1 /* 2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "jvm.h" 27 #include "aot/aotLoader.hpp" 28 #include "classfile/stringTable.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "classfile/vmSymbols.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/compiledIC.hpp" 33 #include "code/icBuffer.hpp" 34 #include "code/compiledMethod.inline.hpp" 35 #include "code/scopeDesc.hpp" 36 #include "code/vtableStubs.hpp" 37 #include "compiler/abstractCompiler.hpp" 38 #include "compiler/compileBroker.hpp" 39 #include "compiler/disassembler.hpp" 40 #include "gc/shared/barrierSet.hpp" 41 #include "gc/shared/gcLocker.inline.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "interpreter/interpreterRuntime.hpp" 44 #include "jfr/jfrEvents.hpp" 45 #include "logging/log.hpp" 46 #include "memory/metaspaceShared.hpp" 47 #include "memory/oopFactory.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "oops/access.hpp" 51 #include "oops/fieldStreams.hpp" 52 #include "oops/klass.hpp" 53 #include "oops/method.inline.hpp" 54 #include "oops/objArrayKlass.hpp" 55 #include "oops/objArrayOop.inline.hpp" 56 #include "oops/oop.inline.hpp" 57 #include "oops/valueKlass.hpp" 58 #include "prims/forte.hpp" 59 #include "prims/jvmtiExport.hpp" 60 #include "prims/methodHandles.hpp" 61 #include "prims/nativeLookup.hpp" 62 #include "runtime/arguments.hpp" 63 #include "runtime/atomic.hpp" 64 #include "runtime/biasedLocking.hpp" 65 #include "runtime/compilationPolicy.hpp" 66 #include "runtime/frame.inline.hpp" 67 #include "runtime/handles.inline.hpp" 68 #include "runtime/init.hpp" 69 #include "runtime/interfaceSupport.inline.hpp" 70 #include "runtime/java.hpp" 71 #include "runtime/javaCalls.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/stubRoutines.hpp" 74 #include "runtime/vframe.inline.hpp" 75 #include "runtime/vframeArray.hpp" 76 #include "utilities/copy.hpp" 77 #include "utilities/dtrace.hpp" 78 #include "utilities/events.hpp" 79 #include "utilities/hashtable.inline.hpp" 80 #include "utilities/macros.hpp" 81 #include "utilities/xmlstream.hpp" 82 #ifdef COMPILER1 83 #include "c1/c1_Runtime1.hpp" 84 #endif 85 86 // Shared stub locations 87 RuntimeStub* SharedRuntime::_wrong_method_blob; 88 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob; 89 RuntimeStub* SharedRuntime::_ic_miss_blob; 90 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; 91 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; 92 RuntimeStub* SharedRuntime::_resolve_static_call_blob; 93 address SharedRuntime::_resolve_static_call_entry; 94 95 DeoptimizationBlob* SharedRuntime::_deopt_blob; 96 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob; 97 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; 98 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; 99 100 #ifdef COMPILER2 101 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; 102 #endif // COMPILER2 103 104 105 //----------------------------generate_stubs----------------------------------- 106 void SharedRuntime::generate_stubs() { 107 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); 108 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub"); 109 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); 110 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); 111 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); 112 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); 113 _resolve_static_call_entry = _resolve_static_call_blob->entry_point(); 114 115 #if COMPILER2_OR_JVMCI 116 // Vectors are generated only by C2 and JVMCI. 117 bool support_wide = is_wide_vector(MaxVectorSize); 118 if (support_wide) { 119 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP); 120 } 121 #endif // COMPILER2_OR_JVMCI 122 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP); 123 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN); 124 125 generate_deopt_blob(); 126 127 #ifdef COMPILER2 128 generate_uncommon_trap_blob(); 129 #endif // COMPILER2 130 } 131 132 #include <math.h> 133 134 // Implementation of SharedRuntime 135 136 #ifndef PRODUCT 137 // For statistics 138 int SharedRuntime::_ic_miss_ctr = 0; 139 int SharedRuntime::_wrong_method_ctr = 0; 140 int SharedRuntime::_resolve_static_ctr = 0; 141 int SharedRuntime::_resolve_virtual_ctr = 0; 142 int SharedRuntime::_resolve_opt_virtual_ctr = 0; 143 int SharedRuntime::_implicit_null_throws = 0; 144 int SharedRuntime::_implicit_div0_throws = 0; 145 int SharedRuntime::_throw_null_ctr = 0; 146 147 int SharedRuntime::_nof_normal_calls = 0; 148 int SharedRuntime::_nof_optimized_calls = 0; 149 int SharedRuntime::_nof_inlined_calls = 0; 150 int SharedRuntime::_nof_megamorphic_calls = 0; 151 int SharedRuntime::_nof_static_calls = 0; 152 int SharedRuntime::_nof_inlined_static_calls = 0; 153 int SharedRuntime::_nof_interface_calls = 0; 154 int SharedRuntime::_nof_optimized_interface_calls = 0; 155 int SharedRuntime::_nof_inlined_interface_calls = 0; 156 int SharedRuntime::_nof_megamorphic_interface_calls = 0; 157 int SharedRuntime::_nof_removable_exceptions = 0; 158 159 int SharedRuntime::_new_instance_ctr=0; 160 int SharedRuntime::_new_array_ctr=0; 161 int SharedRuntime::_multi1_ctr=0; 162 int SharedRuntime::_multi2_ctr=0; 163 int SharedRuntime::_multi3_ctr=0; 164 int SharedRuntime::_multi4_ctr=0; 165 int SharedRuntime::_multi5_ctr=0; 166 int SharedRuntime::_mon_enter_stub_ctr=0; 167 int SharedRuntime::_mon_exit_stub_ctr=0; 168 int SharedRuntime::_mon_enter_ctr=0; 169 int SharedRuntime::_mon_exit_ctr=0; 170 int SharedRuntime::_partial_subtype_ctr=0; 171 int SharedRuntime::_jbyte_array_copy_ctr=0; 172 int SharedRuntime::_jshort_array_copy_ctr=0; 173 int SharedRuntime::_jint_array_copy_ctr=0; 174 int SharedRuntime::_jlong_array_copy_ctr=0; 175 int SharedRuntime::_oop_array_copy_ctr=0; 176 int SharedRuntime::_checkcast_array_copy_ctr=0; 177 int SharedRuntime::_unsafe_array_copy_ctr=0; 178 int SharedRuntime::_generic_array_copy_ctr=0; 179 int SharedRuntime::_slow_array_copy_ctr=0; 180 int SharedRuntime::_find_handler_ctr=0; 181 int SharedRuntime::_rethrow_ctr=0; 182 183 int SharedRuntime::_ICmiss_index = 0; 184 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 185 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 186 187 188 void SharedRuntime::trace_ic_miss(address at) { 189 for (int i = 0; i < _ICmiss_index; i++) { 190 if (_ICmiss_at[i] == at) { 191 _ICmiss_count[i]++; 192 return; 193 } 194 } 195 int index = _ICmiss_index++; 196 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 197 _ICmiss_at[index] = at; 198 _ICmiss_count[index] = 1; 199 } 200 201 void SharedRuntime::print_ic_miss_histogram() { 202 if (ICMissHistogram) { 203 tty->print_cr("IC Miss Histogram:"); 204 int tot_misses = 0; 205 for (int i = 0; i < _ICmiss_index; i++) { 206 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 207 tot_misses += _ICmiss_count[i]; 208 } 209 tty->print_cr("Total IC misses: %7d", tot_misses); 210 } 211 } 212 #endif // PRODUCT 213 214 215 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 216 return x * y; 217 JRT_END 218 219 220 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 221 if (x == min_jlong && y == CONST64(-1)) { 222 return x; 223 } else { 224 return x / y; 225 } 226 JRT_END 227 228 229 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 230 if (x == min_jlong && y == CONST64(-1)) { 231 return 0; 232 } else { 233 return x % y; 234 } 235 JRT_END 236 237 238 const juint float_sign_mask = 0x7FFFFFFF; 239 const juint float_infinity = 0x7F800000; 240 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 241 const julong double_infinity = CONST64(0x7FF0000000000000); 242 243 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 244 #ifdef _WIN64 245 // 64-bit Windows on amd64 returns the wrong values for 246 // infinity operands. 247 union { jfloat f; juint i; } xbits, ybits; 248 xbits.f = x; 249 ybits.f = y; 250 // x Mod Infinity == x unless x is infinity 251 if (((xbits.i & float_sign_mask) != float_infinity) && 252 ((ybits.i & float_sign_mask) == float_infinity) ) { 253 return x; 254 } 255 return ((jfloat)fmod_winx64((double)x, (double)y)); 256 #else 257 return ((jfloat)fmod((double)x,(double)y)); 258 #endif 259 JRT_END 260 261 262 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 263 #ifdef _WIN64 264 union { jdouble d; julong l; } xbits, ybits; 265 xbits.d = x; 266 ybits.d = y; 267 // x Mod Infinity == x unless x is infinity 268 if (((xbits.l & double_sign_mask) != double_infinity) && 269 ((ybits.l & double_sign_mask) == double_infinity) ) { 270 return x; 271 } 272 return ((jdouble)fmod_winx64((double)x, (double)y)); 273 #else 274 return ((jdouble)fmod((double)x,(double)y)); 275 #endif 276 JRT_END 277 278 #ifdef __SOFTFP__ 279 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 280 return x + y; 281 JRT_END 282 283 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 284 return x - y; 285 JRT_END 286 287 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 288 return x * y; 289 JRT_END 290 291 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 292 return x / y; 293 JRT_END 294 295 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 296 return x + y; 297 JRT_END 298 299 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 300 return x - y; 301 JRT_END 302 303 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 304 return x * y; 305 JRT_END 306 307 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 308 return x / y; 309 JRT_END 310 311 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 312 return (jfloat)x; 313 JRT_END 314 315 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 316 return (jdouble)x; 317 JRT_END 318 319 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 320 return (jdouble)x; 321 JRT_END 322 323 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 324 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 325 JRT_END 326 327 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 328 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 329 JRT_END 330 331 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 332 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 333 JRT_END 334 335 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 336 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 337 JRT_END 338 339 // Functions to return the opposite of the aeabi functions for nan. 340 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 341 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 342 JRT_END 343 344 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 345 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 346 JRT_END 347 348 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 349 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 350 JRT_END 351 352 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 353 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 354 JRT_END 355 356 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 357 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 358 JRT_END 359 360 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 361 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 362 JRT_END 363 364 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 365 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 366 JRT_END 367 368 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 369 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 370 JRT_END 371 372 // Intrinsics make gcc generate code for these. 373 float SharedRuntime::fneg(float f) { 374 return -f; 375 } 376 377 double SharedRuntime::dneg(double f) { 378 return -f; 379 } 380 381 #endif // __SOFTFP__ 382 383 #if defined(__SOFTFP__) || defined(E500V2) 384 // Intrinsics make gcc generate code for these. 385 double SharedRuntime::dabs(double f) { 386 return (f <= (double)0.0) ? (double)0.0 - f : f; 387 } 388 389 #endif 390 391 #if defined(__SOFTFP__) || defined(PPC) 392 double SharedRuntime::dsqrt(double f) { 393 return sqrt(f); 394 } 395 #endif 396 397 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 398 if (g_isnan(x)) 399 return 0; 400 if (x >= (jfloat) max_jint) 401 return max_jint; 402 if (x <= (jfloat) min_jint) 403 return min_jint; 404 return (jint) x; 405 JRT_END 406 407 408 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 409 if (g_isnan(x)) 410 return 0; 411 if (x >= (jfloat) max_jlong) 412 return max_jlong; 413 if (x <= (jfloat) min_jlong) 414 return min_jlong; 415 return (jlong) x; 416 JRT_END 417 418 419 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 420 if (g_isnan(x)) 421 return 0; 422 if (x >= (jdouble) max_jint) 423 return max_jint; 424 if (x <= (jdouble) min_jint) 425 return min_jint; 426 return (jint) x; 427 JRT_END 428 429 430 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 431 if (g_isnan(x)) 432 return 0; 433 if (x >= (jdouble) max_jlong) 434 return max_jlong; 435 if (x <= (jdouble) min_jlong) 436 return min_jlong; 437 return (jlong) x; 438 JRT_END 439 440 441 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 442 return (jfloat)x; 443 JRT_END 444 445 446 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 447 return (jfloat)x; 448 JRT_END 449 450 451 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 452 return (jdouble)x; 453 JRT_END 454 455 // Exception handling across interpreter/compiler boundaries 456 // 457 // exception_handler_for_return_address(...) returns the continuation address. 458 // The continuation address is the entry point of the exception handler of the 459 // previous frame depending on the return address. 460 461 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) { 462 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 463 assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 464 465 // Reset method handle flag. 466 thread->set_is_method_handle_return(false); 467 468 #if INCLUDE_JVMCI 469 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 470 // and other exception handler continuations do not read it 471 thread->set_exception_pc(NULL); 472 #endif // INCLUDE_JVMCI 473 474 // The fastest case first 475 CodeBlob* blob = CodeCache::find_blob(return_address); 476 CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL; 477 if (nm != NULL) { 478 // Set flag if return address is a method handle call site. 479 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 480 // native nmethods don't have exception handlers 481 assert(!nm->is_native_method(), "no exception handler"); 482 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 483 if (nm->is_deopt_pc(return_address)) { 484 // If we come here because of a stack overflow, the stack may be 485 // unguarded. Reguard the stack otherwise if we return to the 486 // deopt blob and the stack bang causes a stack overflow we 487 // crash. 488 bool guard_pages_enabled = thread->stack_guards_enabled(); 489 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack(); 490 if (thread->reserved_stack_activation() != thread->stack_base()) { 491 thread->set_reserved_stack_activation(thread->stack_base()); 492 } 493 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 494 return SharedRuntime::deopt_blob()->unpack_with_exception(); 495 } else { 496 return nm->exception_begin(); 497 } 498 } 499 500 // Entry code 501 if (StubRoutines::returns_to_call_stub(return_address)) { 502 return StubRoutines::catch_exception_entry(); 503 } 504 // Interpreted code 505 if (Interpreter::contains(return_address)) { 506 return Interpreter::rethrow_exception_entry(); 507 } 508 509 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub"); 510 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!"); 511 512 #ifndef PRODUCT 513 { ResourceMark rm; 514 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 515 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 516 tty->print_cr("b) other problem"); 517 } 518 #endif // PRODUCT 519 520 ShouldNotReachHere(); 521 return NULL; 522 } 523 524 525 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address)) 526 return raw_exception_handler_for_return_address(thread, return_address); 527 JRT_END 528 529 530 address SharedRuntime::get_poll_stub(address pc) { 531 address stub; 532 // Look up the code blob 533 CodeBlob *cb = CodeCache::find_blob(pc); 534 535 // Should be an nmethod 536 guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod"); 537 538 // Look up the relocation information 539 assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc), 540 "safepoint polling: type must be poll"); 541 542 #ifdef ASSERT 543 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 544 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 545 Disassembler::decode(cb); 546 fatal("Only polling locations are used for safepoint"); 547 } 548 #endif 549 550 bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc); 551 bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors(); 552 if (at_poll_return) { 553 assert(SharedRuntime::polling_page_return_handler_blob() != NULL, 554 "polling page return stub not created yet"); 555 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 556 } else if (has_wide_vectors) { 557 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL, 558 "polling page vectors safepoint stub not created yet"); 559 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 560 } else { 561 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL, 562 "polling page safepoint stub not created yet"); 563 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 564 } 565 log_debug(safepoint)("... found polling page %s exception at pc = " 566 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 567 at_poll_return ? "return" : "loop", 568 (intptr_t)pc, (intptr_t)stub); 569 return stub; 570 } 571 572 573 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) { 574 assert(caller.is_interpreted_frame(), ""); 575 int args_size = ArgumentSizeComputer(sig).size() + 1; 576 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack"); 577 oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1)); 578 assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop"); 579 return result; 580 } 581 582 583 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) { 584 if (JvmtiExport::can_post_on_exceptions()) { 585 vframeStream vfst(thread, true); 586 methodHandle method = methodHandle(thread, vfst.method()); 587 address bcp = method()->bcp_from(vfst.bci()); 588 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception()); 589 } 590 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception); 591 } 592 593 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) { 594 Handle h_exception = Exceptions::new_exception(thread, name, message); 595 throw_and_post_jvmti_exception(thread, h_exception); 596 } 597 598 // The interpreter code to call this tracing function is only 599 // called/generated when UL is on for redefine, class and has the right level 600 // and tags. Since obsolete methods are never compiled, we don't have 601 // to modify the compilers to generate calls to this function. 602 // 603 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 604 JavaThread* thread, Method* method)) 605 if (method->is_obsolete()) { 606 // We are calling an obsolete method, but this is not necessarily 607 // an error. Our method could have been redefined just after we 608 // fetched the Method* from the constant pool. 609 ResourceMark rm; 610 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 611 } 612 return 0; 613 JRT_END 614 615 // ret_pc points into caller; we are returning caller's exception handler 616 // for given exception 617 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception, 618 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 619 assert(cm != NULL, "must exist"); 620 ResourceMark rm; 621 622 #if INCLUDE_JVMCI 623 if (cm->is_compiled_by_jvmci()) { 624 // lookup exception handler for this pc 625 int catch_pco = ret_pc - cm->code_begin(); 626 ExceptionHandlerTable table(cm); 627 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 628 if (t != NULL) { 629 return cm->code_begin() + t->pco(); 630 } else { 631 return Deoptimization::deoptimize_for_missing_exception_handler(cm); 632 } 633 } 634 #endif // INCLUDE_JVMCI 635 636 nmethod* nm = cm->as_nmethod(); 637 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 638 // determine handler bci, if any 639 EXCEPTION_MARK; 640 641 int handler_bci = -1; 642 int scope_depth = 0; 643 if (!force_unwind) { 644 int bci = sd->bci(); 645 bool recursive_exception = false; 646 do { 647 bool skip_scope_increment = false; 648 // exception handler lookup 649 Klass* ek = exception->klass(); 650 methodHandle mh(THREAD, sd->method()); 651 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 652 if (HAS_PENDING_EXCEPTION) { 653 recursive_exception = true; 654 // We threw an exception while trying to find the exception handler. 655 // Transfer the new exception to the exception handle which will 656 // be set into thread local storage, and do another lookup for an 657 // exception handler for this exception, this time starting at the 658 // BCI of the exception handler which caused the exception to be 659 // thrown (bugs 4307310 and 4546590). Set "exception" reference 660 // argument to ensure that the correct exception is thrown (4870175). 661 recursive_exception_occurred = true; 662 exception = Handle(THREAD, PENDING_EXCEPTION); 663 CLEAR_PENDING_EXCEPTION; 664 if (handler_bci >= 0) { 665 bci = handler_bci; 666 handler_bci = -1; 667 skip_scope_increment = true; 668 } 669 } 670 else { 671 recursive_exception = false; 672 } 673 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 674 sd = sd->sender(); 675 if (sd != NULL) { 676 bci = sd->bci(); 677 } 678 ++scope_depth; 679 } 680 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL)); 681 } 682 683 // found handling method => lookup exception handler 684 int catch_pco = ret_pc - nm->code_begin(); 685 686 ExceptionHandlerTable table(nm); 687 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 688 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) { 689 // Allow abbreviated catch tables. The idea is to allow a method 690 // to materialize its exceptions without committing to the exact 691 // routing of exceptions. In particular this is needed for adding 692 // a synthetic handler to unlock monitors when inlining 693 // synchronized methods since the unlock path isn't represented in 694 // the bytecodes. 695 t = table.entry_for(catch_pco, -1, 0); 696 } 697 698 #ifdef COMPILER1 699 if (t == NULL && nm->is_compiled_by_c1()) { 700 assert(nm->unwind_handler_begin() != NULL, ""); 701 return nm->unwind_handler_begin(); 702 } 703 #endif 704 705 if (t == NULL) { 706 ttyLocker ttyl; 707 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci); 708 tty->print_cr(" Exception:"); 709 exception->print(); 710 tty->cr(); 711 tty->print_cr(" Compiled exception table :"); 712 table.print(); 713 nm->print_code(); 714 guarantee(false, "missing exception handler"); 715 return NULL; 716 } 717 718 return nm->code_begin() + t->pco(); 719 } 720 721 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread)) 722 // These errors occur only at call sites 723 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError()); 724 JRT_END 725 726 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) 727 // These errors occur only at call sites 728 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 729 JRT_END 730 731 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread)) 732 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 733 JRT_END 734 735 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread)) 736 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 737 JRT_END 738 739 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread)) 740 // This entry point is effectively only used for NullPointerExceptions which occur at inline 741 // cache sites (when the callee activation is not yet set up) so we are at a call site 742 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 743 JRT_END 744 745 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread)) 746 throw_StackOverflowError_common(thread, false); 747 JRT_END 748 749 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread)) 750 throw_StackOverflowError_common(thread, true); 751 JRT_END 752 753 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) { 754 // We avoid using the normal exception construction in this case because 755 // it performs an upcall to Java, and we're already out of stack space. 756 Thread* THREAD = thread; 757 Klass* k = SystemDictionary::StackOverflowError_klass(); 758 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 759 if (delayed) { 760 java_lang_Throwable::set_message(exception_oop, 761 Universe::delayed_stack_overflow_error_message()); 762 } 763 Handle exception (thread, exception_oop); 764 if (StackTraceInThrowable) { 765 java_lang_Throwable::fill_in_stack_trace(exception); 766 } 767 // Increment counter for hs_err file reporting 768 Atomic::inc(&Exceptions::_stack_overflow_errors); 769 throw_and_post_jvmti_exception(thread, exception); 770 } 771 772 #if INCLUDE_JVMCI 773 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) { 774 assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason"); 775 thread->set_jvmci_implicit_exception_pc(pc); 776 thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret)); 777 return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap()); 778 } 779 #endif // INCLUDE_JVMCI 780 781 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread, 782 address pc, 783 SharedRuntime::ImplicitExceptionKind exception_kind) 784 { 785 address target_pc = NULL; 786 787 if (Interpreter::contains(pc)) { 788 #ifdef CC_INTERP 789 // C++ interpreter doesn't throw implicit exceptions 790 ShouldNotReachHere(); 791 #else 792 switch (exception_kind) { 793 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 794 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 795 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 796 default: ShouldNotReachHere(); 797 } 798 #endif // !CC_INTERP 799 } else { 800 switch (exception_kind) { 801 case STACK_OVERFLOW: { 802 // Stack overflow only occurs upon frame setup; the callee is 803 // going to be unwound. Dispatch to a shared runtime stub 804 // which will cause the StackOverflowError to be fabricated 805 // and processed. 806 // Stack overflow should never occur during deoptimization: 807 // the compiled method bangs the stack by as much as the 808 // interpreter would need in case of a deoptimization. The 809 // deoptimization blob and uncommon trap blob bang the stack 810 // in a debug VM to verify the correctness of the compiled 811 // method stack banging. 812 assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap"); 813 Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 814 return StubRoutines::throw_StackOverflowError_entry(); 815 } 816 817 case IMPLICIT_NULL: { 818 if (VtableStubs::contains(pc)) { 819 // We haven't yet entered the callee frame. Fabricate an 820 // exception and begin dispatching it in the caller. Since 821 // the caller was at a call site, it's safe to destroy all 822 // caller-saved registers, as these entry points do. 823 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 824 825 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error. 826 if (vt_stub == NULL) return NULL; 827 828 if (vt_stub->is_abstract_method_error(pc)) { 829 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 830 Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 831 // Instead of throwing the abstract method error here directly, we re-resolve 832 // and will throw the AbstractMethodError during resolve. As a result, we'll 833 // get a more detailed error message. 834 return SharedRuntime::get_handle_wrong_method_stub(); 835 } else { 836 Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 837 // Assert that the signal comes from the expected location in stub code. 838 assert(vt_stub->is_null_pointer_exception(pc), 839 "obtained signal from unexpected location in stub code"); 840 return StubRoutines::throw_NullPointerException_at_call_entry(); 841 } 842 } else { 843 CodeBlob* cb = CodeCache::find_blob(pc); 844 845 // If code blob is NULL, then return NULL to signal handler to report the SEGV error. 846 if (cb == NULL) return NULL; 847 848 // Exception happened in CodeCache. Must be either: 849 // 1. Inline-cache check in C2I handler blob, 850 // 2. Inline-cache check in nmethod, or 851 // 3. Implicit null exception in nmethod 852 853 if (!cb->is_compiled()) { 854 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 855 if (!is_in_blob) { 856 // Allow normal crash reporting to handle this 857 return NULL; 858 } 859 Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 860 // There is no handler here, so we will simply unwind. 861 return StubRoutines::throw_NullPointerException_at_call_entry(); 862 } 863 864 // Otherwise, it's a compiled method. Consult its exception handlers. 865 CompiledMethod* cm = (CompiledMethod*)cb; 866 if (cm->inlinecache_check_contains(pc)) { 867 // exception happened inside inline-cache check code 868 // => the nmethod is not yet active (i.e., the frame 869 // is not set up yet) => use return address pushed by 870 // caller => don't push another return address 871 Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 872 return StubRoutines::throw_NullPointerException_at_call_entry(); 873 } 874 875 if (cm->method()->is_method_handle_intrinsic()) { 876 // exception happened inside MH dispatch code, similar to a vtable stub 877 Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 878 return StubRoutines::throw_NullPointerException_at_call_entry(); 879 } 880 881 #ifndef PRODUCT 882 _implicit_null_throws++; 883 #endif 884 #if INCLUDE_JVMCI 885 if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) { 886 // If there's no PcDesc then we'll die way down inside of 887 // deopt instead of just getting normal error reporting, 888 // so only go there if it will succeed. 889 return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check); 890 } else { 891 #endif // INCLUDE_JVMCI 892 assert (cm->is_nmethod(), "Expect nmethod"); 893 target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc); 894 #if INCLUDE_JVMCI 895 } 896 #endif // INCLUDE_JVMCI 897 // If there's an unexpected fault, target_pc might be NULL, 898 // in which case we want to fall through into the normal 899 // error handling code. 900 } 901 902 break; // fall through 903 } 904 905 906 case IMPLICIT_DIVIDE_BY_ZERO: { 907 CompiledMethod* cm = CodeCache::find_compiled(pc); 908 guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions"); 909 #ifndef PRODUCT 910 _implicit_div0_throws++; 911 #endif 912 #if INCLUDE_JVMCI 913 if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) { 914 return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check); 915 } else { 916 #endif // INCLUDE_JVMCI 917 target_pc = cm->continuation_for_implicit_exception(pc); 918 #if INCLUDE_JVMCI 919 } 920 #endif // INCLUDE_JVMCI 921 // If there's an unexpected fault, target_pc might be NULL, 922 // in which case we want to fall through into the normal 923 // error handling code. 924 break; // fall through 925 } 926 927 default: ShouldNotReachHere(); 928 } 929 930 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 931 932 if (exception_kind == IMPLICIT_NULL) { 933 #ifndef PRODUCT 934 // for AbortVMOnException flag 935 Exceptions::debug_check_abort("java.lang.NullPointerException"); 936 #endif //PRODUCT 937 Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 938 } else { 939 #ifndef PRODUCT 940 // for AbortVMOnException flag 941 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 942 #endif //PRODUCT 943 Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 944 } 945 return target_pc; 946 } 947 948 ShouldNotReachHere(); 949 return NULL; 950 } 951 952 953 /** 954 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 955 * installed in the native function entry of all native Java methods before 956 * they get linked to their actual native methods. 957 * 958 * \note 959 * This method actually never gets called! The reason is because 960 * the interpreter's native entries call NativeLookup::lookup() which 961 * throws the exception when the lookup fails. The exception is then 962 * caught and forwarded on the return from NativeLookup::lookup() call 963 * before the call to the native function. This might change in the future. 964 */ 965 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 966 { 967 // We return a bad value here to make sure that the exception is 968 // forwarded before we look at the return value. 969 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 970 } 971 JNI_END 972 973 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 974 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 975 } 976 977 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) 978 #if INCLUDE_JVMCI 979 if (!obj->klass()->has_finalizer()) { 980 return; 981 } 982 #endif // INCLUDE_JVMCI 983 assert(oopDesc::is_oop(obj), "must be a valid oop"); 984 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 985 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 986 JRT_END 987 988 989 jlong SharedRuntime::get_java_tid(Thread* thread) { 990 if (thread != NULL) { 991 if (thread->is_Java_thread()) { 992 oop obj = ((JavaThread*)thread)->threadObj(); 993 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj); 994 } 995 } 996 return 0; 997 } 998 999 /** 1000 * This function ought to be a void function, but cannot be because 1001 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1002 * 6254741. Once that is fixed we can remove the dummy return value. 1003 */ 1004 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) { 1005 return dtrace_object_alloc_base(Thread::current(), o, size); 1006 } 1007 1008 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) { 1009 assert(DTraceAllocProbes, "wrong call"); 1010 Klass* klass = o->klass(); 1011 Symbol* name = klass->name(); 1012 HOTSPOT_OBJECT_ALLOC( 1013 get_java_tid(thread), 1014 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1015 return 0; 1016 } 1017 1018 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1019 JavaThread* thread, Method* method)) 1020 assert(DTraceMethodProbes, "wrong call"); 1021 Symbol* kname = method->klass_name(); 1022 Symbol* name = method->name(); 1023 Symbol* sig = method->signature(); 1024 HOTSPOT_METHOD_ENTRY( 1025 get_java_tid(thread), 1026 (char *) kname->bytes(), kname->utf8_length(), 1027 (char *) name->bytes(), name->utf8_length(), 1028 (char *) sig->bytes(), sig->utf8_length()); 1029 return 0; 1030 JRT_END 1031 1032 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1033 JavaThread* thread, Method* method)) 1034 assert(DTraceMethodProbes, "wrong call"); 1035 Symbol* kname = method->klass_name(); 1036 Symbol* name = method->name(); 1037 Symbol* sig = method->signature(); 1038 HOTSPOT_METHOD_RETURN( 1039 get_java_tid(thread), 1040 (char *) kname->bytes(), kname->utf8_length(), 1041 (char *) name->bytes(), name->utf8_length(), 1042 (char *) sig->bytes(), sig->utf8_length()); 1043 return 0; 1044 JRT_END 1045 1046 1047 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1048 // for a call current in progress, i.e., arguments has been pushed on stack 1049 // put callee has not been invoked yet. Used by: resolve virtual/static, 1050 // vtable updates, etc. Caller frame must be compiled. 1051 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1052 ResourceMark rm(THREAD); 1053 1054 // last java frame on stack (which includes native call frames) 1055 vframeStream vfst(thread, true); // Do not skip and javaCalls 1056 1057 return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD); 1058 } 1059 1060 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) { 1061 CompiledMethod* caller = vfst.nm(); 1062 1063 nmethodLocker caller_lock(caller); 1064 1065 address pc = vfst.frame_pc(); 1066 { // Get call instruction under lock because another thread may be busy patching it. 1067 CompiledICLocker ic_locker(caller); 1068 return caller->attached_method_before_pc(pc); 1069 } 1070 return NULL; 1071 } 1072 1073 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1074 // for a call current in progress, i.e., arguments has been pushed on stack 1075 // but callee has not been invoked yet. Caller frame must be compiled. 1076 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread, 1077 vframeStream& vfst, 1078 Bytecodes::Code& bc, 1079 CallInfo& callinfo, TRAPS) { 1080 Handle receiver; 1081 Handle nullHandle; //create a handy null handle for exception returns 1082 1083 assert(!vfst.at_end(), "Java frame must exist"); 1084 1085 // Find caller and bci from vframe 1086 methodHandle caller(THREAD, vfst.method()); 1087 int bci = vfst.bci(); 1088 1089 Bytecode_invoke bytecode(caller, bci); 1090 int bytecode_index = bytecode.index(); 1091 bc = bytecode.invoke_code(); 1092 1093 methodHandle attached_method = extract_attached_method(vfst); 1094 if (attached_method.not_null()) { 1095 methodHandle callee = bytecode.static_target(CHECK_NH); 1096 vmIntrinsics::ID id = callee->intrinsic_id(); 1097 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1098 // it attaches statically resolved method to the call site. 1099 if (MethodHandles::is_signature_polymorphic(id) && 1100 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1101 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1102 1103 // Adjust invocation mode according to the attached method. 1104 switch (bc) { 1105 case Bytecodes::_invokevirtual: 1106 if (attached_method->method_holder()->is_interface()) { 1107 bc = Bytecodes::_invokeinterface; 1108 } 1109 break; 1110 case Bytecodes::_invokeinterface: 1111 if (!attached_method->method_holder()->is_interface()) { 1112 bc = Bytecodes::_invokevirtual; 1113 } 1114 break; 1115 case Bytecodes::_invokehandle: 1116 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1117 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1118 : Bytecodes::_invokevirtual; 1119 } 1120 break; 1121 default: 1122 break; 1123 } 1124 } else { 1125 assert(ValueTypePassFieldsAsArgs, "invalid use of attached methods"); 1126 if (bc != Bytecodes::_invokevirtual) { 1127 // Ignore the attached method in this case to not confuse below code 1128 attached_method = NULL; 1129 } 1130 } 1131 } 1132 1133 assert(bc != Bytecodes::_illegal, "not initialized"); 1134 1135 bool has_receiver = bc != Bytecodes::_invokestatic && 1136 bc != Bytecodes::_invokedynamic && 1137 bc != Bytecodes::_invokehandle; 1138 1139 // Find receiver for non-static call 1140 if (has_receiver) { 1141 // This register map must be update since we need to find the receiver for 1142 // compiled frames. The receiver might be in a register. 1143 RegisterMap reg_map2(thread); 1144 frame stubFrame = thread->last_frame(); 1145 // Caller-frame is a compiled frame 1146 frame callerFrame = stubFrame.sender(®_map2); 1147 1148 methodHandle callee = attached_method; 1149 if (callee.is_null()) { 1150 callee = bytecode.static_target(CHECK_NH); 1151 if (callee.is_null()) { 1152 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1153 } 1154 } 1155 // TODO for now, don't scalarize value type receivers because of interface calls 1156 if (callee->has_scalarized_args() && callee->method_holder()->is_value() && false) { 1157 // If the receiver is a value type that is passed as fields, no oop is available. 1158 // Resolve the call without receiver null checking. 1159 assert(bc == Bytecodes::_invokevirtual, "only allowed with invokevirtual"); 1160 assert(!attached_method.is_null(), "must have attached method"); 1161 constantPoolHandle constants(THREAD, caller->constants()); 1162 LinkInfo link_info(attached_method->method_holder(), attached_method->name(), attached_method->signature()); 1163 LinkResolver::resolve_virtual_call(callinfo, receiver, NULL, link_info, /*check_null_or_abstract*/ false, CHECK_NH); 1164 return receiver; // is null 1165 } else { 1166 // Retrieve from a compiled argument list 1167 receiver = Handle(THREAD, callerFrame.retrieve_receiver(®_map2)); 1168 1169 if (receiver.is_null()) { 1170 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1171 } 1172 } 1173 } 1174 1175 // Resolve method 1176 if (attached_method.not_null()) { 1177 // Parameterized by attached method. 1178 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1179 } else { 1180 // Parameterized by bytecode. 1181 constantPoolHandle constants(THREAD, caller->constants()); 1182 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1183 } 1184 1185 #ifdef ASSERT 1186 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1187 if (has_receiver) { 1188 assert(receiver.not_null(), "should have thrown exception"); 1189 Klass* receiver_klass = receiver->klass(); 1190 Klass* rk = NULL; 1191 if (attached_method.not_null()) { 1192 // In case there's resolved method attached, use its holder during the check. 1193 rk = attached_method->method_holder(); 1194 } else { 1195 // Klass is already loaded. 1196 constantPoolHandle constants(THREAD, caller->constants()); 1197 rk = constants->klass_ref_at(bytecode_index, CHECK_NH); 1198 } 1199 Klass* static_receiver_klass = rk; 1200 methodHandle callee = callinfo.selected_method(); 1201 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1202 "actual receiver must be subclass of static receiver klass"); 1203 if (receiver_klass->is_instance_klass()) { 1204 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1205 tty->print_cr("ERROR: Klass not yet initialized!!"); 1206 receiver_klass->print(); 1207 } 1208 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1209 } 1210 } 1211 #endif 1212 1213 return receiver; 1214 } 1215 1216 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) { 1217 ResourceMark rm(THREAD); 1218 // We need first to check if any Java activations (compiled, interpreted) 1219 // exist on the stack since last JavaCall. If not, we need 1220 // to get the target method from the JavaCall wrapper. 1221 vframeStream vfst(thread, true); // Do not skip any javaCalls 1222 methodHandle callee_method; 1223 if (vfst.at_end()) { 1224 // No Java frames were found on stack since we did the JavaCall. 1225 // Hence the stack can only contain an entry_frame. We need to 1226 // find the target method from the stub frame. 1227 RegisterMap reg_map(thread, false); 1228 frame fr = thread->last_frame(); 1229 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1230 fr = fr.sender(®_map); 1231 assert(fr.is_entry_frame(), "must be"); 1232 // fr is now pointing to the entry frame. 1233 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method()); 1234 } else { 1235 Bytecodes::Code bc; 1236 CallInfo callinfo; 1237 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle())); 1238 callee_method = callinfo.selected_method(); 1239 } 1240 assert(callee_method()->is_method(), "must be"); 1241 return callee_method; 1242 } 1243 1244 // Resolves a call. 1245 methodHandle SharedRuntime::resolve_helper(JavaThread *thread, 1246 bool is_virtual, 1247 bool is_optimized, TRAPS) { 1248 methodHandle callee_method; 1249 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); 1250 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 1251 int retry_count = 0; 1252 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() && 1253 callee_method->method_holder() != SystemDictionary::Object_klass()) { 1254 // If has a pending exception then there is no need to re-try to 1255 // resolve this method. 1256 // If the method has been redefined, we need to try again. 1257 // Hack: we have no way to update the vtables of arrays, so don't 1258 // require that java.lang.Object has been updated. 1259 1260 // It is very unlikely that method is redefined more than 100 times 1261 // in the middle of resolve. If it is looping here more than 100 times 1262 // means then there could be a bug here. 1263 guarantee((retry_count++ < 100), 1264 "Could not resolve to latest version of redefined method"); 1265 // method is redefined in the middle of resolve so re-try. 1266 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); 1267 } 1268 } 1269 return callee_method; 1270 } 1271 1272 // This fails if resolution required refilling of IC stubs 1273 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame, 1274 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized, 1275 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) { 1276 StaticCallInfo static_call_info; 1277 CompiledICInfo virtual_call_info; 1278 1279 // Make sure the callee nmethod does not get deoptimized and removed before 1280 // we are done patching the code. 1281 CompiledMethod* callee = callee_method->code(); 1282 1283 if (callee != NULL) { 1284 assert(callee->is_compiled(), "must be nmethod for patching"); 1285 } 1286 1287 if (callee != NULL && !callee->is_in_use()) { 1288 // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded. 1289 callee = NULL; 1290 } 1291 nmethodLocker nl_callee(callee); 1292 #ifdef ASSERT 1293 address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below 1294 #endif 1295 1296 bool is_nmethod = caller_nm->is_nmethod(); 1297 1298 if (is_virtual) { 1299 Klass* receiver_klass = NULL; 1300 if (ValueTypePassFieldsAsArgs && callee_method->method_holder()->is_value()) { 1301 // If the receiver is a value type that is passed as fields, no oop is available 1302 receiver_klass = callee_method->method_holder(); 1303 } else { 1304 assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check"); 1305 receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass(); 1306 } 1307 bool static_bound = call_info.resolved_method()->can_be_statically_bound(); 1308 CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass, 1309 is_optimized, static_bound, is_nmethod, virtual_call_info, 1310 CHECK_false); 1311 } else { 1312 // static call 1313 CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info); 1314 } 1315 1316 // grab lock, check for deoptimization and potentially patch caller 1317 { 1318 CompiledICLocker ml(caller_nm); 1319 1320 // Lock blocks for safepoint during which both nmethods can change state. 1321 1322 // Now that we are ready to patch if the Method* was redefined then 1323 // don't update call site and let the caller retry. 1324 // Don't update call site if callee nmethod was unloaded or deoptimized. 1325 // Don't update call site if callee nmethod was replaced by an other nmethod 1326 // which may happen when multiply alive nmethod (tiered compilation) 1327 // will be supported. 1328 if (!callee_method->is_old() && 1329 (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) { 1330 #ifdef ASSERT 1331 // We must not try to patch to jump to an already unloaded method. 1332 if (dest_entry_point != 0) { 1333 CodeBlob* cb = CodeCache::find_blob(dest_entry_point); 1334 assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee), 1335 "should not call unloaded nmethod"); 1336 } 1337 #endif 1338 if (is_virtual) { 1339 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1340 if (inline_cache->is_clean()) { 1341 if (!inline_cache->set_to_monomorphic(virtual_call_info)) { 1342 return false; 1343 } 1344 } 1345 } else { 1346 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc()); 1347 if (ssc->is_clean()) ssc->set(static_call_info); 1348 } 1349 } 1350 } // unlock CompiledICLocker 1351 return true; 1352 } 1353 1354 // Resolves a call. The compilers generate code for calls that go here 1355 // and are patched with the real destination of the call. 1356 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread, 1357 bool is_virtual, 1358 bool is_optimized, TRAPS) { 1359 1360 ResourceMark rm(thread); 1361 RegisterMap cbl_map(thread, false); 1362 frame caller_frame = thread->last_frame().sender(&cbl_map); 1363 1364 CodeBlob* caller_cb = caller_frame.cb(); 1365 guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method"); 1366 CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null(); 1367 1368 // make sure caller is not getting deoptimized 1369 // and removed before we are done with it. 1370 // CLEANUP - with lazy deopt shouldn't need this lock 1371 nmethodLocker caller_lock(caller_nm); 1372 1373 // determine call info & receiver 1374 // note: a) receiver is NULL for static calls 1375 // b) an exception is thrown if receiver is NULL for non-static calls 1376 CallInfo call_info; 1377 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1378 Handle receiver = find_callee_info(thread, invoke_code, 1379 call_info, CHECK_(methodHandle())); 1380 methodHandle callee_method = call_info.selected_method(); 1381 1382 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1383 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1384 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1385 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1386 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1387 1388 assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive"); 1389 1390 #ifndef PRODUCT 1391 // tracing/debugging/statistics 1392 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1393 (is_virtual) ? (&_resolve_virtual_ctr) : 1394 (&_resolve_static_ctr); 1395 Atomic::inc(addr); 1396 1397 if (TraceCallFixup) { 1398 ResourceMark rm(thread); 1399 tty->print("resolving %s%s (%s) call to", 1400 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1401 Bytecodes::name(invoke_code)); 1402 callee_method->print_short_name(tty); 1403 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1404 p2i(caller_frame.pc()), p2i(callee_method->code())); 1405 } 1406 #endif 1407 1408 // Do not patch call site for static call when the class is not 1409 // fully initialized. 1410 if (invoke_code == Bytecodes::_invokestatic && 1411 !callee_method->method_holder()->is_initialized()) { 1412 assert(callee_method->method_holder()->is_linked(), "must be"); 1413 return callee_method; 1414 } 1415 1416 // JSR 292 key invariant: 1417 // If the resolved method is a MethodHandle invoke target, the call 1418 // site must be a MethodHandle call site, because the lambda form might tail-call 1419 // leaving the stack in a state unknown to either caller or callee 1420 // TODO detune for now but we might need it again 1421 // assert(!callee_method->is_compiled_lambda_form() || 1422 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site"); 1423 1424 // Compute entry points. This might require generation of C2I converter 1425 // frames, so we cannot be holding any locks here. Furthermore, the 1426 // computation of the entry points is independent of patching the call. We 1427 // always return the entry-point, but we only patch the stub if the call has 1428 // not been deoptimized. Return values: For a virtual call this is an 1429 // (cached_oop, destination address) pair. For a static call/optimized 1430 // virtual this is just a destination address. 1431 1432 // Patching IC caches may fail if we run out if transition stubs. 1433 // We refill the ic stubs then and try again. 1434 for (;;) { 1435 ICRefillVerifier ic_refill_verifier; 1436 bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm, 1437 is_virtual, is_optimized, receiver, 1438 call_info, invoke_code, CHECK_(methodHandle())); 1439 if (successful) { 1440 return callee_method; 1441 } else { 1442 InlineCacheBuffer::refill_ic_stubs(); 1443 } 1444 } 1445 1446 } 1447 1448 1449 // Inline caches exist only in compiled code 1450 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread)) 1451 #ifdef ASSERT 1452 RegisterMap reg_map(thread, false); 1453 frame stub_frame = thread->last_frame(); 1454 assert(stub_frame.is_runtime_frame(), "sanity check"); 1455 frame caller_frame = stub_frame.sender(®_map); 1456 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame"); 1457 #endif /* ASSERT */ 1458 1459 methodHandle callee_method; 1460 JRT_BLOCK 1461 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL); 1462 // Return Method* through TLS 1463 thread->set_vm_result_2(callee_method()); 1464 JRT_BLOCK_END 1465 // return compiled code entry point after potential safepoints 1466 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1467 return callee_method->verified_code_entry(); 1468 JRT_END 1469 1470 1471 // Handle call site that has been made non-entrant 1472 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread)) 1473 // 6243940 We might end up in here if the callee is deoptimized 1474 // as we race to call it. We don't want to take a safepoint if 1475 // the caller was interpreted because the caller frame will look 1476 // interpreted to the stack walkers and arguments are now 1477 // "compiled" so it is much better to make this transition 1478 // invisible to the stack walking code. The i2c path will 1479 // place the callee method in the callee_target. It is stashed 1480 // there because if we try and find the callee by normal means a 1481 // safepoint is possible and have trouble gc'ing the compiled args. 1482 RegisterMap reg_map(thread, false); 1483 frame stub_frame = thread->last_frame(); 1484 assert(stub_frame.is_runtime_frame(), "sanity check"); 1485 frame caller_frame = stub_frame.sender(®_map); 1486 1487 if (caller_frame.is_interpreted_frame() || 1488 caller_frame.is_entry_frame()) { 1489 Method* callee = thread->callee_target(); 1490 guarantee(callee != NULL && callee->is_method(), "bad handshake"); 1491 thread->set_vm_result_2(callee); 1492 thread->set_callee_target(NULL); 1493 return callee->get_c2i_entry(); 1494 } 1495 1496 // Must be compiled to compiled path which is safe to stackwalk 1497 methodHandle callee_method; 1498 JRT_BLOCK 1499 // Force resolving of caller (if we called from compiled frame) 1500 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL); 1501 thread->set_vm_result_2(callee_method()); 1502 JRT_BLOCK_END 1503 // return compiled code entry point after potential safepoints 1504 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1505 return callee_method->verified_code_entry(); 1506 JRT_END 1507 1508 // Handle abstract method call 1509 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread)) 1510 // Verbose error message for AbstractMethodError. 1511 // Get the called method from the invoke bytecode. 1512 vframeStream vfst(thread, true); 1513 assert(!vfst.at_end(), "Java frame must exist"); 1514 methodHandle caller(vfst.method()); 1515 Bytecode_invoke invoke(caller, vfst.bci()); 1516 DEBUG_ONLY( invoke.verify(); ) 1517 1518 // Find the compiled caller frame. 1519 RegisterMap reg_map(thread); 1520 frame stubFrame = thread->last_frame(); 1521 assert(stubFrame.is_runtime_frame(), "must be"); 1522 frame callerFrame = stubFrame.sender(®_map); 1523 assert(callerFrame.is_compiled_frame(), "must be"); 1524 1525 // Install exception and return forward entry. 1526 address res = StubRoutines::throw_AbstractMethodError_entry(); 1527 JRT_BLOCK 1528 methodHandle callee = invoke.static_target(thread); 1529 if (!callee.is_null()) { 1530 oop recv = callerFrame.retrieve_receiver(®_map); 1531 Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL; 1532 LinkResolver::throw_abstract_method_error(callee, recv_klass, thread); 1533 res = StubRoutines::forward_exception_entry(); 1534 } 1535 JRT_BLOCK_END 1536 return res; 1537 JRT_END 1538 1539 1540 // resolve a static call and patch code 1541 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread )) 1542 methodHandle callee_method; 1543 JRT_BLOCK 1544 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL); 1545 thread->set_vm_result_2(callee_method()); 1546 JRT_BLOCK_END 1547 // return compiled code entry point after potential safepoints 1548 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1549 return callee_method->verified_code_entry(); 1550 JRT_END 1551 1552 1553 // resolve virtual call and update inline cache to monomorphic 1554 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread )) 1555 methodHandle callee_method; 1556 JRT_BLOCK 1557 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL); 1558 thread->set_vm_result_2(callee_method()); 1559 JRT_BLOCK_END 1560 // return compiled code entry point after potential safepoints 1561 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1562 return callee_method->verified_code_entry(); 1563 JRT_END 1564 1565 1566 // Resolve a virtual call that can be statically bound (e.g., always 1567 // monomorphic, so it has no inline cache). Patch code to resolved target. 1568 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread)) 1569 methodHandle callee_method; 1570 JRT_BLOCK 1571 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL); 1572 thread->set_vm_result_2(callee_method()); 1573 JRT_BLOCK_END 1574 // return compiled code entry point after potential safepoints 1575 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1576 return callee_method->verified_code_entry(); 1577 JRT_END 1578 1579 // The handle_ic_miss_helper_internal function returns false if it failed due 1580 // to either running out of vtable stubs or ic stubs due to IC transitions 1581 // to transitional states. The needs_ic_stub_refill value will be set if 1582 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper 1583 // refills the IC stubs and tries again. 1584 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm, 1585 const frame& caller_frame, methodHandle callee_method, 1586 Bytecodes::Code bc, CallInfo& call_info, 1587 bool& needs_ic_stub_refill, TRAPS) { 1588 CompiledICLocker ml(caller_nm); 1589 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1590 bool should_be_mono = false; 1591 if (inline_cache->is_optimized()) { 1592 if (TraceCallFixup) { 1593 ResourceMark rm(THREAD); 1594 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc)); 1595 callee_method->print_short_name(tty); 1596 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1597 } 1598 should_be_mono = true; 1599 } else if (inline_cache->is_icholder_call()) { 1600 CompiledICHolder* ic_oop = inline_cache->cached_icholder(); 1601 if (ic_oop != NULL) { 1602 if (!ic_oop->is_loader_alive()) { 1603 // Deferred IC cleaning due to concurrent class unloading 1604 if (!inline_cache->set_to_clean()) { 1605 needs_ic_stub_refill = true; 1606 return false; 1607 } 1608 } else if (receiver()->klass() == ic_oop->holder_klass()) { 1609 // This isn't a real miss. We must have seen that compiled code 1610 // is now available and we want the call site converted to a 1611 // monomorphic compiled call site. 1612 // We can't assert for callee_method->code() != NULL because it 1613 // could have been deoptimized in the meantime 1614 if (TraceCallFixup) { 1615 ResourceMark rm(THREAD); 1616 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc)); 1617 callee_method->print_short_name(tty); 1618 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1619 } 1620 should_be_mono = true; 1621 } 1622 } 1623 } 1624 1625 if (should_be_mono) { 1626 // We have a path that was monomorphic but was going interpreted 1627 // and now we have (or had) a compiled entry. We correct the IC 1628 // by using a new icBuffer. 1629 CompiledICInfo info; 1630 Klass* receiver_klass = receiver()->klass(); 1631 inline_cache->compute_monomorphic_entry(callee_method, 1632 receiver_klass, 1633 inline_cache->is_optimized(), 1634 false, caller_nm->is_nmethod(), 1635 info, CHECK_false); 1636 if (!inline_cache->set_to_monomorphic(info)) { 1637 needs_ic_stub_refill = true; 1638 return false; 1639 } 1640 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) { 1641 // Potential change to megamorphic 1642 1643 bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false); 1644 if (needs_ic_stub_refill) { 1645 return false; 1646 } 1647 if (!successful) { 1648 if (!inline_cache->set_to_clean()) { 1649 needs_ic_stub_refill = true; 1650 return false; 1651 } 1652 } 1653 } else { 1654 // Either clean or megamorphic 1655 } 1656 return true; 1657 } 1658 1659 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) { 1660 ResourceMark rm(thread); 1661 CallInfo call_info; 1662 Bytecodes::Code bc; 1663 1664 // receiver is NULL for static calls. An exception is thrown for NULL 1665 // receivers for non-static calls 1666 Handle receiver = find_callee_info(thread, bc, call_info, 1667 CHECK_(methodHandle())); 1668 // Compiler1 can produce virtual call sites that can actually be statically bound 1669 // If we fell thru to below we would think that the site was going megamorphic 1670 // when in fact the site can never miss. Worse because we'd think it was megamorphic 1671 // we'd try and do a vtable dispatch however methods that can be statically bound 1672 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a 1673 // reresolution of the call site (as if we did a handle_wrong_method and not an 1674 // plain ic_miss) and the site will be converted to an optimized virtual call site 1675 // never to miss again. I don't believe C2 will produce code like this but if it 1676 // did this would still be the correct thing to do for it too, hence no ifdef. 1677 // 1678 if (call_info.resolved_method()->can_be_statically_bound()) { 1679 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle())); 1680 if (TraceCallFixup) { 1681 RegisterMap reg_map(thread, false); 1682 frame caller_frame = thread->last_frame().sender(®_map); 1683 ResourceMark rm(thread); 1684 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc)); 1685 callee_method->print_short_name(tty); 1686 tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc())); 1687 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1688 } 1689 return callee_method; 1690 } 1691 1692 methodHandle callee_method = call_info.selected_method(); 1693 1694 #ifndef PRODUCT 1695 Atomic::inc(&_ic_miss_ctr); 1696 1697 // Statistics & Tracing 1698 if (TraceCallFixup) { 1699 ResourceMark rm(thread); 1700 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1701 callee_method->print_short_name(tty); 1702 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1703 } 1704 1705 if (ICMissHistogram) { 1706 MutexLocker m(VMStatistic_lock); 1707 RegisterMap reg_map(thread, false); 1708 frame f = thread->last_frame().real_sender(®_map);// skip runtime stub 1709 // produce statistics under the lock 1710 trace_ic_miss(f.pc()); 1711 } 1712 #endif 1713 1714 // install an event collector so that when a vtable stub is created the 1715 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1716 // event can't be posted when the stub is created as locks are held 1717 // - instead the event will be deferred until the event collector goes 1718 // out of scope. 1719 JvmtiDynamicCodeEventCollector event_collector; 1720 1721 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1722 // Transitioning IC caches may require transition stubs. If we run out 1723 // of transition stubs, we have to drop locks and perform a safepoint 1724 // that refills them. 1725 RegisterMap reg_map(thread, false); 1726 frame caller_frame = thread->last_frame().sender(®_map); 1727 CodeBlob* cb = caller_frame.cb(); 1728 CompiledMethod* caller_nm = cb->as_compiled_method(); 1729 1730 for (;;) { 1731 ICRefillVerifier ic_refill_verifier; 1732 bool needs_ic_stub_refill = false; 1733 bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method, 1734 bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle())); 1735 if (successful || !needs_ic_stub_refill) { 1736 return callee_method; 1737 } else { 1738 InlineCacheBuffer::refill_ic_stubs(); 1739 } 1740 } 1741 } 1742 1743 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) { 1744 CompiledICLocker ml(caller_nm); 1745 if (is_static_call) { 1746 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr); 1747 if (!ssc->is_clean()) { 1748 return ssc->set_to_clean(); 1749 } 1750 } else { 1751 // compiled, dispatched call (which used to call an interpreted method) 1752 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1753 if (!inline_cache->is_clean()) { 1754 return inline_cache->set_to_clean(); 1755 } 1756 } 1757 return true; 1758 } 1759 1760 // 1761 // Resets a call-site in compiled code so it will get resolved again. 1762 // This routines handles both virtual call sites, optimized virtual call 1763 // sites, and static call sites. Typically used to change a call sites 1764 // destination from compiled to interpreted. 1765 // 1766 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) { 1767 ResourceMark rm(thread); 1768 RegisterMap reg_map(thread, false); 1769 frame stub_frame = thread->last_frame(); 1770 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1771 frame caller = stub_frame.sender(®_map); 1772 1773 // Do nothing if the frame isn't a live compiled frame. 1774 // nmethod could be deoptimized by the time we get here 1775 // so no update to the caller is needed. 1776 1777 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) { 1778 1779 address pc = caller.pc(); 1780 1781 // Check for static or virtual call 1782 bool is_static_call = false; 1783 CompiledMethod* caller_nm = CodeCache::find_compiled(pc); 1784 1785 // Default call_addr is the location of the "basic" call. 1786 // Determine the address of the call we a reresolving. With 1787 // Inline Caches we will always find a recognizable call. 1788 // With Inline Caches disabled we may or may not find a 1789 // recognizable call. We will always find a call for static 1790 // calls and for optimized virtual calls. For vanilla virtual 1791 // calls it depends on the state of the UseInlineCaches switch. 1792 // 1793 // With Inline Caches disabled we can get here for a virtual call 1794 // for two reasons: 1795 // 1 - calling an abstract method. The vtable for abstract methods 1796 // will run us thru handle_wrong_method and we will eventually 1797 // end up in the interpreter to throw the ame. 1798 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1799 // call and between the time we fetch the entry address and 1800 // we jump to it the target gets deoptimized. Similar to 1 1801 // we will wind up in the interprter (thru a c2i with c2). 1802 // 1803 address call_addr = NULL; 1804 { 1805 // Get call instruction under lock because another thread may be 1806 // busy patching it. 1807 CompiledICLocker ml(caller_nm); 1808 // Location of call instruction 1809 call_addr = caller_nm->call_instruction_address(pc); 1810 } 1811 // Make sure nmethod doesn't get deoptimized and removed until 1812 // this is done with it. 1813 // CLEANUP - with lazy deopt shouldn't need this lock 1814 nmethodLocker nmlock(caller_nm); 1815 1816 if (call_addr != NULL) { 1817 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1818 int ret = iter.next(); // Get item 1819 if (ret) { 1820 assert(iter.addr() == call_addr, "must find call"); 1821 if (iter.type() == relocInfo::static_call_type) { 1822 is_static_call = true; 1823 } else { 1824 assert(iter.type() == relocInfo::virtual_call_type || 1825 iter.type() == relocInfo::opt_virtual_call_type 1826 , "unexpected relocInfo. type"); 1827 } 1828 } else { 1829 assert(!UseInlineCaches, "relocation info. must exist for this address"); 1830 } 1831 1832 // Cleaning the inline cache will force a new resolve. This is more robust 1833 // than directly setting it to the new destination, since resolving of calls 1834 // is always done through the same code path. (experience shows that it 1835 // leads to very hard to track down bugs, if an inline cache gets updated 1836 // to a wrong method). It should not be performance critical, since the 1837 // resolve is only done once. 1838 1839 for (;;) { 1840 ICRefillVerifier ic_refill_verifier; 1841 if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) { 1842 InlineCacheBuffer::refill_ic_stubs(); 1843 } else { 1844 break; 1845 } 1846 } 1847 } 1848 } 1849 1850 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle())); 1851 1852 1853 #ifndef PRODUCT 1854 Atomic::inc(&_wrong_method_ctr); 1855 1856 if (TraceCallFixup) { 1857 ResourceMark rm(thread); 1858 tty->print("handle_wrong_method reresolving call to"); 1859 callee_method->print_short_name(tty); 1860 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1861 } 1862 #endif 1863 1864 return callee_method; 1865 } 1866 1867 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1868 // The faulting unsafe accesses should be changed to throw the error 1869 // synchronously instead. Meanwhile the faulting instruction will be 1870 // skipped over (effectively turning it into a no-op) and an 1871 // asynchronous exception will be raised which the thread will 1872 // handle at a later point. If the instruction is a load it will 1873 // return garbage. 1874 1875 // Request an async exception. 1876 thread->set_pending_unsafe_access_error(); 1877 1878 // Return address of next instruction to execute. 1879 return next_pc; 1880 } 1881 1882 #ifdef ASSERT 1883 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1884 const BasicType* sig_bt, 1885 const VMRegPair* regs) { 1886 ResourceMark rm; 1887 const int total_args_passed = method->size_of_parameters(); 1888 const VMRegPair* regs_with_member_name = regs; 1889 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1890 1891 const int member_arg_pos = total_args_passed - 1; 1892 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1893 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1894 1895 const bool is_outgoing = method->is_method_handle_intrinsic(); 1896 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing); 1897 1898 for (int i = 0; i < member_arg_pos; i++) { 1899 VMReg a = regs_with_member_name[i].first(); 1900 VMReg b = regs_without_member_name[i].first(); 1901 assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value()); 1902 } 1903 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1904 } 1905 #endif 1906 1907 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) { 1908 if (destination != entry_point) { 1909 CodeBlob* callee = CodeCache::find_blob(destination); 1910 // callee == cb seems weird. It means calling interpreter thru stub. 1911 if (callee != NULL && (callee == cb || callee->is_adapter_blob())) { 1912 // static call or optimized virtual 1913 if (TraceCallFixup) { 1914 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 1915 moop->print_short_name(tty); 1916 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 1917 } 1918 return true; 1919 } else { 1920 if (TraceCallFixup) { 1921 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 1922 moop->print_short_name(tty); 1923 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 1924 } 1925 // assert is too strong could also be resolve destinations. 1926 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be"); 1927 } 1928 } else { 1929 if (TraceCallFixup) { 1930 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 1931 moop->print_short_name(tty); 1932 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 1933 } 1934 } 1935 return false; 1936 } 1937 1938 // --------------------------------------------------------------------------- 1939 // We are calling the interpreter via a c2i. Normally this would mean that 1940 // we were called by a compiled method. However we could have lost a race 1941 // where we went int -> i2c -> c2i and so the caller could in fact be 1942 // interpreted. If the caller is compiled we attempt to patch the caller 1943 // so he no longer calls into the interpreter. 1944 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1945 Method* moop(method); 1946 1947 address entry_point = moop->from_compiled_entry_no_trampoline(); 1948 1949 // It's possible that deoptimization can occur at a call site which hasn't 1950 // been resolved yet, in which case this function will be called from 1951 // an nmethod that has been patched for deopt and we can ignore the 1952 // request for a fixup. 1953 // Also it is possible that we lost a race in that from_compiled_entry 1954 // is now back to the i2c in that case we don't need to patch and if 1955 // we did we'd leap into space because the callsite needs to use 1956 // "to interpreter" stub in order to load up the Method*. Don't 1957 // ask me how I know this... 1958 1959 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1960 if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) { 1961 return; 1962 } 1963 1964 // The check above makes sure this is a nmethod. 1965 CompiledMethod* nm = cb->as_compiled_method_or_null(); 1966 assert(nm, "must be"); 1967 1968 // Get the return PC for the passed caller PC. 1969 address return_pc = caller_pc + frame::pc_return_offset; 1970 1971 // There is a benign race here. We could be attempting to patch to a compiled 1972 // entry point at the same time the callee is being deoptimized. If that is 1973 // the case then entry_point may in fact point to a c2i and we'd patch the 1974 // call site with the same old data. clear_code will set code() to NULL 1975 // at the end of it. If we happen to see that NULL then we can skip trying 1976 // to patch. If we hit the window where the callee has a c2i in the 1977 // from_compiled_entry and the NULL isn't present yet then we lose the race 1978 // and patch the code with the same old data. Asi es la vida. 1979 1980 if (moop->code() == NULL) return; 1981 1982 if (nm->is_in_use()) { 1983 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1984 CompiledICLocker ic_locker(nm); 1985 if (NativeCall::is_call_before(return_pc)) { 1986 ResourceMark mark; 1987 NativeCallWrapper* call = nm->call_wrapper_before(return_pc); 1988 // 1989 // bug 6281185. We might get here after resolving a call site to a vanilla 1990 // virtual call. Because the resolvee uses the verified entry it may then 1991 // see compiled code and attempt to patch the site by calling us. This would 1992 // then incorrectly convert the call site to optimized and its downhill from 1993 // there. If you're lucky you'll get the assert in the bugid, if not you've 1994 // just made a call site that could be megamorphic into a monomorphic site 1995 // for the rest of its life! Just another racing bug in the life of 1996 // fixup_callers_callsite ... 1997 // 1998 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address()); 1999 iter.next(); 2000 assert(iter.has_current(), "must have a reloc at java call site"); 2001 relocInfo::relocType typ = iter.reloc()->type(); 2002 if (typ != relocInfo::static_call_type && 2003 typ != relocInfo::opt_virtual_call_type && 2004 typ != relocInfo::static_stub_type) { 2005 return; 2006 } 2007 address destination = call->destination(); 2008 if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) { 2009 call->set_destination_mt_safe(entry_point); 2010 } 2011 } 2012 } 2013 IRT_END 2014 2015 2016 // same as JVM_Arraycopy, but called directly from compiled code 2017 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 2018 oopDesc* dest, jint dest_pos, 2019 jint length, 2020 JavaThread* thread)) { 2021 #ifndef PRODUCT 2022 _slow_array_copy_ctr++; 2023 #endif 2024 // Check if we have null pointers 2025 if (src == NULL || dest == NULL) { 2026 THROW(vmSymbols::java_lang_NullPointerException()); 2027 } 2028 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 2029 // even though the copy_array API also performs dynamic checks to ensure 2030 // that src and dest are truly arrays (and are conformable). 2031 // The copy_array mechanism is awkward and could be removed, but 2032 // the compilers don't call this function except as a last resort, 2033 // so it probably doesn't matter. 2034 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 2035 (arrayOopDesc*)dest, dest_pos, 2036 length, thread); 2037 } 2038 JRT_END 2039 2040 // The caller of generate_class_cast_message() (or one of its callers) 2041 // must use a ResourceMark in order to correctly free the result. 2042 char* SharedRuntime::generate_class_cast_message( 2043 JavaThread* thread, Klass* caster_klass) { 2044 2045 // Get target class name from the checkcast instruction 2046 vframeStream vfst(thread, true); 2047 assert(!vfst.at_end(), "Java frame must exist"); 2048 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 2049 constantPoolHandle cpool(thread, vfst.method()->constants()); 2050 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 2051 Symbol* target_klass_name = NULL; 2052 if (target_klass == NULL) { 2053 // This klass should be resolved, but just in case, get the name in the klass slot. 2054 target_klass_name = cpool->klass_name_at(cc.index()); 2055 } 2056 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 2057 } 2058 2059 2060 // The caller of generate_class_cast_message() (or one of its callers) 2061 // must use a ResourceMark in order to correctly free the result. 2062 char* SharedRuntime::generate_class_cast_message( 2063 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 2064 const char* caster_name = caster_klass->external_name(); 2065 2066 assert(target_klass != NULL || target_klass_name != NULL, "one must be provided"); 2067 const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() : 2068 target_klass->external_name(); 2069 2070 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 2071 2072 const char* caster_klass_description = ""; 2073 const char* target_klass_description = ""; 2074 const char* klass_separator = ""; 2075 if (target_klass != NULL && caster_klass->module() == target_klass->module()) { 2076 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 2077 } else { 2078 caster_klass_description = caster_klass->class_in_module_of_loader(); 2079 target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : ""; 2080 klass_separator = (target_klass != NULL) ? "; " : ""; 2081 } 2082 2083 // add 3 for parenthesis and preceeding space 2084 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 2085 2086 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 2087 if (message == NULL) { 2088 // Shouldn't happen, but don't cause even more problems if it does 2089 message = const_cast<char*>(caster_klass->external_name()); 2090 } else { 2091 jio_snprintf(message, 2092 msglen, 2093 "class %s cannot be cast to class %s (%s%s%s)", 2094 caster_name, 2095 target_name, 2096 caster_klass_description, 2097 klass_separator, 2098 target_klass_description 2099 ); 2100 } 2101 return message; 2102 } 2103 2104 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2105 (void) JavaThread::current()->reguard_stack(); 2106 JRT_END 2107 2108 2109 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2110 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread)) 2111 if (!SafepointSynchronize::is_synchronizing()) { 2112 // Only try quick_enter() if we're not trying to reach a safepoint 2113 // so that the calling thread reaches the safepoint more quickly. 2114 if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return; 2115 } 2116 // NO_ASYNC required because an async exception on the state transition destructor 2117 // would leave you with the lock held and it would never be released. 2118 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2119 // and the model is that an exception implies the method failed. 2120 JRT_BLOCK_NO_ASYNC 2121 oop obj(_obj); 2122 if (PrintBiasedLockingStatistics) { 2123 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 2124 } 2125 Handle h_obj(THREAD, obj); 2126 if (UseBiasedLocking) { 2127 // Retry fast entry if bias is revoked to avoid unnecessary inflation 2128 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK); 2129 } else { 2130 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK); 2131 } 2132 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2133 JRT_BLOCK_END 2134 JRT_END 2135 2136 // Handles the uncommon cases of monitor unlocking in compiled code 2137 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD)) 2138 oop obj(_obj); 2139 assert(JavaThread::current() == THREAD, "invariant"); 2140 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore 2141 // testing was unable to ever fire the assert that guarded it so I have removed it. 2142 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?"); 2143 #undef MIGHT_HAVE_PENDING 2144 #ifdef MIGHT_HAVE_PENDING 2145 // Save and restore any pending_exception around the exception mark. 2146 // While the slow_exit must not throw an exception, we could come into 2147 // this routine with one set. 2148 oop pending_excep = NULL; 2149 const char* pending_file; 2150 int pending_line; 2151 if (HAS_PENDING_EXCEPTION) { 2152 pending_excep = PENDING_EXCEPTION; 2153 pending_file = THREAD->exception_file(); 2154 pending_line = THREAD->exception_line(); 2155 CLEAR_PENDING_EXCEPTION; 2156 } 2157 #endif /* MIGHT_HAVE_PENDING */ 2158 2159 { 2160 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2161 EXCEPTION_MARK; 2162 ObjectSynchronizer::slow_exit(obj, lock, THREAD); 2163 } 2164 2165 #ifdef MIGHT_HAVE_PENDING 2166 if (pending_excep != NULL) { 2167 THREAD->set_pending_exception(pending_excep, pending_file, pending_line); 2168 } 2169 #endif /* MIGHT_HAVE_PENDING */ 2170 JRT_END 2171 2172 #ifndef PRODUCT 2173 2174 void SharedRuntime::print_statistics() { 2175 ttyLocker ttyl; 2176 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'"); 2177 2178 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr); 2179 2180 SharedRuntime::print_ic_miss_histogram(); 2181 2182 if (CountRemovableExceptions) { 2183 if (_nof_removable_exceptions > 0) { 2184 Unimplemented(); // this counter is not yet incremented 2185 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions); 2186 } 2187 } 2188 2189 // Dump the JRT_ENTRY counters 2190 if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr); 2191 if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr); 2192 if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr); 2193 if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr); 2194 if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr); 2195 if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr); 2196 if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr); 2197 2198 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr); 2199 tty->print_cr("%5d wrong method", _wrong_method_ctr); 2200 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr); 2201 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr); 2202 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2203 2204 if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr); 2205 if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr); 2206 if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr); 2207 if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr); 2208 if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr); 2209 if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr); 2210 if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr); 2211 if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr); 2212 if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr); 2213 if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr); 2214 if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr); 2215 if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr); 2216 if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr); 2217 if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr); 2218 if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr); 2219 if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr); 2220 2221 AdapterHandlerLibrary::print_statistics(); 2222 2223 if (xtty != NULL) xtty->tail("statistics"); 2224 } 2225 2226 inline double percent(int x, int y) { 2227 return 100.0 * x / MAX2(y, 1); 2228 } 2229 2230 class MethodArityHistogram { 2231 public: 2232 enum { MAX_ARITY = 256 }; 2233 private: 2234 static int _arity_histogram[MAX_ARITY]; // histogram of #args 2235 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words 2236 static int _max_arity; // max. arity seen 2237 static int _max_size; // max. arg size seen 2238 2239 static void add_method_to_histogram(nmethod* nm) { 2240 if (CompiledMethod::nmethod_access_is_safe(nm)) { 2241 Method* method = nm->method(); 2242 ArgumentCount args(method->signature()); 2243 int arity = args.size() + (method->is_static() ? 0 : 1); 2244 int argsize = method->size_of_parameters(); 2245 arity = MIN2(arity, MAX_ARITY-1); 2246 argsize = MIN2(argsize, MAX_ARITY-1); 2247 int count = method->compiled_invocation_count(); 2248 _arity_histogram[arity] += count; 2249 _size_histogram[argsize] += count; 2250 _max_arity = MAX2(_max_arity, arity); 2251 _max_size = MAX2(_max_size, argsize); 2252 } 2253 } 2254 2255 void print_histogram_helper(int n, int* histo, const char* name) { 2256 const int N = MIN2(5, n); 2257 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2258 double sum = 0; 2259 double weighted_sum = 0; 2260 int i; 2261 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; } 2262 double rest = sum; 2263 double percent = sum / 100; 2264 for (i = 0; i <= N; i++) { 2265 rest -= histo[i]; 2266 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent); 2267 } 2268 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent); 2269 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2270 } 2271 2272 void print_histogram() { 2273 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2274 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2275 tty->print_cr("\nSame for parameter size (in words):"); 2276 print_histogram_helper(_max_size, _size_histogram, "size"); 2277 tty->cr(); 2278 } 2279 2280 public: 2281 MethodArityHistogram() { 2282 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2283 _max_arity = _max_size = 0; 2284 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2285 CodeCache::nmethods_do(add_method_to_histogram); 2286 print_histogram(); 2287 } 2288 }; 2289 2290 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2291 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2292 int MethodArityHistogram::_max_arity; 2293 int MethodArityHistogram::_max_size; 2294 2295 void SharedRuntime::print_call_statistics(int comp_total) { 2296 tty->print_cr("Calls from compiled code:"); 2297 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2298 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls; 2299 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls; 2300 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total)); 2301 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2302 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2303 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls)); 2304 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2305 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2306 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2307 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2308 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls)); 2309 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2310 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls)); 2311 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2312 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2313 tty->cr(); 2314 tty->print_cr("Note 1: counter updates are not MT-safe."); 2315 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2316 tty->print_cr(" %% in nested categories are relative to their category"); 2317 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2318 tty->cr(); 2319 2320 MethodArityHistogram h; 2321 } 2322 #endif 2323 2324 2325 // A simple wrapper class around the calling convention information 2326 // that allows sharing of adapters for the same calling convention. 2327 class AdapterFingerPrint : public CHeapObj<mtCode> { 2328 private: 2329 enum { 2330 _basic_type_bits = 4, 2331 _basic_type_mask = right_n_bits(_basic_type_bits), 2332 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2333 _compact_int_count = 3 2334 }; 2335 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2336 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2337 2338 union { 2339 int _compact[_compact_int_count]; 2340 int* _fingerprint; 2341 } _value; 2342 int _length; // A negative length indicates the fingerprint is in the compact form, 2343 // Otherwise _value._fingerprint is the array. 2344 2345 // Remap BasicTypes that are handled equivalently by the adapters. 2346 // These are correct for the current system but someday it might be 2347 // necessary to make this mapping platform dependent. 2348 static int adapter_encoding(BasicType in, bool is_valuetype) { 2349 switch (in) { 2350 case T_BOOLEAN: 2351 case T_BYTE: 2352 case T_SHORT: 2353 case T_CHAR: { 2354 if (is_valuetype) { 2355 // Do not widen value type field types 2356 assert(ValueTypePassFieldsAsArgs, "must be enabled"); 2357 return in; 2358 } else { 2359 // They are all promoted to T_INT in the calling convention 2360 return T_INT; 2361 } 2362 } 2363 2364 case T_VALUETYPE: { 2365 // If value types are passed as fields, return 'in' to differentiate 2366 // between a T_VALUETYPE and a T_OBJECT in the signature. 2367 return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false); 2368 } 2369 2370 case T_OBJECT: 2371 case T_ARRAY: 2372 // In other words, we assume that any register good enough for 2373 // an int or long is good enough for a managed pointer. 2374 #ifdef _LP64 2375 return T_LONG; 2376 #else 2377 return T_INT; 2378 #endif 2379 2380 case T_INT: 2381 case T_LONG: 2382 case T_FLOAT: 2383 case T_DOUBLE: 2384 case T_VOID: 2385 return in; 2386 2387 default: 2388 ShouldNotReachHere(); 2389 return T_CONFLICT; 2390 } 2391 } 2392 2393 public: 2394 AdapterFingerPrint(int total_args_passed, const GrowableArray<SigEntry>* sig) { 2395 // The fingerprint is based on the BasicType signature encoded 2396 // into an array of ints with eight entries per int. 2397 int* ptr; 2398 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2399 if (len <= _compact_int_count) { 2400 assert(_compact_int_count == 3, "else change next line"); 2401 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2402 // Storing the signature encoded as signed chars hits about 98% 2403 // of the time. 2404 _length = -len; 2405 ptr = _value._compact; 2406 } else { 2407 _length = len; 2408 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2409 ptr = _value._fingerprint; 2410 } 2411 2412 // Now pack the BasicTypes with 8 per int 2413 int sig_index = 0; 2414 BasicType prev_sbt = T_ILLEGAL; 2415 int vt_count = 0; 2416 for (int index = 0; index < len; index++) { 2417 int value = 0; 2418 for (int byte = 0; byte < _basic_types_per_int; byte++) { 2419 int bt = 0; 2420 if (sig_index < total_args_passed) { 2421 BasicType sbt = sig->at(sig_index++)._bt; 2422 if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) { 2423 // Found start of value type in signature 2424 vt_count++; 2425 } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID && 2426 prev_sbt != T_LONG && prev_sbt != T_DOUBLE) { 2427 // Found end of value type in signature 2428 vt_count--; 2429 assert(vt_count >= 0, "invalid vt_count"); 2430 } 2431 bt = adapter_encoding(sbt, vt_count > 0); 2432 prev_sbt = sbt; 2433 } 2434 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2435 value = (value << _basic_type_bits) | bt; 2436 } 2437 ptr[index] = value; 2438 } 2439 assert(vt_count == 0, "invalid vt_count"); 2440 } 2441 2442 ~AdapterFingerPrint() { 2443 if (_length > 0) { 2444 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2445 } 2446 } 2447 2448 int value(int index) { 2449 if (_length < 0) { 2450 return _value._compact[index]; 2451 } 2452 return _value._fingerprint[index]; 2453 } 2454 int length() { 2455 if (_length < 0) return -_length; 2456 return _length; 2457 } 2458 2459 bool is_compact() { 2460 return _length <= 0; 2461 } 2462 2463 unsigned int compute_hash() { 2464 int hash = 0; 2465 for (int i = 0; i < length(); i++) { 2466 int v = value(i); 2467 hash = (hash << 8) ^ v ^ (hash >> 5); 2468 } 2469 return (unsigned int)hash; 2470 } 2471 2472 const char* as_string() { 2473 stringStream st; 2474 st.print("0x"); 2475 for (int i = 0; i < length(); i++) { 2476 st.print("%08x", value(i)); 2477 } 2478 return st.as_string(); 2479 } 2480 2481 bool equals(AdapterFingerPrint* other) { 2482 if (other->_length != _length) { 2483 return false; 2484 } 2485 if (_length < 0) { 2486 assert(_compact_int_count == 3, "else change next line"); 2487 return _value._compact[0] == other->_value._compact[0] && 2488 _value._compact[1] == other->_value._compact[1] && 2489 _value._compact[2] == other->_value._compact[2]; 2490 } else { 2491 for (int i = 0; i < _length; i++) { 2492 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2493 return false; 2494 } 2495 } 2496 } 2497 return true; 2498 } 2499 }; 2500 2501 2502 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2503 class AdapterHandlerTable : public BasicHashtable<mtCode> { 2504 friend class AdapterHandlerTableIterator; 2505 2506 private: 2507 2508 #ifndef PRODUCT 2509 static int _lookups; // number of calls to lookup 2510 static int _buckets; // number of buckets checked 2511 static int _equals; // number of buckets checked with matching hash 2512 static int _hits; // number of successful lookups 2513 static int _compact; // number of equals calls with compact signature 2514 #endif 2515 2516 AdapterHandlerEntry* bucket(int i) { 2517 return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i); 2518 } 2519 2520 public: 2521 AdapterHandlerTable() 2522 : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { } 2523 2524 // Create a new entry suitable for insertion in the table 2525 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_value_entry, address c2i_unverified_entry) { 2526 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash()); 2527 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_unverified_entry); 2528 if (DumpSharedSpaces) { 2529 ((CDSAdapterHandlerEntry*)entry)->init(); 2530 } 2531 return entry; 2532 } 2533 2534 // Insert an entry into the table 2535 void add(AdapterHandlerEntry* entry) { 2536 int index = hash_to_index(entry->hash()); 2537 add_entry(index, entry); 2538 } 2539 2540 void free_entry(AdapterHandlerEntry* entry) { 2541 entry->deallocate(); 2542 BasicHashtable<mtCode>::free_entry(entry); 2543 } 2544 2545 // Find a entry with the same fingerprint if it exists 2546 AdapterHandlerEntry* lookup(int total_args_passed, const GrowableArray<SigEntry>* sig) { 2547 NOT_PRODUCT(_lookups++); 2548 AdapterFingerPrint fp(total_args_passed, sig); 2549 unsigned int hash = fp.compute_hash(); 2550 int index = hash_to_index(hash); 2551 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2552 NOT_PRODUCT(_buckets++); 2553 if (e->hash() == hash) { 2554 NOT_PRODUCT(_equals++); 2555 if (fp.equals(e->fingerprint())) { 2556 #ifndef PRODUCT 2557 if (fp.is_compact()) _compact++; 2558 _hits++; 2559 #endif 2560 return e; 2561 } 2562 } 2563 } 2564 return NULL; 2565 } 2566 2567 #ifndef PRODUCT 2568 void print_statistics() { 2569 ResourceMark rm; 2570 int longest = 0; 2571 int empty = 0; 2572 int total = 0; 2573 int nonempty = 0; 2574 for (int index = 0; index < table_size(); index++) { 2575 int count = 0; 2576 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2577 count++; 2578 } 2579 if (count != 0) nonempty++; 2580 if (count == 0) empty++; 2581 if (count > longest) longest = count; 2582 total += count; 2583 } 2584 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f", 2585 empty, longest, total, total / (double)nonempty); 2586 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d", 2587 _lookups, _buckets, _equals, _hits, _compact); 2588 } 2589 #endif 2590 }; 2591 2592 2593 #ifndef PRODUCT 2594 2595 int AdapterHandlerTable::_lookups; 2596 int AdapterHandlerTable::_buckets; 2597 int AdapterHandlerTable::_equals; 2598 int AdapterHandlerTable::_hits; 2599 int AdapterHandlerTable::_compact; 2600 2601 #endif 2602 2603 class AdapterHandlerTableIterator : public StackObj { 2604 private: 2605 AdapterHandlerTable* _table; 2606 int _index; 2607 AdapterHandlerEntry* _current; 2608 2609 void scan() { 2610 while (_index < _table->table_size()) { 2611 AdapterHandlerEntry* a = _table->bucket(_index); 2612 _index++; 2613 if (a != NULL) { 2614 _current = a; 2615 return; 2616 } 2617 } 2618 } 2619 2620 public: 2621 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) { 2622 scan(); 2623 } 2624 bool has_next() { 2625 return _current != NULL; 2626 } 2627 AdapterHandlerEntry* next() { 2628 if (_current != NULL) { 2629 AdapterHandlerEntry* result = _current; 2630 _current = _current->next(); 2631 if (_current == NULL) scan(); 2632 return result; 2633 } else { 2634 return NULL; 2635 } 2636 } 2637 }; 2638 2639 2640 // --------------------------------------------------------------------------- 2641 // Implementation of AdapterHandlerLibrary 2642 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL; 2643 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL; 2644 const int AdapterHandlerLibrary_size = 16*K; 2645 BufferBlob* AdapterHandlerLibrary::_buffer = NULL; 2646 2647 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2648 // Should be called only when AdapterHandlerLibrary_lock is active. 2649 if (_buffer == NULL) // Initialize lazily 2650 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2651 return _buffer; 2652 } 2653 2654 extern "C" void unexpected_adapter_call() { 2655 ShouldNotCallThis(); 2656 } 2657 2658 void AdapterHandlerLibrary::initialize() { 2659 if (_adapters != NULL) return; 2660 _adapters = new AdapterHandlerTable(); 2661 2662 // Create a special handler for abstract methods. Abstract methods 2663 // are never compiled so an i2c entry is somewhat meaningless, but 2664 // throw AbstractMethodError just in case. 2665 // Pass wrong_method_abstract for the c2i transitions to return 2666 // AbstractMethodError for invalid invocations. 2667 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2668 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL), 2669 StubRoutines::throw_AbstractMethodError_entry(), 2670 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract); 2671 } 2672 2673 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2674 address i2c_entry, 2675 address c2i_entry, 2676 address c2i_value_entry, 2677 address c2i_unverified_entry) { 2678 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_unverified_entry); 2679 } 2680 2681 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2682 AdapterHandlerEntry* entry = get_adapter0(method); 2683 if (method->is_shared()) { 2684 // See comments around Method::link_method() 2685 MutexLocker mu(AdapterHandlerLibrary_lock); 2686 if (method->adapter() == NULL) { 2687 method->update_adapter_trampoline(entry); 2688 } 2689 address trampoline = method->from_compiled_entry(); 2690 if (*(int*)trampoline == 0) { 2691 CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size()); 2692 MacroAssembler _masm(&buffer); 2693 SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry()); 2694 assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros."); 2695 2696 if (PrintInterpreter) { 2697 Disassembler::decode(buffer.insts_begin(), buffer.insts_end()); 2698 } 2699 } 2700 } 2701 2702 return entry; 2703 } 2704 2705 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) { 2706 // Use customized signature handler. Need to lock around updates to 2707 // the AdapterHandlerTable (it is not safe for concurrent readers 2708 // and a single writer: this could be fixed if it becomes a 2709 // problem). 2710 2711 ResourceMark rm; 2712 2713 NOT_PRODUCT(int insts_size = 0); 2714 AdapterBlob* new_adapter = NULL; 2715 AdapterHandlerEntry* entry = NULL; 2716 AdapterFingerPrint* fingerprint = NULL; 2717 { 2718 MutexLocker mu(AdapterHandlerLibrary_lock); 2719 // make sure data structure is initialized 2720 initialize(); 2721 2722 bool has_value_arg = false; 2723 GrowableArray<SigEntry> sig(method->size_of_parameters()); 2724 if (!method->is_static()) { 2725 // TODO for now, don't scalarize value type receivers because of interface calls 2726 //has_value_arg |= method->method_holder()->is_value(); 2727 SigEntry::add_entry(&sig, T_OBJECT); 2728 } 2729 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) { 2730 BasicType bt = ss.type(); 2731 if (bt == T_VALUETYPE) { 2732 has_value_arg = true; 2733 bt = T_OBJECT; 2734 } 2735 SigEntry::add_entry(&sig, bt); 2736 } 2737 2738 // Process abstract method if it has value type args to set has_scalarized_args accordingly 2739 if (!has_value_arg && method->is_abstract()) { 2740 return _abstract_method_handler; 2741 } 2742 2743 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2744 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, sig.length()); 2745 int args_on_stack = SharedRuntime::java_calling_convention(&sig, regs); 2746 2747 // Now compute the scalarized calling convention if there are value types in the signature 2748 GrowableArray<SigEntry> sig_cc = sig; 2749 VMRegPair* regs_cc = regs; 2750 SigEntry reserved_entry; 2751 int args_on_stack_cc = args_on_stack; 2752 2753 if (ValueTypePassFieldsAsArgs && has_value_arg) { 2754 MutexUnlocker mul(AdapterHandlerLibrary_lock); 2755 InstanceKlass* holder = method->method_holder(); 2756 2757 sig_cc = GrowableArray<SigEntry>(method->size_of_parameters()); 2758 if (!method->is_static()) { 2759 // TODO for now, don't scalarize value type receivers because of interface calls 2760 if (false && holder->is_value()) { 2761 sig_cc.appendAll(ValueKlass::cast(holder)->extended_sig()); 2762 } else { 2763 SigEntry::add_entry(&sig_cc, T_OBJECT); 2764 } 2765 } 2766 Thread* THREAD = Thread::current(); 2767 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) { 2768 if (ss.type() == T_VALUETYPE) { 2769 Klass* k = ss.as_klass(Handle(THREAD, holder->class_loader()), 2770 Handle(THREAD, holder->protection_domain()), 2771 SignatureStream::ReturnNull, THREAD); 2772 assert(k != NULL && !HAS_PENDING_EXCEPTION, "value klass should have been pre-loaded"); 2773 sig_cc.appendAll(ValueKlass::cast(k)->extended_sig()); 2774 } else { 2775 SigEntry::add_entry(&sig_cc, ss.type()); 2776 } 2777 } 2778 regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, sig_cc.length() + 2); 2779 args_on_stack_cc = SharedRuntime::java_calling_convention(&sig_cc, regs_cc); 2780 2781 // This stack slot is occupied by the return address with the unscalarized calling 2782 // convention. Don't use it for argument with the scalarized calling convention. 2783 int ret_addr_slot = args_on_stack_cc - args_on_stack; 2784 if (ret_addr_slot > 0) { 2785 // Make sure stack of the scalarized calling convention with 2786 // the reserved entry (2 slots) is 16-byte (4 slots) aligned. 2787 int alignment = StackAlignmentInBytes/VMRegImpl::stack_slot_size; 2788 ret_addr_slot = align_up(ret_addr_slot + 2, alignment) - 2; 2789 // Find index in signature that belongs to return address slot 2790 reserved_entry._offset = 0; 2791 int sig_idx = 0; 2792 for (; sig_idx < sig_cc.length(); ++sig_idx) { 2793 if (SigEntry::skip_value_delimiters(&sig_cc, sig_idx)) { 2794 VMReg first = regs_cc[reserved_entry._offset].first(); 2795 if (first->is_stack()) { 2796 // Select a type for the reserved entry that will end up on the stack 2797 reserved_entry._bt = sig_cc.at(sig_idx)._bt; 2798 if ((int)first->reg2stack() == ret_addr_slot) { 2799 break; 2800 } 2801 } 2802 reserved_entry._offset++; 2803 } 2804 } 2805 // Insert reserved entry and re-compute calling convention 2806 SigEntry::insert_reserved_entry(&sig_cc, sig_idx, reserved_entry._bt); 2807 args_on_stack_cc = SharedRuntime::java_calling_convention(&sig_cc, regs_cc); 2808 } 2809 // Upper bound on stack arguments to avoid hitting the argument limit and 2810 // bailing out of compilation ("unsupported incoming calling sequence"). 2811 // TODO we need a reasonable limit (flag?) here 2812 if (args_on_stack_cc > 50) { 2813 // Don't scalarize value type arguments 2814 sig_cc = sig; 2815 regs_cc = regs; 2816 args_on_stack_cc = args_on_stack; 2817 } else { 2818 method->set_has_scalarized_args(true); 2819 } 2820 } 2821 2822 if (method->is_abstract()) { 2823 return _abstract_method_handler; 2824 } 2825 2826 // Lookup method signature's fingerprint 2827 entry = _adapters->lookup(sig_cc.length(), &sig_cc); 2828 2829 #ifdef ASSERT 2830 AdapterHandlerEntry* shared_entry = NULL; 2831 // Start adapter sharing verification only after the VM is booted. 2832 if (VerifyAdapterSharing && (entry != NULL)) { 2833 shared_entry = entry; 2834 entry = NULL; 2835 } 2836 #endif 2837 2838 if (entry != NULL) { 2839 return entry; 2840 } 2841 2842 // Make a C heap allocated version of the fingerprint to store in the adapter 2843 fingerprint = new AdapterFingerPrint(sig_cc.length(), &sig_cc); 2844 2845 // StubRoutines::code2() is initialized after this function can be called. As a result, 2846 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated 2847 // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C 2848 // stub that ensure that an I2C stub is called from an interpreter frame. 2849 bool contains_all_checks = StubRoutines::code2() != NULL; 2850 2851 // Create I2C & C2I handlers 2852 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2853 if (buf != NULL) { 2854 CodeBuffer buffer(buf); 2855 short buffer_locs[20]; 2856 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2857 sizeof(buffer_locs)/sizeof(relocInfo)); 2858 2859 MacroAssembler _masm(&buffer); 2860 entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2861 args_on_stack, 2862 args_on_stack_cc, 2863 &sig, 2864 regs, 2865 &sig_cc, 2866 regs_cc, 2867 fingerprint, 2868 new_adapter); 2869 2870 if (regs != regs_cc) { 2871 // Save a C heap allocated version of the scalarized signature and store it in the adapter 2872 GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(method->size_of_parameters(), true); 2873 heap_sig->appendAll(&sig_cc); 2874 entry->set_sig_cc(heap_sig); 2875 entry->set_res_entry(reserved_entry); 2876 } 2877 2878 #ifdef ASSERT 2879 if (VerifyAdapterSharing) { 2880 if (shared_entry != NULL) { 2881 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match"); 2882 // Release the one just created and return the original 2883 _adapters->free_entry(entry); 2884 return shared_entry; 2885 } else { 2886 entry->save_code(buf->code_begin(), buffer.insts_size()); 2887 } 2888 } 2889 #endif 2890 2891 NOT_PRODUCT(insts_size = buffer.insts_size()); 2892 } 2893 if (new_adapter == NULL) { 2894 // CodeCache is full, disable compilation 2895 // Ought to log this but compile log is only per compile thread 2896 // and we're some non descript Java thread. 2897 return NULL; // Out of CodeCache space 2898 } 2899 entry->relocate(new_adapter->content_begin()); 2900 #ifndef PRODUCT 2901 // debugging suppport 2902 if (PrintAdapterHandlers || PrintStubCode) { 2903 ttyLocker ttyl; 2904 entry->print_adapter_on(tty); 2905 tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)", 2906 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"), 2907 method->signature()->as_C_string(), fingerprint->as_string(), insts_size); 2908 tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry()); 2909 if (Verbose || PrintStubCode) { 2910 address first_pc = entry->base_address(); 2911 if (first_pc != NULL) { 2912 Disassembler::decode(first_pc, first_pc + insts_size); 2913 tty->cr(); 2914 } 2915 } 2916 } 2917 #endif 2918 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 2919 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 2920 if (contains_all_checks || !VerifyAdapterCalls) { 2921 _adapters->add(entry); 2922 } 2923 } 2924 // Outside of the lock 2925 if (new_adapter != NULL) { 2926 char blob_id[256]; 2927 jio_snprintf(blob_id, 2928 sizeof(blob_id), 2929 "%s(%s)@" PTR_FORMAT, 2930 new_adapter->name(), 2931 fingerprint->as_string(), 2932 new_adapter->content_begin()); 2933 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2934 2935 if (JvmtiExport::should_post_dynamic_code_generated()) { 2936 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2937 } 2938 } 2939 return entry; 2940 } 2941 2942 address AdapterHandlerEntry::base_address() { 2943 address base = _i2c_entry; 2944 if (base == NULL) base = _c2i_entry; 2945 assert(base <= _c2i_entry || _c2i_entry == NULL, ""); 2946 assert(base <= _c2i_value_entry || _c2i_value_entry == NULL, ""); 2947 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, ""); 2948 return base; 2949 } 2950 2951 void AdapterHandlerEntry::relocate(address new_base) { 2952 address old_base = base_address(); 2953 assert(old_base != NULL, ""); 2954 ptrdiff_t delta = new_base - old_base; 2955 if (_i2c_entry != NULL) 2956 _i2c_entry += delta; 2957 if (_c2i_entry != NULL) 2958 _c2i_entry += delta; 2959 if (_c2i_value_entry != NULL) 2960 _c2i_value_entry += delta; 2961 if (_c2i_unverified_entry != NULL) 2962 _c2i_unverified_entry += delta; 2963 assert(base_address() == new_base, ""); 2964 } 2965 2966 2967 void AdapterHandlerEntry::deallocate() { 2968 delete _fingerprint; 2969 if (_sig_cc != NULL) { 2970 delete _sig_cc; 2971 } 2972 #ifdef ASSERT 2973 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 2974 #endif 2975 } 2976 2977 2978 #ifdef ASSERT 2979 // Capture the code before relocation so that it can be compared 2980 // against other versions. If the code is captured after relocation 2981 // then relative instructions won't be equivalent. 2982 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 2983 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 2984 _saved_code_length = length; 2985 memcpy(_saved_code, buffer, length); 2986 } 2987 2988 2989 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) { 2990 if (length != _saved_code_length) { 2991 return false; 2992 } 2993 2994 return (memcmp(buffer, _saved_code, length) == 0) ? true : false; 2995 } 2996 #endif 2997 2998 2999 /** 3000 * Create a native wrapper for this native method. The wrapper converts the 3001 * Java-compiled calling convention to the native convention, handles 3002 * arguments, and transitions to native. On return from the native we transition 3003 * back to java blocking if a safepoint is in progress. 3004 */ 3005 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3006 ResourceMark rm; 3007 nmethod* nm = NULL; 3008 3009 assert(method->is_native(), "must be native"); 3010 assert(method->is_method_handle_intrinsic() || 3011 method->has_native_function(), "must have something valid to call!"); 3012 3013 { 3014 // Perform the work while holding the lock, but perform any printing outside the lock 3015 MutexLocker mu(AdapterHandlerLibrary_lock); 3016 // See if somebody beat us to it 3017 if (method->code() != NULL) { 3018 return; 3019 } 3020 3021 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3022 assert(compile_id > 0, "Must generate native wrapper"); 3023 3024 3025 ResourceMark rm; 3026 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3027 if (buf != NULL) { 3028 CodeBuffer buffer(buf); 3029 double locs_buf[20]; 3030 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3031 MacroAssembler _masm(&buffer); 3032 3033 // Fill in the signature array, for the calling-convention call. 3034 const int total_args_passed = method->size_of_parameters(); 3035 3036 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 3037 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3038 int i=0; 3039 if (!method->is_static()) // Pass in receiver first 3040 sig_bt[i++] = T_OBJECT; 3041 SignatureStream ss(method->signature()); 3042 for (; !ss.at_return_type(); ss.next()) { 3043 BasicType bt = ss.type(); 3044 sig_bt[i++] = bt; // Collect remaining bits of signature 3045 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) 3046 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 3047 } 3048 assert(i == total_args_passed, ""); 3049 BasicType ret_type = ss.type(); 3050 3051 // Now get the compiled-Java layout as input (or output) arguments. 3052 // NOTE: Stubs for compiled entry points of method handle intrinsics 3053 // are just trampolines so the argument registers must be outgoing ones. 3054 const bool is_outgoing = method->is_method_handle_intrinsic(); 3055 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing); 3056 3057 // Generate the compiled-to-native wrapper code 3058 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3059 3060 if (nm != NULL) { 3061 method->set_code(method, nm); 3062 3063 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple)); 3064 if (directive->PrintAssemblyOption) { 3065 nm->print_code(); 3066 } 3067 DirectivesStack::release(directive); 3068 } 3069 } 3070 } // Unlock AdapterHandlerLibrary_lock 3071 3072 3073 // Install the generated code. 3074 if (nm != NULL) { 3075 const char *msg = method->is_static() ? "(static)" : ""; 3076 CompileTask::print_ul(nm, msg); 3077 if (PrintCompilation) { 3078 ttyLocker ttyl; 3079 CompileTask::print(tty, nm, msg); 3080 } 3081 nm->post_compiled_method_load_event(); 3082 } 3083 } 3084 3085 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread)) 3086 assert(thread == JavaThread::current(), "must be"); 3087 // The code is about to enter a JNI lazy critical native method and 3088 // _needs_gc is true, so if this thread is already in a critical 3089 // section then just return, otherwise this thread should block 3090 // until needs_gc has been cleared. 3091 if (thread->in_critical()) { 3092 return; 3093 } 3094 // Lock and unlock a critical section to give the system a chance to block 3095 GCLocker::lock_critical(thread); 3096 GCLocker::unlock_critical(thread); 3097 JRT_END 3098 3099 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj)) 3100 assert(Universe::heap()->supports_object_pinning(), "Why we are here?"); 3101 assert(obj != NULL, "Should not be null"); 3102 oop o(obj); 3103 o = Universe::heap()->pin_object(thread, o); 3104 assert(o != NULL, "Should not be null"); 3105 return o; 3106 JRT_END 3107 3108 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj)) 3109 assert(Universe::heap()->supports_object_pinning(), "Why we are here?"); 3110 assert(obj != NULL, "Should not be null"); 3111 oop o(obj); 3112 Universe::heap()->unpin_object(thread, o); 3113 JRT_END 3114 3115 // ------------------------------------------------------------------------- 3116 // Java-Java calling convention 3117 // (what you use when Java calls Java) 3118 3119 //------------------------------name_for_receiver---------------------------------- 3120 // For a given signature, return the VMReg for parameter 0. 3121 VMReg SharedRuntime::name_for_receiver() { 3122 VMRegPair regs; 3123 BasicType sig_bt = T_OBJECT; 3124 (void) java_calling_convention(&sig_bt, ®s, 1, true); 3125 // Return argument 0 register. In the LP64 build pointers 3126 // take 2 registers, but the VM wants only the 'main' name. 3127 return regs.first(); 3128 } 3129 3130 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3131 // This method is returning a data structure allocating as a 3132 // ResourceObject, so do not put any ResourceMarks in here. 3133 char *s = sig->as_C_string(); 3134 int len = (int)strlen(s); 3135 s++; len--; // Skip opening paren 3136 3137 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3138 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3139 int cnt = 0; 3140 if (has_receiver) { 3141 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3142 } 3143 3144 while (*s != ')') { // Find closing right paren 3145 switch (*s++) { // Switch on signature character 3146 case 'B': sig_bt[cnt++] = T_BYTE; break; 3147 case 'C': sig_bt[cnt++] = T_CHAR; break; 3148 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break; 3149 case 'F': sig_bt[cnt++] = T_FLOAT; break; 3150 case 'I': sig_bt[cnt++] = T_INT; break; 3151 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break; 3152 case 'S': sig_bt[cnt++] = T_SHORT; break; 3153 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break; 3154 case 'V': sig_bt[cnt++] = T_VOID; break; 3155 case 'L': // Oop 3156 while (*s++ != ';'); // Skip signature 3157 sig_bt[cnt++] = T_OBJECT; 3158 break; 3159 case 'Q': // Value type 3160 while (*s++ != ';'); // Skip signature 3161 sig_bt[cnt++] = T_VALUETYPE; 3162 break; 3163 case '[': { // Array 3164 do { // Skip optional size 3165 while (*s >= '0' && *s <= '9') s++; 3166 } while (*s++ == '['); // Nested arrays? 3167 // Skip element type 3168 if (s[-1] == 'L' || s[-1] == 'Q') 3169 while (*s++ != ';'); // Skip signature 3170 sig_bt[cnt++] = T_ARRAY; 3171 break; 3172 } 3173 default : ShouldNotReachHere(); 3174 } 3175 } 3176 3177 if (has_appendix) { 3178 sig_bt[cnt++] = T_OBJECT; 3179 } 3180 3181 assert(cnt < 256, "grow table size"); 3182 3183 int comp_args_on_stack; 3184 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true); 3185 3186 // the calling convention doesn't count out_preserve_stack_slots so 3187 // we must add that in to get "true" stack offsets. 3188 3189 if (comp_args_on_stack) { 3190 for (int i = 0; i < cnt; i++) { 3191 VMReg reg1 = regs[i].first(); 3192 if (reg1->is_stack()) { 3193 // Yuck 3194 reg1 = reg1->bias(out_preserve_stack_slots()); 3195 } 3196 VMReg reg2 = regs[i].second(); 3197 if (reg2->is_stack()) { 3198 // Yuck 3199 reg2 = reg2->bias(out_preserve_stack_slots()); 3200 } 3201 regs[i].set_pair(reg2, reg1); 3202 } 3203 } 3204 3205 // results 3206 *arg_size = cnt; 3207 return regs; 3208 } 3209 3210 // OSR Migration Code 3211 // 3212 // This code is used convert interpreter frames into compiled frames. It is 3213 // called from very start of a compiled OSR nmethod. A temp array is 3214 // allocated to hold the interesting bits of the interpreter frame. All 3215 // active locks are inflated to allow them to move. The displaced headers and 3216 // active interpreter locals are copied into the temp buffer. Then we return 3217 // back to the compiled code. The compiled code then pops the current 3218 // interpreter frame off the stack and pushes a new compiled frame. Then it 3219 // copies the interpreter locals and displaced headers where it wants. 3220 // Finally it calls back to free the temp buffer. 3221 // 3222 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3223 3224 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) ) 3225 3226 // 3227 // This code is dependent on the memory layout of the interpreter local 3228 // array and the monitors. On all of our platforms the layout is identical 3229 // so this code is shared. If some platform lays the their arrays out 3230 // differently then this code could move to platform specific code or 3231 // the code here could be modified to copy items one at a time using 3232 // frame accessor methods and be platform independent. 3233 3234 frame fr = thread->last_frame(); 3235 assert(fr.is_interpreted_frame(), ""); 3236 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3237 3238 // Figure out how many monitors are active. 3239 int active_monitor_count = 0; 3240 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3241 kptr < fr.interpreter_frame_monitor_begin(); 3242 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3243 if (kptr->obj() != NULL) active_monitor_count++; 3244 } 3245 3246 // QQQ we could place number of active monitors in the array so that compiled code 3247 // could double check it. 3248 3249 Method* moop = fr.interpreter_frame_method(); 3250 int max_locals = moop->max_locals(); 3251 // Allocate temp buffer, 1 word per local & 2 per active monitor 3252 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3253 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3254 3255 // Copy the locals. Order is preserved so that loading of longs works. 3256 // Since there's no GC I can copy the oops blindly. 3257 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3258 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3259 (HeapWord*)&buf[0], 3260 max_locals); 3261 3262 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3263 int i = max_locals; 3264 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3265 kptr2 < fr.interpreter_frame_monitor_begin(); 3266 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3267 if (kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array 3268 BasicLock *lock = kptr2->lock(); 3269 // Inflate so the displaced header becomes position-independent 3270 if (lock->displaced_header()->is_unlocked()) 3271 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3272 // Now the displaced header is free to move 3273 buf[i++] = (intptr_t)lock->displaced_header(); 3274 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3275 } 3276 } 3277 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3278 3279 return buf; 3280 JRT_END 3281 3282 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3283 FREE_C_HEAP_ARRAY(intptr_t, buf); 3284 JRT_END 3285 3286 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3287 AdapterHandlerTableIterator iter(_adapters); 3288 while (iter.has_next()) { 3289 AdapterHandlerEntry* a = iter.next(); 3290 if (b == CodeCache::find_blob(a->get_i2c_entry())) return true; 3291 } 3292 return false; 3293 } 3294 3295 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3296 AdapterHandlerTableIterator iter(_adapters); 3297 while (iter.has_next()) { 3298 AdapterHandlerEntry* a = iter.next(); 3299 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3300 st->print("Adapter for signature: "); 3301 a->print_adapter_on(tty); 3302 return; 3303 } 3304 } 3305 assert(false, "Should have found handler"); 3306 } 3307 3308 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3309 st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iMH: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT, 3310 p2i(this), fingerprint()->as_string(), 3311 p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_value_entry()), p2i(get_c2i_unverified_entry())); 3312 3313 } 3314 3315 #if INCLUDE_CDS 3316 3317 void CDSAdapterHandlerEntry::init() { 3318 assert(DumpSharedSpaces, "used during dump time only"); 3319 _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size()); 3320 _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*)); 3321 }; 3322 3323 #endif // INCLUDE_CDS 3324 3325 3326 #ifndef PRODUCT 3327 3328 void AdapterHandlerLibrary::print_statistics() { 3329 _adapters->print_statistics(); 3330 } 3331 3332 #endif /* PRODUCT */ 3333 3334 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread)) 3335 assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone"); 3336 if (thread->stack_reserved_zone_disabled()) { 3337 thread->enable_stack_reserved_zone(); 3338 } 3339 thread->set_reserved_stack_activation(thread->stack_base()); 3340 JRT_END 3341 3342 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) { 3343 ResourceMark rm(thread); 3344 frame activation; 3345 CompiledMethod* nm = NULL; 3346 int count = 1; 3347 3348 assert(fr.is_java_frame(), "Must start on Java frame"); 3349 3350 while (true) { 3351 Method* method = NULL; 3352 bool found = false; 3353 if (fr.is_interpreted_frame()) { 3354 method = fr.interpreter_frame_method(); 3355 if (method != NULL && method->has_reserved_stack_access()) { 3356 found = true; 3357 } 3358 } else { 3359 CodeBlob* cb = fr.cb(); 3360 if (cb != NULL && cb->is_compiled()) { 3361 nm = cb->as_compiled_method(); 3362 method = nm->method(); 3363 // scope_desc_near() must be used, instead of scope_desc_at() because on 3364 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3365 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) { 3366 method = sd->method(); 3367 if (method != NULL && method->has_reserved_stack_access()) { 3368 found = true; 3369 } 3370 } 3371 } 3372 } 3373 if (found) { 3374 activation = fr; 3375 warning("Potentially dangerous stack overflow in " 3376 "ReservedStackAccess annotated method %s [%d]", 3377 method->name_and_sig_as_C_string(), count++); 3378 EventReservedStackActivation event; 3379 if (event.should_commit()) { 3380 event.set_method(method); 3381 event.commit(); 3382 } 3383 } 3384 if (fr.is_first_java_frame()) { 3385 break; 3386 } else { 3387 fr = fr.java_sender(); 3388 } 3389 } 3390 return activation; 3391 } 3392 3393 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) { 3394 // After any safepoint, just before going back to compiled code, 3395 // we inform the GC that we will be doing initializing writes to 3396 // this object in the future without emitting card-marks, so 3397 // GC may take any compensating steps. 3398 3399 oop new_obj = thread->vm_result(); 3400 if (new_obj == NULL) return; 3401 3402 BarrierSet *bs = BarrierSet::barrier_set(); 3403 bs->on_slowpath_allocation_exit(thread, new_obj); 3404 } 3405 3406 // We are at a compiled code to interpreter call. We need backing 3407 // buffers for all value type arguments. Allocate an object array to 3408 // hold them (convenient because once we're done with it we don't have 3409 // to worry about freeing it). 3410 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method)) 3411 { 3412 assert(ValueTypePassFieldsAsArgs, "no reason to call this"); 3413 ResourceMark rm; 3414 JavaThread* THREAD = thread; 3415 methodHandle callee(callee_method); 3416 3417 int nb_slots = 0; 3418 InstanceKlass* holder = callee->method_holder(); 3419 // TODO for now, don't scalarize value type receivers because of interface calls 3420 //bool has_value_receiver = !callee->is_static() && holder->is_value(); 3421 bool has_value_receiver = false; 3422 if (has_value_receiver) { 3423 nb_slots++; 3424 } 3425 Handle class_loader(THREAD, holder->class_loader()); 3426 Handle protection_domain(THREAD, holder->protection_domain()); 3427 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 3428 if (ss.type() == T_VALUETYPE) { 3429 nb_slots++; 3430 } 3431 } 3432 objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK); 3433 objArrayHandle array(THREAD, array_oop); 3434 int i = 0; 3435 if (has_value_receiver) { 3436 ValueKlass* vk = ValueKlass::cast(holder); 3437 oop res = vk->allocate_instance(CHECK); 3438 array->obj_at_put(i, res); 3439 i++; 3440 } 3441 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 3442 if (ss.type() == T_VALUETYPE) { 3443 Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD); 3444 assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass"); 3445 ValueKlass* vk = ValueKlass::cast(k); 3446 oop res = vk->allocate_instance(CHECK); 3447 array->obj_at_put(i, res); 3448 i++; 3449 } 3450 } 3451 thread->set_vm_result(array()); 3452 thread->set_vm_result_2(callee()); // TODO: required to keep callee live? 3453 } 3454 JRT_END 3455 3456 // Iterate of the array of heap allocated value types and apply the GC post barrier to all reference fields. 3457 // This is called from the C2I adapter after value type arguments are heap allocated and initialized. 3458 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array)) 3459 { 3460 assert(ValueTypePassFieldsAsArgs, "no reason to call this"); 3461 assert(oopDesc::is_oop(array), "should be oop"); 3462 for (int i = 0; i < array->length(); ++i) { 3463 instanceOop valueOop = (instanceOop)array->obj_at(i); 3464 ValueKlass* vk = ValueKlass::cast(valueOop->klass()); 3465 if (vk->contains_oops()) { 3466 const address dst_oop_addr = ((address) (void*) valueOop); 3467 OopMapBlock* map = vk->start_of_nonstatic_oop_maps(); 3468 OopMapBlock* const end = map + vk->nonstatic_oop_map_count(); 3469 while (map != end) { 3470 address doop_address = dst_oop_addr + map->offset(); 3471 barrier_set_cast<ModRefBarrierSet>(BarrierSet::barrier_set())-> 3472 write_ref_array((HeapWord*) doop_address, map->count()); 3473 map++; 3474 } 3475 } 3476 } 3477 } 3478 JRT_END 3479 3480 // We're returning from an interpreted method: load each field into a 3481 // register following the calling convention 3482 JRT_LEAF(void, SharedRuntime::load_value_type_fields_in_regs(JavaThread* thread, oopDesc* res)) 3483 { 3484 assert(res->klass()->is_value(), "only value types here"); 3485 ResourceMark rm; 3486 RegisterMap reg_map(thread); 3487 frame stubFrame = thread->last_frame(); 3488 frame callerFrame = stubFrame.sender(®_map); 3489 assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter"); 3490 3491 ValueKlass* vk = ValueKlass::cast(res->klass()); 3492 3493 const Array<SigEntry>* sig_vk = vk->extended_sig(); 3494 const Array<VMRegPair>* regs = vk->return_regs(); 3495 3496 if (regs == NULL) { 3497 // The fields of the value klass don't fit in registers, bail out 3498 return; 3499 } 3500 3501 int j = 1; 3502 for (int i = 0; i < sig_vk->length(); i++) { 3503 BasicType bt = sig_vk->at(i)._bt; 3504 if (bt == T_VALUETYPE) { 3505 continue; 3506 } 3507 if (bt == T_VOID) { 3508 if (sig_vk->at(i-1)._bt == T_LONG || 3509 sig_vk->at(i-1)._bt == T_DOUBLE) { 3510 j++; 3511 } 3512 continue; 3513 } 3514 int off = sig_vk->at(i)._offset; 3515 assert(off > 0, "offset in object should be positive"); 3516 VMRegPair pair = regs->at(j); 3517 address loc = reg_map.location(pair.first()); 3518 switch(bt) { 3519 case T_BOOLEAN: 3520 *(jboolean*)loc = res->bool_field(off); 3521 break; 3522 case T_CHAR: 3523 *(jchar*)loc = res->char_field(off); 3524 break; 3525 case T_BYTE: 3526 *(jbyte*)loc = res->byte_field(off); 3527 break; 3528 case T_SHORT: 3529 *(jshort*)loc = res->short_field(off); 3530 break; 3531 case T_INT: { 3532 *(jint*)loc = res->int_field(off); 3533 break; 3534 } 3535 case T_LONG: 3536 #ifdef _LP64 3537 *(intptr_t*)loc = res->long_field(off); 3538 #else 3539 Unimplemented(); 3540 #endif 3541 break; 3542 case T_OBJECT: 3543 case T_ARRAY: { 3544 *(oop*)loc = res->obj_field(off); 3545 break; 3546 } 3547 case T_FLOAT: 3548 *(jfloat*)loc = res->float_field(off); 3549 break; 3550 case T_DOUBLE: 3551 *(jdouble*)loc = res->double_field(off); 3552 break; 3553 default: 3554 ShouldNotReachHere(); 3555 } 3556 j++; 3557 } 3558 assert(j == regs->length(), "missed a field?"); 3559 3560 #ifdef ASSERT 3561 VMRegPair pair = regs->at(0); 3562 address loc = reg_map.location(pair.first()); 3563 assert(*(oopDesc**)loc == res, "overwritten object"); 3564 #endif 3565 3566 thread->set_vm_result(res); 3567 } 3568 JRT_END 3569 3570 // We've returned to an interpreted method, the interpreter needs a 3571 // reference to a value type instance. Allocate it and initialize it 3572 // from field's values in registers. 3573 JRT_BLOCK_ENTRY(void, SharedRuntime::store_value_type_fields_to_buf(JavaThread* thread, intptr_t res)) 3574 { 3575 ResourceMark rm; 3576 RegisterMap reg_map(thread); 3577 frame stubFrame = thread->last_frame(); 3578 frame callerFrame = stubFrame.sender(®_map); 3579 3580 #ifdef ASSERT 3581 ValueKlass* verif_vk = ValueKlass::returned_value_klass(reg_map); 3582 #endif 3583 3584 if (!is_set_nth_bit(res, 0)) { 3585 // We're not returning with value type fields in registers (the 3586 // calling convention didn't allow it for this value klass) 3587 assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area"); 3588 thread->set_vm_result((oopDesc*)res); 3589 assert(verif_vk == NULL, "broken calling convention"); 3590 return; 3591 } 3592 3593 clear_nth_bit(res, 0); 3594 ValueKlass* vk = (ValueKlass*)res; 3595 assert(verif_vk == vk, "broken calling convention"); 3596 assert(Metaspace::contains((void*)res), "should be klass"); 3597 3598 // Allocate handles for every oop field so they are safe in case of 3599 // a safepoint when allocating 3600 GrowableArray<Handle> handles; 3601 vk->save_oop_fields(reg_map, handles); 3602 3603 // It's unsafe to safepoint until we are here 3604 JRT_BLOCK; 3605 { 3606 Thread* THREAD = thread; 3607 oop vt = vk->realloc_result(reg_map, handles, CHECK); 3608 thread->set_vm_result(vt); 3609 } 3610 JRT_BLOCK_END; 3611 } 3612 JRT_END 3613