1 /* 2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "jvm.h" 27 #include "aot/aotLoader.hpp" 28 #include "classfile/stringTable.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "classfile/vmSymbols.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/compiledIC.hpp" 33 #include "code/icBuffer.hpp" 34 #include "code/compiledMethod.inline.hpp" 35 #include "code/scopeDesc.hpp" 36 #include "code/vtableStubs.hpp" 37 #include "compiler/abstractCompiler.hpp" 38 #include "compiler/compileBroker.hpp" 39 #include "compiler/disassembler.hpp" 40 #include "gc/shared/barrierSet.hpp" 41 #include "gc/shared/gcLocker.inline.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "interpreter/interpreterRuntime.hpp" 44 #include "jfr/jfrEvents.hpp" 45 #include "logging/log.hpp" 46 #include "memory/metaspaceShared.hpp" 47 #include "memory/oopFactory.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "oops/access.hpp" 51 #include "oops/fieldStreams.hpp" 52 #include "oops/klass.hpp" 53 #include "oops/method.inline.hpp" 54 #include "oops/objArrayKlass.hpp" 55 #include "oops/objArrayOop.inline.hpp" 56 #include "oops/oop.inline.hpp" 57 #include "oops/valueKlass.hpp" 58 #include "prims/forte.hpp" 59 #include "prims/jvmtiExport.hpp" 60 #include "prims/methodHandles.hpp" 61 #include "prims/nativeLookup.hpp" 62 #include "runtime/arguments.hpp" 63 #include "runtime/atomic.hpp" 64 #include "runtime/biasedLocking.hpp" 65 #include "runtime/compilationPolicy.hpp" 66 #include "runtime/frame.inline.hpp" 67 #include "runtime/handles.inline.hpp" 68 #include "runtime/init.hpp" 69 #include "runtime/interfaceSupport.inline.hpp" 70 #include "runtime/java.hpp" 71 #include "runtime/javaCalls.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/stubRoutines.hpp" 74 #include "runtime/vframe.inline.hpp" 75 #include "runtime/vframeArray.hpp" 76 #include "utilities/copy.hpp" 77 #include "utilities/dtrace.hpp" 78 #include "utilities/events.hpp" 79 #include "utilities/hashtable.inline.hpp" 80 #include "utilities/macros.hpp" 81 #include "utilities/xmlstream.hpp" 82 #ifdef COMPILER1 83 #include "c1/c1_Runtime1.hpp" 84 #endif 85 86 // Shared stub locations 87 RuntimeStub* SharedRuntime::_wrong_method_blob; 88 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob; 89 RuntimeStub* SharedRuntime::_ic_miss_blob; 90 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; 91 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; 92 RuntimeStub* SharedRuntime::_resolve_static_call_blob; 93 address SharedRuntime::_resolve_static_call_entry; 94 95 DeoptimizationBlob* SharedRuntime::_deopt_blob; 96 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob; 97 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; 98 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; 99 100 #ifdef COMPILER2 101 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; 102 #endif // COMPILER2 103 104 105 //----------------------------generate_stubs----------------------------------- 106 void SharedRuntime::generate_stubs() { 107 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); 108 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub"); 109 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); 110 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); 111 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); 112 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); 113 _resolve_static_call_entry = _resolve_static_call_blob->entry_point(); 114 115 #if COMPILER2_OR_JVMCI 116 // Vectors are generated only by C2 and JVMCI. 117 bool support_wide = is_wide_vector(MaxVectorSize); 118 if (support_wide) { 119 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP); 120 } 121 #endif // COMPILER2_OR_JVMCI 122 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP); 123 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN); 124 125 generate_deopt_blob(); 126 127 #ifdef COMPILER2 128 generate_uncommon_trap_blob(); 129 #endif // COMPILER2 130 } 131 132 #include <math.h> 133 134 // Implementation of SharedRuntime 135 136 #ifndef PRODUCT 137 // For statistics 138 int SharedRuntime::_ic_miss_ctr = 0; 139 int SharedRuntime::_wrong_method_ctr = 0; 140 int SharedRuntime::_resolve_static_ctr = 0; 141 int SharedRuntime::_resolve_virtual_ctr = 0; 142 int SharedRuntime::_resolve_opt_virtual_ctr = 0; 143 int SharedRuntime::_implicit_null_throws = 0; 144 int SharedRuntime::_implicit_div0_throws = 0; 145 int SharedRuntime::_throw_null_ctr = 0; 146 147 int SharedRuntime::_nof_normal_calls = 0; 148 int SharedRuntime::_nof_optimized_calls = 0; 149 int SharedRuntime::_nof_inlined_calls = 0; 150 int SharedRuntime::_nof_megamorphic_calls = 0; 151 int SharedRuntime::_nof_static_calls = 0; 152 int SharedRuntime::_nof_inlined_static_calls = 0; 153 int SharedRuntime::_nof_interface_calls = 0; 154 int SharedRuntime::_nof_optimized_interface_calls = 0; 155 int SharedRuntime::_nof_inlined_interface_calls = 0; 156 int SharedRuntime::_nof_megamorphic_interface_calls = 0; 157 int SharedRuntime::_nof_removable_exceptions = 0; 158 159 int SharedRuntime::_new_instance_ctr=0; 160 int SharedRuntime::_new_array_ctr=0; 161 int SharedRuntime::_multi1_ctr=0; 162 int SharedRuntime::_multi2_ctr=0; 163 int SharedRuntime::_multi3_ctr=0; 164 int SharedRuntime::_multi4_ctr=0; 165 int SharedRuntime::_multi5_ctr=0; 166 int SharedRuntime::_mon_enter_stub_ctr=0; 167 int SharedRuntime::_mon_exit_stub_ctr=0; 168 int SharedRuntime::_mon_enter_ctr=0; 169 int SharedRuntime::_mon_exit_ctr=0; 170 int SharedRuntime::_partial_subtype_ctr=0; 171 int SharedRuntime::_jbyte_array_copy_ctr=0; 172 int SharedRuntime::_jshort_array_copy_ctr=0; 173 int SharedRuntime::_jint_array_copy_ctr=0; 174 int SharedRuntime::_jlong_array_copy_ctr=0; 175 int SharedRuntime::_oop_array_copy_ctr=0; 176 int SharedRuntime::_checkcast_array_copy_ctr=0; 177 int SharedRuntime::_unsafe_array_copy_ctr=0; 178 int SharedRuntime::_generic_array_copy_ctr=0; 179 int SharedRuntime::_slow_array_copy_ctr=0; 180 int SharedRuntime::_find_handler_ctr=0; 181 int SharedRuntime::_rethrow_ctr=0; 182 183 int SharedRuntime::_ICmiss_index = 0; 184 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 185 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 186 187 188 void SharedRuntime::trace_ic_miss(address at) { 189 for (int i = 0; i < _ICmiss_index; i++) { 190 if (_ICmiss_at[i] == at) { 191 _ICmiss_count[i]++; 192 return; 193 } 194 } 195 int index = _ICmiss_index++; 196 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 197 _ICmiss_at[index] = at; 198 _ICmiss_count[index] = 1; 199 } 200 201 void SharedRuntime::print_ic_miss_histogram() { 202 if (ICMissHistogram) { 203 tty->print_cr("IC Miss Histogram:"); 204 int tot_misses = 0; 205 for (int i = 0; i < _ICmiss_index; i++) { 206 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 207 tot_misses += _ICmiss_count[i]; 208 } 209 tty->print_cr("Total IC misses: %7d", tot_misses); 210 } 211 } 212 #endif // PRODUCT 213 214 215 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 216 return x * y; 217 JRT_END 218 219 220 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 221 if (x == min_jlong && y == CONST64(-1)) { 222 return x; 223 } else { 224 return x / y; 225 } 226 JRT_END 227 228 229 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 230 if (x == min_jlong && y == CONST64(-1)) { 231 return 0; 232 } else { 233 return x % y; 234 } 235 JRT_END 236 237 238 const juint float_sign_mask = 0x7FFFFFFF; 239 const juint float_infinity = 0x7F800000; 240 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 241 const julong double_infinity = CONST64(0x7FF0000000000000); 242 243 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 244 #ifdef _WIN64 245 // 64-bit Windows on amd64 returns the wrong values for 246 // infinity operands. 247 union { jfloat f; juint i; } xbits, ybits; 248 xbits.f = x; 249 ybits.f = y; 250 // x Mod Infinity == x unless x is infinity 251 if (((xbits.i & float_sign_mask) != float_infinity) && 252 ((ybits.i & float_sign_mask) == float_infinity) ) { 253 return x; 254 } 255 return ((jfloat)fmod_winx64((double)x, (double)y)); 256 #else 257 return ((jfloat)fmod((double)x,(double)y)); 258 #endif 259 JRT_END 260 261 262 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 263 #ifdef _WIN64 264 union { jdouble d; julong l; } xbits, ybits; 265 xbits.d = x; 266 ybits.d = y; 267 // x Mod Infinity == x unless x is infinity 268 if (((xbits.l & double_sign_mask) != double_infinity) && 269 ((ybits.l & double_sign_mask) == double_infinity) ) { 270 return x; 271 } 272 return ((jdouble)fmod_winx64((double)x, (double)y)); 273 #else 274 return ((jdouble)fmod((double)x,(double)y)); 275 #endif 276 JRT_END 277 278 #ifdef __SOFTFP__ 279 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 280 return x + y; 281 JRT_END 282 283 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 284 return x - y; 285 JRT_END 286 287 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 288 return x * y; 289 JRT_END 290 291 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 292 return x / y; 293 JRT_END 294 295 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 296 return x + y; 297 JRT_END 298 299 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 300 return x - y; 301 JRT_END 302 303 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 304 return x * y; 305 JRT_END 306 307 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 308 return x / y; 309 JRT_END 310 311 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 312 return (jfloat)x; 313 JRT_END 314 315 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 316 return (jdouble)x; 317 JRT_END 318 319 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 320 return (jdouble)x; 321 JRT_END 322 323 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 324 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 325 JRT_END 326 327 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 328 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 329 JRT_END 330 331 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 332 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 333 JRT_END 334 335 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 336 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 337 JRT_END 338 339 // Functions to return the opposite of the aeabi functions for nan. 340 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 341 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 342 JRT_END 343 344 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 345 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 346 JRT_END 347 348 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 349 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 350 JRT_END 351 352 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 353 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 354 JRT_END 355 356 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 357 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 358 JRT_END 359 360 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 361 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 362 JRT_END 363 364 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 365 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 366 JRT_END 367 368 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 369 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 370 JRT_END 371 372 // Intrinsics make gcc generate code for these. 373 float SharedRuntime::fneg(float f) { 374 return -f; 375 } 376 377 double SharedRuntime::dneg(double f) { 378 return -f; 379 } 380 381 #endif // __SOFTFP__ 382 383 #if defined(__SOFTFP__) || defined(E500V2) 384 // Intrinsics make gcc generate code for these. 385 double SharedRuntime::dabs(double f) { 386 return (f <= (double)0.0) ? (double)0.0 - f : f; 387 } 388 389 #endif 390 391 #if defined(__SOFTFP__) || defined(PPC) 392 double SharedRuntime::dsqrt(double f) { 393 return sqrt(f); 394 } 395 #endif 396 397 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 398 if (g_isnan(x)) 399 return 0; 400 if (x >= (jfloat) max_jint) 401 return max_jint; 402 if (x <= (jfloat) min_jint) 403 return min_jint; 404 return (jint) x; 405 JRT_END 406 407 408 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 409 if (g_isnan(x)) 410 return 0; 411 if (x >= (jfloat) max_jlong) 412 return max_jlong; 413 if (x <= (jfloat) min_jlong) 414 return min_jlong; 415 return (jlong) x; 416 JRT_END 417 418 419 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 420 if (g_isnan(x)) 421 return 0; 422 if (x >= (jdouble) max_jint) 423 return max_jint; 424 if (x <= (jdouble) min_jint) 425 return min_jint; 426 return (jint) x; 427 JRT_END 428 429 430 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 431 if (g_isnan(x)) 432 return 0; 433 if (x >= (jdouble) max_jlong) 434 return max_jlong; 435 if (x <= (jdouble) min_jlong) 436 return min_jlong; 437 return (jlong) x; 438 JRT_END 439 440 441 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 442 return (jfloat)x; 443 JRT_END 444 445 446 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 447 return (jfloat)x; 448 JRT_END 449 450 451 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 452 return (jdouble)x; 453 JRT_END 454 455 // Exception handling across interpreter/compiler boundaries 456 // 457 // exception_handler_for_return_address(...) returns the continuation address. 458 // The continuation address is the entry point of the exception handler of the 459 // previous frame depending on the return address. 460 461 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) { 462 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 463 assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 464 465 // Reset method handle flag. 466 thread->set_is_method_handle_return(false); 467 468 #if INCLUDE_JVMCI 469 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 470 // and other exception handler continuations do not read it 471 thread->set_exception_pc(NULL); 472 #endif // INCLUDE_JVMCI 473 474 // The fastest case first 475 CodeBlob* blob = CodeCache::find_blob(return_address); 476 CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL; 477 if (nm != NULL) { 478 // Set flag if return address is a method handle call site. 479 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 480 // native nmethods don't have exception handlers 481 assert(!nm->is_native_method(), "no exception handler"); 482 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 483 if (nm->is_deopt_pc(return_address)) { 484 // If we come here because of a stack overflow, the stack may be 485 // unguarded. Reguard the stack otherwise if we return to the 486 // deopt blob and the stack bang causes a stack overflow we 487 // crash. 488 bool guard_pages_enabled = thread->stack_guards_enabled(); 489 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack(); 490 if (thread->reserved_stack_activation() != thread->stack_base()) { 491 thread->set_reserved_stack_activation(thread->stack_base()); 492 } 493 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 494 return SharedRuntime::deopt_blob()->unpack_with_exception(); 495 } else { 496 return nm->exception_begin(); 497 } 498 } 499 500 // Entry code 501 if (StubRoutines::returns_to_call_stub(return_address)) { 502 return StubRoutines::catch_exception_entry(); 503 } 504 // Interpreted code 505 if (Interpreter::contains(return_address)) { 506 return Interpreter::rethrow_exception_entry(); 507 } 508 509 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub"); 510 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!"); 511 512 #ifndef PRODUCT 513 { ResourceMark rm; 514 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 515 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 516 tty->print_cr("b) other problem"); 517 } 518 #endif // PRODUCT 519 520 ShouldNotReachHere(); 521 return NULL; 522 } 523 524 525 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address)) 526 return raw_exception_handler_for_return_address(thread, return_address); 527 JRT_END 528 529 530 address SharedRuntime::get_poll_stub(address pc) { 531 address stub; 532 // Look up the code blob 533 CodeBlob *cb = CodeCache::find_blob(pc); 534 535 // Should be an nmethod 536 guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod"); 537 538 // Look up the relocation information 539 assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc), 540 "safepoint polling: type must be poll"); 541 542 #ifdef ASSERT 543 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 544 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 545 Disassembler::decode(cb); 546 fatal("Only polling locations are used for safepoint"); 547 } 548 #endif 549 550 bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc); 551 bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors(); 552 if (at_poll_return) { 553 assert(SharedRuntime::polling_page_return_handler_blob() != NULL, 554 "polling page return stub not created yet"); 555 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 556 } else if (has_wide_vectors) { 557 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL, 558 "polling page vectors safepoint stub not created yet"); 559 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 560 } else { 561 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL, 562 "polling page safepoint stub not created yet"); 563 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 564 } 565 log_debug(safepoint)("... found polling page %s exception at pc = " 566 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 567 at_poll_return ? "return" : "loop", 568 (intptr_t)pc, (intptr_t)stub); 569 return stub; 570 } 571 572 573 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) { 574 assert(caller.is_interpreted_frame(), ""); 575 int args_size = ArgumentSizeComputer(sig).size() + 1; 576 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack"); 577 oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1)); 578 assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop"); 579 return result; 580 } 581 582 583 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) { 584 if (JvmtiExport::can_post_on_exceptions()) { 585 vframeStream vfst(thread, true); 586 methodHandle method = methodHandle(thread, vfst.method()); 587 address bcp = method()->bcp_from(vfst.bci()); 588 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception()); 589 } 590 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception); 591 } 592 593 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) { 594 Handle h_exception = Exceptions::new_exception(thread, name, message); 595 throw_and_post_jvmti_exception(thread, h_exception); 596 } 597 598 // The interpreter code to call this tracing function is only 599 // called/generated when UL is on for redefine, class and has the right level 600 // and tags. Since obsolete methods are never compiled, we don't have 601 // to modify the compilers to generate calls to this function. 602 // 603 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 604 JavaThread* thread, Method* method)) 605 if (method->is_obsolete()) { 606 // We are calling an obsolete method, but this is not necessarily 607 // an error. Our method could have been redefined just after we 608 // fetched the Method* from the constant pool. 609 ResourceMark rm; 610 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 611 } 612 return 0; 613 JRT_END 614 615 // ret_pc points into caller; we are returning caller's exception handler 616 // for given exception 617 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception, 618 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 619 assert(cm != NULL, "must exist"); 620 ResourceMark rm; 621 622 #if INCLUDE_JVMCI 623 if (cm->is_compiled_by_jvmci()) { 624 // lookup exception handler for this pc 625 int catch_pco = ret_pc - cm->code_begin(); 626 ExceptionHandlerTable table(cm); 627 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 628 if (t != NULL) { 629 return cm->code_begin() + t->pco(); 630 } else { 631 return Deoptimization::deoptimize_for_missing_exception_handler(cm); 632 } 633 } 634 #endif // INCLUDE_JVMCI 635 636 nmethod* nm = cm->as_nmethod(); 637 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 638 // determine handler bci, if any 639 EXCEPTION_MARK; 640 641 int handler_bci = -1; 642 int scope_depth = 0; 643 if (!force_unwind) { 644 int bci = sd->bci(); 645 bool recursive_exception = false; 646 do { 647 bool skip_scope_increment = false; 648 // exception handler lookup 649 Klass* ek = exception->klass(); 650 methodHandle mh(THREAD, sd->method()); 651 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 652 if (HAS_PENDING_EXCEPTION) { 653 recursive_exception = true; 654 // We threw an exception while trying to find the exception handler. 655 // Transfer the new exception to the exception handle which will 656 // be set into thread local storage, and do another lookup for an 657 // exception handler for this exception, this time starting at the 658 // BCI of the exception handler which caused the exception to be 659 // thrown (bugs 4307310 and 4546590). Set "exception" reference 660 // argument to ensure that the correct exception is thrown (4870175). 661 recursive_exception_occurred = true; 662 exception = Handle(THREAD, PENDING_EXCEPTION); 663 CLEAR_PENDING_EXCEPTION; 664 if (handler_bci >= 0) { 665 bci = handler_bci; 666 handler_bci = -1; 667 skip_scope_increment = true; 668 } 669 } 670 else { 671 recursive_exception = false; 672 } 673 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 674 sd = sd->sender(); 675 if (sd != NULL) { 676 bci = sd->bci(); 677 } 678 ++scope_depth; 679 } 680 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL)); 681 } 682 683 // found handling method => lookup exception handler 684 int catch_pco = ret_pc - nm->code_begin(); 685 686 ExceptionHandlerTable table(nm); 687 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 688 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) { 689 // Allow abbreviated catch tables. The idea is to allow a method 690 // to materialize its exceptions without committing to the exact 691 // routing of exceptions. In particular this is needed for adding 692 // a synthetic handler to unlock monitors when inlining 693 // synchronized methods since the unlock path isn't represented in 694 // the bytecodes. 695 t = table.entry_for(catch_pco, -1, 0); 696 } 697 698 #ifdef COMPILER1 699 if (t == NULL && nm->is_compiled_by_c1()) { 700 assert(nm->unwind_handler_begin() != NULL, ""); 701 return nm->unwind_handler_begin(); 702 } 703 #endif 704 705 if (t == NULL) { 706 ttyLocker ttyl; 707 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci); 708 tty->print_cr(" Exception:"); 709 exception->print(); 710 tty->cr(); 711 tty->print_cr(" Compiled exception table :"); 712 table.print(); 713 nm->print_code(); 714 guarantee(false, "missing exception handler"); 715 return NULL; 716 } 717 718 return nm->code_begin() + t->pco(); 719 } 720 721 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread)) 722 // These errors occur only at call sites 723 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError()); 724 JRT_END 725 726 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) 727 // These errors occur only at call sites 728 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 729 JRT_END 730 731 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread)) 732 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 733 JRT_END 734 735 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread)) 736 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 737 JRT_END 738 739 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread)) 740 // This entry point is effectively only used for NullPointerExceptions which occur at inline 741 // cache sites (when the callee activation is not yet set up) so we are at a call site 742 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 743 JRT_END 744 745 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread)) 746 throw_StackOverflowError_common(thread, false); 747 JRT_END 748 749 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread)) 750 throw_StackOverflowError_common(thread, true); 751 JRT_END 752 753 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) { 754 // We avoid using the normal exception construction in this case because 755 // it performs an upcall to Java, and we're already out of stack space. 756 Thread* THREAD = thread; 757 Klass* k = SystemDictionary::StackOverflowError_klass(); 758 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 759 if (delayed) { 760 java_lang_Throwable::set_message(exception_oop, 761 Universe::delayed_stack_overflow_error_message()); 762 } 763 Handle exception (thread, exception_oop); 764 if (StackTraceInThrowable) { 765 java_lang_Throwable::fill_in_stack_trace(exception); 766 } 767 // Increment counter for hs_err file reporting 768 Atomic::inc(&Exceptions::_stack_overflow_errors); 769 throw_and_post_jvmti_exception(thread, exception); 770 } 771 772 #if INCLUDE_JVMCI 773 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) { 774 assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason"); 775 thread->set_jvmci_implicit_exception_pc(pc); 776 thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret)); 777 return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap()); 778 } 779 #endif // INCLUDE_JVMCI 780 781 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread, 782 address pc, 783 SharedRuntime::ImplicitExceptionKind exception_kind) 784 { 785 address target_pc = NULL; 786 787 if (Interpreter::contains(pc)) { 788 #ifdef CC_INTERP 789 // C++ interpreter doesn't throw implicit exceptions 790 ShouldNotReachHere(); 791 #else 792 switch (exception_kind) { 793 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 794 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 795 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 796 default: ShouldNotReachHere(); 797 } 798 #endif // !CC_INTERP 799 } else { 800 switch (exception_kind) { 801 case STACK_OVERFLOW: { 802 // Stack overflow only occurs upon frame setup; the callee is 803 // going to be unwound. Dispatch to a shared runtime stub 804 // which will cause the StackOverflowError to be fabricated 805 // and processed. 806 // Stack overflow should never occur during deoptimization: 807 // the compiled method bangs the stack by as much as the 808 // interpreter would need in case of a deoptimization. The 809 // deoptimization blob and uncommon trap blob bang the stack 810 // in a debug VM to verify the correctness of the compiled 811 // method stack banging. 812 assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap"); 813 Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 814 return StubRoutines::throw_StackOverflowError_entry(); 815 } 816 817 case IMPLICIT_NULL: { 818 if (VtableStubs::contains(pc)) { 819 // We haven't yet entered the callee frame. Fabricate an 820 // exception and begin dispatching it in the caller. Since 821 // the caller was at a call site, it's safe to destroy all 822 // caller-saved registers, as these entry points do. 823 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 824 825 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error. 826 if (vt_stub == NULL) return NULL; 827 828 if (vt_stub->is_abstract_method_error(pc)) { 829 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 830 Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 831 // Instead of throwing the abstract method error here directly, we re-resolve 832 // and will throw the AbstractMethodError during resolve. As a result, we'll 833 // get a more detailed error message. 834 return SharedRuntime::get_handle_wrong_method_stub(); 835 } else { 836 Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 837 // Assert that the signal comes from the expected location in stub code. 838 assert(vt_stub->is_null_pointer_exception(pc), 839 "obtained signal from unexpected location in stub code"); 840 return StubRoutines::throw_NullPointerException_at_call_entry(); 841 } 842 } else { 843 CodeBlob* cb = CodeCache::find_blob(pc); 844 845 // If code blob is NULL, then return NULL to signal handler to report the SEGV error. 846 if (cb == NULL) return NULL; 847 848 // Exception happened in CodeCache. Must be either: 849 // 1. Inline-cache check in C2I handler blob, 850 // 2. Inline-cache check in nmethod, or 851 // 3. Implicit null exception in nmethod 852 853 if (!cb->is_compiled()) { 854 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 855 if (!is_in_blob) { 856 // Allow normal crash reporting to handle this 857 return NULL; 858 } 859 Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 860 // There is no handler here, so we will simply unwind. 861 return StubRoutines::throw_NullPointerException_at_call_entry(); 862 } 863 864 // Otherwise, it's a compiled method. Consult its exception handlers. 865 CompiledMethod* cm = (CompiledMethod*)cb; 866 if (cm->inlinecache_check_contains(pc)) { 867 // exception happened inside inline-cache check code 868 // => the nmethod is not yet active (i.e., the frame 869 // is not set up yet) => use return address pushed by 870 // caller => don't push another return address 871 Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 872 return StubRoutines::throw_NullPointerException_at_call_entry(); 873 } 874 875 if (cm->method()->is_method_handle_intrinsic()) { 876 // exception happened inside MH dispatch code, similar to a vtable stub 877 Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 878 return StubRoutines::throw_NullPointerException_at_call_entry(); 879 } 880 881 #ifndef PRODUCT 882 _implicit_null_throws++; 883 #endif 884 #if INCLUDE_JVMCI 885 if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) { 886 // If there's no PcDesc then we'll die way down inside of 887 // deopt instead of just getting normal error reporting, 888 // so only go there if it will succeed. 889 return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check); 890 } else { 891 #endif // INCLUDE_JVMCI 892 assert (cm->is_nmethod(), "Expect nmethod"); 893 target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc); 894 #if INCLUDE_JVMCI 895 } 896 #endif // INCLUDE_JVMCI 897 // If there's an unexpected fault, target_pc might be NULL, 898 // in which case we want to fall through into the normal 899 // error handling code. 900 } 901 902 break; // fall through 903 } 904 905 906 case IMPLICIT_DIVIDE_BY_ZERO: { 907 CompiledMethod* cm = CodeCache::find_compiled(pc); 908 guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions"); 909 #ifndef PRODUCT 910 _implicit_div0_throws++; 911 #endif 912 #if INCLUDE_JVMCI 913 if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) { 914 return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check); 915 } else { 916 #endif // INCLUDE_JVMCI 917 target_pc = cm->continuation_for_implicit_exception(pc); 918 #if INCLUDE_JVMCI 919 } 920 #endif // INCLUDE_JVMCI 921 // If there's an unexpected fault, target_pc might be NULL, 922 // in which case we want to fall through into the normal 923 // error handling code. 924 break; // fall through 925 } 926 927 default: ShouldNotReachHere(); 928 } 929 930 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 931 932 if (exception_kind == IMPLICIT_NULL) { 933 #ifndef PRODUCT 934 // for AbortVMOnException flag 935 Exceptions::debug_check_abort("java.lang.NullPointerException"); 936 #endif //PRODUCT 937 Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 938 } else { 939 #ifndef PRODUCT 940 // for AbortVMOnException flag 941 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 942 #endif //PRODUCT 943 Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 944 } 945 return target_pc; 946 } 947 948 ShouldNotReachHere(); 949 return NULL; 950 } 951 952 953 /** 954 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 955 * installed in the native function entry of all native Java methods before 956 * they get linked to their actual native methods. 957 * 958 * \note 959 * This method actually never gets called! The reason is because 960 * the interpreter's native entries call NativeLookup::lookup() which 961 * throws the exception when the lookup fails. The exception is then 962 * caught and forwarded on the return from NativeLookup::lookup() call 963 * before the call to the native function. This might change in the future. 964 */ 965 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 966 { 967 // We return a bad value here to make sure that the exception is 968 // forwarded before we look at the return value. 969 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 970 } 971 JNI_END 972 973 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 974 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 975 } 976 977 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) 978 #if INCLUDE_JVMCI 979 if (!obj->klass()->has_finalizer()) { 980 return; 981 } 982 #endif // INCLUDE_JVMCI 983 assert(oopDesc::is_oop(obj), "must be a valid oop"); 984 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 985 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 986 JRT_END 987 988 989 jlong SharedRuntime::get_java_tid(Thread* thread) { 990 if (thread != NULL) { 991 if (thread->is_Java_thread()) { 992 oop obj = ((JavaThread*)thread)->threadObj(); 993 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj); 994 } 995 } 996 return 0; 997 } 998 999 /** 1000 * This function ought to be a void function, but cannot be because 1001 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1002 * 6254741. Once that is fixed we can remove the dummy return value. 1003 */ 1004 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) { 1005 return dtrace_object_alloc_base(Thread::current(), o, size); 1006 } 1007 1008 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) { 1009 assert(DTraceAllocProbes, "wrong call"); 1010 Klass* klass = o->klass(); 1011 Symbol* name = klass->name(); 1012 HOTSPOT_OBJECT_ALLOC( 1013 get_java_tid(thread), 1014 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1015 return 0; 1016 } 1017 1018 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1019 JavaThread* thread, Method* method)) 1020 assert(DTraceMethodProbes, "wrong call"); 1021 Symbol* kname = method->klass_name(); 1022 Symbol* name = method->name(); 1023 Symbol* sig = method->signature(); 1024 HOTSPOT_METHOD_ENTRY( 1025 get_java_tid(thread), 1026 (char *) kname->bytes(), kname->utf8_length(), 1027 (char *) name->bytes(), name->utf8_length(), 1028 (char *) sig->bytes(), sig->utf8_length()); 1029 return 0; 1030 JRT_END 1031 1032 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1033 JavaThread* thread, Method* method)) 1034 assert(DTraceMethodProbes, "wrong call"); 1035 Symbol* kname = method->klass_name(); 1036 Symbol* name = method->name(); 1037 Symbol* sig = method->signature(); 1038 HOTSPOT_METHOD_RETURN( 1039 get_java_tid(thread), 1040 (char *) kname->bytes(), kname->utf8_length(), 1041 (char *) name->bytes(), name->utf8_length(), 1042 (char *) sig->bytes(), sig->utf8_length()); 1043 return 0; 1044 JRT_END 1045 1046 1047 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1048 // for a call current in progress, i.e., arguments has been pushed on stack 1049 // put callee has not been invoked yet. Used by: resolve virtual/static, 1050 // vtable updates, etc. Caller frame must be compiled. 1051 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1052 ResourceMark rm(THREAD); 1053 1054 // last java frame on stack (which includes native call frames) 1055 vframeStream vfst(thread, true); // Do not skip and javaCalls 1056 1057 return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD); 1058 } 1059 1060 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) { 1061 CompiledMethod* caller = vfst.nm(); 1062 1063 nmethodLocker caller_lock(caller); 1064 1065 address pc = vfst.frame_pc(); 1066 { // Get call instruction under lock because another thread may be busy patching it. 1067 CompiledICLocker ic_locker(caller); 1068 return caller->attached_method_before_pc(pc); 1069 } 1070 return NULL; 1071 } 1072 1073 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1074 // for a call current in progress, i.e., arguments has been pushed on stack 1075 // but callee has not been invoked yet. Caller frame must be compiled. 1076 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread, 1077 vframeStream& vfst, 1078 Bytecodes::Code& bc, 1079 CallInfo& callinfo, TRAPS) { 1080 Handle receiver; 1081 Handle nullHandle; //create a handy null handle for exception returns 1082 1083 assert(!vfst.at_end(), "Java frame must exist"); 1084 1085 // Find caller and bci from vframe 1086 methodHandle caller(THREAD, vfst.method()); 1087 int bci = vfst.bci(); 1088 1089 Bytecode_invoke bytecode(caller, bci); 1090 int bytecode_index = bytecode.index(); 1091 bc = bytecode.invoke_code(); 1092 1093 methodHandle attached_method = extract_attached_method(vfst); 1094 if (attached_method.not_null()) { 1095 methodHandle callee = bytecode.static_target(CHECK_NH); 1096 vmIntrinsics::ID id = callee->intrinsic_id(); 1097 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1098 // it attaches statically resolved method to the call site. 1099 if (MethodHandles::is_signature_polymorphic(id) && 1100 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1101 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1102 1103 // Adjust invocation mode according to the attached method. 1104 switch (bc) { 1105 case Bytecodes::_invokevirtual: 1106 if (attached_method->method_holder()->is_interface()) { 1107 bc = Bytecodes::_invokeinterface; 1108 } 1109 break; 1110 case Bytecodes::_invokeinterface: 1111 if (!attached_method->method_holder()->is_interface()) { 1112 bc = Bytecodes::_invokevirtual; 1113 } 1114 break; 1115 case Bytecodes::_invokehandle: 1116 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1117 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1118 : Bytecodes::_invokevirtual; 1119 } 1120 break; 1121 default: 1122 break; 1123 } 1124 } else { 1125 assert(ValueTypePassFieldsAsArgs, "invalid use of attached methods"); 1126 if (bc != Bytecodes::_invokevirtual) { 1127 // Ignore the attached method in this case to not confuse below code 1128 attached_method = NULL; 1129 } 1130 } 1131 } 1132 1133 assert(bc != Bytecodes::_illegal, "not initialized"); 1134 1135 bool has_receiver = bc != Bytecodes::_invokestatic && 1136 bc != Bytecodes::_invokedynamic && 1137 bc != Bytecodes::_invokehandle; 1138 1139 // Find receiver for non-static call 1140 if (has_receiver) { 1141 // This register map must be update since we need to find the receiver for 1142 // compiled frames. The receiver might be in a register. 1143 RegisterMap reg_map2(thread); 1144 frame stubFrame = thread->last_frame(); 1145 // Caller-frame is a compiled frame 1146 frame callerFrame = stubFrame.sender(®_map2); 1147 1148 methodHandle callee = attached_method; 1149 if (callee.is_null()) { 1150 callee = bytecode.static_target(CHECK_NH); 1151 if (callee.is_null()) { 1152 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1153 } 1154 } 1155 // TODO for now, don't scalarize value type receivers because of interface calls 1156 if (callee->has_scalarized_args() && callee->method_holder()->is_value() && false) { 1157 // If the receiver is a value type that is passed as fields, no oop is available. 1158 // Resolve the call without receiver null checking. 1159 assert(bc == Bytecodes::_invokevirtual, "only allowed with invokevirtual"); 1160 assert(!attached_method.is_null(), "must have attached method"); 1161 constantPoolHandle constants(THREAD, caller->constants()); 1162 LinkInfo link_info(attached_method->method_holder(), attached_method->name(), attached_method->signature()); 1163 LinkResolver::resolve_virtual_call(callinfo, receiver, NULL, link_info, /*check_null_or_abstract*/ false, CHECK_NH); 1164 return receiver; // is null 1165 } else { 1166 // Retrieve from a compiled argument list 1167 receiver = Handle(THREAD, callerFrame.retrieve_receiver(®_map2)); 1168 1169 if (receiver.is_null()) { 1170 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1171 } 1172 } 1173 } 1174 1175 // Resolve method 1176 if (attached_method.not_null()) { 1177 // Parameterized by attached method. 1178 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1179 } else { 1180 // Parameterized by bytecode. 1181 constantPoolHandle constants(THREAD, caller->constants()); 1182 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1183 } 1184 1185 #ifdef ASSERT 1186 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1187 if (has_receiver) { 1188 assert(receiver.not_null(), "should have thrown exception"); 1189 Klass* receiver_klass = receiver->klass(); 1190 Klass* rk = NULL; 1191 if (attached_method.not_null()) { 1192 // In case there's resolved method attached, use its holder during the check. 1193 rk = attached_method->method_holder(); 1194 } else { 1195 // Klass is already loaded. 1196 constantPoolHandle constants(THREAD, caller->constants()); 1197 rk = constants->klass_ref_at(bytecode_index, CHECK_NH); 1198 } 1199 Klass* static_receiver_klass = rk; 1200 methodHandle callee = callinfo.selected_method(); 1201 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1202 "actual receiver must be subclass of static receiver klass"); 1203 if (receiver_klass->is_instance_klass()) { 1204 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1205 tty->print_cr("ERROR: Klass not yet initialized!!"); 1206 receiver_klass->print(); 1207 } 1208 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1209 } 1210 } 1211 #endif 1212 1213 return receiver; 1214 } 1215 1216 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) { 1217 ResourceMark rm(THREAD); 1218 // We need first to check if any Java activations (compiled, interpreted) 1219 // exist on the stack since last JavaCall. If not, we need 1220 // to get the target method from the JavaCall wrapper. 1221 vframeStream vfst(thread, true); // Do not skip any javaCalls 1222 methodHandle callee_method; 1223 if (vfst.at_end()) { 1224 // No Java frames were found on stack since we did the JavaCall. 1225 // Hence the stack can only contain an entry_frame. We need to 1226 // find the target method from the stub frame. 1227 RegisterMap reg_map(thread, false); 1228 frame fr = thread->last_frame(); 1229 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1230 fr = fr.sender(®_map); 1231 assert(fr.is_entry_frame(), "must be"); 1232 // fr is now pointing to the entry frame. 1233 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method()); 1234 } else { 1235 Bytecodes::Code bc; 1236 CallInfo callinfo; 1237 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle())); 1238 callee_method = callinfo.selected_method(); 1239 } 1240 assert(callee_method()->is_method(), "must be"); 1241 return callee_method; 1242 } 1243 1244 // Resolves a call. 1245 methodHandle SharedRuntime::resolve_helper(JavaThread *thread, 1246 bool is_virtual, 1247 bool is_optimized, TRAPS) { 1248 methodHandle callee_method; 1249 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); 1250 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 1251 int retry_count = 0; 1252 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() && 1253 callee_method->method_holder() != SystemDictionary::Object_klass()) { 1254 // If has a pending exception then there is no need to re-try to 1255 // resolve this method. 1256 // If the method has been redefined, we need to try again. 1257 // Hack: we have no way to update the vtables of arrays, so don't 1258 // require that java.lang.Object has been updated. 1259 1260 // It is very unlikely that method is redefined more than 100 times 1261 // in the middle of resolve. If it is looping here more than 100 times 1262 // means then there could be a bug here. 1263 guarantee((retry_count++ < 100), 1264 "Could not resolve to latest version of redefined method"); 1265 // method is redefined in the middle of resolve so re-try. 1266 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); 1267 } 1268 } 1269 return callee_method; 1270 } 1271 1272 // This fails if resolution required refilling of IC stubs 1273 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame, 1274 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized, 1275 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) { 1276 StaticCallInfo static_call_info; 1277 CompiledICInfo virtual_call_info; 1278 1279 // Make sure the callee nmethod does not get deoptimized and removed before 1280 // we are done patching the code. 1281 CompiledMethod* callee = callee_method->code(); 1282 1283 if (callee != NULL) { 1284 assert(callee->is_compiled(), "must be nmethod for patching"); 1285 } 1286 1287 if (callee != NULL && !callee->is_in_use()) { 1288 // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded. 1289 callee = NULL; 1290 } 1291 nmethodLocker nl_callee(callee); 1292 #ifdef ASSERT 1293 address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below 1294 #endif 1295 1296 bool is_nmethod = caller_nm->is_nmethod(); 1297 1298 if (is_virtual) { 1299 Klass* receiver_klass = NULL; 1300 if (ValueTypePassFieldsAsArgs && callee_method->method_holder()->is_value()) { 1301 // If the receiver is a value type that is passed as fields, no oop is available 1302 receiver_klass = callee_method->method_holder(); 1303 } else { 1304 assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check"); 1305 receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass(); 1306 } 1307 bool static_bound = call_info.resolved_method()->can_be_statically_bound(); 1308 CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass, 1309 is_optimized, static_bound, is_nmethod, virtual_call_info, 1310 CHECK_false); 1311 } else { 1312 // static call 1313 CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info); 1314 } 1315 1316 // grab lock, check for deoptimization and potentially patch caller 1317 { 1318 CompiledICLocker ml(caller_nm); 1319 1320 // Lock blocks for safepoint during which both nmethods can change state. 1321 1322 // Now that we are ready to patch if the Method* was redefined then 1323 // don't update call site and let the caller retry. 1324 // Don't update call site if callee nmethod was unloaded or deoptimized. 1325 // Don't update call site if callee nmethod was replaced by an other nmethod 1326 // which may happen when multiply alive nmethod (tiered compilation) 1327 // will be supported. 1328 if (!callee_method->is_old() && 1329 (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) { 1330 #ifdef ASSERT 1331 // We must not try to patch to jump to an already unloaded method. 1332 if (dest_entry_point != 0) { 1333 CodeBlob* cb = CodeCache::find_blob(dest_entry_point); 1334 assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee), 1335 "should not call unloaded nmethod"); 1336 } 1337 #endif 1338 if (is_virtual) { 1339 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1340 if (inline_cache->is_clean()) { 1341 if (!inline_cache->set_to_monomorphic(virtual_call_info)) { 1342 return false; 1343 } 1344 } 1345 } else { 1346 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc()); 1347 if (ssc->is_clean()) ssc->set(static_call_info); 1348 } 1349 } 1350 } // unlock CompiledICLocker 1351 return true; 1352 } 1353 1354 // Resolves a call. The compilers generate code for calls that go here 1355 // and are patched with the real destination of the call. 1356 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread, 1357 bool is_virtual, 1358 bool is_optimized, TRAPS) { 1359 1360 ResourceMark rm(thread); 1361 RegisterMap cbl_map(thread, false); 1362 frame caller_frame = thread->last_frame().sender(&cbl_map); 1363 1364 CodeBlob* caller_cb = caller_frame.cb(); 1365 guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method"); 1366 CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null(); 1367 1368 // make sure caller is not getting deoptimized 1369 // and removed before we are done with it. 1370 // CLEANUP - with lazy deopt shouldn't need this lock 1371 nmethodLocker caller_lock(caller_nm); 1372 1373 if (!is_virtual && !is_optimized) { 1374 SimpleScopeDesc ssd(caller_nm, caller_frame.pc()); 1375 Bytecode bc(ssd.method(), ssd.method()->bcp_from(ssd.bci())); 1376 // Substituability test implementation piggy backs on static call resolution 1377 if (bc.code() == Bytecodes::_if_acmpeq || bc.code() == Bytecodes::_if_acmpne) { 1378 SystemDictionary::ValueBootstrapMethods_klass()->initialize(CHECK_NULL); 1379 return SystemDictionary::ValueBootstrapMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature()); 1380 } 1381 } 1382 1383 // determine call info & receiver 1384 // note: a) receiver is NULL for static calls 1385 // b) an exception is thrown if receiver is NULL for non-static calls 1386 CallInfo call_info; 1387 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1388 Handle receiver = find_callee_info(thread, invoke_code, 1389 call_info, CHECK_(methodHandle())); 1390 methodHandle callee_method = call_info.selected_method(); 1391 1392 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1393 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1394 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1395 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1396 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1397 1398 assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive"); 1399 1400 #ifndef PRODUCT 1401 // tracing/debugging/statistics 1402 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1403 (is_virtual) ? (&_resolve_virtual_ctr) : 1404 (&_resolve_static_ctr); 1405 Atomic::inc(addr); 1406 1407 if (TraceCallFixup) { 1408 ResourceMark rm(thread); 1409 tty->print("resolving %s%s (%s) call to", 1410 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1411 Bytecodes::name(invoke_code)); 1412 callee_method->print_short_name(tty); 1413 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1414 p2i(caller_frame.pc()), p2i(callee_method->code())); 1415 } 1416 #endif 1417 1418 // Do not patch call site for static call when the class is not 1419 // fully initialized. 1420 if (invoke_code == Bytecodes::_invokestatic && 1421 !callee_method->method_holder()->is_initialized()) { 1422 assert(callee_method->method_holder()->is_linked(), "must be"); 1423 return callee_method; 1424 } 1425 1426 // JSR 292 key invariant: 1427 // If the resolved method is a MethodHandle invoke target, the call 1428 // site must be a MethodHandle call site, because the lambda form might tail-call 1429 // leaving the stack in a state unknown to either caller or callee 1430 // TODO detune for now but we might need it again 1431 // assert(!callee_method->is_compiled_lambda_form() || 1432 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site"); 1433 1434 // Compute entry points. This might require generation of C2I converter 1435 // frames, so we cannot be holding any locks here. Furthermore, the 1436 // computation of the entry points is independent of patching the call. We 1437 // always return the entry-point, but we only patch the stub if the call has 1438 // not been deoptimized. Return values: For a virtual call this is an 1439 // (cached_oop, destination address) pair. For a static call/optimized 1440 // virtual this is just a destination address. 1441 1442 // Patching IC caches may fail if we run out if transition stubs. 1443 // We refill the ic stubs then and try again. 1444 for (;;) { 1445 ICRefillVerifier ic_refill_verifier; 1446 bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm, 1447 is_virtual, is_optimized, receiver, 1448 call_info, invoke_code, CHECK_(methodHandle())); 1449 if (successful) { 1450 return callee_method; 1451 } else { 1452 InlineCacheBuffer::refill_ic_stubs(); 1453 } 1454 } 1455 1456 } 1457 1458 1459 // Inline caches exist only in compiled code 1460 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread)) 1461 #ifdef ASSERT 1462 RegisterMap reg_map(thread, false); 1463 frame stub_frame = thread->last_frame(); 1464 assert(stub_frame.is_runtime_frame(), "sanity check"); 1465 frame caller_frame = stub_frame.sender(®_map); 1466 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame"); 1467 #endif /* ASSERT */ 1468 1469 methodHandle callee_method; 1470 JRT_BLOCK 1471 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL); 1472 // Return Method* through TLS 1473 thread->set_vm_result_2(callee_method()); 1474 JRT_BLOCK_END 1475 // return compiled code entry point after potential safepoints 1476 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1477 return callee_method->verified_code_entry(); 1478 JRT_END 1479 1480 1481 // Handle call site that has been made non-entrant 1482 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread)) 1483 // 6243940 We might end up in here if the callee is deoptimized 1484 // as we race to call it. We don't want to take a safepoint if 1485 // the caller was interpreted because the caller frame will look 1486 // interpreted to the stack walkers and arguments are now 1487 // "compiled" so it is much better to make this transition 1488 // invisible to the stack walking code. The i2c path will 1489 // place the callee method in the callee_target. It is stashed 1490 // there because if we try and find the callee by normal means a 1491 // safepoint is possible and have trouble gc'ing the compiled args. 1492 RegisterMap reg_map(thread, false); 1493 frame stub_frame = thread->last_frame(); 1494 assert(stub_frame.is_runtime_frame(), "sanity check"); 1495 frame caller_frame = stub_frame.sender(®_map); 1496 1497 if (caller_frame.is_interpreted_frame() || 1498 caller_frame.is_entry_frame()) { 1499 Method* callee = thread->callee_target(); 1500 guarantee(callee != NULL && callee->is_method(), "bad handshake"); 1501 thread->set_vm_result_2(callee); 1502 thread->set_callee_target(NULL); 1503 return callee->get_c2i_entry(); 1504 } 1505 1506 // Must be compiled to compiled path which is safe to stackwalk 1507 methodHandle callee_method; 1508 JRT_BLOCK 1509 // Force resolving of caller (if we called from compiled frame) 1510 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL); 1511 thread->set_vm_result_2(callee_method()); 1512 JRT_BLOCK_END 1513 // return compiled code entry point after potential safepoints 1514 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1515 return callee_method->verified_code_entry(); 1516 JRT_END 1517 1518 // Handle abstract method call 1519 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread)) 1520 // Verbose error message for AbstractMethodError. 1521 // Get the called method from the invoke bytecode. 1522 vframeStream vfst(thread, true); 1523 assert(!vfst.at_end(), "Java frame must exist"); 1524 methodHandle caller(vfst.method()); 1525 Bytecode_invoke invoke(caller, vfst.bci()); 1526 DEBUG_ONLY( invoke.verify(); ) 1527 1528 // Find the compiled caller frame. 1529 RegisterMap reg_map(thread); 1530 frame stubFrame = thread->last_frame(); 1531 assert(stubFrame.is_runtime_frame(), "must be"); 1532 frame callerFrame = stubFrame.sender(®_map); 1533 assert(callerFrame.is_compiled_frame(), "must be"); 1534 1535 // Install exception and return forward entry. 1536 address res = StubRoutines::throw_AbstractMethodError_entry(); 1537 JRT_BLOCK 1538 methodHandle callee = invoke.static_target(thread); 1539 if (!callee.is_null()) { 1540 oop recv = callerFrame.retrieve_receiver(®_map); 1541 Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL; 1542 LinkResolver::throw_abstract_method_error(callee, recv_klass, thread); 1543 res = StubRoutines::forward_exception_entry(); 1544 } 1545 JRT_BLOCK_END 1546 return res; 1547 JRT_END 1548 1549 1550 // resolve a static call and patch code 1551 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread )) 1552 methodHandle callee_method; 1553 JRT_BLOCK 1554 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL); 1555 thread->set_vm_result_2(callee_method()); 1556 JRT_BLOCK_END 1557 // return compiled code entry point after potential safepoints 1558 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1559 return callee_method->verified_code_entry(); 1560 JRT_END 1561 1562 1563 // resolve virtual call and update inline cache to monomorphic 1564 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread )) 1565 methodHandle callee_method; 1566 JRT_BLOCK 1567 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL); 1568 thread->set_vm_result_2(callee_method()); 1569 JRT_BLOCK_END 1570 // return compiled code entry point after potential safepoints 1571 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1572 return callee_method->verified_code_entry(); 1573 JRT_END 1574 1575 1576 // Resolve a virtual call that can be statically bound (e.g., always 1577 // monomorphic, so it has no inline cache). Patch code to resolved target. 1578 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread)) 1579 methodHandle callee_method; 1580 JRT_BLOCK 1581 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL); 1582 thread->set_vm_result_2(callee_method()); 1583 JRT_BLOCK_END 1584 // return compiled code entry point after potential safepoints 1585 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1586 return callee_method->verified_code_entry(); 1587 JRT_END 1588 1589 // The handle_ic_miss_helper_internal function returns false if it failed due 1590 // to either running out of vtable stubs or ic stubs due to IC transitions 1591 // to transitional states. The needs_ic_stub_refill value will be set if 1592 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper 1593 // refills the IC stubs and tries again. 1594 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm, 1595 const frame& caller_frame, methodHandle callee_method, 1596 Bytecodes::Code bc, CallInfo& call_info, 1597 bool& needs_ic_stub_refill, TRAPS) { 1598 CompiledICLocker ml(caller_nm); 1599 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1600 bool should_be_mono = false; 1601 if (inline_cache->is_optimized()) { 1602 if (TraceCallFixup) { 1603 ResourceMark rm(THREAD); 1604 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc)); 1605 callee_method->print_short_name(tty); 1606 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1607 } 1608 should_be_mono = true; 1609 } else if (inline_cache->is_icholder_call()) { 1610 CompiledICHolder* ic_oop = inline_cache->cached_icholder(); 1611 if (ic_oop != NULL) { 1612 if (!ic_oop->is_loader_alive()) { 1613 // Deferred IC cleaning due to concurrent class unloading 1614 if (!inline_cache->set_to_clean()) { 1615 needs_ic_stub_refill = true; 1616 return false; 1617 } 1618 } else if (receiver()->klass() == ic_oop->holder_klass()) { 1619 // This isn't a real miss. We must have seen that compiled code 1620 // is now available and we want the call site converted to a 1621 // monomorphic compiled call site. 1622 // We can't assert for callee_method->code() != NULL because it 1623 // could have been deoptimized in the meantime 1624 if (TraceCallFixup) { 1625 ResourceMark rm(THREAD); 1626 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc)); 1627 callee_method->print_short_name(tty); 1628 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1629 } 1630 should_be_mono = true; 1631 } 1632 } 1633 } 1634 1635 if (should_be_mono) { 1636 // We have a path that was monomorphic but was going interpreted 1637 // and now we have (or had) a compiled entry. We correct the IC 1638 // by using a new icBuffer. 1639 CompiledICInfo info; 1640 Klass* receiver_klass = receiver()->klass(); 1641 inline_cache->compute_monomorphic_entry(callee_method, 1642 receiver_klass, 1643 inline_cache->is_optimized(), 1644 false, caller_nm->is_nmethod(), 1645 info, CHECK_false); 1646 if (!inline_cache->set_to_monomorphic(info)) { 1647 needs_ic_stub_refill = true; 1648 return false; 1649 } 1650 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) { 1651 // Potential change to megamorphic 1652 1653 bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false); 1654 if (needs_ic_stub_refill) { 1655 return false; 1656 } 1657 if (!successful) { 1658 if (!inline_cache->set_to_clean()) { 1659 needs_ic_stub_refill = true; 1660 return false; 1661 } 1662 } 1663 } else { 1664 // Either clean or megamorphic 1665 } 1666 return true; 1667 } 1668 1669 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) { 1670 ResourceMark rm(thread); 1671 CallInfo call_info; 1672 Bytecodes::Code bc; 1673 1674 // receiver is NULL for static calls. An exception is thrown for NULL 1675 // receivers for non-static calls 1676 Handle receiver = find_callee_info(thread, bc, call_info, 1677 CHECK_(methodHandle())); 1678 // Compiler1 can produce virtual call sites that can actually be statically bound 1679 // If we fell thru to below we would think that the site was going megamorphic 1680 // when in fact the site can never miss. Worse because we'd think it was megamorphic 1681 // we'd try and do a vtable dispatch however methods that can be statically bound 1682 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a 1683 // reresolution of the call site (as if we did a handle_wrong_method and not an 1684 // plain ic_miss) and the site will be converted to an optimized virtual call site 1685 // never to miss again. I don't believe C2 will produce code like this but if it 1686 // did this would still be the correct thing to do for it too, hence no ifdef. 1687 // 1688 if (call_info.resolved_method()->can_be_statically_bound()) { 1689 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle())); 1690 if (TraceCallFixup) { 1691 RegisterMap reg_map(thread, false); 1692 frame caller_frame = thread->last_frame().sender(®_map); 1693 ResourceMark rm(thread); 1694 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc)); 1695 callee_method->print_short_name(tty); 1696 tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc())); 1697 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1698 } 1699 return callee_method; 1700 } 1701 1702 methodHandle callee_method = call_info.selected_method(); 1703 1704 #ifndef PRODUCT 1705 Atomic::inc(&_ic_miss_ctr); 1706 1707 // Statistics & Tracing 1708 if (TraceCallFixup) { 1709 ResourceMark rm(thread); 1710 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1711 callee_method->print_short_name(tty); 1712 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1713 } 1714 1715 if (ICMissHistogram) { 1716 MutexLocker m(VMStatistic_lock); 1717 RegisterMap reg_map(thread, false); 1718 frame f = thread->last_frame().real_sender(®_map);// skip runtime stub 1719 // produce statistics under the lock 1720 trace_ic_miss(f.pc()); 1721 } 1722 #endif 1723 1724 // install an event collector so that when a vtable stub is created the 1725 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1726 // event can't be posted when the stub is created as locks are held 1727 // - instead the event will be deferred until the event collector goes 1728 // out of scope. 1729 JvmtiDynamicCodeEventCollector event_collector; 1730 1731 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1732 // Transitioning IC caches may require transition stubs. If we run out 1733 // of transition stubs, we have to drop locks and perform a safepoint 1734 // that refills them. 1735 RegisterMap reg_map(thread, false); 1736 frame caller_frame = thread->last_frame().sender(®_map); 1737 CodeBlob* cb = caller_frame.cb(); 1738 CompiledMethod* caller_nm = cb->as_compiled_method(); 1739 1740 for (;;) { 1741 ICRefillVerifier ic_refill_verifier; 1742 bool needs_ic_stub_refill = false; 1743 bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method, 1744 bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle())); 1745 if (successful || !needs_ic_stub_refill) { 1746 return callee_method; 1747 } else { 1748 InlineCacheBuffer::refill_ic_stubs(); 1749 } 1750 } 1751 } 1752 1753 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) { 1754 CompiledICLocker ml(caller_nm); 1755 if (is_static_call) { 1756 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr); 1757 if (!ssc->is_clean()) { 1758 return ssc->set_to_clean(); 1759 } 1760 } else { 1761 // compiled, dispatched call (which used to call an interpreted method) 1762 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1763 if (!inline_cache->is_clean()) { 1764 return inline_cache->set_to_clean(); 1765 } 1766 } 1767 return true; 1768 } 1769 1770 // 1771 // Resets a call-site in compiled code so it will get resolved again. 1772 // This routines handles both virtual call sites, optimized virtual call 1773 // sites, and static call sites. Typically used to change a call sites 1774 // destination from compiled to interpreted. 1775 // 1776 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) { 1777 ResourceMark rm(thread); 1778 RegisterMap reg_map(thread, false); 1779 frame stub_frame = thread->last_frame(); 1780 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1781 frame caller = stub_frame.sender(®_map); 1782 1783 // Do nothing if the frame isn't a live compiled frame. 1784 // nmethod could be deoptimized by the time we get here 1785 // so no update to the caller is needed. 1786 1787 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) { 1788 1789 address pc = caller.pc(); 1790 1791 // Check for static or virtual call 1792 bool is_static_call = false; 1793 CompiledMethod* caller_nm = CodeCache::find_compiled(pc); 1794 1795 // Default call_addr is the location of the "basic" call. 1796 // Determine the address of the call we a reresolving. With 1797 // Inline Caches we will always find a recognizable call. 1798 // With Inline Caches disabled we may or may not find a 1799 // recognizable call. We will always find a call for static 1800 // calls and for optimized virtual calls. For vanilla virtual 1801 // calls it depends on the state of the UseInlineCaches switch. 1802 // 1803 // With Inline Caches disabled we can get here for a virtual call 1804 // for two reasons: 1805 // 1 - calling an abstract method. The vtable for abstract methods 1806 // will run us thru handle_wrong_method and we will eventually 1807 // end up in the interpreter to throw the ame. 1808 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1809 // call and between the time we fetch the entry address and 1810 // we jump to it the target gets deoptimized. Similar to 1 1811 // we will wind up in the interprter (thru a c2i with c2). 1812 // 1813 address call_addr = NULL; 1814 { 1815 // Get call instruction under lock because another thread may be 1816 // busy patching it. 1817 CompiledICLocker ml(caller_nm); 1818 // Location of call instruction 1819 call_addr = caller_nm->call_instruction_address(pc); 1820 } 1821 // Make sure nmethod doesn't get deoptimized and removed until 1822 // this is done with it. 1823 // CLEANUP - with lazy deopt shouldn't need this lock 1824 nmethodLocker nmlock(caller_nm); 1825 1826 if (call_addr != NULL) { 1827 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1828 int ret = iter.next(); // Get item 1829 if (ret) { 1830 assert(iter.addr() == call_addr, "must find call"); 1831 if (iter.type() == relocInfo::static_call_type) { 1832 is_static_call = true; 1833 } else { 1834 assert(iter.type() == relocInfo::virtual_call_type || 1835 iter.type() == relocInfo::opt_virtual_call_type 1836 , "unexpected relocInfo. type"); 1837 } 1838 } else { 1839 assert(!UseInlineCaches, "relocation info. must exist for this address"); 1840 } 1841 1842 // Cleaning the inline cache will force a new resolve. This is more robust 1843 // than directly setting it to the new destination, since resolving of calls 1844 // is always done through the same code path. (experience shows that it 1845 // leads to very hard to track down bugs, if an inline cache gets updated 1846 // to a wrong method). It should not be performance critical, since the 1847 // resolve is only done once. 1848 1849 for (;;) { 1850 ICRefillVerifier ic_refill_verifier; 1851 if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) { 1852 InlineCacheBuffer::refill_ic_stubs(); 1853 } else { 1854 break; 1855 } 1856 } 1857 } 1858 } 1859 1860 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle())); 1861 1862 1863 #ifndef PRODUCT 1864 Atomic::inc(&_wrong_method_ctr); 1865 1866 if (TraceCallFixup) { 1867 ResourceMark rm(thread); 1868 tty->print("handle_wrong_method reresolving call to"); 1869 callee_method->print_short_name(tty); 1870 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1871 } 1872 #endif 1873 1874 return callee_method; 1875 } 1876 1877 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1878 // The faulting unsafe accesses should be changed to throw the error 1879 // synchronously instead. Meanwhile the faulting instruction will be 1880 // skipped over (effectively turning it into a no-op) and an 1881 // asynchronous exception will be raised which the thread will 1882 // handle at a later point. If the instruction is a load it will 1883 // return garbage. 1884 1885 // Request an async exception. 1886 thread->set_pending_unsafe_access_error(); 1887 1888 // Return address of next instruction to execute. 1889 return next_pc; 1890 } 1891 1892 #ifdef ASSERT 1893 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1894 const BasicType* sig_bt, 1895 const VMRegPair* regs) { 1896 ResourceMark rm; 1897 const int total_args_passed = method->size_of_parameters(); 1898 const VMRegPair* regs_with_member_name = regs; 1899 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1900 1901 const int member_arg_pos = total_args_passed - 1; 1902 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1903 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1904 1905 const bool is_outgoing = method->is_method_handle_intrinsic(); 1906 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing); 1907 1908 for (int i = 0; i < member_arg_pos; i++) { 1909 VMReg a = regs_with_member_name[i].first(); 1910 VMReg b = regs_without_member_name[i].first(); 1911 assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value()); 1912 } 1913 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1914 } 1915 #endif 1916 1917 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) { 1918 if (destination != entry_point) { 1919 CodeBlob* callee = CodeCache::find_blob(destination); 1920 // callee == cb seems weird. It means calling interpreter thru stub. 1921 if (callee != NULL && (callee == cb || callee->is_adapter_blob())) { 1922 // static call or optimized virtual 1923 if (TraceCallFixup) { 1924 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 1925 moop->print_short_name(tty); 1926 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 1927 } 1928 return true; 1929 } else { 1930 if (TraceCallFixup) { 1931 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 1932 moop->print_short_name(tty); 1933 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 1934 } 1935 // assert is too strong could also be resolve destinations. 1936 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be"); 1937 } 1938 } else { 1939 if (TraceCallFixup) { 1940 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 1941 moop->print_short_name(tty); 1942 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 1943 } 1944 } 1945 return false; 1946 } 1947 1948 // --------------------------------------------------------------------------- 1949 // We are calling the interpreter via a c2i. Normally this would mean that 1950 // we were called by a compiled method. However we could have lost a race 1951 // where we went int -> i2c -> c2i and so the caller could in fact be 1952 // interpreted. If the caller is compiled we attempt to patch the caller 1953 // so he no longer calls into the interpreter. 1954 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1955 Method* moop(method); 1956 1957 address entry_point = moop->from_compiled_entry_no_trampoline(); 1958 1959 // It's possible that deoptimization can occur at a call site which hasn't 1960 // been resolved yet, in which case this function will be called from 1961 // an nmethod that has been patched for deopt and we can ignore the 1962 // request for a fixup. 1963 // Also it is possible that we lost a race in that from_compiled_entry 1964 // is now back to the i2c in that case we don't need to patch and if 1965 // we did we'd leap into space because the callsite needs to use 1966 // "to interpreter" stub in order to load up the Method*. Don't 1967 // ask me how I know this... 1968 1969 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1970 if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) { 1971 return; 1972 } 1973 1974 // The check above makes sure this is a nmethod. 1975 CompiledMethod* nm = cb->as_compiled_method_or_null(); 1976 assert(nm, "must be"); 1977 1978 // Get the return PC for the passed caller PC. 1979 address return_pc = caller_pc + frame::pc_return_offset; 1980 1981 // There is a benign race here. We could be attempting to patch to a compiled 1982 // entry point at the same time the callee is being deoptimized. If that is 1983 // the case then entry_point may in fact point to a c2i and we'd patch the 1984 // call site with the same old data. clear_code will set code() to NULL 1985 // at the end of it. If we happen to see that NULL then we can skip trying 1986 // to patch. If we hit the window where the callee has a c2i in the 1987 // from_compiled_entry and the NULL isn't present yet then we lose the race 1988 // and patch the code with the same old data. Asi es la vida. 1989 1990 if (moop->code() == NULL) return; 1991 1992 if (nm->is_in_use()) { 1993 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1994 CompiledICLocker ic_locker(nm); 1995 if (NativeCall::is_call_before(return_pc)) { 1996 ResourceMark mark; 1997 NativeCallWrapper* call = nm->call_wrapper_before(return_pc); 1998 // 1999 // bug 6281185. We might get here after resolving a call site to a vanilla 2000 // virtual call. Because the resolvee uses the verified entry it may then 2001 // see compiled code and attempt to patch the site by calling us. This would 2002 // then incorrectly convert the call site to optimized and its downhill from 2003 // there. If you're lucky you'll get the assert in the bugid, if not you've 2004 // just made a call site that could be megamorphic into a monomorphic site 2005 // for the rest of its life! Just another racing bug in the life of 2006 // fixup_callers_callsite ... 2007 // 2008 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address()); 2009 iter.next(); 2010 assert(iter.has_current(), "must have a reloc at java call site"); 2011 relocInfo::relocType typ = iter.reloc()->type(); 2012 if (typ != relocInfo::static_call_type && 2013 typ != relocInfo::opt_virtual_call_type && 2014 typ != relocInfo::static_stub_type) { 2015 return; 2016 } 2017 address destination = call->destination(); 2018 if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) { 2019 call->set_destination_mt_safe(entry_point); 2020 } 2021 } 2022 } 2023 IRT_END 2024 2025 2026 // same as JVM_Arraycopy, but called directly from compiled code 2027 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 2028 oopDesc* dest, jint dest_pos, 2029 jint length, 2030 JavaThread* thread)) { 2031 #ifndef PRODUCT 2032 _slow_array_copy_ctr++; 2033 #endif 2034 // Check if we have null pointers 2035 if (src == NULL || dest == NULL) { 2036 THROW(vmSymbols::java_lang_NullPointerException()); 2037 } 2038 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 2039 // even though the copy_array API also performs dynamic checks to ensure 2040 // that src and dest are truly arrays (and are conformable). 2041 // The copy_array mechanism is awkward and could be removed, but 2042 // the compilers don't call this function except as a last resort, 2043 // so it probably doesn't matter. 2044 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 2045 (arrayOopDesc*)dest, dest_pos, 2046 length, thread); 2047 } 2048 JRT_END 2049 2050 // The caller of generate_class_cast_message() (or one of its callers) 2051 // must use a ResourceMark in order to correctly free the result. 2052 char* SharedRuntime::generate_class_cast_message( 2053 JavaThread* thread, Klass* caster_klass) { 2054 2055 // Get target class name from the checkcast instruction 2056 vframeStream vfst(thread, true); 2057 assert(!vfst.at_end(), "Java frame must exist"); 2058 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 2059 constantPoolHandle cpool(thread, vfst.method()->constants()); 2060 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 2061 Symbol* target_klass_name = NULL; 2062 if (target_klass == NULL) { 2063 // This klass should be resolved, but just in case, get the name in the klass slot. 2064 target_klass_name = cpool->klass_name_at(cc.index()); 2065 } 2066 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 2067 } 2068 2069 2070 // The caller of generate_class_cast_message() (or one of its callers) 2071 // must use a ResourceMark in order to correctly free the result. 2072 char* SharedRuntime::generate_class_cast_message( 2073 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 2074 const char* caster_name = caster_klass->external_name(); 2075 2076 assert(target_klass != NULL || target_klass_name != NULL, "one must be provided"); 2077 const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() : 2078 target_klass->external_name(); 2079 2080 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 2081 2082 const char* caster_klass_description = ""; 2083 const char* target_klass_description = ""; 2084 const char* klass_separator = ""; 2085 if (target_klass != NULL && caster_klass->module() == target_klass->module()) { 2086 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 2087 } else { 2088 caster_klass_description = caster_klass->class_in_module_of_loader(); 2089 target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : ""; 2090 klass_separator = (target_klass != NULL) ? "; " : ""; 2091 } 2092 2093 // add 3 for parenthesis and preceeding space 2094 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 2095 2096 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 2097 if (message == NULL) { 2098 // Shouldn't happen, but don't cause even more problems if it does 2099 message = const_cast<char*>(caster_klass->external_name()); 2100 } else { 2101 jio_snprintf(message, 2102 msglen, 2103 "class %s cannot be cast to class %s (%s%s%s)", 2104 caster_name, 2105 target_name, 2106 caster_klass_description, 2107 klass_separator, 2108 target_klass_description 2109 ); 2110 } 2111 return message; 2112 } 2113 2114 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2115 (void) JavaThread::current()->reguard_stack(); 2116 JRT_END 2117 2118 2119 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2120 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread)) 2121 if (!SafepointSynchronize::is_synchronizing()) { 2122 // Only try quick_enter() if we're not trying to reach a safepoint 2123 // so that the calling thread reaches the safepoint more quickly. 2124 if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return; 2125 } 2126 // NO_ASYNC required because an async exception on the state transition destructor 2127 // would leave you with the lock held and it would never be released. 2128 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2129 // and the model is that an exception implies the method failed. 2130 JRT_BLOCK_NO_ASYNC 2131 oop obj(_obj); 2132 if (PrintBiasedLockingStatistics) { 2133 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 2134 } 2135 Handle h_obj(THREAD, obj); 2136 if (UseBiasedLocking) { 2137 // Retry fast entry if bias is revoked to avoid unnecessary inflation 2138 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK); 2139 } else { 2140 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK); 2141 } 2142 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2143 JRT_BLOCK_END 2144 JRT_END 2145 2146 // Handles the uncommon cases of monitor unlocking in compiled code 2147 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD)) 2148 oop obj(_obj); 2149 assert(JavaThread::current() == THREAD, "invariant"); 2150 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore 2151 // testing was unable to ever fire the assert that guarded it so I have removed it. 2152 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?"); 2153 #undef MIGHT_HAVE_PENDING 2154 #ifdef MIGHT_HAVE_PENDING 2155 // Save and restore any pending_exception around the exception mark. 2156 // While the slow_exit must not throw an exception, we could come into 2157 // this routine with one set. 2158 oop pending_excep = NULL; 2159 const char* pending_file; 2160 int pending_line; 2161 if (HAS_PENDING_EXCEPTION) { 2162 pending_excep = PENDING_EXCEPTION; 2163 pending_file = THREAD->exception_file(); 2164 pending_line = THREAD->exception_line(); 2165 CLEAR_PENDING_EXCEPTION; 2166 } 2167 #endif /* MIGHT_HAVE_PENDING */ 2168 2169 { 2170 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2171 EXCEPTION_MARK; 2172 ObjectSynchronizer::slow_exit(obj, lock, THREAD); 2173 } 2174 2175 #ifdef MIGHT_HAVE_PENDING 2176 if (pending_excep != NULL) { 2177 THREAD->set_pending_exception(pending_excep, pending_file, pending_line); 2178 } 2179 #endif /* MIGHT_HAVE_PENDING */ 2180 JRT_END 2181 2182 #ifndef PRODUCT 2183 2184 void SharedRuntime::print_statistics() { 2185 ttyLocker ttyl; 2186 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'"); 2187 2188 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr); 2189 2190 SharedRuntime::print_ic_miss_histogram(); 2191 2192 if (CountRemovableExceptions) { 2193 if (_nof_removable_exceptions > 0) { 2194 Unimplemented(); // this counter is not yet incremented 2195 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions); 2196 } 2197 } 2198 2199 // Dump the JRT_ENTRY counters 2200 if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr); 2201 if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr); 2202 if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr); 2203 if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr); 2204 if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr); 2205 if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr); 2206 if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr); 2207 2208 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr); 2209 tty->print_cr("%5d wrong method", _wrong_method_ctr); 2210 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr); 2211 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr); 2212 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2213 2214 if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr); 2215 if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr); 2216 if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr); 2217 if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr); 2218 if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr); 2219 if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr); 2220 if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr); 2221 if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr); 2222 if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr); 2223 if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr); 2224 if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr); 2225 if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr); 2226 if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr); 2227 if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr); 2228 if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr); 2229 if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr); 2230 2231 AdapterHandlerLibrary::print_statistics(); 2232 2233 if (xtty != NULL) xtty->tail("statistics"); 2234 } 2235 2236 inline double percent(int x, int y) { 2237 return 100.0 * x / MAX2(y, 1); 2238 } 2239 2240 class MethodArityHistogram { 2241 public: 2242 enum { MAX_ARITY = 256 }; 2243 private: 2244 static int _arity_histogram[MAX_ARITY]; // histogram of #args 2245 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words 2246 static int _max_arity; // max. arity seen 2247 static int _max_size; // max. arg size seen 2248 2249 static void add_method_to_histogram(nmethod* nm) { 2250 if (CompiledMethod::nmethod_access_is_safe(nm)) { 2251 Method* method = nm->method(); 2252 ArgumentCount args(method->signature()); 2253 int arity = args.size() + (method->is_static() ? 0 : 1); 2254 int argsize = method->size_of_parameters(); 2255 arity = MIN2(arity, MAX_ARITY-1); 2256 argsize = MIN2(argsize, MAX_ARITY-1); 2257 int count = method->compiled_invocation_count(); 2258 _arity_histogram[arity] += count; 2259 _size_histogram[argsize] += count; 2260 _max_arity = MAX2(_max_arity, arity); 2261 _max_size = MAX2(_max_size, argsize); 2262 } 2263 } 2264 2265 void print_histogram_helper(int n, int* histo, const char* name) { 2266 const int N = MIN2(5, n); 2267 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2268 double sum = 0; 2269 double weighted_sum = 0; 2270 int i; 2271 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; } 2272 double rest = sum; 2273 double percent = sum / 100; 2274 for (i = 0; i <= N; i++) { 2275 rest -= histo[i]; 2276 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent); 2277 } 2278 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent); 2279 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2280 } 2281 2282 void print_histogram() { 2283 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2284 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2285 tty->print_cr("\nSame for parameter size (in words):"); 2286 print_histogram_helper(_max_size, _size_histogram, "size"); 2287 tty->cr(); 2288 } 2289 2290 public: 2291 MethodArityHistogram() { 2292 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2293 _max_arity = _max_size = 0; 2294 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2295 CodeCache::nmethods_do(add_method_to_histogram); 2296 print_histogram(); 2297 } 2298 }; 2299 2300 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2301 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2302 int MethodArityHistogram::_max_arity; 2303 int MethodArityHistogram::_max_size; 2304 2305 void SharedRuntime::print_call_statistics(int comp_total) { 2306 tty->print_cr("Calls from compiled code:"); 2307 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2308 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls; 2309 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls; 2310 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total)); 2311 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2312 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2313 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls)); 2314 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2315 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2316 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2317 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2318 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls)); 2319 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2320 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls)); 2321 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2322 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2323 tty->cr(); 2324 tty->print_cr("Note 1: counter updates are not MT-safe."); 2325 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2326 tty->print_cr(" %% in nested categories are relative to their category"); 2327 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2328 tty->cr(); 2329 2330 MethodArityHistogram h; 2331 } 2332 #endif 2333 2334 2335 // A simple wrapper class around the calling convention information 2336 // that allows sharing of adapters for the same calling convention. 2337 class AdapterFingerPrint : public CHeapObj<mtCode> { 2338 private: 2339 enum { 2340 _basic_type_bits = 4, 2341 _basic_type_mask = right_n_bits(_basic_type_bits), 2342 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2343 _compact_int_count = 3 2344 }; 2345 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2346 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2347 2348 union { 2349 int _compact[_compact_int_count]; 2350 int* _fingerprint; 2351 } _value; 2352 int _length; // A negative length indicates the fingerprint is in the compact form, 2353 // Otherwise _value._fingerprint is the array. 2354 2355 // Remap BasicTypes that are handled equivalently by the adapters. 2356 // These are correct for the current system but someday it might be 2357 // necessary to make this mapping platform dependent. 2358 static int adapter_encoding(BasicType in, bool is_valuetype) { 2359 switch (in) { 2360 case T_BOOLEAN: 2361 case T_BYTE: 2362 case T_SHORT: 2363 case T_CHAR: { 2364 if (is_valuetype) { 2365 // Do not widen value type field types 2366 assert(ValueTypePassFieldsAsArgs, "must be enabled"); 2367 return in; 2368 } else { 2369 // They are all promoted to T_INT in the calling convention 2370 return T_INT; 2371 } 2372 } 2373 2374 case T_VALUETYPE: { 2375 // If value types are passed as fields, return 'in' to differentiate 2376 // between a T_VALUETYPE and a T_OBJECT in the signature. 2377 return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false); 2378 } 2379 2380 case T_OBJECT: 2381 case T_ARRAY: 2382 // In other words, we assume that any register good enough for 2383 // an int or long is good enough for a managed pointer. 2384 #ifdef _LP64 2385 return T_LONG; 2386 #else 2387 return T_INT; 2388 #endif 2389 2390 case T_INT: 2391 case T_LONG: 2392 case T_FLOAT: 2393 case T_DOUBLE: 2394 case T_VOID: 2395 return in; 2396 2397 default: 2398 ShouldNotReachHere(); 2399 return T_CONFLICT; 2400 } 2401 } 2402 2403 public: 2404 AdapterFingerPrint(int total_args_passed, const GrowableArray<SigEntry>* sig) { 2405 // The fingerprint is based on the BasicType signature encoded 2406 // into an array of ints with eight entries per int. 2407 int* ptr; 2408 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2409 if (len <= _compact_int_count) { 2410 assert(_compact_int_count == 3, "else change next line"); 2411 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2412 // Storing the signature encoded as signed chars hits about 98% 2413 // of the time. 2414 _length = -len; 2415 ptr = _value._compact; 2416 } else { 2417 _length = len; 2418 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2419 ptr = _value._fingerprint; 2420 } 2421 2422 // Now pack the BasicTypes with 8 per int 2423 int sig_index = 0; 2424 BasicType prev_sbt = T_ILLEGAL; 2425 int vt_count = 0; 2426 for (int index = 0; index < len; index++) { 2427 int value = 0; 2428 for (int byte = 0; byte < _basic_types_per_int; byte++) { 2429 int bt = 0; 2430 if (sig_index < total_args_passed) { 2431 BasicType sbt = sig->at(sig_index++)._bt; 2432 if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) { 2433 // Found start of value type in signature 2434 vt_count++; 2435 } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID && 2436 prev_sbt != T_LONG && prev_sbt != T_DOUBLE) { 2437 // Found end of value type in signature 2438 vt_count--; 2439 assert(vt_count >= 0, "invalid vt_count"); 2440 } 2441 bt = adapter_encoding(sbt, vt_count > 0); 2442 prev_sbt = sbt; 2443 } 2444 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2445 value = (value << _basic_type_bits) | bt; 2446 } 2447 ptr[index] = value; 2448 } 2449 assert(vt_count == 0, "invalid vt_count"); 2450 } 2451 2452 ~AdapterFingerPrint() { 2453 if (_length > 0) { 2454 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2455 } 2456 } 2457 2458 int value(int index) { 2459 if (_length < 0) { 2460 return _value._compact[index]; 2461 } 2462 return _value._fingerprint[index]; 2463 } 2464 int length() { 2465 if (_length < 0) return -_length; 2466 return _length; 2467 } 2468 2469 bool is_compact() { 2470 return _length <= 0; 2471 } 2472 2473 unsigned int compute_hash() { 2474 int hash = 0; 2475 for (int i = 0; i < length(); i++) { 2476 int v = value(i); 2477 hash = (hash << 8) ^ v ^ (hash >> 5); 2478 } 2479 return (unsigned int)hash; 2480 } 2481 2482 const char* as_string() { 2483 stringStream st; 2484 st.print("0x"); 2485 for (int i = 0; i < length(); i++) { 2486 st.print("%08x", value(i)); 2487 } 2488 return st.as_string(); 2489 } 2490 2491 bool equals(AdapterFingerPrint* other) { 2492 if (other->_length != _length) { 2493 return false; 2494 } 2495 if (_length < 0) { 2496 assert(_compact_int_count == 3, "else change next line"); 2497 return _value._compact[0] == other->_value._compact[0] && 2498 _value._compact[1] == other->_value._compact[1] && 2499 _value._compact[2] == other->_value._compact[2]; 2500 } else { 2501 for (int i = 0; i < _length; i++) { 2502 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2503 return false; 2504 } 2505 } 2506 } 2507 return true; 2508 } 2509 }; 2510 2511 2512 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2513 class AdapterHandlerTable : public BasicHashtable<mtCode> { 2514 friend class AdapterHandlerTableIterator; 2515 2516 private: 2517 2518 #ifndef PRODUCT 2519 static int _lookups; // number of calls to lookup 2520 static int _buckets; // number of buckets checked 2521 static int _equals; // number of buckets checked with matching hash 2522 static int _hits; // number of successful lookups 2523 static int _compact; // number of equals calls with compact signature 2524 #endif 2525 2526 AdapterHandlerEntry* bucket(int i) { 2527 return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i); 2528 } 2529 2530 public: 2531 AdapterHandlerTable() 2532 : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { } 2533 2534 // Create a new entry suitable for insertion in the table 2535 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_value_entry, address c2i_unverified_entry) { 2536 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash()); 2537 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_unverified_entry); 2538 if (DumpSharedSpaces) { 2539 ((CDSAdapterHandlerEntry*)entry)->init(); 2540 } 2541 return entry; 2542 } 2543 2544 // Insert an entry into the table 2545 void add(AdapterHandlerEntry* entry) { 2546 int index = hash_to_index(entry->hash()); 2547 add_entry(index, entry); 2548 } 2549 2550 void free_entry(AdapterHandlerEntry* entry) { 2551 entry->deallocate(); 2552 BasicHashtable<mtCode>::free_entry(entry); 2553 } 2554 2555 // Find a entry with the same fingerprint if it exists 2556 AdapterHandlerEntry* lookup(int total_args_passed, const GrowableArray<SigEntry>* sig) { 2557 NOT_PRODUCT(_lookups++); 2558 AdapterFingerPrint fp(total_args_passed, sig); 2559 unsigned int hash = fp.compute_hash(); 2560 int index = hash_to_index(hash); 2561 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2562 NOT_PRODUCT(_buckets++); 2563 if (e->hash() == hash) { 2564 NOT_PRODUCT(_equals++); 2565 if (fp.equals(e->fingerprint())) { 2566 #ifndef PRODUCT 2567 if (fp.is_compact()) _compact++; 2568 _hits++; 2569 #endif 2570 return e; 2571 } 2572 } 2573 } 2574 return NULL; 2575 } 2576 2577 #ifndef PRODUCT 2578 void print_statistics() { 2579 ResourceMark rm; 2580 int longest = 0; 2581 int empty = 0; 2582 int total = 0; 2583 int nonempty = 0; 2584 for (int index = 0; index < table_size(); index++) { 2585 int count = 0; 2586 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2587 count++; 2588 } 2589 if (count != 0) nonempty++; 2590 if (count == 0) empty++; 2591 if (count > longest) longest = count; 2592 total += count; 2593 } 2594 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f", 2595 empty, longest, total, total / (double)nonempty); 2596 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d", 2597 _lookups, _buckets, _equals, _hits, _compact); 2598 } 2599 #endif 2600 }; 2601 2602 2603 #ifndef PRODUCT 2604 2605 int AdapterHandlerTable::_lookups; 2606 int AdapterHandlerTable::_buckets; 2607 int AdapterHandlerTable::_equals; 2608 int AdapterHandlerTable::_hits; 2609 int AdapterHandlerTable::_compact; 2610 2611 #endif 2612 2613 class AdapterHandlerTableIterator : public StackObj { 2614 private: 2615 AdapterHandlerTable* _table; 2616 int _index; 2617 AdapterHandlerEntry* _current; 2618 2619 void scan() { 2620 while (_index < _table->table_size()) { 2621 AdapterHandlerEntry* a = _table->bucket(_index); 2622 _index++; 2623 if (a != NULL) { 2624 _current = a; 2625 return; 2626 } 2627 } 2628 } 2629 2630 public: 2631 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) { 2632 scan(); 2633 } 2634 bool has_next() { 2635 return _current != NULL; 2636 } 2637 AdapterHandlerEntry* next() { 2638 if (_current != NULL) { 2639 AdapterHandlerEntry* result = _current; 2640 _current = _current->next(); 2641 if (_current == NULL) scan(); 2642 return result; 2643 } else { 2644 return NULL; 2645 } 2646 } 2647 }; 2648 2649 2650 // --------------------------------------------------------------------------- 2651 // Implementation of AdapterHandlerLibrary 2652 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL; 2653 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL; 2654 const int AdapterHandlerLibrary_size = 16*K; 2655 BufferBlob* AdapterHandlerLibrary::_buffer = NULL; 2656 2657 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2658 // Should be called only when AdapterHandlerLibrary_lock is active. 2659 if (_buffer == NULL) // Initialize lazily 2660 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2661 return _buffer; 2662 } 2663 2664 extern "C" void unexpected_adapter_call() { 2665 ShouldNotCallThis(); 2666 } 2667 2668 void AdapterHandlerLibrary::initialize() { 2669 if (_adapters != NULL) return; 2670 _adapters = new AdapterHandlerTable(); 2671 2672 // Create a special handler for abstract methods. Abstract methods 2673 // are never compiled so an i2c entry is somewhat meaningless, but 2674 // throw AbstractMethodError just in case. 2675 // Pass wrong_method_abstract for the c2i transitions to return 2676 // AbstractMethodError for invalid invocations. 2677 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2678 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL), 2679 StubRoutines::throw_AbstractMethodError_entry(), 2680 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract); 2681 } 2682 2683 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2684 address i2c_entry, 2685 address c2i_entry, 2686 address c2i_value_entry, 2687 address c2i_unverified_entry) { 2688 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_unverified_entry); 2689 } 2690 2691 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2692 AdapterHandlerEntry* entry = get_adapter0(method); 2693 if (method->is_shared()) { 2694 // See comments around Method::link_method() 2695 MutexLocker mu(AdapterHandlerLibrary_lock); 2696 if (method->adapter() == NULL) { 2697 method->update_adapter_trampoline(entry); 2698 } 2699 address trampoline = method->from_compiled_entry(); 2700 if (*(int*)trampoline == 0) { 2701 CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size()); 2702 MacroAssembler _masm(&buffer); 2703 SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry()); 2704 assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros."); 2705 2706 if (PrintInterpreter) { 2707 Disassembler::decode(buffer.insts_begin(), buffer.insts_end()); 2708 } 2709 } 2710 } 2711 2712 return entry; 2713 } 2714 2715 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) { 2716 // Use customized signature handler. Need to lock around updates to 2717 // the AdapterHandlerTable (it is not safe for concurrent readers 2718 // and a single writer: this could be fixed if it becomes a 2719 // problem). 2720 2721 ResourceMark rm; 2722 2723 NOT_PRODUCT(int insts_size = 0); 2724 AdapterBlob* new_adapter = NULL; 2725 AdapterHandlerEntry* entry = NULL; 2726 AdapterFingerPrint* fingerprint = NULL; 2727 { 2728 MutexLocker mu(AdapterHandlerLibrary_lock); 2729 // make sure data structure is initialized 2730 initialize(); 2731 2732 bool has_value_arg = false; 2733 GrowableArray<SigEntry> sig(method->size_of_parameters()); 2734 if (!method->is_static()) { 2735 // TODO for now, don't scalarize value type receivers because of interface calls 2736 //has_value_arg |= method->method_holder()->is_value(); 2737 SigEntry::add_entry(&sig, T_OBJECT); 2738 } 2739 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) { 2740 BasicType bt = ss.type(); 2741 if (bt == T_VALUETYPE) { 2742 has_value_arg = true; 2743 bt = T_OBJECT; 2744 } 2745 SigEntry::add_entry(&sig, bt); 2746 } 2747 2748 // Process abstract method if it has value type args to set has_scalarized_args accordingly 2749 if (!has_value_arg && method->is_abstract()) { 2750 return _abstract_method_handler; 2751 } 2752 2753 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2754 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, sig.length()); 2755 int args_on_stack = SharedRuntime::java_calling_convention(&sig, regs); 2756 2757 // Now compute the scalarized calling convention if there are value types in the signature 2758 GrowableArray<SigEntry> sig_cc = sig; 2759 VMRegPair* regs_cc = regs; 2760 SigEntry reserved_entry; 2761 int args_on_stack_cc = args_on_stack; 2762 2763 if (ValueTypePassFieldsAsArgs && has_value_arg) { 2764 MutexUnlocker mul(AdapterHandlerLibrary_lock); 2765 InstanceKlass* holder = method->method_holder(); 2766 2767 sig_cc = GrowableArray<SigEntry>(method->size_of_parameters()); 2768 if (!method->is_static()) { 2769 // TODO for now, don't scalarize value type receivers because of interface calls 2770 if (false && holder->is_value()) { 2771 sig_cc.appendAll(ValueKlass::cast(holder)->extended_sig()); 2772 } else { 2773 SigEntry::add_entry(&sig_cc, T_OBJECT); 2774 } 2775 } 2776 Thread* THREAD = Thread::current(); 2777 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) { 2778 if (ss.type() == T_VALUETYPE) { 2779 Klass* k = ss.as_klass(Handle(THREAD, holder->class_loader()), 2780 Handle(THREAD, holder->protection_domain()), 2781 SignatureStream::ReturnNull, THREAD); 2782 assert(k != NULL && !HAS_PENDING_EXCEPTION, "value klass should have been pre-loaded"); 2783 sig_cc.appendAll(ValueKlass::cast(k)->extended_sig()); 2784 } else { 2785 SigEntry::add_entry(&sig_cc, ss.type()); 2786 } 2787 } 2788 regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, sig_cc.length() + 2); 2789 args_on_stack_cc = SharedRuntime::java_calling_convention(&sig_cc, regs_cc); 2790 2791 // This stack slot is occupied by the return address with the unscalarized calling 2792 // convention. Don't use it for argument with the scalarized calling convention. 2793 int ret_addr_slot = args_on_stack_cc - args_on_stack; 2794 if (ret_addr_slot > 0) { 2795 // Make sure stack of the scalarized calling convention with 2796 // the reserved entry (2 slots) is 16-byte (4 slots) aligned. 2797 int alignment = StackAlignmentInBytes/VMRegImpl::stack_slot_size; 2798 ret_addr_slot = align_up(ret_addr_slot + 2, alignment) - 2; 2799 // Find index in signature that belongs to return address slot 2800 reserved_entry._offset = 0; 2801 int sig_idx = 0; 2802 for (; sig_idx < sig_cc.length(); ++sig_idx) { 2803 if (SigEntry::skip_value_delimiters(&sig_cc, sig_idx)) { 2804 VMReg first = regs_cc[reserved_entry._offset].first(); 2805 if (first->is_stack()) { 2806 // Select a type for the reserved entry that will end up on the stack 2807 reserved_entry._bt = sig_cc.at(sig_idx)._bt; 2808 if ((int)first->reg2stack() == ret_addr_slot) { 2809 break; 2810 } 2811 } 2812 reserved_entry._offset++; 2813 } 2814 } 2815 // Insert reserved entry and re-compute calling convention 2816 SigEntry::insert_reserved_entry(&sig_cc, sig_idx, reserved_entry._bt); 2817 args_on_stack_cc = SharedRuntime::java_calling_convention(&sig_cc, regs_cc); 2818 } 2819 // Upper bound on stack arguments to avoid hitting the argument limit and 2820 // bailing out of compilation ("unsupported incoming calling sequence"). 2821 // TODO we need a reasonable limit (flag?) here 2822 if (args_on_stack_cc > 50) { 2823 // Don't scalarize value type arguments 2824 sig_cc = sig; 2825 regs_cc = regs; 2826 args_on_stack_cc = args_on_stack; 2827 } else { 2828 method->set_has_scalarized_args(true); 2829 } 2830 } 2831 2832 if (method->is_abstract()) { 2833 return _abstract_method_handler; 2834 } 2835 2836 // Lookup method signature's fingerprint 2837 entry = _adapters->lookup(sig_cc.length(), &sig_cc); 2838 2839 #ifdef ASSERT 2840 AdapterHandlerEntry* shared_entry = NULL; 2841 // Start adapter sharing verification only after the VM is booted. 2842 if (VerifyAdapterSharing && (entry != NULL)) { 2843 shared_entry = entry; 2844 entry = NULL; 2845 } 2846 #endif 2847 2848 if (entry != NULL) { 2849 return entry; 2850 } 2851 2852 // Make a C heap allocated version of the fingerprint to store in the adapter 2853 fingerprint = new AdapterFingerPrint(sig_cc.length(), &sig_cc); 2854 2855 // StubRoutines::code2() is initialized after this function can be called. As a result, 2856 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated 2857 // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C 2858 // stub that ensure that an I2C stub is called from an interpreter frame. 2859 bool contains_all_checks = StubRoutines::code2() != NULL; 2860 2861 // Create I2C & C2I handlers 2862 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2863 if (buf != NULL) { 2864 CodeBuffer buffer(buf); 2865 short buffer_locs[20]; 2866 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2867 sizeof(buffer_locs)/sizeof(relocInfo)); 2868 2869 MacroAssembler _masm(&buffer); 2870 entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2871 args_on_stack, 2872 args_on_stack_cc, 2873 &sig, 2874 regs, 2875 &sig_cc, 2876 regs_cc, 2877 fingerprint, 2878 new_adapter); 2879 2880 if (regs != regs_cc) { 2881 // Save a C heap allocated version of the scalarized signature and store it in the adapter 2882 GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(method->size_of_parameters(), true); 2883 heap_sig->appendAll(&sig_cc); 2884 entry->set_sig_cc(heap_sig); 2885 entry->set_res_entry(reserved_entry); 2886 } 2887 2888 #ifdef ASSERT 2889 if (VerifyAdapterSharing) { 2890 if (shared_entry != NULL) { 2891 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match"); 2892 // Release the one just created and return the original 2893 _adapters->free_entry(entry); 2894 return shared_entry; 2895 } else { 2896 entry->save_code(buf->code_begin(), buffer.insts_size()); 2897 } 2898 } 2899 #endif 2900 2901 NOT_PRODUCT(insts_size = buffer.insts_size()); 2902 } 2903 if (new_adapter == NULL) { 2904 // CodeCache is full, disable compilation 2905 // Ought to log this but compile log is only per compile thread 2906 // and we're some non descript Java thread. 2907 return NULL; // Out of CodeCache space 2908 } 2909 entry->relocate(new_adapter->content_begin()); 2910 #ifndef PRODUCT 2911 // debugging suppport 2912 if (PrintAdapterHandlers || PrintStubCode) { 2913 ttyLocker ttyl; 2914 entry->print_adapter_on(tty); 2915 tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)", 2916 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"), 2917 method->signature()->as_C_string(), fingerprint->as_string(), insts_size); 2918 tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry()); 2919 if (Verbose || PrintStubCode) { 2920 address first_pc = entry->base_address(); 2921 if (first_pc != NULL) { 2922 Disassembler::decode(first_pc, first_pc + insts_size); 2923 tty->cr(); 2924 } 2925 } 2926 } 2927 #endif 2928 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 2929 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 2930 if (contains_all_checks || !VerifyAdapterCalls) { 2931 _adapters->add(entry); 2932 } 2933 } 2934 // Outside of the lock 2935 if (new_adapter != NULL) { 2936 char blob_id[256]; 2937 jio_snprintf(blob_id, 2938 sizeof(blob_id), 2939 "%s(%s)@" PTR_FORMAT, 2940 new_adapter->name(), 2941 fingerprint->as_string(), 2942 new_adapter->content_begin()); 2943 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2944 2945 if (JvmtiExport::should_post_dynamic_code_generated()) { 2946 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2947 } 2948 } 2949 return entry; 2950 } 2951 2952 address AdapterHandlerEntry::base_address() { 2953 address base = _i2c_entry; 2954 if (base == NULL) base = _c2i_entry; 2955 assert(base <= _c2i_entry || _c2i_entry == NULL, ""); 2956 assert(base <= _c2i_value_entry || _c2i_value_entry == NULL, ""); 2957 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, ""); 2958 return base; 2959 } 2960 2961 void AdapterHandlerEntry::relocate(address new_base) { 2962 address old_base = base_address(); 2963 assert(old_base != NULL, ""); 2964 ptrdiff_t delta = new_base - old_base; 2965 if (_i2c_entry != NULL) 2966 _i2c_entry += delta; 2967 if (_c2i_entry != NULL) 2968 _c2i_entry += delta; 2969 if (_c2i_value_entry != NULL) 2970 _c2i_value_entry += delta; 2971 if (_c2i_unverified_entry != NULL) 2972 _c2i_unverified_entry += delta; 2973 assert(base_address() == new_base, ""); 2974 } 2975 2976 2977 void AdapterHandlerEntry::deallocate() { 2978 delete _fingerprint; 2979 if (_sig_cc != NULL) { 2980 delete _sig_cc; 2981 } 2982 #ifdef ASSERT 2983 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 2984 #endif 2985 } 2986 2987 2988 #ifdef ASSERT 2989 // Capture the code before relocation so that it can be compared 2990 // against other versions. If the code is captured after relocation 2991 // then relative instructions won't be equivalent. 2992 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 2993 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 2994 _saved_code_length = length; 2995 memcpy(_saved_code, buffer, length); 2996 } 2997 2998 2999 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) { 3000 if (length != _saved_code_length) { 3001 return false; 3002 } 3003 3004 return (memcmp(buffer, _saved_code, length) == 0) ? true : false; 3005 } 3006 #endif 3007 3008 3009 /** 3010 * Create a native wrapper for this native method. The wrapper converts the 3011 * Java-compiled calling convention to the native convention, handles 3012 * arguments, and transitions to native. On return from the native we transition 3013 * back to java blocking if a safepoint is in progress. 3014 */ 3015 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3016 ResourceMark rm; 3017 nmethod* nm = NULL; 3018 3019 assert(method->is_native(), "must be native"); 3020 assert(method->is_method_handle_intrinsic() || 3021 method->has_native_function(), "must have something valid to call!"); 3022 3023 { 3024 // Perform the work while holding the lock, but perform any printing outside the lock 3025 MutexLocker mu(AdapterHandlerLibrary_lock); 3026 // See if somebody beat us to it 3027 if (method->code() != NULL) { 3028 return; 3029 } 3030 3031 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3032 assert(compile_id > 0, "Must generate native wrapper"); 3033 3034 3035 ResourceMark rm; 3036 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3037 if (buf != NULL) { 3038 CodeBuffer buffer(buf); 3039 double locs_buf[20]; 3040 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3041 MacroAssembler _masm(&buffer); 3042 3043 // Fill in the signature array, for the calling-convention call. 3044 const int total_args_passed = method->size_of_parameters(); 3045 3046 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 3047 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3048 int i=0; 3049 if (!method->is_static()) // Pass in receiver first 3050 sig_bt[i++] = T_OBJECT; 3051 SignatureStream ss(method->signature()); 3052 for (; !ss.at_return_type(); ss.next()) { 3053 BasicType bt = ss.type(); 3054 sig_bt[i++] = bt; // Collect remaining bits of signature 3055 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) 3056 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 3057 } 3058 assert(i == total_args_passed, ""); 3059 BasicType ret_type = ss.type(); 3060 3061 // Now get the compiled-Java layout as input (or output) arguments. 3062 // NOTE: Stubs for compiled entry points of method handle intrinsics 3063 // are just trampolines so the argument registers must be outgoing ones. 3064 const bool is_outgoing = method->is_method_handle_intrinsic(); 3065 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing); 3066 3067 // Generate the compiled-to-native wrapper code 3068 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3069 3070 if (nm != NULL) { 3071 method->set_code(method, nm); 3072 3073 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple)); 3074 if (directive->PrintAssemblyOption) { 3075 nm->print_code(); 3076 } 3077 DirectivesStack::release(directive); 3078 } 3079 } 3080 } // Unlock AdapterHandlerLibrary_lock 3081 3082 3083 // Install the generated code. 3084 if (nm != NULL) { 3085 const char *msg = method->is_static() ? "(static)" : ""; 3086 CompileTask::print_ul(nm, msg); 3087 if (PrintCompilation) { 3088 ttyLocker ttyl; 3089 CompileTask::print(tty, nm, msg); 3090 } 3091 nm->post_compiled_method_load_event(); 3092 } 3093 } 3094 3095 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread)) 3096 assert(thread == JavaThread::current(), "must be"); 3097 // The code is about to enter a JNI lazy critical native method and 3098 // _needs_gc is true, so if this thread is already in a critical 3099 // section then just return, otherwise this thread should block 3100 // until needs_gc has been cleared. 3101 if (thread->in_critical()) { 3102 return; 3103 } 3104 // Lock and unlock a critical section to give the system a chance to block 3105 GCLocker::lock_critical(thread); 3106 GCLocker::unlock_critical(thread); 3107 JRT_END 3108 3109 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj)) 3110 assert(Universe::heap()->supports_object_pinning(), "Why we are here?"); 3111 assert(obj != NULL, "Should not be null"); 3112 oop o(obj); 3113 o = Universe::heap()->pin_object(thread, o); 3114 assert(o != NULL, "Should not be null"); 3115 return o; 3116 JRT_END 3117 3118 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj)) 3119 assert(Universe::heap()->supports_object_pinning(), "Why we are here?"); 3120 assert(obj != NULL, "Should not be null"); 3121 oop o(obj); 3122 Universe::heap()->unpin_object(thread, o); 3123 JRT_END 3124 3125 // ------------------------------------------------------------------------- 3126 // Java-Java calling convention 3127 // (what you use when Java calls Java) 3128 3129 //------------------------------name_for_receiver---------------------------------- 3130 // For a given signature, return the VMReg for parameter 0. 3131 VMReg SharedRuntime::name_for_receiver() { 3132 VMRegPair regs; 3133 BasicType sig_bt = T_OBJECT; 3134 (void) java_calling_convention(&sig_bt, ®s, 1, true); 3135 // Return argument 0 register. In the LP64 build pointers 3136 // take 2 registers, but the VM wants only the 'main' name. 3137 return regs.first(); 3138 } 3139 3140 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3141 // This method is returning a data structure allocating as a 3142 // ResourceObject, so do not put any ResourceMarks in here. 3143 char *s = sig->as_C_string(); 3144 int len = (int)strlen(s); 3145 s++; len--; // Skip opening paren 3146 3147 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3148 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3149 int cnt = 0; 3150 if (has_receiver) { 3151 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3152 } 3153 3154 while (*s != ')') { // Find closing right paren 3155 switch (*s++) { // Switch on signature character 3156 case 'B': sig_bt[cnt++] = T_BYTE; break; 3157 case 'C': sig_bt[cnt++] = T_CHAR; break; 3158 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break; 3159 case 'F': sig_bt[cnt++] = T_FLOAT; break; 3160 case 'I': sig_bt[cnt++] = T_INT; break; 3161 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break; 3162 case 'S': sig_bt[cnt++] = T_SHORT; break; 3163 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break; 3164 case 'V': sig_bt[cnt++] = T_VOID; break; 3165 case 'L': // Oop 3166 while (*s++ != ';'); // Skip signature 3167 sig_bt[cnt++] = T_OBJECT; 3168 break; 3169 case 'Q': // Value type 3170 while (*s++ != ';'); // Skip signature 3171 sig_bt[cnt++] = T_VALUETYPE; 3172 break; 3173 case '[': { // Array 3174 do { // Skip optional size 3175 while (*s >= '0' && *s <= '9') s++; 3176 } while (*s++ == '['); // Nested arrays? 3177 // Skip element type 3178 if (s[-1] == 'L' || s[-1] == 'Q') 3179 while (*s++ != ';'); // Skip signature 3180 sig_bt[cnt++] = T_ARRAY; 3181 break; 3182 } 3183 default : ShouldNotReachHere(); 3184 } 3185 } 3186 3187 if (has_appendix) { 3188 sig_bt[cnt++] = T_OBJECT; 3189 } 3190 3191 assert(cnt < 256, "grow table size"); 3192 3193 int comp_args_on_stack; 3194 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true); 3195 3196 // the calling convention doesn't count out_preserve_stack_slots so 3197 // we must add that in to get "true" stack offsets. 3198 3199 if (comp_args_on_stack) { 3200 for (int i = 0; i < cnt; i++) { 3201 VMReg reg1 = regs[i].first(); 3202 if (reg1->is_stack()) { 3203 // Yuck 3204 reg1 = reg1->bias(out_preserve_stack_slots()); 3205 } 3206 VMReg reg2 = regs[i].second(); 3207 if (reg2->is_stack()) { 3208 // Yuck 3209 reg2 = reg2->bias(out_preserve_stack_slots()); 3210 } 3211 regs[i].set_pair(reg2, reg1); 3212 } 3213 } 3214 3215 // results 3216 *arg_size = cnt; 3217 return regs; 3218 } 3219 3220 // OSR Migration Code 3221 // 3222 // This code is used convert interpreter frames into compiled frames. It is 3223 // called from very start of a compiled OSR nmethod. A temp array is 3224 // allocated to hold the interesting bits of the interpreter frame. All 3225 // active locks are inflated to allow them to move. The displaced headers and 3226 // active interpreter locals are copied into the temp buffer. Then we return 3227 // back to the compiled code. The compiled code then pops the current 3228 // interpreter frame off the stack and pushes a new compiled frame. Then it 3229 // copies the interpreter locals and displaced headers where it wants. 3230 // Finally it calls back to free the temp buffer. 3231 // 3232 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3233 3234 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) ) 3235 3236 // 3237 // This code is dependent on the memory layout of the interpreter local 3238 // array and the monitors. On all of our platforms the layout is identical 3239 // so this code is shared. If some platform lays the their arrays out 3240 // differently then this code could move to platform specific code or 3241 // the code here could be modified to copy items one at a time using 3242 // frame accessor methods and be platform independent. 3243 3244 frame fr = thread->last_frame(); 3245 assert(fr.is_interpreted_frame(), ""); 3246 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3247 3248 // Figure out how many monitors are active. 3249 int active_monitor_count = 0; 3250 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3251 kptr < fr.interpreter_frame_monitor_begin(); 3252 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3253 if (kptr->obj() != NULL) active_monitor_count++; 3254 } 3255 3256 // QQQ we could place number of active monitors in the array so that compiled code 3257 // could double check it. 3258 3259 Method* moop = fr.interpreter_frame_method(); 3260 int max_locals = moop->max_locals(); 3261 // Allocate temp buffer, 1 word per local & 2 per active monitor 3262 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3263 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3264 3265 // Copy the locals. Order is preserved so that loading of longs works. 3266 // Since there's no GC I can copy the oops blindly. 3267 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3268 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3269 (HeapWord*)&buf[0], 3270 max_locals); 3271 3272 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3273 int i = max_locals; 3274 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3275 kptr2 < fr.interpreter_frame_monitor_begin(); 3276 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3277 if (kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array 3278 BasicLock *lock = kptr2->lock(); 3279 // Inflate so the displaced header becomes position-independent 3280 if (lock->displaced_header()->is_unlocked()) 3281 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3282 // Now the displaced header is free to move 3283 buf[i++] = (intptr_t)lock->displaced_header(); 3284 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3285 } 3286 } 3287 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3288 3289 return buf; 3290 JRT_END 3291 3292 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3293 FREE_C_HEAP_ARRAY(intptr_t, buf); 3294 JRT_END 3295 3296 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3297 AdapterHandlerTableIterator iter(_adapters); 3298 while (iter.has_next()) { 3299 AdapterHandlerEntry* a = iter.next(); 3300 if (b == CodeCache::find_blob(a->get_i2c_entry())) return true; 3301 } 3302 return false; 3303 } 3304 3305 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3306 AdapterHandlerTableIterator iter(_adapters); 3307 while (iter.has_next()) { 3308 AdapterHandlerEntry* a = iter.next(); 3309 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3310 st->print("Adapter for signature: "); 3311 a->print_adapter_on(tty); 3312 return; 3313 } 3314 } 3315 assert(false, "Should have found handler"); 3316 } 3317 3318 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3319 st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iMH: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT, 3320 p2i(this), fingerprint()->as_string(), 3321 p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_value_entry()), p2i(get_c2i_unverified_entry())); 3322 3323 } 3324 3325 #if INCLUDE_CDS 3326 3327 void CDSAdapterHandlerEntry::init() { 3328 assert(DumpSharedSpaces, "used during dump time only"); 3329 _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size()); 3330 _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*)); 3331 }; 3332 3333 #endif // INCLUDE_CDS 3334 3335 3336 #ifndef PRODUCT 3337 3338 void AdapterHandlerLibrary::print_statistics() { 3339 _adapters->print_statistics(); 3340 } 3341 3342 #endif /* PRODUCT */ 3343 3344 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread)) 3345 assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone"); 3346 if (thread->stack_reserved_zone_disabled()) { 3347 thread->enable_stack_reserved_zone(); 3348 } 3349 thread->set_reserved_stack_activation(thread->stack_base()); 3350 JRT_END 3351 3352 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) { 3353 ResourceMark rm(thread); 3354 frame activation; 3355 CompiledMethod* nm = NULL; 3356 int count = 1; 3357 3358 assert(fr.is_java_frame(), "Must start on Java frame"); 3359 3360 while (true) { 3361 Method* method = NULL; 3362 bool found = false; 3363 if (fr.is_interpreted_frame()) { 3364 method = fr.interpreter_frame_method(); 3365 if (method != NULL && method->has_reserved_stack_access()) { 3366 found = true; 3367 } 3368 } else { 3369 CodeBlob* cb = fr.cb(); 3370 if (cb != NULL && cb->is_compiled()) { 3371 nm = cb->as_compiled_method(); 3372 method = nm->method(); 3373 // scope_desc_near() must be used, instead of scope_desc_at() because on 3374 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3375 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) { 3376 method = sd->method(); 3377 if (method != NULL && method->has_reserved_stack_access()) { 3378 found = true; 3379 } 3380 } 3381 } 3382 } 3383 if (found) { 3384 activation = fr; 3385 warning("Potentially dangerous stack overflow in " 3386 "ReservedStackAccess annotated method %s [%d]", 3387 method->name_and_sig_as_C_string(), count++); 3388 EventReservedStackActivation event; 3389 if (event.should_commit()) { 3390 event.set_method(method); 3391 event.commit(); 3392 } 3393 } 3394 if (fr.is_first_java_frame()) { 3395 break; 3396 } else { 3397 fr = fr.java_sender(); 3398 } 3399 } 3400 return activation; 3401 } 3402 3403 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) { 3404 // After any safepoint, just before going back to compiled code, 3405 // we inform the GC that we will be doing initializing writes to 3406 // this object in the future without emitting card-marks, so 3407 // GC may take any compensating steps. 3408 3409 oop new_obj = thread->vm_result(); 3410 if (new_obj == NULL) return; 3411 3412 BarrierSet *bs = BarrierSet::barrier_set(); 3413 bs->on_slowpath_allocation_exit(thread, new_obj); 3414 } 3415 3416 // We are at a compiled code to interpreter call. We need backing 3417 // buffers for all value type arguments. Allocate an object array to 3418 // hold them (convenient because once we're done with it we don't have 3419 // to worry about freeing it). 3420 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method)) 3421 { 3422 assert(ValueTypePassFieldsAsArgs, "no reason to call this"); 3423 ResourceMark rm; 3424 JavaThread* THREAD = thread; 3425 methodHandle callee(callee_method); 3426 3427 int nb_slots = 0; 3428 InstanceKlass* holder = callee->method_holder(); 3429 // TODO for now, don't scalarize value type receivers because of interface calls 3430 //bool has_value_receiver = !callee->is_static() && holder->is_value(); 3431 bool has_value_receiver = false; 3432 if (has_value_receiver) { 3433 nb_slots++; 3434 } 3435 Handle class_loader(THREAD, holder->class_loader()); 3436 Handle protection_domain(THREAD, holder->protection_domain()); 3437 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 3438 if (ss.type() == T_VALUETYPE) { 3439 nb_slots++; 3440 } 3441 } 3442 objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK); 3443 objArrayHandle array(THREAD, array_oop); 3444 int i = 0; 3445 if (has_value_receiver) { 3446 ValueKlass* vk = ValueKlass::cast(holder); 3447 oop res = vk->allocate_instance(CHECK); 3448 array->obj_at_put(i, res); 3449 i++; 3450 } 3451 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 3452 if (ss.type() == T_VALUETYPE) { 3453 Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD); 3454 assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass"); 3455 ValueKlass* vk = ValueKlass::cast(k); 3456 oop res = vk->allocate_instance(CHECK); 3457 array->obj_at_put(i, res); 3458 i++; 3459 } 3460 } 3461 thread->set_vm_result(array()); 3462 thread->set_vm_result_2(callee()); // TODO: required to keep callee live? 3463 } 3464 JRT_END 3465 3466 // Iterate of the array of heap allocated value types and apply the GC post barrier to all reference fields. 3467 // This is called from the C2I adapter after value type arguments are heap allocated and initialized. 3468 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array)) 3469 { 3470 assert(ValueTypePassFieldsAsArgs, "no reason to call this"); 3471 assert(oopDesc::is_oop(array), "should be oop"); 3472 for (int i = 0; i < array->length(); ++i) { 3473 instanceOop valueOop = (instanceOop)array->obj_at(i); 3474 ValueKlass* vk = ValueKlass::cast(valueOop->klass()); 3475 if (vk->contains_oops()) { 3476 const address dst_oop_addr = ((address) (void*) valueOop); 3477 OopMapBlock* map = vk->start_of_nonstatic_oop_maps(); 3478 OopMapBlock* const end = map + vk->nonstatic_oop_map_count(); 3479 while (map != end) { 3480 address doop_address = dst_oop_addr + map->offset(); 3481 barrier_set_cast<ModRefBarrierSet>(BarrierSet::barrier_set())-> 3482 write_ref_array((HeapWord*) doop_address, map->count()); 3483 map++; 3484 } 3485 } 3486 } 3487 } 3488 JRT_END 3489 3490 // We're returning from an interpreted method: load each field into a 3491 // register following the calling convention 3492 JRT_LEAF(void, SharedRuntime::load_value_type_fields_in_regs(JavaThread* thread, oopDesc* res)) 3493 { 3494 assert(res->klass()->is_value(), "only value types here"); 3495 ResourceMark rm; 3496 RegisterMap reg_map(thread); 3497 frame stubFrame = thread->last_frame(); 3498 frame callerFrame = stubFrame.sender(®_map); 3499 assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter"); 3500 3501 ValueKlass* vk = ValueKlass::cast(res->klass()); 3502 3503 const Array<SigEntry>* sig_vk = vk->extended_sig(); 3504 const Array<VMRegPair>* regs = vk->return_regs(); 3505 3506 if (regs == NULL) { 3507 // The fields of the value klass don't fit in registers, bail out 3508 return; 3509 } 3510 3511 int j = 1; 3512 for (int i = 0; i < sig_vk->length(); i++) { 3513 BasicType bt = sig_vk->at(i)._bt; 3514 if (bt == T_VALUETYPE) { 3515 continue; 3516 } 3517 if (bt == T_VOID) { 3518 if (sig_vk->at(i-1)._bt == T_LONG || 3519 sig_vk->at(i-1)._bt == T_DOUBLE) { 3520 j++; 3521 } 3522 continue; 3523 } 3524 int off = sig_vk->at(i)._offset; 3525 assert(off > 0, "offset in object should be positive"); 3526 VMRegPair pair = regs->at(j); 3527 address loc = reg_map.location(pair.first()); 3528 switch(bt) { 3529 case T_BOOLEAN: 3530 *(jboolean*)loc = res->bool_field(off); 3531 break; 3532 case T_CHAR: 3533 *(jchar*)loc = res->char_field(off); 3534 break; 3535 case T_BYTE: 3536 *(jbyte*)loc = res->byte_field(off); 3537 break; 3538 case T_SHORT: 3539 *(jshort*)loc = res->short_field(off); 3540 break; 3541 case T_INT: { 3542 *(jint*)loc = res->int_field(off); 3543 break; 3544 } 3545 case T_LONG: 3546 #ifdef _LP64 3547 *(intptr_t*)loc = res->long_field(off); 3548 #else 3549 Unimplemented(); 3550 #endif 3551 break; 3552 case T_OBJECT: 3553 case T_ARRAY: { 3554 *(oop*)loc = res->obj_field(off); 3555 break; 3556 } 3557 case T_FLOAT: 3558 *(jfloat*)loc = res->float_field(off); 3559 break; 3560 case T_DOUBLE: 3561 *(jdouble*)loc = res->double_field(off); 3562 break; 3563 default: 3564 ShouldNotReachHere(); 3565 } 3566 j++; 3567 } 3568 assert(j == regs->length(), "missed a field?"); 3569 3570 #ifdef ASSERT 3571 VMRegPair pair = regs->at(0); 3572 address loc = reg_map.location(pair.first()); 3573 assert(*(oopDesc**)loc == res, "overwritten object"); 3574 #endif 3575 3576 thread->set_vm_result(res); 3577 } 3578 JRT_END 3579 3580 // We've returned to an interpreted method, the interpreter needs a 3581 // reference to a value type instance. Allocate it and initialize it 3582 // from field's values in registers. 3583 JRT_BLOCK_ENTRY(void, SharedRuntime::store_value_type_fields_to_buf(JavaThread* thread, intptr_t res)) 3584 { 3585 ResourceMark rm; 3586 RegisterMap reg_map(thread); 3587 frame stubFrame = thread->last_frame(); 3588 frame callerFrame = stubFrame.sender(®_map); 3589 3590 #ifdef ASSERT 3591 ValueKlass* verif_vk = ValueKlass::returned_value_klass(reg_map); 3592 #endif 3593 3594 if (!is_set_nth_bit(res, 0)) { 3595 // We're not returning with value type fields in registers (the 3596 // calling convention didn't allow it for this value klass) 3597 assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area"); 3598 thread->set_vm_result((oopDesc*)res); 3599 assert(verif_vk == NULL, "broken calling convention"); 3600 return; 3601 } 3602 3603 clear_nth_bit(res, 0); 3604 ValueKlass* vk = (ValueKlass*)res; 3605 assert(verif_vk == vk, "broken calling convention"); 3606 assert(Metaspace::contains((void*)res), "should be klass"); 3607 3608 // Allocate handles for every oop field so they are safe in case of 3609 // a safepoint when allocating 3610 GrowableArray<Handle> handles; 3611 vk->save_oop_fields(reg_map, handles); 3612 3613 // It's unsafe to safepoint until we are here 3614 JRT_BLOCK; 3615 { 3616 Thread* THREAD = thread; 3617 oop vt = vk->realloc_result(reg_map, handles, CHECK); 3618 thread->set_vm_result(vt); 3619 } 3620 JRT_BLOCK_END; 3621 } 3622 JRT_END 3623