rev 10504 : value type calling convention
1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "memory/allocation.inline.hpp" 27 #include "opto/ad.hpp" 28 #include "opto/addnode.hpp" 29 #include "opto/callnode.hpp" 30 #include "opto/idealGraphPrinter.hpp" 31 #include "opto/matcher.hpp" 32 #include "opto/memnode.hpp" 33 #include "opto/movenode.hpp" 34 #include "opto/opcodes.hpp" 35 #include "opto/regmask.hpp" 36 #include "opto/rootnode.hpp" 37 #include "opto/runtime.hpp" 38 #include "opto/type.hpp" 39 #include "opto/vectornode.hpp" 40 #include "runtime/os.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 43 OptoReg::Name OptoReg::c_frame_pointer; 44 45 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf]; 46 RegMask Matcher::mreg2regmask[_last_Mach_Reg]; 47 RegMask Matcher::STACK_ONLY_mask; 48 RegMask Matcher::c_frame_ptr_mask; 49 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE; 50 const uint Matcher::_end_rematerialize = _END_REMATERIALIZE; 51 52 //---------------------------Matcher------------------------------------------- 53 Matcher::Matcher() 54 : PhaseTransform( Phase::Ins_Select ), 55 #ifdef ASSERT 56 _old2new_map(C->comp_arena()), 57 _new2old_map(C->comp_arena()), 58 #endif 59 _shared_nodes(C->comp_arena()), 60 _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp), 61 _swallowed(swallowed), 62 _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE), 63 _end_inst_chain_rule(_END_INST_CHAIN_RULE), 64 _must_clone(must_clone), 65 _register_save_policy(register_save_policy), 66 _c_reg_save_policy(c_reg_save_policy), 67 _register_save_type(register_save_type), 68 _ruleName(ruleName), 69 _allocation_started(false), 70 _states_arena(Chunk::medium_size), 71 _visited(&_states_arena), 72 _shared(&_states_arena), 73 _dontcare(&_states_arena) { 74 C->set_matcher(this); 75 76 idealreg2spillmask [Op_RegI] = NULL; 77 idealreg2spillmask [Op_RegN] = NULL; 78 idealreg2spillmask [Op_RegL] = NULL; 79 idealreg2spillmask [Op_RegF] = NULL; 80 idealreg2spillmask [Op_RegD] = NULL; 81 idealreg2spillmask [Op_RegP] = NULL; 82 idealreg2spillmask [Op_VecS] = NULL; 83 idealreg2spillmask [Op_VecD] = NULL; 84 idealreg2spillmask [Op_VecX] = NULL; 85 idealreg2spillmask [Op_VecY] = NULL; 86 idealreg2spillmask [Op_VecZ] = NULL; 87 88 idealreg2debugmask [Op_RegI] = NULL; 89 idealreg2debugmask [Op_RegN] = NULL; 90 idealreg2debugmask [Op_RegL] = NULL; 91 idealreg2debugmask [Op_RegF] = NULL; 92 idealreg2debugmask [Op_RegD] = NULL; 93 idealreg2debugmask [Op_RegP] = NULL; 94 idealreg2debugmask [Op_VecS] = NULL; 95 idealreg2debugmask [Op_VecD] = NULL; 96 idealreg2debugmask [Op_VecX] = NULL; 97 idealreg2debugmask [Op_VecY] = NULL; 98 idealreg2debugmask [Op_VecZ] = NULL; 99 100 idealreg2mhdebugmask[Op_RegI] = NULL; 101 idealreg2mhdebugmask[Op_RegN] = NULL; 102 idealreg2mhdebugmask[Op_RegL] = NULL; 103 idealreg2mhdebugmask[Op_RegF] = NULL; 104 idealreg2mhdebugmask[Op_RegD] = NULL; 105 idealreg2mhdebugmask[Op_RegP] = NULL; 106 idealreg2mhdebugmask[Op_VecS] = NULL; 107 idealreg2mhdebugmask[Op_VecD] = NULL; 108 idealreg2mhdebugmask[Op_VecX] = NULL; 109 idealreg2mhdebugmask[Op_VecY] = NULL; 110 idealreg2mhdebugmask[Op_VecZ] = NULL; 111 112 debug_only(_mem_node = NULL;) // Ideal memory node consumed by mach node 113 } 114 115 //------------------------------warp_incoming_stk_arg------------------------ 116 // This warps a VMReg into an OptoReg::Name 117 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) { 118 OptoReg::Name warped; 119 if( reg->is_stack() ) { // Stack slot argument? 120 warped = OptoReg::add(_old_SP, reg->reg2stack() ); 121 warped = OptoReg::add(warped, C->out_preserve_stack_slots()); 122 if( warped >= _in_arg_limit ) 123 _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen 124 if (!RegMask::can_represent_arg(warped)) { 125 // the compiler cannot represent this method's calling sequence 126 C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence"); 127 return OptoReg::Bad; 128 } 129 return warped; 130 } 131 return OptoReg::as_OptoReg(reg); 132 } 133 134 //---------------------------compute_old_SP------------------------------------ 135 OptoReg::Name Compile::compute_old_SP() { 136 int fixed = fixed_slots(); 137 int preserve = in_preserve_stack_slots(); 138 return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots())); 139 } 140 141 142 143 #ifdef ASSERT 144 void Matcher::verify_new_nodes_only(Node* xroot) { 145 // Make sure that the new graph only references new nodes 146 ResourceMark rm; 147 Unique_Node_List worklist; 148 VectorSet visited(Thread::current()->resource_area()); 149 worklist.push(xroot); 150 while (worklist.size() > 0) { 151 Node* n = worklist.pop(); 152 visited <<= n->_idx; 153 assert(C->node_arena()->contains(n), "dead node"); 154 for (uint j = 0; j < n->req(); j++) { 155 Node* in = n->in(j); 156 if (in != NULL) { 157 assert(C->node_arena()->contains(in), "dead node"); 158 if (!visited.test(in->_idx)) { 159 worklist.push(in); 160 } 161 } 162 } 163 } 164 } 165 #endif 166 167 168 //---------------------------match--------------------------------------------- 169 void Matcher::match( ) { 170 if( MaxLabelRootDepth < 100 ) { // Too small? 171 assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum"); 172 MaxLabelRootDepth = 100; 173 } 174 // One-time initialization of some register masks. 175 init_spill_mask( C->root()->in(1) ); 176 _return_addr_mask = return_addr(); 177 #ifdef _LP64 178 // Pointers take 2 slots in 64-bit land 179 _return_addr_mask.Insert(OptoReg::add(return_addr(),1)); 180 #endif 181 182 // Map a Java-signature return type into return register-value 183 // machine registers for 0, 1 and 2 returned values. 184 const TypeTuple *range = C->tf()->range(); 185 if( range->cnt() > TypeFunc::Parms ) { // If not a void function 186 // Get ideal-register return type 187 int ireg = range->field_at(TypeFunc::Parms)->ideal_reg(); 188 // Get machine return register 189 uint sop = C->start()->Opcode(); 190 OptoRegPair regs = return_value(ireg, false); 191 192 // And mask for same 193 _return_value_mask = RegMask(regs.first()); 194 if( OptoReg::is_valid(regs.second()) ) 195 _return_value_mask.Insert(regs.second()); 196 } 197 198 // --------------- 199 // Frame Layout 200 201 // Need the method signature to determine the incoming argument types, 202 // because the types determine which registers the incoming arguments are 203 // in, and this affects the matched code. 204 const TypeTuple *domain = C->tf()->domain(); 205 uint argcnt = domain->cnt() - TypeFunc::Parms; 206 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt ); 207 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt ); 208 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt ); 209 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt ); 210 uint i; 211 for( i = 0; i<argcnt; i++ ) { 212 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); 213 } 214 215 // Pass array of ideal registers and length to USER code (from the AD file) 216 // that will convert this to an array of register numbers. 217 const StartNode *start = C->start(); 218 start->calling_convention( sig_bt, vm_parm_regs, argcnt ); 219 #ifdef ASSERT 220 // Sanity check users' calling convention. Real handy while trying to 221 // get the initial port correct. 222 { for (uint i = 0; i<argcnt; i++) { 223 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { 224 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" ); 225 _parm_regs[i].set_bad(); 226 continue; 227 } 228 VMReg parm_reg = vm_parm_regs[i].first(); 229 assert(parm_reg->is_valid(), "invalid arg?"); 230 if (parm_reg->is_reg()) { 231 OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg); 232 assert(can_be_java_arg(opto_parm_reg) || 233 C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) || 234 opto_parm_reg == inline_cache_reg(), 235 "parameters in register must be preserved by runtime stubs"); 236 } 237 for (uint j = 0; j < i; j++) { 238 assert(parm_reg != vm_parm_regs[j].first(), 239 "calling conv. must produce distinct regs"); 240 } 241 } 242 } 243 #endif 244 245 // Do some initial frame layout. 246 247 // Compute the old incoming SP (may be called FP) as 248 // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2. 249 _old_SP = C->compute_old_SP(); 250 assert( is_even(_old_SP), "must be even" ); 251 252 // Compute highest incoming stack argument as 253 // _old_SP + out_preserve_stack_slots + incoming argument size. 254 _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); 255 assert( is_even(_in_arg_limit), "out_preserve must be even" ); 256 for( i = 0; i < argcnt; i++ ) { 257 // Permit args to have no register 258 _calling_convention_mask[i].Clear(); 259 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { 260 continue; 261 } 262 // calling_convention returns stack arguments as a count of 263 // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to 264 // the allocators point of view, taking into account all the 265 // preserve area, locks & pad2. 266 267 OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first()); 268 if( OptoReg::is_valid(reg1)) 269 _calling_convention_mask[i].Insert(reg1); 270 271 OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second()); 272 if( OptoReg::is_valid(reg2)) 273 _calling_convention_mask[i].Insert(reg2); 274 275 // Saved biased stack-slot register number 276 _parm_regs[i].set_pair(reg2, reg1); 277 } 278 279 // Finally, make sure the incoming arguments take up an even number of 280 // words, in case the arguments or locals need to contain doubleword stack 281 // slots. The rest of the system assumes that stack slot pairs (in 282 // particular, in the spill area) which look aligned will in fact be 283 // aligned relative to the stack pointer in the target machine. Double 284 // stack slots will always be allocated aligned. 285 _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong)); 286 287 // Compute highest outgoing stack argument as 288 // _new_SP + out_preserve_stack_slots + max(outgoing argument size). 289 _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); 290 assert( is_even(_out_arg_limit), "out_preserve must be even" ); 291 292 if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) { 293 // the compiler cannot represent this method's calling sequence 294 C->record_method_not_compilable("must be able to represent all call arguments in reg mask"); 295 } 296 297 if (C->failing()) return; // bailed out on incoming arg failure 298 299 // --------------- 300 // Collect roots of matcher trees. Every node for which 301 // _shared[_idx] is cleared is guaranteed to not be shared, and thus 302 // can be a valid interior of some tree. 303 find_shared( C->root() ); 304 find_shared( C->top() ); 305 306 C->print_method(PHASE_BEFORE_MATCHING); 307 308 // Create new ideal node ConP #NULL even if it does exist in old space 309 // to avoid false sharing if the corresponding mach node is not used. 310 // The corresponding mach node is only used in rare cases for derived 311 // pointers. 312 Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR); 313 314 // Swap out to old-space; emptying new-space 315 Arena *old = C->node_arena()->move_contents(C->old_arena()); 316 317 // Save debug and profile information for nodes in old space: 318 _old_node_note_array = C->node_note_array(); 319 if (_old_node_note_array != NULL) { 320 C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*> 321 (C->comp_arena(), _old_node_note_array->length(), 322 0, NULL)); 323 } 324 325 // Pre-size the new_node table to avoid the need for range checks. 326 grow_new_node_array(C->unique()); 327 328 // Reset node counter so MachNodes start with _idx at 0 329 int live_nodes = C->live_nodes(); 330 C->set_unique(0); 331 C->reset_dead_node_list(); 332 333 // Recursively match trees from old space into new space. 334 // Correct leaves of new-space Nodes; they point to old-space. 335 _visited.Clear(); // Clear visit bits for xform call 336 C->set_cached_top_node(xform( C->top(), live_nodes )); 337 if (!C->failing()) { 338 Node* xroot = xform( C->root(), 1 ); 339 if (xroot == NULL) { 340 Matcher::soft_match_failure(); // recursive matching process failed 341 C->record_method_not_compilable("instruction match failed"); 342 } else { 343 // During matching shared constants were attached to C->root() 344 // because xroot wasn't available yet, so transfer the uses to 345 // the xroot. 346 for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) { 347 Node* n = C->root()->fast_out(j); 348 if (C->node_arena()->contains(n)) { 349 assert(n->in(0) == C->root(), "should be control user"); 350 n->set_req(0, xroot); 351 --j; 352 --jmax; 353 } 354 } 355 356 // Generate new mach node for ConP #NULL 357 assert(new_ideal_null != NULL, "sanity"); 358 _mach_null = match_tree(new_ideal_null); 359 // Don't set control, it will confuse GCM since there are no uses. 360 // The control will be set when this node is used first time 361 // in find_base_for_derived(). 362 assert(_mach_null != NULL, ""); 363 364 C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL); 365 366 #ifdef ASSERT 367 verify_new_nodes_only(xroot); 368 #endif 369 } 370 } 371 if (C->top() == NULL || C->root() == NULL) { 372 C->record_method_not_compilable("graph lost"); // %%% cannot happen? 373 } 374 if (C->failing()) { 375 // delete old; 376 old->destruct_contents(); 377 return; 378 } 379 assert( C->top(), "" ); 380 assert( C->root(), "" ); 381 validate_null_checks(); 382 383 // Now smoke old-space 384 NOT_DEBUG( old->destruct_contents() ); 385 386 // ------------------------ 387 // Set up save-on-entry registers 388 Fixup_Save_On_Entry( ); 389 } 390 391 392 //------------------------------Fixup_Save_On_Entry---------------------------- 393 // The stated purpose of this routine is to take care of save-on-entry 394 // registers. However, the overall goal of the Match phase is to convert into 395 // machine-specific instructions which have RegMasks to guide allocation. 396 // So what this procedure really does is put a valid RegMask on each input 397 // to the machine-specific variations of all Return, TailCall and Halt 398 // instructions. It also adds edgs to define the save-on-entry values (and of 399 // course gives them a mask). 400 401 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) { 402 RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size ); 403 // Do all the pre-defined register masks 404 rms[TypeFunc::Control ] = RegMask::Empty; 405 rms[TypeFunc::I_O ] = RegMask::Empty; 406 rms[TypeFunc::Memory ] = RegMask::Empty; 407 rms[TypeFunc::ReturnAdr] = ret_adr; 408 rms[TypeFunc::FramePtr ] = fp; 409 return rms; 410 } 411 412 //---------------------------init_first_stack_mask----------------------------- 413 // Create the initial stack mask used by values spilling to the stack. 414 // Disallow any debug info in outgoing argument areas by setting the 415 // initial mask accordingly. 416 void Matcher::init_first_stack_mask() { 417 418 // Allocate storage for spill masks as masks for the appropriate load type. 419 RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+5)); 420 421 idealreg2spillmask [Op_RegN] = &rms[0]; 422 idealreg2spillmask [Op_RegI] = &rms[1]; 423 idealreg2spillmask [Op_RegL] = &rms[2]; 424 idealreg2spillmask [Op_RegF] = &rms[3]; 425 idealreg2spillmask [Op_RegD] = &rms[4]; 426 idealreg2spillmask [Op_RegP] = &rms[5]; 427 428 idealreg2debugmask [Op_RegN] = &rms[6]; 429 idealreg2debugmask [Op_RegI] = &rms[7]; 430 idealreg2debugmask [Op_RegL] = &rms[8]; 431 idealreg2debugmask [Op_RegF] = &rms[9]; 432 idealreg2debugmask [Op_RegD] = &rms[10]; 433 idealreg2debugmask [Op_RegP] = &rms[11]; 434 435 idealreg2mhdebugmask[Op_RegN] = &rms[12]; 436 idealreg2mhdebugmask[Op_RegI] = &rms[13]; 437 idealreg2mhdebugmask[Op_RegL] = &rms[14]; 438 idealreg2mhdebugmask[Op_RegF] = &rms[15]; 439 idealreg2mhdebugmask[Op_RegD] = &rms[16]; 440 idealreg2mhdebugmask[Op_RegP] = &rms[17]; 441 442 idealreg2spillmask [Op_VecS] = &rms[18]; 443 idealreg2spillmask [Op_VecD] = &rms[19]; 444 idealreg2spillmask [Op_VecX] = &rms[20]; 445 idealreg2spillmask [Op_VecY] = &rms[21]; 446 idealreg2spillmask [Op_VecZ] = &rms[22]; 447 448 OptoReg::Name i; 449 450 // At first, start with the empty mask 451 C->FIRST_STACK_mask().Clear(); 452 453 // Add in the incoming argument area 454 OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); 455 for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) { 456 C->FIRST_STACK_mask().Insert(i); 457 } 458 // Add in all bits past the outgoing argument area 459 guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)), 460 "must be able to represent all call arguments in reg mask"); 461 OptoReg::Name init = _out_arg_limit; 462 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) { 463 C->FIRST_STACK_mask().Insert(i); 464 } 465 // Finally, set the "infinite stack" bit. 466 C->FIRST_STACK_mask().set_AllStack(); 467 468 // Make spill masks. Registers for their class, plus FIRST_STACK_mask. 469 RegMask aligned_stack_mask = C->FIRST_STACK_mask(); 470 // Keep spill masks aligned. 471 aligned_stack_mask.clear_to_pairs(); 472 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 473 474 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP]; 475 #ifdef _LP64 476 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN]; 477 idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask()); 478 idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask); 479 #else 480 idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask()); 481 #endif 482 *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI]; 483 idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask()); 484 *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL]; 485 idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask); 486 *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF]; 487 idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask()); 488 *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD]; 489 idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask); 490 491 if (Matcher::vector_size_supported(T_BYTE,4)) { 492 *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS]; 493 idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask()); 494 } 495 if (Matcher::vector_size_supported(T_FLOAT,2)) { 496 // For VecD we need dual alignment and 8 bytes (2 slots) for spills. 497 // RA guarantees such alignment since it is needed for Double and Long values. 498 *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD]; 499 idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask); 500 } 501 if (Matcher::vector_size_supported(T_FLOAT,4)) { 502 // For VecX we need quadro alignment and 16 bytes (4 slots) for spills. 503 // 504 // RA can use input arguments stack slots for spills but until RA 505 // we don't know frame size and offset of input arg stack slots. 506 // 507 // Exclude last input arg stack slots to avoid spilling vectors there 508 // otherwise vector spills could stomp over stack slots in caller frame. 509 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 510 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) { 511 aligned_stack_mask.Remove(in); 512 in = OptoReg::add(in, -1); 513 } 514 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX); 515 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 516 *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX]; 517 idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask); 518 } 519 if (Matcher::vector_size_supported(T_FLOAT,8)) { 520 // For VecY we need octo alignment and 32 bytes (8 slots) for spills. 521 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 522 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) { 523 aligned_stack_mask.Remove(in); 524 in = OptoReg::add(in, -1); 525 } 526 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY); 527 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 528 *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY]; 529 idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask); 530 } 531 if (Matcher::vector_size_supported(T_FLOAT,16)) { 532 // For VecZ we need enough alignment and 64 bytes (16 slots) for spills. 533 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 534 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) { 535 aligned_stack_mask.Remove(in); 536 in = OptoReg::add(in, -1); 537 } 538 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ); 539 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 540 *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ]; 541 idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask); 542 } 543 if (UseFPUForSpilling) { 544 // This mask logic assumes that the spill operations are 545 // symmetric and that the registers involved are the same size. 546 // On sparc for instance we may have to use 64 bit moves will 547 // kill 2 registers when used with F0-F31. 548 idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]); 549 idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]); 550 #ifdef _LP64 551 idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]); 552 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); 553 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); 554 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]); 555 #else 556 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]); 557 #ifdef ARM 558 // ARM has support for moving 64bit values between a pair of 559 // integer registers and a double register 560 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); 561 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); 562 #endif 563 #endif 564 } 565 566 // Make up debug masks. Any spill slot plus callee-save registers. 567 // Caller-save registers are assumed to be trashable by the various 568 // inline-cache fixup routines. 569 *idealreg2debugmask [Op_RegN]= *idealreg2spillmask[Op_RegN]; 570 *idealreg2debugmask [Op_RegI]= *idealreg2spillmask[Op_RegI]; 571 *idealreg2debugmask [Op_RegL]= *idealreg2spillmask[Op_RegL]; 572 *idealreg2debugmask [Op_RegF]= *idealreg2spillmask[Op_RegF]; 573 *idealreg2debugmask [Op_RegD]= *idealreg2spillmask[Op_RegD]; 574 *idealreg2debugmask [Op_RegP]= *idealreg2spillmask[Op_RegP]; 575 576 *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN]; 577 *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI]; 578 *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL]; 579 *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF]; 580 *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD]; 581 *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP]; 582 583 // Prevent stub compilations from attempting to reference 584 // callee-saved registers from debug info 585 bool exclude_soe = !Compile::current()->is_method_compilation(); 586 587 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) { 588 // registers the caller has to save do not work 589 if( _register_save_policy[i] == 'C' || 590 _register_save_policy[i] == 'A' || 591 (_register_save_policy[i] == 'E' && exclude_soe) ) { 592 idealreg2debugmask [Op_RegN]->Remove(i); 593 idealreg2debugmask [Op_RegI]->Remove(i); // Exclude save-on-call 594 idealreg2debugmask [Op_RegL]->Remove(i); // registers from debug 595 idealreg2debugmask [Op_RegF]->Remove(i); // masks 596 idealreg2debugmask [Op_RegD]->Remove(i); 597 idealreg2debugmask [Op_RegP]->Remove(i); 598 599 idealreg2mhdebugmask[Op_RegN]->Remove(i); 600 idealreg2mhdebugmask[Op_RegI]->Remove(i); 601 idealreg2mhdebugmask[Op_RegL]->Remove(i); 602 idealreg2mhdebugmask[Op_RegF]->Remove(i); 603 idealreg2mhdebugmask[Op_RegD]->Remove(i); 604 idealreg2mhdebugmask[Op_RegP]->Remove(i); 605 } 606 } 607 608 // Subtract the register we use to save the SP for MethodHandle 609 // invokes to from the debug mask. 610 const RegMask save_mask = method_handle_invoke_SP_save_mask(); 611 idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask); 612 idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask); 613 idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask); 614 idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask); 615 idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask); 616 idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask); 617 } 618 619 //---------------------------is_save_on_entry---------------------------------- 620 bool Matcher::is_save_on_entry( int reg ) { 621 return 622 _register_save_policy[reg] == 'E' || 623 _register_save_policy[reg] == 'A' || // Save-on-entry register? 624 // Also save argument registers in the trampolining stubs 625 (C->save_argument_registers() && is_spillable_arg(reg)); 626 } 627 628 //---------------------------Fixup_Save_On_Entry------------------------------- 629 void Matcher::Fixup_Save_On_Entry( ) { 630 init_first_stack_mask(); 631 632 Node *root = C->root(); // Short name for root 633 // Count number of save-on-entry registers. 634 uint soe_cnt = number_of_saved_registers(); 635 uint i; 636 637 // Find the procedure Start Node 638 StartNode *start = C->start(); 639 assert( start, "Expect a start node" ); 640 641 // Save argument registers in the trampolining stubs 642 if( C->save_argument_registers() ) 643 for( i = 0; i < _last_Mach_Reg; i++ ) 644 if( is_spillable_arg(i) ) 645 soe_cnt++; 646 647 // Input RegMask array shared by all Returns. 648 // The type for doubles and longs has a count of 2, but 649 // there is only 1 returned value 650 uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1); 651 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 652 // Returns have 0 or 1 returned values depending on call signature. 653 // Return register is specified by return_value in the AD file. 654 if (ret_edge_cnt > TypeFunc::Parms) 655 ret_rms[TypeFunc::Parms+0] = _return_value_mask; 656 657 // Input RegMask array shared by all Rethrows. 658 uint reth_edge_cnt = TypeFunc::Parms+1; 659 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 660 // Rethrow takes exception oop only, but in the argument 0 slot. 661 reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)]; 662 #ifdef _LP64 663 // Need two slots for ptrs in 64-bit land 664 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1)); 665 #endif 666 667 // Input RegMask array shared by all TailCalls 668 uint tail_call_edge_cnt = TypeFunc::Parms+2; 669 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 670 671 // Input RegMask array shared by all TailJumps 672 uint tail_jump_edge_cnt = TypeFunc::Parms+2; 673 RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 674 675 // TailCalls have 2 returned values (target & moop), whose masks come 676 // from the usual MachNode/MachOper mechanism. Find a sample 677 // TailCall to extract these masks and put the correct masks into 678 // the tail_call_rms array. 679 for( i=1; i < root->req(); i++ ) { 680 MachReturnNode *m = root->in(i)->as_MachReturn(); 681 if( m->ideal_Opcode() == Op_TailCall ) { 682 tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); 683 tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); 684 break; 685 } 686 } 687 688 // TailJumps have 2 returned values (target & ex_oop), whose masks come 689 // from the usual MachNode/MachOper mechanism. Find a sample 690 // TailJump to extract these masks and put the correct masks into 691 // the tail_jump_rms array. 692 for( i=1; i < root->req(); i++ ) { 693 MachReturnNode *m = root->in(i)->as_MachReturn(); 694 if( m->ideal_Opcode() == Op_TailJump ) { 695 tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); 696 tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); 697 break; 698 } 699 } 700 701 // Input RegMask array shared by all Halts 702 uint halt_edge_cnt = TypeFunc::Parms; 703 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 704 705 // Capture the return input masks into each exit flavor 706 for( i=1; i < root->req(); i++ ) { 707 MachReturnNode *exit = root->in(i)->as_MachReturn(); 708 switch( exit->ideal_Opcode() ) { 709 case Op_Return : exit->_in_rms = ret_rms; break; 710 case Op_Rethrow : exit->_in_rms = reth_rms; break; 711 case Op_TailCall : exit->_in_rms = tail_call_rms; break; 712 case Op_TailJump : exit->_in_rms = tail_jump_rms; break; 713 case Op_Halt : exit->_in_rms = halt_rms; break; 714 default : ShouldNotReachHere(); 715 } 716 } 717 718 // Next unused projection number from Start. 719 int proj_cnt = C->tf()->domain()->cnt(); 720 721 // Do all the save-on-entry registers. Make projections from Start for 722 // them, and give them a use at the exit points. To the allocator, they 723 // look like incoming register arguments. 724 for( i = 0; i < _last_Mach_Reg; i++ ) { 725 if( is_save_on_entry(i) ) { 726 727 // Add the save-on-entry to the mask array 728 ret_rms [ ret_edge_cnt] = mreg2regmask[i]; 729 reth_rms [ reth_edge_cnt] = mreg2regmask[i]; 730 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i]; 731 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i]; 732 // Halts need the SOE registers, but only in the stack as debug info. 733 // A just-prior uncommon-trap or deoptimization will use the SOE regs. 734 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]]; 735 736 Node *mproj; 737 738 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's 739 // into a single RegD. 740 if( (i&1) == 0 && 741 _register_save_type[i ] == Op_RegF && 742 _register_save_type[i+1] == Op_RegF && 743 is_save_on_entry(i+1) ) { 744 // Add other bit for double 745 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); 746 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); 747 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); 748 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); 749 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); 750 mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD ); 751 proj_cnt += 2; // Skip 2 for doubles 752 } 753 else if( (i&1) == 1 && // Else check for high half of double 754 _register_save_type[i-1] == Op_RegF && 755 _register_save_type[i ] == Op_RegF && 756 is_save_on_entry(i-1) ) { 757 ret_rms [ ret_edge_cnt] = RegMask::Empty; 758 reth_rms [ reth_edge_cnt] = RegMask::Empty; 759 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; 760 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; 761 halt_rms [ halt_edge_cnt] = RegMask::Empty; 762 mproj = C->top(); 763 } 764 // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's 765 // into a single RegL. 766 else if( (i&1) == 0 && 767 _register_save_type[i ] == Op_RegI && 768 _register_save_type[i+1] == Op_RegI && 769 is_save_on_entry(i+1) ) { 770 // Add other bit for long 771 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); 772 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); 773 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); 774 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); 775 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); 776 mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL ); 777 proj_cnt += 2; // Skip 2 for longs 778 } 779 else if( (i&1) == 1 && // Else check for high half of long 780 _register_save_type[i-1] == Op_RegI && 781 _register_save_type[i ] == Op_RegI && 782 is_save_on_entry(i-1) ) { 783 ret_rms [ ret_edge_cnt] = RegMask::Empty; 784 reth_rms [ reth_edge_cnt] = RegMask::Empty; 785 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; 786 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; 787 halt_rms [ halt_edge_cnt] = RegMask::Empty; 788 mproj = C->top(); 789 } else { 790 // Make a projection for it off the Start 791 mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] ); 792 } 793 794 ret_edge_cnt ++; 795 reth_edge_cnt ++; 796 tail_call_edge_cnt ++; 797 tail_jump_edge_cnt ++; 798 halt_edge_cnt ++; 799 800 // Add a use of the SOE register to all exit paths 801 for( uint j=1; j < root->req(); j++ ) 802 root->in(j)->add_req(mproj); 803 } // End of if a save-on-entry register 804 } // End of for all machine registers 805 } 806 807 //------------------------------init_spill_mask-------------------------------- 808 void Matcher::init_spill_mask( Node *ret ) { 809 if( idealreg2regmask[Op_RegI] ) return; // One time only init 810 811 OptoReg::c_frame_pointer = c_frame_pointer(); 812 c_frame_ptr_mask = c_frame_pointer(); 813 #ifdef _LP64 814 // pointers are twice as big 815 c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1)); 816 #endif 817 818 // Start at OptoReg::stack0() 819 STACK_ONLY_mask.Clear(); 820 OptoReg::Name init = OptoReg::stack2reg(0); 821 // STACK_ONLY_mask is all stack bits 822 OptoReg::Name i; 823 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) 824 STACK_ONLY_mask.Insert(i); 825 // Also set the "infinite stack" bit. 826 STACK_ONLY_mask.set_AllStack(); 827 828 // Copy the register names over into the shared world 829 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) { 830 // SharedInfo::regName[i] = regName[i]; 831 // Handy RegMasks per machine register 832 mreg2regmask[i].Insert(i); 833 } 834 835 // Grab the Frame Pointer 836 Node *fp = ret->in(TypeFunc::FramePtr); 837 Node *mem = ret->in(TypeFunc::Memory); 838 const TypePtr* atp = TypePtr::BOTTOM; 839 // Share frame pointer while making spill ops 840 set_shared(fp); 841 842 // Compute generic short-offset Loads 843 #ifdef _LP64 844 MachNode *spillCP = match_tree(new LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered)); 845 #endif 846 MachNode *spillI = match_tree(new LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered)); 847 MachNode *spillL = match_tree(new LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest, false)); 848 MachNode *spillF = match_tree(new LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered)); 849 MachNode *spillD = match_tree(new LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered)); 850 MachNode *spillP = match_tree(new LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered)); 851 assert(spillI != NULL && spillL != NULL && spillF != NULL && 852 spillD != NULL && spillP != NULL, ""); 853 // Get the ADLC notion of the right regmask, for each basic type. 854 #ifdef _LP64 855 idealreg2regmask[Op_RegN] = &spillCP->out_RegMask(); 856 #endif 857 idealreg2regmask[Op_RegI] = &spillI->out_RegMask(); 858 idealreg2regmask[Op_RegL] = &spillL->out_RegMask(); 859 idealreg2regmask[Op_RegF] = &spillF->out_RegMask(); 860 idealreg2regmask[Op_RegD] = &spillD->out_RegMask(); 861 idealreg2regmask[Op_RegP] = &spillP->out_RegMask(); 862 863 // Vector regmasks. 864 if (Matcher::vector_size_supported(T_BYTE,4)) { 865 TypeVect::VECTS = TypeVect::make(T_BYTE, 4); 866 MachNode *spillVectS = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS)); 867 idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask(); 868 } 869 if (Matcher::vector_size_supported(T_FLOAT,2)) { 870 MachNode *spillVectD = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD)); 871 idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask(); 872 } 873 if (Matcher::vector_size_supported(T_FLOAT,4)) { 874 MachNode *spillVectX = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX)); 875 idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask(); 876 } 877 if (Matcher::vector_size_supported(T_FLOAT,8)) { 878 MachNode *spillVectY = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY)); 879 idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask(); 880 } 881 if (Matcher::vector_size_supported(T_FLOAT,16)) { 882 MachNode *spillVectZ = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTZ)); 883 idealreg2regmask[Op_VecZ] = &spillVectZ->out_RegMask(); 884 } 885 } 886 887 #ifdef ASSERT 888 static void match_alias_type(Compile* C, Node* n, Node* m) { 889 if (!VerifyAliases) return; // do not go looking for trouble by default 890 const TypePtr* nat = n->adr_type(); 891 const TypePtr* mat = m->adr_type(); 892 int nidx = C->get_alias_index(nat); 893 int midx = C->get_alias_index(mat); 894 // Detune the assert for cases like (AndI 0xFF (LoadB p)). 895 if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) { 896 for (uint i = 1; i < n->req(); i++) { 897 Node* n1 = n->in(i); 898 const TypePtr* n1at = n1->adr_type(); 899 if (n1at != NULL) { 900 nat = n1at; 901 nidx = C->get_alias_index(n1at); 902 } 903 } 904 } 905 // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases: 906 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) { 907 switch (n->Opcode()) { 908 case Op_PrefetchAllocation: 909 nidx = Compile::AliasIdxRaw; 910 nat = TypeRawPtr::BOTTOM; 911 break; 912 } 913 } 914 if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) { 915 switch (n->Opcode()) { 916 case Op_ClearArray: 917 midx = Compile::AliasIdxRaw; 918 mat = TypeRawPtr::BOTTOM; 919 break; 920 } 921 } 922 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) { 923 switch (n->Opcode()) { 924 case Op_Return: 925 case Op_Rethrow: 926 case Op_Halt: 927 case Op_TailCall: 928 case Op_TailJump: 929 nidx = Compile::AliasIdxBot; 930 nat = TypePtr::BOTTOM; 931 break; 932 } 933 } 934 if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) { 935 switch (n->Opcode()) { 936 case Op_StrComp: 937 case Op_StrEquals: 938 case Op_StrIndexOf: 939 case Op_StrIndexOfChar: 940 case Op_AryEq: 941 case Op_HasNegatives: 942 case Op_MemBarVolatile: 943 case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type? 944 case Op_StrInflatedCopy: 945 case Op_StrCompressedCopy: 946 case Op_EncodeISOArray: 947 nidx = Compile::AliasIdxTop; 948 nat = NULL; 949 break; 950 } 951 } 952 if (nidx != midx) { 953 if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) { 954 tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx); 955 n->dump(); 956 m->dump(); 957 } 958 assert(C->subsume_loads() && C->must_alias(nat, midx), 959 "must not lose alias info when matching"); 960 } 961 } 962 #endif 963 964 965 //------------------------------MStack----------------------------------------- 966 // State and MStack class used in xform() and find_shared() iterative methods. 967 enum Node_State { Pre_Visit, // node has to be pre-visited 968 Visit, // visit node 969 Post_Visit, // post-visit node 970 Alt_Post_Visit // alternative post-visit path 971 }; 972 973 class MStack: public Node_Stack { 974 public: 975 MStack(int size) : Node_Stack(size) { } 976 977 void push(Node *n, Node_State ns) { 978 Node_Stack::push(n, (uint)ns); 979 } 980 void push(Node *n, Node_State ns, Node *parent, int indx) { 981 ++_inode_top; 982 if ((_inode_top + 1) >= _inode_max) grow(); 983 _inode_top->node = parent; 984 _inode_top->indx = (uint)indx; 985 ++_inode_top; 986 _inode_top->node = n; 987 _inode_top->indx = (uint)ns; 988 } 989 Node *parent() { 990 pop(); 991 return node(); 992 } 993 Node_State state() const { 994 return (Node_State)index(); 995 } 996 void set_state(Node_State ns) { 997 set_index((uint)ns); 998 } 999 }; 1000 1001 1002 //------------------------------xform------------------------------------------ 1003 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine 1004 // Node in new-space. Given a new-space Node, recursively walk his children. 1005 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; } 1006 Node *Matcher::xform( Node *n, int max_stack ) { 1007 // Use one stack to keep both: child's node/state and parent's node/index 1008 MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2 1009 mstack.push(n, Visit, NULL, -1); // set NULL as parent to indicate root 1010 1011 while (mstack.is_nonempty()) { 1012 C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions"); 1013 if (C->failing()) return NULL; 1014 n = mstack.node(); // Leave node on stack 1015 Node_State nstate = mstack.state(); 1016 if (nstate == Visit) { 1017 mstack.set_state(Post_Visit); 1018 Node *oldn = n; 1019 // Old-space or new-space check 1020 if (!C->node_arena()->contains(n)) { 1021 // Old space! 1022 Node* m; 1023 if (has_new_node(n)) { // Not yet Label/Reduced 1024 m = new_node(n); 1025 } else { 1026 if (!is_dontcare(n)) { // Matcher can match this guy 1027 // Calls match special. They match alone with no children. 1028 // Their children, the incoming arguments, match normally. 1029 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n); 1030 if (C->failing()) return NULL; 1031 if (m == NULL) { Matcher::soft_match_failure(); return NULL; } 1032 } else { // Nothing the matcher cares about 1033 if( n->is_Proj() && n->in(0)->is_Multi()) { // Projections? 1034 // Convert to machine-dependent projection 1035 m = n->in(0)->as_Multi()->match( n->as_Proj(), this ); 1036 #ifdef ASSERT 1037 _new2old_map.map(m->_idx, n); 1038 #endif 1039 if (m->in(0) != NULL) // m might be top 1040 collect_null_checks(m, n); 1041 } else { // Else just a regular 'ol guy 1042 m = n->clone(); // So just clone into new-space 1043 #ifdef ASSERT 1044 _new2old_map.map(m->_idx, n); 1045 #endif 1046 // Def-Use edges will be added incrementally as Uses 1047 // of this node are matched. 1048 assert(m->outcnt() == 0, "no Uses of this clone yet"); 1049 } 1050 } 1051 1052 set_new_node(n, m); // Map old to new 1053 if (_old_node_note_array != NULL) { 1054 Node_Notes* nn = C->locate_node_notes(_old_node_note_array, 1055 n->_idx); 1056 C->set_node_notes_at(m->_idx, nn); 1057 } 1058 debug_only(match_alias_type(C, n, m)); 1059 } 1060 n = m; // n is now a new-space node 1061 mstack.set_node(n); 1062 } 1063 1064 // New space! 1065 if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty()) 1066 1067 int i; 1068 // Put precedence edges on stack first (match them last). 1069 for (i = oldn->req(); (uint)i < oldn->len(); i++) { 1070 Node *m = oldn->in(i); 1071 if (m == NULL) break; 1072 // set -1 to call add_prec() instead of set_req() during Step1 1073 mstack.push(m, Visit, n, -1); 1074 } 1075 1076 // Handle precedence edges for interior nodes 1077 for (i = n->len()-1; (uint)i >= n->req(); i--) { 1078 Node *m = n->in(i); 1079 if (m == NULL || C->node_arena()->contains(m)) continue; 1080 n->rm_prec(i); 1081 // set -1 to call add_prec() instead of set_req() during Step1 1082 mstack.push(m, Visit, n, -1); 1083 } 1084 1085 // For constant debug info, I'd rather have unmatched constants. 1086 int cnt = n->req(); 1087 JVMState* jvms = n->jvms(); 1088 int debug_cnt = jvms ? jvms->debug_start() : cnt; 1089 1090 // Now do only debug info. Clone constants rather than matching. 1091 // Constants are represented directly in the debug info without 1092 // the need for executable machine instructions. 1093 // Monitor boxes are also represented directly. 1094 for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do 1095 Node *m = n->in(i); // Get input 1096 int op = m->Opcode(); 1097 assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites"); 1098 if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass || 1099 op == Op_ConF || op == Op_ConD || op == Op_ConL 1100 // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp 1101 ) { 1102 m = m->clone(); 1103 #ifdef ASSERT 1104 _new2old_map.map(m->_idx, n); 1105 #endif 1106 mstack.push(m, Post_Visit, n, i); // Don't need to visit 1107 mstack.push(m->in(0), Visit, m, 0); 1108 } else { 1109 mstack.push(m, Visit, n, i); 1110 } 1111 } 1112 1113 // And now walk his children, and convert his inputs to new-space. 1114 for( ; i >= 0; --i ) { // For all normal inputs do 1115 Node *m = n->in(i); // Get input 1116 if(m != NULL) 1117 mstack.push(m, Visit, n, i); 1118 } 1119 1120 } 1121 else if (nstate == Post_Visit) { 1122 // Set xformed input 1123 Node *p = mstack.parent(); 1124 if (p != NULL) { // root doesn't have parent 1125 int i = (int)mstack.index(); 1126 if (i >= 0) 1127 p->set_req(i, n); // required input 1128 else if (i == -1) 1129 p->add_prec(n); // precedence input 1130 else 1131 ShouldNotReachHere(); 1132 } 1133 mstack.pop(); // remove processed node from stack 1134 } 1135 else { 1136 ShouldNotReachHere(); 1137 } 1138 } // while (mstack.is_nonempty()) 1139 return n; // Return new-space Node 1140 } 1141 1142 //------------------------------warp_outgoing_stk_arg------------------------ 1143 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) { 1144 // Convert outgoing argument location to a pre-biased stack offset 1145 if (reg->is_stack()) { 1146 OptoReg::Name warped = reg->reg2stack(); 1147 // Adjust the stack slot offset to be the register number used 1148 // by the allocator. 1149 warped = OptoReg::add(begin_out_arg_area, warped); 1150 // Keep track of the largest numbered stack slot used for an arg. 1151 // Largest used slot per call-site indicates the amount of stack 1152 // that is killed by the call. 1153 if( warped >= out_arg_limit_per_call ) 1154 out_arg_limit_per_call = OptoReg::add(warped,1); 1155 if (!RegMask::can_represent_arg(warped)) { 1156 C->record_method_not_compilable_all_tiers("unsupported calling sequence"); 1157 return OptoReg::Bad; 1158 } 1159 return warped; 1160 } 1161 return OptoReg::as_OptoReg(reg); 1162 } 1163 1164 1165 //------------------------------match_sfpt------------------------------------- 1166 // Helper function to match call instructions. Calls match special. 1167 // They match alone with no children. Their children, the incoming 1168 // arguments, match normally. 1169 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) { 1170 MachSafePointNode *msfpt = NULL; 1171 MachCallNode *mcall = NULL; 1172 uint cnt; 1173 // Split out case for SafePoint vs Call 1174 CallNode *call; 1175 const TypeTuple *domain; 1176 ciMethod* method = NULL; 1177 bool is_method_handle_invoke = false; // for special kill effects 1178 if( sfpt->is_Call() ) { 1179 call = sfpt->as_Call(); 1180 domain = call->tf()->domain(); 1181 cnt = domain->cnt(); 1182 1183 // Match just the call, nothing else 1184 MachNode *m = match_tree(call); 1185 if (C->failing()) return NULL; 1186 if( m == NULL ) { Matcher::soft_match_failure(); return NULL; } 1187 1188 // Copy data from the Ideal SafePoint to the machine version 1189 mcall = m->as_MachCall(); 1190 1191 mcall->set_tf( call->tf()); 1192 mcall->set_entry_point(call->entry_point()); 1193 mcall->set_cnt( call->cnt()); 1194 1195 if( mcall->is_MachCallJava() ) { 1196 MachCallJavaNode *mcall_java = mcall->as_MachCallJava(); 1197 const CallJavaNode *call_java = call->as_CallJava(); 1198 method = call_java->method(); 1199 mcall_java->_method = method; 1200 mcall_java->_bci = call_java->_bci; 1201 mcall_java->_optimized_virtual = call_java->is_optimized_virtual(); 1202 is_method_handle_invoke = call_java->is_method_handle_invoke(); 1203 mcall_java->_method_handle_invoke = is_method_handle_invoke; 1204 mcall_java->_override_symbolic_info = call_java->override_symbolic_info(); 1205 if (is_method_handle_invoke) { 1206 C->set_has_method_handle_invokes(true); 1207 } 1208 if( mcall_java->is_MachCallStaticJava() ) 1209 mcall_java->as_MachCallStaticJava()->_name = 1210 call_java->as_CallStaticJava()->_name; 1211 if( mcall_java->is_MachCallDynamicJava() ) 1212 mcall_java->as_MachCallDynamicJava()->_vtable_index = 1213 call_java->as_CallDynamicJava()->_vtable_index; 1214 } 1215 else if( mcall->is_MachCallRuntime() ) { 1216 mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name; 1217 } 1218 msfpt = mcall; 1219 } 1220 // This is a non-call safepoint 1221 else { 1222 call = NULL; 1223 domain = NULL; 1224 MachNode *mn = match_tree(sfpt); 1225 if (C->failing()) return NULL; 1226 msfpt = mn->as_MachSafePoint(); 1227 cnt = TypeFunc::Parms; 1228 } 1229 1230 // Advertise the correct memory effects (for anti-dependence computation). 1231 msfpt->set_adr_type(sfpt->adr_type()); 1232 1233 // Allocate a private array of RegMasks. These RegMasks are not shared. 1234 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt ); 1235 // Empty them all. 1236 memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt ); 1237 1238 // Do all the pre-defined non-Empty register masks 1239 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask; 1240 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask; 1241 1242 // Place first outgoing argument can possibly be put. 1243 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); 1244 assert( is_even(begin_out_arg_area), "" ); 1245 // Compute max outgoing register number per call site. 1246 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area; 1247 // Calls to C may hammer extra stack slots above and beyond any arguments. 1248 // These are usually backing store for register arguments for varargs. 1249 if( call != NULL && call->is_CallRuntime() ) 1250 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed()); 1251 1252 1253 // Do the normal argument list (parameters) register masks 1254 int argcnt = cnt - TypeFunc::Parms; 1255 if( argcnt > 0 ) { // Skip it all if we have no args 1256 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt ); 1257 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt ); 1258 int i; 1259 for( i = 0; i < argcnt; i++ ) { 1260 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); 1261 } 1262 // V-call to pick proper calling convention 1263 call->calling_convention( sig_bt, parm_regs, argcnt ); 1264 1265 #ifdef ASSERT 1266 // Sanity check users' calling convention. Really handy during 1267 // the initial porting effort. Fairly expensive otherwise. 1268 { for (int i = 0; i<argcnt; i++) { 1269 if( !parm_regs[i].first()->is_valid() && 1270 !parm_regs[i].second()->is_valid() ) continue; 1271 VMReg reg1 = parm_regs[i].first(); 1272 VMReg reg2 = parm_regs[i].second(); 1273 for (int j = 0; j < i; j++) { 1274 if( !parm_regs[j].first()->is_valid() && 1275 !parm_regs[j].second()->is_valid() ) continue; 1276 VMReg reg3 = parm_regs[j].first(); 1277 VMReg reg4 = parm_regs[j].second(); 1278 if( !reg1->is_valid() ) { 1279 assert( !reg2->is_valid(), "valid halvsies" ); 1280 } else if( !reg3->is_valid() ) { 1281 assert( !reg4->is_valid(), "valid halvsies" ); 1282 } else { 1283 assert( reg1 != reg2, "calling conv. must produce distinct regs"); 1284 assert( reg1 != reg3, "calling conv. must produce distinct regs"); 1285 assert( reg1 != reg4, "calling conv. must produce distinct regs"); 1286 assert( reg2 != reg3, "calling conv. must produce distinct regs"); 1287 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs"); 1288 assert( reg3 != reg4, "calling conv. must produce distinct regs"); 1289 } 1290 } 1291 } 1292 } 1293 #endif 1294 1295 // Visit each argument. Compute its outgoing register mask. 1296 // Return results now can have 2 bits returned. 1297 // Compute max over all outgoing arguments both per call-site 1298 // and over the entire method. 1299 for( i = 0; i < argcnt; i++ ) { 1300 // Address of incoming argument mask to fill in 1301 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms]; 1302 if( !parm_regs[i].first()->is_valid() && 1303 !parm_regs[i].second()->is_valid() ) { 1304 continue; // Avoid Halves 1305 } 1306 // Grab first register, adjust stack slots and insert in mask. 1307 OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call ); 1308 if (OptoReg::is_valid(reg1)) 1309 rm->Insert( reg1 ); 1310 // Grab second register (if any), adjust stack slots and insert in mask. 1311 OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call ); 1312 if (OptoReg::is_valid(reg2)) 1313 rm->Insert( reg2 ); 1314 } // End of for all arguments 1315 1316 // Compute number of stack slots needed to restore stack in case of 1317 // Pascal-style argument popping. 1318 mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area; 1319 } 1320 1321 // Compute the max stack slot killed by any call. These will not be 1322 // available for debug info, and will be used to adjust FIRST_STACK_mask 1323 // after all call sites have been visited. 1324 if( _out_arg_limit < out_arg_limit_per_call) 1325 _out_arg_limit = out_arg_limit_per_call; 1326 1327 if (mcall) { 1328 // Kill the outgoing argument area, including any non-argument holes and 1329 // any legacy C-killed slots. Use Fat-Projections to do the killing. 1330 // Since the max-per-method covers the max-per-call-site and debug info 1331 // is excluded on the max-per-method basis, debug info cannot land in 1332 // this killed area. 1333 uint r_cnt = mcall->tf()->range()->cnt(); 1334 MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj ); 1335 if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) { 1336 C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence"); 1337 } else { 1338 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++) 1339 proj->_rout.Insert(OptoReg::Name(i)); 1340 } 1341 if (proj->_rout.is_NotEmpty()) { 1342 push_projection(proj); 1343 } 1344 } 1345 // Transfer the safepoint information from the call to the mcall 1346 // Move the JVMState list 1347 msfpt->set_jvms(sfpt->jvms()); 1348 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) { 1349 jvms->set_map(sfpt); 1350 } 1351 1352 // Debug inputs begin just after the last incoming parameter 1353 assert((mcall == NULL) || (mcall->jvms() == NULL) || 1354 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), ""); 1355 1356 // Move the OopMap 1357 msfpt->_oop_map = sfpt->_oop_map; 1358 1359 // Add additional edges. 1360 if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) { 1361 // For these calls we can not add MachConstantBase in expand(), as the 1362 // ins are not complete then. 1363 msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node()); 1364 if (msfpt->jvms() && 1365 msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) { 1366 // We added an edge before jvms, so we must adapt the position of the ins. 1367 msfpt->jvms()->adapt_position(+1); 1368 } 1369 } 1370 1371 // Registers killed by the call are set in the local scheduling pass 1372 // of Global Code Motion. 1373 return msfpt; 1374 } 1375 1376 //---------------------------match_tree---------------------------------------- 1377 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part 1378 // of the whole-sale conversion from Ideal to Mach Nodes. Also used for 1379 // making GotoNodes while building the CFG and in init_spill_mask() to identify 1380 // a Load's result RegMask for memoization in idealreg2regmask[] 1381 MachNode *Matcher::match_tree( const Node *n ) { 1382 assert( n->Opcode() != Op_Phi, "cannot match" ); 1383 assert( !n->is_block_start(), "cannot match" ); 1384 // Set the mark for all locally allocated State objects. 1385 // When this call returns, the _states_arena arena will be reset 1386 // freeing all State objects. 1387 ResourceMark rm( &_states_arena ); 1388 1389 LabelRootDepth = 0; 1390 1391 // StoreNodes require their Memory input to match any LoadNodes 1392 Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ; 1393 #ifdef ASSERT 1394 Node* save_mem_node = _mem_node; 1395 _mem_node = n->is_Store() ? (Node*)n : NULL; 1396 #endif 1397 // State object for root node of match tree 1398 // Allocate it on _states_arena - stack allocation can cause stack overflow. 1399 State *s = new (&_states_arena) State; 1400 s->_kids[0] = NULL; 1401 s->_kids[1] = NULL; 1402 s->_leaf = (Node*)n; 1403 // Label the input tree, allocating labels from top-level arena 1404 Label_Root( n, s, n->in(0), mem ); 1405 if (C->failing()) return NULL; 1406 1407 // The minimum cost match for the whole tree is found at the root State 1408 uint mincost = max_juint; 1409 uint cost = max_juint; 1410 uint i; 1411 for( i = 0; i < NUM_OPERANDS; i++ ) { 1412 if( s->valid(i) && // valid entry and 1413 s->_cost[i] < cost && // low cost and 1414 s->_rule[i] >= NUM_OPERANDS ) // not an operand 1415 cost = s->_cost[mincost=i]; 1416 } 1417 if (mincost == max_juint) { 1418 #ifndef PRODUCT 1419 tty->print("No matching rule for:"); 1420 s->dump(); 1421 #endif 1422 Matcher::soft_match_failure(); 1423 return NULL; 1424 } 1425 // Reduce input tree based upon the state labels to machine Nodes 1426 MachNode *m = ReduceInst( s, s->_rule[mincost], mem ); 1427 #ifdef ASSERT 1428 _old2new_map.map(n->_idx, m); 1429 _new2old_map.map(m->_idx, (Node*)n); 1430 #endif 1431 1432 // Add any Matcher-ignored edges 1433 uint cnt = n->req(); 1434 uint start = 1; 1435 if( mem != (Node*)1 ) start = MemNode::Memory+1; 1436 if( n->is_AddP() ) { 1437 assert( mem == (Node*)1, "" ); 1438 start = AddPNode::Base+1; 1439 } 1440 for( i = start; i < cnt; i++ ) { 1441 if( !n->match_edge(i) ) { 1442 if( i < m->req() ) 1443 m->ins_req( i, n->in(i) ); 1444 else 1445 m->add_req( n->in(i) ); 1446 } 1447 } 1448 1449 debug_only( _mem_node = save_mem_node; ) 1450 return m; 1451 } 1452 1453 1454 //------------------------------match_into_reg--------------------------------- 1455 // Choose to either match this Node in a register or part of the current 1456 // match tree. Return true for requiring a register and false for matching 1457 // as part of the current match tree. 1458 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) { 1459 1460 const Type *t = m->bottom_type(); 1461 1462 if (t->singleton()) { 1463 // Never force constants into registers. Allow them to match as 1464 // constants or registers. Copies of the same value will share 1465 // the same register. See find_shared_node. 1466 return false; 1467 } else { // Not a constant 1468 // Stop recursion if they have different Controls. 1469 Node* m_control = m->in(0); 1470 // Control of load's memory can post-dominates load's control. 1471 // So use it since load can't float above its memory. 1472 Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL; 1473 if (control && m_control && control != m_control && control != mem_control) { 1474 1475 // Actually, we can live with the most conservative control we 1476 // find, if it post-dominates the others. This allows us to 1477 // pick up load/op/store trees where the load can float a little 1478 // above the store. 1479 Node *x = control; 1480 const uint max_scan = 6; // Arbitrary scan cutoff 1481 uint j; 1482 for (j=0; j<max_scan; j++) { 1483 if (x->is_Region()) // Bail out at merge points 1484 return true; 1485 x = x->in(0); 1486 if (x == m_control) // Does 'control' post-dominate 1487 break; // m->in(0)? If so, we can use it 1488 if (x == mem_control) // Does 'control' post-dominate 1489 break; // mem_control? If so, we can use it 1490 } 1491 if (j == max_scan) // No post-domination before scan end? 1492 return true; // Then break the match tree up 1493 } 1494 if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) || 1495 (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) { 1496 // These are commonly used in address expressions and can 1497 // efficiently fold into them on X64 in some cases. 1498 return false; 1499 } 1500 } 1501 1502 // Not forceable cloning. If shared, put it into a register. 1503 return shared; 1504 } 1505 1506 1507 //------------------------------Instruction Selection-------------------------- 1508 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match 1509 // ideal nodes to machine instructions. Trees are delimited by shared Nodes, 1510 // things the Matcher does not match (e.g., Memory), and things with different 1511 // Controls (hence forced into different blocks). We pass in the Control 1512 // selected for this entire State tree. 1513 1514 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the 1515 // Store and the Load must have identical Memories (as well as identical 1516 // pointers). Since the Matcher does not have anything for Memory (and 1517 // does not handle DAGs), I have to match the Memory input myself. If the 1518 // Tree root is a Store, I require all Loads to have the identical memory. 1519 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){ 1520 // Since Label_Root is a recursive function, its possible that we might run 1521 // out of stack space. See bugs 6272980 & 6227033 for more info. 1522 LabelRootDepth++; 1523 if (LabelRootDepth > MaxLabelRootDepth) { 1524 C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth"); 1525 return NULL; 1526 } 1527 uint care = 0; // Edges matcher cares about 1528 uint cnt = n->req(); 1529 uint i = 0; 1530 1531 // Examine children for memory state 1532 // Can only subsume a child into your match-tree if that child's memory state 1533 // is not modified along the path to another input. 1534 // It is unsafe even if the other inputs are separate roots. 1535 Node *input_mem = NULL; 1536 for( i = 1; i < cnt; i++ ) { 1537 if( !n->match_edge(i) ) continue; 1538 Node *m = n->in(i); // Get ith input 1539 assert( m, "expect non-null children" ); 1540 if( m->is_Load() ) { 1541 if( input_mem == NULL ) { 1542 input_mem = m->in(MemNode::Memory); 1543 } else if( input_mem != m->in(MemNode::Memory) ) { 1544 input_mem = NodeSentinel; 1545 } 1546 } 1547 } 1548 1549 for( i = 1; i < cnt; i++ ){// For my children 1550 if( !n->match_edge(i) ) continue; 1551 Node *m = n->in(i); // Get ith input 1552 // Allocate states out of a private arena 1553 State *s = new (&_states_arena) State; 1554 svec->_kids[care++] = s; 1555 assert( care <= 2, "binary only for now" ); 1556 1557 // Recursively label the State tree. 1558 s->_kids[0] = NULL; 1559 s->_kids[1] = NULL; 1560 s->_leaf = m; 1561 1562 // Check for leaves of the State Tree; things that cannot be a part of 1563 // the current tree. If it finds any, that value is matched as a 1564 // register operand. If not, then the normal matching is used. 1565 if( match_into_reg(n, m, control, i, is_shared(m)) || 1566 // 1567 // Stop recursion if this is LoadNode and the root of this tree is a 1568 // StoreNode and the load & store have different memories. 1569 ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) || 1570 // Can NOT include the match of a subtree when its memory state 1571 // is used by any of the other subtrees 1572 (input_mem == NodeSentinel) ) { 1573 // Print when we exclude matching due to different memory states at input-loads 1574 if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel) 1575 && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) { 1576 tty->print_cr("invalid input_mem"); 1577 } 1578 // Switch to a register-only opcode; this value must be in a register 1579 // and cannot be subsumed as part of a larger instruction. 1580 s->DFA( m->ideal_reg(), m ); 1581 1582 } else { 1583 // If match tree has no control and we do, adopt it for entire tree 1584 if( control == NULL && m->in(0) != NULL && m->req() > 1 ) 1585 control = m->in(0); // Pick up control 1586 // Else match as a normal part of the match tree. 1587 control = Label_Root(m,s,control,mem); 1588 if (C->failing()) return NULL; 1589 } 1590 } 1591 1592 1593 // Call DFA to match this node, and return 1594 svec->DFA( n->Opcode(), n ); 1595 1596 #ifdef ASSERT 1597 uint x; 1598 for( x = 0; x < _LAST_MACH_OPER; x++ ) 1599 if( svec->valid(x) ) 1600 break; 1601 1602 if (x >= _LAST_MACH_OPER) { 1603 n->dump(); 1604 svec->dump(); 1605 assert( false, "bad AD file" ); 1606 } 1607 #endif 1608 return control; 1609 } 1610 1611 1612 // Con nodes reduced using the same rule can share their MachNode 1613 // which reduces the number of copies of a constant in the final 1614 // program. The register allocator is free to split uses later to 1615 // split live ranges. 1616 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) { 1617 if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL; 1618 1619 // See if this Con has already been reduced using this rule. 1620 if (_shared_nodes.Size() <= leaf->_idx) return NULL; 1621 MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx); 1622 if (last != NULL && rule == last->rule()) { 1623 // Don't expect control change for DecodeN 1624 if (leaf->is_DecodeNarrowPtr()) 1625 return last; 1626 // Get the new space root. 1627 Node* xroot = new_node(C->root()); 1628 if (xroot == NULL) { 1629 // This shouldn't happen give the order of matching. 1630 return NULL; 1631 } 1632 1633 // Shared constants need to have their control be root so they 1634 // can be scheduled properly. 1635 Node* control = last->in(0); 1636 if (control != xroot) { 1637 if (control == NULL || control == C->root()) { 1638 last->set_req(0, xroot); 1639 } else { 1640 assert(false, "unexpected control"); 1641 return NULL; 1642 } 1643 } 1644 return last; 1645 } 1646 return NULL; 1647 } 1648 1649 1650 //------------------------------ReduceInst------------------------------------- 1651 // Reduce a State tree (with given Control) into a tree of MachNodes. 1652 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into 1653 // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes. 1654 // Each MachNode has a number of complicated MachOper operands; each 1655 // MachOper also covers a further tree of Ideal Nodes. 1656 1657 // The root of the Ideal match tree is always an instruction, so we enter 1658 // the recursion here. After building the MachNode, we need to recurse 1659 // the tree checking for these cases: 1660 // (1) Child is an instruction - 1661 // Build the instruction (recursively), add it as an edge. 1662 // Build a simple operand (register) to hold the result of the instruction. 1663 // (2) Child is an interior part of an instruction - 1664 // Skip over it (do nothing) 1665 // (3) Child is the start of a operand - 1666 // Build the operand, place it inside the instruction 1667 // Call ReduceOper. 1668 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) { 1669 assert( rule >= NUM_OPERANDS, "called with operand rule" ); 1670 1671 MachNode* shared_node = find_shared_node(s->_leaf, rule); 1672 if (shared_node != NULL) { 1673 return shared_node; 1674 } 1675 1676 // Build the object to represent this state & prepare for recursive calls 1677 MachNode *mach = s->MachNodeGenerator(rule); 1678 mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]); 1679 assert( mach->_opnds[0] != NULL, "Missing result operand" ); 1680 Node *leaf = s->_leaf; 1681 // Check for instruction or instruction chain rule 1682 if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) { 1683 assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf), 1684 "duplicating node that's already been matched"); 1685 // Instruction 1686 mach->add_req( leaf->in(0) ); // Set initial control 1687 // Reduce interior of complex instruction 1688 ReduceInst_Interior( s, rule, mem, mach, 1 ); 1689 } else { 1690 // Instruction chain rules are data-dependent on their inputs 1691 mach->add_req(0); // Set initial control to none 1692 ReduceInst_Chain_Rule( s, rule, mem, mach ); 1693 } 1694 1695 // If a Memory was used, insert a Memory edge 1696 if( mem != (Node*)1 ) { 1697 mach->ins_req(MemNode::Memory,mem); 1698 #ifdef ASSERT 1699 // Verify adr type after matching memory operation 1700 const MachOper* oper = mach->memory_operand(); 1701 if (oper != NULL && oper != (MachOper*)-1) { 1702 // It has a unique memory operand. Find corresponding ideal mem node. 1703 Node* m = NULL; 1704 if (leaf->is_Mem()) { 1705 m = leaf; 1706 } else { 1707 m = _mem_node; 1708 assert(m != NULL && m->is_Mem(), "expecting memory node"); 1709 } 1710 const Type* mach_at = mach->adr_type(); 1711 // DecodeN node consumed by an address may have different type 1712 // then its input. Don't compare types for such case. 1713 if (m->adr_type() != mach_at && 1714 (m->in(MemNode::Address)->is_DecodeNarrowPtr() || 1715 m->in(MemNode::Address)->is_AddP() && 1716 m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() || 1717 m->in(MemNode::Address)->is_AddP() && 1718 m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() && 1719 m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) { 1720 mach_at = m->adr_type(); 1721 } 1722 if (m->adr_type() != mach_at) { 1723 m->dump(); 1724 tty->print_cr("mach:"); 1725 mach->dump(1); 1726 } 1727 assert(m->adr_type() == mach_at, "matcher should not change adr type"); 1728 } 1729 #endif 1730 } 1731 1732 // If the _leaf is an AddP, insert the base edge 1733 if (leaf->is_AddP()) { 1734 mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base)); 1735 } 1736 1737 uint number_of_projections_prior = number_of_projections(); 1738 1739 // Perform any 1-to-many expansions required 1740 MachNode *ex = mach->Expand(s, _projection_list, mem); 1741 if (ex != mach) { 1742 assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match"); 1743 if( ex->in(1)->is_Con() ) 1744 ex->in(1)->set_req(0, C->root()); 1745 // Remove old node from the graph 1746 for( uint i=0; i<mach->req(); i++ ) { 1747 mach->set_req(i,NULL); 1748 } 1749 #ifdef ASSERT 1750 _new2old_map.map(ex->_idx, s->_leaf); 1751 #endif 1752 } 1753 1754 // PhaseChaitin::fixup_spills will sometimes generate spill code 1755 // via the matcher. By the time, nodes have been wired into the CFG, 1756 // and any further nodes generated by expand rules will be left hanging 1757 // in space, and will not get emitted as output code. Catch this. 1758 // Also, catch any new register allocation constraints ("projections") 1759 // generated belatedly during spill code generation. 1760 if (_allocation_started) { 1761 guarantee(ex == mach, "no expand rules during spill generation"); 1762 guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation"); 1763 } 1764 1765 if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) { 1766 // Record the con for sharing 1767 _shared_nodes.map(leaf->_idx, ex); 1768 } 1769 1770 return ex; 1771 } 1772 1773 void Matcher::handle_precedence_edges(Node* n, MachNode *mach) { 1774 for (uint i = n->req(); i < n->len(); i++) { 1775 if (n->in(i) != NULL) { 1776 mach->add_prec(n->in(i)); 1777 } 1778 } 1779 } 1780 1781 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) { 1782 // 'op' is what I am expecting to receive 1783 int op = _leftOp[rule]; 1784 // Operand type to catch childs result 1785 // This is what my child will give me. 1786 int opnd_class_instance = s->_rule[op]; 1787 // Choose between operand class or not. 1788 // This is what I will receive. 1789 int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op; 1790 // New rule for child. Chase operand classes to get the actual rule. 1791 int newrule = s->_rule[catch_op]; 1792 1793 if( newrule < NUM_OPERANDS ) { 1794 // Chain from operand or operand class, may be output of shared node 1795 assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS, 1796 "Bad AD file: Instruction chain rule must chain from operand"); 1797 // Insert operand into array of operands for this instruction 1798 mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance); 1799 1800 ReduceOper( s, newrule, mem, mach ); 1801 } else { 1802 // Chain from the result of an instruction 1803 assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand"); 1804 mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]); 1805 Node *mem1 = (Node*)1; 1806 debug_only(Node *save_mem_node = _mem_node;) 1807 mach->add_req( ReduceInst(s, newrule, mem1) ); 1808 debug_only(_mem_node = save_mem_node;) 1809 } 1810 return; 1811 } 1812 1813 1814 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) { 1815 handle_precedence_edges(s->_leaf, mach); 1816 1817 if( s->_leaf->is_Load() ) { 1818 Node *mem2 = s->_leaf->in(MemNode::Memory); 1819 assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" ); 1820 debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;) 1821 mem = mem2; 1822 } 1823 if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) { 1824 if( mach->in(0) == NULL ) 1825 mach->set_req(0, s->_leaf->in(0)); 1826 } 1827 1828 // Now recursively walk the state tree & add operand list. 1829 for( uint i=0; i<2; i++ ) { // binary tree 1830 State *newstate = s->_kids[i]; 1831 if( newstate == NULL ) break; // Might only have 1 child 1832 // 'op' is what I am expecting to receive 1833 int op; 1834 if( i == 0 ) { 1835 op = _leftOp[rule]; 1836 } else { 1837 op = _rightOp[rule]; 1838 } 1839 // Operand type to catch childs result 1840 // This is what my child will give me. 1841 int opnd_class_instance = newstate->_rule[op]; 1842 // Choose between operand class or not. 1843 // This is what I will receive. 1844 int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op; 1845 // New rule for child. Chase operand classes to get the actual rule. 1846 int newrule = newstate->_rule[catch_op]; 1847 1848 if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction? 1849 // Operand/operandClass 1850 // Insert operand into array of operands for this instruction 1851 mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance); 1852 ReduceOper( newstate, newrule, mem, mach ); 1853 1854 } else { // Child is internal operand or new instruction 1855 if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction? 1856 // internal operand --> call ReduceInst_Interior 1857 // Interior of complex instruction. Do nothing but recurse. 1858 num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds ); 1859 } else { 1860 // instruction --> call build operand( ) to catch result 1861 // --> ReduceInst( newrule ) 1862 mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]); 1863 Node *mem1 = (Node*)1; 1864 debug_only(Node *save_mem_node = _mem_node;) 1865 mach->add_req( ReduceInst( newstate, newrule, mem1 ) ); 1866 debug_only(_mem_node = save_mem_node;) 1867 } 1868 } 1869 assert( mach->_opnds[num_opnds-1], "" ); 1870 } 1871 return num_opnds; 1872 } 1873 1874 // This routine walks the interior of possible complex operands. 1875 // At each point we check our children in the match tree: 1876 // (1) No children - 1877 // We are a leaf; add _leaf field as an input to the MachNode 1878 // (2) Child is an internal operand - 1879 // Skip over it ( do nothing ) 1880 // (3) Child is an instruction - 1881 // Call ReduceInst recursively and 1882 // and instruction as an input to the MachNode 1883 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) { 1884 assert( rule < _LAST_MACH_OPER, "called with operand rule" ); 1885 State *kid = s->_kids[0]; 1886 assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" ); 1887 1888 // Leaf? And not subsumed? 1889 if( kid == NULL && !_swallowed[rule] ) { 1890 mach->add_req( s->_leaf ); // Add leaf pointer 1891 return; // Bail out 1892 } 1893 1894 if( s->_leaf->is_Load() ) { 1895 assert( mem == (Node*)1, "multiple Memories being matched at once?" ); 1896 mem = s->_leaf->in(MemNode::Memory); 1897 debug_only(_mem_node = s->_leaf;) 1898 } 1899 1900 handle_precedence_edges(s->_leaf, mach); 1901 1902 if( s->_leaf->in(0) && s->_leaf->req() > 1) { 1903 if( !mach->in(0) ) 1904 mach->set_req(0,s->_leaf->in(0)); 1905 else { 1906 assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" ); 1907 } 1908 } 1909 1910 for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) { // binary tree 1911 int newrule; 1912 if( i == 0) 1913 newrule = kid->_rule[_leftOp[rule]]; 1914 else 1915 newrule = kid->_rule[_rightOp[rule]]; 1916 1917 if( newrule < _LAST_MACH_OPER ) { // Operand or instruction? 1918 // Internal operand; recurse but do nothing else 1919 ReduceOper( kid, newrule, mem, mach ); 1920 1921 } else { // Child is a new instruction 1922 // Reduce the instruction, and add a direct pointer from this 1923 // machine instruction to the newly reduced one. 1924 Node *mem1 = (Node*)1; 1925 debug_only(Node *save_mem_node = _mem_node;) 1926 mach->add_req( ReduceInst( kid, newrule, mem1 ) ); 1927 debug_only(_mem_node = save_mem_node;) 1928 } 1929 } 1930 } 1931 1932 1933 // ------------------------------------------------------------------------- 1934 // Java-Java calling convention 1935 // (what you use when Java calls Java) 1936 1937 //------------------------------find_receiver---------------------------------- 1938 // For a given signature, return the OptoReg for parameter 0. 1939 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) { 1940 VMRegPair regs; 1941 BasicType sig_bt = T_OBJECT; 1942 calling_convention(&sig_bt, ®s, 1, is_outgoing); 1943 // Return argument 0 register. In the LP64 build pointers 1944 // take 2 registers, but the VM wants only the 'main' name. 1945 return OptoReg::as_OptoReg(regs.first()); 1946 } 1947 1948 // This function identifies sub-graphs in which a 'load' node is 1949 // input to two different nodes, and such that it can be matched 1950 // with BMI instructions like blsi, blsr, etc. 1951 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32. 1952 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL* 1953 // refers to the same node. 1954 #ifdef X86 1955 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop) 1956 // This is a temporary solution until we make DAGs expressible in ADL. 1957 template<typename ConType> 1958 class FusedPatternMatcher { 1959 Node* _op1_node; 1960 Node* _mop_node; 1961 int _con_op; 1962 1963 static int match_next(Node* n, int next_op, int next_op_idx) { 1964 if (n->in(1) == NULL || n->in(2) == NULL) { 1965 return -1; 1966 } 1967 1968 if (next_op_idx == -1) { // n is commutative, try rotations 1969 if (n->in(1)->Opcode() == next_op) { 1970 return 1; 1971 } else if (n->in(2)->Opcode() == next_op) { 1972 return 2; 1973 } 1974 } else { 1975 assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index"); 1976 if (n->in(next_op_idx)->Opcode() == next_op) { 1977 return next_op_idx; 1978 } 1979 } 1980 return -1; 1981 } 1982 public: 1983 FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) : 1984 _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { } 1985 1986 bool match(int op1, int op1_op2_idx, // op1 and the index of the op1->op2 edge, -1 if op1 is commutative 1987 int op2, int op2_con_idx, // op2 and the index of the op2->con edge, -1 if op2 is commutative 1988 typename ConType::NativeType con_value) { 1989 if (_op1_node->Opcode() != op1) { 1990 return false; 1991 } 1992 if (_mop_node->outcnt() > 2) { 1993 return false; 1994 } 1995 op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx); 1996 if (op1_op2_idx == -1) { 1997 return false; 1998 } 1999 // Memory operation must be the other edge 2000 int op1_mop_idx = (op1_op2_idx & 1) + 1; 2001 2002 // Check that the mop node is really what we want 2003 if (_op1_node->in(op1_mop_idx) == _mop_node) { 2004 Node *op2_node = _op1_node->in(op1_op2_idx); 2005 if (op2_node->outcnt() > 1) { 2006 return false; 2007 } 2008 assert(op2_node->Opcode() == op2, "Should be"); 2009 op2_con_idx = match_next(op2_node, _con_op, op2_con_idx); 2010 if (op2_con_idx == -1) { 2011 return false; 2012 } 2013 // Memory operation must be the other edge 2014 int op2_mop_idx = (op2_con_idx & 1) + 1; 2015 // Check that the memory operation is the same node 2016 if (op2_node->in(op2_mop_idx) == _mop_node) { 2017 // Now check the constant 2018 const Type* con_type = op2_node->in(op2_con_idx)->bottom_type(); 2019 if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) { 2020 return true; 2021 } 2022 } 2023 } 2024 return false; 2025 } 2026 }; 2027 2028 2029 bool Matcher::is_bmi_pattern(Node *n, Node *m) { 2030 if (n != NULL && m != NULL) { 2031 if (m->Opcode() == Op_LoadI) { 2032 FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI); 2033 return bmii.match(Op_AndI, -1, Op_SubI, 1, 0) || 2034 bmii.match(Op_AndI, -1, Op_AddI, -1, -1) || 2035 bmii.match(Op_XorI, -1, Op_AddI, -1, -1); 2036 } else if (m->Opcode() == Op_LoadL) { 2037 FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL); 2038 return bmil.match(Op_AndL, -1, Op_SubL, 1, 0) || 2039 bmil.match(Op_AndL, -1, Op_AddL, -1, -1) || 2040 bmil.match(Op_XorL, -1, Op_AddL, -1, -1); 2041 } 2042 } 2043 return false; 2044 } 2045 #endif // X86 2046 2047 // A method-klass-holder may be passed in the inline_cache_reg 2048 // and then expanded into the inline_cache_reg and a method_oop register 2049 // defined in ad_<arch>.cpp 2050 2051 // Check for shift by small constant as well 2052 static bool clone_shift(Node* shift, Matcher* matcher, MStack& mstack, VectorSet& address_visited) { 2053 if (shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() && 2054 shift->in(2)->get_int() <= 3 && 2055 // Are there other uses besides address expressions? 2056 !matcher->is_visited(shift)) { 2057 address_visited.set(shift->_idx); // Flag as address_visited 2058 mstack.push(shift->in(2), Visit); 2059 Node *conv = shift->in(1); 2060 #ifdef _LP64 2061 // Allow Matcher to match the rule which bypass 2062 // ConvI2L operation for an array index on LP64 2063 // if the index value is positive. 2064 if (conv->Opcode() == Op_ConvI2L && 2065 conv->as_Type()->type()->is_long()->_lo >= 0 && 2066 // Are there other uses besides address expressions? 2067 !matcher->is_visited(conv)) { 2068 address_visited.set(conv->_idx); // Flag as address_visited 2069 mstack.push(conv->in(1), Pre_Visit); 2070 } else 2071 #endif 2072 mstack.push(conv, Pre_Visit); 2073 return true; 2074 } 2075 return false; 2076 } 2077 2078 2079 //------------------------------find_shared------------------------------------ 2080 // Set bits if Node is shared or otherwise a root 2081 void Matcher::find_shared( Node *n ) { 2082 // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc 2083 MStack mstack(C->live_nodes() * 2); 2084 // Mark nodes as address_visited if they are inputs to an address expression 2085 VectorSet address_visited(Thread::current()->resource_area()); 2086 mstack.push(n, Visit); // Don't need to pre-visit root node 2087 while (mstack.is_nonempty()) { 2088 n = mstack.node(); // Leave node on stack 2089 Node_State nstate = mstack.state(); 2090 uint nop = n->Opcode(); 2091 if (nstate == Pre_Visit) { 2092 if (address_visited.test(n->_idx)) { // Visited in address already? 2093 // Flag as visited and shared now. 2094 set_visited(n); 2095 } 2096 if (is_visited(n)) { // Visited already? 2097 // Node is shared and has no reason to clone. Flag it as shared. 2098 // This causes it to match into a register for the sharing. 2099 set_shared(n); // Flag as shared and 2100 mstack.pop(); // remove node from stack 2101 continue; 2102 } 2103 nstate = Visit; // Not already visited; so visit now 2104 } 2105 if (nstate == Visit) { 2106 mstack.set_state(Post_Visit); 2107 set_visited(n); // Flag as visited now 2108 bool mem_op = false; 2109 2110 switch( nop ) { // Handle some opcodes special 2111 case Op_Phi: // Treat Phis as shared roots 2112 case Op_Parm: 2113 case Op_Proj: // All handled specially during matching 2114 case Op_SafePointScalarObject: 2115 set_shared(n); 2116 set_dontcare(n); 2117 break; 2118 case Op_If: 2119 case Op_CountedLoopEnd: 2120 mstack.set_state(Alt_Post_Visit); // Alternative way 2121 // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps 2122 // with matching cmp/branch in 1 instruction. The Matcher needs the 2123 // Bool and CmpX side-by-side, because it can only get at constants 2124 // that are at the leaves of Match trees, and the Bool's condition acts 2125 // as a constant here. 2126 mstack.push(n->in(1), Visit); // Clone the Bool 2127 mstack.push(n->in(0), Pre_Visit); // Visit control input 2128 continue; // while (mstack.is_nonempty()) 2129 case Op_ConvI2D: // These forms efficiently match with a prior 2130 case Op_ConvI2F: // Load but not a following Store 2131 if( n->in(1)->is_Load() && // Prior load 2132 n->outcnt() == 1 && // Not already shared 2133 n->unique_out()->is_Store() ) // Following store 2134 set_shared(n); // Force it to be a root 2135 break; 2136 case Op_ReverseBytesI: 2137 case Op_ReverseBytesL: 2138 if( n->in(1)->is_Load() && // Prior load 2139 n->outcnt() == 1 ) // Not already shared 2140 set_shared(n); // Force it to be a root 2141 break; 2142 case Op_BoxLock: // Cant match until we get stack-regs in ADLC 2143 case Op_IfFalse: 2144 case Op_IfTrue: 2145 case Op_MachProj: 2146 case Op_MergeMem: 2147 case Op_Catch: 2148 case Op_CatchProj: 2149 case Op_CProj: 2150 case Op_JumpProj: 2151 case Op_JProj: 2152 case Op_NeverBranch: 2153 set_dontcare(n); 2154 break; 2155 case Op_Jump: 2156 mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared) 2157 mstack.push(n->in(0), Pre_Visit); // Visit Control input 2158 continue; // while (mstack.is_nonempty()) 2159 case Op_StrComp: 2160 case Op_StrEquals: 2161 case Op_StrIndexOf: 2162 case Op_StrIndexOfChar: 2163 case Op_AryEq: 2164 case Op_HasNegatives: 2165 case Op_StrInflatedCopy: 2166 case Op_StrCompressedCopy: 2167 case Op_EncodeISOArray: 2168 set_shared(n); // Force result into register (it will be anyways) 2169 break; 2170 case Op_ConP: { // Convert pointers above the centerline to NUL 2171 TypeNode *tn = n->as_Type(); // Constants derive from type nodes 2172 const TypePtr* tp = tn->type()->is_ptr(); 2173 if (tp->_ptr == TypePtr::AnyNull) { 2174 tn->set_type(TypePtr::NULL_PTR); 2175 } 2176 break; 2177 } 2178 case Op_ConN: { // Convert narrow pointers above the centerline to NUL 2179 TypeNode *tn = n->as_Type(); // Constants derive from type nodes 2180 const TypePtr* tp = tn->type()->make_ptr(); 2181 if (tp && tp->_ptr == TypePtr::AnyNull) { 2182 tn->set_type(TypeNarrowOop::NULL_PTR); 2183 } 2184 break; 2185 } 2186 case Op_Binary: // These are introduced in the Post_Visit state. 2187 ShouldNotReachHere(); 2188 break; 2189 case Op_ClearArray: 2190 case Op_SafePoint: 2191 mem_op = true; 2192 break; 2193 default: 2194 if( n->is_Store() ) { 2195 // Do match stores, despite no ideal reg 2196 mem_op = true; 2197 break; 2198 } 2199 if( n->is_Mem() ) { // Loads and LoadStores 2200 mem_op = true; 2201 // Loads must be root of match tree due to prior load conflict 2202 if( C->subsume_loads() == false ) 2203 set_shared(n); 2204 } 2205 // Fall into default case 2206 if( !n->ideal_reg() ) 2207 set_dontcare(n); // Unmatchable Nodes 2208 } // end_switch 2209 2210 for(int i = n->req() - 1; i >= 0; --i) { // For my children 2211 Node *m = n->in(i); // Get ith input 2212 if (m == NULL) continue; // Ignore NULLs 2213 uint mop = m->Opcode(); 2214 2215 // Must clone all producers of flags, or we will not match correctly. 2216 // Suppose a compare setting int-flags is shared (e.g., a switch-tree) 2217 // then it will match into an ideal Op_RegFlags. Alas, the fp-flags 2218 // are also there, so we may match a float-branch to int-flags and 2219 // expect the allocator to haul the flags from the int-side to the 2220 // fp-side. No can do. 2221 if( _must_clone[mop] ) { 2222 mstack.push(m, Visit); 2223 continue; // for(int i = ...) 2224 } 2225 2226 if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) { 2227 // Bases used in addresses must be shared but since 2228 // they are shared through a DecodeN they may appear 2229 // to have a single use so force sharing here. 2230 set_shared(m->in(AddPNode::Base)->in(1)); 2231 } 2232 2233 // if 'n' and 'm' are part of a graph for BMI instruction, clone this node. 2234 #ifdef X86 2235 if (UseBMI1Instructions && is_bmi_pattern(n, m)) { 2236 mstack.push(m, Visit); 2237 continue; 2238 } 2239 #endif 2240 2241 // Clone addressing expressions as they are "free" in memory access instructions 2242 if (mem_op && i == MemNode::Address && mop == Op_AddP && 2243 // When there are other uses besides address expressions 2244 // put it on stack and mark as shared. 2245 !is_visited(m)) { 2246 // Some inputs for address expression are not put on stack 2247 // to avoid marking them as shared and forcing them into register 2248 // if they are used only in address expressions. 2249 // But they should be marked as shared if there are other uses 2250 // besides address expressions. 2251 2252 Node *off = m->in(AddPNode::Offset); 2253 if (off->is_Con()) { 2254 address_visited.test_set(m->_idx); // Flag as address_visited 2255 Node *adr = m->in(AddPNode::Address); 2256 2257 // Intel, ARM and friends can handle 2 adds in addressing mode 2258 if( clone_shift_expressions && adr->is_AddP() && 2259 // AtomicAdd is not an addressing expression. 2260 // Cheap to find it by looking for screwy base. 2261 !adr->in(AddPNode::Base)->is_top() && 2262 // Are there other uses besides address expressions? 2263 !is_visited(adr) ) { 2264 address_visited.set(adr->_idx); // Flag as address_visited 2265 Node *shift = adr->in(AddPNode::Offset); 2266 if (!clone_shift(shift, this, mstack, address_visited)) { 2267 mstack.push(shift, Pre_Visit); 2268 } 2269 mstack.push(adr->in(AddPNode::Address), Pre_Visit); 2270 mstack.push(adr->in(AddPNode::Base), Pre_Visit); 2271 } else { // Sparc, Alpha, PPC and friends 2272 mstack.push(adr, Pre_Visit); 2273 } 2274 2275 // Clone X+offset as it also folds into most addressing expressions 2276 mstack.push(off, Visit); 2277 mstack.push(m->in(AddPNode::Base), Pre_Visit); 2278 continue; // for(int i = ...) 2279 } else if (clone_shift_expressions && 2280 clone_shift(off, this, mstack, address_visited)) { 2281 address_visited.test_set(m->_idx); // Flag as address_visited 2282 mstack.push(m->in(AddPNode::Address), Pre_Visit); 2283 mstack.push(m->in(AddPNode::Base), Pre_Visit); 2284 continue; 2285 } // if( off->is_Con() ) 2286 } // if( mem_op && 2287 mstack.push(m, Pre_Visit); 2288 } // for(int i = ...) 2289 } 2290 else if (nstate == Alt_Post_Visit) { 2291 mstack.pop(); // Remove node from stack 2292 // We cannot remove the Cmp input from the Bool here, as the Bool may be 2293 // shared and all users of the Bool need to move the Cmp in parallel. 2294 // This leaves both the Bool and the If pointing at the Cmp. To 2295 // prevent the Matcher from trying to Match the Cmp along both paths 2296 // BoolNode::match_edge always returns a zero. 2297 2298 // We reorder the Op_If in a pre-order manner, so we can visit without 2299 // accidentally sharing the Cmp (the Bool and the If make 2 users). 2300 n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool 2301 } 2302 else if (nstate == Post_Visit) { 2303 mstack.pop(); // Remove node from stack 2304 2305 // Now hack a few special opcodes 2306 switch( n->Opcode() ) { // Handle some opcodes special 2307 case Op_StorePConditional: 2308 case Op_StoreIConditional: 2309 case Op_StoreLConditional: 2310 case Op_CompareAndExchangeI: 2311 case Op_CompareAndExchangeL: 2312 case Op_CompareAndExchangeP: 2313 case Op_CompareAndExchangeN: 2314 case Op_WeakCompareAndSwapI: 2315 case Op_WeakCompareAndSwapL: 2316 case Op_WeakCompareAndSwapP: 2317 case Op_WeakCompareAndSwapN: 2318 case Op_CompareAndSwapI: 2319 case Op_CompareAndSwapL: 2320 case Op_CompareAndSwapP: 2321 case Op_CompareAndSwapN: { // Convert trinary to binary-tree 2322 Node *newval = n->in(MemNode::ValueIn ); 2323 Node *oldval = n->in(LoadStoreConditionalNode::ExpectedIn); 2324 Node *pair = new BinaryNode( oldval, newval ); 2325 n->set_req(MemNode::ValueIn,pair); 2326 n->del_req(LoadStoreConditionalNode::ExpectedIn); 2327 break; 2328 } 2329 case Op_CMoveD: // Convert trinary to binary-tree 2330 case Op_CMoveF: 2331 case Op_CMoveI: 2332 case Op_CMoveL: 2333 case Op_CMoveN: 2334 case Op_CMoveP: 2335 case Op_CMoveVD: { 2336 // Restructure into a binary tree for Matching. It's possible that 2337 // we could move this code up next to the graph reshaping for IfNodes 2338 // or vice-versa, but I do not want to debug this for Ladybird. 2339 // 10/2/2000 CNC. 2340 Node *pair1 = new BinaryNode(n->in(1),n->in(1)->in(1)); 2341 n->set_req(1,pair1); 2342 Node *pair2 = new BinaryNode(n->in(2),n->in(3)); 2343 n->set_req(2,pair2); 2344 n->del_req(3); 2345 break; 2346 } 2347 case Op_LoopLimit: { 2348 Node *pair1 = new BinaryNode(n->in(1),n->in(2)); 2349 n->set_req(1,pair1); 2350 n->set_req(2,n->in(3)); 2351 n->del_req(3); 2352 break; 2353 } 2354 case Op_StrEquals: 2355 case Op_StrIndexOfChar: { 2356 Node *pair1 = new BinaryNode(n->in(2),n->in(3)); 2357 n->set_req(2,pair1); 2358 n->set_req(3,n->in(4)); 2359 n->del_req(4); 2360 break; 2361 } 2362 case Op_StrComp: 2363 case Op_StrIndexOf: { 2364 Node *pair1 = new BinaryNode(n->in(2),n->in(3)); 2365 n->set_req(2,pair1); 2366 Node *pair2 = new BinaryNode(n->in(4),n->in(5)); 2367 n->set_req(3,pair2); 2368 n->del_req(5); 2369 n->del_req(4); 2370 break; 2371 } 2372 case Op_StrCompressedCopy: 2373 case Op_StrInflatedCopy: 2374 case Op_EncodeISOArray: { 2375 // Restructure into a binary tree for Matching. 2376 Node* pair = new BinaryNode(n->in(3), n->in(4)); 2377 n->set_req(3, pair); 2378 n->del_req(4); 2379 break; 2380 } 2381 default: 2382 break; 2383 } 2384 } 2385 else { 2386 ShouldNotReachHere(); 2387 } 2388 } // end of while (mstack.is_nonempty()) 2389 } 2390 2391 #ifdef ASSERT 2392 // machine-independent root to machine-dependent root 2393 void Matcher::dump_old2new_map() { 2394 _old2new_map.dump(); 2395 } 2396 #endif 2397 2398 //---------------------------collect_null_checks------------------------------- 2399 // Find null checks in the ideal graph; write a machine-specific node for 2400 // it. Used by later implicit-null-check handling. Actually collects 2401 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal 2402 // value being tested. 2403 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) { 2404 Node *iff = proj->in(0); 2405 if( iff->Opcode() == Op_If ) { 2406 // During matching If's have Bool & Cmp side-by-side 2407 BoolNode *b = iff->in(1)->as_Bool(); 2408 Node *cmp = iff->in(2); 2409 int opc = cmp->Opcode(); 2410 if (opc != Op_CmpP && opc != Op_CmpN) return; 2411 2412 const Type* ct = cmp->in(2)->bottom_type(); 2413 if (ct == TypePtr::NULL_PTR || 2414 (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) { 2415 2416 bool push_it = false; 2417 if( proj->Opcode() == Op_IfTrue ) { 2418 #ifndef PRODUCT 2419 extern int all_null_checks_found; 2420 all_null_checks_found++; 2421 #endif 2422 if( b->_test._test == BoolTest::ne ) { 2423 push_it = true; 2424 } 2425 } else { 2426 assert( proj->Opcode() == Op_IfFalse, "" ); 2427 if( b->_test._test == BoolTest::eq ) { 2428 push_it = true; 2429 } 2430 } 2431 if( push_it ) { 2432 _null_check_tests.push(proj); 2433 Node* val = cmp->in(1); 2434 #ifdef _LP64 2435 if (val->bottom_type()->isa_narrowoop() && 2436 !Matcher::narrow_oop_use_complex_address()) { 2437 // 2438 // Look for DecodeN node which should be pinned to orig_proj. 2439 // On platforms (Sparc) which can not handle 2 adds 2440 // in addressing mode we have to keep a DecodeN node and 2441 // use it to do implicit NULL check in address. 2442 // 2443 // DecodeN node was pinned to non-null path (orig_proj) during 2444 // CastPP transformation in final_graph_reshaping_impl(). 2445 // 2446 uint cnt = orig_proj->outcnt(); 2447 for (uint i = 0; i < orig_proj->outcnt(); i++) { 2448 Node* d = orig_proj->raw_out(i); 2449 if (d->is_DecodeN() && d->in(1) == val) { 2450 val = d; 2451 val->set_req(0, NULL); // Unpin now. 2452 // Mark this as special case to distinguish from 2453 // a regular case: CmpP(DecodeN, NULL). 2454 val = (Node*)(((intptr_t)val) | 1); 2455 break; 2456 } 2457 } 2458 } 2459 #endif 2460 _null_check_tests.push(val); 2461 } 2462 } 2463 } 2464 } 2465 2466 //---------------------------validate_null_checks------------------------------ 2467 // Its possible that the value being NULL checked is not the root of a match 2468 // tree. If so, I cannot use the value in an implicit null check. 2469 void Matcher::validate_null_checks( ) { 2470 uint cnt = _null_check_tests.size(); 2471 for( uint i=0; i < cnt; i+=2 ) { 2472 Node *test = _null_check_tests[i]; 2473 Node *val = _null_check_tests[i+1]; 2474 bool is_decoden = ((intptr_t)val) & 1; 2475 val = (Node*)(((intptr_t)val) & ~1); 2476 if (has_new_node(val)) { 2477 Node* new_val = new_node(val); 2478 if (is_decoden) { 2479 assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity"); 2480 // Note: new_val may have a control edge if 2481 // the original ideal node DecodeN was matched before 2482 // it was unpinned in Matcher::collect_null_checks(). 2483 // Unpin the mach node and mark it. 2484 new_val->set_req(0, NULL); 2485 new_val = (Node*)(((intptr_t)new_val) | 1); 2486 } 2487 // Is a match-tree root, so replace with the matched value 2488 _null_check_tests.map(i+1, new_val); 2489 } else { 2490 // Yank from candidate list 2491 _null_check_tests.map(i+1,_null_check_tests[--cnt]); 2492 _null_check_tests.map(i,_null_check_tests[--cnt]); 2493 _null_check_tests.pop(); 2494 _null_check_tests.pop(); 2495 i-=2; 2496 } 2497 } 2498 } 2499 2500 // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or 2501 // atomic instruction acting as a store_load barrier without any 2502 // intervening volatile load, and thus we don't need a barrier here. 2503 // We retain the Node to act as a compiler ordering barrier. 2504 bool Matcher::post_store_load_barrier(const Node* vmb) { 2505 Compile* C = Compile::current(); 2506 assert(vmb->is_MemBar(), ""); 2507 assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, ""); 2508 const MemBarNode* membar = vmb->as_MemBar(); 2509 2510 // Get the Ideal Proj node, ctrl, that can be used to iterate forward 2511 Node* ctrl = NULL; 2512 for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) { 2513 Node* p = membar->fast_out(i); 2514 assert(p->is_Proj(), "only projections here"); 2515 if ((p->as_Proj()->_con == TypeFunc::Control) && 2516 !C->node_arena()->contains(p)) { // Unmatched old-space only 2517 ctrl = p; 2518 break; 2519 } 2520 } 2521 assert((ctrl != NULL), "missing control projection"); 2522 2523 for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) { 2524 Node *x = ctrl->fast_out(j); 2525 int xop = x->Opcode(); 2526 2527 // We don't need current barrier if we see another or a lock 2528 // before seeing volatile load. 2529 // 2530 // Op_Fastunlock previously appeared in the Op_* list below. 2531 // With the advent of 1-0 lock operations we're no longer guaranteed 2532 // that a monitor exit operation contains a serializing instruction. 2533 2534 if (xop == Op_MemBarVolatile || 2535 xop == Op_CompareAndExchangeI || 2536 xop == Op_CompareAndExchangeL || 2537 xop == Op_CompareAndExchangeP || 2538 xop == Op_CompareAndExchangeN || 2539 xop == Op_WeakCompareAndSwapL || 2540 xop == Op_WeakCompareAndSwapP || 2541 xop == Op_WeakCompareAndSwapN || 2542 xop == Op_WeakCompareAndSwapI || 2543 xop == Op_CompareAndSwapL || 2544 xop == Op_CompareAndSwapP || 2545 xop == Op_CompareAndSwapN || 2546 xop == Op_CompareAndSwapI) { 2547 return true; 2548 } 2549 2550 // Op_FastLock previously appeared in the Op_* list above. 2551 // With biased locking we're no longer guaranteed that a monitor 2552 // enter operation contains a serializing instruction. 2553 if ((xop == Op_FastLock) && !UseBiasedLocking) { 2554 return true; 2555 } 2556 2557 if (x->is_MemBar()) { 2558 // We must retain this membar if there is an upcoming volatile 2559 // load, which will be followed by acquire membar. 2560 if (xop == Op_MemBarAcquire || xop == Op_LoadFence) { 2561 return false; 2562 } else { 2563 // For other kinds of barriers, check by pretending we 2564 // are them, and seeing if we can be removed. 2565 return post_store_load_barrier(x->as_MemBar()); 2566 } 2567 } 2568 2569 // probably not necessary to check for these 2570 if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) { 2571 return false; 2572 } 2573 } 2574 return false; 2575 } 2576 2577 // Check whether node n is a branch to an uncommon trap that we could 2578 // optimize as test with very high branch costs in case of going to 2579 // the uncommon trap. The code must be able to be recompiled to use 2580 // a cheaper test. 2581 bool Matcher::branches_to_uncommon_trap(const Node *n) { 2582 // Don't do it for natives, adapters, or runtime stubs 2583 Compile *C = Compile::current(); 2584 if (!C->is_method_compilation()) return false; 2585 2586 assert(n->is_If(), "You should only call this on if nodes."); 2587 IfNode *ifn = n->as_If(); 2588 2589 Node *ifFalse = NULL; 2590 for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) { 2591 if (ifn->fast_out(i)->is_IfFalse()) { 2592 ifFalse = ifn->fast_out(i); 2593 break; 2594 } 2595 } 2596 assert(ifFalse, "An If should have an ifFalse. Graph is broken."); 2597 2598 Node *reg = ifFalse; 2599 int cnt = 4; // We must protect against cycles. Limit to 4 iterations. 2600 // Alternatively use visited set? Seems too expensive. 2601 while (reg != NULL && cnt > 0) { 2602 CallNode *call = NULL; 2603 RegionNode *nxt_reg = NULL; 2604 for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) { 2605 Node *o = reg->fast_out(i); 2606 if (o->is_Call()) { 2607 call = o->as_Call(); 2608 } 2609 if (o->is_Region()) { 2610 nxt_reg = o->as_Region(); 2611 } 2612 } 2613 2614 if (call && 2615 call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) { 2616 const Type* trtype = call->in(TypeFunc::Parms)->bottom_type(); 2617 if (trtype->isa_int() && trtype->is_int()->is_con()) { 2618 jint tr_con = trtype->is_int()->get_con(); 2619 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con); 2620 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con); 2621 assert((int)reason < (int)BitsPerInt, "recode bit map"); 2622 2623 if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason) 2624 && action != Deoptimization::Action_none) { 2625 // This uncommon trap is sure to recompile, eventually. 2626 // When that happens, C->too_many_traps will prevent 2627 // this transformation from happening again. 2628 return true; 2629 } 2630 } 2631 } 2632 2633 reg = nxt_reg; 2634 cnt--; 2635 } 2636 2637 return false; 2638 } 2639 2640 //============================================================================= 2641 //---------------------------State--------------------------------------------- 2642 State::State(void) { 2643 #ifdef ASSERT 2644 _id = 0; 2645 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe); 2646 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d); 2647 //memset(_cost, -1, sizeof(_cost)); 2648 //memset(_rule, -1, sizeof(_rule)); 2649 #endif 2650 memset(_valid, 0, sizeof(_valid)); 2651 } 2652 2653 #ifdef ASSERT 2654 State::~State() { 2655 _id = 99; 2656 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe); 2657 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d); 2658 memset(_cost, -3, sizeof(_cost)); 2659 memset(_rule, -3, sizeof(_rule)); 2660 } 2661 #endif 2662 2663 #ifndef PRODUCT 2664 //---------------------------dump---------------------------------------------- 2665 void State::dump() { 2666 tty->print("\n"); 2667 dump(0); 2668 } 2669 2670 void State::dump(int depth) { 2671 for( int j = 0; j < depth; j++ ) 2672 tty->print(" "); 2673 tty->print("--N: "); 2674 _leaf->dump(); 2675 uint i; 2676 for( i = 0; i < _LAST_MACH_OPER; i++ ) 2677 // Check for valid entry 2678 if( valid(i) ) { 2679 for( int j = 0; j < depth; j++ ) 2680 tty->print(" "); 2681 assert(_cost[i] != max_juint, "cost must be a valid value"); 2682 assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule"); 2683 tty->print_cr("%s %d %s", 2684 ruleName[i], _cost[i], ruleName[_rule[i]] ); 2685 } 2686 tty->cr(); 2687 2688 for( i=0; i<2; i++ ) 2689 if( _kids[i] ) 2690 _kids[i]->dump(depth+1); 2691 } 2692 #endif --- EOF ---