rev 49182 : 8198445: Access API for primitive/native arraycopy rev 49183 : [mq]: 8198445-1.patch
1 /* 2 * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "accessBackend.inline.hpp" 27 #include "gc/shared/collectedHeap.hpp" 28 #include "oops/oop.inline.hpp" 29 #include "runtime/mutexLocker.hpp" 30 #include "runtime/vm_version.hpp" 31 #include "utilities/copy.hpp" 32 33 namespace AccessInternal { 34 // VM_Version::supports_cx8() is a surrogate for 'supports atomic long memory ops'. 35 // 36 // On platforms which do not support atomic compare-and-swap of jlong (8 byte) 37 // values we have to use a lock-based scheme to enforce atomicity. This has to be 38 // applied to all Unsafe operations that set the value of a jlong field. Even so 39 // the compareAndSwapLong operation will not be atomic with respect to direct stores 40 // to the field from Java code. It is important therefore that any Java code that 41 // utilizes these Unsafe jlong operations does not perform direct stores. To permit 42 // direct loads of the field from Java code we must also use Atomic::store within the 43 // locked regions. And for good measure, in case there are direct stores, we also 44 // employ Atomic::load within those regions. Note that the field in question must be 45 // volatile and so must have atomic load/store accesses applied at the Java level. 46 // 47 // The locking scheme could utilize a range of strategies for controlling the locking 48 // granularity: from a lock per-field through to a single global lock. The latter is 49 // the simplest and is used for the current implementation. Note that the Java object 50 // that contains the field, can not, in general, be used for locking. To do so can lead 51 // to deadlocks as we may introduce locking into what appears to the Java code to be a 52 // lock-free path. 53 // 54 // As all the locked-regions are very short and themselves non-blocking we can treat 55 // them as leaf routines and elide safepoint checks (ie we don't perform any thread 56 // state transitions even when blocking for the lock). Note that if we do choose to 57 // add safepoint checks and thread state transitions, we must ensure that we calculate 58 // the address of the field _after_ we have acquired the lock, else the object may have 59 // been moved by the GC 60 61 #ifndef SUPPORTS_NATIVE_CX8 62 63 // This is intentionally in the cpp file rather than the .inline.hpp file. It seems 64 // desirable to trade faster JDK build times (not propagating vm_version.hpp) 65 // for slightly worse runtime atomic jlong performance on 32 bit machines with 66 // support for 64 bit atomics. 67 bool wide_atomic_needs_locking() { 68 return !VM_Version::supports_cx8(); 69 } 70 71 AccessLocker::AccessLocker() { 72 assert(!VM_Version::supports_cx8(), "why else?"); 73 UnsafeJlong_lock->lock_without_safepoint_check(); 74 } 75 76 AccessLocker::~AccessLocker() { 77 UnsafeJlong_lock->unlock(); 78 } 79 80 #endif 81 82 // These forward copying calls to Copy without exposing the Copy type in headers unnecessarily 83 84 void arraycopy_arrayof_conjoint_oops(void* src, void* dst, size_t length) { 85 Copy::arrayof_conjoint_oops(reinterpret_cast<HeapWord*>(src), 86 reinterpret_cast<HeapWord*>(dst), length); 87 } 88 89 void arraycopy_conjoint_oops(oop* src, oop* dst, size_t length) { 90 Copy::conjoint_oops_atomic(src, dst, length); 91 } 92 93 void arraycopy_conjoint_oops(narrowOop* src, narrowOop* dst, size_t length) { 94 Copy::conjoint_oops_atomic(src, dst, length); 95 } 96 97 void arraycopy_disjoint_words(void* src, void* dst, size_t length) { 98 Copy::disjoint_words(reinterpret_cast<HeapWord*>(src), 99 reinterpret_cast<HeapWord*>(dst), length); 100 } 101 102 void arraycopy_disjoint_words_atomic(void* src, void* dst, size_t length) { 103 Copy::disjoint_words_atomic(reinterpret_cast<HeapWord*>(src), 104 reinterpret_cast<HeapWord*>(dst), length); 105 } 106 107 template<> 108 void arraycopy_conjoint<char>(char* src, char* dst, size_t length) { 109 Copy::conjoint_jbytes(src, dst, length); 110 } 111 112 template<> 113 void arraycopy_conjoint<jbyte>(jbyte* src, jbyte* dst, size_t length) { 114 Copy::conjoint_jbytes(src, dst, length); 115 } 116 117 template<> 118 void arraycopy_conjoint<jshort>(jshort* src, jshort* dst, size_t length) { 119 Copy::conjoint_jshorts_atomic(src, dst, length); 120 } 121 122 template<> 123 void arraycopy_conjoint<jint>(jint* src, jint* dst, size_t length) { 124 Copy::conjoint_jints_atomic(src, dst, length); 125 } 126 127 template<> 128 void arraycopy_conjoint<jlong>(jlong* src, jlong* dst, size_t length) { 129 Copy::conjoint_jlongs_atomic(src, dst, length); 130 } 131 132 template<> 133 void arraycopy_arrayof_conjoint<jbyte>(jbyte* src, jbyte* dst, size_t length) { 134 Copy::arrayof_conjoint_jbytes(reinterpret_cast<HeapWord*>(src), 135 reinterpret_cast<HeapWord*>(dst), 136 length); 137 } 138 139 template<> 140 void arraycopy_arrayof_conjoint<jshort>(jshort* src, jshort* dst, size_t length) { 141 Copy::arrayof_conjoint_jshorts(reinterpret_cast<HeapWord*>(src), 142 reinterpret_cast<HeapWord*>(dst), 143 length); 144 } 145 146 template<> 147 void arraycopy_arrayof_conjoint<jint>(jint* src, jint* dst, size_t length) { 148 Copy::arrayof_conjoint_jints(reinterpret_cast<HeapWord*>(src), 149 reinterpret_cast<HeapWord*>(dst), 150 length); 151 } 152 153 template<> 154 void arraycopy_arrayof_conjoint<jlong>(jlong* src, jlong* dst, size_t length) { 155 Copy::arrayof_conjoint_jlongs(reinterpret_cast<HeapWord*>(src), 156 reinterpret_cast<HeapWord*>(dst), 157 length); 158 } 159 160 template<> 161 void arraycopy_conjoint_atomic<jbyte>(jbyte* src, jbyte* dst, size_t length) { 162 Copy::conjoint_jbytes_atomic(src, dst, length); 163 } 164 165 template<> 166 void arraycopy_conjoint_atomic<jshort>(jshort* src, jshort* dst, size_t length) { 167 Copy::conjoint_jshorts_atomic(src, dst, length); 168 } 169 170 template<> 171 void arraycopy_conjoint_atomic<jint>(jint* src, jint* dst, size_t length) { 172 Copy::conjoint_jints_atomic(src, dst, length); 173 } 174 175 template<> 176 void arraycopy_conjoint_atomic<jlong>(jlong* src, jlong* dst, size_t length) { 177 Copy::conjoint_jlongs_atomic(src, dst, length); 178 } 179 } --- EOF ---