rev 59195 : 8244594: [BACKOUT] 8244523: Shenandoah: Remove null-handling in LRB expansion rev 59196 : 8244595: [REDO] 8244523: Shenandoah: Remove null-handling in LRB expansion
1 /* 2 * Copyright (c) 2018, 2019, Red Hat, Inc. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 28 #include "gc/shenandoah/shenandoahForwarding.hpp" 29 #include "gc/shenandoah/shenandoahHeap.hpp" 30 #include "gc/shenandoah/shenandoahHeuristics.hpp" 31 #include "gc/shenandoah/shenandoahRuntime.hpp" 32 #include "gc/shenandoah/shenandoahThreadLocalData.hpp" 33 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp" 34 #include "gc/shenandoah/c2/shenandoahSupport.hpp" 35 #include "opto/arraycopynode.hpp" 36 #include "opto/escape.hpp" 37 #include "opto/graphKit.hpp" 38 #include "opto/idealKit.hpp" 39 #include "opto/macro.hpp" 40 #include "opto/movenode.hpp" 41 #include "opto/narrowptrnode.hpp" 42 #include "opto/rootnode.hpp" 43 #include "opto/runtime.hpp" 44 45 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() { 46 return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2()); 47 } 48 49 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena) 50 : _enqueue_barriers(new (comp_arena) GrowableArray<ShenandoahEnqueueBarrierNode*>(comp_arena, 8, 0, NULL)), 51 _load_reference_barriers(new (comp_arena) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena, 8, 0, NULL)) { 52 } 53 54 int ShenandoahBarrierSetC2State::enqueue_barriers_count() const { 55 return _enqueue_barriers->length(); 56 } 57 58 ShenandoahEnqueueBarrierNode* ShenandoahBarrierSetC2State::enqueue_barrier(int idx) const { 59 return _enqueue_barriers->at(idx); 60 } 61 62 void ShenandoahBarrierSetC2State::add_enqueue_barrier(ShenandoahEnqueueBarrierNode * n) { 63 assert(!_enqueue_barriers->contains(n), "duplicate entry in barrier list"); 64 _enqueue_barriers->append(n); 65 } 66 67 void ShenandoahBarrierSetC2State::remove_enqueue_barrier(ShenandoahEnqueueBarrierNode * n) { 68 if (_enqueue_barriers->contains(n)) { 69 _enqueue_barriers->remove(n); 70 } 71 } 72 73 int ShenandoahBarrierSetC2State::load_reference_barriers_count() const { 74 return _load_reference_barriers->length(); 75 } 76 77 ShenandoahLoadReferenceBarrierNode* ShenandoahBarrierSetC2State::load_reference_barrier(int idx) const { 78 return _load_reference_barriers->at(idx); 79 } 80 81 void ShenandoahBarrierSetC2State::add_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) { 82 assert(!_load_reference_barriers->contains(n), "duplicate entry in barrier list"); 83 _load_reference_barriers->append(n); 84 } 85 86 void ShenandoahBarrierSetC2State::remove_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) { 87 if (_load_reference_barriers->contains(n)) { 88 _load_reference_barriers->remove(n); 89 } 90 } 91 92 Node* ShenandoahBarrierSetC2::shenandoah_storeval_barrier(GraphKit* kit, Node* obj) const { 93 if (ShenandoahStoreValEnqueueBarrier) { 94 obj = shenandoah_enqueue_barrier(kit, obj); 95 } 96 return obj; 97 } 98 99 #define __ kit-> 100 101 bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseTransform* phase, Node* adr, 102 BasicType bt, uint adr_idx) const { 103 intptr_t offset = 0; 104 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 105 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase); 106 107 if (offset == Type::OffsetBot) { 108 return false; // cannot unalias unless there are precise offsets 109 } 110 111 if (alloc == NULL) { 112 return false; // No allocation found 113 } 114 115 intptr_t size_in_bytes = type2aelembytes(bt); 116 117 Node* mem = __ memory(adr_idx); // start searching here... 118 119 for (int cnt = 0; cnt < 50; cnt++) { 120 121 if (mem->is_Store()) { 122 123 Node* st_adr = mem->in(MemNode::Address); 124 intptr_t st_offset = 0; 125 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 126 127 if (st_base == NULL) { 128 break; // inscrutable pointer 129 } 130 131 // Break we have found a store with same base and offset as ours so break 132 if (st_base == base && st_offset == offset) { 133 break; 134 } 135 136 if (st_offset != offset && st_offset != Type::OffsetBot) { 137 const int MAX_STORE = BytesPerLong; 138 if (st_offset >= offset + size_in_bytes || 139 st_offset <= offset - MAX_STORE || 140 st_offset <= offset - mem->as_Store()->memory_size()) { 141 // Success: The offsets are provably independent. 142 // (You may ask, why not just test st_offset != offset and be done? 143 // The answer is that stores of different sizes can co-exist 144 // in the same sequence of RawMem effects. We sometimes initialize 145 // a whole 'tile' of array elements with a single jint or jlong.) 146 mem = mem->in(MemNode::Memory); 147 continue; // advance through independent store memory 148 } 149 } 150 151 if (st_base != base 152 && MemNode::detect_ptr_independence(base, alloc, st_base, 153 AllocateNode::Ideal_allocation(st_base, phase), 154 phase)) { 155 // Success: The bases are provably independent. 156 mem = mem->in(MemNode::Memory); 157 continue; // advance through independent store memory 158 } 159 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 160 161 InitializeNode* st_init = mem->in(0)->as_Initialize(); 162 AllocateNode* st_alloc = st_init->allocation(); 163 164 // Make sure that we are looking at the same allocation site. 165 // The alloc variable is guaranteed to not be null here from earlier check. 166 if (alloc == st_alloc) { 167 // Check that the initialization is storing NULL so that no previous store 168 // has been moved up and directly write a reference 169 Node* captured_store = st_init->find_captured_store(offset, 170 type2aelembytes(T_OBJECT), 171 phase); 172 if (captured_store == NULL || captured_store == st_init->zero_memory()) { 173 return true; 174 } 175 } 176 } 177 178 // Unless there is an explicit 'continue', we must bail out here, 179 // because 'mem' is an inscrutable memory state (e.g., a call). 180 break; 181 } 182 183 return false; 184 } 185 186 #undef __ 187 #define __ ideal. 188 189 void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit, 190 bool do_load, 191 Node* obj, 192 Node* adr, 193 uint alias_idx, 194 Node* val, 195 const TypeOopPtr* val_type, 196 Node* pre_val, 197 BasicType bt) const { 198 // Some sanity checks 199 // Note: val is unused in this routine. 200 201 if (do_load) { 202 // We need to generate the load of the previous value 203 assert(obj != NULL, "must have a base"); 204 assert(adr != NULL, "where are loading from?"); 205 assert(pre_val == NULL, "loaded already?"); 206 assert(val_type != NULL, "need a type"); 207 208 if (ReduceInitialCardMarks 209 && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) { 210 return; 211 } 212 213 } else { 214 // In this case both val_type and alias_idx are unused. 215 assert(pre_val != NULL, "must be loaded already"); 216 // Nothing to be done if pre_val is null. 217 if (pre_val->bottom_type() == TypePtr::NULL_PTR) return; 218 assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here"); 219 } 220 assert(bt == T_OBJECT, "or we shouldn't be here"); 221 222 IdealKit ideal(kit, true); 223 224 Node* tls = __ thread(); // ThreadLocalStorage 225 226 Node* no_base = __ top(); 227 Node* zero = __ ConI(0); 228 Node* zeroX = __ ConX(0); 229 230 float likely = PROB_LIKELY(0.999); 231 float unlikely = PROB_UNLIKELY(0.999); 232 233 // Offsets into the thread 234 const int index_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset()); 235 const int buffer_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); 236 237 // Now the actual pointers into the thread 238 Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset)); 239 Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset)); 240 241 // Now some of the values 242 Node* marking; 243 Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()))); 244 Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw); 245 marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING)); 246 assert(ShenandoahBarrierC2Support::is_gc_state_load(ld), "Should match the shape"); 247 248 // if (!marking) 249 __ if_then(marking, BoolTest::ne, zero, unlikely); { 250 BasicType index_bt = TypeX_X->basic_type(); 251 assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size."); 252 Node* index = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw); 253 254 if (do_load) { 255 // load original value 256 // alias_idx correct?? 257 pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx); 258 } 259 260 // if (pre_val != NULL) 261 __ if_then(pre_val, BoolTest::ne, kit->null()); { 262 Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); 263 264 // is the queue for this thread full? 265 __ if_then(index, BoolTest::ne, zeroX, likely); { 266 267 // decrement the index 268 Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t)))); 269 270 // Now get the buffer location we will log the previous value into and store it 271 Node *log_addr = __ AddP(no_base, buffer, next_index); 272 __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered); 273 // update the index 274 __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered); 275 276 } __ else_(); { 277 278 // logging buffer is full, call the runtime 279 const TypeFunc *tf = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type(); 280 __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), "shenandoah_wb_pre", pre_val, tls); 281 } __ end_if(); // (!index) 282 } __ end_if(); // (pre_val != NULL) 283 } __ end_if(); // (!marking) 284 285 // Final sync IdealKit and GraphKit. 286 kit->final_sync(ideal); 287 288 if (ShenandoahSATBBarrier && adr != NULL) { 289 Node* c = kit->control(); 290 Node* call = c->in(1)->in(1)->in(1)->in(0); 291 assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected"); 292 call->add_req(adr); 293 } 294 } 295 296 bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) { 297 return call->is_CallLeaf() && 298 call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry); 299 } 300 301 bool ShenandoahBarrierSetC2::is_shenandoah_lrb_call(Node* call) { 302 if (!call->is_CallLeaf()) { 303 return false; 304 } 305 306 address entry_point = call->as_CallLeaf()->entry_point(); 307 return (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier)) || 308 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_narrow)) || 309 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_native)); 310 } 311 312 bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseTransform *phase, Node* n) { 313 if (n->Opcode() != Op_If) { 314 return false; 315 } 316 317 Node* bol = n->in(1); 318 assert(bol->is_Bool(), ""); 319 Node* cmpx = bol->in(1); 320 if (bol->as_Bool()->_test._test == BoolTest::ne && 321 cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) && 322 is_shenandoah_state_load(cmpx->in(1)->in(1)) && 323 cmpx->in(1)->in(2)->is_Con() && 324 cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) { 325 return true; 326 } 327 328 return false; 329 } 330 331 bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) { 332 if (!n->is_Load()) return false; 333 const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset()); 334 return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal 335 && n->in(2)->in(3)->is_Con() 336 && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset; 337 } 338 339 void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit, 340 bool do_load, 341 Node* obj, 342 Node* adr, 343 uint alias_idx, 344 Node* val, 345 const TypeOopPtr* val_type, 346 Node* pre_val, 347 BasicType bt) const { 348 if (ShenandoahSATBBarrier) { 349 IdealKit ideal(kit); 350 kit->sync_kit(ideal); 351 352 satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt); 353 354 ideal.sync_kit(kit); 355 kit->final_sync(ideal); 356 } 357 } 358 359 Node* ShenandoahBarrierSetC2::shenandoah_enqueue_barrier(GraphKit* kit, Node* pre_val) const { 360 return kit->gvn().transform(new ShenandoahEnqueueBarrierNode(pre_val)); 361 } 362 363 // Helper that guards and inserts a pre-barrier. 364 void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset, 365 Node* pre_val, bool need_mem_bar) const { 366 // We could be accessing the referent field of a reference object. If so, when G1 367 // is enabled, we need to log the value in the referent field in an SATB buffer. 368 // This routine performs some compile time filters and generates suitable 369 // runtime filters that guard the pre-barrier code. 370 // Also add memory barrier for non volatile load from the referent field 371 // to prevent commoning of loads across safepoint. 372 373 // Some compile time checks. 374 375 // If offset is a constant, is it java_lang_ref_Reference::_reference_offset? 376 const TypeX* otype = offset->find_intptr_t_type(); 377 if (otype != NULL && otype->is_con() && 378 otype->get_con() != java_lang_ref_Reference::referent_offset) { 379 // Constant offset but not the reference_offset so just return 380 return; 381 } 382 383 // We only need to generate the runtime guards for instances. 384 const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr(); 385 if (btype != NULL) { 386 if (btype->isa_aryptr()) { 387 // Array type so nothing to do 388 return; 389 } 390 391 const TypeInstPtr* itype = btype->isa_instptr(); 392 if (itype != NULL) { 393 // Can the klass of base_oop be statically determined to be 394 // _not_ a sub-class of Reference and _not_ Object? 395 ciKlass* klass = itype->klass(); 396 if ( klass->is_loaded() && 397 !klass->is_subtype_of(kit->env()->Reference_klass()) && 398 !kit->env()->Object_klass()->is_subtype_of(klass)) { 399 return; 400 } 401 } 402 } 403 404 // The compile time filters did not reject base_oop/offset so 405 // we need to generate the following runtime filters 406 // 407 // if (offset == java_lang_ref_Reference::_reference_offset) { 408 // if (instance_of(base, java.lang.ref.Reference)) { 409 // pre_barrier(_, pre_val, ...); 410 // } 411 // } 412 413 float likely = PROB_LIKELY( 0.999); 414 float unlikely = PROB_UNLIKELY(0.999); 415 416 IdealKit ideal(kit); 417 418 Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset); 419 420 __ if_then(offset, BoolTest::eq, referent_off, unlikely); { 421 // Update graphKit memory and control from IdealKit. 422 kit->sync_kit(ideal); 423 424 Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass())); 425 Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con); 426 427 // Update IdealKit memory and control from graphKit. 428 __ sync_kit(kit); 429 430 Node* one = __ ConI(1); 431 // is_instof == 0 if base_oop == NULL 432 __ if_then(is_instof, BoolTest::eq, one, unlikely); { 433 434 // Update graphKit from IdeakKit. 435 kit->sync_kit(ideal); 436 437 // Use the pre-barrier to record the value in the referent field 438 satb_write_barrier_pre(kit, false /* do_load */, 439 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */, 440 pre_val /* pre_val */, 441 T_OBJECT); 442 if (need_mem_bar) { 443 // Add memory barrier to prevent commoning reads from this field 444 // across safepoint since GC can change its value. 445 kit->insert_mem_bar(Op_MemBarCPUOrder); 446 } 447 // Update IdealKit from graphKit. 448 __ sync_kit(kit); 449 450 } __ end_if(); // _ref_type != ref_none 451 } __ end_if(); // offset == referent_offset 452 453 // Final sync IdealKit and GraphKit. 454 kit->final_sync(ideal); 455 } 456 457 #undef __ 458 459 const TypeFunc* ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type() { 460 const Type **fields = TypeTuple::fields(2); 461 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value 462 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread 463 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 464 465 // create result type (range) 466 fields = TypeTuple::fields(0); 467 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 468 469 return TypeFunc::make(domain, range); 470 } 471 472 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type() { 473 const Type **fields = TypeTuple::fields(1); 474 fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop 475 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 476 477 // create result type (range) 478 fields = TypeTuple::fields(0); 479 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 480 481 return TypeFunc::make(domain, range); 482 } 483 484 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_load_reference_barrier_Type() { 485 const Type **fields = TypeTuple::fields(2); 486 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value 487 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // original load address 488 489 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 490 491 // create result type (range) 492 fields = TypeTuple::fields(1); 493 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; 494 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 495 496 return TypeFunc::make(domain, range); 497 } 498 499 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const { 500 DecoratorSet decorators = access.decorators(); 501 502 const TypePtr* adr_type = access.addr().type(); 503 Node* adr = access.addr().node(); 504 505 bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0; 506 bool on_heap = (decorators & IN_HEAP) != 0; 507 508 if (!access.is_oop() || (!on_heap && !anonymous)) { 509 return BarrierSetC2::store_at_resolved(access, val); 510 } 511 512 if (access.is_parse_access()) { 513 C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); 514 GraphKit* kit = parse_access.kit(); 515 516 uint adr_idx = kit->C->get_alias_index(adr_type); 517 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 518 Node* value = val.node(); 519 value = shenandoah_storeval_barrier(kit, value); 520 val.set_node(value); 521 shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(), 522 static_cast<const TypeOopPtr*>(val.type()), NULL /* pre_val */, access.type()); 523 } else { 524 assert(access.is_opt_access(), "only for optimization passes"); 525 assert(((decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0 || !ShenandoahSATBBarrier) && (decorators & C2_ARRAY_COPY) != 0, "unexpected caller of this code"); 526 C2OptAccess& opt_access = static_cast<C2OptAccess&>(access); 527 PhaseGVN& gvn = opt_access.gvn(); 528 MergeMemNode* mm = opt_access.mem(); 529 530 if (ShenandoahStoreValEnqueueBarrier) { 531 Node* enqueue = gvn.transform(new ShenandoahEnqueueBarrierNode(val.node())); 532 val.set_node(enqueue); 533 } 534 } 535 return BarrierSetC2::store_at_resolved(access, val); 536 } 537 538 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const { 539 // 1: non-reference load, no additional barrier is needed 540 if (!access.is_oop()) { 541 return BarrierSetC2::load_at_resolved(access, val_type);; 542 } 543 544 Node* load = BarrierSetC2::load_at_resolved(access, val_type); 545 DecoratorSet decorators = access.decorators(); 546 BasicType type = access.type(); 547 548 // 2: apply LRB if needed 549 if (ShenandoahBarrierSet::need_load_reference_barrier(decorators, type)) { 550 load = new ShenandoahLoadReferenceBarrierNode(NULL, 551 load, 552 ShenandoahBarrierSet::use_load_reference_barrier_native(decorators, type)); 553 if (access.is_parse_access()) { 554 load = static_cast<C2ParseAccess &>(access).kit()->gvn().transform(load); 555 } else { 556 load = static_cast<C2OptAccess &>(access).gvn().transform(load); 557 } 558 } 559 560 // 3: apply keep-alive barrier if needed 561 if (ShenandoahBarrierSet::need_keep_alive_barrier(decorators, type)) { 562 Node* top = Compile::current()->top(); 563 Node* adr = access.addr().node(); 564 Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top; 565 Node* obj = access.base(); 566 567 bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0; 568 bool on_weak_ref = (decorators & (ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF)) != 0; 569 bool keep_alive = (decorators & AS_NO_KEEPALIVE) == 0; 570 571 // If we are reading the value of the referent field of a Reference 572 // object (either by using Unsafe directly or through reflection) 573 // then, if SATB is enabled, we need to record the referent in an 574 // SATB log buffer using the pre-barrier mechanism. 575 // Also we need to add memory barrier to prevent commoning reads 576 // from this field across safepoint since GC can change its value. 577 if (!on_weak_ref || (unknown && (offset == top || obj == top)) || !keep_alive) { 578 return load; 579 } 580 581 assert(access.is_parse_access(), "entry not supported at optimization time"); 582 C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); 583 GraphKit* kit = parse_access.kit(); 584 bool mismatched = (decorators & C2_MISMATCHED) != 0; 585 bool is_unordered = (decorators & MO_UNORDERED) != 0; 586 bool in_native = (decorators & IN_NATIVE) != 0; 587 bool need_cpu_mem_bar = !is_unordered || mismatched || in_native; 588 589 if (on_weak_ref) { 590 // Use the pre-barrier to record the value in the referent field 591 satb_write_barrier_pre(kit, false /* do_load */, 592 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */, 593 load /* pre_val */, T_OBJECT); 594 // Add memory barrier to prevent commoning reads from this field 595 // across safepoint since GC can change its value. 596 kit->insert_mem_bar(Op_MemBarCPUOrder); 597 } else if (unknown) { 598 // We do not require a mem bar inside pre_barrier if need_mem_bar 599 // is set: the barriers would be emitted by us. 600 insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar); 601 } 602 } 603 604 return load; 605 } 606 607 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val, 608 Node* new_val, const Type* value_type) const { 609 GraphKit* kit = access.kit(); 610 if (access.is_oop()) { 611 new_val = shenandoah_storeval_barrier(kit, new_val); 612 shenandoah_write_barrier_pre(kit, false /* do_load */, 613 NULL, NULL, max_juint, NULL, NULL, 614 expected_val /* pre_val */, T_OBJECT); 615 616 MemNode::MemOrd mo = access.mem_node_mo(); 617 Node* mem = access.memory(); 618 Node* adr = access.addr().node(); 619 const TypePtr* adr_type = access.addr().type(); 620 Node* load_store = NULL; 621 622 #ifdef _LP64 623 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 624 Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); 625 Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); 626 if (ShenandoahCASBarrier) { 627 load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo)); 628 } else { 629 load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo)); 630 } 631 } else 632 #endif 633 { 634 if (ShenandoahCASBarrier) { 635 load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo)); 636 } else { 637 load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo)); 638 } 639 } 640 641 access.set_raw_access(load_store); 642 pin_atomic_op(access); 643 644 #ifdef _LP64 645 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 646 load_store = kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type())); 647 } 648 #endif 649 load_store = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(NULL, load_store, false)); 650 return load_store; 651 } 652 return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type); 653 } 654 655 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val, 656 Node* new_val, const Type* value_type) const { 657 GraphKit* kit = access.kit(); 658 if (access.is_oop()) { 659 new_val = shenandoah_storeval_barrier(kit, new_val); 660 shenandoah_write_barrier_pre(kit, false /* do_load */, 661 NULL, NULL, max_juint, NULL, NULL, 662 expected_val /* pre_val */, T_OBJECT); 663 DecoratorSet decorators = access.decorators(); 664 MemNode::MemOrd mo = access.mem_node_mo(); 665 Node* mem = access.memory(); 666 bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0; 667 Node* load_store = NULL; 668 Node* adr = access.addr().node(); 669 #ifdef _LP64 670 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 671 Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); 672 Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); 673 if (ShenandoahCASBarrier) { 674 if (is_weak_cas) { 675 load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 676 } else { 677 load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 678 } 679 } else { 680 if (is_weak_cas) { 681 load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 682 } else { 683 load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 684 } 685 } 686 } else 687 #endif 688 { 689 if (ShenandoahCASBarrier) { 690 if (is_weak_cas) { 691 load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 692 } else { 693 load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 694 } 695 } else { 696 if (is_weak_cas) { 697 load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 698 } else { 699 load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 700 } 701 } 702 } 703 access.set_raw_access(load_store); 704 pin_atomic_op(access); 705 return load_store; 706 } 707 return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type); 708 } 709 710 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const { 711 GraphKit* kit = access.kit(); 712 if (access.is_oop()) { 713 val = shenandoah_storeval_barrier(kit, val); 714 } 715 Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type); 716 if (access.is_oop()) { 717 result = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(NULL, result, false)); 718 shenandoah_write_barrier_pre(kit, false /* do_load */, 719 NULL, NULL, max_juint, NULL, NULL, 720 result /* pre_val */, T_OBJECT); 721 } 722 return result; 723 } 724 725 // Support for GC barriers emitted during parsing 726 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const { 727 if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) return true; 728 if (node->Opcode() != Op_CallLeaf && node->Opcode() != Op_CallLeafNoFP) { 729 return false; 730 } 731 CallLeafNode *call = node->as_CallLeaf(); 732 if (call->_name == NULL) { 733 return false; 734 } 735 736 return strcmp(call->_name, "shenandoah_clone_barrier") == 0 || 737 strcmp(call->_name, "shenandoah_cas_obj") == 0 || 738 strcmp(call->_name, "shenandoah_wb_pre") == 0; 739 } 740 741 Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const { 742 if (c == NULL) { 743 return c; 744 } 745 if (c->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 746 return c->in(ShenandoahLoadReferenceBarrierNode::ValueIn); 747 } 748 if (c->Opcode() == Op_ShenandoahEnqueueBarrier) { 749 c = c->in(1); 750 } 751 return c; 752 } 753 754 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const { 755 return !ShenandoahBarrierC2Support::expand(C, igvn); 756 } 757 758 bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const { 759 if (mode == LoopOptsShenandoahExpand) { 760 assert(UseShenandoahGC, "only for shenandoah"); 761 ShenandoahBarrierC2Support::pin_and_expand(phase); 762 return true; 763 } else if (mode == LoopOptsShenandoahPostExpand) { 764 assert(UseShenandoahGC, "only for shenandoah"); 765 visited.clear(); 766 ShenandoahBarrierC2Support::optimize_after_expansion(visited, nstack, worklist, phase); 767 return true; 768 } 769 return false; 770 } 771 772 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, ArrayCopyPhase phase) const { 773 bool is_oop = is_reference_type(type); 774 if (!is_oop) { 775 return false; 776 } 777 if (ShenandoahSATBBarrier && tightly_coupled_alloc) { 778 if (phase == Optimization) { 779 return false; 780 } 781 return !is_clone; 782 } 783 if (phase == Optimization) { 784 return !ShenandoahStoreValEnqueueBarrier; 785 } 786 return true; 787 } 788 789 bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) { 790 const TypeOopPtr* src_type = gvn.type(src)->is_oopptr(); 791 if (src_type->isa_instptr() != NULL) { 792 ciInstanceKlass* ik = src_type->klass()->as_instance_klass(); 793 if ((src_type->klass_is_exact() || (!ik->is_interface() && !ik->has_subklass())) && !ik->has_injected_fields()) { 794 if (ik->has_object_fields()) { 795 return true; 796 } else { 797 if (!src_type->klass_is_exact()) { 798 Compile::current()->dependencies()->assert_leaf_type(ik); 799 } 800 } 801 } else { 802 return true; 803 } 804 } else if (src_type->isa_aryptr()) { 805 BasicType src_elem = src_type->klass()->as_array_klass()->element_type()->basic_type(); 806 if (is_reference_type(src_elem)) { 807 return true; 808 } 809 } else { 810 return true; 811 } 812 return false; 813 } 814 815 void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const { 816 Node* ctrl = ac->in(TypeFunc::Control); 817 Node* mem = ac->in(TypeFunc::Memory); 818 Node* src_base = ac->in(ArrayCopyNode::Src); 819 Node* src_offset = ac->in(ArrayCopyNode::SrcPos); 820 Node* dest_base = ac->in(ArrayCopyNode::Dest); 821 Node* dest_offset = ac->in(ArrayCopyNode::DestPos); 822 Node* length = ac->in(ArrayCopyNode::Length); 823 824 Node* src = phase->basic_plus_adr(src_base, src_offset); 825 Node* dest = phase->basic_plus_adr(dest_base, dest_offset); 826 827 if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) { 828 // Check if heap is has forwarded objects. If it does, we need to call into the special 829 // routine that would fix up source references before we can continue. 830 831 enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT }; 832 Node* region = new RegionNode(PATH_LIMIT); 833 Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM); 834 835 Node* thread = phase->transform_later(new ThreadLocalNode()); 836 Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())); 837 Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset)); 838 839 uint gc_state_idx = Compile::AliasIdxRaw; 840 const TypePtr* gc_state_adr_type = NULL; // debug-mode-only argument 841 debug_only(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx)); 842 843 Node* gc_state = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered)); 844 int flags = ShenandoahHeap::HAS_FORWARDED; 845 if (ShenandoahStoreValEnqueueBarrier) { 846 flags |= ShenandoahHeap::MARKING; 847 } 848 Node* stable_and = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(flags))); 849 Node* stable_cmp = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT))); 850 Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne)); 851 852 IfNode* stable_iff = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If(); 853 Node* stable_ctrl = phase->transform_later(new IfFalseNode(stable_iff)); 854 Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff)); 855 856 // Heap is stable, no need to do anything additional 857 region->init_req(_heap_stable, stable_ctrl); 858 mem_phi->init_req(_heap_stable, mem); 859 860 // Heap is unstable, call into clone barrier stub 861 Node* call = phase->make_leaf_call(unstable_ctrl, mem, 862 ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type(), 863 CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier), 864 "shenandoah_clone", 865 TypeRawPtr::BOTTOM, 866 src_base); 867 call = phase->transform_later(call); 868 869 ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control)); 870 mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory)); 871 region->init_req(_heap_unstable, ctrl); 872 mem_phi->init_req(_heap_unstable, mem); 873 874 // Wire up the actual arraycopy stub now 875 ctrl = phase->transform_later(region); 876 mem = phase->transform_later(mem_phi); 877 878 const char* name = "arraycopy"; 879 call = phase->make_leaf_call(ctrl, mem, 880 OptoRuntime::fast_arraycopy_Type(), 881 phase->basictype2arraycopy(T_LONG, NULL, NULL, true, name, true), 882 name, TypeRawPtr::BOTTOM, 883 src, dest, length 884 LP64_ONLY(COMMA phase->top())); 885 call = phase->transform_later(call); 886 887 // Hook up the whole thing into the graph 888 phase->igvn().replace_node(ac, call); 889 } else { 890 BarrierSetC2::clone_at_expansion(phase, ac); 891 } 892 } 893 894 895 // Support for macro expanded GC barriers 896 void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const { 897 if (node->Opcode() == Op_ShenandoahEnqueueBarrier) { 898 state()->add_enqueue_barrier((ShenandoahEnqueueBarrierNode*) node); 899 } 900 if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 901 state()->add_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node); 902 } 903 } 904 905 void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const { 906 if (node->Opcode() == Op_ShenandoahEnqueueBarrier) { 907 state()->remove_enqueue_barrier((ShenandoahEnqueueBarrierNode*) node); 908 } 909 if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 910 state()->remove_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node); 911 } 912 } 913 914 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* n) const { 915 if (is_shenandoah_wb_pre_call(n)) { 916 shenandoah_eliminate_wb_pre(n, ¯o->igvn()); 917 } 918 } 919 920 void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const { 921 assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), ""); 922 Node* c = call->as_Call()->proj_out(TypeFunc::Control); 923 c = c->unique_ctrl_out(); 924 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 925 c = c->unique_ctrl_out(); 926 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 927 Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); 928 assert(iff->is_If(), "expect test"); 929 if (!is_shenandoah_marking_if(igvn, iff)) { 930 c = c->unique_ctrl_out(); 931 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 932 iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); 933 assert(is_shenandoah_marking_if(igvn, iff), "expect marking test"); 934 } 935 Node* cmpx = iff->in(1)->in(1); 936 igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ)); 937 igvn->rehash_node_delayed(call); 938 call->del_req(call->req()-1); 939 } 940 941 void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const { 942 if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) { 943 igvn->add_users_to_worklist(node); 944 } 945 } 946 947 void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const { 948 for (uint i = 0; i < useful.size(); i++) { 949 Node* n = useful.at(i); 950 if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) { 951 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 952 C->record_for_igvn(n->fast_out(i)); 953 } 954 } 955 } 956 for (int i = state()->enqueue_barriers_count() - 1; i >= 0; i--) { 957 ShenandoahEnqueueBarrierNode* n = state()->enqueue_barrier(i); 958 if (!useful.member(n)) { 959 state()->remove_enqueue_barrier(n); 960 } 961 } 962 for (int i = state()->load_reference_barriers_count() - 1; i >= 0; i--) { 963 ShenandoahLoadReferenceBarrierNode* n = state()->load_reference_barrier(i); 964 if (!useful.member(n)) { 965 state()->remove_load_reference_barrier(n); 966 } 967 } 968 } 969 970 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const { 971 return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena); 972 } 973 974 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const { 975 return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state()); 976 } 977 978 // If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be 979 // expanded later, then now is the time to do so. 980 bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; } 981 982 #ifdef ASSERT 983 void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const { 984 if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeMacroExpand) { 985 ShenandoahBarrierC2Support::verify(Compile::current()->root()); 986 } else if (phase == BarrierSetC2::BeforeCodeGen) { 987 // Verify G1 pre-barriers 988 const int marking_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset()); 989 990 ResourceArea *area = Thread::current()->resource_area(); 991 Unique_Node_List visited(area); 992 Node_List worklist(area); 993 // We're going to walk control flow backwards starting from the Root 994 worklist.push(compile->root()); 995 while (worklist.size() > 0) { 996 Node *x = worklist.pop(); 997 if (x == NULL || x == compile->top()) continue; 998 if (visited.member(x)) { 999 continue; 1000 } else { 1001 visited.push(x); 1002 } 1003 1004 if (x->is_Region()) { 1005 for (uint i = 1; i < x->req(); i++) { 1006 worklist.push(x->in(i)); 1007 } 1008 } else { 1009 worklist.push(x->in(0)); 1010 // We are looking for the pattern: 1011 // /->ThreadLocal 1012 // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset) 1013 // \->ConI(0) 1014 // We want to verify that the If and the LoadB have the same control 1015 // See GraphKit::g1_write_barrier_pre() 1016 if (x->is_If()) { 1017 IfNode *iff = x->as_If(); 1018 if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) { 1019 CmpNode *cmp = iff->in(1)->in(1)->as_Cmp(); 1020 if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0 1021 && cmp->in(1)->is_Load()) { 1022 LoadNode *load = cmp->in(1)->as_Load(); 1023 if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal 1024 && load->in(2)->in(3)->is_Con() 1025 && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) { 1026 1027 Node *if_ctrl = iff->in(0); 1028 Node *load_ctrl = load->in(0); 1029 1030 if (if_ctrl != load_ctrl) { 1031 // Skip possible CProj->NeverBranch in infinite loops 1032 if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj) 1033 && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) { 1034 if_ctrl = if_ctrl->in(0)->in(0); 1035 } 1036 } 1037 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match"); 1038 } 1039 } 1040 } 1041 } 1042 } 1043 } 1044 } 1045 } 1046 #endif 1047 1048 Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const { 1049 if (is_shenandoah_wb_pre_call(n)) { 1050 uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt(); 1051 if (n->req() > cnt) { 1052 Node* addp = n->in(cnt); 1053 if (has_only_shenandoah_wb_pre_uses(addp)) { 1054 n->del_req(cnt); 1055 if (can_reshape) { 1056 phase->is_IterGVN()->_worklist.push(addp); 1057 } 1058 return n; 1059 } 1060 } 1061 } 1062 if (n->Opcode() == Op_CmpP) { 1063 Node* in1 = n->in(1); 1064 Node* in2 = n->in(2); 1065 if (in1->bottom_type() == TypePtr::NULL_PTR) { 1066 in2 = step_over_gc_barrier(in2); 1067 } 1068 if (in2->bottom_type() == TypePtr::NULL_PTR) { 1069 in1 = step_over_gc_barrier(in1); 1070 } 1071 PhaseIterGVN* igvn = phase->is_IterGVN(); 1072 if (in1 != n->in(1)) { 1073 if (igvn != NULL) { 1074 n->set_req_X(1, in1, igvn); 1075 } else { 1076 n->set_req(1, in1); 1077 } 1078 assert(in2 == n->in(2), "only one change"); 1079 return n; 1080 } 1081 if (in2 != n->in(2)) { 1082 if (igvn != NULL) { 1083 n->set_req_X(2, in2, igvn); 1084 } else { 1085 n->set_req(2, in2); 1086 } 1087 return n; 1088 } 1089 } else if (can_reshape && 1090 n->Opcode() == Op_If && 1091 ShenandoahBarrierC2Support::is_heap_stable_test(n) && 1092 n->in(0) != NULL) { 1093 Node* dom = n->in(0); 1094 Node* prev_dom = n; 1095 int op = n->Opcode(); 1096 int dist = 16; 1097 // Search up the dominator tree for another heap stable test 1098 while (dom->Opcode() != op || // Not same opcode? 1099 !ShenandoahBarrierC2Support::is_heap_stable_test(dom) || // Not same input 1? 1100 prev_dom->in(0) != dom) { // One path of test does not dominate? 1101 if (dist < 0) return NULL; 1102 1103 dist--; 1104 prev_dom = dom; 1105 dom = IfNode::up_one_dom(dom); 1106 if (!dom) return NULL; 1107 } 1108 1109 // Check that we did not follow a loop back to ourselves 1110 if (n == dom) { 1111 return NULL; 1112 } 1113 1114 return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN()); 1115 } 1116 1117 return NULL; 1118 } 1119 1120 bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) { 1121 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1122 Node* u = n->fast_out(i); 1123 if (!is_shenandoah_wb_pre_call(u)) { 1124 return false; 1125 } 1126 } 1127 return n->outcnt() > 0; 1128 } 1129 1130 bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode) const { 1131 switch (opcode) { 1132 case Op_CallLeaf: 1133 case Op_CallLeafNoFP: { 1134 assert (n->is_Call(), ""); 1135 CallNode *call = n->as_Call(); 1136 if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) { 1137 uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt(); 1138 if (call->req() > cnt) { 1139 assert(call->req() == cnt + 1, "only one extra input"); 1140 Node *addp = call->in(cnt); 1141 assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?"); 1142 call->del_req(cnt); 1143 } 1144 } 1145 return false; 1146 } 1147 case Op_ShenandoahCompareAndSwapP: 1148 case Op_ShenandoahCompareAndSwapN: 1149 case Op_ShenandoahWeakCompareAndSwapN: 1150 case Op_ShenandoahWeakCompareAndSwapP: 1151 case Op_ShenandoahCompareAndExchangeP: 1152 case Op_ShenandoahCompareAndExchangeN: 1153 #ifdef ASSERT 1154 if( VerifyOptoOopOffsets ) { 1155 MemNode* mem = n->as_Mem(); 1156 // Check to see if address types have grounded out somehow. 1157 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr(); 1158 ciInstanceKlass *k = tp->klass()->as_instance_klass(); 1159 bool oop_offset_is_sane = k->contains_field_offset(tp->offset()); 1160 assert( !tp || oop_offset_is_sane, "" ); 1161 } 1162 #endif 1163 return true; 1164 case Op_ShenandoahLoadReferenceBarrier: 1165 assert(false, "should have been expanded already"); 1166 return true; 1167 default: 1168 return false; 1169 } 1170 } 1171 1172 bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const { 1173 switch (opcode) { 1174 case Op_ShenandoahCompareAndExchangeP: 1175 case Op_ShenandoahCompareAndExchangeN: 1176 conn_graph->add_objload_to_connection_graph(n, delayed_worklist); 1177 // fallthrough 1178 case Op_ShenandoahWeakCompareAndSwapP: 1179 case Op_ShenandoahWeakCompareAndSwapN: 1180 case Op_ShenandoahCompareAndSwapP: 1181 case Op_ShenandoahCompareAndSwapN: 1182 conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist); 1183 return true; 1184 case Op_StoreP: { 1185 Node* adr = n->in(MemNode::Address); 1186 const Type* adr_type = gvn->type(adr); 1187 // Pointer stores in G1 barriers looks like unsafe access. 1188 // Ignore such stores to be able scalar replace non-escaping 1189 // allocations. 1190 if (adr_type->isa_rawptr() && adr->is_AddP()) { 1191 Node* base = conn_graph->get_addp_base(adr); 1192 if (base->Opcode() == Op_LoadP && 1193 base->in(MemNode::Address)->is_AddP()) { 1194 adr = base->in(MemNode::Address); 1195 Node* tls = conn_graph->get_addp_base(adr); 1196 if (tls->Opcode() == Op_ThreadLocal) { 1197 int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 1198 const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); 1199 if (offs == buf_offset) { 1200 return true; // Pre barrier previous oop value store. 1201 } 1202 } 1203 } 1204 } 1205 return false; 1206 } 1207 case Op_ShenandoahEnqueueBarrier: 1208 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist); 1209 break; 1210 case Op_ShenandoahLoadReferenceBarrier: 1211 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist); 1212 return true; 1213 default: 1214 // Nothing 1215 break; 1216 } 1217 return false; 1218 } 1219 1220 bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const { 1221 switch (opcode) { 1222 case Op_ShenandoahCompareAndExchangeP: 1223 case Op_ShenandoahCompareAndExchangeN: { 1224 Node *adr = n->in(MemNode::Address); 1225 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL); 1226 // fallthrough 1227 } 1228 case Op_ShenandoahCompareAndSwapP: 1229 case Op_ShenandoahCompareAndSwapN: 1230 case Op_ShenandoahWeakCompareAndSwapP: 1231 case Op_ShenandoahWeakCompareAndSwapN: 1232 return conn_graph->add_final_edges_unsafe_access(n, opcode); 1233 case Op_ShenandoahEnqueueBarrier: 1234 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), NULL); 1235 return true; 1236 case Op_ShenandoahLoadReferenceBarrier: 1237 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), NULL); 1238 return true; 1239 default: 1240 // Nothing 1241 break; 1242 } 1243 return false; 1244 } 1245 1246 bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const { 1247 return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) || 1248 n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN); 1249 1250 } 1251 1252 bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const { 1253 switch (opcode) { 1254 case Op_ShenandoahCompareAndExchangeP: 1255 case Op_ShenandoahCompareAndExchangeN: 1256 case Op_ShenandoahWeakCompareAndSwapP: 1257 case Op_ShenandoahWeakCompareAndSwapN: 1258 case Op_ShenandoahCompareAndSwapP: 1259 case Op_ShenandoahCompareAndSwapN: { // Convert trinary to binary-tree 1260 Node* newval = n->in(MemNode::ValueIn); 1261 Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn); 1262 Node* pair = new BinaryNode(oldval, newval); 1263 n->set_req(MemNode::ValueIn,pair); 1264 n->del_req(LoadStoreConditionalNode::ExpectedIn); 1265 return true; 1266 } 1267 default: 1268 break; 1269 } 1270 return false; 1271 } 1272 1273 bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const { 1274 return xop == Op_ShenandoahCompareAndExchangeP || 1275 xop == Op_ShenandoahCompareAndExchangeN || 1276 xop == Op_ShenandoahWeakCompareAndSwapP || 1277 xop == Op_ShenandoahWeakCompareAndSwapN || 1278 xop == Op_ShenandoahCompareAndSwapN || 1279 xop == Op_ShenandoahCompareAndSwapP; 1280 } --- EOF ---