1 /* 2 * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "gc/g1/g1SATBCardTableModRefBS.hpp" 28 #include "gc/g1/heapRegion.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/cardTableModRefBS.hpp" 31 #include "gc/shared/collectedHeap.hpp" 32 #include "gc/shenandoah/brooksPointer.hpp" 33 #include "gc/shenandoah/shenandoahConnectionMatrix.hpp" 34 #include "gc/shenandoah/shenandoahHeap.hpp" 35 #include "gc/shenandoah/shenandoahHeapRegion.hpp" 36 #include "memory/resourceArea.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/castnode.hpp" 39 #include "opto/convertnode.hpp" 40 #include "opto/graphKit.hpp" 41 #include "opto/idealKit.hpp" 42 #include "opto/intrinsicnode.hpp" 43 #include "opto/locknode.hpp" 44 #include "opto/machnode.hpp" 45 #include "opto/opaquenode.hpp" 46 #include "opto/parse.hpp" 47 #include "opto/rootnode.hpp" 48 #include "opto/runtime.hpp" 49 #include "opto/shenandoahSupport.hpp" 50 #include "runtime/deoptimization.hpp" 51 #include "runtime/sharedRuntime.hpp" 52 53 //----------------------------GraphKit----------------------------------------- 54 // Main utility constructor. 55 GraphKit::GraphKit(JVMState* jvms) 56 : Phase(Phase::Parser), 57 _env(C->env()), 58 _gvn(*C->initial_gvn()) 59 { 60 _exceptions = jvms->map()->next_exception(); 61 if (_exceptions != NULL) jvms->map()->set_next_exception(NULL); 62 set_jvms(jvms); 63 } 64 65 // Private constructor for parser. 66 GraphKit::GraphKit() 67 : Phase(Phase::Parser), 68 _env(C->env()), 69 _gvn(*C->initial_gvn()) 70 { 71 _exceptions = NULL; 72 set_map(NULL); 73 debug_only(_sp = -99); 74 debug_only(set_bci(-99)); 75 } 76 77 78 79 //---------------------------clean_stack--------------------------------------- 80 // Clear away rubbish from the stack area of the JVM state. 81 // This destroys any arguments that may be waiting on the stack. 82 void GraphKit::clean_stack(int from_sp) { 83 SafePointNode* map = this->map(); 84 JVMState* jvms = this->jvms(); 85 int stk_size = jvms->stk_size(); 86 int stkoff = jvms->stkoff(); 87 Node* top = this->top(); 88 for (int i = from_sp; i < stk_size; i++) { 89 if (map->in(stkoff + i) != top) { 90 map->set_req(stkoff + i, top); 91 } 92 } 93 } 94 95 96 //--------------------------------sync_jvms----------------------------------- 97 // Make sure our current jvms agrees with our parse state. 98 JVMState* GraphKit::sync_jvms() const { 99 JVMState* jvms = this->jvms(); 100 jvms->set_bci(bci()); // Record the new bci in the JVMState 101 jvms->set_sp(sp()); // Record the new sp in the JVMState 102 assert(jvms_in_sync(), "jvms is now in sync"); 103 return jvms; 104 } 105 106 //--------------------------------sync_jvms_for_reexecute--------------------- 107 // Make sure our current jvms agrees with our parse state. This version 108 // uses the reexecute_sp for reexecuting bytecodes. 109 JVMState* GraphKit::sync_jvms_for_reexecute() { 110 JVMState* jvms = this->jvms(); 111 jvms->set_bci(bci()); // Record the new bci in the JVMState 112 jvms->set_sp(reexecute_sp()); // Record the new sp in the JVMState 113 return jvms; 114 } 115 116 #ifdef ASSERT 117 bool GraphKit::jvms_in_sync() const { 118 Parse* parse = is_Parse(); 119 if (parse == NULL) { 120 if (bci() != jvms()->bci()) return false; 121 if (sp() != (int)jvms()->sp()) return false; 122 return true; 123 } 124 if (jvms()->method() != parse->method()) return false; 125 if (jvms()->bci() != parse->bci()) return false; 126 int jvms_sp = jvms()->sp(); 127 if (jvms_sp != parse->sp()) return false; 128 int jvms_depth = jvms()->depth(); 129 if (jvms_depth != parse->depth()) return false; 130 return true; 131 } 132 133 // Local helper checks for special internal merge points 134 // used to accumulate and merge exception states. 135 // They are marked by the region's in(0) edge being the map itself. 136 // Such merge points must never "escape" into the parser at large, 137 // until they have been handed to gvn.transform. 138 static bool is_hidden_merge(Node* reg) { 139 if (reg == NULL) return false; 140 if (reg->is_Phi()) { 141 reg = reg->in(0); 142 if (reg == NULL) return false; 143 } 144 return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root(); 145 } 146 147 void GraphKit::verify_map() const { 148 if (map() == NULL) return; // null map is OK 149 assert(map()->req() <= jvms()->endoff(), "no extra garbage on map"); 150 assert(!map()->has_exceptions(), "call add_exception_states_from 1st"); 151 assert(!is_hidden_merge(control()), "call use_exception_state, not set_map"); 152 } 153 154 void GraphKit::verify_exception_state(SafePointNode* ex_map) { 155 assert(ex_map->next_exception() == NULL, "not already part of a chain"); 156 assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop"); 157 } 158 #endif 159 160 //---------------------------stop_and_kill_map--------------------------------- 161 // Set _map to NULL, signalling a stop to further bytecode execution. 162 // First smash the current map's control to a constant, to mark it dead. 163 void GraphKit::stop_and_kill_map() { 164 SafePointNode* dead_map = stop(); 165 if (dead_map != NULL) { 166 dead_map->disconnect_inputs(NULL, C); // Mark the map as killed. 167 assert(dead_map->is_killed(), "must be so marked"); 168 } 169 } 170 171 172 //--------------------------------stopped-------------------------------------- 173 // Tell if _map is NULL, or control is top. 174 bool GraphKit::stopped() { 175 if (map() == NULL) return true; 176 else if (control() == top()) return true; 177 else return false; 178 } 179 180 181 //-----------------------------has_ex_handler---------------------------------- 182 // Tell if this method or any caller method has exception handlers. 183 bool GraphKit::has_ex_handler() { 184 for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) { 185 if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) { 186 return true; 187 } 188 } 189 return false; 190 } 191 192 //------------------------------save_ex_oop------------------------------------ 193 // Save an exception without blowing stack contents or other JVM state. 194 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) { 195 assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again"); 196 ex_map->add_req(ex_oop); 197 debug_only(verify_exception_state(ex_map)); 198 } 199 200 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) { 201 assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there"); 202 Node* ex_oop = ex_map->in(ex_map->req()-1); 203 if (clear_it) ex_map->del_req(ex_map->req()-1); 204 return ex_oop; 205 } 206 207 //-----------------------------saved_ex_oop------------------------------------ 208 // Recover a saved exception from its map. 209 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) { 210 return common_saved_ex_oop(ex_map, false); 211 } 212 213 //--------------------------clear_saved_ex_oop--------------------------------- 214 // Erase a previously saved exception from its map. 215 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) { 216 return common_saved_ex_oop(ex_map, true); 217 } 218 219 #ifdef ASSERT 220 //---------------------------has_saved_ex_oop---------------------------------- 221 // Erase a previously saved exception from its map. 222 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) { 223 return ex_map->req() == ex_map->jvms()->endoff()+1; 224 } 225 #endif 226 227 //-------------------------make_exception_state-------------------------------- 228 // Turn the current JVM state into an exception state, appending the ex_oop. 229 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) { 230 sync_jvms(); 231 SafePointNode* ex_map = stop(); // do not manipulate this map any more 232 set_saved_ex_oop(ex_map, ex_oop); 233 return ex_map; 234 } 235 236 237 //--------------------------add_exception_state-------------------------------- 238 // Add an exception to my list of exceptions. 239 void GraphKit::add_exception_state(SafePointNode* ex_map) { 240 if (ex_map == NULL || ex_map->control() == top()) { 241 return; 242 } 243 #ifdef ASSERT 244 verify_exception_state(ex_map); 245 if (has_exceptions()) { 246 assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place"); 247 } 248 #endif 249 250 // If there is already an exception of exactly this type, merge with it. 251 // In particular, null-checks and other low-level exceptions common up here. 252 Node* ex_oop = saved_ex_oop(ex_map); 253 const Type* ex_type = _gvn.type(ex_oop); 254 if (ex_oop == top()) { 255 // No action needed. 256 return; 257 } 258 assert(ex_type->isa_instptr(), "exception must be an instance"); 259 for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) { 260 const Type* ex_type2 = _gvn.type(saved_ex_oop(e2)); 261 // We check sp also because call bytecodes can generate exceptions 262 // both before and after arguments are popped! 263 if (ex_type2 == ex_type 264 && e2->_jvms->sp() == ex_map->_jvms->sp()) { 265 combine_exception_states(ex_map, e2); 266 return; 267 } 268 } 269 270 // No pre-existing exception of the same type. Chain it on the list. 271 push_exception_state(ex_map); 272 } 273 274 //-----------------------add_exception_states_from----------------------------- 275 void GraphKit::add_exception_states_from(JVMState* jvms) { 276 SafePointNode* ex_map = jvms->map()->next_exception(); 277 if (ex_map != NULL) { 278 jvms->map()->set_next_exception(NULL); 279 for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) { 280 next_map = ex_map->next_exception(); 281 ex_map->set_next_exception(NULL); 282 add_exception_state(ex_map); 283 } 284 } 285 } 286 287 //-----------------------transfer_exceptions_into_jvms------------------------- 288 JVMState* GraphKit::transfer_exceptions_into_jvms() { 289 if (map() == NULL) { 290 // We need a JVMS to carry the exceptions, but the map has gone away. 291 // Create a scratch JVMS, cloned from any of the exception states... 292 if (has_exceptions()) { 293 _map = _exceptions; 294 _map = clone_map(); 295 _map->set_next_exception(NULL); 296 clear_saved_ex_oop(_map); 297 debug_only(verify_map()); 298 } else { 299 // ...or created from scratch 300 JVMState* jvms = new (C) JVMState(_method, NULL); 301 jvms->set_bci(_bci); 302 jvms->set_sp(_sp); 303 jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms)); 304 set_jvms(jvms); 305 for (uint i = 0; i < map()->req(); i++) map()->init_req(i, top()); 306 set_all_memory(top()); 307 while (map()->req() < jvms->endoff()) map()->add_req(top()); 308 } 309 // (This is a kludge, in case you didn't notice.) 310 set_control(top()); 311 } 312 JVMState* jvms = sync_jvms(); 313 assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet"); 314 jvms->map()->set_next_exception(_exceptions); 315 _exceptions = NULL; // done with this set of exceptions 316 return jvms; 317 } 318 319 static inline void add_n_reqs(Node* dstphi, Node* srcphi) { 320 assert(is_hidden_merge(dstphi), "must be a special merge node"); 321 assert(is_hidden_merge(srcphi), "must be a special merge node"); 322 uint limit = srcphi->req(); 323 for (uint i = PhiNode::Input; i < limit; i++) { 324 dstphi->add_req(srcphi->in(i)); 325 } 326 } 327 static inline void add_one_req(Node* dstphi, Node* src) { 328 assert(is_hidden_merge(dstphi), "must be a special merge node"); 329 assert(!is_hidden_merge(src), "must not be a special merge node"); 330 dstphi->add_req(src); 331 } 332 333 //-----------------------combine_exception_states------------------------------ 334 // This helper function combines exception states by building phis on a 335 // specially marked state-merging region. These regions and phis are 336 // untransformed, and can build up gradually. The region is marked by 337 // having a control input of its exception map, rather than NULL. Such 338 // regions do not appear except in this function, and in use_exception_state. 339 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) { 340 if (failing()) return; // dying anyway... 341 JVMState* ex_jvms = ex_map->_jvms; 342 assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains"); 343 assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals"); 344 assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes"); 345 assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS"); 346 assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects"); 347 assert(ex_map->req() == phi_map->req(), "matching maps"); 348 uint tos = ex_jvms->stkoff() + ex_jvms->sp(); 349 Node* hidden_merge_mark = root(); 350 Node* region = phi_map->control(); 351 MergeMemNode* phi_mem = phi_map->merged_memory(); 352 MergeMemNode* ex_mem = ex_map->merged_memory(); 353 if (region->in(0) != hidden_merge_mark) { 354 // The control input is not (yet) a specially-marked region in phi_map. 355 // Make it so, and build some phis. 356 region = new RegionNode(2); 357 _gvn.set_type(region, Type::CONTROL); 358 region->set_req(0, hidden_merge_mark); // marks an internal ex-state 359 region->init_req(1, phi_map->control()); 360 phi_map->set_control(region); 361 Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO); 362 record_for_igvn(io_phi); 363 _gvn.set_type(io_phi, Type::ABIO); 364 phi_map->set_i_o(io_phi); 365 for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) { 366 Node* m = mms.memory(); 367 Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C)); 368 record_for_igvn(m_phi); 369 _gvn.set_type(m_phi, Type::MEMORY); 370 mms.set_memory(m_phi); 371 } 372 } 373 374 // Either or both of phi_map and ex_map might already be converted into phis. 375 Node* ex_control = ex_map->control(); 376 // if there is special marking on ex_map also, we add multiple edges from src 377 bool add_multiple = (ex_control->in(0) == hidden_merge_mark); 378 // how wide was the destination phi_map, originally? 379 uint orig_width = region->req(); 380 381 if (add_multiple) { 382 add_n_reqs(region, ex_control); 383 add_n_reqs(phi_map->i_o(), ex_map->i_o()); 384 } else { 385 // ex_map has no merges, so we just add single edges everywhere 386 add_one_req(region, ex_control); 387 add_one_req(phi_map->i_o(), ex_map->i_o()); 388 } 389 for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) { 390 if (mms.is_empty()) { 391 // get a copy of the base memory, and patch some inputs into it 392 const TypePtr* adr_type = mms.adr_type(C); 393 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 394 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 395 mms.set_memory(phi); 396 // Prepare to append interesting stuff onto the newly sliced phi: 397 while (phi->req() > orig_width) phi->del_req(phi->req()-1); 398 } 399 // Append stuff from ex_map: 400 if (add_multiple) { 401 add_n_reqs(mms.memory(), mms.memory2()); 402 } else { 403 add_one_req(mms.memory(), mms.memory2()); 404 } 405 } 406 uint limit = ex_map->req(); 407 for (uint i = TypeFunc::Parms; i < limit; i++) { 408 // Skip everything in the JVMS after tos. (The ex_oop follows.) 409 if (i == tos) i = ex_jvms->monoff(); 410 Node* src = ex_map->in(i); 411 Node* dst = phi_map->in(i); 412 if (src != dst) { 413 PhiNode* phi; 414 if (dst->in(0) != region) { 415 dst = phi = PhiNode::make(region, dst, _gvn.type(dst)); 416 record_for_igvn(phi); 417 _gvn.set_type(phi, phi->type()); 418 phi_map->set_req(i, dst); 419 // Prepare to append interesting stuff onto the new phi: 420 while (dst->req() > orig_width) dst->del_req(dst->req()-1); 421 } else { 422 assert(dst->is_Phi(), "nobody else uses a hidden region"); 423 phi = dst->as_Phi(); 424 } 425 if (add_multiple && src->in(0) == ex_control) { 426 // Both are phis. 427 add_n_reqs(dst, src); 428 } else { 429 while (dst->req() < region->req()) add_one_req(dst, src); 430 } 431 const Type* srctype = _gvn.type(src); 432 if (phi->type() != srctype) { 433 const Type* dsttype = phi->type()->meet_speculative(srctype); 434 if (phi->type() != dsttype) { 435 phi->set_type(dsttype); 436 _gvn.set_type(phi, dsttype); 437 } 438 } 439 } 440 } 441 phi_map->merge_replaced_nodes_with(ex_map); 442 } 443 444 //--------------------------use_exception_state-------------------------------- 445 Node* GraphKit::use_exception_state(SafePointNode* phi_map) { 446 if (failing()) { stop(); return top(); } 447 Node* region = phi_map->control(); 448 Node* hidden_merge_mark = root(); 449 assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation"); 450 Node* ex_oop = clear_saved_ex_oop(phi_map); 451 if (region->in(0) == hidden_merge_mark) { 452 // Special marking for internal ex-states. Process the phis now. 453 region->set_req(0, region); // now it's an ordinary region 454 set_jvms(phi_map->jvms()); // ...so now we can use it as a map 455 // Note: Setting the jvms also sets the bci and sp. 456 set_control(_gvn.transform(region)); 457 uint tos = jvms()->stkoff() + sp(); 458 for (uint i = 1; i < tos; i++) { 459 Node* x = phi_map->in(i); 460 if (x->in(0) == region) { 461 assert(x->is_Phi(), "expected a special phi"); 462 phi_map->set_req(i, _gvn.transform(x)); 463 } 464 } 465 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 466 Node* x = mms.memory(); 467 if (x->in(0) == region) { 468 assert(x->is_Phi(), "nobody else uses a hidden region"); 469 mms.set_memory(_gvn.transform(x)); 470 } 471 } 472 if (ex_oop->in(0) == region) { 473 assert(ex_oop->is_Phi(), "expected a special phi"); 474 ex_oop = _gvn.transform(ex_oop); 475 } 476 } else { 477 set_jvms(phi_map->jvms()); 478 } 479 480 assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared"); 481 assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared"); 482 return ex_oop; 483 } 484 485 //---------------------------------java_bc------------------------------------- 486 Bytecodes::Code GraphKit::java_bc() const { 487 ciMethod* method = this->method(); 488 int bci = this->bci(); 489 if (method != NULL && bci != InvocationEntryBci) 490 return method->java_code_at_bci(bci); 491 else 492 return Bytecodes::_illegal; 493 } 494 495 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason, 496 bool must_throw) { 497 // if the exception capability is set, then we will generate code 498 // to check the JavaThread.should_post_on_exceptions flag to see 499 // if we actually need to report exception events (for this 500 // thread). If we don't need to report exception events, we will 501 // take the normal fast path provided by add_exception_events. If 502 // exception event reporting is enabled for this thread, we will 503 // take the uncommon_trap in the BuildCutout below. 504 505 // first must access the should_post_on_exceptions_flag in this thread's JavaThread 506 Node* jthread = _gvn.transform(new ThreadLocalNode()); 507 Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset())); 508 Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered); 509 510 // Test the should_post_on_exceptions_flag vs. 0 511 Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) ); 512 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 513 514 // Branch to slow_path if should_post_on_exceptions_flag was true 515 { BuildCutout unless(this, tst, PROB_MAX); 516 // Do not try anything fancy if we're notifying the VM on every throw. 517 // Cf. case Bytecodes::_athrow in parse2.cpp. 518 uncommon_trap(reason, Deoptimization::Action_none, 519 (ciKlass*)NULL, (char*)NULL, must_throw); 520 } 521 522 } 523 524 //------------------------------builtin_throw---------------------------------- 525 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) { 526 bool must_throw = true; 527 528 if (env()->jvmti_can_post_on_exceptions()) { 529 // check if we must post exception events, take uncommon trap if so 530 uncommon_trap_if_should_post_on_exceptions(reason, must_throw); 531 // here if should_post_on_exceptions is false 532 // continue on with the normal codegen 533 } 534 535 // If this particular condition has not yet happened at this 536 // bytecode, then use the uncommon trap mechanism, and allow for 537 // a future recompilation if several traps occur here. 538 // If the throw is hot, try to use a more complicated inline mechanism 539 // which keeps execution inside the compiled code. 540 bool treat_throw_as_hot = false; 541 ciMethodData* md = method()->method_data(); 542 543 if (ProfileTraps) { 544 if (too_many_traps(reason)) { 545 treat_throw_as_hot = true; 546 } 547 // (If there is no MDO at all, assume it is early in 548 // execution, and that any deopts are part of the 549 // startup transient, and don't need to be remembered.) 550 551 // Also, if there is a local exception handler, treat all throws 552 // as hot if there has been at least one in this method. 553 if (C->trap_count(reason) != 0 554 && method()->method_data()->trap_count(reason) != 0 555 && has_ex_handler()) { 556 treat_throw_as_hot = true; 557 } 558 } 559 560 // If this throw happens frequently, an uncommon trap might cause 561 // a performance pothole. If there is a local exception handler, 562 // and if this particular bytecode appears to be deoptimizing often, 563 // let us handle the throw inline, with a preconstructed instance. 564 // Note: If the deopt count has blown up, the uncommon trap 565 // runtime is going to flush this nmethod, not matter what. 566 if (treat_throw_as_hot 567 && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) { 568 // If the throw is local, we use a pre-existing instance and 569 // punt on the backtrace. This would lead to a missing backtrace 570 // (a repeat of 4292742) if the backtrace object is ever asked 571 // for its backtrace. 572 // Fixing this remaining case of 4292742 requires some flavor of 573 // escape analysis. Leave that for the future. 574 ciInstance* ex_obj = NULL; 575 switch (reason) { 576 case Deoptimization::Reason_null_check: 577 ex_obj = env()->NullPointerException_instance(); 578 break; 579 case Deoptimization::Reason_div0_check: 580 ex_obj = env()->ArithmeticException_instance(); 581 break; 582 case Deoptimization::Reason_range_check: 583 ex_obj = env()->ArrayIndexOutOfBoundsException_instance(); 584 break; 585 case Deoptimization::Reason_class_check: 586 if (java_bc() == Bytecodes::_aastore) { 587 ex_obj = env()->ArrayStoreException_instance(); 588 } else { 589 ex_obj = env()->ClassCastException_instance(); 590 } 591 break; 592 default: 593 break; 594 } 595 if (failing()) { stop(); return; } // exception allocation might fail 596 if (ex_obj != NULL) { 597 // Cheat with a preallocated exception object. 598 if (C->log() != NULL) 599 C->log()->elem("hot_throw preallocated='1' reason='%s'", 600 Deoptimization::trap_reason_name(reason)); 601 const TypeInstPtr* ex_con = TypeInstPtr::make(ex_obj); 602 Node* ex_node = _gvn.transform(ConNode::make(ex_con)); 603 604 ex_node = shenandoah_write_barrier(ex_node); 605 606 // Clear the detail message of the preallocated exception object. 607 // Weblogic sometimes mutates the detail message of exceptions 608 // using reflection. 609 int offset = java_lang_Throwable::get_detailMessage_offset(); 610 const TypePtr* adr_typ = ex_con->add_offset(offset); 611 612 Node *adr = basic_plus_adr(ex_node, ex_node, offset); 613 const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass()); 614 // Conservatively release stores of object references. 615 Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release); 616 617 add_exception_state(make_exception_state(ex_node)); 618 return; 619 } 620 } 621 622 // %%% Maybe add entry to OptoRuntime which directly throws the exc.? 623 // It won't be much cheaper than bailing to the interp., since we'll 624 // have to pass up all the debug-info, and the runtime will have to 625 // create the stack trace. 626 627 // Usual case: Bail to interpreter. 628 // Reserve the right to recompile if we haven't seen anything yet. 629 630 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL; 631 Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile; 632 if (treat_throw_as_hot 633 && (method()->method_data()->trap_recompiled_at(bci(), m) 634 || C->too_many_traps(reason))) { 635 // We cannot afford to take more traps here. Suffer in the interpreter. 636 if (C->log() != NULL) 637 C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'", 638 Deoptimization::trap_reason_name(reason), 639 C->trap_count(reason)); 640 action = Deoptimization::Action_none; 641 } 642 643 // "must_throw" prunes the JVM state to include only the stack, if there 644 // are no local exception handlers. This should cut down on register 645 // allocation time and code size, by drastically reducing the number 646 // of in-edges on the call to the uncommon trap. 647 648 uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw); 649 } 650 651 652 //----------------------------PreserveJVMState--------------------------------- 653 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) { 654 debug_only(kit->verify_map()); 655 _kit = kit; 656 _map = kit->map(); // preserve the map 657 _sp = kit->sp(); 658 kit->set_map(clone_map ? kit->clone_map() : NULL); 659 #ifdef ASSERT 660 _bci = kit->bci(); 661 Parse* parser = kit->is_Parse(); 662 int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo(); 663 _block = block; 664 #endif 665 } 666 PreserveJVMState::~PreserveJVMState() { 667 GraphKit* kit = _kit; 668 #ifdef ASSERT 669 assert(kit->bci() == _bci, "bci must not shift"); 670 Parse* parser = kit->is_Parse(); 671 int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo(); 672 assert(block == _block, "block must not shift"); 673 #endif 674 kit->set_map(_map); 675 kit->set_sp(_sp); 676 } 677 678 679 //-----------------------------BuildCutout------------------------------------- 680 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt) 681 : PreserveJVMState(kit) 682 { 683 assert(p->is_Con() || p->is_Bool(), "test must be a bool"); 684 SafePointNode* outer_map = _map; // preserved map is caller's 685 SafePointNode* inner_map = kit->map(); 686 IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt); 687 outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) )); 688 inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) )); 689 } 690 BuildCutout::~BuildCutout() { 691 GraphKit* kit = _kit; 692 assert(kit->stopped(), "cutout code must stop, throw, return, etc."); 693 } 694 695 //---------------------------PreserveReexecuteState---------------------------- 696 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) { 697 assert(!kit->stopped(), "must call stopped() before"); 698 _kit = kit; 699 _sp = kit->sp(); 700 _reexecute = kit->jvms()->_reexecute; 701 } 702 PreserveReexecuteState::~PreserveReexecuteState() { 703 if (_kit->stopped()) return; 704 _kit->jvms()->_reexecute = _reexecute; 705 _kit->set_sp(_sp); 706 } 707 708 //------------------------------clone_map-------------------------------------- 709 // Implementation of PreserveJVMState 710 // 711 // Only clone_map(...) here. If this function is only used in the 712 // PreserveJVMState class we may want to get rid of this extra 713 // function eventually and do it all there. 714 715 SafePointNode* GraphKit::clone_map() { 716 if (map() == NULL) return NULL; 717 718 // Clone the memory edge first 719 Node* mem = MergeMemNode::make(map()->memory()); 720 gvn().set_type_bottom(mem); 721 722 SafePointNode *clonemap = (SafePointNode*)map()->clone(); 723 JVMState* jvms = this->jvms(); 724 JVMState* clonejvms = jvms->clone_shallow(C); 725 clonemap->set_memory(mem); 726 clonemap->set_jvms(clonejvms); 727 clonejvms->set_map(clonemap); 728 record_for_igvn(clonemap); 729 gvn().set_type_bottom(clonemap); 730 return clonemap; 731 } 732 733 734 //-----------------------------set_map_clone----------------------------------- 735 void GraphKit::set_map_clone(SafePointNode* m) { 736 _map = m; 737 _map = clone_map(); 738 _map->set_next_exception(NULL); 739 debug_only(verify_map()); 740 } 741 742 743 //----------------------------kill_dead_locals--------------------------------- 744 // Detect any locals which are known to be dead, and force them to top. 745 void GraphKit::kill_dead_locals() { 746 // Consult the liveness information for the locals. If any 747 // of them are unused, then they can be replaced by top(). This 748 // should help register allocation time and cut down on the size 749 // of the deoptimization information. 750 751 // This call is made from many of the bytecode handling 752 // subroutines called from the Big Switch in do_one_bytecode. 753 // Every bytecode which might include a slow path is responsible 754 // for killing its dead locals. The more consistent we 755 // are about killing deads, the fewer useless phis will be 756 // constructed for them at various merge points. 757 758 // bci can be -1 (InvocationEntryBci). We return the entry 759 // liveness for the method. 760 761 if (method() == NULL || method()->code_size() == 0) { 762 // We are building a graph for a call to a native method. 763 // All locals are live. 764 return; 765 } 766 767 ResourceMark rm; 768 769 // Consult the liveness information for the locals. If any 770 // of them are unused, then they can be replaced by top(). This 771 // should help register allocation time and cut down on the size 772 // of the deoptimization information. 773 MethodLivenessResult live_locals = method()->liveness_at_bci(bci()); 774 775 int len = (int)live_locals.size(); 776 assert(len <= jvms()->loc_size(), "too many live locals"); 777 for (int local = 0; local < len; local++) { 778 if (!live_locals.at(local)) { 779 set_local(local, top()); 780 } 781 } 782 } 783 784 #ifdef ASSERT 785 //-------------------------dead_locals_are_killed------------------------------ 786 // Return true if all dead locals are set to top in the map. 787 // Used to assert "clean" debug info at various points. 788 bool GraphKit::dead_locals_are_killed() { 789 if (method() == NULL || method()->code_size() == 0) { 790 // No locals need to be dead, so all is as it should be. 791 return true; 792 } 793 794 // Make sure somebody called kill_dead_locals upstream. 795 ResourceMark rm; 796 for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) { 797 if (jvms->loc_size() == 0) continue; // no locals to consult 798 SafePointNode* map = jvms->map(); 799 ciMethod* method = jvms->method(); 800 int bci = jvms->bci(); 801 if (jvms == this->jvms()) { 802 bci = this->bci(); // it might not yet be synched 803 } 804 MethodLivenessResult live_locals = method->liveness_at_bci(bci); 805 int len = (int)live_locals.size(); 806 if (!live_locals.is_valid() || len == 0) 807 // This method is trivial, or is poisoned by a breakpoint. 808 return true; 809 assert(len == jvms->loc_size(), "live map consistent with locals map"); 810 for (int local = 0; local < len; local++) { 811 if (!live_locals.at(local) && map->local(jvms, local) != top()) { 812 if (PrintMiscellaneous && (Verbose || WizardMode)) { 813 tty->print_cr("Zombie local %d: ", local); 814 jvms->dump(); 815 } 816 return false; 817 } 818 } 819 } 820 return true; 821 } 822 823 #endif //ASSERT 824 825 // Helper function for enforcing certain bytecodes to reexecute if 826 // deoptimization happens 827 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) { 828 ciMethod* cur_method = jvms->method(); 829 int cur_bci = jvms->bci(); 830 if (cur_method != NULL && cur_bci != InvocationEntryBci) { 831 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci); 832 return Interpreter::bytecode_should_reexecute(code) || 833 (is_anewarray && code == Bytecodes::_multianewarray); 834 // Reexecute _multianewarray bytecode which was replaced with 835 // sequence of [a]newarray. See Parse::do_multianewarray(). 836 // 837 // Note: interpreter should not have it set since this optimization 838 // is limited by dimensions and guarded by flag so in some cases 839 // multianewarray() runtime calls will be generated and 840 // the bytecode should not be reexecutes (stack will not be reset). 841 } else 842 return false; 843 } 844 845 // Helper function for adding JVMState and debug information to node 846 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) { 847 // Add the safepoint edges to the call (or other safepoint). 848 849 // Make sure dead locals are set to top. This 850 // should help register allocation time and cut down on the size 851 // of the deoptimization information. 852 assert(dead_locals_are_killed(), "garbage in debug info before safepoint"); 853 854 // Walk the inline list to fill in the correct set of JVMState's 855 // Also fill in the associated edges for each JVMState. 856 857 // If the bytecode needs to be reexecuted we need to put 858 // the arguments back on the stack. 859 const bool should_reexecute = jvms()->should_reexecute(); 860 JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms(); 861 862 // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to 863 // undefined if the bci is different. This is normal for Parse but it 864 // should not happen for LibraryCallKit because only one bci is processed. 865 assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute), 866 "in LibraryCallKit the reexecute bit should not change"); 867 868 // If we are guaranteed to throw, we can prune everything but the 869 // input to the current bytecode. 870 bool can_prune_locals = false; 871 uint stack_slots_not_pruned = 0; 872 int inputs = 0, depth = 0; 873 if (must_throw) { 874 assert(method() == youngest_jvms->method(), "sanity"); 875 if (compute_stack_effects(inputs, depth)) { 876 can_prune_locals = true; 877 stack_slots_not_pruned = inputs; 878 } 879 } 880 881 if (env()->should_retain_local_variables()) { 882 // At any safepoint, this method can get breakpointed, which would 883 // then require an immediate deoptimization. 884 can_prune_locals = false; // do not prune locals 885 stack_slots_not_pruned = 0; 886 } 887 888 // do not scribble on the input jvms 889 JVMState* out_jvms = youngest_jvms->clone_deep(C); 890 call->set_jvms(out_jvms); // Start jvms list for call node 891 892 // For a known set of bytecodes, the interpreter should reexecute them if 893 // deoptimization happens. We set the reexecute state for them here 894 if (out_jvms->is_reexecute_undefined() && //don't change if already specified 895 should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) { 896 out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed 897 } 898 899 // Presize the call: 900 DEBUG_ONLY(uint non_debug_edges = call->req()); 901 call->add_req_batch(top(), youngest_jvms->debug_depth()); 902 assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), ""); 903 904 // Set up edges so that the call looks like this: 905 // Call [state:] ctl io mem fptr retadr 906 // [parms:] parm0 ... parmN 907 // [root:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 908 // [...mid:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...] 909 // [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 910 // Note that caller debug info precedes callee debug info. 911 912 // Fill pointer walks backwards from "young:" to "root:" in the diagram above: 913 uint debug_ptr = call->req(); 914 915 // Loop over the map input edges associated with jvms, add them 916 // to the call node, & reset all offsets to match call node array. 917 for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) { 918 uint debug_end = debug_ptr; 919 uint debug_start = debug_ptr - in_jvms->debug_size(); 920 debug_ptr = debug_start; // back up the ptr 921 922 uint p = debug_start; // walks forward in [debug_start, debug_end) 923 uint j, k, l; 924 SafePointNode* in_map = in_jvms->map(); 925 out_jvms->set_map(call); 926 927 if (can_prune_locals) { 928 assert(in_jvms->method() == out_jvms->method(), "sanity"); 929 // If the current throw can reach an exception handler in this JVMS, 930 // then we must keep everything live that can reach that handler. 931 // As a quick and dirty approximation, we look for any handlers at all. 932 if (in_jvms->method()->has_exception_handlers()) { 933 can_prune_locals = false; 934 } 935 } 936 937 // Add the Locals 938 k = in_jvms->locoff(); 939 l = in_jvms->loc_size(); 940 out_jvms->set_locoff(p); 941 if (!can_prune_locals) { 942 for (j = 0; j < l; j++) 943 call->set_req(p++, in_map->in(k+j)); 944 } else { 945 p += l; // already set to top above by add_req_batch 946 } 947 948 // Add the Expression Stack 949 k = in_jvms->stkoff(); 950 l = in_jvms->sp(); 951 out_jvms->set_stkoff(p); 952 if (!can_prune_locals) { 953 for (j = 0; j < l; j++) 954 call->set_req(p++, in_map->in(k+j)); 955 } else if (can_prune_locals && stack_slots_not_pruned != 0) { 956 // Divide stack into {S0,...,S1}, where S0 is set to top. 957 uint s1 = stack_slots_not_pruned; 958 stack_slots_not_pruned = 0; // for next iteration 959 if (s1 > l) s1 = l; 960 uint s0 = l - s1; 961 p += s0; // skip the tops preinstalled by add_req_batch 962 for (j = s0; j < l; j++) 963 call->set_req(p++, in_map->in(k+j)); 964 } else { 965 p += l; // already set to top above by add_req_batch 966 } 967 968 // Add the Monitors 969 k = in_jvms->monoff(); 970 l = in_jvms->mon_size(); 971 out_jvms->set_monoff(p); 972 for (j = 0; j < l; j++) 973 call->set_req(p++, in_map->in(k+j)); 974 975 // Copy any scalar object fields. 976 k = in_jvms->scloff(); 977 l = in_jvms->scl_size(); 978 out_jvms->set_scloff(p); 979 for (j = 0; j < l; j++) 980 call->set_req(p++, in_map->in(k+j)); 981 982 // Finish the new jvms. 983 out_jvms->set_endoff(p); 984 985 assert(out_jvms->endoff() == debug_end, "fill ptr must match"); 986 assert(out_jvms->depth() == in_jvms->depth(), "depth must match"); 987 assert(out_jvms->loc_size() == in_jvms->loc_size(), "size must match"); 988 assert(out_jvms->mon_size() == in_jvms->mon_size(), "size must match"); 989 assert(out_jvms->scl_size() == in_jvms->scl_size(), "size must match"); 990 assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match"); 991 992 // Update the two tail pointers in parallel. 993 out_jvms = out_jvms->caller(); 994 in_jvms = in_jvms->caller(); 995 } 996 997 assert(debug_ptr == non_debug_edges, "debug info must fit exactly"); 998 999 // Test the correctness of JVMState::debug_xxx accessors: 1000 assert(call->jvms()->debug_start() == non_debug_edges, ""); 1001 assert(call->jvms()->debug_end() == call->req(), ""); 1002 assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, ""); 1003 } 1004 1005 bool GraphKit::compute_stack_effects(int& inputs, int& depth) { 1006 Bytecodes::Code code = java_bc(); 1007 if (code == Bytecodes::_wide) { 1008 code = method()->java_code_at_bci(bci() + 1); 1009 } 1010 1011 BasicType rtype = T_ILLEGAL; 1012 int rsize = 0; 1013 1014 if (code != Bytecodes::_illegal) { 1015 depth = Bytecodes::depth(code); // checkcast=0, athrow=-1 1016 rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V 1017 if (rtype < T_CONFLICT) 1018 rsize = type2size[rtype]; 1019 } 1020 1021 switch (code) { 1022 case Bytecodes::_illegal: 1023 return false; 1024 1025 case Bytecodes::_ldc: 1026 case Bytecodes::_ldc_w: 1027 case Bytecodes::_ldc2_w: 1028 inputs = 0; 1029 break; 1030 1031 case Bytecodes::_dup: inputs = 1; break; 1032 case Bytecodes::_dup_x1: inputs = 2; break; 1033 case Bytecodes::_dup_x2: inputs = 3; break; 1034 case Bytecodes::_dup2: inputs = 2; break; 1035 case Bytecodes::_dup2_x1: inputs = 3; break; 1036 case Bytecodes::_dup2_x2: inputs = 4; break; 1037 case Bytecodes::_swap: inputs = 2; break; 1038 case Bytecodes::_arraylength: inputs = 1; break; 1039 1040 case Bytecodes::_getstatic: 1041 case Bytecodes::_putstatic: 1042 case Bytecodes::_getfield: 1043 case Bytecodes::_putfield: 1044 { 1045 bool ignored_will_link; 1046 ciField* field = method()->get_field_at_bci(bci(), ignored_will_link); 1047 int size = field->type()->size(); 1048 bool is_get = (depth >= 0), is_static = (depth & 1); 1049 inputs = (is_static ? 0 : 1); 1050 if (is_get) { 1051 depth = size - inputs; 1052 } else { 1053 inputs += size; // putxxx pops the value from the stack 1054 depth = - inputs; 1055 } 1056 } 1057 break; 1058 1059 case Bytecodes::_invokevirtual: 1060 case Bytecodes::_invokespecial: 1061 case Bytecodes::_invokestatic: 1062 case Bytecodes::_invokedynamic: 1063 case Bytecodes::_invokeinterface: 1064 { 1065 bool ignored_will_link; 1066 ciSignature* declared_signature = NULL; 1067 ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); 1068 assert(declared_signature != NULL, "cannot be null"); 1069 inputs = declared_signature->arg_size_for_bc(code); 1070 int size = declared_signature->return_type()->size(); 1071 depth = size - inputs; 1072 } 1073 break; 1074 1075 case Bytecodes::_multianewarray: 1076 { 1077 ciBytecodeStream iter(method()); 1078 iter.reset_to_bci(bci()); 1079 iter.next(); 1080 inputs = iter.get_dimensions(); 1081 assert(rsize == 1, ""); 1082 depth = rsize - inputs; 1083 } 1084 break; 1085 1086 case Bytecodes::_ireturn: 1087 case Bytecodes::_lreturn: 1088 case Bytecodes::_freturn: 1089 case Bytecodes::_dreturn: 1090 case Bytecodes::_areturn: 1091 assert(rsize == -depth, ""); 1092 inputs = rsize; 1093 break; 1094 1095 case Bytecodes::_jsr: 1096 case Bytecodes::_jsr_w: 1097 inputs = 0; 1098 depth = 1; // S.B. depth=1, not zero 1099 break; 1100 1101 default: 1102 // bytecode produces a typed result 1103 inputs = rsize - depth; 1104 assert(inputs >= 0, ""); 1105 break; 1106 } 1107 1108 #ifdef ASSERT 1109 // spot check 1110 int outputs = depth + inputs; 1111 assert(outputs >= 0, "sanity"); 1112 switch (code) { 1113 case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break; 1114 case Bytecodes::_athrow: assert(inputs == 1 && outputs == 0, ""); break; 1115 case Bytecodes::_aload_0: assert(inputs == 0 && outputs == 1, ""); break; 1116 case Bytecodes::_return: assert(inputs == 0 && outputs == 0, ""); break; 1117 case Bytecodes::_drem: assert(inputs == 4 && outputs == 2, ""); break; 1118 default: break; 1119 } 1120 #endif //ASSERT 1121 1122 return true; 1123 } 1124 1125 1126 1127 //------------------------------basic_plus_adr--------------------------------- 1128 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) { 1129 // short-circuit a common case 1130 if (offset == intcon(0)) return ptr; 1131 return _gvn.transform( new AddPNode(base, ptr, offset) ); 1132 } 1133 1134 Node* GraphKit::ConvI2L(Node* offset) { 1135 // short-circuit a common case 1136 jint offset_con = find_int_con(offset, Type::OffsetBot); 1137 if (offset_con != Type::OffsetBot) { 1138 return longcon((jlong) offset_con); 1139 } 1140 return _gvn.transform( new ConvI2LNode(offset)); 1141 } 1142 1143 Node* GraphKit::ConvI2UL(Node* offset) { 1144 juint offset_con = (juint) find_int_con(offset, Type::OffsetBot); 1145 if (offset_con != (juint) Type::OffsetBot) { 1146 return longcon((julong) offset_con); 1147 } 1148 Node* conv = _gvn.transform( new ConvI2LNode(offset)); 1149 Node* mask = _gvn.transform(ConLNode::make((julong) max_juint)); 1150 return _gvn.transform( new AndLNode(conv, mask) ); 1151 } 1152 1153 Node* GraphKit::ConvL2I(Node* offset) { 1154 // short-circuit a common case 1155 jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot); 1156 if (offset_con != (jlong)Type::OffsetBot) { 1157 return intcon((int) offset_con); 1158 } 1159 return _gvn.transform( new ConvL2INode(offset)); 1160 } 1161 1162 //-------------------------load_object_klass----------------------------------- 1163 Node* GraphKit::load_object_klass(Node* obj) { 1164 // Special-case a fresh allocation to avoid building nodes: 1165 Node* akls = AllocateNode::Ideal_klass(obj, &_gvn); 1166 if (akls != NULL) return akls; 1167 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 1168 return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS)); 1169 } 1170 1171 //-------------------------load_array_length----------------------------------- 1172 Node* GraphKit::load_array_length(Node* array) { 1173 // Special-case a fresh allocation to avoid building nodes: 1174 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn); 1175 Node *alen; 1176 if (alloc == NULL) { 1177 Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes()); 1178 alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS)); 1179 } else { 1180 alen = alloc->Ideal_length(); 1181 Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn); 1182 if (ccast != alen) { 1183 alen = _gvn.transform(ccast); 1184 } 1185 } 1186 return alen; 1187 } 1188 1189 //------------------------------do_null_check---------------------------------- 1190 // Helper function to do a NULL pointer check. Returned value is 1191 // the incoming address with NULL casted away. You are allowed to use the 1192 // not-null value only if you are control dependent on the test. 1193 #ifndef PRODUCT 1194 extern int explicit_null_checks_inserted, 1195 explicit_null_checks_elided; 1196 #endif 1197 Node* GraphKit::null_check_common(Node* value, BasicType type, 1198 // optional arguments for variations: 1199 bool assert_null, 1200 Node* *null_control, 1201 bool speculative) { 1202 assert(!assert_null || null_control == NULL, "not both at once"); 1203 if (stopped()) return top(); 1204 NOT_PRODUCT(explicit_null_checks_inserted++); 1205 1206 // Construct NULL check 1207 Node *chk = NULL; 1208 switch(type) { 1209 case T_LONG : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break; 1210 case T_INT : chk = new CmpINode(value, _gvn.intcon(0)); break; 1211 case T_ARRAY : // fall through 1212 type = T_OBJECT; // simplify further tests 1213 case T_OBJECT : { 1214 const Type *t = _gvn.type( value ); 1215 1216 const TypeOopPtr* tp = t->isa_oopptr(); 1217 if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded() 1218 // Only for do_null_check, not any of its siblings: 1219 && !assert_null && null_control == NULL) { 1220 // Usually, any field access or invocation on an unloaded oop type 1221 // will simply fail to link, since the statically linked class is 1222 // likely also to be unloaded. However, in -Xcomp mode, sometimes 1223 // the static class is loaded but the sharper oop type is not. 1224 // Rather than checking for this obscure case in lots of places, 1225 // we simply observe that a null check on an unloaded class 1226 // will always be followed by a nonsense operation, so we 1227 // can just issue the uncommon trap here. 1228 // Our access to the unloaded class will only be correct 1229 // after it has been loaded and initialized, which requires 1230 // a trip through the interpreter. 1231 #ifndef PRODUCT 1232 if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); } 1233 #endif 1234 uncommon_trap(Deoptimization::Reason_unloaded, 1235 Deoptimization::Action_reinterpret, 1236 tp->klass(), "!loaded"); 1237 return top(); 1238 } 1239 1240 if (assert_null) { 1241 // See if the type is contained in NULL_PTR. 1242 // If so, then the value is already null. 1243 if (t->higher_equal(TypePtr::NULL_PTR)) { 1244 NOT_PRODUCT(explicit_null_checks_elided++); 1245 return value; // Elided null assert quickly! 1246 } 1247 } else { 1248 // See if mixing in the NULL pointer changes type. 1249 // If so, then the NULL pointer was not allowed in the original 1250 // type. In other words, "value" was not-null. 1251 if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) { 1252 // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ... 1253 NOT_PRODUCT(explicit_null_checks_elided++); 1254 return value; // Elided null check quickly! 1255 } 1256 } 1257 chk = new CmpPNode( value, null() ); 1258 break; 1259 } 1260 1261 default: 1262 fatal("unexpected type: %s", type2name(type)); 1263 } 1264 assert(chk != NULL, "sanity check"); 1265 chk = _gvn.transform(chk); 1266 1267 BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne; 1268 BoolNode *btst = new BoolNode( chk, btest); 1269 Node *tst = _gvn.transform( btst ); 1270 1271 //----------- 1272 // if peephole optimizations occurred, a prior test existed. 1273 // If a prior test existed, maybe it dominates as we can avoid this test. 1274 if (tst != btst && type == T_OBJECT) { 1275 // At this point we want to scan up the CFG to see if we can 1276 // find an identical test (and so avoid this test altogether). 1277 Node *cfg = control(); 1278 int depth = 0; 1279 while( depth < 16 ) { // Limit search depth for speed 1280 if( cfg->Opcode() == Op_IfTrue && 1281 cfg->in(0)->in(1) == tst ) { 1282 // Found prior test. Use "cast_not_null" to construct an identical 1283 // CastPP (and hence hash to) as already exists for the prior test. 1284 // Return that casted value. 1285 if (assert_null) { 1286 replace_in_map(value, null()); 1287 return null(); // do not issue the redundant test 1288 } 1289 Node *oldcontrol = control(); 1290 set_control(cfg); 1291 Node *res = cast_not_null(value); 1292 set_control(oldcontrol); 1293 NOT_PRODUCT(explicit_null_checks_elided++); 1294 return res; 1295 } 1296 cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true); 1297 if (cfg == NULL) break; // Quit at region nodes 1298 depth++; 1299 } 1300 } 1301 1302 //----------- 1303 // Branch to failure if null 1304 float ok_prob = PROB_MAX; // a priori estimate: nulls never happen 1305 Deoptimization::DeoptReason reason; 1306 if (assert_null) { 1307 reason = Deoptimization::reason_null_assert(speculative); 1308 } else if (type == T_OBJECT) { 1309 reason = Deoptimization::reason_null_check(speculative); 1310 } else { 1311 reason = Deoptimization::Reason_div0_check; 1312 } 1313 // %%% Since Reason_unhandled is not recorded on a per-bytecode basis, 1314 // ciMethodData::has_trap_at will return a conservative -1 if any 1315 // must-be-null assertion has failed. This could cause performance 1316 // problems for a method after its first do_null_assert failure. 1317 // Consider using 'Reason_class_check' instead? 1318 1319 // To cause an implicit null check, we set the not-null probability 1320 // to the maximum (PROB_MAX). For an explicit check the probability 1321 // is set to a smaller value. 1322 if (null_control != NULL || too_many_traps(reason)) { 1323 // probability is less likely 1324 ok_prob = PROB_LIKELY_MAG(3); 1325 } else if (!assert_null && 1326 (ImplicitNullCheckThreshold > 0) && 1327 method() != NULL && 1328 (method()->method_data()->trap_count(reason) 1329 >= (uint)ImplicitNullCheckThreshold)) { 1330 ok_prob = PROB_LIKELY_MAG(3); 1331 } 1332 1333 if (null_control != NULL) { 1334 IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN); 1335 Node* null_true = _gvn.transform( new IfFalseNode(iff)); 1336 set_control( _gvn.transform( new IfTrueNode(iff))); 1337 #ifndef PRODUCT 1338 if (null_true == top()) { 1339 explicit_null_checks_elided++; 1340 } 1341 #endif 1342 (*null_control) = null_true; 1343 } else { 1344 BuildCutout unless(this, tst, ok_prob); 1345 // Check for optimizer eliding test at parse time 1346 if (stopped()) { 1347 // Failure not possible; do not bother making uncommon trap. 1348 NOT_PRODUCT(explicit_null_checks_elided++); 1349 } else if (assert_null) { 1350 uncommon_trap(reason, 1351 Deoptimization::Action_make_not_entrant, 1352 NULL, "assert_null"); 1353 } else { 1354 replace_in_map(value, zerocon(type)); 1355 builtin_throw(reason); 1356 } 1357 } 1358 1359 // Must throw exception, fall-thru not possible? 1360 if (stopped()) { 1361 return top(); // No result 1362 } 1363 1364 if (assert_null) { 1365 // Cast obj to null on this path. 1366 replace_in_map(value, zerocon(type)); 1367 return zerocon(type); 1368 } 1369 1370 // Cast obj to not-null on this path, if there is no null_control. 1371 // (If there is a null_control, a non-null value may come back to haunt us.) 1372 if (type == T_OBJECT) { 1373 Node* cast = cast_not_null(value, false); 1374 if (null_control == NULL || (*null_control) == top()) 1375 replace_in_map(value, cast); 1376 value = cast; 1377 } 1378 1379 return value; 1380 } 1381 1382 1383 //------------------------------cast_not_null---------------------------------- 1384 // Cast obj to not-null on this path 1385 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) { 1386 const Type *t = _gvn.type(obj); 1387 const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL); 1388 // Object is already not-null? 1389 if( t == t_not_null ) return obj; 1390 1391 Node *cast = new CastPPNode(obj,t_not_null); 1392 cast->init_req(0, control()); 1393 cast = _gvn.transform( cast ); 1394 1395 // Scan for instances of 'obj' in the current JVM mapping. 1396 // These instances are known to be not-null after the test. 1397 if (do_replace_in_map) 1398 replace_in_map(obj, cast); 1399 1400 return cast; // Return casted value 1401 } 1402 1403 // Sometimes in intrinsics, we implicitly know an object is not null 1404 // (there's no actual null check) so we can cast it to not null. In 1405 // the course of optimizations, the input to the cast can become null. 1406 // In that case that data path will die and we need the control path 1407 // to become dead as well to keep the graph consistent. So we have to 1408 // add a check for null for which one branch can't be taken. It uses 1409 // an Opaque4 node that will cause the check to be removed after loop 1410 // opts so the test goes away and the compiled code doesn't execute a 1411 // useless check. 1412 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) { 1413 Node* chk = _gvn.transform(new CmpPNode(value, null())); 1414 Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne)); 1415 Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1))); 1416 IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN); 1417 _gvn.set_type(iff, iff->Value(&_gvn)); 1418 Node *if_f = _gvn.transform(new IfFalseNode(iff)); 1419 Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr)); 1420 Node *halt = _gvn.transform(new HaltNode(if_f, frame)); 1421 C->root()->add_req(halt); 1422 Node *if_t = _gvn.transform(new IfTrueNode(iff)); 1423 set_control(if_t); 1424 return cast_not_null(value, do_replace_in_map); 1425 } 1426 1427 1428 //--------------------------replace_in_map------------------------------------- 1429 void GraphKit::replace_in_map(Node* old, Node* neww) { 1430 if (old == neww) { 1431 return; 1432 } 1433 1434 map()->replace_edge(old, neww); 1435 1436 // Note: This operation potentially replaces any edge 1437 // on the map. This includes locals, stack, and monitors 1438 // of the current (innermost) JVM state. 1439 1440 // don't let inconsistent types from profiling escape this 1441 // method 1442 1443 const Type* told = _gvn.type(old); 1444 const Type* tnew = _gvn.type(neww); 1445 1446 if (!tnew->higher_equal(told)) { 1447 return; 1448 } 1449 1450 map()->record_replaced_node(old, neww); 1451 } 1452 1453 1454 //============================================================================= 1455 //--------------------------------memory--------------------------------------- 1456 Node* GraphKit::memory(uint alias_idx) { 1457 MergeMemNode* mem = merged_memory(); 1458 Node* p = mem->memory_at(alias_idx); 1459 _gvn.set_type(p, Type::MEMORY); // must be mapped 1460 return p; 1461 } 1462 1463 //-----------------------------reset_memory------------------------------------ 1464 Node* GraphKit::reset_memory() { 1465 Node* mem = map()->memory(); 1466 // do not use this node for any more parsing! 1467 debug_only( map()->set_memory((Node*)NULL) ); 1468 return _gvn.transform( mem ); 1469 } 1470 1471 //------------------------------set_all_memory--------------------------------- 1472 void GraphKit::set_all_memory(Node* newmem) { 1473 Node* mergemem = MergeMemNode::make(newmem); 1474 gvn().set_type_bottom(mergemem); 1475 map()->set_memory(mergemem); 1476 } 1477 1478 //------------------------------set_all_memory_call---------------------------- 1479 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) { 1480 Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) ); 1481 set_all_memory(newmem); 1482 } 1483 1484 //============================================================================= 1485 // 1486 // parser factory methods for MemNodes 1487 // 1488 // These are layered on top of the factory methods in LoadNode and StoreNode, 1489 // and integrate with the parser's memory state and _gvn engine. 1490 // 1491 1492 // factory methods in "int adr_idx" 1493 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, 1494 int adr_idx, 1495 MemNode::MemOrd mo, 1496 LoadNode::ControlDependency control_dependency, 1497 bool require_atomic_access, 1498 bool unaligned, 1499 bool mismatched) { 1500 assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" ); 1501 const TypePtr* adr_type = NULL; // debug-mode-only argument 1502 debug_only(adr_type = C->get_adr_type(adr_idx)); 1503 Node* mem = memory(adr_idx); 1504 Node* ld; 1505 if (require_atomic_access && bt == T_LONG) { 1506 ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched); 1507 } else if (require_atomic_access && bt == T_DOUBLE) { 1508 ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched); 1509 } else { 1510 ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched); 1511 } 1512 ld = _gvn.transform(ld); 1513 if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) { 1514 // Improve graph before escape analysis and boxing elimination. 1515 record_for_igvn(ld); 1516 } 1517 return ld; 1518 } 1519 1520 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt, 1521 int adr_idx, 1522 MemNode::MemOrd mo, 1523 bool require_atomic_access, 1524 bool unaligned, 1525 bool mismatched) { 1526 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 1527 const TypePtr* adr_type = NULL; 1528 debug_only(adr_type = C->get_adr_type(adr_idx)); 1529 Node *mem = memory(adr_idx); 1530 Node* st; 1531 if (require_atomic_access && bt == T_LONG) { 1532 st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo); 1533 } else if (require_atomic_access && bt == T_DOUBLE) { 1534 st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo); 1535 } else { 1536 st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo); 1537 } 1538 if (unaligned) { 1539 st->as_Store()->set_unaligned_access(); 1540 } 1541 if (mismatched) { 1542 st->as_Store()->set_mismatched_access(); 1543 } 1544 st = _gvn.transform(st); 1545 set_memory(st, adr_idx); 1546 // Back-to-back stores can only remove intermediate store with DU info 1547 // so push on worklist for optimizer. 1548 if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address)) 1549 record_for_igvn(st); 1550 1551 return st; 1552 } 1553 1554 1555 void GraphKit::pre_barrier(bool do_load, 1556 Node* ctl, 1557 Node* obj, 1558 Node* adr, 1559 uint adr_idx, 1560 Node* val, 1561 const TypeOopPtr* val_type, 1562 Node* pre_val, 1563 BasicType bt) { 1564 1565 BarrierSet* bs = Universe::heap()->barrier_set(); 1566 set_control(ctl); 1567 switch (bs->kind()) { 1568 case BarrierSet::G1SATBCTLogging: 1569 g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt); 1570 break; 1571 case BarrierSet::ShenandoahBarrierSet: 1572 shenandoah_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt); 1573 break; 1574 case BarrierSet::CardTableForRS: 1575 case BarrierSet::CardTableExtension: 1576 case BarrierSet::ModRef: 1577 break; 1578 1579 default : 1580 ShouldNotReachHere(); 1581 1582 } 1583 } 1584 1585 bool GraphKit::can_move_pre_barrier() const { 1586 BarrierSet* bs = Universe::heap()->barrier_set(); 1587 switch (bs->kind()) { 1588 case BarrierSet::G1SATBCTLogging: 1589 case BarrierSet::ShenandoahBarrierSet: 1590 return true; // Can move it if no safepoint 1591 1592 case BarrierSet::CardTableForRS: 1593 case BarrierSet::CardTableExtension: 1594 case BarrierSet::ModRef: 1595 return true; // There is no pre-barrier 1596 1597 default : 1598 ShouldNotReachHere(); 1599 } 1600 return false; 1601 } 1602 1603 void GraphKit::post_barrier(Node* ctl, 1604 Node* store, 1605 Node* obj, 1606 Node* adr, 1607 uint adr_idx, 1608 Node* val, 1609 BasicType bt, 1610 bool use_precise) { 1611 BarrierSet* bs = Universe::heap()->barrier_set(); 1612 set_control(ctl); 1613 switch (bs->kind()) { 1614 case BarrierSet::G1SATBCTLogging: 1615 g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise); 1616 break; 1617 1618 case BarrierSet::CardTableForRS: 1619 case BarrierSet::CardTableExtension: 1620 write_barrier_post(store, obj, adr, adr_idx, val, use_precise); 1621 break; 1622 1623 case BarrierSet::ModRef: 1624 case BarrierSet::ShenandoahBarrierSet: 1625 break; 1626 1627 default : 1628 ShouldNotReachHere(); 1629 1630 } 1631 } 1632 1633 void GraphKit::keep_alive_barrier(Node* ctl, Node* obj) { 1634 BarrierSet* bs = Universe::heap()->barrier_set(); 1635 switch (bs->kind()) { 1636 case BarrierSet::G1SATBCTLogging: 1637 pre_barrier(false /* do_load */, 1638 ctl, 1639 NULL /* obj */, 1640 NULL /* adr */, 1641 max_juint /* alias_idx */, 1642 NULL /* val */, 1643 NULL /* val_type */, 1644 obj /* pre_val */, 1645 T_OBJECT); 1646 break; 1647 case BarrierSet::ShenandoahBarrierSet: 1648 if (ShenandoahKeepAliveBarrier) { 1649 pre_barrier(false /* do_load */, 1650 ctl, 1651 NULL /* obj */, 1652 NULL /* adr */, 1653 max_juint /* alias_idx */, 1654 NULL /* val */, 1655 NULL /* val_type */, 1656 obj /* pre_val */, 1657 T_OBJECT); 1658 } 1659 break; 1660 case BarrierSet::CardTableForRS: 1661 case BarrierSet::CardTableExtension: 1662 case BarrierSet::ModRef: 1663 break; 1664 default : 1665 ShouldNotReachHere(); 1666 1667 } 1668 } 1669 1670 Node* GraphKit::store_oop(Node* ctl, 1671 Node* obj, 1672 Node* adr, 1673 const TypePtr* adr_type, 1674 Node* val, 1675 const TypeOopPtr* val_type, 1676 BasicType bt, 1677 bool use_precise, 1678 MemNode::MemOrd mo, 1679 bool mismatched) { 1680 // Transformation of a value which could be NULL pointer (CastPP #NULL) 1681 // could be delayed during Parse (for example, in adjust_map_after_if()). 1682 // Execute transformation here to avoid barrier generation in such case. 1683 if (_gvn.type(val) == TypePtr::NULL_PTR) 1684 val = _gvn.makecon(TypePtr::NULL_PTR); 1685 1686 set_control(ctl); 1687 if (stopped()) return top(); // Dead path ? 1688 1689 assert(bt == T_OBJECT, "sanity"); 1690 assert(val != NULL, "not dead path"); 1691 uint adr_idx = C->get_alias_index(adr_type); 1692 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 1693 1694 val = shenandoah_storeval_barrier(val); 1695 1696 pre_barrier(true /* do_load */, 1697 control(), obj, adr, adr_idx, val, val_type, 1698 NULL /* pre_val */, 1699 bt); 1700 1701 Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo, mismatched); 1702 post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise); 1703 return store; 1704 } 1705 1706 // Could be an array or object we don't know at compile time (unsafe ref.) 1707 Node* GraphKit::store_oop_to_unknown(Node* ctl, 1708 Node* obj, // containing obj 1709 Node* adr, // actual adress to store val at 1710 const TypePtr* adr_type, 1711 Node* val, 1712 BasicType bt, 1713 MemNode::MemOrd mo, 1714 bool mismatched) { 1715 Compile::AliasType* at = C->alias_type(adr_type); 1716 const TypeOopPtr* val_type = NULL; 1717 if (adr_type->isa_instptr()) { 1718 if (at->field() != NULL) { 1719 // known field. This code is a copy of the do_put_xxx logic. 1720 ciField* field = at->field(); 1721 if (!field->type()->is_loaded()) { 1722 val_type = TypeInstPtr::BOTTOM; 1723 } else { 1724 val_type = TypeOopPtr::make_from_klass(field->type()->as_klass()); 1725 } 1726 } 1727 } else if (adr_type->isa_aryptr()) { 1728 val_type = adr_type->is_aryptr()->elem()->make_oopptr(); 1729 } 1730 if (val_type == NULL) { 1731 val_type = TypeInstPtr::BOTTOM; 1732 } 1733 return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo, mismatched); 1734 } 1735 1736 1737 //-------------------------array_element_address------------------------- 1738 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt, 1739 const TypeInt* sizetype, Node* ctrl) { 1740 uint shift = exact_log2(type2aelembytes(elembt)); 1741 uint header = arrayOopDesc::base_offset_in_bytes(elembt); 1742 1743 // short-circuit a common case (saves lots of confusing waste motion) 1744 jint idx_con = find_int_con(idx, -1); 1745 if (idx_con >= 0) { 1746 intptr_t offset = header + ((intptr_t)idx_con << shift); 1747 return basic_plus_adr(ary, offset); 1748 } 1749 1750 // must be correct type for alignment purposes 1751 Node* base = basic_plus_adr(ary, header); 1752 idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl); 1753 Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) ); 1754 return basic_plus_adr(ary, base, scale); 1755 } 1756 1757 //-------------------------load_array_element------------------------- 1758 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) { 1759 const Type* elemtype = arytype->elem(); 1760 BasicType elembt = elemtype->array_element_basic_type(); 1761 Node* adr = array_element_address(ary, idx, elembt, arytype->size()); 1762 if (elembt == T_NARROWOOP) { 1763 elembt = T_OBJECT; // To satisfy switch in LoadNode::make() 1764 } 1765 Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered); 1766 return ld; 1767 } 1768 1769 //-------------------------set_arguments_for_java_call------------------------- 1770 // Arguments (pre-popped from the stack) are taken from the JVMS. 1771 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) { 1772 // Add the call arguments: 1773 uint nargs = call->method()->arg_size(); 1774 for (uint i = 0; i < nargs; i++) { 1775 Node* arg = argument(i); 1776 call->init_req(i + TypeFunc::Parms, arg); 1777 } 1778 } 1779 1780 //---------------------------set_edges_for_java_call--------------------------- 1781 // Connect a newly created call into the current JVMS. 1782 // A return value node (if any) is returned from set_edges_for_java_call. 1783 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) { 1784 1785 // Add the predefined inputs: 1786 call->init_req( TypeFunc::Control, control() ); 1787 call->init_req( TypeFunc::I_O , i_o() ); 1788 call->init_req( TypeFunc::Memory , reset_memory() ); 1789 call->init_req( TypeFunc::FramePtr, frameptr() ); 1790 call->init_req( TypeFunc::ReturnAdr, top() ); 1791 1792 add_safepoint_edges(call, must_throw); 1793 1794 Node* xcall = _gvn.transform(call); 1795 1796 if (xcall == top()) { 1797 set_control(top()); 1798 return; 1799 } 1800 assert(xcall == call, "call identity is stable"); 1801 1802 // Re-use the current map to produce the result. 1803 1804 set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control))); 1805 set_i_o( _gvn.transform(new ProjNode(call, TypeFunc::I_O , separate_io_proj))); 1806 set_all_memory_call(xcall, separate_io_proj); 1807 1808 //return xcall; // no need, caller already has it 1809 } 1810 1811 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) { 1812 if (stopped()) return top(); // maybe the call folded up? 1813 1814 // Capture the return value, if any. 1815 Node* ret; 1816 if (call->method() == NULL || 1817 call->method()->return_type()->basic_type() == T_VOID) 1818 ret = top(); 1819 else ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1820 1821 // Note: Since any out-of-line call can produce an exception, 1822 // we always insert an I_O projection from the call into the result. 1823 1824 make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj); 1825 1826 if (separate_io_proj) { 1827 // The caller requested separate projections be used by the fall 1828 // through and exceptional paths, so replace the projections for 1829 // the fall through path. 1830 set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) )); 1831 set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) )); 1832 } 1833 return ret; 1834 } 1835 1836 //--------------------set_predefined_input_for_runtime_call-------------------- 1837 // Reading and setting the memory state is way conservative here. 1838 // The real problem is that I am not doing real Type analysis on memory, 1839 // so I cannot distinguish card mark stores from other stores. Across a GC 1840 // point the Store Barrier and the card mark memory has to agree. I cannot 1841 // have a card mark store and its barrier split across the GC point from 1842 // either above or below. Here I get that to happen by reading ALL of memory. 1843 // A better answer would be to separate out card marks from other memory. 1844 // For now, return the input memory state, so that it can be reused 1845 // after the call, if this call has restricted memory effects. 1846 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) { 1847 // Set fixed predefined input arguments 1848 Node* memory = reset_memory(); 1849 call->init_req( TypeFunc::Control, control() ); 1850 call->init_req( TypeFunc::I_O, top() ); // does no i/o 1851 call->init_req( TypeFunc::Memory, memory ); // may gc ptrs 1852 call->init_req( TypeFunc::FramePtr, frameptr() ); 1853 call->init_req( TypeFunc::ReturnAdr, top() ); 1854 return memory; 1855 } 1856 1857 //-------------------set_predefined_output_for_runtime_call-------------------- 1858 // Set control and memory (not i_o) from the call. 1859 // If keep_mem is not NULL, use it for the output state, 1860 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM. 1861 // If hook_mem is NULL, this call produces no memory effects at all. 1862 // If hook_mem is a Java-visible memory slice (such as arraycopy operands), 1863 // then only that memory slice is taken from the call. 1864 // In the last case, we must put an appropriate memory barrier before 1865 // the call, so as to create the correct anti-dependencies on loads 1866 // preceding the call. 1867 void GraphKit::set_predefined_output_for_runtime_call(Node* call, 1868 Node* keep_mem, 1869 const TypePtr* hook_mem) { 1870 // no i/o 1871 set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) )); 1872 if (keep_mem) { 1873 // First clone the existing memory state 1874 set_all_memory(keep_mem); 1875 if (hook_mem != NULL) { 1876 // Make memory for the call 1877 Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) ); 1878 // Set the RawPtr memory state only. This covers all the heap top/GC stuff 1879 // We also use hook_mem to extract specific effects from arraycopy stubs. 1880 set_memory(mem, hook_mem); 1881 } 1882 // ...else the call has NO memory effects. 1883 1884 // Make sure the call advertises its memory effects precisely. 1885 // This lets us build accurate anti-dependences in gcm.cpp. 1886 assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem), 1887 "call node must be constructed correctly"); 1888 } else { 1889 assert(hook_mem == NULL, ""); 1890 // This is not a "slow path" call; all memory comes from the call. 1891 set_all_memory_call(call); 1892 } 1893 } 1894 1895 1896 // Replace the call with the current state of the kit. 1897 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) { 1898 JVMState* ejvms = NULL; 1899 if (has_exceptions()) { 1900 ejvms = transfer_exceptions_into_jvms(); 1901 } 1902 1903 ReplacedNodes replaced_nodes = map()->replaced_nodes(); 1904 ReplacedNodes replaced_nodes_exception; 1905 Node* ex_ctl = top(); 1906 1907 SafePointNode* final_state = stop(); 1908 1909 // Find all the needed outputs of this call 1910 CallProjections callprojs; 1911 call->extract_projections(&callprojs, true); 1912 1913 Node* init_mem = call->in(TypeFunc::Memory); 1914 Node* final_mem = final_state->in(TypeFunc::Memory); 1915 Node* final_ctl = final_state->in(TypeFunc::Control); 1916 Node* final_io = final_state->in(TypeFunc::I_O); 1917 1918 // Replace all the old call edges with the edges from the inlining result 1919 if (callprojs.fallthrough_catchproj != NULL) { 1920 C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl); 1921 } 1922 if (callprojs.fallthrough_memproj != NULL) { 1923 if (final_mem->is_MergeMem()) { 1924 // Parser's exits MergeMem was not transformed but may be optimized 1925 final_mem = _gvn.transform(final_mem); 1926 } 1927 C->gvn_replace_by(callprojs.fallthrough_memproj, final_mem); 1928 } 1929 if (callprojs.fallthrough_ioproj != NULL) { 1930 C->gvn_replace_by(callprojs.fallthrough_ioproj, final_io); 1931 } 1932 1933 // Replace the result with the new result if it exists and is used 1934 if (callprojs.resproj != NULL && result != NULL) { 1935 C->gvn_replace_by(callprojs.resproj, result); 1936 } 1937 1938 if (ejvms == NULL) { 1939 // No exception edges to simply kill off those paths 1940 if (callprojs.catchall_catchproj != NULL) { 1941 C->gvn_replace_by(callprojs.catchall_catchproj, C->top()); 1942 } 1943 if (callprojs.catchall_memproj != NULL) { 1944 C->gvn_replace_by(callprojs.catchall_memproj, C->top()); 1945 } 1946 if (callprojs.catchall_ioproj != NULL) { 1947 C->gvn_replace_by(callprojs.catchall_ioproj, C->top()); 1948 } 1949 // Replace the old exception object with top 1950 if (callprojs.exobj != NULL) { 1951 C->gvn_replace_by(callprojs.exobj, C->top()); 1952 } 1953 } else { 1954 GraphKit ekit(ejvms); 1955 1956 // Load my combined exception state into the kit, with all phis transformed: 1957 SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states(); 1958 replaced_nodes_exception = ex_map->replaced_nodes(); 1959 1960 Node* ex_oop = ekit.use_exception_state(ex_map); 1961 1962 if (callprojs.catchall_catchproj != NULL) { 1963 C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control()); 1964 ex_ctl = ekit.control(); 1965 } 1966 if (callprojs.catchall_memproj != NULL) { 1967 C->gvn_replace_by(callprojs.catchall_memproj, ekit.reset_memory()); 1968 } 1969 if (callprojs.catchall_ioproj != NULL) { 1970 C->gvn_replace_by(callprojs.catchall_ioproj, ekit.i_o()); 1971 } 1972 1973 // Replace the old exception object with the newly created one 1974 if (callprojs.exobj != NULL) { 1975 C->gvn_replace_by(callprojs.exobj, ex_oop); 1976 } 1977 } 1978 1979 // Disconnect the call from the graph 1980 call->disconnect_inputs(NULL, C); 1981 C->gvn_replace_by(call, C->top()); 1982 1983 // Clean up any MergeMems that feed other MergeMems since the 1984 // optimizer doesn't like that. 1985 if (final_mem->is_MergeMem()) { 1986 Node_List wl; 1987 for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) { 1988 Node* m = i.get(); 1989 if (m->is_MergeMem() && !wl.contains(m)) { 1990 wl.push(m); 1991 } 1992 } 1993 while (wl.size() > 0) { 1994 _gvn.transform(wl.pop()); 1995 } 1996 } 1997 1998 if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) { 1999 replaced_nodes.apply(C, final_ctl); 2000 } 2001 if (!ex_ctl->is_top() && do_replaced_nodes) { 2002 replaced_nodes_exception.apply(C, ex_ctl); 2003 } 2004 } 2005 2006 2007 //------------------------------increment_counter------------------------------ 2008 // for statistics: increment a VM counter by 1 2009 2010 void GraphKit::increment_counter(address counter_addr) { 2011 Node* adr1 = makecon(TypeRawPtr::make(counter_addr)); 2012 increment_counter(adr1); 2013 } 2014 2015 void GraphKit::increment_counter(Node* counter_addr) { 2016 int adr_type = Compile::AliasIdxRaw; 2017 Node* ctrl = control(); 2018 Node* cnt = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered); 2019 Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1))); 2020 store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered); 2021 } 2022 2023 2024 //------------------------------uncommon_trap---------------------------------- 2025 // Bail out to the interpreter in mid-method. Implemented by calling the 2026 // uncommon_trap blob. This helper function inserts a runtime call with the 2027 // right debug info. 2028 void GraphKit::uncommon_trap(int trap_request, 2029 ciKlass* klass, const char* comment, 2030 bool must_throw, 2031 bool keep_exact_action) { 2032 if (failing()) stop(); 2033 if (stopped()) return; // trap reachable? 2034 2035 // Note: If ProfileTraps is true, and if a deopt. actually 2036 // occurs here, the runtime will make sure an MDO exists. There is 2037 // no need to call method()->ensure_method_data() at this point. 2038 2039 // Set the stack pointer to the right value for reexecution: 2040 set_sp(reexecute_sp()); 2041 2042 #ifdef ASSERT 2043 if (!must_throw) { 2044 // Make sure the stack has at least enough depth to execute 2045 // the current bytecode. 2046 int inputs, ignored_depth; 2047 if (compute_stack_effects(inputs, ignored_depth)) { 2048 assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d", 2049 Bytecodes::name(java_bc()), sp(), inputs); 2050 } 2051 } 2052 #endif 2053 2054 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 2055 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 2056 2057 switch (action) { 2058 case Deoptimization::Action_maybe_recompile: 2059 case Deoptimization::Action_reinterpret: 2060 // Temporary fix for 6529811 to allow virtual calls to be sure they 2061 // get the chance to go from mono->bi->mega 2062 if (!keep_exact_action && 2063 Deoptimization::trap_request_index(trap_request) < 0 && 2064 too_many_recompiles(reason)) { 2065 // This BCI is causing too many recompilations. 2066 if (C->log() != NULL) { 2067 C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'", 2068 Deoptimization::trap_reason_name(reason), 2069 Deoptimization::trap_action_name(action)); 2070 } 2071 action = Deoptimization::Action_none; 2072 trap_request = Deoptimization::make_trap_request(reason, action); 2073 } else { 2074 C->set_trap_can_recompile(true); 2075 } 2076 break; 2077 case Deoptimization::Action_make_not_entrant: 2078 C->set_trap_can_recompile(true); 2079 break; 2080 case Deoptimization::Action_none: 2081 case Deoptimization::Action_make_not_compilable: 2082 break; 2083 default: 2084 #ifdef ASSERT 2085 fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action)); 2086 #endif 2087 break; 2088 } 2089 2090 if (TraceOptoParse) { 2091 char buf[100]; 2092 tty->print_cr("Uncommon trap %s at bci:%d", 2093 Deoptimization::format_trap_request(buf, sizeof(buf), 2094 trap_request), bci()); 2095 } 2096 2097 CompileLog* log = C->log(); 2098 if (log != NULL) { 2099 int kid = (klass == NULL)? -1: log->identify(klass); 2100 log->begin_elem("uncommon_trap bci='%d'", bci()); 2101 char buf[100]; 2102 log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf), 2103 trap_request)); 2104 if (kid >= 0) log->print(" klass='%d'", kid); 2105 if (comment != NULL) log->print(" comment='%s'", comment); 2106 log->end_elem(); 2107 } 2108 2109 // Make sure any guarding test views this path as very unlikely 2110 Node *i0 = control()->in(0); 2111 if (i0 != NULL && i0->is_If()) { // Found a guarding if test? 2112 IfNode *iff = i0->as_If(); 2113 float f = iff->_prob; // Get prob 2114 if (control()->Opcode() == Op_IfTrue) { 2115 if (f > PROB_UNLIKELY_MAG(4)) 2116 iff->_prob = PROB_MIN; 2117 } else { 2118 if (f < PROB_LIKELY_MAG(4)) 2119 iff->_prob = PROB_MAX; 2120 } 2121 } 2122 2123 // Clear out dead values from the debug info. 2124 kill_dead_locals(); 2125 2126 // Now insert the uncommon trap subroutine call 2127 address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point(); 2128 const TypePtr* no_memory_effects = NULL; 2129 // Pass the index of the class to be loaded 2130 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON | 2131 (must_throw ? RC_MUST_THROW : 0), 2132 OptoRuntime::uncommon_trap_Type(), 2133 call_addr, "uncommon_trap", no_memory_effects, 2134 intcon(trap_request)); 2135 assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request, 2136 "must extract request correctly from the graph"); 2137 assert(trap_request != 0, "zero value reserved by uncommon_trap_request"); 2138 2139 call->set_req(TypeFunc::ReturnAdr, returnadr()); 2140 // The debug info is the only real input to this call. 2141 2142 // Halt-and-catch fire here. The above call should never return! 2143 HaltNode* halt = new HaltNode(control(), frameptr()); 2144 _gvn.set_type_bottom(halt); 2145 root()->add_req(halt); 2146 2147 stop_and_kill_map(); 2148 } 2149 2150 2151 //--------------------------just_allocated_object------------------------------ 2152 // Report the object that was just allocated. 2153 // It must be the case that there are no intervening safepoints. 2154 // We use this to determine if an object is so "fresh" that 2155 // it does not require card marks. 2156 Node* GraphKit::just_allocated_object(Node* current_control) { 2157 if (C->recent_alloc_ctl() == current_control) 2158 return C->recent_alloc_obj(); 2159 return NULL; 2160 } 2161 2162 2163 void GraphKit::round_double_arguments(ciMethod* dest_method) { 2164 // (Note: TypeFunc::make has a cache that makes this fast.) 2165 const TypeFunc* tf = TypeFunc::make(dest_method); 2166 int nargs = tf->domain()->cnt() - TypeFunc::Parms; 2167 for (int j = 0; j < nargs; j++) { 2168 const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms); 2169 if( targ->basic_type() == T_DOUBLE ) { 2170 // If any parameters are doubles, they must be rounded before 2171 // the call, dstore_rounding does gvn.transform 2172 Node *arg = argument(j); 2173 arg = dstore_rounding(arg); 2174 set_argument(j, arg); 2175 } 2176 } 2177 } 2178 2179 /** 2180 * Record profiling data exact_kls for Node n with the type system so 2181 * that it can propagate it (speculation) 2182 * 2183 * @param n node that the type applies to 2184 * @param exact_kls type from profiling 2185 * @param maybe_null did profiling see null? 2186 * 2187 * @return node with improved type 2188 */ 2189 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) { 2190 const Type* current_type = _gvn.type(n); 2191 assert(UseTypeSpeculation, "type speculation must be on"); 2192 2193 const TypePtr* speculative = current_type->speculative(); 2194 2195 // Should the klass from the profile be recorded in the speculative type? 2196 if (current_type->would_improve_type(exact_kls, jvms()->depth())) { 2197 const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls); 2198 const TypeOopPtr* xtype = tklass->as_instance_type(); 2199 assert(xtype->klass_is_exact(), "Should be exact"); 2200 // Any reason to believe n is not null (from this profiling or a previous one)? 2201 assert(ptr_kind != ProfileAlwaysNull, "impossible here"); 2202 const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL; 2203 // record the new speculative type's depth 2204 speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2205 speculative = speculative->with_inline_depth(jvms()->depth()); 2206 } else if (current_type->would_improve_ptr(ptr_kind)) { 2207 // Profiling report that null was never seen so we can change the 2208 // speculative type to non null ptr. 2209 if (ptr_kind == ProfileAlwaysNull) { 2210 speculative = TypePtr::NULL_PTR; 2211 } else { 2212 assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement"); 2213 const TypePtr* ptr = TypePtr::NOTNULL; 2214 if (speculative != NULL) { 2215 speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2216 } else { 2217 speculative = ptr; 2218 } 2219 } 2220 } 2221 2222 if (speculative != current_type->speculative()) { 2223 // Build a type with a speculative type (what we think we know 2224 // about the type but will need a guard when we use it) 2225 const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative); 2226 // We're changing the type, we need a new CheckCast node to carry 2227 // the new type. The new type depends on the control: what 2228 // profiling tells us is only valid from here as far as we can 2229 // tell. 2230 Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type)); 2231 cast = _gvn.transform(cast); 2232 replace_in_map(n, cast); 2233 n = cast; 2234 } 2235 2236 return n; 2237 } 2238 2239 /** 2240 * Record profiling data from receiver profiling at an invoke with the 2241 * type system so that it can propagate it (speculation) 2242 * 2243 * @param n receiver node 2244 * 2245 * @return node with improved type 2246 */ 2247 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) { 2248 if (!UseTypeSpeculation) { 2249 return n; 2250 } 2251 ciKlass* exact_kls = profile_has_unique_klass(); 2252 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2253 if ((java_bc() == Bytecodes::_checkcast || 2254 java_bc() == Bytecodes::_instanceof || 2255 java_bc() == Bytecodes::_aastore) && 2256 method()->method_data()->is_mature()) { 2257 ciProfileData* data = method()->method_data()->bci_to_data(bci()); 2258 if (data != NULL) { 2259 if (!data->as_BitData()->null_seen()) { 2260 ptr_kind = ProfileNeverNull; 2261 } else { 2262 assert(data->is_ReceiverTypeData(), "bad profile data type"); 2263 ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData(); 2264 uint i = 0; 2265 for (; i < call->row_limit(); i++) { 2266 ciKlass* receiver = call->receiver(i); 2267 if (receiver != NULL) { 2268 break; 2269 } 2270 } 2271 ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull; 2272 } 2273 } 2274 } 2275 return record_profile_for_speculation(n, exact_kls, ptr_kind); 2276 } 2277 2278 /** 2279 * Record profiling data from argument profiling at an invoke with the 2280 * type system so that it can propagate it (speculation) 2281 * 2282 * @param dest_method target method for the call 2283 * @param bc what invoke bytecode is this? 2284 */ 2285 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) { 2286 if (!UseTypeSpeculation) { 2287 return; 2288 } 2289 const TypeFunc* tf = TypeFunc::make(dest_method); 2290 int nargs = tf->domain()->cnt() - TypeFunc::Parms; 2291 int skip = Bytecodes::has_receiver(bc) ? 1 : 0; 2292 for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) { 2293 const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms); 2294 if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) { 2295 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2296 ciKlass* better_type = NULL; 2297 if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) { 2298 record_profile_for_speculation(argument(j), better_type, ptr_kind); 2299 } 2300 i++; 2301 } 2302 } 2303 } 2304 2305 /** 2306 * Record profiling data from parameter profiling at an invoke with 2307 * the type system so that it can propagate it (speculation) 2308 */ 2309 void GraphKit::record_profiled_parameters_for_speculation() { 2310 if (!UseTypeSpeculation) { 2311 return; 2312 } 2313 for (int i = 0, j = 0; i < method()->arg_size() ; i++) { 2314 if (_gvn.type(local(i))->isa_oopptr()) { 2315 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2316 ciKlass* better_type = NULL; 2317 if (method()->parameter_profiled_type(j, better_type, ptr_kind)) { 2318 record_profile_for_speculation(local(i), better_type, ptr_kind); 2319 } 2320 j++; 2321 } 2322 } 2323 } 2324 2325 /** 2326 * Record profiling data from return value profiling at an invoke with 2327 * the type system so that it can propagate it (speculation) 2328 */ 2329 void GraphKit::record_profiled_return_for_speculation() { 2330 if (!UseTypeSpeculation) { 2331 return; 2332 } 2333 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2334 ciKlass* better_type = NULL; 2335 if (method()->return_profiled_type(bci(), better_type, ptr_kind)) { 2336 // If profiling reports a single type for the return value, 2337 // feed it to the type system so it can propagate it as a 2338 // speculative type 2339 record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind); 2340 } 2341 } 2342 2343 void GraphKit::round_double_result(ciMethod* dest_method) { 2344 // A non-strict method may return a double value which has an extended 2345 // exponent, but this must not be visible in a caller which is 'strict' 2346 // If a strict caller invokes a non-strict callee, round a double result 2347 2348 BasicType result_type = dest_method->return_type()->basic_type(); 2349 assert( method() != NULL, "must have caller context"); 2350 if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) { 2351 // Destination method's return value is on top of stack 2352 // dstore_rounding() does gvn.transform 2353 Node *result = pop_pair(); 2354 result = dstore_rounding(result); 2355 push_pair(result); 2356 } 2357 } 2358 2359 // rounding for strict float precision conformance 2360 Node* GraphKit::precision_rounding(Node* n) { 2361 return UseStrictFP && _method->flags().is_strict() 2362 && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding 2363 ? _gvn.transform( new RoundFloatNode(0, n) ) 2364 : n; 2365 } 2366 2367 // rounding for strict double precision conformance 2368 Node* GraphKit::dprecision_rounding(Node *n) { 2369 return UseStrictFP && _method->flags().is_strict() 2370 && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding 2371 ? _gvn.transform( new RoundDoubleNode(0, n) ) 2372 : n; 2373 } 2374 2375 // rounding for non-strict double stores 2376 Node* GraphKit::dstore_rounding(Node* n) { 2377 return Matcher::strict_fp_requires_explicit_rounding 2378 && UseSSE <= 1 2379 ? _gvn.transform( new RoundDoubleNode(0, n) ) 2380 : n; 2381 } 2382 2383 //============================================================================= 2384 // Generate a fast path/slow path idiom. Graph looks like: 2385 // [foo] indicates that 'foo' is a parameter 2386 // 2387 // [in] NULL 2388 // \ / 2389 // CmpP 2390 // Bool ne 2391 // If 2392 // / \ 2393 // True False-<2> 2394 // / | 2395 // / cast_not_null 2396 // Load | | ^ 2397 // [fast_test] | | 2398 // gvn to opt_test | | 2399 // / \ | <1> 2400 // True False | 2401 // | \\ | 2402 // [slow_call] \[fast_result] 2403 // Ctl Val \ \ 2404 // | \ \ 2405 // Catch <1> \ \ 2406 // / \ ^ \ \ 2407 // Ex No_Ex | \ \ 2408 // | \ \ | \ <2> \ 2409 // ... \ [slow_res] | | \ [null_result] 2410 // \ \--+--+--- | | 2411 // \ | / \ | / 2412 // --------Region Phi 2413 // 2414 //============================================================================= 2415 // Code is structured as a series of driver functions all called 'do_XXX' that 2416 // call a set of helper functions. Helper functions first, then drivers. 2417 2418 //------------------------------null_check_oop--------------------------------- 2419 // Null check oop. Set null-path control into Region in slot 3. 2420 // Make a cast-not-nullness use the other not-null control. Return cast. 2421 Node* GraphKit::null_check_oop(Node* value, Node* *null_control, 2422 bool never_see_null, 2423 bool safe_for_replace, 2424 bool speculative) { 2425 // Initial NULL check taken path 2426 (*null_control) = top(); 2427 Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative); 2428 2429 // Generate uncommon_trap: 2430 if (never_see_null && (*null_control) != top()) { 2431 // If we see an unexpected null at a check-cast we record it and force a 2432 // recompile; the offending check-cast will be compiled to handle NULLs. 2433 // If we see more than one offending BCI, then all checkcasts in the 2434 // method will be compiled to handle NULLs. 2435 PreserveJVMState pjvms(this); 2436 set_control(*null_control); 2437 replace_in_map(value, null()); 2438 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative); 2439 uncommon_trap(reason, 2440 Deoptimization::Action_make_not_entrant); 2441 (*null_control) = top(); // NULL path is dead 2442 } 2443 if ((*null_control) == top() && safe_for_replace) { 2444 replace_in_map(value, cast); 2445 } 2446 2447 // Cast away null-ness on the result 2448 return cast; 2449 } 2450 2451 //------------------------------opt_iff---------------------------------------- 2452 // Optimize the fast-check IfNode. Set the fast-path region slot 2. 2453 // Return slow-path control. 2454 Node* GraphKit::opt_iff(Node* region, Node* iff) { 2455 IfNode *opt_iff = _gvn.transform(iff)->as_If(); 2456 2457 // Fast path taken; set region slot 2 2458 Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) ); 2459 region->init_req(2,fast_taken); // Capture fast-control 2460 2461 // Fast path not-taken, i.e. slow path 2462 Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) ); 2463 return slow_taken; 2464 } 2465 2466 //-----------------------------make_runtime_call------------------------------- 2467 Node* GraphKit::make_runtime_call(int flags, 2468 const TypeFunc* call_type, address call_addr, 2469 const char* call_name, 2470 const TypePtr* adr_type, 2471 // The following parms are all optional. 2472 // The first NULL ends the list. 2473 Node* parm0, Node* parm1, 2474 Node* parm2, Node* parm3, 2475 Node* parm4, Node* parm5, 2476 Node* parm6, Node* parm7) { 2477 // Slow-path call 2478 bool is_leaf = !(flags & RC_NO_LEAF); 2479 bool has_io = (!is_leaf && !(flags & RC_NO_IO)); 2480 if (call_name == NULL) { 2481 assert(!is_leaf, "must supply name for leaf"); 2482 call_name = OptoRuntime::stub_name(call_addr); 2483 } 2484 CallNode* call; 2485 if (!is_leaf) { 2486 call = new CallStaticJavaNode(call_type, call_addr, call_name, 2487 bci(), adr_type); 2488 } else if (flags & RC_NO_FP) { 2489 call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type); 2490 } else { 2491 call = new CallLeafNode(call_type, call_addr, call_name, adr_type); 2492 } 2493 2494 // The following is similar to set_edges_for_java_call, 2495 // except that the memory effects of the call are restricted to AliasIdxRaw. 2496 2497 // Slow path call has no side-effects, uses few values 2498 bool wide_in = !(flags & RC_NARROW_MEM); 2499 bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot); 2500 2501 Node* prev_mem = NULL; 2502 if (wide_in) { 2503 prev_mem = set_predefined_input_for_runtime_call(call); 2504 } else { 2505 assert(!wide_out, "narrow in => narrow out"); 2506 Node* narrow_mem = memory(adr_type); 2507 prev_mem = reset_memory(); 2508 map()->set_memory(narrow_mem); 2509 set_predefined_input_for_runtime_call(call); 2510 } 2511 2512 // Hook each parm in order. Stop looking at the first NULL. 2513 if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0); 2514 if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1); 2515 if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2); 2516 if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3); 2517 if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4); 2518 if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5); 2519 if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6); 2520 if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7); 2521 /* close each nested if ===> */ } } } } } } } } 2522 assert(call->in(call->req()-1) != NULL, "must initialize all parms"); 2523 2524 if (!is_leaf) { 2525 // Non-leaves can block and take safepoints: 2526 add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0)); 2527 } 2528 // Non-leaves can throw exceptions: 2529 if (has_io) { 2530 call->set_req(TypeFunc::I_O, i_o()); 2531 } 2532 2533 if (flags & RC_UNCOMMON) { 2534 // Set the count to a tiny probability. Cf. Estimate_Block_Frequency. 2535 // (An "if" probability corresponds roughly to an unconditional count. 2536 // Sort of.) 2537 call->set_cnt(PROB_UNLIKELY_MAG(4)); 2538 } 2539 2540 Node* c = _gvn.transform(call); 2541 assert(c == call, "cannot disappear"); 2542 2543 if (wide_out) { 2544 // Slow path call has full side-effects. 2545 set_predefined_output_for_runtime_call(call); 2546 } else { 2547 // Slow path call has few side-effects, and/or sets few values. 2548 set_predefined_output_for_runtime_call(call, prev_mem, adr_type); 2549 } 2550 2551 if (has_io) { 2552 set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O))); 2553 } 2554 return call; 2555 2556 } 2557 2558 //------------------------------merge_memory----------------------------------- 2559 // Merge memory from one path into the current memory state. 2560 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) { 2561 for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) { 2562 Node* old_slice = mms.force_memory(); 2563 Node* new_slice = mms.memory2(); 2564 if (old_slice != new_slice) { 2565 PhiNode* phi; 2566 if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) { 2567 if (mms.is_empty()) { 2568 // clone base memory Phi's inputs for this memory slice 2569 assert(old_slice == mms.base_memory(), "sanity"); 2570 phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C)); 2571 _gvn.set_type(phi, Type::MEMORY); 2572 for (uint i = 1; i < phi->req(); i++) { 2573 phi->init_req(i, old_slice->in(i)); 2574 } 2575 } else { 2576 phi = old_slice->as_Phi(); // Phi was generated already 2577 } 2578 } else { 2579 phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C)); 2580 _gvn.set_type(phi, Type::MEMORY); 2581 } 2582 phi->set_req(new_path, new_slice); 2583 mms.set_memory(phi); 2584 } 2585 } 2586 } 2587 2588 //------------------------------make_slow_call_ex------------------------------ 2589 // Make the exception handler hookups for the slow call 2590 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) { 2591 if (stopped()) return; 2592 2593 // Make a catch node with just two handlers: fall-through and catch-all 2594 Node* i_o = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) ); 2595 Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) ); 2596 Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) ); 2597 Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci) ); 2598 2599 { PreserveJVMState pjvms(this); 2600 set_control(excp); 2601 set_i_o(i_o); 2602 2603 if (excp != top()) { 2604 if (deoptimize) { 2605 // Deoptimize if an exception is caught. Don't construct exception state in this case. 2606 uncommon_trap(Deoptimization::Reason_unhandled, 2607 Deoptimization::Action_none); 2608 } else { 2609 // Create an exception state also. 2610 // Use an exact type if the caller has specified a specific exception. 2611 const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull); 2612 Node* ex_oop = new CreateExNode(ex_type, control(), i_o); 2613 add_exception_state(make_exception_state(_gvn.transform(ex_oop))); 2614 } 2615 } 2616 } 2617 2618 // Get the no-exception control from the CatchNode. 2619 set_control(norm); 2620 } 2621 2622 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) { 2623 Node* cmp = NULL; 2624 switch(bt) { 2625 case T_INT: cmp = new CmpINode(in1, in2); break; 2626 case T_ADDRESS: cmp = new CmpPNode(in1, in2); break; 2627 default: fatal("unexpected comparison type %s", type2name(bt)); 2628 } 2629 gvn->transform(cmp); 2630 Node* bol = gvn->transform(new BoolNode(cmp, test)); 2631 IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN); 2632 gvn->transform(iff); 2633 if (!bol->is_Con()) gvn->record_for_igvn(iff); 2634 return iff; 2635 } 2636 2637 2638 //-------------------------------gen_subtype_check----------------------------- 2639 // Generate a subtyping check. Takes as input the subtype and supertype. 2640 // Returns 2 values: sets the default control() to the true path and returns 2641 // the false path. Only reads invariant memory; sets no (visible) memory. 2642 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding 2643 // but that's not exposed to the optimizer. This call also doesn't take in an 2644 // Object; if you wish to check an Object you need to load the Object's class 2645 // prior to coming here. 2646 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) { 2647 Compile* C = gvn->C; 2648 2649 if ((*ctrl)->is_top()) { 2650 return C->top(); 2651 } 2652 2653 // Fast check for identical types, perhaps identical constants. 2654 // The types can even be identical non-constants, in cases 2655 // involving Array.newInstance, Object.clone, etc. 2656 if (subklass == superklass) 2657 return C->top(); // false path is dead; no test needed. 2658 2659 if (gvn->type(superklass)->singleton()) { 2660 ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass(); 2661 ciKlass* subk = gvn->type(subklass)->is_klassptr()->klass(); 2662 2663 // In the common case of an exact superklass, try to fold up the 2664 // test before generating code. You may ask, why not just generate 2665 // the code and then let it fold up? The answer is that the generated 2666 // code will necessarily include null checks, which do not always 2667 // completely fold away. If they are also needless, then they turn 2668 // into a performance loss. Example: 2669 // Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x; 2670 // Here, the type of 'fa' is often exact, so the store check 2671 // of fa[1]=x will fold up, without testing the nullness of x. 2672 switch (C->static_subtype_check(superk, subk)) { 2673 case Compile::SSC_always_false: 2674 { 2675 Node* always_fail = *ctrl; 2676 *ctrl = gvn->C->top(); 2677 return always_fail; 2678 } 2679 case Compile::SSC_always_true: 2680 return C->top(); 2681 case Compile::SSC_easy_test: 2682 { 2683 // Just do a direct pointer compare and be done. 2684 IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS); 2685 *ctrl = gvn->transform(new IfTrueNode(iff)); 2686 return gvn->transform(new IfFalseNode(iff)); 2687 } 2688 case Compile::SSC_full_test: 2689 break; 2690 default: 2691 ShouldNotReachHere(); 2692 } 2693 } 2694 2695 // %%% Possible further optimization: Even if the superklass is not exact, 2696 // if the subklass is the unique subtype of the superklass, the check 2697 // will always succeed. We could leave a dependency behind to ensure this. 2698 2699 // First load the super-klass's check-offset 2700 Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset())))); 2701 Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr())); 2702 Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered)); 2703 int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset()); 2704 bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con); 2705 2706 // Load from the sub-klass's super-class display list, or a 1-word cache of 2707 // the secondary superclass list, or a failing value with a sentinel offset 2708 // if the super-klass is an interface or exceptionally deep in the Java 2709 // hierarchy and we have to scan the secondary superclass list the hard way. 2710 // Worst-case type is a little odd: NULL is allowed as a result (usually 2711 // klass loads can never produce a NULL). 2712 Node *chk_off_X = chk_off; 2713 #ifdef _LP64 2714 chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X)); 2715 #endif 2716 Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X)); 2717 // For some types like interfaces the following loadKlass is from a 1-word 2718 // cache which is mutable so can't use immutable memory. Other 2719 // types load from the super-class display table which is immutable. 2720 m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr())); 2721 Node *kmem = might_be_cache ? m : C->immutable_memory(); 2722 Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL)); 2723 2724 // Compile speed common case: ARE a subtype and we canNOT fail 2725 if( superklass == nkls ) 2726 return C->top(); // false path is dead; no test needed. 2727 2728 // See if we get an immediate positive hit. Happens roughly 83% of the 2729 // time. Test to see if the value loaded just previously from the subklass 2730 // is exactly the superklass. 2731 IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS); 2732 Node *iftrue1 = gvn->transform( new IfTrueNode (iff1)); 2733 *ctrl = gvn->transform(new IfFalseNode(iff1)); 2734 2735 // Compile speed common case: Check for being deterministic right now. If 2736 // chk_off is a constant and not equal to cacheoff then we are NOT a 2737 // subklass. In this case we need exactly the 1 test above and we can 2738 // return those results immediately. 2739 if (!might_be_cache) { 2740 Node* not_subtype_ctrl = *ctrl; 2741 *ctrl = iftrue1; // We need exactly the 1 test above 2742 return not_subtype_ctrl; 2743 } 2744 2745 // Gather the various success & failures here 2746 RegionNode *r_ok_subtype = new RegionNode(4); 2747 gvn->record_for_igvn(r_ok_subtype); 2748 RegionNode *r_not_subtype = new RegionNode(3); 2749 gvn->record_for_igvn(r_not_subtype); 2750 2751 r_ok_subtype->init_req(1, iftrue1); 2752 2753 // Check for immediate negative hit. Happens roughly 11% of the time (which 2754 // is roughly 63% of the remaining cases). Test to see if the loaded 2755 // check-offset points into the subklass display list or the 1-element 2756 // cache. If it points to the display (and NOT the cache) and the display 2757 // missed then it's not a subtype. 2758 Node *cacheoff = gvn->intcon(cacheoff_con); 2759 IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT); 2760 r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2))); 2761 *ctrl = gvn->transform(new IfFalseNode(iff2)); 2762 2763 // Check for self. Very rare to get here, but it is taken 1/3 the time. 2764 // No performance impact (too rare) but allows sharing of secondary arrays 2765 // which has some footprint reduction. 2766 IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS); 2767 r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3))); 2768 *ctrl = gvn->transform(new IfFalseNode(iff3)); 2769 2770 // -- Roads not taken here: -- 2771 // We could also have chosen to perform the self-check at the beginning 2772 // of this code sequence, as the assembler does. This would not pay off 2773 // the same way, since the optimizer, unlike the assembler, can perform 2774 // static type analysis to fold away many successful self-checks. 2775 // Non-foldable self checks work better here in second position, because 2776 // the initial primary superclass check subsumes a self-check for most 2777 // types. An exception would be a secondary type like array-of-interface, 2778 // which does not appear in its own primary supertype display. 2779 // Finally, we could have chosen to move the self-check into the 2780 // PartialSubtypeCheckNode, and from there out-of-line in a platform 2781 // dependent manner. But it is worthwhile to have the check here, 2782 // where it can be perhaps be optimized. The cost in code space is 2783 // small (register compare, branch). 2784 2785 // Now do a linear scan of the secondary super-klass array. Again, no real 2786 // performance impact (too rare) but it's gotta be done. 2787 // Since the code is rarely used, there is no penalty for moving it 2788 // out of line, and it can only improve I-cache density. 2789 // The decision to inline or out-of-line this final check is platform 2790 // dependent, and is found in the AD file definition of PartialSubtypeCheck. 2791 Node* psc = gvn->transform( 2792 new PartialSubtypeCheckNode(*ctrl, subklass, superklass)); 2793 2794 IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS); 2795 r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4))); 2796 r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4))); 2797 2798 // Return false path; set default control to true path. 2799 *ctrl = gvn->transform(r_ok_subtype); 2800 return gvn->transform(r_not_subtype); 2801 } 2802 2803 // Profile-driven exact type check: 2804 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass, 2805 float prob, 2806 Node* *casted_receiver) { 2807 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass); 2808 Node* recv_klass = load_object_klass(receiver); 2809 Node* want_klass = makecon(tklass); 2810 Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) ); 2811 Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) ); 2812 IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN); 2813 set_control( _gvn.transform( new IfTrueNode (iff) )); 2814 Node* fail = _gvn.transform( new IfFalseNode(iff) ); 2815 2816 const TypeOopPtr* recv_xtype = tklass->as_instance_type(); 2817 assert(recv_xtype->klass_is_exact(), ""); 2818 2819 // Subsume downstream occurrences of receiver with a cast to 2820 // recv_xtype, since now we know what the type will be. 2821 Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype); 2822 (*casted_receiver) = _gvn.transform(cast); 2823 // (User must make the replace_in_map call.) 2824 2825 return fail; 2826 } 2827 2828 2829 //------------------------------seems_never_null------------------------------- 2830 // Use null_seen information if it is available from the profile. 2831 // If we see an unexpected null at a type check we record it and force a 2832 // recompile; the offending check will be recompiled to handle NULLs. 2833 // If we see several offending BCIs, then all checks in the 2834 // method will be recompiled. 2835 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) { 2836 speculating = !_gvn.type(obj)->speculative_maybe_null(); 2837 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating); 2838 if (UncommonNullCast // Cutout for this technique 2839 && obj != null() // And not the -Xcomp stupid case? 2840 && !too_many_traps(reason) 2841 ) { 2842 if (speculating) { 2843 return true; 2844 } 2845 if (data == NULL) 2846 // Edge case: no mature data. Be optimistic here. 2847 return true; 2848 // If the profile has not seen a null, assume it won't happen. 2849 assert(java_bc() == Bytecodes::_checkcast || 2850 java_bc() == Bytecodes::_instanceof || 2851 java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here"); 2852 return !data->as_BitData()->null_seen(); 2853 } 2854 speculating = false; 2855 return false; 2856 } 2857 2858 //------------------------maybe_cast_profiled_receiver------------------------- 2859 // If the profile has seen exactly one type, narrow to exactly that type. 2860 // Subsequent type checks will always fold up. 2861 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj, 2862 ciKlass* require_klass, 2863 ciKlass* spec_klass, 2864 bool safe_for_replace) { 2865 if (!UseTypeProfile || !TypeProfileCasts) return NULL; 2866 2867 Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL); 2868 2869 // Make sure we haven't already deoptimized from this tactic. 2870 if (too_many_traps(reason) || too_many_recompiles(reason)) 2871 return NULL; 2872 2873 // (No, this isn't a call, but it's enough like a virtual call 2874 // to use the same ciMethod accessor to get the profile info...) 2875 // If we have a speculative type use it instead of profiling (which 2876 // may not help us) 2877 ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass; 2878 if (exact_kls != NULL) {// no cast failures here 2879 if (require_klass == NULL || 2880 C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) { 2881 // If we narrow the type to match what the type profile sees or 2882 // the speculative type, we can then remove the rest of the 2883 // cast. 2884 // This is a win, even if the exact_kls is very specific, 2885 // because downstream operations, such as method calls, 2886 // will often benefit from the sharper type. 2887 Node* exact_obj = not_null_obj; // will get updated in place... 2888 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 2889 &exact_obj); 2890 { PreserveJVMState pjvms(this); 2891 set_control(slow_ctl); 2892 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 2893 } 2894 if (safe_for_replace) { 2895 replace_in_map(not_null_obj, exact_obj); 2896 } 2897 return exact_obj; 2898 } 2899 // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us. 2900 } 2901 2902 return NULL; 2903 } 2904 2905 /** 2906 * Cast obj to type and emit guard unless we had too many traps here 2907 * already 2908 * 2909 * @param obj node being casted 2910 * @param type type to cast the node to 2911 * @param not_null true if we know node cannot be null 2912 */ 2913 Node* GraphKit::maybe_cast_profiled_obj(Node* obj, 2914 ciKlass* type, 2915 bool not_null) { 2916 if (stopped()) { 2917 return obj; 2918 } 2919 2920 // type == NULL if profiling tells us this object is always null 2921 if (type != NULL) { 2922 Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check; 2923 Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check; 2924 2925 if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) && 2926 !too_many_traps(class_reason) && 2927 !too_many_recompiles(class_reason)) { 2928 Node* not_null_obj = NULL; 2929 // not_null is true if we know the object is not null and 2930 // there's no need for a null check 2931 if (!not_null) { 2932 Node* null_ctl = top(); 2933 not_null_obj = null_check_oop(obj, &null_ctl, true, true, true); 2934 assert(null_ctl->is_top(), "no null control here"); 2935 } else { 2936 not_null_obj = obj; 2937 } 2938 2939 Node* exact_obj = not_null_obj; 2940 ciKlass* exact_kls = type; 2941 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 2942 &exact_obj); 2943 { 2944 PreserveJVMState pjvms(this); 2945 set_control(slow_ctl); 2946 uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile); 2947 } 2948 replace_in_map(not_null_obj, exact_obj); 2949 obj = exact_obj; 2950 } 2951 } else { 2952 if (!too_many_traps(Deoptimization::Reason_null_assert) && 2953 !too_many_recompiles(Deoptimization::Reason_null_assert)) { 2954 Node* exact_obj = null_assert(obj); 2955 replace_in_map(obj, exact_obj); 2956 obj = exact_obj; 2957 } 2958 } 2959 return obj; 2960 } 2961 2962 //-------------------------------gen_instanceof-------------------------------- 2963 // Generate an instance-of idiom. Used by both the instance-of bytecode 2964 // and the reflective instance-of call. 2965 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) { 2966 kill_dead_locals(); // Benefit all the uncommon traps 2967 assert( !stopped(), "dead parse path should be checked in callers" ); 2968 assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()), 2969 "must check for not-null not-dead klass in callers"); 2970 2971 // Make the merge point 2972 enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT }; 2973 RegionNode* region = new RegionNode(PATH_LIMIT); 2974 Node* phi = new PhiNode(region, TypeInt::BOOL); 2975 C->set_has_split_ifs(true); // Has chance for split-if optimization 2976 2977 ciProfileData* data = NULL; 2978 if (java_bc() == Bytecodes::_instanceof) { // Only for the bytecode 2979 data = method()->method_data()->bci_to_data(bci()); 2980 } 2981 bool speculative_not_null = false; 2982 bool never_see_null = (ProfileDynamicTypes // aggressive use of profile 2983 && seems_never_null(obj, data, speculative_not_null)); 2984 2985 // Null check; get casted pointer; set region slot 3 2986 Node* null_ctl = top(); 2987 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 2988 2989 // If not_null_obj is dead, only null-path is taken 2990 if (stopped()) { // Doing instance-of on a NULL? 2991 set_control(null_ctl); 2992 return intcon(0); 2993 } 2994 region->init_req(_null_path, null_ctl); 2995 phi ->init_req(_null_path, intcon(0)); // Set null path value 2996 if (null_ctl == top()) { 2997 // Do this eagerly, so that pattern matches like is_diamond_phi 2998 // will work even during parsing. 2999 assert(_null_path == PATH_LIMIT-1, "delete last"); 3000 region->del_req(_null_path); 3001 phi ->del_req(_null_path); 3002 } 3003 3004 // Do we know the type check always succeed? 3005 bool known_statically = false; 3006 if (_gvn.type(superklass)->singleton()) { 3007 ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass(); 3008 ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass(); 3009 if (subk != NULL && subk->is_loaded()) { 3010 int static_res = C->static_subtype_check(superk, subk); 3011 known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false); 3012 } 3013 } 3014 3015 if (!known_statically) { 3016 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 3017 // We may not have profiling here or it may not help us. If we 3018 // have a speculative type use it to perform an exact cast. 3019 ciKlass* spec_obj_type = obj_type->speculative_type(); 3020 if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) { 3021 Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace); 3022 if (stopped()) { // Profile disagrees with this path. 3023 set_control(null_ctl); // Null is the only remaining possibility. 3024 return intcon(0); 3025 } 3026 if (cast_obj != NULL) { 3027 not_null_obj = cast_obj; 3028 } 3029 } 3030 } 3031 3032 // Load the object's klass 3033 Node* obj_klass = load_object_klass(not_null_obj); 3034 3035 // Generate the subtype check 3036 Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass); 3037 3038 // Plug in the success path to the general merge in slot 1. 3039 region->init_req(_obj_path, control()); 3040 phi ->init_req(_obj_path, intcon(1)); 3041 3042 // Plug in the failing path to the general merge in slot 2. 3043 region->init_req(_fail_path, not_subtype_ctrl); 3044 phi ->init_req(_fail_path, intcon(0)); 3045 3046 // Return final merged results 3047 set_control( _gvn.transform(region) ); 3048 record_for_igvn(region); 3049 3050 // If we know the type check always succeeds then we don't use the 3051 // profiling data at this bytecode. Don't lose it, feed it to the 3052 // type system as a speculative type. 3053 if (safe_for_replace) { 3054 Node* casted_obj = record_profiled_receiver_for_speculation(obj); 3055 replace_in_map(obj, casted_obj); 3056 } 3057 3058 return _gvn.transform(phi); 3059 } 3060 3061 //-------------------------------gen_checkcast--------------------------------- 3062 // Generate a checkcast idiom. Used by both the checkcast bytecode and the 3063 // array store bytecode. Stack must be as-if BEFORE doing the bytecode so the 3064 // uncommon-trap paths work. Adjust stack after this call. 3065 // If failure_control is supplied and not null, it is filled in with 3066 // the control edge for the cast failure. Otherwise, an appropriate 3067 // uncommon trap or exception is thrown. 3068 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, 3069 Node* *failure_control) { 3070 kill_dead_locals(); // Benefit all the uncommon traps 3071 const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr(); 3072 const Type *toop = TypeOopPtr::make_from_klass(tk->klass()); 3073 3074 // Fast cutout: Check the case that the cast is vacuously true. 3075 // This detects the common cases where the test will short-circuit 3076 // away completely. We do this before we perform the null check, 3077 // because if the test is going to turn into zero code, we don't 3078 // want a residual null check left around. (Causes a slowdown, 3079 // for example, in some objArray manipulations, such as a[i]=a[j].) 3080 if (tk->singleton()) { 3081 const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr(); 3082 if (objtp != NULL && objtp->klass() != NULL) { 3083 switch (C->static_subtype_check(tk->klass(), objtp->klass())) { 3084 case Compile::SSC_always_true: 3085 // If we know the type check always succeed then we don't use 3086 // the profiling data at this bytecode. Don't lose it, feed it 3087 // to the type system as a speculative type. 3088 return record_profiled_receiver_for_speculation(obj); 3089 case Compile::SSC_always_false: 3090 // It needs a null check because a null will *pass* the cast check. 3091 // A non-null value will always produce an exception. 3092 return null_assert(obj); 3093 } 3094 } 3095 } 3096 3097 ciProfileData* data = NULL; 3098 bool safe_for_replace = false; 3099 if (failure_control == NULL) { // use MDO in regular case only 3100 assert(java_bc() == Bytecodes::_aastore || 3101 java_bc() == Bytecodes::_checkcast, 3102 "interpreter profiles type checks only for these BCs"); 3103 data = method()->method_data()->bci_to_data(bci()); 3104 safe_for_replace = true; 3105 } 3106 3107 // Make the merge point 3108 enum { _obj_path = 1, _null_path, PATH_LIMIT }; 3109 RegionNode* region = new RegionNode(PATH_LIMIT); 3110 Node* phi = new PhiNode(region, toop); 3111 C->set_has_split_ifs(true); // Has chance for split-if optimization 3112 3113 // Use null-cast information if it is available 3114 bool speculative_not_null = false; 3115 bool never_see_null = ((failure_control == NULL) // regular case only 3116 && seems_never_null(obj, data, speculative_not_null)); 3117 3118 // Null check; get casted pointer; set region slot 3 3119 Node* null_ctl = top(); 3120 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 3121 3122 // If not_null_obj is dead, only null-path is taken 3123 if (stopped()) { // Doing instance-of on a NULL? 3124 set_control(null_ctl); 3125 return null(); 3126 } 3127 region->init_req(_null_path, null_ctl); 3128 phi ->init_req(_null_path, null()); // Set null path value 3129 if (null_ctl == top()) { 3130 // Do this eagerly, so that pattern matches like is_diamond_phi 3131 // will work even during parsing. 3132 assert(_null_path == PATH_LIMIT-1, "delete last"); 3133 region->del_req(_null_path); 3134 phi ->del_req(_null_path); 3135 } 3136 3137 Node* cast_obj = NULL; 3138 if (tk->klass_is_exact()) { 3139 // The following optimization tries to statically cast the speculative type of the object 3140 // (for example obtained during profiling) to the type of the superklass and then do a 3141 // dynamic check that the type of the object is what we expect. To work correctly 3142 // for checkcast and aastore the type of superklass should be exact. 3143 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 3144 // We may not have profiling here or it may not help us. If we have 3145 // a speculative type use it to perform an exact cast. 3146 ciKlass* spec_obj_type = obj_type->speculative_type(); 3147 if (spec_obj_type != NULL || data != NULL) { 3148 cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace); 3149 if (cast_obj != NULL) { 3150 if (failure_control != NULL) // failure is now impossible 3151 (*failure_control) = top(); 3152 // adjust the type of the phi to the exact klass: 3153 phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR)); 3154 } 3155 } 3156 } 3157 3158 if (cast_obj == NULL) { 3159 // Load the object's klass 3160 Node* obj_klass = load_object_klass(not_null_obj); 3161 3162 // Generate the subtype check 3163 Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass ); 3164 3165 // Plug in success path into the merge 3166 cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop)); 3167 // Failure path ends in uncommon trap (or may be dead - failure impossible) 3168 if (failure_control == NULL) { 3169 if (not_subtype_ctrl != top()) { // If failure is possible 3170 PreserveJVMState pjvms(this); 3171 set_control(not_subtype_ctrl); 3172 builtin_throw(Deoptimization::Reason_class_check, obj_klass); 3173 } 3174 } else { 3175 (*failure_control) = not_subtype_ctrl; 3176 } 3177 } 3178 3179 region->init_req(_obj_path, control()); 3180 phi ->init_req(_obj_path, cast_obj); 3181 3182 // A merge of NULL or Casted-NotNull obj 3183 Node* res = _gvn.transform(phi); 3184 3185 // Note I do NOT always 'replace_in_map(obj,result)' here. 3186 // if( tk->klass()->can_be_primary_super() ) 3187 // This means that if I successfully store an Object into an array-of-String 3188 // I 'forget' that the Object is really now known to be a String. I have to 3189 // do this because we don't have true union types for interfaces - if I store 3190 // a Baz into an array-of-Interface and then tell the optimizer it's an 3191 // Interface, I forget that it's also a Baz and cannot do Baz-like field 3192 // references to it. FIX THIS WHEN UNION TYPES APPEAR! 3193 // replace_in_map( obj, res ); 3194 3195 // Return final merged results 3196 set_control( _gvn.transform(region) ); 3197 record_for_igvn(region); 3198 3199 return record_profiled_receiver_for_speculation(res); 3200 } 3201 3202 //------------------------------next_monitor----------------------------------- 3203 // What number should be given to the next monitor? 3204 int GraphKit::next_monitor() { 3205 int current = jvms()->monitor_depth()* C->sync_stack_slots(); 3206 int next = current + C->sync_stack_slots(); 3207 // Keep the toplevel high water mark current: 3208 if (C->fixed_slots() < next) C->set_fixed_slots(next); 3209 return current; 3210 } 3211 3212 //------------------------------insert_mem_bar--------------------------------- 3213 // Memory barrier to avoid floating things around 3214 // The membar serves as a pinch point between both control and all memory slices. 3215 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) { 3216 MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent); 3217 mb->init_req(TypeFunc::Control, control()); 3218 mb->init_req(TypeFunc::Memory, reset_memory()); 3219 Node* membar = _gvn.transform(mb); 3220 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3221 set_all_memory_call(membar); 3222 return membar; 3223 } 3224 3225 //-------------------------insert_mem_bar_volatile---------------------------- 3226 // Memory barrier to avoid floating things around 3227 // The membar serves as a pinch point between both control and memory(alias_idx). 3228 // If you want to make a pinch point on all memory slices, do not use this 3229 // function (even with AliasIdxBot); use insert_mem_bar() instead. 3230 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) { 3231 // When Parse::do_put_xxx updates a volatile field, it appends a series 3232 // of MemBarVolatile nodes, one for *each* volatile field alias category. 3233 // The first membar is on the same memory slice as the field store opcode. 3234 // This forces the membar to follow the store. (Bug 6500685 broke this.) 3235 // All the other membars (for other volatile slices, including AliasIdxBot, 3236 // which stands for all unknown volatile slices) are control-dependent 3237 // on the first membar. This prevents later volatile loads or stores 3238 // from sliding up past the just-emitted store. 3239 3240 MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent); 3241 mb->set_req(TypeFunc::Control,control()); 3242 if (alias_idx == Compile::AliasIdxBot) { 3243 mb->set_req(TypeFunc::Memory, merged_memory()->base_memory()); 3244 } else { 3245 assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller"); 3246 mb->set_req(TypeFunc::Memory, memory(alias_idx)); 3247 } 3248 Node* membar = _gvn.transform(mb); 3249 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3250 if (alias_idx == Compile::AliasIdxBot) { 3251 merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory))); 3252 } else { 3253 set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx); 3254 } 3255 return membar; 3256 } 3257 3258 //------------------------------shared_lock------------------------------------ 3259 // Emit locking code. 3260 FastLockNode* GraphKit::shared_lock(Node* obj) { 3261 // bci is either a monitorenter bc or InvocationEntryBci 3262 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3263 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3264 3265 if( !GenerateSynchronizationCode ) 3266 return NULL; // Not locking things? 3267 if (stopped()) // Dead monitor? 3268 return NULL; 3269 3270 assert(dead_locals_are_killed(), "should kill locals before sync. point"); 3271 3272 obj = shenandoah_write_barrier(obj); 3273 3274 // Box the stack location 3275 Node* box = _gvn.transform(new BoxLockNode(next_monitor())); 3276 Node* mem = reset_memory(); 3277 3278 FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock(); 3279 if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) { 3280 // Create the counters for this fast lock. 3281 flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci 3282 } 3283 3284 // Create the rtm counters for this fast lock if needed. 3285 flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci 3286 3287 // Add monitor to debug info for the slow path. If we block inside the 3288 // slow path and de-opt, we need the monitor hanging around 3289 map()->push_monitor( flock ); 3290 3291 const TypeFunc *tf = LockNode::lock_type(); 3292 LockNode *lock = new LockNode(C, tf); 3293 3294 lock->init_req( TypeFunc::Control, control() ); 3295 lock->init_req( TypeFunc::Memory , mem ); 3296 lock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3297 lock->init_req( TypeFunc::FramePtr, frameptr() ); 3298 lock->init_req( TypeFunc::ReturnAdr, top() ); 3299 3300 lock->init_req(TypeFunc::Parms + 0, obj); 3301 lock->init_req(TypeFunc::Parms + 1, box); 3302 lock->init_req(TypeFunc::Parms + 2, flock); 3303 add_safepoint_edges(lock); 3304 3305 lock = _gvn.transform( lock )->as_Lock(); 3306 3307 // lock has no side-effects, sets few values 3308 set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM); 3309 3310 insert_mem_bar(Op_MemBarAcquireLock); 3311 3312 // Add this to the worklist so that the lock can be eliminated 3313 record_for_igvn(lock); 3314 3315 #ifndef PRODUCT 3316 if (PrintLockStatistics) { 3317 // Update the counter for this lock. Don't bother using an atomic 3318 // operation since we don't require absolute accuracy. 3319 lock->create_lock_counter(map()->jvms()); 3320 increment_counter(lock->counter()->addr()); 3321 } 3322 #endif 3323 3324 return flock; 3325 } 3326 3327 3328 //------------------------------shared_unlock---------------------------------- 3329 // Emit unlocking code. 3330 void GraphKit::shared_unlock(Node* box, Node* obj) { 3331 // bci is either a monitorenter bc or InvocationEntryBci 3332 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3333 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3334 3335 if( !GenerateSynchronizationCode ) 3336 return; 3337 if (stopped()) { // Dead monitor? 3338 map()->pop_monitor(); // Kill monitor from debug info 3339 return; 3340 } 3341 3342 // Memory barrier to avoid floating things down past the locked region 3343 insert_mem_bar(Op_MemBarReleaseLock); 3344 3345 const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type(); 3346 UnlockNode *unlock = new UnlockNode(C, tf); 3347 #ifdef ASSERT 3348 unlock->set_dbg_jvms(sync_jvms()); 3349 #endif 3350 uint raw_idx = Compile::AliasIdxRaw; 3351 unlock->init_req( TypeFunc::Control, control() ); 3352 unlock->init_req( TypeFunc::Memory , memory(raw_idx) ); 3353 unlock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3354 unlock->init_req( TypeFunc::FramePtr, frameptr() ); 3355 unlock->init_req( TypeFunc::ReturnAdr, top() ); 3356 3357 unlock->init_req(TypeFunc::Parms + 0, obj); 3358 unlock->init_req(TypeFunc::Parms + 1, box); 3359 unlock = _gvn.transform(unlock)->as_Unlock(); 3360 3361 Node* mem = reset_memory(); 3362 3363 // unlock has no side-effects, sets few values 3364 set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM); 3365 3366 // Kill monitor from debug info 3367 map()->pop_monitor( ); 3368 } 3369 3370 //-------------------------------get_layout_helper----------------------------- 3371 // If the given klass is a constant or known to be an array, 3372 // fetch the constant layout helper value into constant_value 3373 // and return (Node*)NULL. Otherwise, load the non-constant 3374 // layout helper value, and return the node which represents it. 3375 // This two-faced routine is useful because allocation sites 3376 // almost always feature constant types. 3377 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) { 3378 const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr(); 3379 if (!StressReflectiveCode && inst_klass != NULL) { 3380 ciKlass* klass = inst_klass->klass(); 3381 bool xklass = inst_klass->klass_is_exact(); 3382 if (xklass || klass->is_array_klass()) { 3383 jint lhelper = klass->layout_helper(); 3384 if (lhelper != Klass::_lh_neutral_value) { 3385 constant_value = lhelper; 3386 return (Node*) NULL; 3387 } 3388 } 3389 } 3390 constant_value = Klass::_lh_neutral_value; // put in a known value 3391 Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset())); 3392 return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered); 3393 } 3394 3395 // We just put in an allocate/initialize with a big raw-memory effect. 3396 // Hook selected additional alias categories on the initialization. 3397 static void hook_memory_on_init(GraphKit& kit, int alias_idx, 3398 MergeMemNode* init_in_merge, 3399 Node* init_out_raw) { 3400 DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory()); 3401 assert(init_in_merge->memory_at(alias_idx) == init_in_raw, ""); 3402 3403 Node* prevmem = kit.memory(alias_idx); 3404 init_in_merge->set_memory_at(alias_idx, prevmem); 3405 kit.set_memory(init_out_raw, alias_idx); 3406 } 3407 3408 //---------------------------set_output_for_allocation------------------------- 3409 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc, 3410 const TypeOopPtr* oop_type, 3411 bool deoptimize_on_exception) { 3412 int rawidx = Compile::AliasIdxRaw; 3413 alloc->set_req( TypeFunc::FramePtr, frameptr() ); 3414 add_safepoint_edges(alloc); 3415 Node* allocx = _gvn.transform(alloc); 3416 set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) ); 3417 // create memory projection for i_o 3418 set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx ); 3419 make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception); 3420 3421 // create a memory projection as for the normal control path 3422 Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory)); 3423 set_memory(malloc, rawidx); 3424 3425 // a normal slow-call doesn't change i_o, but an allocation does 3426 // we create a separate i_o projection for the normal control path 3427 set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) ); 3428 Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) ); 3429 3430 // put in an initialization barrier 3431 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx, 3432 rawoop)->as_Initialize(); 3433 assert(alloc->initialization() == init, "2-way macro link must work"); 3434 assert(init ->allocation() == alloc, "2-way macro link must work"); 3435 { 3436 // Extract memory strands which may participate in the new object's 3437 // initialization, and source them from the new InitializeNode. 3438 // This will allow us to observe initializations when they occur, 3439 // and link them properly (as a group) to the InitializeNode. 3440 assert(init->in(InitializeNode::Memory) == malloc, ""); 3441 MergeMemNode* minit_in = MergeMemNode::make(malloc); 3442 init->set_req(InitializeNode::Memory, minit_in); 3443 record_for_igvn(minit_in); // fold it up later, if possible 3444 Node* minit_out = memory(rawidx); 3445 assert(minit_out->is_Proj() && minit_out->in(0) == init, ""); 3446 if (oop_type->isa_aryptr()) { 3447 const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot); 3448 int elemidx = C->get_alias_index(telemref); 3449 hook_memory_on_init(*this, elemidx, minit_in, minit_out); 3450 } else if (oop_type->isa_instptr()) { 3451 ciInstanceKlass* ik = oop_type->klass()->as_instance_klass(); 3452 for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) { 3453 ciField* field = ik->nonstatic_field_at(i); 3454 if (field->offset() >= TrackedInitializationLimit * HeapWordSize) 3455 continue; // do not bother to track really large numbers of fields 3456 // Find (or create) the alias category for this field: 3457 int fieldidx = C->alias_type(field)->index(); 3458 hook_memory_on_init(*this, fieldidx, minit_in, minit_out); 3459 } 3460 } 3461 } 3462 3463 // Cast raw oop to the real thing... 3464 Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type); 3465 javaoop = _gvn.transform(javaoop); 3466 C->set_recent_alloc(control(), javaoop); 3467 assert(just_allocated_object(control()) == javaoop, "just allocated"); 3468 3469 #ifdef ASSERT 3470 { // Verify that the AllocateNode::Ideal_allocation recognizers work: 3471 assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc, 3472 "Ideal_allocation works"); 3473 assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc, 3474 "Ideal_allocation works"); 3475 if (alloc->is_AllocateArray()) { 3476 assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(), 3477 "Ideal_allocation works"); 3478 assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(), 3479 "Ideal_allocation works"); 3480 } else { 3481 assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please"); 3482 } 3483 } 3484 #endif //ASSERT 3485 3486 return javaoop; 3487 } 3488 3489 //---------------------------new_instance-------------------------------------- 3490 // This routine takes a klass_node which may be constant (for a static type) 3491 // or may be non-constant (for reflective code). It will work equally well 3492 // for either, and the graph will fold nicely if the optimizer later reduces 3493 // the type to a constant. 3494 // The optional arguments are for specialized use by intrinsics: 3495 // - If 'extra_slow_test' if not null is an extra condition for the slow-path. 3496 // - If 'return_size_val', report the the total object size to the caller. 3497 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize) 3498 Node* GraphKit::new_instance(Node* klass_node, 3499 Node* extra_slow_test, 3500 Node* *return_size_val, 3501 bool deoptimize_on_exception) { 3502 // Compute size in doublewords 3503 // The size is always an integral number of doublewords, represented 3504 // as a positive bytewise size stored in the klass's layout_helper. 3505 // The layout_helper also encodes (in a low bit) the need for a slow path. 3506 jint layout_con = Klass::_lh_neutral_value; 3507 Node* layout_val = get_layout_helper(klass_node, layout_con); 3508 int layout_is_con = (layout_val == NULL); 3509 3510 if (extra_slow_test == NULL) extra_slow_test = intcon(0); 3511 // Generate the initial go-slow test. It's either ALWAYS (return a 3512 // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective 3513 // case) a computed value derived from the layout_helper. 3514 Node* initial_slow_test = NULL; 3515 if (layout_is_con) { 3516 assert(!StressReflectiveCode, "stress mode does not use these paths"); 3517 bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con); 3518 initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test; 3519 } else { // reflective case 3520 // This reflective path is used by Unsafe.allocateInstance. 3521 // (It may be stress-tested by specifying StressReflectiveCode.) 3522 // Basically, we want to get into the VM is there's an illegal argument. 3523 Node* bit = intcon(Klass::_lh_instance_slow_path_bit); 3524 initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) ); 3525 if (extra_slow_test != intcon(0)) { 3526 initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) ); 3527 } 3528 // (Macro-expander will further convert this to a Bool, if necessary.) 3529 } 3530 3531 // Find the size in bytes. This is easy; it's the layout_helper. 3532 // The size value must be valid even if the slow path is taken. 3533 Node* size = NULL; 3534 if (layout_is_con) { 3535 size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con)); 3536 } else { // reflective case 3537 // This reflective path is used by clone and Unsafe.allocateInstance. 3538 size = ConvI2X(layout_val); 3539 3540 // Clear the low bits to extract layout_helper_size_in_bytes: 3541 assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 3542 Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong)); 3543 size = _gvn.transform( new AndXNode(size, mask) ); 3544 } 3545 if (return_size_val != NULL) { 3546 (*return_size_val) = size; 3547 } 3548 3549 // This is a precise notnull oop of the klass. 3550 // (Actually, it need not be precise if this is a reflective allocation.) 3551 // It's what we cast the result to. 3552 const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr(); 3553 if (!tklass) tklass = TypeKlassPtr::OBJECT; 3554 const TypeOopPtr* oop_type = tklass->as_instance_type(); 3555 3556 // Now generate allocation code 3557 3558 // The entire memory state is needed for slow path of the allocation 3559 // since GC and deoptimization can happened. 3560 Node *mem = reset_memory(); 3561 set_all_memory(mem); // Create new memory state 3562 3563 AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP), 3564 control(), mem, i_o(), 3565 size, klass_node, 3566 initial_slow_test); 3567 3568 return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception); 3569 } 3570 3571 //-------------------------------new_array------------------------------------- 3572 // helper for both newarray and anewarray 3573 // The 'length' parameter is (obviously) the length of the array. 3574 // See comments on new_instance for the meaning of the other arguments. 3575 Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable) 3576 Node* length, // number of array elements 3577 int nargs, // number of arguments to push back for uncommon trap 3578 Node* *return_size_val, 3579 bool deoptimize_on_exception) { 3580 jint layout_con = Klass::_lh_neutral_value; 3581 Node* layout_val = get_layout_helper(klass_node, layout_con); 3582 int layout_is_con = (layout_val == NULL); 3583 3584 if (!layout_is_con && !StressReflectiveCode && 3585 !too_many_traps(Deoptimization::Reason_class_check)) { 3586 // This is a reflective array creation site. 3587 // Optimistically assume that it is a subtype of Object[], 3588 // so that we can fold up all the address arithmetic. 3589 layout_con = Klass::array_layout_helper(T_OBJECT); 3590 Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) ); 3591 Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) ); 3592 { BuildCutout unless(this, bol_lh, PROB_MAX); 3593 inc_sp(nargs); 3594 uncommon_trap(Deoptimization::Reason_class_check, 3595 Deoptimization::Action_maybe_recompile); 3596 } 3597 layout_val = NULL; 3598 layout_is_con = true; 3599 } 3600 3601 // Generate the initial go-slow test. Make sure we do not overflow 3602 // if length is huge (near 2Gig) or negative! We do not need 3603 // exact double-words here, just a close approximation of needed 3604 // double-words. We can't add any offset or rounding bits, lest we 3605 // take a size -1 of bytes and make it positive. Use an unsigned 3606 // compare, so negative sizes look hugely positive. 3607 int fast_size_limit = FastAllocateSizeLimit; 3608 if (layout_is_con) { 3609 assert(!StressReflectiveCode, "stress mode does not use these paths"); 3610 // Increase the size limit if we have exact knowledge of array type. 3611 int log2_esize = Klass::layout_helper_log2_element_size(layout_con); 3612 fast_size_limit <<= (LogBytesPerLong - log2_esize); 3613 } 3614 3615 Node* initial_slow_cmp = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) ); 3616 Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) ); 3617 3618 // --- Size Computation --- 3619 // array_size = round_to_heap(array_header + (length << elem_shift)); 3620 // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes) 3621 // and align_to(x, y) == ((x + y-1) & ~(y-1)) 3622 // The rounding mask is strength-reduced, if possible. 3623 int round_mask = MinObjAlignmentInBytes - 1; 3624 Node* header_size = NULL; 3625 int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 3626 // (T_BYTE has the weakest alignment and size restrictions...) 3627 if (layout_is_con) { 3628 int hsize = Klass::layout_helper_header_size(layout_con); 3629 int eshift = Klass::layout_helper_log2_element_size(layout_con); 3630 BasicType etype = Klass::layout_helper_element_type(layout_con); 3631 if ((round_mask & ~right_n_bits(eshift)) == 0) 3632 round_mask = 0; // strength-reduce it if it goes away completely 3633 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 3634 assert(header_size_min <= hsize, "generic minimum is smallest"); 3635 header_size_min = hsize; 3636 header_size = intcon(hsize + round_mask); 3637 } else { 3638 Node* hss = intcon(Klass::_lh_header_size_shift); 3639 Node* hsm = intcon(Klass::_lh_header_size_mask); 3640 Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) ); 3641 hsize = _gvn.transform( new AndINode(hsize, hsm) ); 3642 Node* mask = intcon(round_mask); 3643 header_size = _gvn.transform( new AddINode(hsize, mask) ); 3644 } 3645 3646 Node* elem_shift = NULL; 3647 if (layout_is_con) { 3648 int eshift = Klass::layout_helper_log2_element_size(layout_con); 3649 if (eshift != 0) 3650 elem_shift = intcon(eshift); 3651 } else { 3652 // There is no need to mask or shift this value. 3653 // The semantics of LShiftINode include an implicit mask to 0x1F. 3654 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 3655 elem_shift = layout_val; 3656 } 3657 3658 // Transition to native address size for all offset calculations: 3659 Node* lengthx = ConvI2X(length); 3660 Node* headerx = ConvI2X(header_size); 3661 #ifdef _LP64 3662 { const TypeInt* tilen = _gvn.find_int_type(length); 3663 if (tilen != NULL && tilen->_lo < 0) { 3664 // Add a manual constraint to a positive range. Cf. array_element_address. 3665 jint size_max = fast_size_limit; 3666 if (size_max > tilen->_hi) size_max = tilen->_hi; 3667 const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin); 3668 3669 // Only do a narrow I2L conversion if the range check passed. 3670 IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 3671 _gvn.transform(iff); 3672 RegionNode* region = new RegionNode(3); 3673 _gvn.set_type(region, Type::CONTROL); 3674 lengthx = new PhiNode(region, TypeLong::LONG); 3675 _gvn.set_type(lengthx, TypeLong::LONG); 3676 3677 // Range check passed. Use ConvI2L node with narrow type. 3678 Node* passed = IfFalse(iff); 3679 region->init_req(1, passed); 3680 // Make I2L conversion control dependent to prevent it from 3681 // floating above the range check during loop optimizations. 3682 lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed)); 3683 3684 // Range check failed. Use ConvI2L with wide type because length may be invalid. 3685 region->init_req(2, IfTrue(iff)); 3686 lengthx->init_req(2, ConvI2X(length)); 3687 3688 set_control(region); 3689 record_for_igvn(region); 3690 record_for_igvn(lengthx); 3691 } 3692 } 3693 #endif 3694 3695 // Combine header size (plus rounding) and body size. Then round down. 3696 // This computation cannot overflow, because it is used only in two 3697 // places, one where the length is sharply limited, and the other 3698 // after a successful allocation. 3699 Node* abody = lengthx; 3700 if (elem_shift != NULL) 3701 abody = _gvn.transform( new LShiftXNode(lengthx, elem_shift) ); 3702 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 3703 if (round_mask != 0) { 3704 Node* mask = MakeConX(~round_mask); 3705 size = _gvn.transform( new AndXNode(size, mask) ); 3706 } 3707 // else if round_mask == 0, the size computation is self-rounding 3708 3709 if (return_size_val != NULL) { 3710 // This is the size 3711 (*return_size_val) = size; 3712 } 3713 3714 // Now generate allocation code 3715 3716 // The entire memory state is needed for slow path of the allocation 3717 // since GC and deoptimization can happened. 3718 Node *mem = reset_memory(); 3719 set_all_memory(mem); // Create new memory state 3720 3721 if (initial_slow_test->is_Bool()) { 3722 // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick. 3723 initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn); 3724 } 3725 3726 // Create the AllocateArrayNode and its result projections 3727 AllocateArrayNode* alloc 3728 = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT), 3729 control(), mem, i_o(), 3730 size, klass_node, 3731 initial_slow_test, 3732 length); 3733 3734 // Cast to correct type. Note that the klass_node may be constant or not, 3735 // and in the latter case the actual array type will be inexact also. 3736 // (This happens via a non-constant argument to inline_native_newArray.) 3737 // In any case, the value of klass_node provides the desired array type. 3738 const TypeInt* length_type = _gvn.find_int_type(length); 3739 const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type(); 3740 if (ary_type->isa_aryptr() && length_type != NULL) { 3741 // Try to get a better type than POS for the size 3742 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 3743 } 3744 3745 Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception); 3746 3747 // Cast length on remaining path to be as narrow as possible 3748 if (map()->find_edge(length) >= 0) { 3749 Node* ccast = alloc->make_ideal_length(ary_type, &_gvn); 3750 if (ccast != length) { 3751 _gvn.set_type_bottom(ccast); 3752 record_for_igvn(ccast); 3753 replace_in_map(length, ccast); 3754 } 3755 } 3756 3757 return javaoop; 3758 } 3759 3760 // The following "Ideal_foo" functions are placed here because they recognize 3761 // the graph shapes created by the functions immediately above. 3762 3763 //---------------------------Ideal_allocation---------------------------------- 3764 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode. 3765 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) { 3766 if (ptr == NULL) { // reduce dumb test in callers 3767 return NULL; 3768 } 3769 3770 // Attempt to see through Shenandoah barriers. 3771 ptr = ShenandoahBarrierNode::skip_through_barrier(ptr); 3772 3773 if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast 3774 ptr = ptr->in(1); 3775 if (ptr == NULL) return NULL; 3776 } 3777 // Return NULL for allocations with several casts: 3778 // j.l.reflect.Array.newInstance(jobject, jint) 3779 // Object.clone() 3780 // to keep more precise type from last cast. 3781 if (ptr->is_Proj()) { 3782 Node* allo = ptr->in(0); 3783 if (allo != NULL && allo->is_Allocate()) { 3784 return allo->as_Allocate(); 3785 } 3786 } 3787 // Report failure to match. 3788 return NULL; 3789 } 3790 3791 // Fancy version which also strips off an offset (and reports it to caller). 3792 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase, 3793 intptr_t& offset) { 3794 Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset); 3795 if (base == NULL) return NULL; 3796 return Ideal_allocation(base, phase); 3797 } 3798 3799 // Trace Initialize <- Proj[Parm] <- Allocate 3800 AllocateNode* InitializeNode::allocation() { 3801 Node* rawoop = in(InitializeNode::RawAddress); 3802 if (rawoop->is_Proj()) { 3803 Node* alloc = rawoop->in(0); 3804 if (alloc->is_Allocate()) { 3805 return alloc->as_Allocate(); 3806 } 3807 } 3808 return NULL; 3809 } 3810 3811 // Trace Allocate -> Proj[Parm] -> Initialize 3812 InitializeNode* AllocateNode::initialization() { 3813 ProjNode* rawoop = proj_out(AllocateNode::RawAddress); 3814 if (rawoop == NULL) return NULL; 3815 for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) { 3816 Node* init = rawoop->fast_out(i); 3817 if (init->is_Initialize()) { 3818 assert(init->as_Initialize()->allocation() == this, "2-way link"); 3819 return init->as_Initialize(); 3820 } 3821 } 3822 return NULL; 3823 } 3824 3825 //----------------------------- loop predicates --------------------------- 3826 3827 //------------------------------add_predicate_impl---------------------------- 3828 bool GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) { 3829 // Too many traps seen? 3830 if (too_many_traps(reason)) { 3831 #ifdef ASSERT 3832 if (TraceLoopPredicate) { 3833 int tc = C->trap_count(reason); 3834 tty->print("too many traps=%s tcount=%d in ", 3835 Deoptimization::trap_reason_name(reason), tc); 3836 method()->print(); // which method has too many predicate traps 3837 tty->cr(); 3838 } 3839 #endif 3840 // We cannot afford to take more traps here, 3841 // do not generate predicate. 3842 return false; 3843 } 3844 3845 Node *cont = _gvn.intcon(1); 3846 Node* opq = _gvn.transform(new Opaque1Node(C, cont)); 3847 Node *bol = _gvn.transform(new Conv2BNode(opq)); 3848 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN); 3849 Node* iffalse = _gvn.transform(new IfFalseNode(iff)); 3850 C->add_predicate_opaq(opq); 3851 { 3852 PreserveJVMState pjvms(this); 3853 set_control(iffalse); 3854 inc_sp(nargs); 3855 uncommon_trap(reason, Deoptimization::Action_maybe_recompile); 3856 } 3857 Node* iftrue = _gvn.transform(new IfTrueNode(iff)); 3858 set_control(iftrue); 3859 return true; 3860 } 3861 3862 //------------------------------add_predicate--------------------------------- 3863 void GraphKit::add_predicate(int nargs) { 3864 bool added = false; 3865 if (UseProfiledLoopPredicate) { 3866 added = add_predicate_impl(Deoptimization::Reason_profile_predicate, nargs); 3867 } 3868 if (!added && UseLoopPredicate) { 3869 add_predicate_impl(Deoptimization::Reason_predicate, nargs); 3870 } 3871 // loop's limit check predicate should be near the loop. 3872 add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs); 3873 } 3874 3875 //----------------------------- store barriers ---------------------------- 3876 #define __ ideal. 3877 3878 void GraphKit::sync_kit(IdealKit& ideal) { 3879 set_all_memory(__ merged_memory()); 3880 set_i_o(__ i_o()); 3881 set_control(__ ctrl()); 3882 } 3883 3884 void GraphKit::final_sync(IdealKit& ideal) { 3885 // Final sync IdealKit and graphKit. 3886 sync_kit(ideal); 3887 } 3888 3889 Node* GraphKit::byte_map_base_node() { 3890 // Get base of card map 3891 CardTableModRefBS* ct = 3892 barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set()); 3893 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust users of this code"); 3894 if (ct->byte_map_base != NULL) { 3895 return makecon(TypeRawPtr::make((address)ct->byte_map_base)); 3896 } else { 3897 return null(); 3898 } 3899 } 3900 3901 // vanilla/CMS post barrier 3902 // Insert a write-barrier store. This is to let generational GC work; we have 3903 // to flag all oop-stores before the next GC point. 3904 void GraphKit::write_barrier_post(Node* oop_store, 3905 Node* obj, 3906 Node* adr, 3907 uint adr_idx, 3908 Node* val, 3909 bool use_precise) { 3910 // No store check needed if we're storing a NULL or an old object 3911 // (latter case is probably a string constant). The concurrent 3912 // mark sweep garbage collector, however, needs to have all nonNull 3913 // oop updates flagged via card-marks. 3914 if (val != NULL && val->is_Con()) { 3915 // must be either an oop or NULL 3916 const Type* t = val->bottom_type(); 3917 if (t == TypePtr::NULL_PTR || t == Type::TOP) 3918 // stores of null never (?) need barriers 3919 return; 3920 } 3921 3922 if (use_ReduceInitialCardMarks() 3923 && obj == just_allocated_object(control())) { 3924 // We can skip marks on a freshly-allocated object in Eden. 3925 // Keep this code in sync with new_store_pre_barrier() in runtime.cpp. 3926 // That routine informs GC to take appropriate compensating steps, 3927 // upon a slow-path allocation, so as to make this card-mark 3928 // elision safe. 3929 return; 3930 } 3931 3932 if (!use_precise) { 3933 // All card marks for a (non-array) instance are in one place: 3934 adr = obj; 3935 } 3936 // (Else it's an array (or unknown), and we want more precise card marks.) 3937 assert(adr != NULL, ""); 3938 3939 IdealKit ideal(this, true); 3940 3941 // Convert the pointer to an int prior to doing math on it 3942 Node* cast = __ CastPX(__ ctrl(), adr); 3943 3944 // Divide by card size 3945 assert(Universe::heap()->barrier_set()->is_a(BarrierSet::CardTableModRef), 3946 "Only one we handle so far."); 3947 Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) ); 3948 3949 // Combine card table base and card offset 3950 Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset ); 3951 3952 // Get the alias_index for raw card-mark memory 3953 int adr_type = Compile::AliasIdxRaw; 3954 Node* zero = __ ConI(0); // Dirty card value 3955 BasicType bt = T_BYTE; 3956 3957 if (UseConcMarkSweepGC && UseCondCardMark) { 3958 insert_mem_bar(Op_MemBarVolatile); // StoreLoad barrier 3959 __ sync_kit(this); 3960 } 3961 3962 if (UseCondCardMark) { 3963 // The classic GC reference write barrier is typically implemented 3964 // as a store into the global card mark table. Unfortunately 3965 // unconditional stores can result in false sharing and excessive 3966 // coherence traffic as well as false transactional aborts. 3967 // UseCondCardMark enables MP "polite" conditional card mark 3968 // stores. In theory we could relax the load from ctrl() to 3969 // no_ctrl, but that doesn't buy much latitude. 3970 Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type); 3971 __ if_then(card_val, BoolTest::ne, zero); 3972 } 3973 3974 // Smash zero into card 3975 if( !UseConcMarkSweepGC ) { 3976 __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::unordered); 3977 } else { 3978 // Specialized path for CM store barrier 3979 __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type); 3980 } 3981 3982 if (UseCondCardMark) { 3983 __ end_if(); 3984 } 3985 3986 // Final sync IdealKit and GraphKit. 3987 final_sync(ideal); 3988 } 3989 /* 3990 * Determine if the G1 pre-barrier can be removed. The pre-barrier is 3991 * required by SATB to make sure all objects live at the start of the 3992 * marking are kept alive, all reference updates need to any previous 3993 * reference stored before writing. 3994 * 3995 * If the previous value is NULL there is no need to save the old value. 3996 * References that are NULL are filtered during runtime by the barrier 3997 * code to avoid unnecessary queuing. 3998 * 3999 * However in the case of newly allocated objects it might be possible to 4000 * prove that the reference about to be overwritten is NULL during compile 4001 * time and avoid adding the barrier code completely. 4002 * 4003 * The compiler needs to determine that the object in which a field is about 4004 * to be written is newly allocated, and that no prior store to the same field 4005 * has happened since the allocation. 4006 * 4007 * Returns true if the pre-barrier can be removed 4008 */ 4009 bool GraphKit::g1_can_remove_pre_barrier(PhaseTransform* phase, Node* adr, 4010 BasicType bt, uint adr_idx) { 4011 intptr_t offset = 0; 4012 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 4013 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase); 4014 4015 if (offset == Type::OffsetBot) { 4016 return false; // cannot unalias unless there are precise offsets 4017 } 4018 4019 if (alloc == NULL) { 4020 return false; // No allocation found 4021 } 4022 4023 intptr_t size_in_bytes = type2aelembytes(bt); 4024 4025 Node* mem = memory(adr_idx); // start searching here... 4026 4027 for (int cnt = 0; cnt < 50; cnt++) { 4028 4029 if (mem->is_Store()) { 4030 4031 Node* st_adr = mem->in(MemNode::Address); 4032 intptr_t st_offset = 0; 4033 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 4034 4035 if (st_base == NULL) { 4036 break; // inscrutable pointer 4037 } 4038 4039 // Break we have found a store with same base and offset as ours so break 4040 if (st_base == base && st_offset == offset) { 4041 break; 4042 } 4043 4044 if (st_offset != offset && st_offset != Type::OffsetBot) { 4045 const int MAX_STORE = BytesPerLong; 4046 if (st_offset >= offset + size_in_bytes || 4047 st_offset <= offset - MAX_STORE || 4048 st_offset <= offset - mem->as_Store()->memory_size()) { 4049 // Success: The offsets are provably independent. 4050 // (You may ask, why not just test st_offset != offset and be done? 4051 // The answer is that stores of different sizes can co-exist 4052 // in the same sequence of RawMem effects. We sometimes initialize 4053 // a whole 'tile' of array elements with a single jint or jlong.) 4054 mem = mem->in(MemNode::Memory); 4055 continue; // advance through independent store memory 4056 } 4057 } 4058 4059 if (st_base != base 4060 && MemNode::detect_ptr_independence(base, alloc, st_base, 4061 AllocateNode::Ideal_allocation(st_base, phase), 4062 phase)) { 4063 // Success: The bases are provably independent. 4064 mem = mem->in(MemNode::Memory); 4065 continue; // advance through independent store memory 4066 } 4067 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 4068 4069 InitializeNode* st_init = mem->in(0)->as_Initialize(); 4070 AllocateNode* st_alloc = st_init->allocation(); 4071 4072 // Make sure that we are looking at the same allocation site. 4073 // The alloc variable is guaranteed to not be null here from earlier check. 4074 if (alloc == st_alloc) { 4075 // Check that the initialization is storing NULL so that no previous store 4076 // has been moved up and directly write a reference 4077 Node* captured_store = st_init->find_captured_store(offset, 4078 type2aelembytes(T_OBJECT), 4079 phase); 4080 if (captured_store == NULL || captured_store == st_init->zero_memory()) { 4081 return true; 4082 } 4083 } 4084 } 4085 4086 // Unless there is an explicit 'continue', we must bail out here, 4087 // because 'mem' is an inscrutable memory state (e.g., a call). 4088 break; 4089 } 4090 4091 return false; 4092 } 4093 4094 static void g1_write_barrier_pre_helper(const GraphKit& kit, Node* adr) { 4095 if (UseShenandoahGC && (ShenandoahSATBBarrier || ShenandoahConditionalSATBBarrier) && adr != NULL) { 4096 Node* c = kit.control(); 4097 Node* call = c->in(1)->in(1)->in(1)->in(0); 4098 assert(call->is_g1_wb_pre_call(), "g1_wb_pre call expected"); 4099 call->add_req(adr); 4100 } 4101 } 4102 4103 // G1 pre/post barriers 4104 void GraphKit::g1_write_barrier_pre(bool do_load, 4105 Node* obj, 4106 Node* adr, 4107 uint alias_idx, 4108 Node* val, 4109 const TypeOopPtr* val_type, 4110 Node* pre_val, 4111 BasicType bt) { 4112 4113 // Some sanity checks 4114 // Note: val is unused in this routine. 4115 4116 if (do_load) { 4117 // We need to generate the load of the previous value 4118 assert(obj != NULL, "must have a base"); 4119 assert(adr != NULL, "where are loading from?"); 4120 assert(pre_val == NULL, "loaded already?"); 4121 assert(val_type != NULL, "need a type"); 4122 4123 if (use_ReduceInitialCardMarks() 4124 && g1_can_remove_pre_barrier(&_gvn, adr, bt, alias_idx)) { 4125 return; 4126 } 4127 4128 } else { 4129 // In this case both val_type and alias_idx are unused. 4130 assert(pre_val != NULL, "must be loaded already"); 4131 // Nothing to be done if pre_val is null. 4132 if (pre_val->bottom_type() == TypePtr::NULL_PTR) return; 4133 assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here"); 4134 } 4135 assert(bt == T_OBJECT, "or we shouldn't be here"); 4136 4137 IdealKit ideal(this, true); 4138 4139 Node* tls = __ thread(); // ThreadLocalStorage 4140 4141 Node* no_ctrl = NULL; 4142 Node* no_base = __ top(); 4143 Node* zero = __ ConI(0); 4144 Node* zeroX = __ ConX(0); 4145 4146 float likely = PROB_LIKELY(0.999); 4147 float unlikely = PROB_UNLIKELY(0.999); 4148 4149 BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE; 4150 assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width"); 4151 4152 // Offsets into the thread 4153 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + // 648 4154 SATBMarkQueue::byte_offset_of_active()); 4155 const int index_offset = in_bytes(JavaThread::satb_mark_queue_offset() + // 656 4156 SATBMarkQueue::byte_offset_of_index()); 4157 const int buffer_offset = in_bytes(JavaThread::satb_mark_queue_offset() + // 652 4158 SATBMarkQueue::byte_offset_of_buf()); 4159 4160 // Now the actual pointers into the thread 4161 Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset)); 4162 Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset)); 4163 Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset)); 4164 4165 // Now some of the values 4166 Node* marking; 4167 if (UseShenandoahGC) { 4168 Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(JavaThread::gc_state_offset()))); 4169 Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw); 4170 marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING)); 4171 assert(ShenandoahWriteBarrierNode::is_gc_state_load(ld), "Should match the shape"); 4172 } else { 4173 assert(UseG1GC, "should be"); 4174 marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw); 4175 } 4176 4177 // if (!marking) 4178 __ if_then(marking, BoolTest::ne, zero, unlikely); { 4179 BasicType index_bt = TypeX_X->basic_type(); 4180 assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size."); 4181 Node* index = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw); 4182 4183 if (do_load) { 4184 // load original value 4185 // alias_idx correct?? 4186 pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx); 4187 } 4188 4189 // if (pre_val != NULL) 4190 __ if_then(pre_val, BoolTest::ne, null()); { 4191 Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); 4192 4193 // is the queue for this thread full? 4194 __ if_then(index, BoolTest::ne, zeroX, likely); { 4195 4196 // decrement the index 4197 Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t)))); 4198 4199 // Now get the buffer location we will log the previous value into and store it 4200 Node *log_addr = __ AddP(no_base, buffer, next_index); 4201 __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered); 4202 // update the index 4203 __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered); 4204 4205 } __ else_(); { 4206 4207 // logging buffer is full, call the runtime 4208 const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type(); 4209 __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls); 4210 } __ end_if(); // (!index) 4211 } __ end_if(); // (pre_val != NULL) 4212 } __ end_if(); // (!marking) 4213 4214 // Final sync IdealKit and GraphKit. 4215 final_sync(ideal); 4216 g1_write_barrier_pre_helper(*this, adr); 4217 } 4218 4219 void GraphKit::shenandoah_enqueue_barrier(Node* pre_val) { 4220 4221 // Some sanity checks 4222 assert(pre_val != NULL, "must be loaded already"); 4223 // Nothing to be done if pre_val is null. 4224 if (pre_val->bottom_type()->higher_equal(TypePtr::NULL_PTR)) return; 4225 assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here"); 4226 4227 IdealKit ideal(this, true); 4228 4229 Node* tls = __ thread(); // ThreadLocalStorage 4230 4231 Node* no_base = __ top(); 4232 Node* zero = __ ConI(0); 4233 Node* zeroX = __ ConX(0); 4234 4235 float likely = PROB_LIKELY(0.999); 4236 float unlikely = PROB_UNLIKELY(0.999); 4237 4238 // Offsets into the thread 4239 const int gc_state_offset = in_bytes(JavaThread::gc_state_offset()); 4240 const int index_offset = in_bytes(JavaThread::satb_mark_queue_offset() + // 656 4241 SATBMarkQueue::byte_offset_of_index()); 4242 const int buffer_offset = in_bytes(JavaThread::satb_mark_queue_offset() + // 652 4243 SATBMarkQueue::byte_offset_of_buf()); 4244 4245 // Now the actual pointers into the thread 4246 Node* gc_state_adr = __ AddP(no_base, tls, __ ConX(gc_state_offset)); 4247 Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset)); 4248 Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset)); 4249 4250 const Type* obj_type = pre_val->bottom_type(); 4251 if (obj_type->meet(TypePtr::NULL_PTR) == obj_type->remove_speculative()) { 4252 // dunno if it's NULL or not. 4253 // if (pre_val != NULL) 4254 __ if_then(pre_val, BoolTest::ne, null()); { 4255 4256 // Now some of the values 4257 Node* marking = __ load(__ ctrl(), gc_state_adr, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw); 4258 // if (!marking) 4259 __ if_then(marking, BoolTest::ne, zero, unlikely); { 4260 BasicType index_bt = TypeX_X->basic_type(); 4261 assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size."); 4262 Node* index = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw); 4263 4264 // is the queue for this thread full? 4265 __ if_then(index, BoolTest::ne, zeroX, likely); { 4266 4267 // decrement the index 4268 Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t)))); 4269 4270 // Now get the buffer location we will log the previous value into and store it 4271 Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); 4272 Node *log_addr = __ AddP(no_base, buffer, next_index); 4273 __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered); 4274 // update the index 4275 __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered); 4276 4277 } __ else_(); { 4278 // logging buffer is full, call the runtime 4279 const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type(); 4280 __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls); 4281 } __ end_if(); // (!index) 4282 } __ end_if(); // (!marking) 4283 } __ end_if(); // (pre_val != NULL) 4284 } else { 4285 // We know it is not null. 4286 // Now some of the values 4287 Node* marking = __ load(__ ctrl(), gc_state_adr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 4288 4289 // if (!marking) 4290 __ if_then(marking, BoolTest::ne, zero, unlikely); { 4291 BasicType index_bt = TypeX_X->basic_type(); 4292 assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size."); 4293 Node* index = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw); 4294 4295 // is the queue for this thread full? 4296 __ if_then(index, BoolTest::ne, zeroX, likely); { 4297 4298 // decrement the index 4299 Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t)))); 4300 4301 // Now get the buffer location we will log the previous value into and store it 4302 Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); 4303 Node *log_addr = __ AddP(no_base, buffer, next_index); 4304 __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered); 4305 // update the index 4306 __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered); 4307 4308 } __ else_(); { 4309 // logging buffer is full, call the runtime 4310 const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type(); 4311 __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls); 4312 } __ end_if(); // (!index) 4313 } __ end_if(); // (!marking) 4314 } 4315 // Final sync IdealKit and GraphKit. 4316 final_sync(ideal); 4317 } 4318 4319 void GraphKit::shenandoah_write_barrier_pre(bool do_load, 4320 Node* obj, 4321 Node* adr, 4322 uint alias_idx, 4323 Node* val, 4324 const TypeOopPtr* val_type, 4325 Node* pre_val, 4326 BasicType bt) { 4327 4328 IdealKit ideal(this); 4329 Node* tls = __ thread(); 4330 Node* no_base = __ top(); 4331 Node* no_ctrl = NULL; 4332 Node* zero = __ ConI(0); 4333 Node* offset = __ ConX(in_bytes(JavaThread::gc_state_offset())); 4334 Node* gc_state_adr = __ AddP(no_base, tls, offset); 4335 Node* gc_state = __ load(__ ctrl(), gc_state_adr, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw); 4336 float unlikely = PROB_UNLIKELY(0.999); 4337 4338 __ if_then(gc_state, BoolTest::ne, zero, unlikely); { 4339 sync_kit(ideal); 4340 4341 // Some sanity checks 4342 // Note: val is unused in this routine. 4343 4344 if (val != NULL) { 4345 shenandoah_update_matrix(adr, val); 4346 } 4347 4348 if (ShenandoahConditionalSATBBarrier) { 4349 enum { _set_path = 1, _not_set_path, PATH_LIMIT }; 4350 RegionNode* region = new RegionNode(PATH_LIMIT); 4351 Node* prev_mem = memory(Compile::AliasIdxRaw); 4352 Node* memphi = PhiNode::make(region, prev_mem, Type::MEMORY, TypeRawPtr::BOTTOM); 4353 4354 Node* gc_state_addr_p = _gvn.transform(new CastX2PNode(MakeConX((intptr_t) ShenandoahHeap::gc_state_addr()))); 4355 Node* gc_state_addr = _gvn.transform(new AddPNode(top(), gc_state_addr_p, MakeConX(0))); 4356 Node* gc_state = _gvn.transform(LoadNode::make(_gvn, control(), memory(Compile::AliasIdxRaw), gc_state_addr, TypeRawPtr::BOTTOM, TypeInt::INT, T_BYTE, MemNode::unordered)); 4357 Node* add_set = _gvn.transform(new AddINode(gc_state, intcon(ShenandoahHeap::MARKING))); 4358 Node* cmp_set = _gvn.transform(new CmpINode(add_set, intcon(0))); 4359 Node* cmp_set_bool = _gvn.transform(new BoolNode(cmp_set, BoolTest::eq)); 4360 IfNode* cmp_iff = create_and_map_if(control(), cmp_set_bool, PROB_MIN, COUNT_UNKNOWN); 4361 Node* if_not_set = _gvn.transform(new IfTrueNode(cmp_iff)); 4362 Node* if_set = _gvn.transform(new IfFalseNode(cmp_iff)); 4363 4364 // Conc-mark not in progress. Skip SATB barrier. 4365 set_control(if_not_set); 4366 region->init_req(_not_set_path, control()); 4367 memphi->init_req(_not_set_path, prev_mem); 4368 4369 // Conc-mark in progress. Do the SATB barrier. 4370 set_control(if_set); 4371 g1_write_barrier_pre(do_load, obj, adr, alias_idx, val, val_type, pre_val, bt); 4372 region->init_req(_set_path, control()); 4373 memphi->init_req(_set_path, memory(Compile::AliasIdxRaw)); 4374 4375 // Merge control flow and memory. 4376 set_control(_gvn.transform(region)); 4377 record_for_igvn(region); 4378 set_memory(_gvn.transform(memphi), Compile::AliasIdxRaw); 4379 4380 } 4381 if (ShenandoahSATBBarrier) { 4382 g1_write_barrier_pre(do_load, obj, adr, alias_idx, val, val_type, pre_val, bt); 4383 } 4384 ideal.sync_kit(this); 4385 } __ end_if(); 4386 final_sync(ideal); 4387 } 4388 4389 void GraphKit::shenandoah_update_matrix(Node* adr, Node* val) { 4390 if (!UseShenandoahMatrix) { 4391 return; 4392 } 4393 4394 assert(val != NULL, "checked before"); 4395 if (adr == NULL) { 4396 return; // Nothing to do 4397 } 4398 assert(adr != NULL, "must not happen"); 4399 if (val->bottom_type()->higher_equal(TypePtr::NULL_PTR)) { 4400 // Nothing to do. 4401 return; 4402 } 4403 4404 ShenandoahConnectionMatrix* matrix = ShenandoahHeap::heap()->connection_matrix(); 4405 4406 enum { _set_path = 1, _already_set_path, _val_null_path, PATH_LIMIT }; 4407 RegionNode* region = new RegionNode(PATH_LIMIT); 4408 Node* prev_mem = memory(Compile::AliasIdxRaw); 4409 Node* memphi = PhiNode::make(region, prev_mem, Type::MEMORY, TypeRawPtr::BOTTOM); 4410 Node* null_ctrl = top(); 4411 Node* not_null_val = null_check_oop(val, &null_ctrl); 4412 4413 // Null path: nothing to do. 4414 region->init_req(_val_null_path, null_ctrl); 4415 memphi->init_req(_val_null_path, prev_mem); 4416 4417 // Not null path. Update the matrix. 4418 4419 // This uses a fast calculation for the matrix address. For a description, 4420 // see src/share/vm/gc/shenandoah/shenandoahConnectionMatrix.inline.hpp, 4421 // ShenandoahConnectionMatrix::compute_address(const void* from, const void* to). 4422 address heap_base = ShenandoahHeap::heap()->base(); 4423 jint stride = matrix->stride_jint(); 4424 jint rs = ShenandoahHeapRegion::region_size_bytes_shift_jint(); 4425 4426 guarantee(stride < ShenandoahHeapRegion::region_size_bytes_jint(), "sanity"); 4427 guarantee(is_aligned(heap_base, ShenandoahHeapRegion::region_size_bytes()), "sanity"); 4428 4429 Node* magic_con = MakeConX((jlong) matrix->matrix_addr() - ((jlong) heap_base >> rs) * (stride + 1)); 4430 4431 // Compute addr part 4432 Node* adr_idx = _gvn.transform(new CastP2XNode(control(), adr)); 4433 adr_idx = _gvn.transform(new URShiftXNode(adr_idx, intcon(rs))); 4434 4435 // Compute new_val part 4436 Node* val_idx = _gvn.transform(new CastP2XNode(control(), not_null_val)); 4437 val_idx = _gvn.transform(new URShiftXNode(val_idx, intcon(rs))); 4438 val_idx = _gvn.transform(new MulXNode(val_idx, MakeConX(stride))); 4439 4440 // Add everything up 4441 adr_idx = _gvn.transform(new AddXNode(adr_idx, val_idx)); 4442 adr_idx = _gvn.transform(new CastX2PNode(adr_idx)); 4443 Node* matrix_adr = _gvn.transform(new AddPNode(top(), adr_idx, magic_con)); 4444 4445 // Load current value 4446 const TypePtr* adr_type = TypeRawPtr::BOTTOM; 4447 Node* current = _gvn.transform(LoadNode::make(_gvn, control(), memory(Compile::AliasIdxRaw), 4448 matrix_adr, adr_type, TypeInt::INT, T_BYTE, MemNode::unordered)); 4449 4450 // Check if already set 4451 Node* cmp_set = _gvn.transform(new CmpINode(current, intcon(0))); 4452 Node* cmp_set_bool = _gvn.transform(new BoolNode(cmp_set, BoolTest::eq)); 4453 IfNode* cmp_iff = create_and_map_if(control(), cmp_set_bool, PROB_MIN, COUNT_UNKNOWN); 4454 4455 Node* if_not_set = _gvn.transform(new IfTrueNode(cmp_iff)); 4456 Node* if_set = _gvn.transform(new IfFalseNode(cmp_iff)); 4457 4458 // Already set, exit 4459 set_control(if_set); 4460 region->init_req(_already_set_path, control()); 4461 memphi->init_req(_already_set_path, prev_mem); 4462 4463 // Not set: do the store, and finish up 4464 set_control(if_not_set); 4465 Node* store = _gvn.transform(StoreNode::make(_gvn, control(), memory(Compile::AliasIdxRaw), 4466 matrix_adr, adr_type, intcon(1), T_BYTE, MemNode::unordered)); 4467 region->init_req(_set_path, control()); 4468 memphi->init_req(_set_path, store); 4469 4470 // Merge control flows and memory. 4471 set_control(_gvn.transform(region)); 4472 record_for_igvn(region); 4473 set_memory(_gvn.transform(memphi), Compile::AliasIdxRaw); 4474 } 4475 4476 /* 4477 * G1 similar to any GC with a Young Generation requires a way to keep track of 4478 * references from Old Generation to Young Generation to make sure all live 4479 * objects are found. G1 also requires to keep track of object references 4480 * between different regions to enable evacuation of old regions, which is done 4481 * as part of mixed collections. References are tracked in remembered sets and 4482 * is continuously updated as reference are written to with the help of the 4483 * post-barrier. 4484 * 4485 * To reduce the number of updates to the remembered set the post-barrier 4486 * filters updates to fields in objects located in the Young Generation, 4487 * the same region as the reference, when the NULL is being written or 4488 * if the card is already marked as dirty by an earlier write. 4489 * 4490 * Under certain circumstances it is possible to avoid generating the 4491 * post-barrier completely if it is possible during compile time to prove 4492 * the object is newly allocated and that no safepoint exists between the 4493 * allocation and the store. 4494 * 4495 * In the case of slow allocation the allocation code must handle the barrier 4496 * as part of the allocation in the case the allocated object is not located 4497 * in the nursery, this would happen for humongous objects. This is similar to 4498 * how CMS is required to handle this case, see the comments for the method 4499 * CollectedHeap::new_store_pre_barrier and OptoRuntime::new_store_pre_barrier. 4500 * A deferred card mark is required for these objects and handled in the above 4501 * mentioned methods. 4502 * 4503 * Returns true if the post barrier can be removed 4504 */ 4505 bool GraphKit::g1_can_remove_post_barrier(PhaseTransform* phase, Node* store, 4506 Node* adr) { 4507 intptr_t offset = 0; 4508 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 4509 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase); 4510 4511 if (offset == Type::OffsetBot) { 4512 return false; // cannot unalias unless there are precise offsets 4513 } 4514 4515 if (alloc == NULL) { 4516 return false; // No allocation found 4517 } 4518 4519 // Start search from Store node 4520 Node* mem = store->in(MemNode::Control); 4521 if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 4522 4523 InitializeNode* st_init = mem->in(0)->as_Initialize(); 4524 AllocateNode* st_alloc = st_init->allocation(); 4525 4526 // Make sure we are looking at the same allocation 4527 if (alloc == st_alloc) { 4528 return true; 4529 } 4530 } 4531 4532 return false; 4533 } 4534 4535 // 4536 // Update the card table and add card address to the queue 4537 // 4538 void GraphKit::g1_mark_card(IdealKit& ideal, 4539 Node* card_adr, 4540 Node* oop_store, 4541 uint oop_alias_idx, 4542 Node* index, 4543 Node* index_adr, 4544 Node* buffer, 4545 const TypeFunc* tf) { 4546 4547 Node* zero = __ ConI(0); 4548 Node* zeroX = __ ConX(0); 4549 Node* no_base = __ top(); 4550 BasicType card_bt = T_BYTE; 4551 // Smash zero into card. MUST BE ORDERED WRT TO STORE 4552 __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw); 4553 4554 // Now do the queue work 4555 __ if_then(index, BoolTest::ne, zeroX); { 4556 4557 Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t)))); 4558 Node* log_addr = __ AddP(no_base, buffer, next_index); 4559 4560 // Order, see storeCM. 4561 __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 4562 __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered); 4563 4564 } __ else_(); { 4565 __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread()); 4566 } __ end_if(); 4567 4568 } 4569 4570 void GraphKit::g1_write_barrier_post(Node* oop_store, 4571 Node* obj, 4572 Node* adr, 4573 uint alias_idx, 4574 Node* val, 4575 BasicType bt, 4576 bool use_precise) { 4577 // If we are writing a NULL then we need no post barrier 4578 4579 if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) { 4580 // Must be NULL 4581 const Type* t = val->bottom_type(); 4582 assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL"); 4583 // No post barrier if writing NULLx 4584 return; 4585 } 4586 4587 if (use_ReduceInitialCardMarks() && obj == just_allocated_object(control())) { 4588 // We can skip marks on a freshly-allocated object in Eden. 4589 // Keep this code in sync with new_store_pre_barrier() in runtime.cpp. 4590 // That routine informs GC to take appropriate compensating steps, 4591 // upon a slow-path allocation, so as to make this card-mark 4592 // elision safe. 4593 return; 4594 } 4595 4596 if (use_ReduceInitialCardMarks() 4597 && g1_can_remove_post_barrier(&_gvn, oop_store, adr)) { 4598 return; 4599 } 4600 4601 if (!use_precise) { 4602 // All card marks for a (non-array) instance are in one place: 4603 adr = obj; 4604 } 4605 // (Else it's an array (or unknown), and we want more precise card marks.) 4606 assert(adr != NULL, ""); 4607 4608 IdealKit ideal(this, true); 4609 4610 Node* tls = __ thread(); // ThreadLocalStorage 4611 4612 Node* no_base = __ top(); 4613 float likely = PROB_LIKELY(0.999); 4614 float unlikely = PROB_UNLIKELY(0.999); 4615 Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val()); 4616 Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val()); 4617 Node* zeroX = __ ConX(0); 4618 4619 // Get the alias_index for raw card-mark memory 4620 const TypePtr* card_type = TypeRawPtr::BOTTOM; 4621 4622 const TypeFunc *tf = OptoRuntime::g1_wb_post_Type(); 4623 4624 // Offsets into the thread 4625 const int index_offset = in_bytes(JavaThread::dirty_card_queue_offset() + 4626 DirtyCardQueue::byte_offset_of_index()); 4627 const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() + 4628 DirtyCardQueue::byte_offset_of_buf()); 4629 4630 // Pointers into the thread 4631 4632 Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset)); 4633 Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset)); 4634 4635 // Now some values 4636 // Use ctrl to avoid hoisting these values past a safepoint, which could 4637 // potentially reset these fields in the JavaThread. 4638 Node* index = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw); 4639 Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); 4640 4641 // Convert the store obj pointer to an int prior to doing math on it 4642 // Must use ctrl to prevent "integerized oop" existing across safepoint 4643 Node* cast = __ CastPX(__ ctrl(), adr); 4644 4645 // Divide pointer by card size 4646 Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) ); 4647 4648 // Combine card table base and card offset 4649 Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset ); 4650 4651 // If we know the value being stored does it cross regions? 4652 4653 if (val != NULL) { 4654 // Does the store cause us to cross regions? 4655 4656 // Should be able to do an unsigned compare of region_size instead of 4657 // and extra shift. Do we have an unsigned compare?? 4658 // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes); 4659 Node* xor_res = __ URShiftX ( __ XorX( cast, __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes)); 4660 4661 // if (xor_res == 0) same region so skip 4662 __ if_then(xor_res, BoolTest::ne, zeroX); { 4663 4664 // No barrier if we are storing a NULL 4665 __ if_then(val, BoolTest::ne, null(), unlikely); { 4666 4667 // Ok must mark the card if not already dirty 4668 4669 // load the original value of the card 4670 Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw); 4671 4672 __ if_then(card_val, BoolTest::ne, young_card); { 4673 sync_kit(ideal); 4674 // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier. 4675 insert_mem_bar(Op_MemBarVolatile, oop_store); 4676 __ sync_kit(this); 4677 4678 Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw); 4679 __ if_then(card_val_reload, BoolTest::ne, dirty_card); { 4680 g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf); 4681 } __ end_if(); 4682 } __ end_if(); 4683 } __ end_if(); 4684 } __ end_if(); 4685 } else { 4686 // The Object.clone() intrinsic uses this path if !ReduceInitialCardMarks. 4687 // We don't need a barrier here if the destination is a newly allocated object 4688 // in Eden. Otherwise, GC verification breaks because we assume that cards in Eden 4689 // are set to 'g1_young_gen' (see G1SATBCardTableModRefBS::verify_g1_young_region()). 4690 assert(!use_ReduceInitialCardMarks(), "can only happen with card marking"); 4691 Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw); 4692 __ if_then(card_val, BoolTest::ne, young_card); { 4693 g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf); 4694 } __ end_if(); 4695 } 4696 4697 // Final sync IdealKit and GraphKit. 4698 final_sync(ideal); 4699 } 4700 #undef __ 4701 4702 4703 Node* GraphKit::load_String_length(Node* ctrl, Node* str) { 4704 Node* len = load_array_length(load_String_value(ctrl, str)); 4705 Node* coder = load_String_coder(ctrl, str); 4706 // Divide length by 2 if coder is UTF16 4707 return _gvn.transform(new RShiftINode(len, coder)); 4708 } 4709 4710 Node* GraphKit::load_String_value(Node* ctrl, Node* str) { 4711 int value_offset = java_lang_String::value_offset_in_bytes(); 4712 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4713 false, NULL, 0); 4714 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4715 const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull, 4716 TypeAry::make(TypeInt::BYTE, TypeInt::POS), 4717 ciTypeArrayKlass::make(T_BYTE), true, 0); 4718 int value_field_idx = C->get_alias_index(value_field_type); 4719 4720 if (!ShenandoahOptimizeInstanceFinals) { 4721 str = shenandoah_read_barrier(str); 4722 } 4723 4724 Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset), 4725 value_type, T_OBJECT, value_field_idx, MemNode::unordered); 4726 // String.value field is known to be @Stable. 4727 if (UseImplicitStableValues) { 4728 load = cast_array_to_stable(load, value_type); 4729 } 4730 return load; 4731 } 4732 4733 Node* GraphKit::load_String_coder(Node* ctrl, Node* str) { 4734 if (!CompactStrings) { 4735 return intcon(java_lang_String::CODER_UTF16); 4736 } 4737 int coder_offset = java_lang_String::coder_offset_in_bytes(); 4738 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4739 false, NULL, 0); 4740 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4741 int coder_field_idx = C->get_alias_index(coder_field_type); 4742 4743 if (!ShenandoahOptimizeInstanceFinals) { 4744 str = shenandoah_read_barrier(str); 4745 } 4746 4747 return make_load(ctrl, basic_plus_adr(str, str, coder_offset), 4748 TypeInt::BYTE, T_BYTE, coder_field_idx, MemNode::unordered); 4749 } 4750 4751 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) { 4752 int value_offset = java_lang_String::value_offset_in_bytes(); 4753 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4754 false, NULL, 0); 4755 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4756 4757 str = shenandoah_write_barrier(str); 4758 4759 store_oop_to_object(control(), str, basic_plus_adr(str, value_offset), value_field_type, 4760 value, TypeAryPtr::BYTES, T_OBJECT, MemNode::unordered); 4761 } 4762 4763 void GraphKit::store_String_coder(Node* ctrl, Node* str, Node* value) { 4764 int coder_offset = java_lang_String::coder_offset_in_bytes(); 4765 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4766 false, NULL, 0); 4767 4768 str = shenandoah_write_barrier(str); 4769 4770 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4771 int coder_field_idx = C->get_alias_index(coder_field_type); 4772 store_to_memory(control(), basic_plus_adr(str, coder_offset), 4773 value, T_BYTE, coder_field_idx, MemNode::unordered); 4774 } 4775 4776 // Capture src and dst memory state with a MergeMemNode 4777 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) { 4778 if (src_type == dst_type) { 4779 // Types are equal, we don't need a MergeMemNode 4780 return memory(src_type); 4781 } 4782 MergeMemNode* merge = MergeMemNode::make(map()->memory()); 4783 record_for_igvn(merge); // fold it up later, if possible 4784 int src_idx = C->get_alias_index(src_type); 4785 int dst_idx = C->get_alias_index(dst_type); 4786 merge->set_memory_at(src_idx, memory(src_idx)); 4787 merge->set_memory_at(dst_idx, memory(dst_idx)); 4788 return merge; 4789 } 4790 4791 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) { 4792 assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported"); 4793 assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type"); 4794 // If input and output memory types differ, capture both states to preserve 4795 // the dependency between preceding and subsequent loads/stores. 4796 // For example, the following program: 4797 // StoreB 4798 // compress_string 4799 // LoadB 4800 // has this memory graph (use->def): 4801 // LoadB -> compress_string -> CharMem 4802 // ... -> StoreB -> ByteMem 4803 // The intrinsic hides the dependency between LoadB and StoreB, causing 4804 // the load to read from memory not containing the result of the StoreB. 4805 // The correct memory graph should look like this: 4806 // LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem)) 4807 Node* mem = capture_memory(src_type, TypeAryPtr::BYTES); 4808 StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count); 4809 Node* res_mem = _gvn.transform(new SCMemProjNode(str)); 4810 set_memory(res_mem, TypeAryPtr::BYTES); 4811 return str; 4812 } 4813 4814 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) { 4815 assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported"); 4816 assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type"); 4817 // Capture src and dst memory (see comment in 'compress_string'). 4818 Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type); 4819 StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count); 4820 set_memory(_gvn.transform(str), dst_type); 4821 } 4822 4823 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) { 4824 4825 src = shenandoah_read_barrier(src); 4826 dst = shenandoah_write_barrier(dst); 4827 4828 /** 4829 * int i_char = start; 4830 * for (int i_byte = 0; i_byte < count; i_byte++) { 4831 * dst[i_char++] = (char)(src[i_byte] & 0xff); 4832 * } 4833 */ 4834 add_predicate(); 4835 RegionNode* head = new RegionNode(3); 4836 head->init_req(1, control()); 4837 gvn().set_type(head, Type::CONTROL); 4838 record_for_igvn(head); 4839 4840 Node* i_byte = new PhiNode(head, TypeInt::INT); 4841 i_byte->init_req(1, intcon(0)); 4842 gvn().set_type(i_byte, TypeInt::INT); 4843 record_for_igvn(i_byte); 4844 4845 Node* i_char = new PhiNode(head, TypeInt::INT); 4846 i_char->init_req(1, start); 4847 gvn().set_type(i_char, TypeInt::INT); 4848 record_for_igvn(i_char); 4849 4850 Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES); 4851 gvn().set_type(mem, Type::MEMORY); 4852 record_for_igvn(mem); 4853 set_control(head); 4854 set_memory(mem, TypeAryPtr::BYTES); 4855 Node* ch = load_array_element(control(), src, i_byte, TypeAryPtr::BYTES); 4856 Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE), 4857 AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered, 4858 false, false, true /* mismatched */); 4859 4860 IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN); 4861 head->init_req(2, IfTrue(iff)); 4862 mem->init_req(2, st); 4863 i_byte->init_req(2, AddI(i_byte, intcon(1))); 4864 i_char->init_req(2, AddI(i_char, intcon(2))); 4865 4866 set_control(IfFalse(iff)); 4867 set_memory(st, TypeAryPtr::BYTES); 4868 } 4869 4870 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) { 4871 if (!field->is_constant()) { 4872 return NULL; // Field not marked as constant. 4873 } 4874 ciInstance* holder = NULL; 4875 if (!field->is_static()) { 4876 ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop(); 4877 if (const_oop != NULL && const_oop->is_instance()) { 4878 holder = const_oop->as_instance(); 4879 } 4880 } 4881 const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(), 4882 /*is_unsigned_load=*/false); 4883 if (con_type != NULL) { 4884 return makecon(con_type); 4885 } 4886 return NULL; 4887 } 4888 4889 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) { 4890 // Reify the property as a CastPP node in Ideal graph to comply with monotonicity 4891 // assumption of CCP analysis. 4892 return _gvn.transform(new CastPPNode(ary, ary_type->cast_to_stable(true))); 4893 } 4894 4895 Node* GraphKit::shenandoah_read_barrier(Node* obj) { 4896 if (UseShenandoahGC && ShenandoahReadBarrier) { 4897 return shenandoah_read_barrier_impl(obj, false, true, true); 4898 } else { 4899 return obj; 4900 } 4901 } 4902 4903 Node* GraphKit::shenandoah_storeval_barrier(Node* obj) { 4904 if (UseShenandoahGC) { 4905 if (ShenandoahStoreValWriteBarrier || ShenandoahStoreValEnqueueBarrier) { 4906 obj = shenandoah_write_barrier(obj); 4907 } 4908 if (ShenandoahStoreValEnqueueBarrier && !ShenandoahMWF) { 4909 shenandoah_enqueue_barrier(obj); 4910 } 4911 if (ShenandoahStoreValReadBarrier) { 4912 obj = shenandoah_read_barrier_impl(obj, true, false, false); 4913 } 4914 } 4915 return obj; 4916 } 4917 4918 Node* GraphKit::shenandoah_read_barrier_acmp(Node* obj) { 4919 return shenandoah_read_barrier_impl(obj, true, true, false); 4920 } 4921 4922 Node* GraphKit::shenandoah_read_barrier_impl(Node* obj, bool use_ctrl, bool use_mem, bool allow_fromspace) { 4923 4924 const Type* obj_type = obj->bottom_type(); 4925 if (obj_type->higher_equal(TypePtr::NULL_PTR)) { 4926 return obj; 4927 } 4928 const TypePtr* adr_type = ShenandoahBarrierNode::brooks_pointer_type(obj_type); 4929 Node* mem = use_mem ? memory(adr_type) : immutable_memory(); 4930 4931 if (! ShenandoahBarrierNode::needs_barrier(&_gvn, NULL, obj, mem, allow_fromspace)) { 4932 // We know it is null, no barrier needed. 4933 return obj; 4934 } 4935 4936 4937 if (obj_type->meet(TypePtr::NULL_PTR) == obj_type->remove_speculative()) { 4938 4939 // We don't know if it's null or not. Need null-check. 4940 enum { _not_null_path = 1, _null_path, PATH_LIMIT }; 4941 RegionNode* region = new RegionNode(PATH_LIMIT); 4942 Node* phi = new PhiNode(region, obj_type); 4943 Node* null_ctrl = top(); 4944 Node* not_null_obj = null_check_oop(obj, &null_ctrl); 4945 4946 region->init_req(_null_path, null_ctrl); 4947 phi ->init_req(_null_path, zerocon(T_OBJECT)); 4948 4949 Node* ctrl = use_ctrl ? control() : NULL; 4950 ShenandoahReadBarrierNode* rb = new ShenandoahReadBarrierNode(ctrl, mem, not_null_obj, allow_fromspace); 4951 Node* n = _gvn.transform(rb); 4952 4953 region->init_req(_not_null_path, control()); 4954 phi ->init_req(_not_null_path, n); 4955 4956 set_control(_gvn.transform(region)); 4957 record_for_igvn(region); 4958 return _gvn.transform(phi); 4959 4960 } else { 4961 // We know it is not null. Simple barrier is sufficient. 4962 Node* ctrl = use_ctrl ? control() : NULL; 4963 ShenandoahReadBarrierNode* rb = new ShenandoahReadBarrierNode(ctrl, mem, obj, allow_fromspace); 4964 Node* n = _gvn.transform(rb); 4965 record_for_igvn(n); 4966 return n; 4967 } 4968 } 4969 4970 Node* GraphKit::shenandoah_write_barrier_helper(GraphKit& kit, Node* obj, const TypePtr* adr_type) { 4971 ShenandoahWriteBarrierNode* wb = new ShenandoahWriteBarrierNode(kit.C, kit.control(), kit.memory(adr_type), obj); 4972 Node* n = kit.gvn().transform(wb); 4973 if (n == wb) { // New barrier needs memory projection. 4974 Node* proj = kit.gvn().transform(new ShenandoahWBMemProjNode(n)); 4975 kit.set_memory(proj, adr_type); 4976 } 4977 4978 return n; 4979 } 4980 4981 Node* GraphKit::shenandoah_write_barrier(Node* obj) { 4982 4983 if (UseShenandoahGC && ShenandoahWriteBarrier) { 4984 obj = shenandoah_write_barrier_impl(obj); 4985 if (ShenandoahStoreValEnqueueBarrier && ShenandoahMWF) { 4986 shenandoah_enqueue_barrier(obj); 4987 } 4988 return obj; 4989 } else { 4990 return obj; 4991 } 4992 } 4993 4994 Node* GraphKit::shenandoah_write_barrier_impl(Node* obj) { 4995 if (! ShenandoahBarrierNode::needs_barrier(&_gvn, NULL, obj, NULL, true)) { 4996 return obj; 4997 } 4998 const Type* obj_type = obj->bottom_type(); 4999 const TypePtr* adr_type = ShenandoahBarrierNode::brooks_pointer_type(obj_type); 5000 if (obj_type->meet(TypePtr::NULL_PTR) == obj_type->remove_speculative()) { 5001 // We don't know if it's null or not. Need null-check. 5002 enum { _not_null_path = 1, _null_path, PATH_LIMIT }; 5003 RegionNode* region = new RegionNode(PATH_LIMIT); 5004 Node* phi = new PhiNode(region, obj_type); 5005 Node* memphi = PhiNode::make(region, memory(adr_type), Type::MEMORY, C->alias_type(adr_type)->adr_type()); 5006 5007 Node* prev_mem = memory(adr_type); 5008 Node* null_ctrl = top(); 5009 Node* not_null_obj = null_check_oop(obj, &null_ctrl); 5010 5011 region->init_req(_null_path, null_ctrl); 5012 phi ->init_req(_null_path, zerocon(T_OBJECT)); 5013 memphi->init_req(_null_path, prev_mem); 5014 5015 Node* n = shenandoah_write_barrier_helper(*this, not_null_obj, adr_type); 5016 5017 region->init_req(_not_null_path, control()); 5018 phi ->init_req(_not_null_path, n); 5019 memphi->init_req(_not_null_path, memory(adr_type)); 5020 5021 set_control(_gvn.transform(region)); 5022 record_for_igvn(region); 5023 set_memory(_gvn.transform(memphi), adr_type); 5024 5025 Node* res_val = _gvn.transform(phi); 5026 // replace_in_map(obj, res_val); 5027 return res_val; 5028 } else { 5029 // We know it is not null. Simple barrier is sufficient. 5030 Node* n = shenandoah_write_barrier_helper(*this, obj, adr_type); 5031 // replace_in_map(obj, n); 5032 record_for_igvn(n); 5033 return n; 5034 } 5035 }