init_spill_mask-------------------------------- 808 void Matcher::init_spill_mask( Node *ret ) { 809 if( idealreg2regmask[Op_RegI] ) return; // One time only init 810 811 OptoReg::c_frame_pointer = c_frame_pointer(); 812 c_frame_ptr_mask = c_frame_pointer(); 813 #ifdef _LP64 814 // pointers are twice as big 815 c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1)); 816 #endif 817 818 // Start at OptoReg::stack0() 819 STACK_ONLY_mask.Clear(); 820 OptoReg::Name init = OptoReg::stack2reg(0); 821 // STACK_ONLY_mask is all stack bits 822 OptoReg::Name i; 823 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) 824 STACK_ONLY_mask.Insert(i); 825 // Also set the "infinite stack" bit. 826 STACK_ONLY_mask.set_AllStack(); 827 828 // Copy the register names over into the shared world 829 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) { 830 // SharedInfo::regName[i] = regName[i]; 831 // Handy RegMasks per machine register 832 mreg2regmask[i].Insert(i); 833 } 834 835 // Grab the Frame Pointer 836 Node *fp = ret->in(TypeFunc::FramePtr); 837 Node *mem = ret->in(TypeFunc::Memory); 838 const TypePtr* atp = TypePtr::BOTTOM; 839 // Share frame pointer while making spill ops 840 set_shared(fp); 841 842 // Compute generic short-offset Loads 843 #ifdef _LP64 844 MachNode *spillCP = match_tree(new LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered)); 845 #endif 846 MachNode *spillI = match_tree(new LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered)); 847 MachNode *spillL = match_tree(new LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest, false)); 848 MachNode *spillF = match_tree(new LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered)); 849 MachNode *spillD = match_tree(new LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered)); 850 MachNode *spillP = match_tree(new LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered)); 851 assert(spillI != NULL && spillL != NULL && spillF != NULL && 852 spillD != NULL && spillP != NULL, ""); 853 // Get the ADLC notion of the right regmask, for each basic type. 854 #ifdef _LP64 855 idealreg2regmask[Op_RegN] = &spillCP->out_RegMask(); 856 #endif 857 idealreg2regmask[Op_RegI] = &spillI->out_RegMask(); 858 idealreg2regmask[Op_RegL] = &spillL->out_RegMask(); 859 idealreg2regmask[Op_RegF] = &spillF->out_RegMask(); 860 idealreg2regmask[Op_RegD] = &spillD->out_RegMask(); 861 idealreg2regmask[Op_RegP] = &spillP->out_RegMask(); 862 863 // Vector regmasks. 864 if (Matcher::vector_size_supported(T_BYTE,4)) { 865 TypeVect::VECTS = TypeVect::make(T_BYTE, 4); 866 MachNode *spillVectS = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS)); 867 idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask(); 868 } 869 if (Matcher::vector_size_supported(T_FLOAT,2)) { 870 MachNode *spillVectD = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD)); 871 idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask(); 872 } 873 if (Matcher::vector_size_supported(T_FLOAT,4)) { 874 MachNode *spillVectX = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX)); 875 idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask(); 876 } 877 if (Matcher::vector_size_supported(T_FLOAT,8)) { 878 MachNode *spillVectY = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY)); 879 idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask(); 880 } 881 if (Matcher::vector_size_supported(T_FLOAT,16)) { 882 MachNode *spillVectZ = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTZ)); 883 idealreg2regmask[Op_VecZ] = &spillVectZ->out_RegMask(); 884 } 885 } 886 887 #ifdef ASSERT 888 static void match_alias_type(Compile* C, Node* n, Node* m) { 889 if (!VerifyAliases) return; // do not go looking for trouble by default 890 const TypePtr* nat = n->adr_type(); 891 const TypePtr* mat = m->adr_type(); 892 int nidx = C->get_alias_index(nat); 893 int midx = C->get_alias_index(mat); 894 // Detune the assert for cases like (AndI 0xFF (LoadB p)). 895 if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) { 896 for (uint i = 1; i < n->req(); i++) { 897 Node* n1 = n->in(i); 898 const TypePtr* n1at = n1->adr_type(); 899 if (n1at != NULL) { 900 nat = n1at; 901 nidx = C->get_alias_index(n1at); 902 } 903 } 904 } 905 // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases: 906 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) { 907 switch (n->Opcode()) { 908 case Op_PrefetchAllocation: 909 nidx = Compile::AliasIdxRaw; 910 nat = TypeRawPtr::BOTTOM; 911 break; 912 } 913 } 914 if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) { 915 switch (n->Opcode()) { 916 case Op_ClearArray: 917 midx = Compile::AliasIdxRaw; 918 mat = TypeRawPtr::BOTTOM; 919 break; 920 } 921 } 922 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) { 923 switch (n->Opcode()) { 924 case Op_Return: 925 case Op_Rethrow: 926 case Op_Halt: 927 case Op_TailCall: 928 case Op_TailJump: 929 nidx = Compile::AliasIdxBot; 930 nat = TypePtr::BOTTOM; 931 break; 932 } 933 } 934 if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) { 935 switch (n->Opcode()) { 936 case Op_StrComp: 937 case Op_StrEquals: 938 case Op_StrIndexOf: 939 case Op_StrIndexOfChar: 940 case Op_AryEq: 941 case Op_HasNegatives: 942 case Op_MemBarVolatile: 943 case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type? 944 case Op_StrInflatedCopy: 945 case Op_StrCompressedCopy: 946 case Op_EncodeISOArray: 947 nidx = Compile::AliasIdxTop; 948 nat = NULL; 949 break; 950 } 951 } 952 if (nidx != midx) { 953 if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) { 954 tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx); 955 n->dump(); 956 m->dump(); 957 } 958 assert(C->subsume_loads() && C->must_alias(nat, midx), 959 "must not lose alias info when matching"); 960 } 961 } 962 #endif 963 964 965 //------------------------------MStack----------------------------------------- 966 // State and MStack class used in xform() and find_shared() iterative methods. 967 enum Node_State { Pre_Visit, // node has to be pre-visited 968 Visit, // visit node 969 Post_Visit, // post-visit node 970 Alt_Post_Visit // alternative post-visit path 971 }; 972 973 class MStack: public Node_Stack { 974 public: 975 MStack(int size) : Node_Stack(size) { } 976 977 void push(Node *n, Node_State ns) { 978 Node_Stack::push(n, (uint)ns); 979 } 980 void push(Node *n, Node_State ns, Node *parent, int indx) { 981 ++_inode_top; 982 if ((_inode_top + 1) >= _inode_max) grow(); 983 _inode_top->node = parent; 984 _inode_top->indx = (uint)indx; 985 ++_inode_top; 986 _inode_top->node = n; 987 _inode_top->indx = (uint)ns; 988 } 989 Node *parent() { 990 pop(); 991 return node(); 992 } 993 Node_State state() const { 994 return (Node_State)index(); 995 } 996 void set_state(Node_State ns) { 997 set_index((uint)ns); 998 } 999 }; 1000 1001 1002 //------------------------------xform------------------------------------------ 1003 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine 1004 // Node in new-space. Given a new-space Node, recursively walk his children. 1005 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; } 1006 Node *Matcher::xform( Node *n, int max_stack ) { 1007 // Use one stack to keep both: child's node/state and parent's node/index 1008 MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2 1009 mstack.push(n, Visit, NULL, -1); // set NULL as parent to indicate root 1010 1011 while (mstack.is_nonempty()) { 1012 C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions"); 1013 if (C->failing()) return NULL; 1014 n = mstack.node(); // Leave node on stack 1015 Node_State nstate = mstack.state(); 1016 if (nstate == Visit) { 1017 mstack.set_state(Post_Visit); 1018 Node *oldn = n; 1019 // Old-space or new-space check 1020 if (!C->node_arena()->contains(n)) { 1021 // Old space! 1022 Node* m; 1023 if (has_new_node(n)) { // Not yet Label/Reduced 1024 m = new_node(n); 1025 } else { 1026 if (!is_dontcare(n)) { // Matcher can match this guy 1027 // Calls match special. They match alone with no children. 1028 // Their children, the incoming arguments, match normally. 1029 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n); 1030 if (C->failing()) return NULL; 1031 if (m == NULL) { Matcher::soft_match_failure(); return NULL; } 1032 } else { // Nothing the matcher cares about 1033 if( n->is_Proj() && n->in(0)->is_Multi()) { // Projections? 1034 // Convert to machine-dependent projection 1035 m = n->in(0)->as_Multi()->match( n->as_Proj(), this ); 1036 #ifdef ASSERT 1037 _new2old_map.map(m->_idx, n); 1038 #endif 1039 if (m->in(0) != NULL) // m might be top 1040 collect_null_checks(m, n); 1041 } else { // Else just a regular 'ol guy 1042 m = n->clone(); // So just clone into new-space 1043 #ifdef ASSERT 1044 _new2old_map.map(m->_idx, n); 1045 #endif 1046 // Def-Use edges will be added incrementally as Uses 1047 // of this node are matched. 1048 assert(m->outcnt() == 0, "no Uses of this clone yet"); 1049 } 1050 } 1051 1052 set_new_node(n, m); // Map old to new 1053 if (_old_node_note_array != NULL) { 1054 Node_Notes* nn = C->locate_node_notes(_old_node_note_array, 1055 n->_idx); 1056 C->set_node_notes_at(m->_idx, nn); 1057 } 1058 debug_only(match_alias_type(C, n, m)); 1059 } 1060 n = m; // n is now a new-space node 1061 mstack.set_node(n); 1062 } 1063 1064 // New space! 1065 if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty()) 1066 1067 int i; 1068 // Put precedence edges on stack first (match them last). 1069 for (i = oldn->req(); (uint)i < oldn->len(); i++) { 1070 Node *m = oldn->in(i); 1071 if (m == NULL) break; 1072 // set -1 to call add_prec() instead of set_req() during Step1 1073 mstack.push(m, Visit, n, -1); 1074 } 1075 1076 // Handle precedence edges for interior nodes 1077 for (i = n->len()-1; (uint)i >= n->req(); i--) { 1078 Node *m = n->in(i); 1079 if (m == NULL || C->node_arena()->contains(m)) continue; 1080 n->rm_prec(i); 1081 // set -1 to call add_prec() instead of set_req() during Step1 1082 mstack.push(m, Visit, n, -1); 1083 } 1084 1085 // For constant debug info, I'd rather have unmatched constants. 1086 int cnt = n->req(); 1087 JVMState* jvms = n->jvms(); 1088 int debug_cnt = jvms ? jvms->debug_start() : cnt; 1089 1090 // Now do only debug info. Clone constants rather than matching. 1091 // Constants are represented directly in the debug info without 1092 // the need for executable machine instructions. 1093 // Monitor boxes are also represented directly. 1094 for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do 1095 Node *m = n->in(i); // Get input 1096 int op = m->Opcode(); 1097 assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites"); 1098 if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass || 1099 op == Op_ConF || op == Op_ConD || op == Op_ConL 1100 // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp 1101 ) { 1102 m = m->clone(); 1103 #ifdef ASSERT 1104 _new2old_map.map(m->_idx, n); 1105 #endif 1106 mstack.push(m, Post_Visit, n, i); // Don't need to visit 1107 mstack.push(m->in(0), Visit, m, 0); 1108 } else { 1109 mstack.push(m, Visit, n, i); 1110 } 1111 } 1112 1113 // And now walk his children, and convert his inputs to new-space. 1114 for( ; i >= 0; --i ) { // For all normal inputs do 1115 Node *m = n->in(i); // Get input 1116 if(m != NULL) 1117 mstack.push(m, Visit, n, i); 1118 } 1119 1120 } 1121 else if (nstate == Post_Visit) { 1122 // Set xformed input 1123 Node *p = mstack.parent(); 1124 if (p != NULL) { // root doesn't have parent 1125 int i = (int)mstack.index(); 1126 if (i >= 0) 1127 p->set_req(i, n); // required input 1128 else if (i == -1) 1129 p->add_prec(n); // precedence input 1130 else 1131 ShouldNotReachHere(); 1132 } 1133 mstack.pop(); // remove processed node from stack 1134 } 1135 else { 1136 ShouldNotReachHere(); 1137 } 1138 } // while (mstack.is_nonempty()) 1139 return n; // Return new-space Node 1140 } 1141 1142 //------------------------------warp_outgoing_stk_arg------------------------ 1143 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) { 1144 // Convert outgoing argument location to a pre-biased stack offset 1145 if (reg->is_stack()) { 1146 OptoReg::Name warped = reg->reg2stack(); 1147 // Adjust the stack slot offset to be the register number used 1148 // by the allocator. 1149 warped = OptoReg::add(begin_out_arg_area, warped); 1150 // Keep track of the largest numbered stack slot used for an arg. 1151 // Largest used slot per call-site indicates the amount of stack 1152 // that is killed by the call. 1153 if( warped >= out_arg_limit_per_call ) 1154 out_arg_limit_per_call = OptoReg::add(warped,1); 1155 if (!RegMask::can_represent_arg(warped)) { 1156 C->record_method_not_compilable_all_tiers("unsupported calling sequence"); 1157 return OptoReg::Bad; 1158 } 1159 return warped; 1160 } 1161 return OptoReg::as_OptoReg(reg); 1162 } 1163 1164 1165 //------------------------------match_sfpt------------------------------------- 1166 // Helper function to match call instructions. Calls match special. 1167 // They match alone with no children. Their children, the incoming 1168 // arguments, match normally. 1169 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) { 1170 MachSafePointNode *msfpt = NULL; 1171 MachCallNode *mcall = NULL; 1172 uint cnt; 1173 // Split out case for SafePoint vs Call 1174 CallNode *call; 1175 const TypeTuple *domain; 1176 ciMethod* method = NULL; 1177 bool is_method_handle_invoke = false; // for special kill effects 1178 if( sfpt->is_Call() ) { 1179 call = sfpt->as_Call(); 1180 domain = call->tf()->domain_cc(); 1181 cnt = domain->cnt(); 1182 1183 // Match just the call, nothing else 1184 MachNode *m = match_tree(call); 1185 if (C->failing()) return NULL; 1186 if( m == NULL ) { Matcher::soft_match_failure(); return NULL; } 1187 1188 // Copy data from the Ideal SafePoint to the machine version 1189 mcall = m->as_MachCall(); 1190 1191 mcall->set_tf( call->tf()); 1192 mcall->set_entry_point(call->entry_point()); 1193 mcall->set_cnt( call->cnt()); 1194 1195 if( mcall->is_MachCallJava() ) { 1196 MachCallJavaNode *mcall_java = mcall->as_MachCallJava(); 1197 const CallJavaNode *call_java = call->as_CallJava(); 1198 method = call_java->method(); 1199 mcall_java->_method = method; 1200 mcall_java->_bci = call_java->_bci; 1201 mcall_java->_optimized_virtual = call_java->is_optimized_virtual(); 1202 is_method_handle_invoke = call_java->is_method_handle_invoke(); 1203 mcall_java->_method_handle_invoke = is_method_handle_invoke; 1204 mcall_java->_override_symbolic_info = call_java->override_symbolic_info(); 1205 if (is_method_handle_invoke) { 1206 C->set_has_method_handle_invokes(true); 1207 } 1208 if( mcall_java->is_MachCallStaticJava() ) 1209 mcall_java->as_MachCallStaticJava()->_name = 1210 call_java->as_CallStaticJava()->_name; 1211 if( mcall_java->is_MachCallDynamicJava() ) 1212 mcall_java->as_MachCallDynamicJava()->_vtable_index = 1213 call_java->as_CallDynamicJava()->_vtable_index; 1214 } 1215 else if( mcall->is_MachCallRuntime() ) { 1216 mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name; 1217 } 1218 msfpt = mcall; 1219 } 1220 // This is a non-call safepoint 1221 else { 1222 call = NULL; 1223 domain = NULL; 1224 MachNode *mn = match_tree(sfpt); 1225 if (C->failing()) return NULL; 1226 msfpt = mn->as_MachSafePoint(); 1227 cnt = TypeFunc::Parms; 1228 } 1229 1230 // Advertise the correct memory effects (for anti-dependence computation). 1231 msfpt->set_adr_type(sfpt->adr_type()); 1232 1233 // Allocate a private array of RegMasks. These RegMasks are not shared. 1234 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt ); 1235 // Empty them all. 1236 memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt ); 1237 1238 // Do all the pre-defined non-Empty register masks 1239 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask; 1240 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask; 1241 1242 // Place first outgoing argument can possibly be put. 1243 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); 1244 assert( is_even(begin_out_arg_area), "" ); 1245 // Compute max outgoing register number per call site. 1246 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area; 1247 // Calls to C may hammer extra stack slots above and beyond any arguments. 1248 // These are usually backing store for register arguments for varargs. 1249 if( call != NULL && call->is_CallRuntime() ) 1250 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed()); 1251 1252 1253 // Do the normal argument list (parameters) register masks 1254 int argcnt = cnt - TypeFunc::Parms; 1255 if( argcnt > 0 ) { // Skip it all if we have no args 1256 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt ); 1257 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt ); 1258 int i; 1259 for( i = 0; i < argcnt; i++ ) { 1260 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); 1261 } 1262 // V-call to pick proper calling convention 1263 call->calling_convention( sig_bt, parm_regs, argcnt ); 1264 1265 #ifdef ASSERT 1266 // Sanity check users' calling convention. Really handy during 1267 // the initial porting effort. Fairly expensive otherwise. 1268 { for (int i = 0; i<argcnt; i++) { 1269 if( !parm_regs[i].first()->is_valid() && 1270 !parm_regs[i].second()->is_valid() ) continue; 1271 VMReg reg1 = parm_regs[i].first(); 1272 VMReg reg2 = parm_regs[i].second(); 1273 for (int j = 0; j < i; j++) { 1274 if( !parm_regs[j].first()->is_valid() && 1275 !parm_regs[j].second()->is_valid() ) continue; 1276 VMReg reg3 = parm_regs[j].first(); 1277 VMReg reg4 = parm_regs[j].second(); 1278 if( !reg1->is_valid() ) { 1279 assert( !reg2->is_valid(), "valid halvsies" ); 1280 } else if( !reg3->is_valid() ) { 1281 assert( !reg4->is_valid(), "valid halvsies" ); 1282 } else { 1283 assert( reg1 != reg2, "calling conv. must produce distinct regs"); 1284 assert( reg1 != reg3, "calling conv. must produce distinct regs"); 1285 assert( reg1 != reg4, "calling conv. must produce distinct regs"); 1286 assert( reg2 != reg3, "calling conv. must produce distinct regs"); 1287 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs"); 1288 assert( reg3 != reg4, "calling conv. must produce distinct regs"); 1289 } 1290 } 1291 } 1292 } 1293 #endif 1294 1295 // Visit each argument. Compute its outgoing register mask. 1296 // Return results now can have 2 bits returned. 1297 // Compute max over all outgoing arguments both per call-site 1298 // and over the entire method. 1299 for( i = 0; i < argcnt; i++ ) { 1300 // Address of incoming argument mask to fill in 1301 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms]; 1302 if( !parm_regs[i].first()->is_valid() && 1303 !parm_regs[i].second()->is_valid() ) { 1304 continue; // Avoid Halves 1305 } 1306 // Grab first register, adjust stack slots and insert in mask. 1307 OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call ); 1308 if (OptoReg::is_valid(reg1)) { 1309 rm->Insert( reg1 ); 1310 } 1311 // Grab second register (if any), adjust stack slots and insert in mask. 1312 OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call ); 1313 if (OptoReg::is_valid(reg2)) { 1314 rm->Insert( reg2 ); 1315 } 1316 } // End of for all arguments 1317 1318 // Compute number of stack slots needed to restore stack in case of 1319 // Pascal-style argument popping. 1320 mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area; 1321 } 1322 1323 // Compute the max stack slot killed by any call. These will not be 1324 // available for debug info, and will be used to adjust FIRST_STACK_mask 1325 // after all call sites have been visited. 1326 if( _out_arg_limit < out_arg_limit_per_call) 1327 _out_arg_limit = out_arg_limit_per_call; 1328 1329 if (mcall) { 1330 // Kill the outgoing argument area, including any non-argument holes and 1331 // any legacy C-killed slots. Use Fat-Projections to do the killing. 1332 // Since the max-per-method covers the max-per-call-site and debug info 1333 // is excluded on the max-per-method basis, debug info cannot land in 1334 // this killed area. 1335 uint r_cnt = mcall->tf()->range()->cnt(); 1336 MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj ); 1337 if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) { 1338 C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence"); 1339 } else { 1340 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++) 1341 proj->_rout.Insert(OptoReg::Name(i)); 1342 } 1343 if (proj->_rout.is_NotEmpty()) { 1344 push_projection(proj); 1345 } 1346 } 1347 // Transfer the safepoint information from the call to the mcall 1348 // Move the JVMState list 1349 msfpt->set_jvms(sfpt->jvms()); 1350 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) { 1351 jvms->set_map(sfpt); 1352 } 1353 1354 // Debug inputs begin just after the last incoming parameter 1355 assert((mcall == NULL) || (mcall->jvms() == NULL) || 1356 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain_cc()->cnt()), ""); 1357 1358 // Move the OopMap 1359 msfpt->_oop_map = sfpt->_oop_map; 1360 1361 // Add additional edges. 1362 if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) { 1363 // For these calls we can not add MachConstantBase in expand(), as the 1364 // ins are not complete then. 1365 msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node()); 1366 if (msfpt->jvms() && 1367 msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) { 1368 // We added an edge before jvms, so we must adapt the position of the ins. 1369 msfpt->jvms()->adapt_position(+1); 1370 } 1371 } 1372 1373 // Registers killed by the call are set in the local scheduling pass 1374 // of Global Code Motion. 1375 return msfpt; 1376 } 1377 1378 //---------------------------match_tree---------------------------------------- 1379 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part 1380 // of the whole-sale conversion from Ideal to Mach Nodes. Also used for 1381 // making GotoNodes while building the CFG and in init_spill_mask() to identify 1382 // a Load's result RegMask for memoization in idealreg2regmask[] 1383 MachNode *Matcher::match_tree( const Node *n ) { 1384 assert( n->Opcode() != Op_Phi, "cannot match" ); 1385 assert( !n->is_block_start(), "cannot match" ); 1386 // Set the mark for all locally allocated State objects. 1387 // When this call returns, the _states_arena arena will be reset 1388 // freeing all State objects. 1389 ResourceMark rm( &_states_arena ); 1390 1391 LabelRootDepth = 0; 1392 1393 // StoreNodes require their Memory input to match any LoadNodes 1394 Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ; 1395 #ifdef ASSERT 1396 Node* save_mem_node = _mem_node; 1397 _mem_node = n->is_Store() ? (Node*)n : NULL; 1398 #endif 1399 // State object for root node of match tree 1400 // Allocate it on _states_arena - stack allocation can cause stack overflow. 1401 State *s = new (&_states_arena) State; 1402 s->_kids[0] = NULL; 1403 s->_kids[1] = NULL; 1404 s->_leaf = (Node*)n; 1405 // Label the input tree, allocating labels from top-level arena 1406 Label_Root( n, s, n->in(0), mem ); 1407 if (C->failing()) return NULL; 1408 1409 // The minimum cost match for the whole tree is found at the root State 1410 uint mincost = max_juint; 1411 uint cost = max_juint; 1412 uint i; 1413 for( i = 0; i < NUM_OPERANDS; i++ ) { 1414 if( s->valid(i) && // valid entry and 1415 s->_cost[i] < cost && // low cost and 1416 s->_rule[i] >= NUM_OPERANDS ) // not an operand 1417 cost = s->_cost[mincost=i]; 1418 } 1419 if (mincost == max_juint) { 1420 #ifndef PRODUCT 1421 tty->print("No matching rule for:"); 1422 s->dump(); 1423 #endif 1424 Matcher::soft_match_failure(); 1425 return NULL; 1426 } 1427 // Reduce input tree based upon the state labels to machine Nodes 1428 MachNode *m = ReduceInst( s, s->_rule[mincost], mem ); 1429 #ifdef ASSERT 1430 _old2new_map.map(n->_idx, m); 1431 _new2old_map.map(m->_idx, (Node*)n); 1432 #endif 1433 1434 // Add any Matcher-ignored edges 1435 uint cnt = n->req(); 1436 uint start = 1; 1437 if( mem != (Node*)1 ) start = MemNode::Memory+1; 1438 if( n->is_AddP() ) { 1439 assert( mem == (Node*)1, "" ); 1440 start = AddPNode::Base+1; 1441 } 1442 for( i = start; i < cnt; i++ ) { 1443 if( !n->match_edge(i) ) { 1444 if( i < m->req() ) 1445 m->ins_req( i, n->in(i) ); 1446 else 1447 m->add_req( n->in(i) ); 1448 } 1449 } 1450 1451 debug_only( _mem_node = save_mem_node; ) 1452 return m; 1453 } 1454 1455 1456 //------------------------------match_into_reg--------------------------------- 1457 // Choose to either match this Node in a register or part of the current 1458 // match tree. Return true for requiring a register and false for matching 1459 // as part of the current match tree. 1460 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) { 1461 1462 const Type *t = m->bottom_type(); 1463 1464 if (t->singleton()) { 1465 // Never force constants into registers. Allow them to match as 1466 // constants or registers. Copies of the same value will share 1467 // the same register. See find_shared_node. 1468 return false; 1469 } else { // Not a constant 1470 // Stop recursion if they have different Controls. 1471 Node* m_control = m->in(0); 1472 // Control of load's memory can post-dominates load's control. 1473 // So use it since load can't float above its memory. 1474 Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL; 1475 if (control && m_control && control != m_control && control != mem_control) { 1476 1477 // Actually, we can live with the most conservative control we 1478 // find, if it post-dominates the others. This allows us to 1479 // pick up load/op/store trees where the load can float a little 1480 // above the store. 1481 Node *x = control; 1482 const uint max_scan = 6; // Arbitrary scan cutoff 1483 uint j; 1484 for (j=0; j<max_scan; j++) { 1485 if (x->is_Region()) // Bail out at merge points 1486 return true; 1487 x = x->in(0); 1488 if (x == m_control) // Does 'control' post-dominate 1489 break; // m->in(0)? If so, we can use it 1490 if (x == mem_control) // Does 'control' post-dominate 1491 break; // mem_control? If so, we can use it 1492 } 1493 if (j == max_scan) // No post-domination before scan end? 1494 return true; // Then break the match tree up 1495 } 1496 if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) || 1497 (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) { 1498 // These are commonly used in address expressions and can 1499 // efficiently fold into them on X64 in some cases. 1500 return false; 1501 } 1502 } 1503 1504 // Not forceable cloning. If shared, put it into a register. 1505 return shared; 1506 } 1507 1508 1509 //------------------------------Instruction Selection-------------------------- 1510 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match 1511 // ideal nodes to machine instructions. Trees are delimited by shared Nodes, 1512 // things the Matcher does not match (e.g., Memory), and things with different 1513 // Controls (hence forced into different blocks). We pass in the Control 1514 // selected for this entire State tree. 1515 1516 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the 1517 // Store and the Load must have identical Memories (as well as identical 1518 // pointers). Since the Matcher does not have anything for Memory (and 1519 // does not handle DAGs), I have to match the Memory input myself. If the 1520 // Tree root is a Store, I require all Loads to have the identical memory. 1521 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){ 1522 // Since Label_Root is a recursive function, its possible that we might run 1523 // out of stack space. See bugs 6272980 & 6227033 for more info. 1524 LabelRootDepth++; 1525 if (LabelRootDepth > MaxLabelRootDepth) { 1526 C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth"); 1527 return NULL; 1528 } 1529 uint care = 0; // Edges matcher cares about 1530 uint cnt = n->req(); 1531 uint i = 0; 1532 1533 // Examine children for memory state 1534 // Can only subsume a child into your match-tree if that child's memory state 1535 // is not modified along the path to another input. 1536 // It is unsafe even if the other inputs are separate roots. 1537 Node *input_mem = NULL; 1538 for( i = 1; i < cnt; i++ ) { 1539 if( !n->match_edge(i) ) continue; 1540 Node *m = n->in(i); // Get ith input 1541 assert( m, "expect non-null children" ); 1542 if( m->is_Load() ) { 1543 if( input_mem == NULL ) { 1544 input_mem = m->in(MemNode::Memory); 1545 } else if( input_mem != m->in(MemNode::Memory) ) { 1546 input_mem = NodeSentinel; 1547 } 1548 } 1549 } 1550 1551 for( i = 1; i < cnt; i++ ){// For my children 1552 if( !n->match_edge(i) ) continue; 1553 Node *m = n->in(i); // Get ith input 1554 // Allocate states out of a private arena 1555 State *s = new (&_states_arena) State; 1556 svec->_kids[care++] = s; 1557 assert( care <= 2, "binary only for now" ); 1558 1559 // Recursively label the State tree. 1560 s->_kids[0] = NULL; 1561 s->_kids[1] = NULL; 1562 s->_leaf = m; 1563 1564 // Check for leaves of the State Tree; things that cannot be a part of 1565 // the current tree. If it finds any, that value is matched as a 1566 // register operand. If not, then the normal matching is used. 1567 if( match_into_reg(n, m, control, i, is_shared(m)) || 1568 // 1569 // Stop recursion if this is LoadNode and the root of this tree is a 1570 // StoreNode and the load & store have different memories. 1571 ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) || 1572 // Can NOT include the match of a subtree when its memory state 1573 // is used by any of the other subtrees 1574 (input_mem == NodeSentinel) ) { 1575 // Print when we exclude matching due to different memory states at input-loads 1576 if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel) 1577 && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) { 1578 tty->print_cr("invalid input_mem"); 1579 } 1580 // Switch to a register-only opcode; this value must be in a register 1581 // and cannot be subsumed as part of a larger instruction. 1582 s->DFA( m->ideal_reg(), m ); 1583 1584 } else { 1585 // If match tree has no control and we do, adopt it for entire tree 1586 if( control == NULL && m->in(0) != NULL && m->req() > 1 ) 1587 control = m->in(0); // Pick up control 1588 // Else match as a normal part of the match tree. 1589 control = Label_Root(m,s,control,mem); 1590 if (C->failing()) return NULL; 1591 } 1592 } 1593 1594 1595 // Call DFA to match this node, and return 1596 svec->DFA( n->Opcode(), n ); 1597 1598 #ifdef ASSERT 1599 uint x; 1600 for( x = 0; x < _LAST_MACH_OPER; x++ ) 1601 if( svec->valid(x) ) 1602 break; 1603 1604 if (x >= _LAST_MACH_OPER) { 1605 n->dump(); 1606 svec->dump(); 1607 assert( false, "bad AD file" ); 1608 } 1609 #endif 1610 return control; 1611 } 1612 1613 1614 // Con nodes reduced using the same rule can share their MachNode 1615 // which reduces the number of copies of a constant in the final 1616 // program. The register allocator is free to split uses later to 1617 // split live ranges. 1618 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) { 1619 if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL; 1620 1621 // See if this Con has already been reduced using this rule. 1622 if (_shared_nodes.Size() <= leaf->_idx) return NULL; 1623 MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx); 1624 if (last != NULL && rule == last->rule()) { 1625 // Don't expect control change for DecodeN 1626 if (leaf->is_DecodeNarrowPtr()) 1627 return last; 1628 // Get the new space root. 1629 Node* xroot = new_node(C->root()); 1630 if (xroot == NULL) { 1631 // This shouldn't happen give the order of matching. 1632 return NULL; 1633 } 1634 1635 // Shared constants need to have their control be root so they 1636 // can be scheduled properly. 1637 Node* control = last->in(0); 1638 if (control != xroot) { 1639 if (control == NULL || control == C->root()) { 1640 last->set_req(0, xroot); 1641 } else { 1642 assert(false, "unexpected control"); 1643 return NULL; 1644 } 1645 } 1646 return last; 1647 } 1648 return NULL; 1649 } 1650 1651 1652 //------------------------------ReduceInst------------------------------------- 1653 // Reduce a State tree (with given Control) into a tree of MachNodes. 1654 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into 1655 // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes. 1656 // Each MachNode has a number of complicated MachOper operands; each 1657 // MachOper also covers a further tree of Ideal Nodes. 1658 1659 // The root of the Ideal match tree is always an instruction, so we enter 1660 // the recursion here. After building the MachNode, we need to recurse 1661 // the tree checking for these cases: 1662 // (1) Child is an instruction - 1663 // Build the instruction (recursively), add it as an edge. 1664 // Build a simple operand (register) to hold the result of the instruction. 1665 // (2) Child is an interior part of an instruction - 1666 // Skip over it (do nothing) 1667 // (3) Child is the start of a operand - 1668 // Build the operand, place it inside the instruction 1669 // Call ReduceOper. 1670 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) { 1671 assert( rule >= NUM_OPERANDS, "called with operand rule" ); 1672 1673 MachNode* shared_node = find_shared_node(s->_leaf, rule); 1674 if (shared_node != NULL) { 1675 return shared_node; 1676 } 1677 1678 // Build the object to represent this state & prepare for recursive calls 1679 MachNode *mach = s->MachNodeGenerator(rule); 1680 mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]); 1681 assert( mach->_opnds[0] != NULL, "Missing result operand" ); 1682 Node *leaf = s->_leaf; 1683 // Check for instruction or instruction chain rule 1684 if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) { 1685 assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf), 1686 "duplicating node that's already been matched"); 1687 // Instruction 1688 mach->add_req( leaf->in(0) ); // Set initial control 1689 // Reduce interior of complex instruction 1690 ReduceInst_Interior( s, rule, mem, mach, 1 ); 1691 } else { 1692 // Instruction chain rules are data-dependent on their inputs 1693 mach->add_req(0); // Set initial control to none 1694 ReduceInst_Chain_Rule( s, rule, mem, mach ); 1695 } 1696 1697 // If a Memory was used, insert a Memory edge 1698 if( mem != (Node*)1 ) { 1699 mach->ins_req(MemNode::Memory,mem); 1700 #ifdef ASSERT 1701 // Verify adr type after matching memory operation 1702 const MachOper* oper = mach->memory_operand(); 1703 if (oper != NULL && oper != (MachOper*)-1) { 1704 // It has a unique memory operand. Find corresponding ideal mem node. 1705 Node* m = NULL; 1706 if (leaf->is_Mem()) { 1707 m = leaf; 1708 } else { 1709 m = _mem_node; 1710 assert(m != NULL && m->is_Mem(), "expecting memory node"); 1711 } 1712 const Type* mach_at = mach->adr_type(); 1713 // DecodeN node consumed by an address may have different type 1714 // then its input. Don't compare types for such case. 1715 if (m->adr_type() != mach_at && 1716 (m->in(MemNode::Address)->is_DecodeNarrowPtr() || 1717 m->in(MemNode::Address)->is_AddP() && 1718 m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() || 1719 m->in(MemNode::Address)->is_AddP() && 1720 m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() && 1721 m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) { 1722 mach_at = m->adr_type(); 1723 } 1724 if (m->adr_type() != mach_at) { 1725 m->dump(); 1726 tty->print_cr("mach:"); 1727 mach->dump(1); 1728 } 1729 assert(m->adr_type() == mach_at, "matcher should not change adr type"); 1730 } 1731 #endif 1732 } 1733 1734 // If the _leaf is an AddP, insert the base edge 1735 if (leaf->is_AddP()) { 1736 mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base)); 1737 } 1738 1739 uint number_of_projections_prior = number_of_projections(); 1740 1741 // Perform any 1-to-many expansions required 1742 MachNode *ex = mach->Expand(s, _projection_list, mem); 1743 if (ex != mach) { 1744 assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match"); 1745 if( ex->in(1)->is_Con() ) 1746 ex->in(1)->set_req(0, C->root()); 1747 // Remove old node from the graph 1748 for( uint i=0; i<mach->req(); i++ ) { 1749 mach->set_req(i,NULL); 1750 } 1751 #ifdef ASSERT 1752 _new2old_map.map(ex->_idx, s->_leaf); 1753 #endif 1754 } 1755 1756 // PhaseChaitin::fixup_spills will sometimes generate spill code 1757 // via the matcher. By the time, nodes have been wired into the CFG, 1758 // and any further nodes generated by expand rules will be left hanging 1759 // in space, and will not get emitted as output code. Catch this. 1760 // Also, catch any new register allocation constraints ("projections") 1761 // generated belatedly during spill code generation. 1762 if (_allocation_started) { 1763 guarantee(ex == mach, "no expand rules during spill generation"); 1764 guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation"); 1765 } 1766 1767 if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) { 1768 // Record the con for sharing 1769 _shared_nodes.map(leaf->_idx, ex); 1770 } 1771 1772 return ex; 1773 } 1774 1775 void Matcher::handle_precedence_edges(Node* n, MachNode *mach) { 1776 for (uint i = n->req(); i < n->len(); i++) { 1777 if (n->in(i) != NULL) { 1778 mach->add_prec(n->in(i)); 1779 } 1780 } 1781 } 1782 1783 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) { 1784 // 'op' is what I am expecting to receive 1785 int op = _leftOp[rule]; 1786 // Operand type to catch childs result 1787 // This is what my child will give me. 1788 int opnd_class_instance = s->_rule[op]; 1789 // Choose between operand class or not. 1790 // This is what I will receive. 1791 int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op; 1792 // New rule for child. Chase operand classes to get the actual rule. 1793 int newrule = s->_rule[catch_op]; 1794 1795 if( newrule < NUM_OPERANDS ) { 1796 // Chain from operand or operand class, may be output of shared node 1797 assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS, 1798 "Bad AD file: Instruction chain rule must chain from operand"); 1799 // Insert operand into array of operands for this instruction 1800 mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance); 1801 1802 ReduceOper( s, newrule, mem, mach ); 1803 } else { 1804 // Chain from the result of an instruction 1805 assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand"); 1806 mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]); 1807 Node *mem1 = (Node*)1; 1808 debug_only(Node *save_mem_node = _mem_node;) 1809 mach->add_req( ReduceInst(s, newrule, mem1) ); 1810 debug_only(_mem_node = save_mem_node;) 1811 } 1812 return; 1813 } 1814 1815 1816 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) { 1817 handle_precedence_edges(s->_leaf, mach); 1818 1819 if( s->_leaf->is_Load() ) { 1820 Node *mem2 = s->_leaf->in(MemNode::Memory); 1821 assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" ); 1822 debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;) 1823 mem = mem2; 1824 } 1825 if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) { 1826 if( mach->in(0) == NULL ) 1827 mach->set_req(0, s->_leaf->in(0)); 1828 } 1829 1830 // Now recursively walk the state tree & add operand list. 1831 for( uint i=0; i<2; i++ ) { // binary tree 1832 State *newstate = s->_kids[i]; 1833 if( newstate == NULL ) break; // Might only have 1 child 1834 // 'op' is what I am expecting to receive 1835 int op; 1836 if( i == 0 ) { 1837 op = _leftOp[rule]; 1838 } else { 1839 op = _rightOp[rule]; 1840 } 1841 // Operand type to catch childs result 1842 // This is what my child will give me. 1843 int opnd_class_instance = newstate->_rule[op]; 1844 // Choose between operand class or not. 1845 // This is what I will receive. 1846 int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op; 1847 // New rule for child. Chase operand classes to get the actual rule. 1848 int newrule = newstate->_rule[catch_op]; 1849 1850 if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction? 1851 // Operand/operandClass 1852 // Insert operand into array of operands for this instruction 1853 mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance); 1854 ReduceOper( newstate, newrule, mem, mach ); 1855 1856 } else { // Child is internal operand or new instruction 1857 if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction? 1858 // internal operand --> call ReduceInst_Interior 1859 // Interior of complex instruction. Do nothing but recurse. 1860 num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds ); 1861 } else { 1862 // instruction --> call build operand( ) to catch result 1863 // --> ReduceInst( newrule ) 1864 mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]); 1865 Node *mem1 = (Node*)1; 1866 debug_only(Node *save_mem_node = _mem_node;) 1867 mach->add_req( ReduceInst( newstate, newrule, mem1 ) ); 1868 debug_only(_mem_node = save_mem_node;) 1869 } 1870 } 1871 assert( mach->_opnds[num_opnds-1], "" ); 1872 } 1873 return num_opnds; 1874 } 1875 1876 // This routine walks the interior of possible complex operands. 1877 // At each point we check our children in the match tree: 1878 // (1) No children - 1879 // We are a leaf; add _leaf field as an input to the MachNode 1880 // (2) Child is an internal operand - 1881 // Skip over it ( do nothing ) 1882 // (3) Child is an instruction - 1883 // Call ReduceInst recursively and 1884 // and instruction as an input to the MachNode 1885 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) { 1886 assert( rule < _LAST_MACH_OPER, "called with operand rule" ); 1887 State *kid = s->_kids[0]; 1888 assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" ); 1889 1890 // Leaf? And not subsumed? 1891 if( kid == NULL && !_swallowed[rule] ) { 1892 mach->add_req( s->_leaf ); // Add leaf pointer 1893 return; // Bail out 1894 } 1895 1896 if( s->_leaf->is_Load() ) { 1897 assert( mem == (Node*)1, "multiple Memories being matched at once?" ); 1898 mem = s->_leaf->in(MemNode::Memory); 1899 debug_only(_mem_node = s->_leaf;) 1900 } 1901 1902 handle_precedence_edges(s->_leaf, mach); 1903 1904 if( s->_leaf->in(0) && s->_leaf->req() > 1) { 1905 if( !mach->in(0) ) 1906 mach->set_req(0,s->_leaf->in(0)); 1907 else { 1908 assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" ); 1909 } 1910 } 1911 1912 for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) { // binary tree 1913 int newrule; 1914 if( i == 0) 1915 newrule = kid->_rule[_leftOp[rule]]; 1916 else 1917 newrule = kid->_rule[_rightOp[rule]]; 1918 1919 if( newrule < _LAST_MACH_OPER ) { // Operand or instruction? 1920 // Internal operand; recurse but do nothing else 1921 ReduceOper( kid, newrule, mem, mach ); 1922 1923 } else { // Child is a new instruction 1924 // Reduce the instruction, and add a direct pointer from this 1925 // machine instruction to the newly reduced one. 1926 Node *mem1 = (Node*)1; 1927 debug_only(Node *save_mem_node = _mem_node;) 1928 mach->add_req( ReduceInst( kid, newrule, mem1 ) ); 1929 debug_only(_mem_node = save_mem_node;) 1930 } 1931 } 1932 } 1933 1934 1935 // ------------------------------------------------------------------------- 1936 // Java-Java calling convention 1937 // (what you use when Java calls Java) 1938 1939 //------------------------------find_receiver---------------------------------- 1940 // For a given signature, return the OptoReg for parameter 0. 1941 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) { 1942 VMRegPair regs; 1943 BasicType sig_bt = T_OBJECT; 1944 calling_convention(&sig_bt, ®s, 1, is_outgoing); 1945 // Return argument 0 register. In the LP64 build pointers 1946 // take 2 registers, but the VM wants only the 'main' name. 1947 return OptoReg::as_OptoReg(regs.first()); 1948 } 1949 1950 // This function identifies sub-graphs in which a 'load' node is 1951 // input to two different nodes, and such that it can be matched 1952 // with BMI instructions like blsi, blsr, etc. 1953 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32. 1954 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL* 1955 // refers to the same node. 1956 #ifdef X86 1957 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop) 1958 // This is a temporary solution until we make DAGs expressible in ADL. 1959 template<typename ConType> 1960 class FusedPatternMatcher { 1961 Node* _op1_node; 1962 Node* _mop_node; 1963 int _con_op; 1964 1965 static int match_next(Node* n, int next_op, int next_op_idx) { 1966 if (n->in(1) == NULL || n->in(2) == NULL) { 1967 return -1; 1968 } 1969 1970 if (next_op_idx == -1) { // n is commutative, try rotations 1971 if (n->in(1)->Opcode() == next_op) { 1972 return 1; 1973 } else if (n->in(2)->Opcode() == next_op) { 1974 return 2; 1975 } 1976 } else { 1977 assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index"); 1978 if (n->in(next_op_idx)->Opcode() == next_op) { 1979 return next_op_idx; 1980 } 1981 } 1982 return -1; 1983 } 1984 public: 1985 FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) : 1986 _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { } 1987 1988 bool match(int op1, int op1_op2_idx, // op1 and the index of the op1->op2 edge, -1 if op1 is commutative 1989 int op2, int op2_con_idx, // op2 and the index of the op2->con edge, -1 if op2 is commutative 1990 typename ConType::NativeType con_value) { 1991 if (_op1_node->Opcode() != op1) { 1992 return false; 1993 } 1994 if (_mop_node->outcnt() > 2) { 1995 return false; 1996 } 1997 op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx); 1998 if (op1_op2_idx == -1) { 1999 return false; 2000 } 2001 // Memory operation must be the other edge 2002 int op1_mop_idx = (op1_op2_idx & 1) + 1; 2003 2004 // Check that the mop node is really what we want 2005 if (_op1_node->in(op1_mop_idx) == _mop_node) { 2006 Node *op2_node = _op1_node->in(op1_op2_idx); 2007 if (op2_node->outcnt() > 1) { 2008 return false; 2009 } 2010 assert(op2_node->Opcode() == op2, "Should be"); 2011 op2_con_idx = match_next(op2_node, _con_op, op2_con_idx); 2012 if (op2_con_idx == -1) { 2013 return false; 2014 } 2015 // Memory operation must be the other edge 2016 int op2_mop_idx = (op2_con_idx & 1) + 1; 2017 // Check that the memory operation is the same node 2018 if (op2_node->in(op2_mop_idx) == _mop_node) { 2019 // Now check the constant 2020 const Type* con_type = op2_node->in(op2_con_idx)->bottom_type(); 2021 if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) { 2022 return true; 2023 } 2024 } 2025 } 2026 return false; 2027 } 2028 }; 2029 2030 2031 bool Matcher::is_bmi_pattern(Node *n, Node *m) { 2032 if (n != NULL && m != NULL) { 2033 if (m->Opcode() == Op_LoadI) { 2034 FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI); 2035 return bmii.match(Op_AndI, -1, Op_SubI, 1, 0) || 2036 bmii.match(Op_AndI, -1, Op_AddI, -1, -1) || 2037 bmii.match(Op_XorI, -1, Op_AddI, -1, -1); 2038 } else if (m->Opcode() == Op_LoadL) { 2039 FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL); 2040 return bmil.match(Op_AndL, -1, Op_SubL, 1, 0) || 2041 bmil.match(Op_AndL, -1, Op_AddL, -1, -1) || 2042 bmil.match(Op_XorL, -1, Op_AddL, -1, -1); 2043 } 2044 } 2045 return false; 2046 } 2047 #endif // X86 2048 2049 // A method-klass-holder may be passed in the inline_cache_reg 2050 // and then expanded into the inline_cache_reg and a method_oop register 2051 // defined in ad_<arch>.cpp 2052 2053 // Check for shift by small constant as well 2054 static bool clone_shift(Node* shift, Matcher* matcher, MStack& mstack, VectorSet& address_visited) { 2055 if (shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() && 2056 shift->in(2)->get_int() <= 3 && 2057 // Are there other uses besides address expressions? 2058 !matcher->is_visited(shift)) { 2059 address_visited.set(shift->_idx); // Flag as address_visited 2060 mstack.push(shift->in(2), Visit); 2061 Node *conv = shift->in(1); 2062 #ifdef _LP64 2063 // Allow Matcher to match the rule which bypass 2064 // ConvI2L operation for an array index on LP64 2065 // if the index value is positive. 2066 if (conv->Opcode() == Op_ConvI2L && 2067 conv->as_Type()->type()->is_long()->_lo >= 0 && 2068 // Are there other uses besides address expressions? 2069 !matcher->is_visited(conv)) { 2070 address_visited.set(conv->_idx); // Flag as address_visited 2071 mstack.push(conv->in(1), Pre_Visit); 2072 } else 2073 #endif 2074 mstack.push(conv, Pre_Visit); 2075 return true; 2076 } 2077 return false; 2078 } 2079 2080 2081 //------------------------------find_shared------------------------------------ 2082 // Set bits if Node is shared or otherwise a root 2083 void Matcher::find_shared( Node *n ) { 2084 // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc 2085 MStack mstack(C->live_nodes() * 2); 2086 // Mark nodes as address_visited if they are inputs to an address expression 2087 VectorSet address_visited(Thread::current()->resource_area()); 2088 mstack.push(n, Visit); // Don't need to pre-visit root node 2089 while (mstack.is_nonempty()) { 2090 n = mstack.node(); // Leave node on stack 2091 Node_State nstate = mstack.state(); 2092 uint nop = n->Opcode(); 2093 if (nstate == Pre_Visit) { 2094 if (address_visited.test(n->_idx)) { // Visited in address already? 2095 // Flag as visited and shared now. 2096 set_visited(n); 2097 } 2098 if (is_visited(n)) { // Visited already? 2099 // Node is shared and has no reason to clone. Flag it as shared. 2100 // This causes it to match into a register for the sharing. 2101 set_shared(n); // Flag as shared and 2102 mstack.pop(); // remove node from stack 2103 continue; 2104 } 2105 nstate = Visit; // Not already visited; so visit now 2106 } 2107 if (nstate == Visit) { 2108 mstack.set_state(Post_Visit); 2109 set_visited(n); // Flag as visited now 2110 bool mem_op = false; 2111 2112 switch( nop ) { // Handle some opcodes special 2113 case Op_Phi: // Treat Phis as shared roots 2114 case Op_Parm: 2115 case Op_Proj: // All handled specially during matching 2116 case Op_SafePointScalarObject: 2117 set_shared(n); 2118 set_dontcare(n); 2119 break; 2120 case Op_If: 2121 case Op_CountedLoopEnd: 2122 mstack.set_state(Alt_Post_Visit); // Alternative way 2123 // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps 2124 // with matching cmp/branch in 1 instruction. The Matcher needs the 2125 // Bool and CmpX side-by-side, because it can only get at constants 2126 // that are at the leaves of Match trees, and the Bool's condition acts 2127 // as a constant here. 2128 mstack.push(n->in(1), Visit); // Clone the Bool 2129 mstack.push(n->in(0), Pre_Visit); // Visit control input 2130 continue; // while (mstack.is_nonempty()) 2131 case Op_ConvI2D: // These forms efficiently match with a prior 2132 case Op_ConvI2F: // Load but not a following Store 2133 if( n->in(1)->is_Load() && // Prior load 2134 n->outcnt() == 1 && // Not already shared 2135 n->unique_out()->is_Store() ) // Following store 2136 set_shared(n); // Force it to be a root 2137 break; 2138 case Op_ReverseBytesI: 2139 case Op_ReverseBytesL: 2140 if( n->in(1)->is_Load() && // Prior load 2141 n->outcnt() == 1 ) // Not already shared 2142 set_shared(n); // Force it to be a root 2143 break; 2144 case Op_BoxLock: // Cant match until we get stack-regs in ADLC 2145 case Op_IfFalse: 2146 case Op_IfTrue: 2147 case Op_MachProj: 2148 case Op_MergeMem: 2149 case Op_Catch: 2150 case Op_CatchProj: 2151 case Op_CProj: 2152 case Op_JumpProj: 2153 case Op_JProj: 2154 case Op_NeverBranch: 2155 set_dontcare(n); 2156 break; 2157 case Op_Jump: 2158 mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared) 2159 mstack.push(n->in(0), Pre_Visit); // Visit Control input 2160 continue; // while (mstack.is_nonempty()) 2161 case Op_StrComp: 2162 case Op_StrEquals: 2163 case Op_StrIndexOf: 2164 case Op_StrIndexOfChar: 2165 case Op_AryEq: 2166 case Op_HasNegatives: 2167 case Op_StrInflatedCopy: 2168 case Op_StrCompressedCopy: 2169 case Op_EncodeISOArray: 2170 set_shared(n); // Force result into register (it will be anyways) 2171 break; 2172 case Op_ConP: { // Convert pointers above the centerline to NUL 2173 TypeNode *tn = n->as_Type(); // Constants derive from type nodes 2174 const TypePtr* tp = tn->type()->is_ptr(); 2175 if (tp->_ptr == TypePtr::AnyNull) { 2176 tn->set_type(TypePtr::NULL_PTR); 2177 } 2178 break; 2179 } 2180 case Op_ConN: { // Convert narrow pointers above the centerline to NUL 2181 TypeNode *tn = n->as_Type(); // Constants derive from type nodes 2182 const TypePtr* tp = tn->type()->make_ptr(); 2183 if (tp && tp->_ptr == TypePtr::AnyNull) { 2184 tn->set_type(TypeNarrowOop::NULL_PTR); 2185 } 2186 break; 2187 } 2188 case Op_Binary: // These are introduced in the Post_Visit state. 2189 ShouldNotReachHere(); 2190 break; 2191 case Op_ClearArray: 2192 case Op_SafePoint: 2193 mem_op = true; 2194 break; 2195 default: 2196 if( n->is_Store() ) { 2197 // Do match stores, despite no ideal reg 2198 mem_op = true; 2199 break; 2200 } 2201 if( n->is_Mem() ) { // Loads and LoadStores 2202 mem_op = true; 2203 // Loads must be root of match tree due to prior load conflict 2204 if( C->subsume_loads() == false ) 2205 set_shared(n); 2206 } 2207 // Fall into default case 2208 if( !n->ideal_reg() ) 2209 set_dontcare(n); // Unmatchable Nodes 2210 } // end_switch 2211 2212 for(int i = n->req() - 1; i >= 0; --i) { // For my children 2213 Node *m = n->in(i); // Get ith input 2214 if (m == NULL) continue; // Ignore NULLs 2215 uint mop = m->Opcode(); 2216 2217 // Must clone all producers of flags, or we will not match correctly. 2218 // Suppose a compare setting int-flags is shared (e.g., a switch-tree) 2219 // then it will match into an ideal Op_RegFlags. Alas, the fp-flags 2220 // are also there, so we may match a float-branch to int-flags and 2221 // expect the allocator to haul the flags from the int-side to the 2222 // fp-side. No can do. 2223 if( _must_clone[mop] ) { 2224 mstack.push(m, Visit); 2225 continue; // for(int i = ...) 2226 } 2227 2228 if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) { 2229 // Bases used in addresses must be shared but since 2230 // they are shared through a DecodeN they may appear 2231 // to have a single use so force sharing here. 2232 set_shared(m->in(AddPNode::Base)->in(1)); 2233 } 2234 2235 // if 'n' and 'm' are part of a graph for BMI instruction, clone this node. 2236 #ifdef X86 2237 if (UseBMI1Instructions && is_bmi_pattern(n, m)) { 2238 mstack.push(m, Visit); 2239 continue; 2240 } 2241 #endif 2242 2243 // Clone addressing expressions as they are "free" in memory access instructions 2244 if (mem_op && i == MemNode::Address && mop == Op_AddP && 2245 // When there are other uses besides address expressions 2246 // put it on stack and mark as shared. 2247 !is_visited(m)) { 2248 // Some inputs for address expression are not put on stack 2249 // to avoid marking them as shared and forcing them into register 2250 // if they are used only in address expressions. 2251 // But they should be marked as shared if there are other uses 2252 // besides address expressions. 2253 2254 Node *off = m->in(AddPNode::Offset); 2255 if (off->is_Con()) { 2256 address_visited.test_set(m->_idx); // Flag as address_visited 2257 Node *adr = m->in(AddPNode::Address); 2258 2259 // Intel, ARM and friends can handle 2 adds in addressing mode 2260 if( clone_shift_expressions && adr->is_AddP() && 2261 // AtomicAdd is not an addressing expression. 2262 // Cheap to find it by looking for screwy base. 2263 !adr->in(AddPNode::Base)->is_top() && 2264 // Are there other uses besides address expressions? 2265 !is_visited(adr) ) { 2266 address_visited.set(adr->_idx); // Flag as address_visited 2267 Node *shift = adr->in(AddPNode::Offset); 2268 if (!clone_shift(shift, this, mstack, address_visited)) { 2269 mstack.push(shift, Pre_Visit); 2270 } 2271 mstack.push(adr->in(AddPNode::Address), Pre_Visit); 2272 mstack.push(adr->in(AddPNode::Base), Pre_Visit); 2273 } else { // Sparc, Alpha, PPC and friends 2274 mstack.push(adr, Pre_Visit); 2275 } 2276 2277 // Clone X+offset as it also folds into most addressing expressions 2278 mstack.push(off, Visit); 2279 mstack.push(m->in(AddPNode::Base), Pre_Visit); 2280 continue; // for(int i = ...) 2281 } else if (clone_shift_expressions && 2282 clone_shift(off, this, mstack, address_visited)) { 2283 address_visited.test_set(m->_idx); // Flag as address_visited 2284 mstack.push(m->in(AddPNode::Address), Pre_Visit); 2285 mstack.push(m->in(AddPNode::Base), Pre_Visit); 2286 continue; 2287 } // if( off->is_Con() ) 2288 } // if( mem_op && 2289 mstack.push(m, Pre_Visit); 2290 } // for(int i = ...) 2291 } 2292 else if (nstate == Alt_Post_Visit) { 2293 mstack.pop(); // Remove node from stack 2294 // We cannot remove the Cmp input from the Bool here, as the Bool may be 2295 // shared and all users of the Bool need to move the Cmp in parallel. 2296 // This leaves both the Bool and the If pointing at the Cmp. To 2297 // prevent the Matcher from trying to Match the Cmp along both paths 2298 // BoolNode::match_edge always returns a zero. 2299 2300 // We reorder the Op_If in a pre-order manner, so we can visit without 2301 // accidentally sharing the Cmp (the Bool and the If make 2 users). 2302 n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool 2303 } 2304 else if (nstate == Post_Visit) { 2305 mstack.pop(); // Remove node from stack 2306 2307 // Now hack a few special opcodes 2308 switch( n->Opcode() ) { // Handle some opcodes special 2309 case Op_StorePConditional: 2310 case Op_StoreIConditional: 2311 case Op_StoreLConditional: 2312 case Op_CompareAndExchangeI: 2313 case Op_CompareAndExchangeL: 2314 case Op_CompareAndExchangeP: 2315 case Op_CompareAndExchangeN: 2316 case Op_WeakCompareAndSwapI: 2317 case Op_WeakCompareAndSwapL: 2318 case Op_WeakCompareAndSwapP: 2319 case Op_WeakCompareAndSwapN: 2320 case Op_CompareAndSwapI: 2321 case Op_CompareAndSwapL: 2322 case Op_CompareAndSwapP: 2323 case Op_CompareAndSwapN: { // Convert trinary to binary-tree 2324 Node *newval = n->in(MemNode::ValueIn ); 2325 Node *oldval = n->in(LoadStoreConditionalNode::ExpectedIn); 2326 Node *pair = new BinaryNode( oldval, newval ); 2327 n->set_req(MemNode::ValueIn,pair); 2328 n->del_req(LoadStoreConditionalNode::ExpectedIn); 2329 break; 2330 } 2331 case Op_CMoveD: // Convert trinary to binary-tree 2332 case Op_CMoveF: 2333 case Op_CMoveI: 2334 case Op_CMoveL: 2335 case Op_CMoveN: 2336 case Op_CMoveP: 2337 case Op_CMoveVD: { 2338 // Restructure into a binary tree for Matching. It's possible that 2339 // we could move this code up next to the graph reshaping for IfNodes 2340 // or vice-versa, but I do not want to debug this for Ladybird. 2341 // 10/2/2000 CNC. 2342 Node *pair1 = new BinaryNode(n->in(1),n->in(1)->in(1)); 2343 n->set_req(1,pair1); 2344 Node *pair2 = new BinaryNode(n->in(2),n->in(3)); 2345 n->set_req(2,pair2); 2346 n->del_req(3); 2347 break; 2348 } 2349 case Op_LoopLimit: { 2350 Node *pair1 = new BinaryNode(n->in(1),n->in(2)); 2351 n->set_req(1,pair1); 2352 n->set_req(2,n->in(3)); 2353 n->del_req(3); 2354 break; 2355 } 2356 case Op_StrEquals: 2357 case Op_StrIndexOfChar: { 2358 Node *pair1 = new BinaryNode(n->in(2),n->in(3)); 2359 n->set_req(2,pair1); 2360 n->set_req(3,n->in(4)); 2361 n->del_req(4); 2362 break; 2363 } 2364 case Op_StrComp: 2365 case Op_StrIndexOf: { 2366 Node *pair1 = new BinaryNode(n->in(2),n->in(3)); 2367 n->set_req(2,pair1); 2368 Node *pair2 = new BinaryNode(n->in(4),n->in(5)); 2369 n->set_req(3,pair2); 2370 n->del_req(5); 2371 n->del_req(4); 2372 break; 2373 } 2374 case Op_StrCompressedCopy: 2375 case Op_StrInflatedCopy: 2376 case Op_EncodeISOArray: { 2377 // Restructure into a binary tree for Matching. 2378 Node* pair = new BinaryNode(n->in(3), n->in(4)); 2379 n->set_req(3, pair); 2380 n->del_req(4); 2381 break; 2382 } 2383 default: 2384 break; 2385 } 2386 } 2387 else { 2388 ShouldNotReachHere(); 2389 } 2390 } // end of while (mstack.is_nonempty()) 2391 } 2392 2393 #ifdef ASSERT 2394 // machine-independent root to machine-dependent root 2395 void Matcher::dump_old2new_map() { 2396 _old2new_map.dump(); 2397 } 2398 #endif 2399 2400 //---------------------------collect_null_checks------------------------------- 2401 // Find null checks in the ideal graph; write a machine-specific node for 2402 // it. Used by later implicit-null-check handling. Actually collects 2403 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal 2404 // value being tested. 2405 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) { 2406 Node *iff = proj->in(0); 2407 if( iff->Opcode() == Op_If ) { 2408 // During matching If's have Bool & Cmp side-by-side 2409 BoolNode *b = iff->in(1)->as_Bool(); 2410 Node *cmp = iff->in(2); 2411 int opc = cmp->Opcode(); 2412 if (opc != Op_CmpP && opc != Op_CmpN) return; 2413 2414 const Type* ct = cmp->in(2)->bottom_type(); 2415 if (ct == TypePtr::NULL_PTR || 2416 (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) { 2417 2418 bool push_it = false; 2419 if( proj->Opcode() == Op_IfTrue ) { 2420 #ifndef PRODUCT 2421 extern int all_null_checks_found; 2422 all_null_checks_found++; 2423 #endif 2424 if( b->_test._test == BoolTest::ne ) { 2425 push_it = true; 2426 } 2427 } else { 2428 assert( proj->Opcode() == Op_IfFalse, "" ); 2429 if( b->_test._test == BoolTest::eq ) { 2430 push_it = true; 2431 } 2432 } 2433 if( push_it ) { 2434 _null_check_tests.push(proj); 2435 Node* val = cmp->in(1); 2436 #ifdef _LP64 2437 if (val->bottom_type()->isa_narrowoop() && 2438 !Matcher::narrow_oop_use_complex_address()) { 2439 // 2440 // Look for DecodeN node which should be pinned to orig_proj. 2441 // On platforms (Sparc) which can not handle 2 adds 2442 // in addressing mode we have to keep a DecodeN node and 2443 // use it to do implicit NULL check in address. 2444 // 2445 // DecodeN node was pinned to non-null path (orig_proj) during 2446 // CastPP transformation in final_graph_reshaping_impl(). 2447 // 2448 uint cnt = orig_proj->outcnt(); 2449 for (uint i = 0; i < orig_proj->outcnt(); i++) { 2450 Node* d = orig_proj->raw_out(i); 2451 if (d->is_DecodeN() && d->in(1) == val) { 2452 val = d; 2453 val->set_req(0, NULL); // Unpin now. 2454 // Mark this as special case to distinguish from 2455 // a regular case: CmpP(DecodeN, NULL). 2456 val = (Node*)(((intptr_t)val) | 1); 2457 break; 2458 } 2459 } 2460 } 2461 #endif 2462 _null_check_tests.push(val); 2463 } 2464 } 2465 } 2466 } 2467 2468 //---------------------------validate_null_checks------------------------------ 2469 // Its possible that the value being NULL checked is not the root of a match 2470 // tree. If so, I cannot use the value in an implicit null check. 2471 void Matcher::validate_null_checks( ) { 2472 uint cnt = _null_check_tests.size(); 2473 for( uint i=0; i < cnt; i+=2 ) { 2474 Node *test = _null_check_tests[i]; 2475 Node *val = _null_check_tests[i+1]; 2476 bool is_decoden = ((intptr_t)val) & 1; 2477 val = (Node*)(((intptr_t)val) & ~1); 2478 if (has_new_node(val)) { 2479 Node* new_val = new_node(val); 2480 if (is_decoden) { 2481 assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity"); 2482 // Note: new_val may have a control edge if 2483 // the original ideal node DecodeN was matched before 2484 // it was unpinned in Matcher::collect_null_checks(). 2485 // Unpin the mach node and mark it. 2486 new_val->set_req(0, NULL); 2487 new_val = (Node*)(((intptr_t)new_val) | 1); 2488 } 2489 // Is a match-tree root, so replace with the matched value 2490 _null_check_tests.map(i+1, new_val); 2491 } else { 2492 // Yank from candidate list 2493 _null_check_tests.map(i+1,_null_check_tests[--cnt]); 2494 _null_check_tests.map(i,_null_check_tests[--cnt]); 2495 _null_check_tests.pop(); 2496 _null_check_tests.pop(); 2497 i-=2; 2498 } 2499 } 2500 } 2501 2502 // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or 2503 // atomic instruction acting as a store_load barrier without any 2504 // intervening volatile load, and thus we don't need a barrier here. 2505 // We retain the Node to act as a compiler ordering barrier. 2506 bool Matcher::post_store_load_barrier(const Node* vmb) { 2507 Compile* C = Compile::current(); 2508 assert(vmb->is_MemBar(), ""); 2509 assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, ""); 2510 const MemBarNode* membar = vmb->as_MemBar(); 2511 2512 // Get the Ideal Proj node, ctrl, that can be used to iterate forward 2513 Node* ctrl = NULL; 2514 for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) { 2515 Node* p = membar->fast_out(i); 2516 assert(p->is_Proj(), "only projections here"); 2517 if ((p->as_Proj()->_con == TypeFunc::Control) && 2518 !C->node_arena()->contains(p)) { // Unmatched old-space only 2519 ctrl = p; 2520 break; 2521 } 2522 } 2523 assert((ctrl != NULL), "missing control projection"); 2524 2525 for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) { 2526 Node *x = ctrl->fast_out(j); 2527 int xop = x->Opcode(); 2528 2529 // We don't need current barrier if we see another or a lock 2530 // before seeing volatile load. 2531 // 2532 // Op_Fastunlock previously appeared in the Op_* list below. 2533 // With the advent of 1-0 lock operations we're no longer guaranteed 2534 // that a monitor exit operation contains a serializing instruction. 2535 2536 if (xop == Op_MemBarVolatile || 2537 xop == Op_CompareAndExchangeI || 2538 xop == Op_CompareAndExchangeL || 2539 xop == Op_CompareAndExchangeP || 2540 xop == Op_CompareAndExchangeN || 2541 xop == Op_WeakCompareAndSwapL || 2542 xop == Op_WeakCompareAndSwapP || 2543 xop == Op_WeakCompareAndSwapN || 2544 xop == Op_WeakCompareAndSwapI || 2545 xop == Op_CompareAndSwapL || 2546 xop == Op_CompareAndSwapP || 2547 xop == Op_CompareAndSwapN || 2548 xop == Op_CompareAndSwapI) { 2549 return true; 2550 } 2551 2552 // Op_FastLock previously appeared in the Op_* list above. 2553 // With biased locking we're no longer guaranteed that a monitor 2554 // enter operation contains a serializing instruction. 2555 if ((xop == Op_FastLock) && !UseBiasedLocking) { 2556 return true; 2557 } 2558 2559 if (x->is_MemBar()) { 2560 // We must retain this membar if there is an upcoming volatile 2561 // load, which will be followed by acquire membar. 2562 if (xop == Op_MemBarAcquire || xop == Op_LoadFence) { 2563 return false; 2564 } else { 2565 // For other kinds of barriers, check by pretending we 2566 // are them, and seeing if we can be removed. 2567 return post_store_load_barrier(x->as_MemBar()); 2568 } 2569 } 2570 2571 // probably not necessary to check for these 2572 if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) { 2573 return false; 2574 } 2575 } 2576 return false; 2577 } 2578 2579 // Check whether node n is a branch to an uncommon trap that we could 2580 // optimize as test with very high branch costs in case of going to 2581 // the uncommon trap. The code must be able to be recompiled to use 2582 // a cheaper test. 2583 bool Matcher::branches_to_uncommon_trap(const Node *n) { 2584 // Don't do it for natives, adapters, or runtime stubs 2585 Compile *C = Compile::current(); 2586 if (!C->is_method_compilation()) return false; 2587 2588 assert(n->is_If(), "You should only call this on if nodes."); 2589 IfNode *ifn = n->as_If(); 2590 2591 Node *ifFalse = NULL; 2592 for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) { 2593 if (ifn->fast_out(i)->is_IfFalse()) { 2594 ifFalse = ifn->fast_out(i); 2595 break; 2596 } 2597 } 2598 assert(ifFalse, "An If should have an ifFalse. Graph is broken."); 2599 2600 Node *reg = ifFalse; 2601 int cnt = 4; // We must protect against cycles. Limit to 4 iterations. 2602 // Alternatively use visited set? Seems too expensive. 2603 while (reg != NULL && cnt > 0) { 2604 CallNode *call = NULL; 2605 RegionNode *nxt_reg = NULL; 2606 for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) { 2607 Node *o = reg->fast_out(i); 2608 if (o->is_Call()) { 2609 call = o->as_Call(); 2610 } 2611 if (o->is_Region()) { 2612 nxt_reg = o->as_Region(); 2613 } 2614 } 2615 2616 if (call && 2617 call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) { 2618 const Type* trtype = call->in(TypeFunc::Parms)->bottom_type(); 2619 if (trtype->isa_int() && trtype->is_int()->is_con()) { 2620 jint tr_con = trtype->is_int()->get_con(); 2621 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con); 2622 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con); 2623 assert((int)reason < (int)BitsPerInt, "recode bit map"); 2624 2625 if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason) 2626 && action != Deoptimization::Action_none) { 2627 // This uncommon trap is sure to recompile, eventually. 2628 // When that happens, C->too_many_traps will prevent 2629 // this transformation from happening again. 2630 return true; 2631 } 2632 } 2633 } 2634 2635 reg = nxt_reg; 2636 cnt--; 2637 } 2638 2639 return false; 2640 } 2641 2642 //============================================================================= 2643 //---------------------------State--------------------------------------------- 2644 State::State(void) { 2645 #ifdef ASSERT 2646 _id = 0; 2647 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe); 2648 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d); 2649 //memset(_cost, -1, sizeof(_cost)); 2650 //memset(_rule, -1, sizeof(_rule)); 2651 #endif 2652 memset(_valid, 0, sizeof(_valid)); 2653 } 2654 2655 #ifdef ASSERT 2656 State::~State() { 2657 _id = 99; 2658 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe); 2659 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d); 2660 memset(_cost, -3, sizeof(_cost)); 2661 memset(_rule, -3, sizeof(_rule)); 2662 } 2663 #endif 2664 2665 #ifndef PRODUCT 2666 //---------------------------dump---------------------------------------------- 2667 void State::dump() { 2668 tty->print("\n"); 2669 dump(0); 2670 } 2671 2672 void State::dump(int depth) { 2673 for( int j = 0; j < depth; j++ ) 2674 tty->print(" "); 2675 tty->print("--N: "); 2676 _leaf->dump(); 2677 uint i; 2678 for( i = 0; i < _LAST_MACH_OPER; i++ ) 2679 // Check for valid entry 2680 if( valid(i) ) { 2681 for( int j = 0; j < depth; j++ ) 2682 tty->print(" "); 2683 assert(_cost[i] != max_juint, "cost must be a valid value"); 2684 assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule"); 2685 tty->print_cr("%s %d %s", 2686 ruleName[i], _cost[i], ruleName[_rule[i]] ); 2687 } 2688 tty->cr(); 2689 2690 for( i=0; i<2; i++ ) 2691 if( _kids[i] ) 2692 _kids[i]->dump(depth+1); 2693 } 2694 #endif --- EOF ---