1 /* 2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "compiler/disassembler.hpp" 28 #include "interpreter/interpreter.hpp" 29 #include "interpreter/interpreterRuntime.hpp" 30 #include "interpreter/interp_masm.hpp" 31 #include "interpreter/templateTable.hpp" 32 #include "memory/universe.hpp" 33 #include "oops/methodData.hpp" 34 #include "oops/objArrayKlass.hpp" 35 #include "oops/oop.inline.hpp" 36 #include "prims/methodHandles.hpp" 37 #include "runtime/frame.inline.hpp" 38 #include "runtime/safepointMechanism.hpp" 39 #include "runtime/sharedRuntime.hpp" 40 #include "runtime/stubRoutines.hpp" 41 #include "runtime/synchronizer.hpp" 42 #include "utilities/macros.hpp" 43 44 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 45 46 // Global Register Names 47 static const Register rbcp = LP64_ONLY(r13) NOT_LP64(rsi); 48 static const Register rlocals = LP64_ONLY(r14) NOT_LP64(rdi); 49 50 // Platform-dependent initialization 51 void TemplateTable::pd_initialize() { 52 // No x86 specific initialization 53 } 54 55 // Address Computation: local variables 56 static inline Address iaddress(int n) { 57 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 58 } 59 60 static inline Address laddress(int n) { 61 return iaddress(n + 1); 62 } 63 64 #ifndef _LP64 65 static inline Address haddress(int n) { 66 return iaddress(n + 0); 67 } 68 #endif 69 70 static inline Address faddress(int n) { 71 return iaddress(n); 72 } 73 74 static inline Address daddress(int n) { 75 return laddress(n); 76 } 77 78 static inline Address aaddress(int n) { 79 return iaddress(n); 80 } 81 82 static inline Address iaddress(Register r) { 83 return Address(rlocals, r, Address::times_ptr); 84 } 85 86 static inline Address laddress(Register r) { 87 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); 88 } 89 90 #ifndef _LP64 91 static inline Address haddress(Register r) { 92 return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0)); 93 } 94 #endif 95 96 static inline Address faddress(Register r) { 97 return iaddress(r); 98 } 99 100 static inline Address daddress(Register r) { 101 return laddress(r); 102 } 103 104 static inline Address aaddress(Register r) { 105 return iaddress(r); 106 } 107 108 109 // expression stack 110 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 111 // data beyond the rsp which is potentially unsafe in an MT environment; 112 // an interrupt may overwrite that data.) 113 static inline Address at_rsp () { 114 return Address(rsp, 0); 115 } 116 117 // At top of Java expression stack which may be different than esp(). It 118 // isn't for category 1 objects. 119 static inline Address at_tos () { 120 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 121 } 122 123 static inline Address at_tos_p1() { 124 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 125 } 126 127 static inline Address at_tos_p2() { 128 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 129 } 130 131 // Condition conversion 132 static Assembler::Condition j_not(TemplateTable::Condition cc) { 133 switch (cc) { 134 case TemplateTable::equal : return Assembler::notEqual; 135 case TemplateTable::not_equal : return Assembler::equal; 136 case TemplateTable::less : return Assembler::greaterEqual; 137 case TemplateTable::less_equal : return Assembler::greater; 138 case TemplateTable::greater : return Assembler::lessEqual; 139 case TemplateTable::greater_equal: return Assembler::less; 140 } 141 ShouldNotReachHere(); 142 return Assembler::zero; 143 } 144 145 146 147 // Miscelaneous helper routines 148 // Store an oop (or NULL) at the address described by obj. 149 // If val == noreg this means store a NULL 150 151 152 static void do_oop_store(InterpreterMacroAssembler* _masm, 153 Address dst, 154 Register val, 155 DecoratorSet decorators = 0) { 156 assert(val == noreg || val == rax, "parameter is just for looks"); 157 __ store_heap_oop(dst, val, rdx, rbx, decorators); 158 } 159 160 static void do_oop_load(InterpreterMacroAssembler* _masm, 161 Address src, 162 Register dst, 163 DecoratorSet decorators = 0) { 164 __ load_heap_oop(dst, src, rdx, rbx, decorators); 165 } 166 167 Address TemplateTable::at_bcp(int offset) { 168 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 169 return Address(rbcp, offset); 170 } 171 172 173 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 174 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 175 int byte_no) { 176 if (!RewriteBytecodes) return; 177 Label L_patch_done; 178 179 switch (bc) { 180 case Bytecodes::_fast_qputfield: 181 case Bytecodes::_fast_aputfield: 182 case Bytecodes::_fast_bputfield: 183 case Bytecodes::_fast_zputfield: 184 case Bytecodes::_fast_cputfield: 185 case Bytecodes::_fast_dputfield: 186 case Bytecodes::_fast_fputfield: 187 case Bytecodes::_fast_iputfield: 188 case Bytecodes::_fast_lputfield: 189 case Bytecodes::_fast_sputfield: 190 { 191 // We skip bytecode quickening for putfield instructions when 192 // the put_code written to the constant pool cache is zero. 193 // This is required so that every execution of this instruction 194 // calls out to InterpreterRuntime::resolve_get_put to do 195 // additional, required work. 196 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 197 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 198 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 199 __ movl(bc_reg, bc); 200 __ cmpl(temp_reg, (int) 0); 201 __ jcc(Assembler::zero, L_patch_done); // don't patch 202 } 203 break; 204 default: 205 assert(byte_no == -1, "sanity"); 206 // the pair bytecodes have already done the load. 207 if (load_bc_into_bc_reg) { 208 __ movl(bc_reg, bc); 209 } 210 } 211 212 if (JvmtiExport::can_post_breakpoint()) { 213 Label L_fast_patch; 214 // if a breakpoint is present we can't rewrite the stream directly 215 __ movzbl(temp_reg, at_bcp(0)); 216 __ cmpl(temp_reg, Bytecodes::_breakpoint); 217 __ jcc(Assembler::notEqual, L_fast_patch); 218 __ get_method(temp_reg); 219 // Let breakpoint table handling rewrite to quicker bytecode 220 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); 221 #ifndef ASSERT 222 __ jmpb(L_patch_done); 223 #else 224 __ jmp(L_patch_done); 225 #endif 226 __ bind(L_fast_patch); 227 } 228 229 #ifdef ASSERT 230 Label L_okay; 231 __ load_unsigned_byte(temp_reg, at_bcp(0)); 232 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 233 __ jcc(Assembler::equal, L_okay); 234 __ cmpl(temp_reg, bc_reg); 235 __ jcc(Assembler::equal, L_okay); 236 __ stop("patching the wrong bytecode"); 237 __ bind(L_okay); 238 #endif 239 240 // patch bytecode 241 __ movb(at_bcp(0), bc_reg); 242 __ bind(L_patch_done); 243 } 244 // Individual instructions 245 246 247 void TemplateTable::nop() { 248 transition(vtos, vtos); 249 // nothing to do 250 } 251 252 void TemplateTable::shouldnotreachhere() { 253 transition(vtos, vtos); 254 __ stop("shouldnotreachhere bytecode"); 255 } 256 257 void TemplateTable::aconst_null() { 258 transition(vtos, atos); 259 __ xorl(rax, rax); 260 } 261 262 void TemplateTable::iconst(int value) { 263 transition(vtos, itos); 264 if (value == 0) { 265 __ xorl(rax, rax); 266 } else { 267 __ movl(rax, value); 268 } 269 } 270 271 void TemplateTable::lconst(int value) { 272 transition(vtos, ltos); 273 if (value == 0) { 274 __ xorl(rax, rax); 275 } else { 276 __ movl(rax, value); 277 } 278 #ifndef _LP64 279 assert(value >= 0, "check this code"); 280 __ xorptr(rdx, rdx); 281 #endif 282 } 283 284 285 286 void TemplateTable::fconst(int value) { 287 transition(vtos, ftos); 288 if (UseSSE >= 1) { 289 static float one = 1.0f, two = 2.0f; 290 switch (value) { 291 case 0: 292 __ xorps(xmm0, xmm0); 293 break; 294 case 1: 295 __ movflt(xmm0, ExternalAddress((address) &one)); 296 break; 297 case 2: 298 __ movflt(xmm0, ExternalAddress((address) &two)); 299 break; 300 default: 301 ShouldNotReachHere(); 302 break; 303 } 304 } else { 305 #ifdef _LP64 306 ShouldNotReachHere(); 307 #else 308 if (value == 0) { __ fldz(); 309 } else if (value == 1) { __ fld1(); 310 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here 311 } else { ShouldNotReachHere(); 312 } 313 #endif // _LP64 314 } 315 } 316 317 void TemplateTable::dconst(int value) { 318 transition(vtos, dtos); 319 if (UseSSE >= 2) { 320 static double one = 1.0; 321 switch (value) { 322 case 0: 323 __ xorpd(xmm0, xmm0); 324 break; 325 case 1: 326 __ movdbl(xmm0, ExternalAddress((address) &one)); 327 break; 328 default: 329 ShouldNotReachHere(); 330 break; 331 } 332 } else { 333 #ifdef _LP64 334 ShouldNotReachHere(); 335 #else 336 if (value == 0) { __ fldz(); 337 } else if (value == 1) { __ fld1(); 338 } else { ShouldNotReachHere(); 339 } 340 #endif 341 } 342 } 343 344 void TemplateTable::bipush() { 345 transition(vtos, itos); 346 __ load_signed_byte(rax, at_bcp(1)); 347 } 348 349 void TemplateTable::sipush() { 350 transition(vtos, itos); 351 __ load_unsigned_short(rax, at_bcp(1)); 352 __ bswapl(rax); 353 __ sarl(rax, 16); 354 } 355 356 void TemplateTable::ldc(bool wide) { 357 transition(vtos, vtos); 358 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 359 Label call_ldc, notFloat, notClass, notInt, Done; 360 361 if (wide) { 362 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 363 } else { 364 __ load_unsigned_byte(rbx, at_bcp(1)); 365 } 366 367 __ get_cpool_and_tags(rcx, rax); 368 const int base_offset = ConstantPool::header_size() * wordSize; 369 const int tags_offset = Array<u1>::base_offset_in_bytes(); 370 371 // get type 372 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 373 374 // unresolved class - get the resolved class 375 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 376 __ jccb(Assembler::equal, call_ldc); 377 378 // unresolved class in error state - call into runtime to throw the error 379 // from the first resolution attempt 380 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 381 __ jccb(Assembler::equal, call_ldc); 382 383 // resolved class - need to call vm to get java mirror of the class 384 __ cmpl(rdx, JVM_CONSTANT_Class); 385 __ jcc(Assembler::notEqual, notClass); 386 387 __ bind(call_ldc); 388 389 __ movl(rarg, wide); 390 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); 391 392 __ push(atos); 393 __ jmp(Done); 394 395 __ bind(notClass); 396 __ cmpl(rdx, JVM_CONSTANT_Float); 397 __ jccb(Assembler::notEqual, notFloat); 398 399 // ftos 400 __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset)); 401 __ push(ftos); 402 __ jmp(Done); 403 404 __ bind(notFloat); 405 __ cmpl(rdx, JVM_CONSTANT_Integer); 406 __ jccb(Assembler::notEqual, notInt); 407 408 // itos 409 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 410 __ push(itos); 411 __ jmp(Done); 412 413 // assume the tag is for condy; if not, the VM runtime will tell us 414 __ bind(notInt); 415 condy_helper(Done); 416 417 __ bind(Done); 418 } 419 420 // Fast path for caching oop constants. 421 void TemplateTable::fast_aldc(bool wide) { 422 transition(vtos, atos); 423 424 Register result = rax; 425 Register tmp = rdx; 426 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 427 int index_size = wide ? sizeof(u2) : sizeof(u1); 428 429 Label resolved; 430 431 // We are resolved if the resolved reference cache entry contains a 432 // non-null object (String, MethodType, etc.) 433 assert_different_registers(result, tmp); 434 __ get_cache_index_at_bcp(tmp, 1, index_size); 435 __ load_resolved_reference_at_index(result, tmp); 436 __ testptr(result, result); 437 __ jcc(Assembler::notZero, resolved); 438 439 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 440 441 // first time invocation - must resolve first 442 __ movl(rarg, (int)bytecode()); 443 __ call_VM(result, entry, rarg); 444 __ bind(resolved); 445 446 { // Check for the null sentinel. 447 // If we just called the VM, it already did the mapping for us, 448 // but it's harmless to retry. 449 Label notNull; 450 ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr()); 451 __ movptr(tmp, null_sentinel); 452 __ cmpoop(tmp, result); 453 __ jccb(Assembler::notEqual, notNull); 454 __ xorptr(result, result); // NULL object reference 455 __ bind(notNull); 456 } 457 458 if (VerifyOops) { 459 __ verify_oop(result); 460 } 461 } 462 463 void TemplateTable::ldc2_w() { 464 transition(vtos, vtos); 465 Label notDouble, notLong, Done; 466 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 467 468 __ get_cpool_and_tags(rcx, rax); 469 const int base_offset = ConstantPool::header_size() * wordSize; 470 const int tags_offset = Array<u1>::base_offset_in_bytes(); 471 472 // get type 473 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 474 __ cmpl(rdx, JVM_CONSTANT_Double); 475 __ jccb(Assembler::notEqual, notDouble); 476 477 // dtos 478 __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset)); 479 __ push(dtos); 480 481 __ jmp(Done); 482 __ bind(notDouble); 483 __ cmpl(rdx, JVM_CONSTANT_Long); 484 __ jccb(Assembler::notEqual, notLong); 485 486 // ltos 487 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 488 NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize))); 489 __ push(ltos); 490 __ jmp(Done); 491 492 __ bind(notLong); 493 condy_helper(Done); 494 495 __ bind(Done); 496 } 497 498 void TemplateTable::condy_helper(Label& Done) { 499 const Register obj = rax; 500 const Register off = rbx; 501 const Register flags = rcx; 502 const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 503 __ movl(rarg, (int)bytecode()); 504 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg); 505 #ifndef _LP64 506 // borrow rdi from locals 507 __ get_thread(rdi); 508 __ get_vm_result_2(flags, rdi); 509 __ restore_locals(); 510 #else 511 __ get_vm_result_2(flags, r15_thread); 512 #endif 513 // VMr = obj = base address to find primitive value to push 514 // VMr2 = flags = (tos, off) using format of CPCE::_flags 515 __ movl(off, flags); 516 __ andl(off, ConstantPoolCacheEntry::field_index_mask); 517 const Address field(obj, off, Address::times_1, 0*wordSize); 518 519 // What sort of thing are we loading? 520 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 521 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 522 523 switch (bytecode()) { 524 case Bytecodes::_ldc: 525 case Bytecodes::_ldc_w: 526 { 527 // tos in (itos, ftos, stos, btos, ctos, ztos) 528 Label notInt, notFloat, notShort, notByte, notChar, notBool; 529 __ cmpl(flags, itos); 530 __ jcc(Assembler::notEqual, notInt); 531 // itos 532 __ movl(rax, field); 533 __ push(itos); 534 __ jmp(Done); 535 536 __ bind(notInt); 537 __ cmpl(flags, ftos); 538 __ jcc(Assembler::notEqual, notFloat); 539 // ftos 540 __ load_float(field); 541 __ push(ftos); 542 __ jmp(Done); 543 544 __ bind(notFloat); 545 __ cmpl(flags, stos); 546 __ jcc(Assembler::notEqual, notShort); 547 // stos 548 __ load_signed_short(rax, field); 549 __ push(stos); 550 __ jmp(Done); 551 552 __ bind(notShort); 553 __ cmpl(flags, btos); 554 __ jcc(Assembler::notEqual, notByte); 555 // btos 556 __ load_signed_byte(rax, field); 557 __ push(btos); 558 __ jmp(Done); 559 560 __ bind(notByte); 561 __ cmpl(flags, ctos); 562 __ jcc(Assembler::notEqual, notChar); 563 // ctos 564 __ load_unsigned_short(rax, field); 565 __ push(ctos); 566 __ jmp(Done); 567 568 __ bind(notChar); 569 __ cmpl(flags, ztos); 570 __ jcc(Assembler::notEqual, notBool); 571 // ztos 572 __ load_signed_byte(rax, field); 573 __ push(ztos); 574 __ jmp(Done); 575 576 __ bind(notBool); 577 break; 578 } 579 580 case Bytecodes::_ldc2_w: 581 { 582 Label notLong, notDouble; 583 __ cmpl(flags, ltos); 584 __ jcc(Assembler::notEqual, notLong); 585 // ltos 586 // Loading high word first because movptr clobbers rax 587 NOT_LP64(__ movptr(rdx, field.plus_disp(4))); 588 __ movptr(rax, field); 589 __ push(ltos); 590 __ jmp(Done); 591 592 __ bind(notLong); 593 __ cmpl(flags, dtos); 594 __ jcc(Assembler::notEqual, notDouble); 595 // dtos 596 __ load_double(field); 597 __ push(dtos); 598 __ jmp(Done); 599 600 __ bind(notDouble); 601 break; 602 } 603 604 default: 605 ShouldNotReachHere(); 606 } 607 608 __ stop("bad ldc/condy"); 609 } 610 611 void TemplateTable::locals_index(Register reg, int offset) { 612 __ load_unsigned_byte(reg, at_bcp(offset)); 613 __ negptr(reg); 614 } 615 616 void TemplateTable::iload() { 617 iload_internal(); 618 } 619 620 void TemplateTable::nofast_iload() { 621 iload_internal(may_not_rewrite); 622 } 623 624 void TemplateTable::iload_internal(RewriteControl rc) { 625 transition(vtos, itos); 626 if (RewriteFrequentPairs && rc == may_rewrite) { 627 Label rewrite, done; 628 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 629 LP64_ONLY(assert(rbx != bc, "register damaged")); 630 631 // get next byte 632 __ load_unsigned_byte(rbx, 633 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 634 // if _iload, wait to rewrite to iload2. We only want to rewrite the 635 // last two iloads in a pair. Comparing against fast_iload means that 636 // the next bytecode is neither an iload or a caload, and therefore 637 // an iload pair. 638 __ cmpl(rbx, Bytecodes::_iload); 639 __ jcc(Assembler::equal, done); 640 641 __ cmpl(rbx, Bytecodes::_fast_iload); 642 __ movl(bc, Bytecodes::_fast_iload2); 643 644 __ jccb(Assembler::equal, rewrite); 645 646 // if _caload, rewrite to fast_icaload 647 __ cmpl(rbx, Bytecodes::_caload); 648 __ movl(bc, Bytecodes::_fast_icaload); 649 __ jccb(Assembler::equal, rewrite); 650 651 // rewrite so iload doesn't check again. 652 __ movl(bc, Bytecodes::_fast_iload); 653 654 // rewrite 655 // bc: fast bytecode 656 __ bind(rewrite); 657 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 658 __ bind(done); 659 } 660 661 // Get the local value into tos 662 locals_index(rbx); 663 __ movl(rax, iaddress(rbx)); 664 } 665 666 void TemplateTable::fast_iload2() { 667 transition(vtos, itos); 668 locals_index(rbx); 669 __ movl(rax, iaddress(rbx)); 670 __ push(itos); 671 locals_index(rbx, 3); 672 __ movl(rax, iaddress(rbx)); 673 } 674 675 void TemplateTable::fast_iload() { 676 transition(vtos, itos); 677 locals_index(rbx); 678 __ movl(rax, iaddress(rbx)); 679 } 680 681 void TemplateTable::lload() { 682 transition(vtos, ltos); 683 locals_index(rbx); 684 __ movptr(rax, laddress(rbx)); 685 NOT_LP64(__ movl(rdx, haddress(rbx))); 686 } 687 688 void TemplateTable::fload() { 689 transition(vtos, ftos); 690 locals_index(rbx); 691 __ load_float(faddress(rbx)); 692 } 693 694 void TemplateTable::dload() { 695 transition(vtos, dtos); 696 locals_index(rbx); 697 __ load_double(daddress(rbx)); 698 } 699 700 void TemplateTable::aload() { 701 transition(vtos, atos); 702 locals_index(rbx); 703 __ movptr(rax, aaddress(rbx)); 704 } 705 706 void TemplateTable::locals_index_wide(Register reg) { 707 __ load_unsigned_short(reg, at_bcp(2)); 708 __ bswapl(reg); 709 __ shrl(reg, 16); 710 __ negptr(reg); 711 } 712 713 void TemplateTable::wide_iload() { 714 transition(vtos, itos); 715 locals_index_wide(rbx); 716 __ movl(rax, iaddress(rbx)); 717 } 718 719 void TemplateTable::wide_lload() { 720 transition(vtos, ltos); 721 locals_index_wide(rbx); 722 __ movptr(rax, laddress(rbx)); 723 NOT_LP64(__ movl(rdx, haddress(rbx))); 724 } 725 726 void TemplateTable::wide_fload() { 727 transition(vtos, ftos); 728 locals_index_wide(rbx); 729 __ load_float(faddress(rbx)); 730 } 731 732 void TemplateTable::wide_dload() { 733 transition(vtos, dtos); 734 locals_index_wide(rbx); 735 __ load_double(daddress(rbx)); 736 } 737 738 void TemplateTable::wide_aload() { 739 transition(vtos, atos); 740 locals_index_wide(rbx); 741 __ movptr(rax, aaddress(rbx)); 742 } 743 744 void TemplateTable::index_check(Register array, Register index) { 745 // Pop ptr into array 746 __ pop_ptr(array); 747 index_check_without_pop(array, index); 748 } 749 750 void TemplateTable::index_check_without_pop(Register array, Register index) { 751 // destroys rbx 752 // check array 753 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 754 // sign extend index for use by indexed load 755 __ movl2ptr(index, index); 756 // check index 757 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 758 if (index != rbx) { 759 // ??? convention: move aberrant index into rbx for exception message 760 assert(rbx != array, "different registers"); 761 __ movl(rbx, index); 762 } 763 Label skip; 764 __ jccb(Assembler::below, skip); 765 // Pass array to create more detailed exceptions. 766 __ mov(NOT_LP64(rax) LP64_ONLY(c_rarg1), array); 767 __ jump(ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 768 __ bind(skip); 769 } 770 771 void TemplateTable::iaload() { 772 transition(itos, itos); 773 // rax: index 774 // rdx: array 775 index_check(rdx, rax); // kills rbx 776 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax, 777 Address(rdx, rax, Address::times_4, 778 arrayOopDesc::base_offset_in_bytes(T_INT)), 779 noreg, noreg); 780 } 781 782 void TemplateTable::laload() { 783 transition(itos, ltos); 784 // rax: index 785 // rdx: array 786 index_check(rdx, rax); // kills rbx 787 NOT_LP64(__ mov(rbx, rax)); 788 // rbx,: index 789 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */, 790 Address(rdx, rbx, Address::times_8, 791 arrayOopDesc::base_offset_in_bytes(T_LONG)), 792 noreg, noreg); 793 } 794 795 796 797 void TemplateTable::faload() { 798 transition(itos, ftos); 799 // rax: index 800 // rdx: array 801 index_check(rdx, rax); // kills rbx 802 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */, 803 Address(rdx, rax, 804 Address::times_4, 805 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 806 noreg, noreg); 807 } 808 809 void TemplateTable::daload() { 810 transition(itos, dtos); 811 // rax: index 812 // rdx: array 813 index_check(rdx, rax); // kills rbx 814 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */, 815 Address(rdx, rax, 816 Address::times_8, 817 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 818 noreg, noreg); 819 } 820 821 void TemplateTable::aaload() { 822 transition(itos, atos); 823 824 Register array = rcx; 825 Register index = rax; 826 827 index_check(array, index); // kills rbx 828 if (ValueArrayFlatten) { 829 Label is_flat_array, done; 830 __ test_flat_array_oop(array, rbx, is_flat_array); 831 do_oop_load(_masm, 832 Address(array, index, 833 UseCompressedOops ? Address::times_4 : Address::times_ptr, 834 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), 835 rax, 836 IS_ARRAY); 837 __ jmp(done); 838 __ bind(is_flat_array); 839 __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::value_array_load), array, index); 840 __ bind(done); 841 } else { 842 do_oop_load(_masm, 843 Address(array, index, 844 UseCompressedOops ? Address::times_4 : Address::times_ptr, 845 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), 846 rax, 847 IS_ARRAY); 848 } 849 } 850 851 void TemplateTable::baload() { 852 transition(itos, itos); 853 // rax: index 854 // rdx: array 855 index_check(rdx, rax); // kills rbx 856 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax, 857 Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), 858 noreg, noreg); 859 } 860 861 void TemplateTable::caload() { 862 transition(itos, itos); 863 // rax: index 864 // rdx: array 865 index_check(rdx, rax); // kills rbx 866 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 867 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 868 noreg, noreg); 869 } 870 871 // iload followed by caload frequent pair 872 void TemplateTable::fast_icaload() { 873 transition(vtos, itos); 874 // load index out of locals 875 locals_index(rbx); 876 __ movl(rax, iaddress(rbx)); 877 878 // rax: index 879 // rdx: array 880 index_check(rdx, rax); // kills rbx 881 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 882 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 883 noreg, noreg); 884 } 885 886 887 void TemplateTable::saload() { 888 transition(itos, itos); 889 // rax: index 890 // rdx: array 891 index_check(rdx, rax); // kills rbx 892 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax, 893 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)), 894 noreg, noreg); 895 } 896 897 void TemplateTable::iload(int n) { 898 transition(vtos, itos); 899 __ movl(rax, iaddress(n)); 900 } 901 902 void TemplateTable::lload(int n) { 903 transition(vtos, ltos); 904 __ movptr(rax, laddress(n)); 905 NOT_LP64(__ movptr(rdx, haddress(n))); 906 } 907 908 void TemplateTable::fload(int n) { 909 transition(vtos, ftos); 910 __ load_float(faddress(n)); 911 } 912 913 void TemplateTable::dload(int n) { 914 transition(vtos, dtos); 915 __ load_double(daddress(n)); 916 } 917 918 void TemplateTable::aload(int n) { 919 transition(vtos, atos); 920 __ movptr(rax, aaddress(n)); 921 } 922 923 void TemplateTable::aload_0() { 924 aload_0_internal(); 925 } 926 927 void TemplateTable::nofast_aload_0() { 928 aload_0_internal(may_not_rewrite); 929 } 930 931 void TemplateTable::aload_0_internal(RewriteControl rc) { 932 transition(vtos, atos); 933 // According to bytecode histograms, the pairs: 934 // 935 // _aload_0, _fast_igetfield 936 // _aload_0, _fast_agetfield 937 // _aload_0, _fast_fgetfield 938 // 939 // occur frequently. If RewriteFrequentPairs is set, the (slow) 940 // _aload_0 bytecode checks if the next bytecode is either 941 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 942 // rewrites the current bytecode into a pair bytecode; otherwise it 943 // rewrites the current bytecode into _fast_aload_0 that doesn't do 944 // the pair check anymore. 945 // 946 // Note: If the next bytecode is _getfield, the rewrite must be 947 // delayed, otherwise we may miss an opportunity for a pair. 948 // 949 // Also rewrite frequent pairs 950 // aload_0, aload_1 951 // aload_0, iload_1 952 // These bytecodes with a small amount of code are most profitable 953 // to rewrite 954 if (RewriteFrequentPairs && rc == may_rewrite) { 955 Label rewrite, done; 956 957 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 958 LP64_ONLY(assert(rbx != bc, "register damaged")); 959 960 // get next byte 961 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 962 963 // if _getfield then wait with rewrite 964 __ cmpl(rbx, Bytecodes::_getfield); 965 __ jcc(Assembler::equal, done); 966 967 // if _igetfield then rewrite to _fast_iaccess_0 968 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 969 __ cmpl(rbx, Bytecodes::_fast_igetfield); 970 __ movl(bc, Bytecodes::_fast_iaccess_0); 971 __ jccb(Assembler::equal, rewrite); 972 973 // if _agetfield then rewrite to _fast_aaccess_0 974 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 975 __ cmpl(rbx, Bytecodes::_fast_agetfield); 976 __ movl(bc, Bytecodes::_fast_aaccess_0); 977 __ jccb(Assembler::equal, rewrite); 978 979 // if _fgetfield then rewrite to _fast_faccess_0 980 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 981 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 982 __ movl(bc, Bytecodes::_fast_faccess_0); 983 __ jccb(Assembler::equal, rewrite); 984 985 // else rewrite to _fast_aload0 986 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 987 __ movl(bc, Bytecodes::_fast_aload_0); 988 989 // rewrite 990 // bc: fast bytecode 991 __ bind(rewrite); 992 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 993 994 __ bind(done); 995 } 996 997 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 998 aload(0); 999 } 1000 1001 void TemplateTable::istore() { 1002 transition(itos, vtos); 1003 locals_index(rbx); 1004 __ movl(iaddress(rbx), rax); 1005 } 1006 1007 1008 void TemplateTable::lstore() { 1009 transition(ltos, vtos); 1010 locals_index(rbx); 1011 __ movptr(laddress(rbx), rax); 1012 NOT_LP64(__ movptr(haddress(rbx), rdx)); 1013 } 1014 1015 void TemplateTable::fstore() { 1016 transition(ftos, vtos); 1017 locals_index(rbx); 1018 __ store_float(faddress(rbx)); 1019 } 1020 1021 void TemplateTable::dstore() { 1022 transition(dtos, vtos); 1023 locals_index(rbx); 1024 __ store_double(daddress(rbx)); 1025 } 1026 1027 void TemplateTable::astore() { 1028 transition(vtos, vtos); 1029 __ pop_ptr(rax); 1030 locals_index(rbx); 1031 __ movptr(aaddress(rbx), rax); 1032 } 1033 1034 void TemplateTable::wide_istore() { 1035 transition(vtos, vtos); 1036 __ pop_i(); 1037 locals_index_wide(rbx); 1038 __ movl(iaddress(rbx), rax); 1039 } 1040 1041 void TemplateTable::wide_lstore() { 1042 transition(vtos, vtos); 1043 NOT_LP64(__ pop_l(rax, rdx)); 1044 LP64_ONLY(__ pop_l()); 1045 locals_index_wide(rbx); 1046 __ movptr(laddress(rbx), rax); 1047 NOT_LP64(__ movl(haddress(rbx), rdx)); 1048 } 1049 1050 void TemplateTable::wide_fstore() { 1051 #ifdef _LP64 1052 transition(vtos, vtos); 1053 __ pop_f(xmm0); 1054 locals_index_wide(rbx); 1055 __ movflt(faddress(rbx), xmm0); 1056 #else 1057 wide_istore(); 1058 #endif 1059 } 1060 1061 void TemplateTable::wide_dstore() { 1062 #ifdef _LP64 1063 transition(vtos, vtos); 1064 __ pop_d(xmm0); 1065 locals_index_wide(rbx); 1066 __ movdbl(daddress(rbx), xmm0); 1067 #else 1068 wide_lstore(); 1069 #endif 1070 } 1071 1072 void TemplateTable::wide_astore() { 1073 transition(vtos, vtos); 1074 __ pop_ptr(rax); 1075 locals_index_wide(rbx); 1076 __ movptr(aaddress(rbx), rax); 1077 } 1078 1079 void TemplateTable::iastore() { 1080 transition(itos, vtos); 1081 __ pop_i(rbx); 1082 // rax: value 1083 // rbx: index 1084 // rdx: array 1085 index_check(rdx, rbx); // prefer index in rbx 1086 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, 1087 Address(rdx, rbx, Address::times_4, 1088 arrayOopDesc::base_offset_in_bytes(T_INT)), 1089 rax, noreg, noreg); 1090 } 1091 1092 void TemplateTable::lastore() { 1093 transition(ltos, vtos); 1094 __ pop_i(rbx); 1095 // rax,: low(value) 1096 // rcx: array 1097 // rdx: high(value) 1098 index_check(rcx, rbx); // prefer index in rbx, 1099 // rbx,: index 1100 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, 1101 Address(rcx, rbx, Address::times_8, 1102 arrayOopDesc::base_offset_in_bytes(T_LONG)), 1103 noreg /* ltos */, noreg, noreg); 1104 } 1105 1106 1107 void TemplateTable::fastore() { 1108 transition(ftos, vtos); 1109 __ pop_i(rbx); 1110 // value is in UseSSE >= 1 ? xmm0 : ST(0) 1111 // rbx: index 1112 // rdx: array 1113 index_check(rdx, rbx); // prefer index in rbx 1114 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, 1115 Address(rdx, rbx, Address::times_4, 1116 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 1117 noreg /* ftos */, noreg, noreg); 1118 } 1119 1120 void TemplateTable::dastore() { 1121 transition(dtos, vtos); 1122 __ pop_i(rbx); 1123 // value is in UseSSE >= 2 ? xmm0 : ST(0) 1124 // rbx: index 1125 // rdx: array 1126 index_check(rdx, rbx); // prefer index in rbx 1127 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, 1128 Address(rdx, rbx, Address::times_8, 1129 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 1130 noreg /* dtos */, noreg, noreg); 1131 } 1132 1133 void TemplateTable::aastore() { 1134 Label is_null, is_flat_array, ok_is_subtype, done; 1135 transition(vtos, vtos); 1136 // stack: ..., array, index, value 1137 __ movptr(rax, at_tos()); // value 1138 __ movl(rcx, at_tos_p1()); // index 1139 __ movptr(rdx, at_tos_p2()); // array 1140 1141 Address element_address(rdx, rcx, 1142 UseCompressedOops? Address::times_4 : Address::times_ptr, 1143 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1144 1145 index_check_without_pop(rdx, rcx); // kills rbx 1146 1147 __ testptr(rax, rax); 1148 __ jcc(Assembler::zero, is_null); 1149 1150 // Move array class to rdi 1151 __ load_klass(rdi, rdx); 1152 if (ValueArrayFlatten) { 1153 __ test_flat_array_klass(rdi, rbx, is_flat_array); 1154 } 1155 1156 // Move subklass into rbx 1157 __ load_klass(rbx, rax); 1158 // Move array element superklass into rax 1159 __ movptr(rax, Address(rdi, 1160 ObjArrayKlass::element_klass_offset())); 1161 1162 // Generate subtype check. Blows rcx, rdi 1163 // Superklass in rax. Subklass in rbx. 1164 // is "rbx <: rax" ? (value subclass <: array element superclass) 1165 __ gen_subtype_check(rbx, ok_is_subtype); 1166 1167 // Come here on failure 1168 // object is at TOS 1169 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 1170 1171 // Come here on success 1172 __ bind(ok_is_subtype); 1173 1174 // Get the value we will store 1175 __ movptr(rax, at_tos()); 1176 __ movl(rcx, at_tos_p1()); // index 1177 // Now store using the appropriate barrier 1178 do_oop_store(_masm, element_address, rax, IS_ARRAY); 1179 __ jmp(done); 1180 1181 // Have a NULL in rax, rdx=array, ecx=index. Store NULL at ary[idx] 1182 __ bind(is_null); 1183 __ profile_null_seen(rbx); 1184 if (EnableValhalla) { 1185 Label is_null_into_value_array_npe, store_null; 1186 1187 __ load_klass(rdi, rdx); 1188 // No way to store null in flat array 1189 __ test_flat_array_klass(rdi, rbx, is_null_into_value_array_npe); 1190 1191 // Use case for storing values in objArray where element_klass is specifically 1192 // a value type because they could not be flattened "for reasons", 1193 // these need to have the same semantics as flat arrays, i.e. NPE 1194 __ movptr(rdi, Address(rdi, ObjArrayKlass::element_klass_offset())); 1195 __ test_klass_is_value(rdi, rdi, is_null_into_value_array_npe); 1196 __ jmp(store_null); 1197 1198 __ bind(is_null_into_value_array_npe); 1199 __ jump(ExternalAddress(Interpreter::_throw_NullPointerException_entry)); 1200 1201 __ bind(store_null); 1202 } 1203 // Store a NULL 1204 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1205 __ jmp(done); 1206 1207 if (EnableValhalla) { 1208 Label is_type_ok; 1209 __ bind(is_flat_array); // Store non-null value to flat 1210 1211 // Simplistic type check... 1212 1213 // Profile the not-null value's klass. 1214 __ load_klass(rbx, rax); 1215 __ profile_typecheck(rcx, rbx, rax); // blows rcx, and rax 1216 // Move element klass into rax 1217 __ movptr(rax, Address(rdi, ArrayKlass::element_klass_offset())); 1218 // flat value array needs exact type match 1219 // is "rax == rbx" (value subclass == array element superclass) 1220 __ cmpptr(rax, rbx); 1221 __ jccb(Assembler::equal, is_type_ok); 1222 1223 __ profile_typecheck_failed(rcx); 1224 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 1225 1226 __ bind(is_type_ok); 1227 __ movptr(rax, at_tos()); // value 1228 __ movl(rcx, at_tos_p1()); // index 1229 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::value_array_store), rax, rdx, rcx); 1230 } 1231 // Pop stack arguments 1232 __ bind(done); 1233 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1234 } 1235 1236 void TemplateTable::bastore() { 1237 transition(itos, vtos); 1238 __ pop_i(rbx); 1239 // rax: value 1240 // rbx: index 1241 // rdx: array 1242 index_check(rdx, rbx); // prefer index in rbx 1243 // Need to check whether array is boolean or byte 1244 // since both types share the bastore bytecode. 1245 __ load_klass(rcx, rdx); 1246 __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); 1247 int diffbit = Klass::layout_helper_boolean_diffbit(); 1248 __ testl(rcx, diffbit); 1249 Label L_skip; 1250 __ jccb(Assembler::zero, L_skip); 1251 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1252 __ bind(L_skip); 1253 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, 1254 Address(rdx, rbx,Address::times_1, 1255 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1256 rax, noreg, noreg); 1257 } 1258 1259 void TemplateTable::castore() { 1260 transition(itos, vtos); 1261 __ pop_i(rbx); 1262 // rax: value 1263 // rbx: index 1264 // rdx: array 1265 index_check(rdx, rbx); // prefer index in rbx 1266 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, 1267 Address(rdx, rbx, Address::times_2, 1268 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1269 rax, noreg, noreg); 1270 } 1271 1272 1273 void TemplateTable::sastore() { 1274 castore(); 1275 } 1276 1277 void TemplateTable::istore(int n) { 1278 transition(itos, vtos); 1279 __ movl(iaddress(n), rax); 1280 } 1281 1282 void TemplateTable::lstore(int n) { 1283 transition(ltos, vtos); 1284 __ movptr(laddress(n), rax); 1285 NOT_LP64(__ movptr(haddress(n), rdx)); 1286 } 1287 1288 void TemplateTable::fstore(int n) { 1289 transition(ftos, vtos); 1290 __ store_float(faddress(n)); 1291 } 1292 1293 void TemplateTable::dstore(int n) { 1294 transition(dtos, vtos); 1295 __ store_double(daddress(n)); 1296 } 1297 1298 1299 void TemplateTable::astore(int n) { 1300 transition(vtos, vtos); 1301 __ pop_ptr(rax); 1302 __ movptr(aaddress(n), rax); 1303 } 1304 1305 void TemplateTable::pop() { 1306 transition(vtos, vtos); 1307 __ addptr(rsp, Interpreter::stackElementSize); 1308 } 1309 1310 void TemplateTable::pop2() { 1311 transition(vtos, vtos); 1312 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1313 } 1314 1315 1316 void TemplateTable::dup() { 1317 transition(vtos, vtos); 1318 __ load_ptr(0, rax); 1319 __ push_ptr(rax); 1320 // stack: ..., a, a 1321 } 1322 1323 void TemplateTable::dup_x1() { 1324 transition(vtos, vtos); 1325 // stack: ..., a, b 1326 __ load_ptr( 0, rax); // load b 1327 __ load_ptr( 1, rcx); // load a 1328 __ store_ptr(1, rax); // store b 1329 __ store_ptr(0, rcx); // store a 1330 __ push_ptr(rax); // push b 1331 // stack: ..., b, a, b 1332 } 1333 1334 void TemplateTable::dup_x2() { 1335 transition(vtos, vtos); 1336 // stack: ..., a, b, c 1337 __ load_ptr( 0, rax); // load c 1338 __ load_ptr( 2, rcx); // load a 1339 __ store_ptr(2, rax); // store c in a 1340 __ push_ptr(rax); // push c 1341 // stack: ..., c, b, c, c 1342 __ load_ptr( 2, rax); // load b 1343 __ store_ptr(2, rcx); // store a in b 1344 // stack: ..., c, a, c, c 1345 __ store_ptr(1, rax); // store b in c 1346 // stack: ..., c, a, b, c 1347 } 1348 1349 void TemplateTable::dup2() { 1350 transition(vtos, vtos); 1351 // stack: ..., a, b 1352 __ load_ptr(1, rax); // load a 1353 __ push_ptr(rax); // push a 1354 __ load_ptr(1, rax); // load b 1355 __ push_ptr(rax); // push b 1356 // stack: ..., a, b, a, b 1357 } 1358 1359 1360 void TemplateTable::dup2_x1() { 1361 transition(vtos, vtos); 1362 // stack: ..., a, b, c 1363 __ load_ptr( 0, rcx); // load c 1364 __ load_ptr( 1, rax); // load b 1365 __ push_ptr(rax); // push b 1366 __ push_ptr(rcx); // push c 1367 // stack: ..., a, b, c, b, c 1368 __ store_ptr(3, rcx); // store c in b 1369 // stack: ..., a, c, c, b, c 1370 __ load_ptr( 4, rcx); // load a 1371 __ store_ptr(2, rcx); // store a in 2nd c 1372 // stack: ..., a, c, a, b, c 1373 __ store_ptr(4, rax); // store b in a 1374 // stack: ..., b, c, a, b, c 1375 } 1376 1377 void TemplateTable::dup2_x2() { 1378 transition(vtos, vtos); 1379 // stack: ..., a, b, c, d 1380 __ load_ptr( 0, rcx); // load d 1381 __ load_ptr( 1, rax); // load c 1382 __ push_ptr(rax); // push c 1383 __ push_ptr(rcx); // push d 1384 // stack: ..., a, b, c, d, c, d 1385 __ load_ptr( 4, rax); // load b 1386 __ store_ptr(2, rax); // store b in d 1387 __ store_ptr(4, rcx); // store d in b 1388 // stack: ..., a, d, c, b, c, d 1389 __ load_ptr( 5, rcx); // load a 1390 __ load_ptr( 3, rax); // load c 1391 __ store_ptr(3, rcx); // store a in c 1392 __ store_ptr(5, rax); // store c in a 1393 // stack: ..., c, d, a, b, c, d 1394 } 1395 1396 void TemplateTable::swap() { 1397 transition(vtos, vtos); 1398 // stack: ..., a, b 1399 __ load_ptr( 1, rcx); // load a 1400 __ load_ptr( 0, rax); // load b 1401 __ store_ptr(0, rcx); // store a in b 1402 __ store_ptr(1, rax); // store b in a 1403 // stack: ..., b, a 1404 } 1405 1406 void TemplateTable::iop2(Operation op) { 1407 transition(itos, itos); 1408 switch (op) { 1409 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1410 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1411 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1412 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1413 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1414 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1415 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1416 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1417 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1418 default : ShouldNotReachHere(); 1419 } 1420 } 1421 1422 void TemplateTable::lop2(Operation op) { 1423 transition(ltos, ltos); 1424 #ifdef _LP64 1425 switch (op) { 1426 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1427 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1428 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1429 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1430 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1431 default : ShouldNotReachHere(); 1432 } 1433 #else 1434 __ pop_l(rbx, rcx); 1435 switch (op) { 1436 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break; 1437 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx); 1438 __ mov (rax, rbx); __ mov (rdx, rcx); break; 1439 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break; 1440 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break; 1441 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break; 1442 default : ShouldNotReachHere(); 1443 } 1444 #endif 1445 } 1446 1447 void TemplateTable::idiv() { 1448 transition(itos, itos); 1449 __ movl(rcx, rax); 1450 __ pop_i(rax); 1451 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1452 // they are not equal, one could do a normal division (no correction 1453 // needed), which may speed up this implementation for the common case. 1454 // (see also JVM spec., p.243 & p.271) 1455 __ corrected_idivl(rcx); 1456 } 1457 1458 void TemplateTable::irem() { 1459 transition(itos, itos); 1460 __ movl(rcx, rax); 1461 __ pop_i(rax); 1462 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1463 // they are not equal, one could do a normal division (no correction 1464 // needed), which may speed up this implementation for the common case. 1465 // (see also JVM spec., p.243 & p.271) 1466 __ corrected_idivl(rcx); 1467 __ movl(rax, rdx); 1468 } 1469 1470 void TemplateTable::lmul() { 1471 transition(ltos, ltos); 1472 #ifdef _LP64 1473 __ pop_l(rdx); 1474 __ imulq(rax, rdx); 1475 #else 1476 __ pop_l(rbx, rcx); 1477 __ push(rcx); __ push(rbx); 1478 __ push(rdx); __ push(rax); 1479 __ lmul(2 * wordSize, 0); 1480 __ addptr(rsp, 4 * wordSize); // take off temporaries 1481 #endif 1482 } 1483 1484 void TemplateTable::ldiv() { 1485 transition(ltos, ltos); 1486 #ifdef _LP64 1487 __ mov(rcx, rax); 1488 __ pop_l(rax); 1489 // generate explicit div0 check 1490 __ testq(rcx, rcx); 1491 __ jump_cc(Assembler::zero, 1492 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1493 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1494 // they are not equal, one could do a normal division (no correction 1495 // needed), which may speed up this implementation for the common case. 1496 // (see also JVM spec., p.243 & p.271) 1497 __ corrected_idivq(rcx); // kills rbx 1498 #else 1499 __ pop_l(rbx, rcx); 1500 __ push(rcx); __ push(rbx); 1501 __ push(rdx); __ push(rax); 1502 // check if y = 0 1503 __ orl(rax, rdx); 1504 __ jump_cc(Assembler::zero, 1505 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1506 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); 1507 __ addptr(rsp, 4 * wordSize); // take off temporaries 1508 #endif 1509 } 1510 1511 void TemplateTable::lrem() { 1512 transition(ltos, ltos); 1513 #ifdef _LP64 1514 __ mov(rcx, rax); 1515 __ pop_l(rax); 1516 __ testq(rcx, rcx); 1517 __ jump_cc(Assembler::zero, 1518 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1519 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1520 // they are not equal, one could do a normal division (no correction 1521 // needed), which may speed up this implementation for the common case. 1522 // (see also JVM spec., p.243 & p.271) 1523 __ corrected_idivq(rcx); // kills rbx 1524 __ mov(rax, rdx); 1525 #else 1526 __ pop_l(rbx, rcx); 1527 __ push(rcx); __ push(rbx); 1528 __ push(rdx); __ push(rax); 1529 // check if y = 0 1530 __ orl(rax, rdx); 1531 __ jump_cc(Assembler::zero, 1532 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1533 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); 1534 __ addptr(rsp, 4 * wordSize); 1535 #endif 1536 } 1537 1538 void TemplateTable::lshl() { 1539 transition(itos, ltos); 1540 __ movl(rcx, rax); // get shift count 1541 #ifdef _LP64 1542 __ pop_l(rax); // get shift value 1543 __ shlq(rax); 1544 #else 1545 __ pop_l(rax, rdx); // get shift value 1546 __ lshl(rdx, rax); 1547 #endif 1548 } 1549 1550 void TemplateTable::lshr() { 1551 #ifdef _LP64 1552 transition(itos, ltos); 1553 __ movl(rcx, rax); // get shift count 1554 __ pop_l(rax); // get shift value 1555 __ sarq(rax); 1556 #else 1557 transition(itos, ltos); 1558 __ mov(rcx, rax); // get shift count 1559 __ pop_l(rax, rdx); // get shift value 1560 __ lshr(rdx, rax, true); 1561 #endif 1562 } 1563 1564 void TemplateTable::lushr() { 1565 transition(itos, ltos); 1566 #ifdef _LP64 1567 __ movl(rcx, rax); // get shift count 1568 __ pop_l(rax); // get shift value 1569 __ shrq(rax); 1570 #else 1571 __ mov(rcx, rax); // get shift count 1572 __ pop_l(rax, rdx); // get shift value 1573 __ lshr(rdx, rax); 1574 #endif 1575 } 1576 1577 void TemplateTable::fop2(Operation op) { 1578 transition(ftos, ftos); 1579 1580 if (UseSSE >= 1) { 1581 switch (op) { 1582 case add: 1583 __ addss(xmm0, at_rsp()); 1584 __ addptr(rsp, Interpreter::stackElementSize); 1585 break; 1586 case sub: 1587 __ movflt(xmm1, xmm0); 1588 __ pop_f(xmm0); 1589 __ subss(xmm0, xmm1); 1590 break; 1591 case mul: 1592 __ mulss(xmm0, at_rsp()); 1593 __ addptr(rsp, Interpreter::stackElementSize); 1594 break; 1595 case div: 1596 __ movflt(xmm1, xmm0); 1597 __ pop_f(xmm0); 1598 __ divss(xmm0, xmm1); 1599 break; 1600 case rem: 1601 // On x86_64 platforms the SharedRuntime::frem method is called to perform the 1602 // modulo operation. The frem method calls the function 1603 // double fmod(double x, double y) in math.h. The documentation of fmod states: 1604 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN 1605 // (signalling or quiet) is returned. 1606 // 1607 // On x86_32 platforms the FPU is used to perform the modulo operation. The 1608 // reason is that on 32-bit Windows the sign of modulo operations diverges from 1609 // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f). 1610 // The fprem instruction used on x86_32 is functionally equivalent to 1611 // SharedRuntime::frem in that it returns a NaN. 1612 #ifdef _LP64 1613 __ movflt(xmm1, xmm0); 1614 __ pop_f(xmm0); 1615 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1616 #else 1617 __ push_f(xmm0); 1618 __ pop_f(); 1619 __ fld_s(at_rsp()); 1620 __ fremr(rax); 1621 __ f2ieee(); 1622 __ pop(rax); // pop second operand off the stack 1623 __ push_f(); 1624 __ pop_f(xmm0); 1625 #endif 1626 break; 1627 default: 1628 ShouldNotReachHere(); 1629 break; 1630 } 1631 } else { 1632 #ifdef _LP64 1633 ShouldNotReachHere(); 1634 #else 1635 switch (op) { 1636 case add: __ fadd_s (at_rsp()); break; 1637 case sub: __ fsubr_s(at_rsp()); break; 1638 case mul: __ fmul_s (at_rsp()); break; 1639 case div: __ fdivr_s(at_rsp()); break; 1640 case rem: __ fld_s (at_rsp()); __ fremr(rax); break; 1641 default : ShouldNotReachHere(); 1642 } 1643 __ f2ieee(); 1644 __ pop(rax); // pop second operand off the stack 1645 #endif // _LP64 1646 } 1647 } 1648 1649 void TemplateTable::dop2(Operation op) { 1650 transition(dtos, dtos); 1651 if (UseSSE >= 2) { 1652 switch (op) { 1653 case add: 1654 __ addsd(xmm0, at_rsp()); 1655 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1656 break; 1657 case sub: 1658 __ movdbl(xmm1, xmm0); 1659 __ pop_d(xmm0); 1660 __ subsd(xmm0, xmm1); 1661 break; 1662 case mul: 1663 __ mulsd(xmm0, at_rsp()); 1664 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1665 break; 1666 case div: 1667 __ movdbl(xmm1, xmm0); 1668 __ pop_d(xmm0); 1669 __ divsd(xmm0, xmm1); 1670 break; 1671 case rem: 1672 // Similar to fop2(), the modulo operation is performed using the 1673 // SharedRuntime::drem method (on x86_64 platforms) or using the 1674 // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2(). 1675 #ifdef _LP64 1676 __ movdbl(xmm1, xmm0); 1677 __ pop_d(xmm0); 1678 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1679 #else 1680 __ push_d(xmm0); 1681 __ pop_d(); 1682 __ fld_d(at_rsp()); 1683 __ fremr(rax); 1684 __ d2ieee(); 1685 __ pop(rax); 1686 __ pop(rdx); 1687 __ push_d(); 1688 __ pop_d(xmm0); 1689 #endif 1690 break; 1691 default: 1692 ShouldNotReachHere(); 1693 break; 1694 } 1695 } else { 1696 #ifdef _LP64 1697 ShouldNotReachHere(); 1698 #else 1699 switch (op) { 1700 case add: __ fadd_d (at_rsp()); break; 1701 case sub: __ fsubr_d(at_rsp()); break; 1702 case mul: { 1703 Label L_strict; 1704 Label L_join; 1705 const Address access_flags (rcx, Method::access_flags_offset()); 1706 __ get_method(rcx); 1707 __ movl(rcx, access_flags); 1708 __ testl(rcx, JVM_ACC_STRICT); 1709 __ jccb(Assembler::notZero, L_strict); 1710 __ fmul_d (at_rsp()); 1711 __ jmpb(L_join); 1712 __ bind(L_strict); 1713 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 1714 __ fmulp(); 1715 __ fmul_d (at_rsp()); 1716 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 1717 __ fmulp(); 1718 __ bind(L_join); 1719 break; 1720 } 1721 case div: { 1722 Label L_strict; 1723 Label L_join; 1724 const Address access_flags (rcx, Method::access_flags_offset()); 1725 __ get_method(rcx); 1726 __ movl(rcx, access_flags); 1727 __ testl(rcx, JVM_ACC_STRICT); 1728 __ jccb(Assembler::notZero, L_strict); 1729 __ fdivr_d(at_rsp()); 1730 __ jmp(L_join); 1731 __ bind(L_strict); 1732 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 1733 __ fmul_d (at_rsp()); 1734 __ fdivrp(); 1735 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 1736 __ fmulp(); 1737 __ bind(L_join); 1738 break; 1739 } 1740 case rem: __ fld_d (at_rsp()); __ fremr(rax); break; 1741 default : ShouldNotReachHere(); 1742 } 1743 __ d2ieee(); 1744 // Pop double precision number from rsp. 1745 __ pop(rax); 1746 __ pop(rdx); 1747 #endif 1748 } 1749 } 1750 1751 void TemplateTable::ineg() { 1752 transition(itos, itos); 1753 __ negl(rax); 1754 } 1755 1756 void TemplateTable::lneg() { 1757 transition(ltos, ltos); 1758 LP64_ONLY(__ negq(rax)); 1759 NOT_LP64(__ lneg(rdx, rax)); 1760 } 1761 1762 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1763 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1764 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1765 // of 128-bits operands for SSE instructions. 1766 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1767 // Store the value to a 128-bits operand. 1768 operand[0] = lo; 1769 operand[1] = hi; 1770 return operand; 1771 } 1772 1773 // Buffer for 128-bits masks used by SSE instructions. 1774 static jlong float_signflip_pool[2*2]; 1775 static jlong double_signflip_pool[2*2]; 1776 1777 void TemplateTable::fneg() { 1778 transition(ftos, ftos); 1779 if (UseSSE >= 1) { 1780 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); 1781 __ xorps(xmm0, ExternalAddress((address) float_signflip)); 1782 } else { 1783 LP64_ONLY(ShouldNotReachHere()); 1784 NOT_LP64(__ fchs()); 1785 } 1786 } 1787 1788 void TemplateTable::dneg() { 1789 transition(dtos, dtos); 1790 if (UseSSE >= 2) { 1791 static jlong *double_signflip = 1792 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); 1793 __ xorpd(xmm0, ExternalAddress((address) double_signflip)); 1794 } else { 1795 #ifdef _LP64 1796 ShouldNotReachHere(); 1797 #else 1798 __ fchs(); 1799 #endif 1800 } 1801 } 1802 1803 void TemplateTable::iinc() { 1804 transition(vtos, vtos); 1805 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1806 locals_index(rbx); 1807 __ addl(iaddress(rbx), rdx); 1808 } 1809 1810 void TemplateTable::wide_iinc() { 1811 transition(vtos, vtos); 1812 __ movl(rdx, at_bcp(4)); // get constant 1813 locals_index_wide(rbx); 1814 __ bswapl(rdx); // swap bytes & sign-extend constant 1815 __ sarl(rdx, 16); 1816 __ addl(iaddress(rbx), rdx); 1817 // Note: should probably use only one movl to get both 1818 // the index and the constant -> fix this 1819 } 1820 1821 void TemplateTable::convert() { 1822 #ifdef _LP64 1823 // Checking 1824 #ifdef ASSERT 1825 { 1826 TosState tos_in = ilgl; 1827 TosState tos_out = ilgl; 1828 switch (bytecode()) { 1829 case Bytecodes::_i2l: // fall through 1830 case Bytecodes::_i2f: // fall through 1831 case Bytecodes::_i2d: // fall through 1832 case Bytecodes::_i2b: // fall through 1833 case Bytecodes::_i2c: // fall through 1834 case Bytecodes::_i2s: tos_in = itos; break; 1835 case Bytecodes::_l2i: // fall through 1836 case Bytecodes::_l2f: // fall through 1837 case Bytecodes::_l2d: tos_in = ltos; break; 1838 case Bytecodes::_f2i: // fall through 1839 case Bytecodes::_f2l: // fall through 1840 case Bytecodes::_f2d: tos_in = ftos; break; 1841 case Bytecodes::_d2i: // fall through 1842 case Bytecodes::_d2l: // fall through 1843 case Bytecodes::_d2f: tos_in = dtos; break; 1844 default : ShouldNotReachHere(); 1845 } 1846 switch (bytecode()) { 1847 case Bytecodes::_l2i: // fall through 1848 case Bytecodes::_f2i: // fall through 1849 case Bytecodes::_d2i: // fall through 1850 case Bytecodes::_i2b: // fall through 1851 case Bytecodes::_i2c: // fall through 1852 case Bytecodes::_i2s: tos_out = itos; break; 1853 case Bytecodes::_i2l: // fall through 1854 case Bytecodes::_f2l: // fall through 1855 case Bytecodes::_d2l: tos_out = ltos; break; 1856 case Bytecodes::_i2f: // fall through 1857 case Bytecodes::_l2f: // fall through 1858 case Bytecodes::_d2f: tos_out = ftos; break; 1859 case Bytecodes::_i2d: // fall through 1860 case Bytecodes::_l2d: // fall through 1861 case Bytecodes::_f2d: tos_out = dtos; break; 1862 default : ShouldNotReachHere(); 1863 } 1864 transition(tos_in, tos_out); 1865 } 1866 #endif // ASSERT 1867 1868 static const int64_t is_nan = 0x8000000000000000L; 1869 1870 // Conversion 1871 switch (bytecode()) { 1872 case Bytecodes::_i2l: 1873 __ movslq(rax, rax); 1874 break; 1875 case Bytecodes::_i2f: 1876 __ cvtsi2ssl(xmm0, rax); 1877 break; 1878 case Bytecodes::_i2d: 1879 __ cvtsi2sdl(xmm0, rax); 1880 break; 1881 case Bytecodes::_i2b: 1882 __ movsbl(rax, rax); 1883 break; 1884 case Bytecodes::_i2c: 1885 __ movzwl(rax, rax); 1886 break; 1887 case Bytecodes::_i2s: 1888 __ movswl(rax, rax); 1889 break; 1890 case Bytecodes::_l2i: 1891 __ movl(rax, rax); 1892 break; 1893 case Bytecodes::_l2f: 1894 __ cvtsi2ssq(xmm0, rax); 1895 break; 1896 case Bytecodes::_l2d: 1897 __ cvtsi2sdq(xmm0, rax); 1898 break; 1899 case Bytecodes::_f2i: 1900 { 1901 Label L; 1902 __ cvttss2sil(rax, xmm0); 1903 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1904 __ jcc(Assembler::notEqual, L); 1905 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1906 __ bind(L); 1907 } 1908 break; 1909 case Bytecodes::_f2l: 1910 { 1911 Label L; 1912 __ cvttss2siq(rax, xmm0); 1913 // NaN or overflow/underflow? 1914 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1915 __ jcc(Assembler::notEqual, L); 1916 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1917 __ bind(L); 1918 } 1919 break; 1920 case Bytecodes::_f2d: 1921 __ cvtss2sd(xmm0, xmm0); 1922 break; 1923 case Bytecodes::_d2i: 1924 { 1925 Label L; 1926 __ cvttsd2sil(rax, xmm0); 1927 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1928 __ jcc(Assembler::notEqual, L); 1929 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1930 __ bind(L); 1931 } 1932 break; 1933 case Bytecodes::_d2l: 1934 { 1935 Label L; 1936 __ cvttsd2siq(rax, xmm0); 1937 // NaN or overflow/underflow? 1938 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1939 __ jcc(Assembler::notEqual, L); 1940 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1941 __ bind(L); 1942 } 1943 break; 1944 case Bytecodes::_d2f: 1945 __ cvtsd2ss(xmm0, xmm0); 1946 break; 1947 default: 1948 ShouldNotReachHere(); 1949 } 1950 #else 1951 // Checking 1952 #ifdef ASSERT 1953 { TosState tos_in = ilgl; 1954 TosState tos_out = ilgl; 1955 switch (bytecode()) { 1956 case Bytecodes::_i2l: // fall through 1957 case Bytecodes::_i2f: // fall through 1958 case Bytecodes::_i2d: // fall through 1959 case Bytecodes::_i2b: // fall through 1960 case Bytecodes::_i2c: // fall through 1961 case Bytecodes::_i2s: tos_in = itos; break; 1962 case Bytecodes::_l2i: // fall through 1963 case Bytecodes::_l2f: // fall through 1964 case Bytecodes::_l2d: tos_in = ltos; break; 1965 case Bytecodes::_f2i: // fall through 1966 case Bytecodes::_f2l: // fall through 1967 case Bytecodes::_f2d: tos_in = ftos; break; 1968 case Bytecodes::_d2i: // fall through 1969 case Bytecodes::_d2l: // fall through 1970 case Bytecodes::_d2f: tos_in = dtos; break; 1971 default : ShouldNotReachHere(); 1972 } 1973 switch (bytecode()) { 1974 case Bytecodes::_l2i: // fall through 1975 case Bytecodes::_f2i: // fall through 1976 case Bytecodes::_d2i: // fall through 1977 case Bytecodes::_i2b: // fall through 1978 case Bytecodes::_i2c: // fall through 1979 case Bytecodes::_i2s: tos_out = itos; break; 1980 case Bytecodes::_i2l: // fall through 1981 case Bytecodes::_f2l: // fall through 1982 case Bytecodes::_d2l: tos_out = ltos; break; 1983 case Bytecodes::_i2f: // fall through 1984 case Bytecodes::_l2f: // fall through 1985 case Bytecodes::_d2f: tos_out = ftos; break; 1986 case Bytecodes::_i2d: // fall through 1987 case Bytecodes::_l2d: // fall through 1988 case Bytecodes::_f2d: tos_out = dtos; break; 1989 default : ShouldNotReachHere(); 1990 } 1991 transition(tos_in, tos_out); 1992 } 1993 #endif // ASSERT 1994 1995 // Conversion 1996 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation) 1997 switch (bytecode()) { 1998 case Bytecodes::_i2l: 1999 __ extend_sign(rdx, rax); 2000 break; 2001 case Bytecodes::_i2f: 2002 if (UseSSE >= 1) { 2003 __ cvtsi2ssl(xmm0, rax); 2004 } else { 2005 __ push(rax); // store int on tos 2006 __ fild_s(at_rsp()); // load int to ST0 2007 __ f2ieee(); // truncate to float size 2008 __ pop(rcx); // adjust rsp 2009 } 2010 break; 2011 case Bytecodes::_i2d: 2012 if (UseSSE >= 2) { 2013 __ cvtsi2sdl(xmm0, rax); 2014 } else { 2015 __ push(rax); // add one slot for d2ieee() 2016 __ push(rax); // store int on tos 2017 __ fild_s(at_rsp()); // load int to ST0 2018 __ d2ieee(); // truncate to double size 2019 __ pop(rcx); // adjust rsp 2020 __ pop(rcx); 2021 } 2022 break; 2023 case Bytecodes::_i2b: 2024 __ shll(rax, 24); // truncate upper 24 bits 2025 __ sarl(rax, 24); // and sign-extend byte 2026 LP64_ONLY(__ movsbl(rax, rax)); 2027 break; 2028 case Bytecodes::_i2c: 2029 __ andl(rax, 0xFFFF); // truncate upper 16 bits 2030 LP64_ONLY(__ movzwl(rax, rax)); 2031 break; 2032 case Bytecodes::_i2s: 2033 __ shll(rax, 16); // truncate upper 16 bits 2034 __ sarl(rax, 16); // and sign-extend short 2035 LP64_ONLY(__ movswl(rax, rax)); 2036 break; 2037 case Bytecodes::_l2i: 2038 /* nothing to do */ 2039 break; 2040 case Bytecodes::_l2f: 2041 // On 64-bit platforms, the cvtsi2ssq instruction is used to convert 2042 // 64-bit long values to floats. On 32-bit platforms it is not possible 2043 // to use that instruction with 64-bit operands, therefore the FPU is 2044 // used to perform the conversion. 2045 __ push(rdx); // store long on tos 2046 __ push(rax); 2047 __ fild_d(at_rsp()); // load long to ST0 2048 __ f2ieee(); // truncate to float size 2049 __ pop(rcx); // adjust rsp 2050 __ pop(rcx); 2051 if (UseSSE >= 1) { 2052 __ push_f(); 2053 __ pop_f(xmm0); 2054 } 2055 break; 2056 case Bytecodes::_l2d: 2057 // On 32-bit platforms the FPU is used for conversion because on 2058 // 32-bit platforms it is not not possible to use the cvtsi2sdq 2059 // instruction with 64-bit operands. 2060 __ push(rdx); // store long on tos 2061 __ push(rax); 2062 __ fild_d(at_rsp()); // load long to ST0 2063 __ d2ieee(); // truncate to double size 2064 __ pop(rcx); // adjust rsp 2065 __ pop(rcx); 2066 if (UseSSE >= 2) { 2067 __ push_d(); 2068 __ pop_d(xmm0); 2069 } 2070 break; 2071 case Bytecodes::_f2i: 2072 // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs 2073 // as it returns 0 for any NaN. 2074 if (UseSSE >= 1) { 2075 __ push_f(xmm0); 2076 } else { 2077 __ push(rcx); // reserve space for argument 2078 __ fstp_s(at_rsp()); // pass float argument on stack 2079 } 2080 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 2081 break; 2082 case Bytecodes::_f2l: 2083 // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs 2084 // as it returns 0 for any NaN. 2085 if (UseSSE >= 1) { 2086 __ push_f(xmm0); 2087 } else { 2088 __ push(rcx); // reserve space for argument 2089 __ fstp_s(at_rsp()); // pass float argument on stack 2090 } 2091 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 2092 break; 2093 case Bytecodes::_f2d: 2094 if (UseSSE < 1) { 2095 /* nothing to do */ 2096 } else if (UseSSE == 1) { 2097 __ push_f(xmm0); 2098 __ pop_f(); 2099 } else { // UseSSE >= 2 2100 __ cvtss2sd(xmm0, xmm0); 2101 } 2102 break; 2103 case Bytecodes::_d2i: 2104 if (UseSSE >= 2) { 2105 __ push_d(xmm0); 2106 } else { 2107 __ push(rcx); // reserve space for argument 2108 __ push(rcx); 2109 __ fstp_d(at_rsp()); // pass double argument on stack 2110 } 2111 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2); 2112 break; 2113 case Bytecodes::_d2l: 2114 if (UseSSE >= 2) { 2115 __ push_d(xmm0); 2116 } else { 2117 __ push(rcx); // reserve space for argument 2118 __ push(rcx); 2119 __ fstp_d(at_rsp()); // pass double argument on stack 2120 } 2121 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2); 2122 break; 2123 case Bytecodes::_d2f: 2124 if (UseSSE <= 1) { 2125 __ push(rcx); // reserve space for f2ieee() 2126 __ f2ieee(); // truncate to float size 2127 __ pop(rcx); // adjust rsp 2128 if (UseSSE == 1) { 2129 // The cvtsd2ss instruction is not available if UseSSE==1, therefore 2130 // the conversion is performed using the FPU in this case. 2131 __ push_f(); 2132 __ pop_f(xmm0); 2133 } 2134 } else { // UseSSE >= 2 2135 __ cvtsd2ss(xmm0, xmm0); 2136 } 2137 break; 2138 default : 2139 ShouldNotReachHere(); 2140 } 2141 #endif 2142 } 2143 2144 void TemplateTable::lcmp() { 2145 transition(ltos, itos); 2146 #ifdef _LP64 2147 Label done; 2148 __ pop_l(rdx); 2149 __ cmpq(rdx, rax); 2150 __ movl(rax, -1); 2151 __ jccb(Assembler::less, done); 2152 __ setb(Assembler::notEqual, rax); 2153 __ movzbl(rax, rax); 2154 __ bind(done); 2155 #else 2156 2157 // y = rdx:rax 2158 __ pop_l(rbx, rcx); // get x = rcx:rbx 2159 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y) 2160 __ mov(rax, rcx); 2161 #endif 2162 } 2163 2164 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 2165 if ((is_float && UseSSE >= 1) || 2166 (!is_float && UseSSE >= 2)) { 2167 Label done; 2168 if (is_float) { 2169 // XXX get rid of pop here, use ... reg, mem32 2170 __ pop_f(xmm1); 2171 __ ucomiss(xmm1, xmm0); 2172 } else { 2173 // XXX get rid of pop here, use ... reg, mem64 2174 __ pop_d(xmm1); 2175 __ ucomisd(xmm1, xmm0); 2176 } 2177 if (unordered_result < 0) { 2178 __ movl(rax, -1); 2179 __ jccb(Assembler::parity, done); 2180 __ jccb(Assembler::below, done); 2181 __ setb(Assembler::notEqual, rdx); 2182 __ movzbl(rax, rdx); 2183 } else { 2184 __ movl(rax, 1); 2185 __ jccb(Assembler::parity, done); 2186 __ jccb(Assembler::above, done); 2187 __ movl(rax, 0); 2188 __ jccb(Assembler::equal, done); 2189 __ decrementl(rax); 2190 } 2191 __ bind(done); 2192 } else { 2193 #ifdef _LP64 2194 ShouldNotReachHere(); 2195 #else 2196 if (is_float) { 2197 __ fld_s(at_rsp()); 2198 } else { 2199 __ fld_d(at_rsp()); 2200 __ pop(rdx); 2201 } 2202 __ pop(rcx); 2203 __ fcmp2int(rax, unordered_result < 0); 2204 #endif // _LP64 2205 } 2206 } 2207 2208 void TemplateTable::branch(bool is_jsr, bool is_wide) { 2209 __ get_method(rcx); // rcx holds method 2210 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 2211 // holds bumped taken count 2212 2213 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 2214 InvocationCounter::counter_offset(); 2215 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 2216 InvocationCounter::counter_offset(); 2217 2218 // Load up edx with the branch displacement 2219 if (is_wide) { 2220 __ movl(rdx, at_bcp(1)); 2221 } else { 2222 __ load_signed_short(rdx, at_bcp(1)); 2223 } 2224 __ bswapl(rdx); 2225 2226 if (!is_wide) { 2227 __ sarl(rdx, 16); 2228 } 2229 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2230 2231 // Handle all the JSR stuff here, then exit. 2232 // It's much shorter and cleaner than intermingling with the non-JSR 2233 // normal-branch stuff occurring below. 2234 if (is_jsr) { 2235 // Pre-load the next target bytecode into rbx 2236 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); 2237 2238 // compute return address as bci in rax 2239 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 2240 in_bytes(ConstMethod::codes_offset()))); 2241 __ subptr(rax, Address(rcx, Method::const_offset())); 2242 // Adjust the bcp in r13 by the displacement in rdx 2243 __ addptr(rbcp, rdx); 2244 // jsr returns atos that is not an oop 2245 __ push_i(rax); 2246 __ dispatch_only(vtos, true); 2247 return; 2248 } 2249 2250 // Normal (non-jsr) branch handling 2251 2252 // Adjust the bcp in r13 by the displacement in rdx 2253 __ addptr(rbcp, rdx); 2254 2255 assert(UseLoopCounter || !UseOnStackReplacement, 2256 "on-stack-replacement requires loop counters"); 2257 Label backedge_counter_overflow; 2258 Label profile_method; 2259 Label dispatch; 2260 if (UseLoopCounter) { 2261 // increment backedge counter for backward branches 2262 // rax: MDO 2263 // rbx: MDO bumped taken-count 2264 // rcx: method 2265 // rdx: target offset 2266 // r13: target bcp 2267 // r14: locals pointer 2268 __ testl(rdx, rdx); // check if forward or backward branch 2269 __ jcc(Assembler::positive, dispatch); // count only if backward branch 2270 2271 // check if MethodCounters exists 2272 Label has_counters; 2273 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2274 __ testptr(rax, rax); 2275 __ jcc(Assembler::notZero, has_counters); 2276 __ push(rdx); 2277 __ push(rcx); 2278 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 2279 rcx); 2280 __ pop(rcx); 2281 __ pop(rdx); 2282 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2283 __ testptr(rax, rax); 2284 __ jcc(Assembler::zero, dispatch); 2285 __ bind(has_counters); 2286 2287 if (TieredCompilation) { 2288 Label no_mdo; 2289 int increment = InvocationCounter::count_increment; 2290 if (ProfileInterpreter) { 2291 // Are we profiling? 2292 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 2293 __ testptr(rbx, rbx); 2294 __ jccb(Assembler::zero, no_mdo); 2295 // Increment the MDO backedge counter 2296 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 2297 in_bytes(InvocationCounter::counter_offset())); 2298 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 2299 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, rax, false, Assembler::zero, 2300 UseOnStackReplacement ? &backedge_counter_overflow : NULL); 2301 __ jmp(dispatch); 2302 } 2303 __ bind(no_mdo); 2304 // Increment backedge counter in MethodCounters* 2305 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2306 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 2307 __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask, 2308 rax, false, Assembler::zero, 2309 UseOnStackReplacement ? &backedge_counter_overflow : NULL); 2310 } else { // not TieredCompilation 2311 // increment counter 2312 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2313 __ movl(rax, Address(rcx, be_offset)); // load backedge counter 2314 __ incrementl(rax, InvocationCounter::count_increment); // increment counter 2315 __ movl(Address(rcx, be_offset), rax); // store counter 2316 2317 __ movl(rax, Address(rcx, inv_offset)); // load invocation counter 2318 2319 __ andl(rax, InvocationCounter::count_mask_value); // and the status bits 2320 __ addl(rax, Address(rcx, be_offset)); // add both counters 2321 2322 if (ProfileInterpreter) { 2323 // Test to see if we should create a method data oop 2324 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset()))); 2325 __ jcc(Assembler::less, dispatch); 2326 2327 // if no method data exists, go to profile method 2328 __ test_method_data_pointer(rax, profile_method); 2329 2330 if (UseOnStackReplacement) { 2331 // check for overflow against rbx which is the MDO taken count 2332 __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); 2333 __ jcc(Assembler::below, dispatch); 2334 2335 // When ProfileInterpreter is on, the backedge_count comes 2336 // from the MethodData*, which value does not get reset on 2337 // the call to frequency_counter_overflow(). To avoid 2338 // excessive calls to the overflow routine while the method is 2339 // being compiled, add a second test to make sure the overflow 2340 // function is called only once every overflow_frequency. 2341 const int overflow_frequency = 1024; 2342 __ andl(rbx, overflow_frequency - 1); 2343 __ jcc(Assembler::zero, backedge_counter_overflow); 2344 2345 } 2346 } else { 2347 if (UseOnStackReplacement) { 2348 // check for overflow against rax, which is the sum of the 2349 // counters 2350 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); 2351 __ jcc(Assembler::aboveEqual, backedge_counter_overflow); 2352 2353 } 2354 } 2355 } 2356 __ bind(dispatch); 2357 } 2358 2359 // Pre-load the next target bytecode into rbx 2360 __ load_unsigned_byte(rbx, Address(rbcp, 0)); 2361 2362 // continue with the bytecode @ target 2363 // rax: return bci for jsr's, unused otherwise 2364 // rbx: target bytecode 2365 // r13: target bcp 2366 __ dispatch_only(vtos, true); 2367 2368 if (UseLoopCounter) { 2369 if (ProfileInterpreter) { 2370 // Out-of-line code to allocate method data oop. 2371 __ bind(profile_method); 2372 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 2373 __ set_method_data_pointer_for_bcp(); 2374 __ jmp(dispatch); 2375 } 2376 2377 if (UseOnStackReplacement) { 2378 // invocation counter overflow 2379 __ bind(backedge_counter_overflow); 2380 __ negptr(rdx); 2381 __ addptr(rdx, rbcp); // branch bcp 2382 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 2383 __ call_VM(noreg, 2384 CAST_FROM_FN_PTR(address, 2385 InterpreterRuntime::frequency_counter_overflow), 2386 rdx); 2387 2388 // rax: osr nmethod (osr ok) or NULL (osr not possible) 2389 // rdx: scratch 2390 // r14: locals pointer 2391 // r13: bcp 2392 __ testptr(rax, rax); // test result 2393 __ jcc(Assembler::zero, dispatch); // no osr if null 2394 // nmethod may have been invalidated (VM may block upon call_VM return) 2395 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 2396 __ jcc(Assembler::notEqual, dispatch); 2397 2398 // We have the address of an on stack replacement routine in rax. 2399 // In preparation of invoking it, first we must migrate the locals 2400 // and monitors from off the interpreter frame on the stack. 2401 // Ensure to save the osr nmethod over the migration call, 2402 // it will be preserved in rbx. 2403 __ mov(rbx, rax); 2404 2405 NOT_LP64(__ get_thread(rcx)); 2406 2407 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 2408 2409 // rax is OSR buffer, move it to expected parameter location 2410 LP64_ONLY(__ mov(j_rarg0, rax)); 2411 NOT_LP64(__ mov(rcx, rax)); 2412 // We use j_rarg definitions here so that registers don't conflict as parameter 2413 // registers change across platforms as we are in the midst of a calling 2414 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 2415 2416 const Register retaddr = LP64_ONLY(j_rarg2) NOT_LP64(rdi); 2417 const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx); 2418 2419 // pop the interpreter frame 2420 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 2421 __ leave(); // remove frame anchor 2422 __ pop(retaddr); // get return address 2423 __ mov(rsp, sender_sp); // set sp to sender sp 2424 // Ensure compiled code always sees stack at proper alignment 2425 __ andptr(rsp, -(StackAlignmentInBytes)); 2426 2427 // unlike x86 we need no specialized return from compiled code 2428 // to the interpreter or the call stub. 2429 2430 // push the return address 2431 __ push(retaddr); 2432 2433 // and begin the OSR nmethod 2434 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 2435 } 2436 } 2437 } 2438 2439 void TemplateTable::if_0cmp(Condition cc) { 2440 transition(itos, vtos); 2441 // assume branch is more often taken than not (loops use backward branches) 2442 Label not_taken; 2443 __ testl(rax, rax); 2444 __ jcc(j_not(cc), not_taken); 2445 branch(false, false); 2446 __ bind(not_taken); 2447 __ profile_not_taken_branch(rax); 2448 } 2449 2450 void TemplateTable::if_icmp(Condition cc) { 2451 transition(itos, vtos); 2452 // assume branch is more often taken than not (loops use backward branches) 2453 Label not_taken; 2454 __ pop_i(rdx); 2455 __ cmpl(rdx, rax); 2456 __ jcc(j_not(cc), not_taken); 2457 branch(false, false); 2458 __ bind(not_taken); 2459 __ profile_not_taken_branch(rax); 2460 } 2461 2462 void TemplateTable::if_nullcmp(Condition cc) { 2463 transition(atos, vtos); 2464 // assume branch is more often taken than not (loops use backward branches) 2465 Label not_taken; 2466 __ testptr(rax, rax); 2467 __ jcc(j_not(cc), not_taken); 2468 branch(false, false); 2469 __ bind(not_taken); 2470 __ profile_not_taken_branch(rax); 2471 } 2472 2473 void TemplateTable::if_acmp(Condition cc) { 2474 transition(atos, vtos); 2475 // assume branch is more often taken than not (loops use backward branches) 2476 Label taken, not_taken; 2477 __ pop_ptr(rdx); 2478 2479 const int is_value_mask = markOopDesc::always_locked_pattern; 2480 if (EnableValhalla && UsePointerPerturbation) { 2481 Label is_null; 2482 __ testptr(rdx, rdx); 2483 __ jcc(Assembler::zero, is_null); 2484 __ movptr(rbx, Address(rdx, oopDesc::mark_offset_in_bytes())); 2485 __ andptr(rbx, is_value_mask); 2486 __ cmpl(rbx, is_value_mask); 2487 __ setb(Assembler::equal, rbx); 2488 __ movzbl(rbx, rbx); 2489 __ orptr(rdx, rbx); 2490 __ bind(is_null); 2491 } 2492 2493 __ cmpoop(rdx, rax); 2494 2495 if (EnableValhalla && !UsePointerPerturbation) { 2496 __ jcc(Assembler::notEqual, (cc == not_equal) ? taken : not_taken); 2497 __ testptr(rdx, rdx); 2498 __ jcc(Assembler::zero, (cc == equal) ? taken : not_taken); 2499 __ movptr(rbx, Address(rdx, oopDesc::mark_offset_in_bytes())); 2500 __ andptr(rbx, is_value_mask); 2501 __ cmpl(rbx, is_value_mask); 2502 cc = (cc == equal) ? not_equal : equal; 2503 } 2504 2505 __ jcc(j_not(cc), not_taken); 2506 __ bind(taken); 2507 branch(false, false); 2508 __ bind(not_taken); 2509 __ profile_not_taken_branch(rax); 2510 } 2511 2512 void TemplateTable::ret() { 2513 transition(vtos, vtos); 2514 locals_index(rbx); 2515 LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp 2516 NOT_LP64(__ movptr(rbx, iaddress(rbx))); 2517 __ profile_ret(rbx, rcx); 2518 __ get_method(rax); 2519 __ movptr(rbcp, Address(rax, Method::const_offset())); 2520 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, 2521 ConstMethod::codes_offset())); 2522 __ dispatch_next(vtos, 0, true); 2523 } 2524 2525 void TemplateTable::wide_ret() { 2526 transition(vtos, vtos); 2527 locals_index_wide(rbx); 2528 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 2529 __ profile_ret(rbx, rcx); 2530 __ get_method(rax); 2531 __ movptr(rbcp, Address(rax, Method::const_offset())); 2532 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); 2533 __ dispatch_next(vtos, 0, true); 2534 } 2535 2536 void TemplateTable::tableswitch() { 2537 Label default_case, continue_execution; 2538 transition(itos, vtos); 2539 2540 // align r13/rsi 2541 __ lea(rbx, at_bcp(BytesPerInt)); 2542 __ andptr(rbx, -BytesPerInt); 2543 // load lo & hi 2544 __ movl(rcx, Address(rbx, BytesPerInt)); 2545 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 2546 __ bswapl(rcx); 2547 __ bswapl(rdx); 2548 // check against lo & hi 2549 __ cmpl(rax, rcx); 2550 __ jcc(Assembler::less, default_case); 2551 __ cmpl(rax, rdx); 2552 __ jcc(Assembler::greater, default_case); 2553 // lookup dispatch offset 2554 __ subl(rax, rcx); 2555 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 2556 __ profile_switch_case(rax, rbx, rcx); 2557 // continue execution 2558 __ bind(continue_execution); 2559 __ bswapl(rdx); 2560 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2561 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2562 __ addptr(rbcp, rdx); 2563 __ dispatch_only(vtos, true); 2564 // handle default 2565 __ bind(default_case); 2566 __ profile_switch_default(rax); 2567 __ movl(rdx, Address(rbx, 0)); 2568 __ jmp(continue_execution); 2569 } 2570 2571 void TemplateTable::lookupswitch() { 2572 transition(itos, itos); 2573 __ stop("lookupswitch bytecode should have been rewritten"); 2574 } 2575 2576 void TemplateTable::fast_linearswitch() { 2577 transition(itos, vtos); 2578 Label loop_entry, loop, found, continue_execution; 2579 // bswap rax so we can avoid bswapping the table entries 2580 __ bswapl(rax); 2581 // align r13 2582 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2583 // this instruction (change offsets 2584 // below) 2585 __ andptr(rbx, -BytesPerInt); 2586 // set counter 2587 __ movl(rcx, Address(rbx, BytesPerInt)); 2588 __ bswapl(rcx); 2589 __ jmpb(loop_entry); 2590 // table search 2591 __ bind(loop); 2592 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 2593 __ jcc(Assembler::equal, found); 2594 __ bind(loop_entry); 2595 __ decrementl(rcx); 2596 __ jcc(Assembler::greaterEqual, loop); 2597 // default case 2598 __ profile_switch_default(rax); 2599 __ movl(rdx, Address(rbx, 0)); 2600 __ jmp(continue_execution); 2601 // entry found -> get offset 2602 __ bind(found); 2603 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 2604 __ profile_switch_case(rcx, rax, rbx); 2605 // continue execution 2606 __ bind(continue_execution); 2607 __ bswapl(rdx); 2608 __ movl2ptr(rdx, rdx); 2609 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2610 __ addptr(rbcp, rdx); 2611 __ dispatch_only(vtos, true); 2612 } 2613 2614 void TemplateTable::fast_binaryswitch() { 2615 transition(itos, vtos); 2616 // Implementation using the following core algorithm: 2617 // 2618 // int binary_search(int key, LookupswitchPair* array, int n) { 2619 // // Binary search according to "Methodik des Programmierens" by 2620 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2621 // int i = 0; 2622 // int j = n; 2623 // while (i+1 < j) { 2624 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2625 // // with Q: for all i: 0 <= i < n: key < a[i] 2626 // // where a stands for the array and assuming that the (inexisting) 2627 // // element a[n] is infinitely big. 2628 // int h = (i + j) >> 1; 2629 // // i < h < j 2630 // if (key < array[h].fast_match()) { 2631 // j = h; 2632 // } else { 2633 // i = h; 2634 // } 2635 // } 2636 // // R: a[i] <= key < a[i+1] or Q 2637 // // (i.e., if key is within array, i is the correct index) 2638 // return i; 2639 // } 2640 2641 // Register allocation 2642 const Register key = rax; // already set (tosca) 2643 const Register array = rbx; 2644 const Register i = rcx; 2645 const Register j = rdx; 2646 const Register h = rdi; 2647 const Register temp = rsi; 2648 2649 // Find array start 2650 NOT_LP64(__ save_bcp()); 2651 2652 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2653 // get rid of this 2654 // instruction (change 2655 // offsets below) 2656 __ andptr(array, -BytesPerInt); 2657 2658 // Initialize i & j 2659 __ xorl(i, i); // i = 0; 2660 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2661 2662 // Convert j into native byteordering 2663 __ bswapl(j); 2664 2665 // And start 2666 Label entry; 2667 __ jmp(entry); 2668 2669 // binary search loop 2670 { 2671 Label loop; 2672 __ bind(loop); 2673 // int h = (i + j) >> 1; 2674 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2675 __ sarl(h, 1); // h = (i + j) >> 1; 2676 // if (key < array[h].fast_match()) { 2677 // j = h; 2678 // } else { 2679 // i = h; 2680 // } 2681 // Convert array[h].match to native byte-ordering before compare 2682 __ movl(temp, Address(array, h, Address::times_8)); 2683 __ bswapl(temp); 2684 __ cmpl(key, temp); 2685 // j = h if (key < array[h].fast_match()) 2686 __ cmov32(Assembler::less, j, h); 2687 // i = h if (key >= array[h].fast_match()) 2688 __ cmov32(Assembler::greaterEqual, i, h); 2689 // while (i+1 < j) 2690 __ bind(entry); 2691 __ leal(h, Address(i, 1)); // i+1 2692 __ cmpl(h, j); // i+1 < j 2693 __ jcc(Assembler::less, loop); 2694 } 2695 2696 // end of binary search, result index is i (must check again!) 2697 Label default_case; 2698 // Convert array[i].match to native byte-ordering before compare 2699 __ movl(temp, Address(array, i, Address::times_8)); 2700 __ bswapl(temp); 2701 __ cmpl(key, temp); 2702 __ jcc(Assembler::notEqual, default_case); 2703 2704 // entry found -> j = offset 2705 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2706 __ profile_switch_case(i, key, array); 2707 __ bswapl(j); 2708 LP64_ONLY(__ movslq(j, j)); 2709 2710 NOT_LP64(__ restore_bcp()); 2711 NOT_LP64(__ restore_locals()); // restore rdi 2712 2713 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2714 __ addptr(rbcp, j); 2715 __ dispatch_only(vtos, true); 2716 2717 // default case -> j = default offset 2718 __ bind(default_case); 2719 __ profile_switch_default(i); 2720 __ movl(j, Address(array, -2 * BytesPerInt)); 2721 __ bswapl(j); 2722 LP64_ONLY(__ movslq(j, j)); 2723 2724 NOT_LP64(__ restore_bcp()); 2725 NOT_LP64(__ restore_locals()); 2726 2727 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2728 __ addptr(rbcp, j); 2729 __ dispatch_only(vtos, true); 2730 } 2731 2732 void TemplateTable::_return(TosState state) { 2733 transition(state, state); 2734 2735 assert(_desc->calls_vm(), 2736 "inconsistent calls_vm information"); // call in remove_activation 2737 2738 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2739 assert(state == vtos, "only valid state"); 2740 Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax); 2741 __ movptr(robj, aaddress(0)); 2742 __ load_klass(rdi, robj); 2743 __ movl(rdi, Address(rdi, Klass::access_flags_offset())); 2744 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2745 Label skip_register_finalizer; 2746 __ jcc(Assembler::zero, skip_register_finalizer); 2747 2748 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); 2749 2750 __ bind(skip_register_finalizer); 2751 } 2752 2753 if (SafepointMechanism::uses_thread_local_poll() && _desc->bytecode() != Bytecodes::_return_register_finalizer) { 2754 Label no_safepoint; 2755 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll")); 2756 #ifdef _LP64 2757 __ testb(Address(r15_thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit()); 2758 #else 2759 const Register thread = rdi; 2760 __ get_thread(thread); 2761 __ testb(Address(thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit()); 2762 #endif 2763 __ jcc(Assembler::zero, no_safepoint); 2764 __ push(state); 2765 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2766 InterpreterRuntime::at_safepoint)); 2767 __ pop(state); 2768 __ bind(no_safepoint); 2769 } 2770 2771 // Narrow result if state is itos but result type is smaller. 2772 // Need to narrow in the return bytecode rather than in generate_return_entry 2773 // since compiled code callers expect the result to already be narrowed. 2774 if (state == itos) { 2775 __ narrow(rax); 2776 } 2777 2778 __ remove_activation(state, rbcp, true, true, true); 2779 2780 __ jmp(rbcp); 2781 } 2782 2783 // ---------------------------------------------------------------------------- 2784 // Volatile variables demand their effects be made known to all CPU's 2785 // in order. Store buffers on most chips allow reads & writes to 2786 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2787 // without some kind of memory barrier (i.e., it's not sufficient that 2788 // the interpreter does not reorder volatile references, the hardware 2789 // also must not reorder them). 2790 // 2791 // According to the new Java Memory Model (JMM): 2792 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2793 // writes act as aquire & release, so: 2794 // (2) A read cannot let unrelated NON-volatile memory refs that 2795 // happen after the read float up to before the read. It's OK for 2796 // non-volatile memory refs that happen before the volatile read to 2797 // float down below it. 2798 // (3) Similar a volatile write cannot let unrelated NON-volatile 2799 // memory refs that happen BEFORE the write float down to after the 2800 // write. It's OK for non-volatile memory refs that happen after the 2801 // volatile write to float up before it. 2802 // 2803 // We only put in barriers around volatile refs (they are expensive), 2804 // not _between_ memory refs (that would require us to track the 2805 // flavor of the previous memory refs). Requirements (2) and (3) 2806 // require some barriers before volatile stores and after volatile 2807 // loads. These nearly cover requirement (1) but miss the 2808 // volatile-store-volatile-load case. This final case is placed after 2809 // volatile-stores although it could just as well go before 2810 // volatile-loads. 2811 2812 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2813 // Helper function to insert a is-volatile test and memory barrier 2814 __ membar(order_constraint); 2815 } 2816 2817 void TemplateTable::resolve_cache_and_index(int byte_no, 2818 Register Rcache, 2819 Register index, 2820 size_t index_size) { 2821 const Register temp = rbx; 2822 assert_different_registers(Rcache, index, temp); 2823 2824 Label resolved; 2825 2826 Bytecodes::Code code = bytecode(); 2827 switch (code) { 2828 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2829 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2830 default: break; 2831 } 2832 2833 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2834 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); 2835 __ cmpl(temp, code); // have we resolved this bytecode? 2836 __ jcc(Assembler::equal, resolved); 2837 2838 // resolve first time through 2839 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2840 __ movl(temp, code); 2841 __ call_VM(noreg, entry, temp); 2842 // Update registers with resolved info 2843 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2844 __ bind(resolved); 2845 } 2846 2847 // The cache and index registers must be set before call 2848 void TemplateTable::load_field_cp_cache_entry(Register obj, 2849 Register cache, 2850 Register index, 2851 Register off, 2852 Register flags, 2853 bool is_static = false) { 2854 assert_different_registers(cache, index, flags, off); 2855 2856 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2857 // Field offset 2858 __ movptr(off, Address(cache, index, Address::times_ptr, 2859 in_bytes(cp_base_offset + 2860 ConstantPoolCacheEntry::f2_offset()))); 2861 // Flags 2862 __ movl(flags, Address(cache, index, Address::times_ptr, 2863 in_bytes(cp_base_offset + 2864 ConstantPoolCacheEntry::flags_offset()))); 2865 2866 // klass overwrite register 2867 if (is_static) { 2868 __ movptr(obj, Address(cache, index, Address::times_ptr, 2869 in_bytes(cp_base_offset + 2870 ConstantPoolCacheEntry::f1_offset()))); 2871 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2872 __ movptr(obj, Address(obj, mirror_offset)); 2873 __ resolve_oop_handle(obj); 2874 } 2875 } 2876 2877 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2878 Register method, 2879 Register itable_index, 2880 Register flags, 2881 bool is_invokevirtual, 2882 bool is_invokevfinal, /*unused*/ 2883 bool is_invokedynamic) { 2884 // setup registers 2885 const Register cache = rcx; 2886 const Register index = rdx; 2887 assert_different_registers(method, flags); 2888 assert_different_registers(method, cache, index); 2889 assert_different_registers(itable_index, flags); 2890 assert_different_registers(itable_index, cache, index); 2891 // determine constant pool cache field offsets 2892 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2893 const int method_offset = in_bytes( 2894 ConstantPoolCache::base_offset() + 2895 ((byte_no == f2_byte) 2896 ? ConstantPoolCacheEntry::f2_offset() 2897 : ConstantPoolCacheEntry::f1_offset())); 2898 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2899 ConstantPoolCacheEntry::flags_offset()); 2900 // access constant pool cache fields 2901 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2902 ConstantPoolCacheEntry::f2_offset()); 2903 2904 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2905 resolve_cache_and_index(byte_no, cache, index, index_size); 2906 __ movptr(method, Address(cache, index, Address::times_ptr, method_offset)); 2907 2908 if (itable_index != noreg) { 2909 // pick up itable or appendix index from f2 also: 2910 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2911 } 2912 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2913 } 2914 2915 // The registers cache and index expected to be set before call. 2916 // Correct values of the cache and index registers are preserved. 2917 void TemplateTable::jvmti_post_field_access(Register cache, 2918 Register index, 2919 bool is_static, 2920 bool has_tos) { 2921 if (JvmtiExport::can_post_field_access()) { 2922 // Check to see if a field access watch has been set before we take 2923 // the time to call into the VM. 2924 Label L1; 2925 assert_different_registers(cache, index, rax); 2926 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2927 __ testl(rax,rax); 2928 __ jcc(Assembler::zero, L1); 2929 2930 // cache entry pointer 2931 __ addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 2932 __ shll(index, LogBytesPerWord); 2933 __ addptr(cache, index); 2934 if (is_static) { 2935 __ xorptr(rax, rax); // NULL object reference 2936 } else { 2937 __ pop(atos); // Get the object 2938 __ verify_oop(rax); 2939 __ push(atos); // Restore stack state 2940 } 2941 // rax,: object pointer or NULL 2942 // cache: cache entry pointer 2943 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2944 rax, cache); 2945 __ get_cache_and_index_at_bcp(cache, index, 1); 2946 __ bind(L1); 2947 } 2948 } 2949 2950 void TemplateTable::pop_and_check_object(Register r) { 2951 __ pop_ptr(r); 2952 __ null_check(r); // for field access must check obj. 2953 __ verify_oop(r); 2954 } 2955 2956 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2957 transition(vtos, vtos); 2958 2959 const Register cache = rcx; 2960 const Register index = rdx; 2961 const Register obj = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2962 const Register off = rbx; 2963 const Register flags = rax; 2964 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them 2965 const Register flags2 = rdx; 2966 2967 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2968 jvmti_post_field_access(cache, index, is_static, false); 2969 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2970 2971 const Address field(obj, off, Address::times_1, 0*wordSize); 2972 2973 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notValueType; 2974 2975 if (!is_static) { 2976 __ movptr(rcx, Address(cache, index, Address::times_ptr, 2977 in_bytes(ConstantPoolCache::base_offset() + 2978 ConstantPoolCacheEntry::f1_offset()))); 2979 } 2980 2981 __ movl(flags2, flags); 2982 2983 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2984 // Make sure we don't need to mask edx after the above shift 2985 assert(btos == 0, "change code, btos != 0"); 2986 2987 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2988 2989 __ jcc(Assembler::notZero, notByte); 2990 // btos 2991 if (!is_static) pop_and_check_object(obj); 2992 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 2993 __ push(btos); 2994 // Rewrite bytecode to be faster 2995 if (!is_static && rc == may_rewrite) { 2996 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2997 } 2998 __ jmp(Done); 2999 3000 __ bind(notByte); 3001 3002 __ cmpl(flags, ztos); 3003 __ jcc(Assembler::notEqual, notBool); 3004 if (!is_static) pop_and_check_object(obj); 3005 // ztos (same code as btos) 3006 __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg, noreg); 3007 __ push(ztos); 3008 // Rewrite bytecode to be faster 3009 if (!is_static && rc == may_rewrite) { 3010 // use btos rewriting, no truncating to t/f bit is needed for getfield. 3011 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 3012 } 3013 __ jmp(Done); 3014 3015 __ bind(notBool); 3016 __ cmpl(flags, atos); 3017 __ jcc(Assembler::notEqual, notObj); 3018 // atos 3019 if (!EnableValhalla) { 3020 if (!is_static) pop_and_check_object(obj); 3021 do_oop_load(_masm, field, rax); 3022 __ push(atos); 3023 if (!is_static && rc == may_rewrite) { 3024 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 3025 } 3026 __ jmp(Done); 3027 } else { 3028 if (is_static) { 3029 __ load_heap_oop(rax, field); 3030 Label isFlattenable, uninitialized; 3031 // Issue below if the static field has not been initialized yet 3032 __ test_field_is_flattenable(flags2, rscratch1, isFlattenable); 3033 // Not flattenable case 3034 __ push(atos); 3035 __ jmp(Done); 3036 // Flattenable case, must not return null even if uninitialized 3037 __ bind(isFlattenable); 3038 __ testptr(rax, rax); 3039 __ jcc(Assembler::zero, uninitialized); 3040 __ push(atos); 3041 __ jmp(Done); 3042 __ bind(uninitialized); 3043 __ andl(flags2, ConstantPoolCacheEntry::field_index_mask); 3044 __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::uninitialized_static_value_field), 3045 obj, flags2); 3046 __ verify_oop(rax); 3047 __ push(atos); 3048 __ jmp(Done); 3049 } else { 3050 Label isFlattened, nonnull, isFlattenable, rewriteFlattenable; 3051 __ test_field_is_flattenable(flags2, rscratch1, isFlattenable); 3052 // Non-flattenable field case, also covers the object case 3053 pop_and_check_object(obj); 3054 __ load_heap_oop(rax, field); 3055 __ push(atos); 3056 if (rc == may_rewrite) { 3057 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 3058 } 3059 __ jmp(Done); 3060 __ bind(isFlattenable); 3061 __ test_field_is_flattened(flags2, rscratch1, isFlattened); 3062 // Non-flattened field case 3063 pop_and_check_object(obj); 3064 __ load_heap_oop(rax, field); 3065 __ testptr(rax, rax); 3066 __ jcc(Assembler::notZero, nonnull); 3067 __ andl(flags2, ConstantPoolCacheEntry::field_index_mask); 3068 __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::uninitialized_instance_value_field), 3069 obj, flags2); 3070 __ bind(nonnull); 3071 __ verify_oop(rax); 3072 __ push(atos); 3073 __ jmp(rewriteFlattenable); 3074 __ bind(isFlattened); 3075 __ andl(flags2, ConstantPoolCacheEntry::field_index_mask); 3076 pop_and_check_object(rbx); 3077 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flattened_field), 3078 rbx, flags2, rcx); 3079 __ verify_oop(rax); 3080 __ push(atos); 3081 __ bind(rewriteFlattenable); 3082 if (rc == may_rewrite) { 3083 patch_bytecode(Bytecodes::_fast_qgetfield, bc, rbx); 3084 } 3085 __ jmp(Done); 3086 } 3087 } 3088 3089 __ bind(notObj); 3090 3091 if (!is_static) pop_and_check_object(obj); 3092 3093 __ cmpl(flags, itos); 3094 __ jcc(Assembler::notEqual, notInt); 3095 // itos 3096 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3097 __ push(itos); 3098 // Rewrite bytecode to be faster 3099 if (!is_static && rc == may_rewrite) { 3100 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 3101 } 3102 __ jmp(Done); 3103 3104 __ bind(notInt); 3105 __ cmpl(flags, ctos); 3106 __ jcc(Assembler::notEqual, notChar); 3107 // ctos 3108 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 3109 __ push(ctos); 3110 // Rewrite bytecode to be faster 3111 if (!is_static && rc == may_rewrite) { 3112 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 3113 } 3114 __ jmp(Done); 3115 3116 __ bind(notChar); 3117 __ cmpl(flags, stos); 3118 __ jcc(Assembler::notEqual, notShort); 3119 // stos 3120 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 3121 __ push(stos); 3122 // Rewrite bytecode to be faster 3123 if (!is_static && rc == may_rewrite) { 3124 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 3125 } 3126 __ jmp(Done); 3127 3128 __ bind(notShort); 3129 __ cmpl(flags, ltos); 3130 __ jcc(Assembler::notEqual, notLong); 3131 // ltos 3132 // Generate code as if volatile (x86_32). There just aren't enough registers to 3133 // save that information and this code is faster than the test. 3134 __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg, noreg); 3135 __ push(ltos); 3136 // Rewrite bytecode to be faster 3137 LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx)); 3138 __ jmp(Done); 3139 3140 __ bind(notLong); 3141 __ cmpl(flags, ftos); 3142 __ jcc(Assembler::notEqual, notFloat); 3143 // ftos 3144 3145 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3146 __ push(ftos); 3147 // Rewrite bytecode to be faster 3148 if (!is_static && rc == may_rewrite) { 3149 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 3150 } 3151 __ jmp(Done); 3152 3153 __ bind(notFloat); 3154 #ifdef ASSERT 3155 Label notDouble; 3156 __ cmpl(flags, dtos); 3157 __ jcc(Assembler::notEqual, notDouble); 3158 #endif 3159 // dtos 3160 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3161 __ push(dtos); 3162 // Rewrite bytecode to be faster 3163 if (!is_static && rc == may_rewrite) { 3164 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 3165 } 3166 #ifdef ASSERT 3167 __ jmp(Done); 3168 3169 __ bind(notDouble); 3170 __ stop("Bad state"); 3171 #endif 3172 3173 __ bind(Done); 3174 // [jk] not needed currently 3175 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 3176 // Assembler::LoadStore)); 3177 } 3178 3179 void TemplateTable::getfield(int byte_no) { 3180 getfield_or_static(byte_no, false); 3181 } 3182 3183 void TemplateTable::nofast_getfield(int byte_no) { 3184 getfield_or_static(byte_no, false, may_not_rewrite); 3185 } 3186 3187 void TemplateTable::getstatic(int byte_no) { 3188 getfield_or_static(byte_no, true); 3189 } 3190 3191 void TemplateTable::withfield() { 3192 transition(vtos, atos); 3193 3194 Register cache = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 3195 Register index = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 3196 3197 resolve_cache_and_index(f2_byte, cache, index, sizeof(u2)); 3198 3199 call_VM(rbx, CAST_FROM_FN_PTR(address, InterpreterRuntime::withfield), cache); 3200 // new value type is returned in rbx 3201 // stack adjustement is returned in rax 3202 __ verify_oop(rbx); 3203 __ addptr(rsp, rax); 3204 __ movptr(rax, rbx); 3205 } 3206 3207 // The registers cache and index expected to be set before call. 3208 // The function may destroy various registers, just not the cache and index registers. 3209 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 3210 3211 const Register robj = LP64_ONLY(c_rarg2) NOT_LP64(rax); 3212 const Register RBX = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 3213 const Register RCX = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3214 const Register RDX = LP64_ONLY(rscratch1) NOT_LP64(rdx); 3215 3216 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 3217 3218 if (JvmtiExport::can_post_field_modification()) { 3219 // Check to see if a field modification watch has been set before 3220 // we take the time to call into the VM. 3221 Label L1; 3222 assert_different_registers(cache, index, rax); 3223 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3224 __ testl(rax, rax); 3225 __ jcc(Assembler::zero, L1); 3226 3227 __ get_cache_and_index_at_bcp(robj, RDX, 1); 3228 3229 3230 if (is_static) { 3231 // Life is simple. Null out the object pointer. 3232 __ xorl(RBX, RBX); 3233 3234 } else { 3235 // Life is harder. The stack holds the value on top, followed by 3236 // the object. We don't know the size of the value, though; it 3237 // could be one or two words depending on its type. As a result, 3238 // we must find the type to determine where the object is. 3239 #ifndef _LP64 3240 Label two_word, valsize_known; 3241 #endif 3242 __ movl(RCX, Address(robj, RDX, 3243 Address::times_ptr, 3244 in_bytes(cp_base_offset + 3245 ConstantPoolCacheEntry::flags_offset()))); 3246 NOT_LP64(__ mov(rbx, rsp)); 3247 __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift); 3248 3249 // Make sure we don't need to mask rcx after the above shift 3250 ConstantPoolCacheEntry::verify_tos_state_shift(); 3251 #ifdef _LP64 3252 __ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 3253 __ cmpl(c_rarg3, ltos); 3254 __ cmovptr(Assembler::equal, 3255 c_rarg1, at_tos_p2()); // ltos (two word jvalue) 3256 __ cmpl(c_rarg3, dtos); 3257 __ cmovptr(Assembler::equal, 3258 c_rarg1, at_tos_p2()); // dtos (two word jvalue) 3259 #else 3260 __ cmpl(rcx, ltos); 3261 __ jccb(Assembler::equal, two_word); 3262 __ cmpl(rcx, dtos); 3263 __ jccb(Assembler::equal, two_word); 3264 __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos) 3265 __ jmpb(valsize_known); 3266 3267 __ bind(two_word); 3268 __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue 3269 3270 __ bind(valsize_known); 3271 // setup object pointer 3272 __ movptr(rbx, Address(rbx, 0)); 3273 #endif 3274 } 3275 // cache entry pointer 3276 __ addptr(robj, in_bytes(cp_base_offset)); 3277 __ shll(RDX, LogBytesPerWord); 3278 __ addptr(robj, RDX); 3279 // object (tos) 3280 __ mov(RCX, rsp); 3281 // c_rarg1: object pointer set up above (NULL if static) 3282 // c_rarg2: cache entry pointer 3283 // c_rarg3: jvalue object on the stack 3284 __ call_VM(noreg, 3285 CAST_FROM_FN_PTR(address, 3286 InterpreterRuntime::post_field_modification), 3287 RBX, robj, RCX); 3288 __ get_cache_and_index_at_bcp(cache, index, 1); 3289 __ bind(L1); 3290 } 3291 } 3292 3293 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 3294 transition(vtos, vtos); 3295 3296 const Register cache = rcx; 3297 const Register index = rdx; 3298 const Register obj = rcx; 3299 const Register off = rbx; 3300 const Register flags = rax; 3301 const Register flags2 = rdx; 3302 3303 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 3304 jvmti_post_field_mod(cache, index, is_static); 3305 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 3306 3307 // [jk] not needed currently 3308 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3309 // Assembler::StoreStore)); 3310 3311 Label notVolatile, Done; 3312 __ movl(rdx, flags); 3313 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3314 __ andl(rdx, 0x1); 3315 3316 // Check for volatile store 3317 __ testl(rdx, rdx); 3318 __ movl(flags2, flags); 3319 __ jcc(Assembler::zero, notVolatile); 3320 3321 putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags, flags2); 3322 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3323 Assembler::StoreStore)); 3324 __ jmp(Done); 3325 __ bind(notVolatile); 3326 3327 putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags, flags2); 3328 3329 __ bind(Done); 3330 } 3331 3332 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc, 3333 Register obj, Register off, Register flags, Register flags2) { 3334 3335 // field addresses 3336 const Address field(obj, off, Address::times_1, 0*wordSize); 3337 NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);) 3338 3339 Label notByte, notBool, notInt, notShort, notChar, 3340 notLong, notFloat, notObj, notValueType; 3341 Label Done; 3342 3343 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3344 3345 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3346 3347 assert(btos == 0, "change code, btos != 0"); 3348 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 3349 __ jcc(Assembler::notZero, notByte); 3350 3351 // btos 3352 { 3353 __ pop(btos); 3354 if (!is_static) pop_and_check_object(obj); 3355 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg); 3356 if (!is_static && rc == may_rewrite) { 3357 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 3358 } 3359 __ jmp(Done); 3360 } 3361 3362 __ bind(notByte); 3363 __ cmpl(flags, ztos); 3364 __ jcc(Assembler::notEqual, notBool); 3365 3366 // ztos 3367 { 3368 __ pop(ztos); 3369 if (!is_static) pop_and_check_object(obj); 3370 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg); 3371 if (!is_static && rc == may_rewrite) { 3372 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); 3373 } 3374 __ jmp(Done); 3375 } 3376 3377 __ bind(notBool); 3378 __ cmpl(flags, atos); 3379 __ jcc(Assembler::notEqual, notObj); 3380 3381 // atos 3382 { 3383 if (!EnableValhalla) { 3384 __ pop(atos); 3385 if (!is_static) pop_and_check_object(obj); 3386 // Store into the field 3387 do_oop_store(_masm, field, rax); 3388 if (!is_static && rc == may_rewrite) { 3389 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 3390 } 3391 __ jmp(Done); 3392 } else { 3393 __ pop(atos); 3394 if (is_static) { 3395 Label notFlattenable, notBuffered; 3396 __ test_field_is_not_flattenable(flags2, rscratch1, notFlattenable); 3397 __ null_check(rax); 3398 __ bind(notFlattenable); 3399 do_oop_store(_masm, field, rax); 3400 __ jmp(Done); 3401 } else { 3402 Label isFlattenable, isFlattened, notBuffered, notBuffered2, rewriteNotFlattenable, rewriteFlattenable; 3403 __ test_field_is_flattenable(flags2, rscratch1, isFlattenable); 3404 // Not flattenable case, covers not flattenable values and objects 3405 pop_and_check_object(obj); 3406 // Store into the field 3407 do_oop_store(_masm, field, rax); 3408 __ bind(rewriteNotFlattenable); 3409 if (rc == may_rewrite) { 3410 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 3411 } 3412 __ jmp(Done); 3413 // Implementation of the flattenable semantic 3414 __ bind(isFlattenable); 3415 __ null_check(rax); 3416 __ test_field_is_flattened(flags2, rscratch1, isFlattened); 3417 // Not flattened case 3418 pop_and_check_object(obj); 3419 // Store into the field 3420 do_oop_store(_masm, field, rax); 3421 __ jmp(rewriteFlattenable); 3422 __ bind(isFlattened); 3423 pop_and_check_object(obj); 3424 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_flattened_value), 3425 rax, off, obj); 3426 __ bind(rewriteFlattenable); 3427 if (rc == may_rewrite) { 3428 patch_bytecode(Bytecodes::_fast_qputfield, bc, rbx, true, byte_no); 3429 } 3430 __ jmp(Done); 3431 } 3432 } 3433 } 3434 3435 __ bind(notObj); 3436 __ cmpl(flags, itos); 3437 __ jcc(Assembler::notEqual, notInt); 3438 3439 // itos 3440 { 3441 __ pop(itos); 3442 if (!is_static) pop_and_check_object(obj); 3443 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg); 3444 if (!is_static && rc == may_rewrite) { 3445 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 3446 } 3447 __ jmp(Done); 3448 } 3449 3450 __ bind(notInt); 3451 __ cmpl(flags, ctos); 3452 __ jcc(Assembler::notEqual, notChar); 3453 3454 // ctos 3455 { 3456 __ pop(ctos); 3457 if (!is_static) pop_and_check_object(obj); 3458 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg); 3459 if (!is_static && rc == may_rewrite) { 3460 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 3461 } 3462 __ jmp(Done); 3463 } 3464 3465 __ bind(notChar); 3466 __ cmpl(flags, stos); 3467 __ jcc(Assembler::notEqual, notShort); 3468 3469 // stos 3470 { 3471 __ pop(stos); 3472 if (!is_static) pop_and_check_object(obj); 3473 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg); 3474 if (!is_static && rc == may_rewrite) { 3475 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 3476 } 3477 __ jmp(Done); 3478 } 3479 3480 __ bind(notShort); 3481 __ cmpl(flags, ltos); 3482 __ jcc(Assembler::notEqual, notLong); 3483 3484 // ltos 3485 { 3486 __ pop(ltos); 3487 if (!is_static) pop_and_check_object(obj); 3488 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos*/, noreg, noreg); 3489 #ifdef _LP64 3490 if (!is_static && rc == may_rewrite) { 3491 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 3492 } 3493 #endif // _LP64 3494 __ jmp(Done); 3495 } 3496 3497 __ bind(notLong); 3498 __ cmpl(flags, ftos); 3499 __ jcc(Assembler::notEqual, notFloat); 3500 3501 // ftos 3502 { 3503 __ pop(ftos); 3504 if (!is_static) pop_and_check_object(obj); 3505 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg); 3506 if (!is_static && rc == may_rewrite) { 3507 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 3508 } 3509 __ jmp(Done); 3510 } 3511 3512 __ bind(notFloat); 3513 #ifdef ASSERT 3514 Label notDouble; 3515 __ cmpl(flags, dtos); 3516 __ jcc(Assembler::notEqual, notDouble); 3517 #endif 3518 3519 // dtos 3520 { 3521 __ pop(dtos); 3522 if (!is_static) pop_and_check_object(obj); 3523 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg); 3524 if (!is_static && rc == may_rewrite) { 3525 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 3526 } 3527 } 3528 3529 #ifdef ASSERT 3530 __ jmp(Done); 3531 3532 __ bind(notDouble); 3533 __ stop("Bad state"); 3534 #endif 3535 3536 __ bind(Done); 3537 } 3538 3539 void TemplateTable::putfield(int byte_no) { 3540 putfield_or_static(byte_no, false); 3541 } 3542 3543 void TemplateTable::nofast_putfield(int byte_no) { 3544 putfield_or_static(byte_no, false, may_not_rewrite); 3545 } 3546 3547 void TemplateTable::putstatic(int byte_no) { 3548 putfield_or_static(byte_no, true); 3549 } 3550 3551 void TemplateTable::jvmti_post_fast_field_mod() { 3552 3553 const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3554 3555 if (JvmtiExport::can_post_field_modification()) { 3556 // Check to see if a field modification watch has been set before 3557 // we take the time to call into the VM. 3558 Label L2; 3559 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3560 __ testl(scratch, scratch); 3561 __ jcc(Assembler::zero, L2); 3562 __ pop_ptr(rbx); // copy the object pointer from tos 3563 __ verify_oop(rbx); 3564 __ push_ptr(rbx); // put the object pointer back on tos 3565 // Save tos values before call_VM() clobbers them. Since we have 3566 // to do it for every data type, we use the saved values as the 3567 // jvalue object. 3568 switch (bytecode()) { // load values into the jvalue object 3569 case Bytecodes::_fast_qputfield: //fall through 3570 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 3571 case Bytecodes::_fast_bputfield: // fall through 3572 case Bytecodes::_fast_zputfield: // fall through 3573 case Bytecodes::_fast_sputfield: // fall through 3574 case Bytecodes::_fast_cputfield: // fall through 3575 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 3576 case Bytecodes::_fast_dputfield: __ push(dtos); break; 3577 case Bytecodes::_fast_fputfield: __ push(ftos); break; 3578 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 3579 3580 default: 3581 ShouldNotReachHere(); 3582 } 3583 __ mov(scratch, rsp); // points to jvalue on the stack 3584 // access constant pool cache entry 3585 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1)); 3586 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1)); 3587 __ verify_oop(rbx); 3588 // rbx: object pointer copied above 3589 // c_rarg2: cache entry pointer 3590 // c_rarg3: jvalue object on the stack 3591 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3)); 3592 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx)); 3593 3594 switch (bytecode()) { // restore tos values 3595 case Bytecodes::_fast_qputfield: // fall through 3596 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 3597 case Bytecodes::_fast_bputfield: // fall through 3598 case Bytecodes::_fast_zputfield: // fall through 3599 case Bytecodes::_fast_sputfield: // fall through 3600 case Bytecodes::_fast_cputfield: // fall through 3601 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 3602 case Bytecodes::_fast_dputfield: __ pop(dtos); break; 3603 case Bytecodes::_fast_fputfield: __ pop(ftos); break; 3604 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 3605 default: break; 3606 } 3607 __ bind(L2); 3608 } 3609 } 3610 3611 void TemplateTable::fast_storefield(TosState state) { 3612 transition(state, vtos); 3613 3614 ByteSize base = ConstantPoolCache::base_offset(); 3615 3616 jvmti_post_fast_field_mod(); 3617 3618 // access constant pool cache 3619 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3620 3621 // test for volatile with rdx but rdx is tos register for lputfield. 3622 __ movl(rdx, Address(rcx, rbx, Address::times_ptr, 3623 in_bytes(base + 3624 ConstantPoolCacheEntry::flags_offset()))); 3625 3626 // replace index with field offset from cache entry 3627 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3628 in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 3629 3630 // [jk] not needed currently 3631 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3632 // Assembler::StoreStore)); 3633 3634 Label notVolatile, Done; 3635 if (bytecode() == Bytecodes::_fast_qputfield) { 3636 __ movl(rscratch2, rdx); 3637 } 3638 3639 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3640 __ andl(rdx, 0x1); 3641 3642 // Get object from stack 3643 pop_and_check_object(rcx); 3644 3645 // field address 3646 const Address field(rcx, rbx, Address::times_1); 3647 3648 // Check for volatile store 3649 __ testl(rdx, rdx); 3650 __ jcc(Assembler::zero, notVolatile); 3651 3652 fast_storefield_helper(field, rax); 3653 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3654 Assembler::StoreStore)); 3655 __ jmp(Done); 3656 __ bind(notVolatile); 3657 3658 fast_storefield_helper(field, rax); 3659 3660 __ bind(Done); 3661 } 3662 3663 void TemplateTable::fast_storefield_helper(Address field, Register rax) { 3664 3665 // access field 3666 switch (bytecode()) { 3667 case Bytecodes::_fast_qputfield: 3668 { 3669 Label isFlattened, done; 3670 __ null_check(rax); 3671 __ test_field_is_flattened(rscratch2, rscratch1, isFlattened); 3672 // No Flattened case 3673 do_oop_store(_masm, field, rax); 3674 __ jmp(done); 3675 __ bind(isFlattened); 3676 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_flattened_value), 3677 rax, rbx, rcx); 3678 __ bind(done); 3679 } 3680 break; 3681 case Bytecodes::_fast_aputfield: 3682 { 3683 do_oop_store(_masm, field, rax); 3684 } 3685 break; 3686 case Bytecodes::_fast_lputfield: 3687 #ifdef _LP64 3688 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg); 3689 #else 3690 __ stop("should not be rewritten"); 3691 #endif 3692 break; 3693 case Bytecodes::_fast_iputfield: 3694 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg); 3695 break; 3696 case Bytecodes::_fast_zputfield: 3697 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg); 3698 break; 3699 case Bytecodes::_fast_bputfield: 3700 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg); 3701 break; 3702 case Bytecodes::_fast_sputfield: 3703 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg); 3704 break; 3705 case Bytecodes::_fast_cputfield: 3706 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg); 3707 break; 3708 case Bytecodes::_fast_fputfield: 3709 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg); 3710 break; 3711 case Bytecodes::_fast_dputfield: 3712 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg); 3713 break; 3714 default: 3715 ShouldNotReachHere(); 3716 } 3717 } 3718 3719 void TemplateTable::fast_accessfield(TosState state) { 3720 transition(atos, state); 3721 3722 // Do the JVMTI work here to avoid disturbing the register state below 3723 if (JvmtiExport::can_post_field_access()) { 3724 // Check to see if a field access watch has been set before we 3725 // take the time to call into the VM. 3726 Label L1; 3727 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3728 __ testl(rcx, rcx); 3729 __ jcc(Assembler::zero, L1); 3730 // access constant pool cache entry 3731 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1)); 3732 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1)); 3733 __ verify_oop(rax); 3734 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 3735 LP64_ONLY(__ mov(c_rarg1, rax)); 3736 // c_rarg1: object pointer copied above 3737 // c_rarg2: cache entry pointer 3738 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2)); 3739 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx)); 3740 __ pop_ptr(rax); // restore object pointer 3741 __ bind(L1); 3742 } 3743 3744 // access constant pool cache 3745 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3746 // replace index with field offset from cache entry 3747 // [jk] not needed currently 3748 // __ movl(rdx, Address(rcx, rbx, Address::times_8, 3749 // in_bytes(ConstantPoolCache::base_offset() + 3750 // ConstantPoolCacheEntry::flags_offset()))); 3751 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3752 // __ andl(rdx, 0x1); 3753 // 3754 __ movptr(rdx, Address(rcx, rbx, Address::times_ptr, 3755 in_bytes(ConstantPoolCache::base_offset() + 3756 ConstantPoolCacheEntry::f2_offset()))); 3757 3758 // rax: object 3759 __ verify_oop(rax); 3760 __ null_check(rax); 3761 Address field(rax, rdx, Address::times_1); 3762 3763 // access field 3764 switch (bytecode()) { 3765 case Bytecodes::_fast_qgetfield: 3766 { 3767 Label isFlattened, nonnull, Done; 3768 __ movptr(rscratch1, Address(rcx, rbx, Address::times_ptr, 3769 in_bytes(ConstantPoolCache::base_offset() + 3770 ConstantPoolCacheEntry::flags_offset()))); 3771 __ test_field_is_flattened(rscratch1, rscratch2, isFlattened); 3772 // Non-flattened field case 3773 __ movptr(rscratch1, rax); 3774 __ load_heap_oop(rax, field); 3775 __ testptr(rax, rax); 3776 __ jcc(Assembler::notZero, nonnull); 3777 __ movptr(rax, rscratch1); 3778 __ movl(rcx, Address(rcx, rbx, Address::times_ptr, 3779 in_bytes(ConstantPoolCache::base_offset() + 3780 ConstantPoolCacheEntry::flags_offset()))); 3781 __ andl(rcx, ConstantPoolCacheEntry::field_index_mask); 3782 __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::uninitialized_instance_value_field), 3783 rax, rcx); 3784 __ bind(nonnull); 3785 __ verify_oop(rax); 3786 __ jmp(Done); 3787 __ bind(isFlattened); 3788 __ movl(rdx, Address(rcx, rbx, Address::times_ptr, 3789 in_bytes(ConstantPoolCache::base_offset() + 3790 ConstantPoolCacheEntry::flags_offset()))); 3791 __ andl(rdx, ConstantPoolCacheEntry::field_index_mask); 3792 __ movptr(rcx, Address(rcx, rbx, Address::times_ptr, 3793 in_bytes(ConstantPoolCache::base_offset() + 3794 ConstantPoolCacheEntry::f1_offset()))); 3795 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flattened_field), 3796 rax, rdx, rcx); 3797 __ verify_oop(rax); 3798 __ bind(Done); 3799 } 3800 break; 3801 case Bytecodes::_fast_agetfield: 3802 do_oop_load(_masm, field, rax); 3803 __ verify_oop(rax); 3804 break; 3805 case Bytecodes::_fast_lgetfield: 3806 #ifdef _LP64 3807 __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg, noreg); 3808 #else 3809 __ stop("should not be rewritten"); 3810 #endif 3811 break; 3812 case Bytecodes::_fast_igetfield: 3813 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3814 break; 3815 case Bytecodes::_fast_bgetfield: 3816 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 3817 break; 3818 case Bytecodes::_fast_sgetfield: 3819 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 3820 break; 3821 case Bytecodes::_fast_cgetfield: 3822 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 3823 break; 3824 case Bytecodes::_fast_fgetfield: 3825 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3826 break; 3827 case Bytecodes::_fast_dgetfield: 3828 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3829 break; 3830 default: 3831 ShouldNotReachHere(); 3832 } 3833 // [jk] not needed currently 3834 // Label notVolatile; 3835 // __ testl(rdx, rdx); 3836 // __ jcc(Assembler::zero, notVolatile); 3837 // __ membar(Assembler::LoadLoad); 3838 // __ bind(notVolatile); 3839 } 3840 3841 void TemplateTable::fast_xaccess(TosState state) { 3842 transition(vtos, state); 3843 3844 // get receiver 3845 __ movptr(rax, aaddress(0)); 3846 // access constant pool cache 3847 __ get_cache_and_index_at_bcp(rcx, rdx, 2); 3848 __ movptr(rbx, 3849 Address(rcx, rdx, Address::times_ptr, 3850 in_bytes(ConstantPoolCache::base_offset() + 3851 ConstantPoolCacheEntry::f2_offset()))); 3852 // make sure exception is reported in correct bcp range (getfield is 3853 // next instruction) 3854 __ increment(rbcp); 3855 __ null_check(rax); 3856 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize); 3857 switch (state) { 3858 case itos: 3859 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3860 break; 3861 case atos: 3862 do_oop_load(_masm, field, rax); 3863 __ verify_oop(rax); 3864 break; 3865 case ftos: 3866 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3867 break; 3868 default: 3869 ShouldNotReachHere(); 3870 } 3871 3872 // [jk] not needed currently 3873 // Label notVolatile; 3874 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 3875 // in_bytes(ConstantPoolCache::base_offset() + 3876 // ConstantPoolCacheEntry::flags_offset()))); 3877 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3878 // __ testl(rdx, 0x1); 3879 // __ jcc(Assembler::zero, notVolatile); 3880 // __ membar(Assembler::LoadLoad); 3881 // __ bind(notVolatile); 3882 3883 __ decrement(rbcp); 3884 } 3885 3886 //----------------------------------------------------------------------------- 3887 // Calls 3888 3889 void TemplateTable::count_calls(Register method, Register temp) { 3890 // implemented elsewhere 3891 ShouldNotReachHere(); 3892 } 3893 3894 void TemplateTable::prepare_invoke(int byte_no, 3895 Register method, // linked method (or i-klass) 3896 Register index, // itable index, MethodType, etc. 3897 Register recv, // if caller wants to see it 3898 Register flags // if caller wants to test it 3899 ) { 3900 // determine flags 3901 const Bytecodes::Code code = bytecode(); 3902 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3903 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3904 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3905 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3906 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3907 const bool load_receiver = (recv != noreg); 3908 const bool save_flags = (flags != noreg); 3909 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3910 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 3911 assert(flags == noreg || flags == rdx, ""); 3912 assert(recv == noreg || recv == rcx, ""); 3913 3914 // setup registers & access constant pool cache 3915 if (recv == noreg) recv = rcx; 3916 if (flags == noreg) flags = rdx; 3917 assert_different_registers(method, index, recv, flags); 3918 3919 // save 'interpreter return address' 3920 __ save_bcp(); 3921 3922 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 3923 3924 // maybe push appendix to arguments (just before return address) 3925 if (is_invokedynamic || is_invokehandle) { 3926 Label L_no_push; 3927 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift)); 3928 __ jcc(Assembler::zero, L_no_push); 3929 // Push the appendix as a trailing parameter. 3930 // This must be done before we get the receiver, 3931 // since the parameter_size includes it. 3932 __ push(rbx); 3933 __ mov(rbx, index); 3934 assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0"); 3935 __ load_resolved_reference_at_index(index, rbx); 3936 __ pop(rbx); 3937 __ push(index); // push appendix (MethodType, CallSite, etc.) 3938 __ bind(L_no_push); 3939 } 3940 3941 // load receiver if needed (after appendix is pushed so parameter size is correct) 3942 // Note: no return address pushed yet 3943 if (load_receiver) { 3944 __ movl(recv, flags); 3945 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask); 3946 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3947 const int receiver_is_at_end = -1; // back off one slot to get receiver 3948 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3949 __ movptr(recv, recv_addr); 3950 __ verify_oop(recv); 3951 } 3952 3953 if (save_flags) { 3954 __ movl(rbcp, flags); 3955 } 3956 3957 // compute return type 3958 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3959 // Make sure we don't need to mask flags after the above shift 3960 ConstantPoolCacheEntry::verify_tos_state_shift(); 3961 // load return address 3962 { 3963 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3964 ExternalAddress table(table_addr); 3965 LP64_ONLY(__ lea(rscratch1, table)); 3966 LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr))); 3967 NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)))); 3968 } 3969 3970 // push return address 3971 __ push(flags); 3972 3973 // Restore flags value from the constant pool cache, and restore rsi 3974 // for later null checks. r13 is the bytecode pointer 3975 if (save_flags) { 3976 __ movl(flags, rbcp); 3977 __ restore_bcp(); 3978 } 3979 } 3980 3981 void TemplateTable::invokevirtual_helper(Register index, 3982 Register recv, 3983 Register flags) { 3984 // Uses temporary registers rax, rdx 3985 assert_different_registers(index, recv, rax, rdx); 3986 assert(index == rbx, ""); 3987 assert(recv == rcx, ""); 3988 3989 // Test for an invoke of a final method 3990 Label notFinal; 3991 __ movl(rax, flags); 3992 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3993 __ jcc(Assembler::zero, notFinal); 3994 3995 const Register method = index; // method must be rbx 3996 assert(method == rbx, 3997 "Method* must be rbx for interpreter calling convention"); 3998 3999 // do the call - the index is actually the method to call 4000 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 4001 4002 // It's final, need a null check here! 4003 __ null_check(recv); 4004 4005 // profile this call 4006 __ profile_final_call(rax); 4007 __ profile_arguments_type(rax, method, rbcp, true); 4008 4009 __ jump_from_interpreted(method, rax); 4010 4011 __ bind(notFinal); 4012 4013 // get receiver klass 4014 __ null_check(recv, oopDesc::klass_offset_in_bytes()); 4015 __ load_klass(rax, recv); 4016 4017 // profile this call 4018 __ profile_virtual_call(rax, rlocals, rdx); 4019 // get target Method* & entry point 4020 __ lookup_virtual_method(rax, index, method); 4021 __ profile_called_method(method, rdx, rbcp); 4022 4023 __ profile_arguments_type(rdx, method, rbcp, true); 4024 __ jump_from_interpreted(method, rdx); 4025 } 4026 4027 void TemplateTable::invokevirtual(int byte_no) { 4028 transition(vtos, vtos); 4029 assert(byte_no == f2_byte, "use this argument"); 4030 prepare_invoke(byte_no, 4031 rbx, // method or vtable index 4032 noreg, // unused itable index 4033 rcx, rdx); // recv, flags 4034 4035 // rbx: index 4036 // rcx: receiver 4037 // rdx: flags 4038 4039 invokevirtual_helper(rbx, rcx, rdx); 4040 } 4041 4042 void TemplateTable::invokespecial(int byte_no) { 4043 transition(vtos, vtos); 4044 assert(byte_no == f1_byte, "use this argument"); 4045 prepare_invoke(byte_no, rbx, noreg, // get f1 Method* 4046 rcx); // get receiver also for null check 4047 __ verify_oop(rcx); 4048 __ null_check(rcx); 4049 // do the call 4050 __ profile_call(rax); 4051 __ profile_arguments_type(rax, rbx, rbcp, false); 4052 __ jump_from_interpreted(rbx, rax); 4053 } 4054 4055 void TemplateTable::invokestatic(int byte_no) { 4056 transition(vtos, vtos); 4057 assert(byte_no == f1_byte, "use this argument"); 4058 prepare_invoke(byte_no, rbx); // get f1 Method* 4059 // do the call 4060 __ profile_call(rax); 4061 __ profile_arguments_type(rax, rbx, rbcp, false); 4062 __ jump_from_interpreted(rbx, rax); 4063 } 4064 4065 4066 void TemplateTable::fast_invokevfinal(int byte_no) { 4067 transition(vtos, vtos); 4068 assert(byte_no == f2_byte, "use this argument"); 4069 __ stop("fast_invokevfinal not used on x86"); 4070 } 4071 4072 4073 void TemplateTable::invokeinterface(int byte_no) { 4074 transition(vtos, vtos); 4075 assert(byte_no == f1_byte, "use this argument"); 4076 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 Method* 4077 rcx, rdx); // recv, flags 4078 4079 // rax: reference klass (from f1) if interface method 4080 // rbx: method (from f2) 4081 // rcx: receiver 4082 // rdx: flags 4083 4084 // First check for Object case, then private interface method, 4085 // then regular interface method. 4086 4087 // Special case of invokeinterface called for virtual method of 4088 // java.lang.Object. See cpCache.cpp for details. 4089 Label notObjectMethod; 4090 __ movl(rlocals, rdx); 4091 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift)); 4092 __ jcc(Assembler::zero, notObjectMethod); 4093 invokevirtual_helper(rbx, rcx, rdx); 4094 // no return from above 4095 __ bind(notObjectMethod); 4096 4097 Label no_such_interface; // for receiver subtype check 4098 Register recvKlass; // used for exception processing 4099 4100 // Check for private method invocation - indicated by vfinal 4101 Label notVFinal; 4102 __ movl(rlocals, rdx); 4103 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 4104 __ jcc(Assembler::zero, notVFinal); 4105 4106 // Get receiver klass into rlocals - also a null check 4107 __ null_check(rcx, oopDesc::klass_offset_in_bytes()); 4108 __ load_klass(rlocals, rcx); 4109 4110 Label subtype; 4111 __ check_klass_subtype(rlocals, rax, rbcp, subtype); 4112 // If we get here the typecheck failed 4113 recvKlass = rdx; 4114 __ mov(recvKlass, rlocals); // shuffle receiver class for exception use 4115 __ jmp(no_such_interface); 4116 4117 __ bind(subtype); 4118 4119 // do the call - rbx is actually the method to call 4120 4121 __ profile_final_call(rdx); 4122 __ profile_arguments_type(rdx, rbx, rbcp, true); 4123 4124 __ jump_from_interpreted(rbx, rdx); 4125 // no return from above 4126 __ bind(notVFinal); 4127 4128 // Get receiver klass into rdx - also a null check 4129 __ restore_locals(); // restore r14 4130 __ null_check(rcx, oopDesc::klass_offset_in_bytes()); 4131 __ load_klass(rdx, rcx); 4132 4133 Label no_such_method; 4134 4135 // Preserve method for throw_AbstractMethodErrorVerbose. 4136 __ mov(rcx, rbx); 4137 // Receiver subtype check against REFC. 4138 // Superklass in rax. Subklass in rdx. Blows rcx, rdi. 4139 __ lookup_interface_method(// inputs: rec. class, interface, itable index 4140 rdx, rax, noreg, 4141 // outputs: scan temp. reg, scan temp. reg 4142 rbcp, rlocals, 4143 no_such_interface, 4144 /*return_method=*/false); 4145 4146 // profile this call 4147 __ restore_bcp(); // rbcp was destroyed by receiver type check 4148 __ profile_virtual_call(rdx, rbcp, rlocals); 4149 4150 // Get declaring interface class from method, and itable index 4151 __ movptr(rax, Address(rbx, Method::const_offset())); 4152 __ movptr(rax, Address(rax, ConstMethod::constants_offset())); 4153 __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes())); 4154 __ movl(rbx, Address(rbx, Method::itable_index_offset())); 4155 __ subl(rbx, Method::itable_index_max); 4156 __ negl(rbx); 4157 4158 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 4159 __ mov(rlocals, rdx); 4160 __ lookup_interface_method(// inputs: rec. class, interface, itable index 4161 rlocals, rax, rbx, 4162 // outputs: method, scan temp. reg 4163 rbx, rbcp, 4164 no_such_interface); 4165 4166 // rbx: Method* to call 4167 // rcx: receiver 4168 // Check for abstract method error 4169 // Note: This should be done more efficiently via a throw_abstract_method_error 4170 // interpreter entry point and a conditional jump to it in case of a null 4171 // method. 4172 __ testptr(rbx, rbx); 4173 __ jcc(Assembler::zero, no_such_method); 4174 4175 __ profile_called_method(rbx, rbcp, rdx); 4176 __ profile_arguments_type(rdx, rbx, rbcp, true); 4177 4178 // do the call 4179 // rcx: receiver 4180 // rbx,: Method* 4181 __ jump_from_interpreted(rbx, rdx); 4182 __ should_not_reach_here(); 4183 4184 // exception handling code follows... 4185 // note: must restore interpreter registers to canonical 4186 // state for exception handling to work correctly! 4187 4188 __ bind(no_such_method); 4189 // throw exception 4190 __ pop(rbx); // pop return address (pushed by prepare_invoke) 4191 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 4192 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 4193 // Pass arguments for generating a verbose error message. 4194 #ifdef _LP64 4195 recvKlass = c_rarg1; 4196 Register method = c_rarg2; 4197 if (recvKlass != rdx) { __ movq(recvKlass, rdx); } 4198 if (method != rcx) { __ movq(method, rcx); } 4199 #else 4200 recvKlass = rdx; 4201 Register method = rcx; 4202 #endif 4203 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), 4204 recvKlass, method); 4205 // The call_VM checks for exception, so we should never return here. 4206 __ should_not_reach_here(); 4207 4208 __ bind(no_such_interface); 4209 // throw exception 4210 __ pop(rbx); // pop return address (pushed by prepare_invoke) 4211 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 4212 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 4213 // Pass arguments for generating a verbose error message. 4214 LP64_ONLY( if (recvKlass != rdx) { __ movq(recvKlass, rdx); } ) 4215 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), 4216 recvKlass, rax); 4217 // the call_VM checks for exception, so we should never return here. 4218 __ should_not_reach_here(); 4219 } 4220 4221 void TemplateTable::invokehandle(int byte_no) { 4222 transition(vtos, vtos); 4223 assert(byte_no == f1_byte, "use this argument"); 4224 const Register rbx_method = rbx; 4225 const Register rax_mtype = rax; 4226 const Register rcx_recv = rcx; 4227 const Register rdx_flags = rdx; 4228 4229 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv); 4230 __ verify_method_ptr(rbx_method); 4231 __ verify_oop(rcx_recv); 4232 __ null_check(rcx_recv); 4233 4234 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 4235 // rbx: MH.invokeExact_MT method (from f2) 4236 4237 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke 4238 4239 // FIXME: profile the LambdaForm also 4240 __ profile_final_call(rax); 4241 __ profile_arguments_type(rdx, rbx_method, rbcp, true); 4242 4243 __ jump_from_interpreted(rbx_method, rdx); 4244 } 4245 4246 void TemplateTable::invokedynamic(int byte_no) { 4247 transition(vtos, vtos); 4248 assert(byte_no == f1_byte, "use this argument"); 4249 4250 const Register rbx_method = rbx; 4251 const Register rax_callsite = rax; 4252 4253 prepare_invoke(byte_no, rbx_method, rax_callsite); 4254 4255 // rax: CallSite object (from cpool->resolved_references[f1]) 4256 // rbx: MH.linkToCallSite method (from f2) 4257 4258 // Note: rax_callsite is already pushed by prepare_invoke 4259 4260 // %%% should make a type profile for any invokedynamic that takes a ref argument 4261 // profile this call 4262 __ profile_call(rbcp); 4263 __ profile_arguments_type(rdx, rbx_method, rbcp, false); 4264 4265 __ verify_oop(rax_callsite); 4266 4267 __ jump_from_interpreted(rbx_method, rdx); 4268 } 4269 4270 //----------------------------------------------------------------------------- 4271 // Allocation 4272 4273 void TemplateTable::_new() { 4274 transition(vtos, atos); 4275 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 4276 Label slow_case; 4277 Label slow_case_no_pop; 4278 Label done; 4279 Label initialize_header; 4280 Label initialize_object; // including clearing the fields 4281 4282 __ get_cpool_and_tags(rcx, rax); 4283 4284 // Make sure the class we're about to instantiate has been resolved. 4285 // This is done before loading InstanceKlass to be consistent with the order 4286 // how Constant Pool is updated (see ConstantPool::klass_at_put) 4287 const int tags_offset = Array<u1>::base_offset_in_bytes(); 4288 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 4289 __ jcc(Assembler::notEqual, slow_case_no_pop); 4290 4291 // get InstanceKlass 4292 __ load_resolved_klass_at_index(rcx, rdx, rcx); 4293 __ push(rcx); // save the contexts of klass for initializing the header 4294 4295 // make sure klass is initialized & doesn't have finalizer 4296 // make sure klass is fully initialized 4297 __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 4298 __ jcc(Assembler::notEqual, slow_case); 4299 4300 // get instance_size in InstanceKlass (scaled to a count of bytes) 4301 __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); 4302 // test to see if it has a finalizer or is malformed in some way 4303 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 4304 __ jcc(Assembler::notZero, slow_case); 4305 4306 // Allocate the instance: 4307 // If TLAB is enabled: 4308 // Try to allocate in the TLAB. 4309 // If fails, go to the slow path. 4310 // Else If inline contiguous allocations are enabled: 4311 // Try to allocate in eden. 4312 // If fails due to heap end, go to slow path. 4313 // 4314 // If TLAB is enabled OR inline contiguous is enabled: 4315 // Initialize the allocation. 4316 // Exit. 4317 // 4318 // Go to slow path. 4319 4320 const bool allow_shared_alloc = 4321 Universe::heap()->supports_inline_contig_alloc(); 4322 4323 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 4324 #ifndef _LP64 4325 if (UseTLAB || allow_shared_alloc) { 4326 __ get_thread(thread); 4327 } 4328 #endif // _LP64 4329 4330 if (UseTLAB) { 4331 __ tlab_allocate(thread, rax, rdx, 0, rcx, rbx, slow_case); 4332 if (ZeroTLAB) { 4333 // the fields have been already cleared 4334 __ jmp(initialize_header); 4335 } else { 4336 // initialize both the header and fields 4337 __ jmp(initialize_object); 4338 } 4339 } else { 4340 // Allocation in the shared Eden, if allowed. 4341 // 4342 // rdx: instance size in bytes 4343 __ eden_allocate(thread, rax, rdx, 0, rbx, slow_case); 4344 } 4345 4346 // If UseTLAB or allow_shared_alloc are true, the object is created above and 4347 // there is an initialize need. Otherwise, skip and go to the slow path. 4348 if (UseTLAB || allow_shared_alloc) { 4349 // The object is initialized before the header. If the object size is 4350 // zero, go directly to the header initialization. 4351 __ bind(initialize_object); 4352 __ decrement(rdx, sizeof(oopDesc)); 4353 __ jcc(Assembler::zero, initialize_header); 4354 4355 // Initialize topmost object field, divide rdx by 8, check if odd and 4356 // test if zero. 4357 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 4358 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 4359 4360 // rdx must have been multiple of 8 4361 #ifdef ASSERT 4362 // make sure rdx was multiple of 8 4363 Label L; 4364 // Ignore partial flag stall after shrl() since it is debug VM 4365 __ jcc(Assembler::carryClear, L); 4366 __ stop("object size is not multiple of 2 - adjust this code"); 4367 __ bind(L); 4368 // rdx must be > 0, no extra check needed here 4369 #endif 4370 4371 // initialize remaining object fields: rdx was a multiple of 8 4372 { Label loop; 4373 __ bind(loop); 4374 __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx); 4375 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx)); 4376 __ decrement(rdx); 4377 __ jcc(Assembler::notZero, loop); 4378 } 4379 4380 // initialize object header only. 4381 __ bind(initialize_header); 4382 if (UseBiasedLocking) { 4383 __ pop(rcx); // get saved klass back in the register. 4384 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset())); 4385 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx); 4386 } else { 4387 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), 4388 (intptr_t)markOopDesc::prototype()); // header 4389 __ pop(rcx); // get saved klass back in the register. 4390 } 4391 #ifdef _LP64 4392 __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code) 4393 __ store_klass_gap(rax, rsi); // zero klass gap for compressed oops 4394 #endif 4395 __ store_klass(rax, rcx); // klass 4396 4397 { 4398 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0); 4399 // Trigger dtrace event for fastpath 4400 __ push(atos); 4401 __ call_VM_leaf( 4402 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax); 4403 __ pop(atos); 4404 } 4405 4406 __ jmp(done); 4407 } 4408 4409 // slow case 4410 __ bind(slow_case); 4411 __ pop(rcx); // restore stack pointer to what it was when we came in. 4412 __ bind(slow_case_no_pop); 4413 4414 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4415 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4416 4417 __ get_constant_pool(rarg1); 4418 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4419 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2); 4420 __ verify_oop(rax); 4421 4422 // continue 4423 __ bind(done); 4424 } 4425 4426 void TemplateTable::defaultvalue() { 4427 transition(vtos, atos); 4428 4429 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4430 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4431 4432 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4433 __ get_constant_pool(rarg1); 4434 4435 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::defaultvalue), 4436 rarg1, rarg2); 4437 __ verify_oop(rax); 4438 } 4439 4440 void TemplateTable::newarray() { 4441 transition(itos, atos); 4442 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4443 __ load_unsigned_byte(rarg1, at_bcp(1)); 4444 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 4445 rarg1, rax); 4446 } 4447 4448 void TemplateTable::anewarray() { 4449 transition(itos, atos); 4450 4451 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4452 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4453 4454 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4455 __ get_constant_pool(rarg1); 4456 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 4457 rarg1, rarg2, rax); 4458 } 4459 4460 void TemplateTable::arraylength() { 4461 transition(atos, itos); 4462 __ null_check(rax, arrayOopDesc::length_offset_in_bytes()); 4463 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 4464 } 4465 4466 void TemplateTable::checkcast() { 4467 transition(atos, atos); 4468 Label done, is_null, ok_is_subtype, quicked, resolved; 4469 __ testptr(rax, rax); // object is in rax 4470 __ jcc(Assembler::zero, is_null); 4471 4472 // Get cpool & tags index 4473 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4474 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4475 // See if bytecode has already been quicked 4476 __ movzbl(rdx, Address(rdx, rbx, 4477 Address::times_1, 4478 Array<u1>::base_offset_in_bytes())); 4479 __ andl (rdx, ~JVM_CONSTANT_QDESC_BIT); 4480 __ cmpl(rdx, JVM_CONSTANT_Class); 4481 __ jcc(Assembler::equal, quicked); 4482 __ push(atos); // save receiver for result, and for GC 4483 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4484 4485 // vm_result_2 has metadata result 4486 #ifndef _LP64 4487 // borrow rdi from locals 4488 __ get_thread(rdi); 4489 __ get_vm_result_2(rax, rdi); 4490 __ restore_locals(); 4491 #else 4492 __ get_vm_result_2(rax, r15_thread); 4493 #endif 4494 4495 __ pop_ptr(rdx); // restore receiver 4496 __ jmpb(resolved); 4497 4498 // Get superklass in rax and subklass in rbx 4499 __ bind(quicked); 4500 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 4501 __ load_resolved_klass_at_index(rcx, rbx, rax); 4502 4503 __ bind(resolved); 4504 __ load_klass(rbx, rdx); 4505 4506 // Generate subtype check. Blows rcx, rdi. Object in rdx. 4507 // Superklass in rax. Subklass in rbx. 4508 __ gen_subtype_check(rbx, ok_is_subtype); 4509 4510 // Come here on failure 4511 __ push_ptr(rdx); 4512 // object is at TOS 4513 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 4514 4515 // Come here on success 4516 __ bind(ok_is_subtype); 4517 __ mov(rax, rdx); // Restore object in rdx 4518 __ jmp(done); 4519 4520 __ bind(is_null); 4521 4522 // Collect counts on whether this check-cast sees NULLs a lot or not. 4523 if (ProfileInterpreter) { 4524 __ profile_null_seen(rcx); 4525 } 4526 4527 if (EnableValhalla) { 4528 // Get cpool & tags index 4529 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4530 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4531 // See if CP entry is a Q-descriptor 4532 __ movzbl(rcx, Address(rdx, rbx, 4533 Address::times_1, 4534 Array<u1>::base_offset_in_bytes())); 4535 __ andl (rcx, JVM_CONSTANT_QDESC_BIT); 4536 __ cmpl(rcx, JVM_CONSTANT_QDESC_BIT); 4537 __ jcc(Assembler::notEqual, done); 4538 __ jump(ExternalAddress(Interpreter::_throw_NullPointerException_entry)); 4539 } 4540 4541 __ bind(done); 4542 } 4543 4544 void TemplateTable::instanceof() { 4545 transition(atos, itos); 4546 Label done, is_null, ok_is_subtype, quicked, resolved; 4547 __ testptr(rax, rax); 4548 __ jcc(Assembler::zero, is_null); 4549 4550 // Get cpool & tags index 4551 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4552 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4553 // See if bytecode has already been quicked 4554 __ movzbl(rdx, Address(rdx, rbx, 4555 Address::times_1, 4556 Array<u1>::base_offset_in_bytes())); 4557 __ andl (rdx, ~JVM_CONSTANT_QDESC_BIT); 4558 __ cmpl(rdx, JVM_CONSTANT_Class); 4559 __ jcc(Assembler::equal, quicked); 4560 4561 __ push(atos); // save receiver for result, and for GC 4562 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4563 // vm_result_2 has metadata result 4564 4565 #ifndef _LP64 4566 // borrow rdi from locals 4567 __ get_thread(rdi); 4568 __ get_vm_result_2(rax, rdi); 4569 __ restore_locals(); 4570 #else 4571 __ get_vm_result_2(rax, r15_thread); 4572 #endif 4573 4574 __ pop_ptr(rdx); // restore receiver 4575 __ verify_oop(rdx); 4576 __ load_klass(rdx, rdx); 4577 __ jmpb(resolved); 4578 4579 // Get superklass in rax and subklass in rdx 4580 __ bind(quicked); 4581 __ load_klass(rdx, rax); 4582 __ load_resolved_klass_at_index(rcx, rbx, rax); 4583 4584 __ bind(resolved); 4585 4586 // Generate subtype check. Blows rcx, rdi 4587 // Superklass in rax. Subklass in rdx. 4588 __ gen_subtype_check(rdx, ok_is_subtype); 4589 4590 // Come here on failure 4591 __ xorl(rax, rax); 4592 __ jmpb(done); 4593 // Come here on success 4594 __ bind(ok_is_subtype); 4595 __ movl(rax, 1); 4596 4597 // Collect counts on whether this test sees NULLs a lot or not. 4598 if (ProfileInterpreter) { 4599 __ jmp(done); 4600 __ bind(is_null); 4601 __ profile_null_seen(rcx); 4602 } else { 4603 __ bind(is_null); // same as 'done' 4604 } 4605 __ bind(done); 4606 // rax = 0: obj == NULL or obj is not an instanceof the specified klass 4607 // rax = 1: obj != NULL and obj is an instanceof the specified klass 4608 } 4609 4610 //---------------------------------------------------------------------------------------------------- 4611 // Breakpoints 4612 void TemplateTable::_breakpoint() { 4613 // Note: We get here even if we are single stepping.. 4614 // jbug insists on setting breakpoints at every bytecode 4615 // even if we are in single step mode. 4616 4617 transition(vtos, vtos); 4618 4619 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4620 4621 // get the unpatched byte code 4622 __ get_method(rarg); 4623 __ call_VM(noreg, 4624 CAST_FROM_FN_PTR(address, 4625 InterpreterRuntime::get_original_bytecode_at), 4626 rarg, rbcp); 4627 __ mov(rbx, rax); // why? 4628 4629 // post the breakpoint event 4630 __ get_method(rarg); 4631 __ call_VM(noreg, 4632 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 4633 rarg, rbcp); 4634 4635 // complete the execution of original bytecode 4636 __ dispatch_only_normal(vtos); 4637 } 4638 4639 //----------------------------------------------------------------------------- 4640 // Exceptions 4641 4642 void TemplateTable::athrow() { 4643 transition(atos, vtos); 4644 __ null_check(rax); 4645 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 4646 } 4647 4648 //----------------------------------------------------------------------------- 4649 // Synchronization 4650 // 4651 // Note: monitorenter & exit are symmetric routines; which is reflected 4652 // in the assembly code structure as well 4653 // 4654 // Stack layout: 4655 // 4656 // [expressions ] <--- rsp = expression stack top 4657 // .. 4658 // [expressions ] 4659 // [monitor entry] <--- monitor block top = expression stack bot 4660 // .. 4661 // [monitor entry] 4662 // [frame data ] <--- monitor block bot 4663 // ... 4664 // [saved rbp ] <--- rbp 4665 void TemplateTable::monitorenter() { 4666 transition(atos, vtos); 4667 4668 // check for NULL object 4669 __ null_check(rax); 4670 4671 __ resolve(IS_NOT_NULL, rax); 4672 4673 const Address monitor_block_top( 4674 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4675 const Address monitor_block_bot( 4676 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4677 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4678 4679 Label allocated; 4680 4681 Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 4682 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4683 Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4684 4685 // initialize entry pointer 4686 __ xorl(rmon, rmon); // points to free slot or NULL 4687 4688 // find a free slot in the monitor block (result in rmon) 4689 { 4690 Label entry, loop, exit; 4691 __ movptr(rtop, monitor_block_top); // points to current entry, 4692 // starting with top-most entry 4693 __ lea(rbot, monitor_block_bot); // points to word before bottom 4694 // of monitor block 4695 __ jmpb(entry); 4696 4697 __ bind(loop); 4698 // check if current entry is used 4699 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD); 4700 // if not used then remember entry in rmon 4701 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr 4702 // check if current entry is for same object 4703 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); 4704 // if same object then stop searching 4705 __ jccb(Assembler::equal, exit); 4706 // otherwise advance to next entry 4707 __ addptr(rtop, entry_size); 4708 __ bind(entry); 4709 // check if bottom reached 4710 __ cmpptr(rtop, rbot); 4711 // if not at bottom then check this entry 4712 __ jcc(Assembler::notEqual, loop); 4713 __ bind(exit); 4714 } 4715 4716 __ testptr(rmon, rmon); // check if a slot has been found 4717 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 4718 4719 // allocate one if there's no free slot 4720 { 4721 Label entry, loop; 4722 // 1. compute new pointers // rsp: old expression stack top 4723 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom 4724 __ subptr(rsp, entry_size); // move expression stack top 4725 __ subptr(rmon, entry_size); // move expression stack bottom 4726 __ mov(rtop, rsp); // set start value for copy loop 4727 __ movptr(monitor_block_bot, rmon); // set new monitor block bottom 4728 __ jmp(entry); 4729 // 2. move expression stack contents 4730 __ bind(loop); 4731 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack 4732 // word from old location 4733 __ movptr(Address(rtop, 0), rbot); // and store it at new location 4734 __ addptr(rtop, wordSize); // advance to next word 4735 __ bind(entry); 4736 __ cmpptr(rtop, rmon); // check if bottom reached 4737 __ jcc(Assembler::notEqual, loop); // if not at bottom then 4738 // copy next word 4739 } 4740 4741 // call run-time routine 4742 // rmon: points to monitor entry 4743 __ bind(allocated); 4744 4745 // Increment bcp to point to the next bytecode, so exception 4746 // handling for async. exceptions work correctly. 4747 // The object has already been poped from the stack, so the 4748 // expression stack looks correct. 4749 __ increment(rbcp); 4750 4751 // store object 4752 __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax); 4753 __ lock_object(rmon); 4754 4755 // check to make sure this monitor doesn't cause stack overflow after locking 4756 __ save_bcp(); // in case of exception 4757 __ generate_stack_overflow_check(0); 4758 4759 // The bcp has already been incremented. Just need to dispatch to 4760 // next instruction. 4761 __ dispatch_next(vtos); 4762 } 4763 4764 void TemplateTable::monitorexit() { 4765 transition(atos, vtos); 4766 4767 // check for NULL object 4768 __ null_check(rax); 4769 4770 __ resolve(IS_NOT_NULL, rax); 4771 4772 const Address monitor_block_top( 4773 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4774 const Address monitor_block_bot( 4775 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4776 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4777 4778 Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4779 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4780 4781 Label found; 4782 4783 // find matching slot 4784 { 4785 Label entry, loop; 4786 __ movptr(rtop, monitor_block_top); // points to current entry, 4787 // starting with top-most entry 4788 __ lea(rbot, monitor_block_bot); // points to word before bottom 4789 // of monitor block 4790 __ jmpb(entry); 4791 4792 __ bind(loop); 4793 // check if current entry is for same object 4794 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); 4795 // if same object then stop searching 4796 __ jcc(Assembler::equal, found); 4797 // otherwise advance to next entry 4798 __ addptr(rtop, entry_size); 4799 __ bind(entry); 4800 // check if bottom reached 4801 __ cmpptr(rtop, rbot); 4802 // if not at bottom then check this entry 4803 __ jcc(Assembler::notEqual, loop); 4804 } 4805 4806 // error handling. Unlocking was not block-structured 4807 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4808 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4809 __ should_not_reach_here(); 4810 4811 // call run-time routine 4812 __ bind(found); 4813 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 4814 __ unlock_object(rtop); 4815 __ pop_ptr(rax); // discard object 4816 } 4817 4818 // Wide instructions 4819 void TemplateTable::wide() { 4820 transition(vtos, vtos); 4821 __ load_unsigned_byte(rbx, at_bcp(1)); 4822 ExternalAddress wtable((address)Interpreter::_wentry_point); 4823 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr))); 4824 // Note: the rbcp increment step is part of the individual wide bytecode implementations 4825 } 4826 4827 // Multi arrays 4828 void TemplateTable::multianewarray() { 4829 transition(vtos, atos); 4830 4831 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4832 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 4833 // last dim is on top of stack; we want address of first one: 4834 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 4835 // the latter wordSize to point to the beginning of the array. 4836 __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 4837 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg); 4838 __ load_unsigned_byte(rbx, at_bcp(3)); 4839 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 4840 }