1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_ASM_ASSEMBLER_HPP
  26 #define SHARE_ASM_ASSEMBLER_HPP
  27 
  28 #include "asm/codeBuffer.hpp"
  29 #include "asm/register.hpp"
  30 #include "code/oopRecorder.hpp"
  31 #include "code/relocInfo.hpp"
  32 #include "memory/allocation.hpp"
  33 #include "runtime/vm_version.hpp"
  34 #include "utilities/debug.hpp"
  35 #include "utilities/growableArray.hpp"
  36 #include "utilities/macros.hpp"
  37 
  38 // This file contains platform-independent assembler declarations.
  39 
  40 class MacroAssembler;
  41 class AbstractAssembler;
  42 class Label;
  43 
  44 /**
  45  * Labels represent destinations for control transfer instructions.  Such
  46  * instructions can accept a Label as their target argument.  A Label is
  47  * bound to the current location in the code stream by calling the
  48  * MacroAssembler's 'bind' method, which in turn calls the Label's 'bind'
  49  * method.  A Label may be referenced by an instruction before it's bound
  50  * (i.e., 'forward referenced').  'bind' stores the current code offset
  51  * in the Label object.
  52  *
  53  * If an instruction references a bound Label, the offset field(s) within
  54  * the instruction are immediately filled in based on the Label's code
  55  * offset.  If an instruction references an unbound label, that
  56  * instruction is put on a list of instructions that must be patched
  57  * (i.e., 'resolved') when the Label is bound.
  58  *
  59  * 'bind' will call the platform-specific 'patch_instruction' method to
  60  * fill in the offset field(s) for each unresolved instruction (if there
  61  * are any).  'patch_instruction' lives in one of the
  62  * cpu/<arch>/vm/assembler_<arch>* files.
  63  *
  64  * Instead of using a linked list of unresolved instructions, a Label has
  65  * an array of unresolved instruction code offsets.  _patch_index
  66  * contains the total number of forward references.  If the Label's array
  67  * overflows (i.e., _patch_index grows larger than the array size), a
  68  * GrowableArray is allocated to hold the remaining offsets.  (The cache
  69  * size is 4 for now, which handles over 99.5% of the cases)
  70  *
  71  * Labels may only be used within a single CodeSection.  If you need
  72  * to create references between code sections, use explicit relocations.
  73  */
  74 class Label {
  75  private:
  76   enum { PatchCacheSize = 4 debug_only( +4 ) };
  77 
  78   // _loc encodes both the binding state (via its sign)
  79   // and the binding locator (via its value) of a label.
  80   //
  81   // _loc >= 0   bound label, loc() encodes the target (jump) position
  82   // _loc == -1  unbound label
  83   int _loc;
  84 
  85   // References to instructions that jump to this unresolved label.
  86   // These instructions need to be patched when the label is bound
  87   // using the platform-specific patchInstruction() method.
  88   //
  89   // To avoid having to allocate from the C-heap each time, we provide
  90   // a local cache and use the overflow only if we exceed the local cache
  91   int _patches[PatchCacheSize];
  92   int _patch_index;
  93   GrowableArray<int>* _patch_overflow;
  94 
  95   Label(const Label&) { ShouldNotReachHere(); }
  96  protected:
  97 
  98   // The label will be bound to a location near its users.
  99   bool _is_near;
 100 
 101 #ifdef ASSERT
 102   // Sourcre file and line location of jump instruction
 103   int _lines[PatchCacheSize];
 104   const char* _files[PatchCacheSize];
 105 #endif
 106  public:
 107 
 108   /**
 109    * After binding, be sure 'patch_instructions' is called later to link
 110    */
 111   void bind_loc(int loc) {
 112     assert(loc >= 0, "illegal locator");
 113     assert(_loc == -1, "already bound");
 114     _loc = loc;
 115   }
 116   void bind_loc(int pos, int sect) { bind_loc(CodeBuffer::locator(pos, sect)); }
 117 
 118 #ifndef PRODUCT
 119   // Iterates over all unresolved instructions for printing
 120   void print_instructions(MacroAssembler* masm) const;
 121 #endif // PRODUCT
 122 
 123   /**
 124    * Returns the position of the the Label in the code buffer
 125    * The position is a 'locator', which encodes both offset and section.
 126    */
 127   int loc() const {
 128     assert(_loc >= 0, "unbound label");
 129     return _loc;
 130   }
 131   int loc_pos()  const { return CodeBuffer::locator_pos(loc()); }
 132   int loc_sect() const { return CodeBuffer::locator_sect(loc()); }
 133 
 134   bool is_bound() const    { return _loc >=  0; }
 135   bool is_unbound() const  { return _loc == -1 && _patch_index > 0; }
 136   bool is_unused() const   { return _loc == -1 && _patch_index == 0; }
 137 
 138   // The label will be bound to a location near its users. Users can
 139   // optimize on this information, e.g. generate short branches.
 140   bool is_near()           { return _is_near; }
 141 
 142   /**
 143    * Adds a reference to an unresolved displacement instruction to
 144    * this unbound label
 145    *
 146    * @param cb         the code buffer being patched
 147    * @param branch_loc the locator of the branch instruction in the code buffer
 148    */
 149   void add_patch_at(CodeBuffer* cb, int branch_loc, const char* file = NULL, int line = 0);
 150 
 151   /**
 152    * Iterate over the list of patches, resolving the instructions
 153    * Call patch_instruction on each 'branch_loc' value
 154    */
 155   void patch_instructions(MacroAssembler* masm);
 156 
 157   void init() {
 158     _loc = -1;
 159     _patch_index = 0;
 160     _patch_overflow = NULL;
 161     _is_near = false;
 162   }
 163 
 164   Label() {
 165     init();
 166   }
 167 
 168   ~Label() {
 169     assert(is_bound() || is_unused(), "Label was never bound to a location, but it was used as a jmp target");
 170   }
 171 
 172   void reset() {
 173     init(); //leave _patch_overflow because it points to CodeBuffer.
 174   }
 175 };
 176 
 177 // A NearLabel must be bound to a location near its users. Users can
 178 // optimize on this information, e.g. generate short branches.
 179 class NearLabel : public Label {
 180  public:
 181   NearLabel() : Label() { _is_near = true; }
 182 };
 183 
 184 // A union type for code which has to assemble both constant and
 185 // non-constant operands, when the distinction cannot be made
 186 // statically.
 187 class RegisterOrConstant {
 188  private:
 189   Register _r;
 190   intptr_t _c;
 191 
 192  public:
 193   RegisterOrConstant(): _r(noreg), _c(0) {}
 194   RegisterOrConstant(Register r): _r(r), _c(0) {}
 195   RegisterOrConstant(intptr_t c): _r(noreg), _c(c) {}
 196 
 197   Register as_register() const { assert(is_register(),""); return _r; }
 198   intptr_t as_constant() const { assert(is_constant(),""); return _c; }
 199 
 200   Register register_or_noreg() const { return _r; }
 201   intptr_t constant_or_zero() const  { return _c; }
 202 
 203   bool is_register() const { return _r != noreg; }
 204   bool is_constant() const { return _r == noreg; }
 205 };
 206 
 207 // The Abstract Assembler: Pure assembler doing NO optimizations on the
 208 // instruction level; i.e., what you write is what you get.
 209 // The Assembler is generating code into a CodeBuffer.
 210 class AbstractAssembler : public ResourceObj  {
 211   friend class Label;
 212 
 213  protected:
 214   CodeSection* _code_section;          // section within the code buffer
 215   OopRecorder* _oop_recorder;          // support for relocInfo::oop_type
 216 
 217  public:
 218   // Code emission & accessing
 219   address addr_at(int pos) const { return code_section()->start() + pos; }
 220 
 221  protected:
 222   // This routine is called with a label is used for an address.
 223   // Labels and displacements truck in offsets, but target must return a PC.
 224   address target(Label& L)             { return code_section()->target(L, pc()); }
 225 
 226   bool is8bit(int x) const             { return -0x80 <= x && x < 0x80; }
 227   bool isByte(int x) const             { return 0 <= x && x < 0x100; }
 228   bool isShiftCount(int x) const       { return 0 <= x && x < 32; }
 229 
 230   // Instruction boundaries (required when emitting relocatable values).
 231   class InstructionMark: public StackObj {
 232    private:
 233     AbstractAssembler* _assm;
 234 
 235    public:
 236     InstructionMark(AbstractAssembler* assm) : _assm(assm) {
 237       assert(assm->inst_mark() == NULL, "overlapping instructions");
 238       _assm->set_inst_mark();
 239     }
 240     ~InstructionMark() {
 241       _assm->clear_inst_mark();
 242     }
 243   };
 244   friend class InstructionMark;
 245 #ifdef ASSERT
 246   // Make it return true on platforms which need to verify
 247   // instruction boundaries for some operations.
 248   static bool pd_check_instruction_mark();
 249 
 250   // Add delta to short branch distance to verify that it still fit into imm8.
 251   int _short_branch_delta;
 252 
 253   int  short_branch_delta() const { return _short_branch_delta; }
 254   void set_short_branch_delta()   { _short_branch_delta = 32; }
 255   void clear_short_branch_delta() { _short_branch_delta = 0; }
 256 
 257   class ShortBranchVerifier: public StackObj {
 258    private:
 259     AbstractAssembler* _assm;
 260 
 261    public:
 262     ShortBranchVerifier(AbstractAssembler* assm) : _assm(assm) {
 263       assert(assm->short_branch_delta() == 0, "overlapping instructions");
 264       _assm->set_short_branch_delta();
 265     }
 266     ~ShortBranchVerifier() {
 267       _assm->clear_short_branch_delta();
 268     }
 269   };
 270 #else
 271   // Dummy in product.
 272   class ShortBranchVerifier: public StackObj {
 273    public:
 274     ShortBranchVerifier(AbstractAssembler* assm) {}
 275   };
 276 #endif
 277 
 278  public:
 279 
 280   // Creation
 281   AbstractAssembler(CodeBuffer* code);
 282 
 283   // ensure buf contains all code (call this before using/copying the code)
 284   void flush();
 285 
 286   void emit_int8(   int8_t x1)                                  { code_section()->emit_int8(x1); }
 287 
 288   void emit_int16(  int16_t x)                                  { code_section()->emit_int16(x); }
 289   void emit_int16(  int8_t x1, int8_t x2)                       { code_section()->emit_int16(x1, x2); }
 290 
 291   void emit_int24(  int8_t x1, int8_t x2, int8_t x3)            { code_section()->emit_int24(x1, x2, x3); }
 292 
 293   void emit_int32(  int32_t x)                                  { code_section()->emit_int32(x); }
 294   void emit_int32(  int8_t x1, int8_t x2, int8_t x3, int8_t x4) { code_section()->emit_int32(x1, x2, x3, x4); }
 295 
 296   void emit_int64(  int64_t x)                                  { code_section()->emit_int64(x); }
 297 
 298   void emit_float(  jfloat  x)                                  { code_section()->emit_float(x); }
 299   void emit_double( jdouble x)                                  { code_section()->emit_double(x); }
 300   void emit_address(address x)                                  { code_section()->emit_address(x); }
 301 
 302   // min and max values for signed immediate ranges
 303   static int min_simm(int nbits) { return -(intptr_t(1) << (nbits - 1))    ; }
 304   static int max_simm(int nbits) { return  (intptr_t(1) << (nbits - 1)) - 1; }
 305 
 306   // Define some:
 307   static int min_simm10() { return min_simm(10); }
 308   static int min_simm13() { return min_simm(13); }
 309   static int min_simm16() { return min_simm(16); }
 310 
 311   // Test if x is within signed immediate range for nbits
 312   static bool is_simm(intptr_t x, int nbits) { return min_simm(nbits) <= x && x <= max_simm(nbits); }
 313 
 314   // Define some:
 315   static bool is_simm5( intptr_t x) { return is_simm(x, 5 ); }
 316   static bool is_simm8( intptr_t x) { return is_simm(x, 8 ); }
 317   static bool is_simm10(intptr_t x) { return is_simm(x, 10); }
 318   static bool is_simm11(intptr_t x) { return is_simm(x, 11); }
 319   static bool is_simm12(intptr_t x) { return is_simm(x, 12); }
 320   static bool is_simm13(intptr_t x) { return is_simm(x, 13); }
 321   static bool is_simm16(intptr_t x) { return is_simm(x, 16); }
 322   static bool is_simm26(intptr_t x) { return is_simm(x, 26); }
 323   static bool is_simm32(intptr_t x) { return is_simm(x, 32); }
 324 
 325   // Accessors
 326   CodeSection*  code_section() const   { return _code_section; }
 327   CodeBuffer*   code()         const   { return code_section()->outer(); }
 328   int           sect()         const   { return code_section()->index(); }
 329   address       pc()           const   { return code_section()->end();   }
 330   int           offset()       const   { return code_section()->size();  }
 331   int           locator()      const   { return CodeBuffer::locator(offset(), sect()); }
 332 
 333   OopRecorder*  oop_recorder() const   { return _oop_recorder; }
 334   void      set_oop_recorder(OopRecorder* r) { _oop_recorder = r; }
 335 
 336   address       inst_mark() const { return code_section()->mark();       }
 337   void      set_inst_mark()       {        code_section()->set_mark();   }
 338   void    clear_inst_mark()       {        code_section()->clear_mark(); }
 339 
 340   // Constants in code
 341   void relocate(RelocationHolder const& rspec, int format = 0) {
 342     assert(!pd_check_instruction_mark()
 343         || inst_mark() == NULL || inst_mark() == code_section()->end(),
 344         "call relocate() between instructions");
 345     code_section()->relocate(code_section()->end(), rspec, format);
 346   }
 347   void relocate(   relocInfo::relocType rtype, int format = 0) {
 348     code_section()->relocate(code_section()->end(), rtype, format);
 349   }
 350 
 351   static int code_fill_byte();         // used to pad out odd-sized code buffers
 352 
 353   // Associate a comment with the current offset.  It will be printed
 354   // along with the disassembly when printing nmethods.  Currently
 355   // only supported in the instruction section of the code buffer.
 356   void block_comment(const char* comment);
 357   // Copy str to a buffer that has the same lifetime as the CodeBuffer
 358   const char* code_string(const char* str);
 359 
 360   // Label functions
 361   void bind(Label& L); // binds an unbound label L to the current code position
 362 
 363   // Move to a different section in the same code buffer.
 364   void set_code_section(CodeSection* cs);
 365 
 366   // Inform assembler when generating stub code and relocation info
 367   address    start_a_stub(int required_space);
 368   void       end_a_stub();
 369   // Ditto for constants.
 370   address    start_a_const(int required_space, int required_align = sizeof(double));
 371   void       end_a_const(CodeSection* cs);  // Pass the codesection to continue in (insts or stubs?).
 372 
 373   // constants support
 374   //
 375   // We must remember the code section (insts or stubs) in c1
 376   // so we can reset to the proper section in end_a_const().
 377   address int_constant(jint c) {
 378     CodeSection* c1 = _code_section;
 379     address ptr = start_a_const(sizeof(c), sizeof(c));
 380     if (ptr != NULL) {
 381       emit_int32(c);
 382       end_a_const(c1);
 383     }
 384     return ptr;
 385   }
 386   address long_constant(jlong c) {
 387     CodeSection* c1 = _code_section;
 388     address ptr = start_a_const(sizeof(c), sizeof(c));
 389     if (ptr != NULL) {
 390       emit_int64(c);
 391       end_a_const(c1);
 392     }
 393     return ptr;
 394   }
 395   address double_constant(jdouble c) {
 396     CodeSection* c1 = _code_section;
 397     address ptr = start_a_const(sizeof(c), sizeof(c));
 398     if (ptr != NULL) {
 399       emit_double(c);
 400       end_a_const(c1);
 401     }
 402     return ptr;
 403   }
 404   address float_constant(jfloat c) {
 405     CodeSection* c1 = _code_section;
 406     address ptr = start_a_const(sizeof(c), sizeof(c));
 407     if (ptr != NULL) {
 408       emit_float(c);
 409       end_a_const(c1);
 410     }
 411     return ptr;
 412   }
 413   address address_constant(address c) {
 414     CodeSection* c1 = _code_section;
 415     address ptr = start_a_const(sizeof(c), sizeof(c));
 416     if (ptr != NULL) {
 417       emit_address(c);
 418       end_a_const(c1);
 419     }
 420     return ptr;
 421   }
 422   address address_constant(address c, RelocationHolder const& rspec) {
 423     CodeSection* c1 = _code_section;
 424     address ptr = start_a_const(sizeof(c), sizeof(c));
 425     if (ptr != NULL) {
 426       relocate(rspec);
 427       emit_address(c);
 428       end_a_const(c1);
 429     }
 430     return ptr;
 431   }
 432 
 433   // Bootstrapping aid to cope with delayed determination of constants.
 434   // Returns a static address which will eventually contain the constant.
 435   // The value zero (NULL) stands instead of a constant which is still uncomputed.
 436   // Thus, the eventual value of the constant must not be zero.
 437   // This is fine, since this is designed for embedding object field
 438   // offsets in code which must be generated before the object class is loaded.
 439   // Field offsets are never zero, since an object's header (mark word)
 440   // is located at offset zero.
 441   RegisterOrConstant delayed_value(int(*value_fn)(), Register tmp, int offset = 0);
 442   RegisterOrConstant delayed_value(address(*value_fn)(), Register tmp, int offset = 0);
 443   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset) = 0;
 444   // Last overloading is platform-dependent; look in assembler_<arch>.cpp.
 445   static intptr_t* delayed_value_addr(int(*constant_fn)());
 446   static intptr_t* delayed_value_addr(address(*constant_fn)());
 447   static void update_delayed_values();
 448 
 449   // Bang stack to trigger StackOverflowError at a safe location
 450   // implementation delegates to machine-specific bang_stack_with_offset
 451   void generate_stack_overflow_check( int frame_size_in_bytes );
 452   virtual void bang_stack_with_offset(int offset) = 0;
 453 
 454 
 455   /**
 456    * A platform-dependent method to patch a jump instruction that refers
 457    * to this label.
 458    *
 459    * @param branch the location of the instruction to patch
 460    * @param masm the assembler which generated the branch
 461    */
 462   void pd_patch_instruction(address branch, address target, const char* file, int line);
 463 
 464 };
 465 
 466 #include CPU_HEADER(assembler)
 467 
 468 #endif // SHARE_ASM_ASSEMBLER_HPP