1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableBarrierSet.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/os.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "utilities/macros.hpp"
  39 
  40 #ifdef PRODUCT
  41 #define BLOCK_COMMENT(str) /* nothing */
  42 #define STOP(error) stop(error)
  43 #else
  44 #define BLOCK_COMMENT(str) block_comment(str)
  45 #define STOP(error) block_comment(error); stop(error)
  46 #endif
  47 
  48 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  49 // Implementation of AddressLiteral
  50 
  51 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  52 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  53   // -----------------Table 4.5 -------------------- //
  54   16, 32, 64,  // EVEX_FV(0)
  55   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  56   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  57   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  58   8,  16, 32,  // EVEX_HV(0)
  59   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  60   // -----------------Table 4.6 -------------------- //
  61   16, 32, 64,  // EVEX_FVM(0)
  62   1,  1,  1,   // EVEX_T1S(0)
  63   2,  2,  2,   // EVEX_T1S(1)
  64   4,  4,  4,   // EVEX_T1S(2)
  65   8,  8,  8,   // EVEX_T1S(3)
  66   4,  4,  4,   // EVEX_T1F(0)
  67   8,  8,  8,   // EVEX_T1F(1)
  68   8,  8,  8,   // EVEX_T2(0)
  69   0,  16, 16,  // EVEX_T2(1)
  70   0,  16, 16,  // EVEX_T4(0)
  71   0,  0,  32,  // EVEX_T4(1)
  72   0,  0,  32,  // EVEX_T8(0)
  73   8,  16, 32,  // EVEX_HVM(0)
  74   4,  8,  16,  // EVEX_QVM(0)
  75   2,  4,  8,   // EVEX_OVM(0)
  76   16, 16, 16,  // EVEX_M128(0)
  77   8,  32, 64,  // EVEX_DUP(0)
  78   0,  0,  0    // EVEX_NTUP
  79 };
  80 
  81 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  82   _is_lval = false;
  83   _target = target;
  84   switch (rtype) {
  85   case relocInfo::oop_type:
  86   case relocInfo::metadata_type:
  87     // Oops are a special case. Normally they would be their own section
  88     // but in cases like icBuffer they are literals in the code stream that
  89     // we don't have a section for. We use none so that we get a literal address
  90     // which is always patchable.
  91     break;
  92   case relocInfo::external_word_type:
  93     _rspec = external_word_Relocation::spec(target);
  94     break;
  95   case relocInfo::internal_word_type:
  96     _rspec = internal_word_Relocation::spec(target);
  97     break;
  98   case relocInfo::opt_virtual_call_type:
  99     _rspec = opt_virtual_call_Relocation::spec();
 100     break;
 101   case relocInfo::static_call_type:
 102     _rspec = static_call_Relocation::spec();
 103     break;
 104   case relocInfo::runtime_call_type:
 105     _rspec = runtime_call_Relocation::spec();
 106     break;
 107   case relocInfo::poll_type:
 108   case relocInfo::poll_return_type:
 109     _rspec = Relocation::spec_simple(rtype);
 110     break;
 111   case relocInfo::none:
 112     break;
 113   default:
 114     ShouldNotReachHere();
 115     break;
 116   }
 117 }
 118 
 119 // Implementation of Address
 120 
 121 #ifdef _LP64
 122 
 123 Address Address::make_array(ArrayAddress adr) {
 124   // Not implementable on 64bit machines
 125   // Should have been handled higher up the call chain.
 126   ShouldNotReachHere();
 127   return Address();
 128 }
 129 
 130 // exceedingly dangerous constructor
 131 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 132   _base  = noreg;
 133   _index = noreg;
 134   _scale = no_scale;
 135   _disp  = disp;
 136   _xmmindex = xnoreg;
 137   _isxmmindex = false;
 138   switch (rtype) {
 139     case relocInfo::external_word_type:
 140       _rspec = external_word_Relocation::spec(loc);
 141       break;
 142     case relocInfo::internal_word_type:
 143       _rspec = internal_word_Relocation::spec(loc);
 144       break;
 145     case relocInfo::runtime_call_type:
 146       // HMM
 147       _rspec = runtime_call_Relocation::spec();
 148       break;
 149     case relocInfo::poll_type:
 150     case relocInfo::poll_return_type:
 151       _rspec = Relocation::spec_simple(rtype);
 152       break;
 153     case relocInfo::none:
 154       break;
 155     default:
 156       ShouldNotReachHere();
 157   }
 158 }
 159 #else // LP64
 160 
 161 Address Address::make_array(ArrayAddress adr) {
 162   AddressLiteral base = adr.base();
 163   Address index = adr.index();
 164   assert(index._disp == 0, "must not have disp"); // maybe it can?
 165   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 166   array._rspec = base._rspec;
 167   return array;
 168 }
 169 
 170 // exceedingly dangerous constructor
 171 Address::Address(address loc, RelocationHolder spec) {
 172   _base  = noreg;
 173   _index = noreg;
 174   _scale = no_scale;
 175   _disp  = (intptr_t) loc;
 176   _rspec = spec;
 177   _xmmindex = xnoreg;
 178   _isxmmindex = false;
 179 }
 180 
 181 #endif // _LP64
 182 
 183 
 184 
 185 // Convert the raw encoding form into the form expected by the constructor for
 186 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 187 // that to noreg for the Address constructor.
 188 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 189   RelocationHolder rspec;
 190   if (disp_reloc != relocInfo::none) {
 191     rspec = Relocation::spec_simple(disp_reloc);
 192   }
 193   bool valid_index = index != rsp->encoding();
 194   if (valid_index) {
 195     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 196     madr._rspec = rspec;
 197     return madr;
 198   } else {
 199     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 200     madr._rspec = rspec;
 201     return madr;
 202   }
 203 }
 204 
 205 // Implementation of Assembler
 206 
 207 int AbstractAssembler::code_fill_byte() {
 208   return (u_char)'\xF4'; // hlt
 209 }
 210 
 211 // make this go away someday
 212 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 213   if (rtype == relocInfo::none)
 214     emit_int32(data);
 215   else
 216     emit_data(data, Relocation::spec_simple(rtype), format);
 217 }
 218 
 219 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 220   assert(imm_operand == 0, "default format must be immediate in this file");
 221   assert(inst_mark() != NULL, "must be inside InstructionMark");
 222   if (rspec.type() !=  relocInfo::none) {
 223     #ifdef ASSERT
 224       check_relocation(rspec, format);
 225     #endif
 226     // Do not use AbstractAssembler::relocate, which is not intended for
 227     // embedded words.  Instead, relocate to the enclosing instruction.
 228 
 229     // hack. call32 is too wide for mask so use disp32
 230     if (format == call32_operand)
 231       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 232     else
 233       code_section()->relocate(inst_mark(), rspec, format);
 234   }
 235   emit_int32(data);
 236 }
 237 
 238 static int encode(Register r) {
 239   int enc = r->encoding();
 240   if (enc >= 8) {
 241     enc -= 8;
 242   }
 243   return enc;
 244 }
 245 
 246 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 247   assert(dst->has_byte_register(), "must have byte register");
 248   assert(isByte(op1) && isByte(op2), "wrong opcode");
 249   assert(isByte(imm8), "not a byte");
 250   assert((op1 & 0x01) == 0, "should be 8bit operation");
 251   emit_int24(op1, op2 | encode(dst), imm8);
 252 }
 253 
 254 
 255 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 256   assert(isByte(op1) && isByte(op2), "wrong opcode");
 257   assert((op1 & 0x01) == 1, "should be 32bit operation");
 258   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 259   if (is8bit(imm32)) {
 260      // set sign bit
 261     emit_int24(op1 | 0x02, op2 | encode(dst), imm32 & 0xFF);
 262   } else {
 263     emit_int16(op1, op2 | encode(dst));
 264     emit_int32(imm32);
 265   }
 266 }
 267 
 268 // Force generation of a 4 byte immediate value even if it fits into 8bit
 269 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 270   assert(isByte(op1) && isByte(op2), "wrong opcode");
 271   assert((op1 & 0x01) == 1, "should be 32bit operation");
 272   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 273   emit_int16(op1, op2 | encode(dst));
 274   emit_int32(imm32);
 275 }
 276 
 277 // immediate-to-memory forms
 278 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 279   assert((op1 & 0x01) == 1, "should be 32bit operation");
 280   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 281   if (is8bit(imm32)) {
 282     emit_int8(op1 | 0x02); // set sign bit
 283     emit_operand(rm, adr, 1);
 284     emit_int8(imm32 & 0xFF);
 285   } else {
 286     emit_int8(op1);
 287     emit_operand(rm, adr, 4);
 288     emit_int32(imm32);
 289   }
 290 }
 291 
 292 
 293 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 294   assert(isByte(op1) && isByte(op2), "wrong opcode");
 295   emit_int16(op1, op2 | encode(dst) << 3 | encode(src));
 296 }
 297 
 298 
 299 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 300                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 301   int mod_idx = 0;
 302   // We will test if the displacement fits the compressed format and if so
 303   // apply the compression to the displacment iff the result is8bit.
 304   if (VM_Version::supports_evex() && is_evex_inst) {
 305     switch (cur_tuple_type) {
 306     case EVEX_FV:
 307       if ((cur_encoding & VEX_W) == VEX_W) {
 308         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 309       } else {
 310         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 311       }
 312       break;
 313 
 314     case EVEX_HV:
 315       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 316       break;
 317 
 318     case EVEX_FVM:
 319       break;
 320 
 321     case EVEX_T1S:
 322       switch (in_size_in_bits) {
 323       case EVEX_8bit:
 324         break;
 325 
 326       case EVEX_16bit:
 327         mod_idx = 1;
 328         break;
 329 
 330       case EVEX_32bit:
 331         mod_idx = 2;
 332         break;
 333 
 334       case EVEX_64bit:
 335         mod_idx = 3;
 336         break;
 337       }
 338       break;
 339 
 340     case EVEX_T1F:
 341     case EVEX_T2:
 342     case EVEX_T4:
 343       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 344       break;
 345 
 346     case EVEX_T8:
 347       break;
 348 
 349     case EVEX_HVM:
 350       break;
 351 
 352     case EVEX_QVM:
 353       break;
 354 
 355     case EVEX_OVM:
 356       break;
 357 
 358     case EVEX_M128:
 359       break;
 360 
 361     case EVEX_DUP:
 362       break;
 363 
 364     default:
 365       assert(0, "no valid evex tuple_table entry");
 366       break;
 367     }
 368 
 369     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 370       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 371       if ((disp % disp_factor) == 0) {
 372         int new_disp = disp / disp_factor;
 373         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 374           disp = new_disp;
 375         }
 376       } else {
 377         return false;
 378       }
 379     }
 380   }
 381   return (-0x80 <= disp && disp < 0x80);
 382 }
 383 
 384 
 385 bool Assembler::emit_compressed_disp_byte(int &disp) {
 386   int mod_idx = 0;
 387   // We will test if the displacement fits the compressed format and if so
 388   // apply the compression to the displacment iff the result is8bit.
 389   if (VM_Version::supports_evex() && _attributes && _attributes->is_evex_instruction()) {
 390     int evex_encoding = _attributes->get_evex_encoding();
 391     int tuple_type = _attributes->get_tuple_type();
 392     switch (tuple_type) {
 393     case EVEX_FV:
 394       if ((evex_encoding & VEX_W) == VEX_W) {
 395         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 396       } else {
 397         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 398       }
 399       break;
 400 
 401     case EVEX_HV:
 402       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 403       break;
 404 
 405     case EVEX_FVM:
 406       break;
 407 
 408     case EVEX_T1S:
 409       switch (_attributes->get_input_size()) {
 410       case EVEX_8bit:
 411         break;
 412 
 413       case EVEX_16bit:
 414         mod_idx = 1;
 415         break;
 416 
 417       case EVEX_32bit:
 418         mod_idx = 2;
 419         break;
 420 
 421       case EVEX_64bit:
 422         mod_idx = 3;
 423         break;
 424       }
 425       break;
 426 
 427     case EVEX_T1F:
 428     case EVEX_T2:
 429     case EVEX_T4:
 430       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 431       break;
 432 
 433     case EVEX_T8:
 434       break;
 435 
 436     case EVEX_HVM:
 437       break;
 438 
 439     case EVEX_QVM:
 440       break;
 441 
 442     case EVEX_OVM:
 443       break;
 444 
 445     case EVEX_M128:
 446       break;
 447 
 448     case EVEX_DUP:
 449       break;
 450 
 451     default:
 452       assert(0, "no valid evex tuple_table entry");
 453       break;
 454     }
 455 
 456     int vector_len = _attributes->get_vector_len();
 457     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 458       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 459       if ((disp % disp_factor) == 0) {
 460         int new_disp = disp / disp_factor;
 461         if (is8bit(new_disp)) {
 462           disp = new_disp;
 463         }
 464       } else {
 465         return false;
 466       }
 467     }
 468   }
 469   return is8bit(disp);
 470 }
 471 
 472 
 473 void Assembler::emit_operand(Register reg, Register base, Register index,
 474                              Address::ScaleFactor scale, int disp,
 475                              RelocationHolder const& rspec,
 476                              int rip_relative_correction) {
 477   bool no_relocation = rspec.type() == relocInfo::none;
 478 
 479   // Encode the registers as needed in the fields they are used in
 480   int regenc = encode(reg) << 3;
 481   if (base->is_valid()) {
 482     int baseenc = encode(base);
 483     if (index->is_valid()) {
 484       assert(scale != Address::no_scale, "inconsistent address");
 485       // [base + index*scale + disp]
 486       int indexenc = encode(index) << 3;
 487       if (disp == 0 && no_relocation &&
 488           base != rbp LP64_ONLY(&& base != r13)) {
 489         // [base + index*scale]
 490         // [00 reg 100][ss index base]
 491         assert(index != rsp, "illegal addressing mode");
 492         emit_int16(0x04 | regenc, scale << 6 | indexenc | baseenc);
 493       } else if (emit_compressed_disp_byte(disp) && no_relocation) {
 494         // [base + index*scale + imm8]
 495         // [01 reg 100][ss index base] imm8
 496         assert(index != rsp, "illegal addressing mode");
 497         emit_int24(0x44 | regenc, scale << 6 | indexenc | baseenc, disp & 0xFF);
 498       } else {
 499         // [base + index*scale + disp32]
 500         // [10 reg 100][ss index base] disp32
 501         assert(index != rsp, "illegal addressing mode");
 502         emit_int16(0x84 | regenc, scale << 6 | indexenc | baseenc);
 503         emit_data(disp, rspec, disp32_operand);
 504       }
 505     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 506       // [rsp + disp]
 507       if (disp == 0 && no_relocation) {
 508         // [rsp]
 509         // [00 reg 100][00 100 100]
 510         emit_int16(0x04 | regenc, 0x24);
 511       } else if (emit_compressed_disp_byte(disp) && no_relocation) {
 512         // [rsp + imm8]
 513         // [01 reg 100][00 100 100] disp8
 514         emit_int24(0x44 | regenc, 0x24, disp & 0xFF);
 515       } else {
 516         // [rsp + imm32]
 517         // [10 reg 100][00 100 100] disp32
 518         emit_int16(0x84 | regenc, 0x24);
 519         emit_data(disp, rspec, disp32_operand);
 520       }
 521     } else {
 522       // [base + disp]
 523       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 524       if (disp == 0 && no_relocation &&
 525           base != rbp LP64_ONLY(&& base != r13)) {
 526         // [base]
 527         // [00 reg base]
 528         emit_int8(0x00 | regenc | baseenc);
 529       } else if (emit_compressed_disp_byte(disp) && no_relocation) {
 530         // [base + disp8]
 531         // [01 reg base] disp8
 532         emit_int16(0x40 | regenc | baseenc, disp & 0xFF);
 533       } else {
 534         // [base + disp32]
 535         // [10 reg base] disp32
 536         emit_int8(0x80 | regenc | baseenc);
 537         emit_data(disp, rspec, disp32_operand);
 538       }
 539     }
 540   } else {
 541     if (index->is_valid()) {
 542       assert(scale != Address::no_scale, "inconsistent address");
 543       // [index*scale + disp]
 544       // [00 reg 100][ss index 101] disp32
 545       assert(index != rsp, "illegal addressing mode");
 546       emit_int16(0x04 | regenc, scale << 6 | (encode(index) << 3) | 0x05);
 547       emit_data(disp, rspec, disp32_operand);
 548     } else if (!no_relocation) {
 549       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 550       // [00 000 101] disp32
 551 
 552       emit_int8(0x05 | regenc);
 553       // Note that the RIP-rel. correction applies to the generated
 554       // disp field, but _not_ to the target address in the rspec.
 555 
 556       // disp was created by converting the target address minus the pc
 557       // at the start of the instruction. That needs more correction here.
 558       // intptr_t disp = target - next_ip;
 559       assert(inst_mark() != NULL, "must be inside InstructionMark");
 560       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 561       int64_t adjusted = disp;
 562       // Do rip-rel adjustment for 64bit
 563       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 564       assert(is_simm32(adjusted),
 565              "must be 32bit offset (RIP relative address)");
 566       emit_data((int32_t) adjusted, rspec, disp32_operand);
 567 
 568     } else {
 569       // 32bit never did this, did everything as the rip-rel/disp code above
 570       // [disp] ABSOLUTE
 571       // [00 reg 100][00 100 101] disp32
 572       emit_int16(0x04 | regenc, 0x25);
 573       emit_data(disp, rspec, disp32_operand);
 574     }
 575   }
 576 }
 577 
 578 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 579                              Address::ScaleFactor scale, int disp,
 580                              RelocationHolder const& rspec) {
 581   if (UseAVX > 2) {
 582     int xreg_enc = reg->encoding();
 583     if (xreg_enc > 15) {
 584       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 585       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 586       return;
 587     }
 588   }
 589   emit_operand((Register)reg, base, index, scale, disp, rspec);
 590 }
 591 
 592 void Assembler::emit_operand(XMMRegister reg, Register base, XMMRegister index,
 593                              Address::ScaleFactor scale, int disp,
 594                              RelocationHolder const& rspec) {
 595   if (UseAVX > 2) {
 596     int xreg_enc = reg->encoding();
 597     int xmmindex_enc = index->encoding();
 598     XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 599     XMMRegister new_index = as_XMMRegister(xmmindex_enc & 0xf);
 600     emit_operand((Register)new_reg, base, (Register)new_index, scale, disp, rspec);
 601   } else {
 602     emit_operand((Register)reg, base, (Register)index, scale, disp, rspec);
 603   }
 604 }
 605 
 606 
 607 // Secret local extension to Assembler::WhichOperand:
 608 #define end_pc_operand (_WhichOperand_limit)
 609 
 610 address Assembler::locate_operand(address inst, WhichOperand which) {
 611   // Decode the given instruction, and return the address of
 612   // an embedded 32-bit operand word.
 613 
 614   // If "which" is disp32_operand, selects the displacement portion
 615   // of an effective address specifier.
 616   // If "which" is imm64_operand, selects the trailing immediate constant.
 617   // If "which" is call32_operand, selects the displacement of a call or jump.
 618   // Caller is responsible for ensuring that there is such an operand,
 619   // and that it is 32/64 bits wide.
 620 
 621   // If "which" is end_pc_operand, find the end of the instruction.
 622 
 623   address ip = inst;
 624   bool is_64bit = false;
 625 
 626   debug_only(bool has_disp32 = false);
 627   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 628 
 629   again_after_prefix:
 630   switch (0xFF & *ip++) {
 631 
 632   // These convenience macros generate groups of "case" labels for the switch.
 633 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 634 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 635              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 636 #define REP16(x) REP8((x)+0): \
 637               case REP8((x)+8)
 638 
 639   case CS_segment:
 640   case SS_segment:
 641   case DS_segment:
 642   case ES_segment:
 643   case FS_segment:
 644   case GS_segment:
 645     // Seems dubious
 646     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 647     assert(ip == inst+1, "only one prefix allowed");
 648     goto again_after_prefix;
 649 
 650   case 0x67:
 651   case REX:
 652   case REX_B:
 653   case REX_X:
 654   case REX_XB:
 655   case REX_R:
 656   case REX_RB:
 657   case REX_RX:
 658   case REX_RXB:
 659     NOT_LP64(assert(false, "64bit prefixes"));
 660     goto again_after_prefix;
 661 
 662   case REX_W:
 663   case REX_WB:
 664   case REX_WX:
 665   case REX_WXB:
 666   case REX_WR:
 667   case REX_WRB:
 668   case REX_WRX:
 669   case REX_WRXB:
 670     NOT_LP64(assert(false, "64bit prefixes"));
 671     is_64bit = true;
 672     goto again_after_prefix;
 673 
 674   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 675   case 0x88: // movb a, r
 676   case 0x89: // movl a, r
 677   case 0x8A: // movb r, a
 678   case 0x8B: // movl r, a
 679   case 0x8F: // popl a
 680     debug_only(has_disp32 = true);
 681     break;
 682 
 683   case 0x68: // pushq #32
 684     if (which == end_pc_operand) {
 685       return ip + 4;
 686     }
 687     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 688     return ip;                  // not produced by emit_operand
 689 
 690   case 0x66: // movw ... (size prefix)
 691     again_after_size_prefix2:
 692     switch (0xFF & *ip++) {
 693     case REX:
 694     case REX_B:
 695     case REX_X:
 696     case REX_XB:
 697     case REX_R:
 698     case REX_RB:
 699     case REX_RX:
 700     case REX_RXB:
 701     case REX_W:
 702     case REX_WB:
 703     case REX_WX:
 704     case REX_WXB:
 705     case REX_WR:
 706     case REX_WRB:
 707     case REX_WRX:
 708     case REX_WRXB:
 709       NOT_LP64(assert(false, "64bit prefix found"));
 710       goto again_after_size_prefix2;
 711     case 0x8B: // movw r, a
 712     case 0x89: // movw a, r
 713       debug_only(has_disp32 = true);
 714       break;
 715     case 0xC7: // movw a, #16
 716       debug_only(has_disp32 = true);
 717       tail_size = 2;  // the imm16
 718       break;
 719     case 0x0F: // several SSE/SSE2 variants
 720       ip--;    // reparse the 0x0F
 721       goto again_after_prefix;
 722     default:
 723       ShouldNotReachHere();
 724     }
 725     break;
 726 
 727   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 728     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 729     // these asserts are somewhat nonsensical
 730 #ifndef _LP64
 731     assert(which == imm_operand || which == disp32_operand,
 732            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 733 #else
 734     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 735            which == narrow_oop_operand && !is_64bit,
 736            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 737 #endif // _LP64
 738     return ip;
 739 
 740   case 0x69: // imul r, a, #32
 741   case 0xC7: // movl a, #32(oop?)
 742     tail_size = 4;
 743     debug_only(has_disp32 = true); // has both kinds of operands!
 744     break;
 745 
 746   case 0x0F: // movx..., etc.
 747     switch (0xFF & *ip++) {
 748     case 0x3A: // pcmpestri
 749       tail_size = 1;
 750     case 0x38: // ptest, pmovzxbw
 751       ip++; // skip opcode
 752       debug_only(has_disp32 = true); // has both kinds of operands!
 753       break;
 754 
 755     case 0x70: // pshufd r, r/a, #8
 756       debug_only(has_disp32 = true); // has both kinds of operands!
 757     case 0x73: // psrldq r, #8
 758       tail_size = 1;
 759       break;
 760 
 761     case 0x12: // movlps
 762     case 0x28: // movaps
 763     case 0x2E: // ucomiss
 764     case 0x2F: // comiss
 765     case 0x54: // andps
 766     case 0x55: // andnps
 767     case 0x56: // orps
 768     case 0x57: // xorps
 769     case 0x58: // addpd
 770     case 0x59: // mulpd
 771     case 0x6E: // movd
 772     case 0x7E: // movd
 773     case 0x6F: // movdq
 774     case 0x7F: // movdq
 775     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 776     case 0xFE: // paddd
 777       debug_only(has_disp32 = true);
 778       break;
 779 
 780     case 0xAD: // shrd r, a, %cl
 781     case 0xAF: // imul r, a
 782     case 0xBE: // movsbl r, a (movsxb)
 783     case 0xBF: // movswl r, a (movsxw)
 784     case 0xB6: // movzbl r, a (movzxb)
 785     case 0xB7: // movzwl r, a (movzxw)
 786     case REP16(0x40): // cmovl cc, r, a
 787     case 0xB0: // cmpxchgb
 788     case 0xB1: // cmpxchg
 789     case 0xC1: // xaddl
 790     case 0xC7: // cmpxchg8
 791     case REP16(0x90): // setcc a
 792       debug_only(has_disp32 = true);
 793       // fall out of the switch to decode the address
 794       break;
 795 
 796     case 0xC4: // pinsrw r, a, #8
 797       debug_only(has_disp32 = true);
 798     case 0xC5: // pextrw r, r, #8
 799       tail_size = 1;  // the imm8
 800       break;
 801 
 802     case 0xAC: // shrd r, a, #8
 803       debug_only(has_disp32 = true);
 804       tail_size = 1;  // the imm8
 805       break;
 806 
 807     case REP16(0x80): // jcc rdisp32
 808       if (which == end_pc_operand)  return ip + 4;
 809       assert(which == call32_operand, "jcc has no disp32 or imm");
 810       return ip;
 811     default:
 812       ShouldNotReachHere();
 813     }
 814     break;
 815 
 816   case 0x81: // addl a, #32; addl r, #32
 817     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 818     // on 32bit in the case of cmpl, the imm might be an oop
 819     tail_size = 4;
 820     debug_only(has_disp32 = true); // has both kinds of operands!
 821     break;
 822 
 823   case 0x83: // addl a, #8; addl r, #8
 824     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 825     debug_only(has_disp32 = true); // has both kinds of operands!
 826     tail_size = 1;
 827     break;
 828 
 829   case 0x9B:
 830     switch (0xFF & *ip++) {
 831     case 0xD9: // fnstcw a
 832       debug_only(has_disp32 = true);
 833       break;
 834     default:
 835       ShouldNotReachHere();
 836     }
 837     break;
 838 
 839   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 840   case REP4(0x10): // adc...
 841   case REP4(0x20): // and...
 842   case REP4(0x30): // xor...
 843   case REP4(0x08): // or...
 844   case REP4(0x18): // sbb...
 845   case REP4(0x28): // sub...
 846   case 0xF7: // mull a
 847   case 0x8D: // lea r, a
 848   case 0x87: // xchg r, a
 849   case REP4(0x38): // cmp...
 850   case 0x85: // test r, a
 851     debug_only(has_disp32 = true); // has both kinds of operands!
 852     break;
 853 
 854   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 855   case 0xC6: // movb a, #8
 856   case 0x80: // cmpb a, #8
 857   case 0x6B: // imul r, a, #8
 858     debug_only(has_disp32 = true); // has both kinds of operands!
 859     tail_size = 1; // the imm8
 860     break;
 861 
 862   case 0xC4: // VEX_3bytes
 863   case 0xC5: // VEX_2bytes
 864     assert((UseAVX > 0), "shouldn't have VEX prefix");
 865     assert(ip == inst+1, "no prefixes allowed");
 866     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 867     // but they have prefix 0x0F and processed when 0x0F processed above.
 868     //
 869     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 870     // instructions (these instructions are not supported in 64-bit mode).
 871     // To distinguish them bits [7:6] are set in the VEX second byte since
 872     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 873     // those VEX bits REX and vvvv bits are inverted.
 874     //
 875     // Fortunately C2 doesn't generate these instructions so we don't need
 876     // to check for them in product version.
 877 
 878     // Check second byte
 879     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 880 
 881     int vex_opcode;
 882     // First byte
 883     if ((0xFF & *inst) == VEX_3bytes) {
 884       vex_opcode = VEX_OPCODE_MASK & *ip;
 885       ip++; // third byte
 886       is_64bit = ((VEX_W & *ip) == VEX_W);
 887     } else {
 888       vex_opcode = VEX_OPCODE_0F;
 889     }
 890     ip++; // opcode
 891     // To find the end of instruction (which == end_pc_operand).
 892     switch (vex_opcode) {
 893       case VEX_OPCODE_0F:
 894         switch (0xFF & *ip) {
 895         case 0x70: // pshufd r, r/a, #8
 896         case 0x71: // ps[rl|ra|ll]w r, #8
 897         case 0x72: // ps[rl|ra|ll]d r, #8
 898         case 0x73: // ps[rl|ra|ll]q r, #8
 899         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 900         case 0xC4: // pinsrw r, r, r/a, #8
 901         case 0xC5: // pextrw r/a, r, #8
 902         case 0xC6: // shufp[s|d] r, r, r/a, #8
 903           tail_size = 1;  // the imm8
 904           break;
 905         }
 906         break;
 907       case VEX_OPCODE_0F_3A:
 908         tail_size = 1;
 909         break;
 910     }
 911     ip++; // skip opcode
 912     debug_only(has_disp32 = true); // has both kinds of operands!
 913     break;
 914 
 915   case 0x62: // EVEX_4bytes
 916     assert(VM_Version::supports_evex(), "shouldn't have EVEX prefix");
 917     assert(ip == inst+1, "no prefixes allowed");
 918     // no EVEX collisions, all instructions that have 0x62 opcodes
 919     // have EVEX versions and are subopcodes of 0x66
 920     ip++; // skip P0 and exmaine W in P1
 921     is_64bit = ((VEX_W & *ip) == VEX_W);
 922     ip++; // move to P2
 923     ip++; // skip P2, move to opcode
 924     // To find the end of instruction (which == end_pc_operand).
 925     switch (0xFF & *ip) {
 926     case 0x22: // pinsrd r, r/a, #8
 927     case 0x61: // pcmpestri r, r/a, #8
 928     case 0x70: // pshufd r, r/a, #8
 929     case 0x73: // psrldq r, #8
 930       tail_size = 1;  // the imm8
 931       break;
 932     default:
 933       break;
 934     }
 935     ip++; // skip opcode
 936     debug_only(has_disp32 = true); // has both kinds of operands!
 937     break;
 938 
 939   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 940   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 941   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 942   case 0xDD: // fld_d a; fst_d a; fstp_d a
 943   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 944   case 0xDF: // fild_d a; fistp_d a
 945   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 946   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 947   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 948     debug_only(has_disp32 = true);
 949     break;
 950 
 951   case 0xE8: // call rdisp32
 952   case 0xE9: // jmp  rdisp32
 953     if (which == end_pc_operand)  return ip + 4;
 954     assert(which == call32_operand, "call has no disp32 or imm");
 955     return ip;
 956 
 957   case 0xF0:                    // Lock
 958     goto again_after_prefix;
 959 
 960   case 0xF3:                    // For SSE
 961   case 0xF2:                    // For SSE2
 962     switch (0xFF & *ip++) {
 963     case REX:
 964     case REX_B:
 965     case REX_X:
 966     case REX_XB:
 967     case REX_R:
 968     case REX_RB:
 969     case REX_RX:
 970     case REX_RXB:
 971     case REX_W:
 972     case REX_WB:
 973     case REX_WX:
 974     case REX_WXB:
 975     case REX_WR:
 976     case REX_WRB:
 977     case REX_WRX:
 978     case REX_WRXB:
 979       NOT_LP64(assert(false, "found 64bit prefix"));
 980       ip++;
 981     default:
 982       ip++;
 983     }
 984     debug_only(has_disp32 = true); // has both kinds of operands!
 985     break;
 986 
 987   default:
 988     ShouldNotReachHere();
 989 
 990 #undef REP8
 991 #undef REP16
 992   }
 993 
 994   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 995 #ifdef _LP64
 996   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 997 #else
 998   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 999   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1000 #endif // LP64
1001   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1002 
1003   // parse the output of emit_operand
1004   int op2 = 0xFF & *ip++;
1005   int base = op2 & 0x07;
1006   int op3 = -1;
1007   const int b100 = 4;
1008   const int b101 = 5;
1009   if (base == b100 && (op2 >> 6) != 3) {
1010     op3 = 0xFF & *ip++;
1011     base = op3 & 0x07;   // refetch the base
1012   }
1013   // now ip points at the disp (if any)
1014 
1015   switch (op2 >> 6) {
1016   case 0:
1017     // [00 reg  100][ss index base]
1018     // [00 reg  100][00   100  esp]
1019     // [00 reg base]
1020     // [00 reg  100][ss index  101][disp32]
1021     // [00 reg  101]               [disp32]
1022 
1023     if (base == b101) {
1024       if (which == disp32_operand)
1025         return ip;              // caller wants the disp32
1026       ip += 4;                  // skip the disp32
1027     }
1028     break;
1029 
1030   case 1:
1031     // [01 reg  100][ss index base][disp8]
1032     // [01 reg  100][00   100  esp][disp8]
1033     // [01 reg base]               [disp8]
1034     ip += 1;                    // skip the disp8
1035     break;
1036 
1037   case 2:
1038     // [10 reg  100][ss index base][disp32]
1039     // [10 reg  100][00   100  esp][disp32]
1040     // [10 reg base]               [disp32]
1041     if (which == disp32_operand)
1042       return ip;                // caller wants the disp32
1043     ip += 4;                    // skip the disp32
1044     break;
1045 
1046   case 3:
1047     // [11 reg base]  (not a memory addressing mode)
1048     break;
1049   }
1050 
1051   if (which == end_pc_operand) {
1052     return ip + tail_size;
1053   }
1054 
1055 #ifdef _LP64
1056   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1057 #else
1058   assert(which == imm_operand, "instruction has only an imm field");
1059 #endif // LP64
1060   return ip;
1061 }
1062 
1063 address Assembler::locate_next_instruction(address inst) {
1064   // Secretly share code with locate_operand:
1065   return locate_operand(inst, end_pc_operand);
1066 }
1067 
1068 
1069 #ifdef ASSERT
1070 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1071   address inst = inst_mark();
1072   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1073   address opnd;
1074 
1075   Relocation* r = rspec.reloc();
1076   if (r->type() == relocInfo::none) {
1077     return;
1078   } else if (r->is_call() || format == call32_operand) {
1079     // assert(format == imm32_operand, "cannot specify a nonzero format");
1080     opnd = locate_operand(inst, call32_operand);
1081   } else if (r->is_data()) {
1082     assert(format == imm_operand || format == disp32_operand
1083            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1084     opnd = locate_operand(inst, (WhichOperand)format);
1085   } else {
1086     assert(format == imm_operand, "cannot specify a format");
1087     return;
1088   }
1089   assert(opnd == pc(), "must put operand where relocs can find it");
1090 }
1091 #endif // ASSERT
1092 
1093 void Assembler::emit_operand32(Register reg, Address adr) {
1094   assert(reg->encoding() < 8, "no extended registers");
1095   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1096   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1097                adr._rspec);
1098 }
1099 
1100 void Assembler::emit_operand(Register reg, Address adr,
1101                              int rip_relative_correction) {
1102   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1103                adr._rspec,
1104                rip_relative_correction);
1105 }
1106 
1107 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1108     if (adr.isxmmindex()) {
1109        emit_operand(reg, adr._base, adr._xmmindex, adr._scale, adr._disp, adr._rspec);
1110     } else {
1111        emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1112        adr._rspec);
1113     }
1114 }
1115 
1116 // MMX operations
1117 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1118   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1119   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1120 }
1121 
1122 // work around gcc (3.2.1-7a) bug
1123 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1124   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1125   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1126 }
1127 
1128 
1129 void Assembler::emit_farith(int b1, int b2, int i) {
1130   assert(isByte(b1) && isByte(b2), "wrong opcode");
1131   assert(0 <= i &&  i < 8, "illegal stack offset");
1132   emit_int16(b1, b2 + i);
1133 }
1134 
1135 
1136 // Now the Assembler instructions (identical for 32/64 bits)
1137 
1138 void Assembler::adcl(Address dst, int32_t imm32) {
1139   InstructionMark im(this);
1140   prefix(dst);
1141   emit_arith_operand(0x81, rdx, dst, imm32);
1142 }
1143 
1144 void Assembler::adcl(Address dst, Register src) {
1145   InstructionMark im(this);
1146   prefix(dst, src);
1147   emit_int8(0x11);
1148   emit_operand(src, dst);
1149 }
1150 
1151 void Assembler::adcl(Register dst, int32_t imm32) {
1152   prefix(dst);
1153   emit_arith(0x81, 0xD0, dst, imm32);
1154 }
1155 
1156 void Assembler::adcl(Register dst, Address src) {
1157   InstructionMark im(this);
1158   prefix(src, dst);
1159   emit_int8(0x13);
1160   emit_operand(dst, src);
1161 }
1162 
1163 void Assembler::adcl(Register dst, Register src) {
1164   (void) prefix_and_encode(dst->encoding(), src->encoding());
1165   emit_arith(0x13, 0xC0, dst, src);
1166 }
1167 
1168 void Assembler::addl(Address dst, int32_t imm32) {
1169   InstructionMark im(this);
1170   prefix(dst);
1171   emit_arith_operand(0x81, rax, dst, imm32);
1172 }
1173 
1174 void Assembler::addb(Address dst, int imm8) {
1175   InstructionMark im(this);
1176   prefix(dst);
1177   emit_int8((unsigned char)0x80);
1178   emit_operand(rax, dst, 1);
1179   emit_int8(imm8);
1180 }
1181 
1182 void Assembler::addw(Address dst, int imm16) {
1183   InstructionMark im(this);
1184   emit_int8(0x66);
1185   prefix(dst);
1186   emit_int8((unsigned char)0x81);
1187   emit_operand(rax, dst, 2);
1188   emit_int16(imm16);
1189 }
1190 
1191 void Assembler::addl(Address dst, Register src) {
1192   InstructionMark im(this);
1193   prefix(dst, src);
1194   emit_int8(0x01);
1195   emit_operand(src, dst);
1196 }
1197 
1198 void Assembler::addl(Register dst, int32_t imm32) {
1199   prefix(dst);
1200   emit_arith(0x81, 0xC0, dst, imm32);
1201 }
1202 
1203 void Assembler::addl(Register dst, Address src) {
1204   InstructionMark im(this);
1205   prefix(src, dst);
1206   emit_int8(0x03);
1207   emit_operand(dst, src);
1208 }
1209 
1210 void Assembler::addl(Register dst, Register src) {
1211   (void) prefix_and_encode(dst->encoding(), src->encoding());
1212   emit_arith(0x03, 0xC0, dst, src);
1213 }
1214 
1215 void Assembler::addr_nop_4() {
1216   assert(UseAddressNop, "no CPU support");
1217   // 4 bytes: NOP DWORD PTR [EAX+0]
1218   emit_int32(0x0F,
1219              0x1F,
1220              0x40, // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1221              0);   // 8-bits offset (1 byte)
1222 }
1223 
1224 void Assembler::addr_nop_5() {
1225   assert(UseAddressNop, "no CPU support");
1226   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1227   emit_int32(0x0F,
1228              0x1F,
1229              0x44,  // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1230              0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1231   emit_int8(0);     // 8-bits offset (1 byte)
1232 }
1233 
1234 void Assembler::addr_nop_7() {
1235   assert(UseAddressNop, "no CPU support");
1236   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1237   emit_int24(0x0F,
1238              0x1F,
1239              (unsigned char)0x80);
1240                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1241   emit_int32(0);   // 32-bits offset (4 bytes)
1242 }
1243 
1244 void Assembler::addr_nop_8() {
1245   assert(UseAddressNop, "no CPU support");
1246   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1247   emit_int32(0x0F,
1248              0x1F,
1249              (unsigned char)0x84,
1250                     // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1251              0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1252   emit_int32(0);    // 32-bits offset (4 bytes)
1253 }
1254 
1255 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1256   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1257   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1258   attributes.set_rex_vex_w_reverted();
1259   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1260   emit_int16(0x58, (unsigned char)(0xC0 | encode));
1261 }
1262 
1263 void Assembler::addsd(XMMRegister dst, Address src) {
1264   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1265   InstructionMark im(this);
1266   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1267   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1268   attributes.set_rex_vex_w_reverted();
1269   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1270   emit_int8(0x58);
1271   emit_operand(dst, src);
1272 }
1273 
1274 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1275   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1276   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1277   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1278   emit_int16(0x58, (unsigned char)(0xC0 | encode));
1279 }
1280 
1281 void Assembler::addss(XMMRegister dst, Address src) {
1282   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1283   InstructionMark im(this);
1284   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1285   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1286   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1287   emit_int8(0x58);
1288   emit_operand(dst, src);
1289 }
1290 
1291 void Assembler::aesdec(XMMRegister dst, Address src) {
1292   assert(VM_Version::supports_aes(), "");
1293   InstructionMark im(this);
1294   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1295   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1296   emit_int8((unsigned char)0xDE);
1297   emit_operand(dst, src);
1298 }
1299 
1300 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1301   assert(VM_Version::supports_aes(), "");
1302   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1303   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1304   emit_int16((unsigned char)0xDE, 0xC0 | encode);
1305 }
1306 
1307 void Assembler::vaesdec(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1308   assert(VM_Version::supports_avx512_vaes(), "");
1309   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1310   attributes.set_is_evex_instruction();
1311   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1312   emit_int16((unsigned char)0xDE, (unsigned char)(0xC0 | encode));
1313 }
1314 
1315 
1316 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1317   assert(VM_Version::supports_aes(), "");
1318   InstructionMark im(this);
1319   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1320   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1321   emit_int8((unsigned char)0xDF);
1322   emit_operand(dst, src);
1323 }
1324 
1325 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1326   assert(VM_Version::supports_aes(), "");
1327   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1328   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1329   emit_int16((unsigned char)0xDF, (unsigned char)(0xC0 | encode));
1330 }
1331 
1332 void Assembler::vaesdeclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1333   assert(VM_Version::supports_avx512_vaes(), "");
1334   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1335   attributes.set_is_evex_instruction();
1336   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1337   emit_int16((unsigned char)0xDF, (unsigned char)(0xC0 | encode));
1338 }
1339 
1340 void Assembler::aesenc(XMMRegister dst, Address src) {
1341   assert(VM_Version::supports_aes(), "");
1342   InstructionMark im(this);
1343   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1344   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1345   emit_int8((unsigned char)0xDC);
1346   emit_operand(dst, src);
1347 }
1348 
1349 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1350   assert(VM_Version::supports_aes(), "");
1351   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1352   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1353   emit_int16((unsigned char)0xDC, 0xC0 | encode);
1354 }
1355 
1356 void Assembler::vaesenc(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1357   assert(VM_Version::supports_avx512_vaes(), "requires vaes support/enabling");
1358   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1359   attributes.set_is_evex_instruction();
1360   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1361   emit_int16((unsigned char)0xDC, (unsigned char)(0xC0 | encode));
1362 }
1363 
1364 void Assembler::aesenclast(XMMRegister dst, Address src) {
1365   assert(VM_Version::supports_aes(), "");
1366   InstructionMark im(this);
1367   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1368   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1369   emit_int8((unsigned char)0xDD);
1370   emit_operand(dst, src);
1371 }
1372 
1373 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1374   assert(VM_Version::supports_aes(), "");
1375   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1376   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1377   emit_int16((unsigned char)0xDD, (unsigned char)(0xC0 | encode));
1378 }
1379 
1380 void Assembler::vaesenclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1381   assert(VM_Version::supports_avx512_vaes(), "requires vaes support/enabling");
1382   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1383   attributes.set_is_evex_instruction();
1384   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1385   emit_int16((unsigned char)0xDD, (unsigned char)(0xC0 | encode));
1386 }
1387 
1388 void Assembler::andl(Address dst, int32_t imm32) {
1389   InstructionMark im(this);
1390   prefix(dst);
1391   emit_int8((unsigned char)0x81);
1392   emit_operand(rsp, dst, 4);
1393   emit_int32(imm32);
1394 }
1395 
1396 void Assembler::andl(Register dst, int32_t imm32) {
1397   prefix(dst);
1398   emit_arith(0x81, 0xE0, dst, imm32);
1399 }
1400 
1401 void Assembler::andl(Register dst, Address src) {
1402   InstructionMark im(this);
1403   prefix(src, dst);
1404   emit_int8(0x23);
1405   emit_operand(dst, src);
1406 }
1407 
1408 void Assembler::andl(Register dst, Register src) {
1409   (void) prefix_and_encode(dst->encoding(), src->encoding());
1410   emit_arith(0x23, 0xC0, dst, src);
1411 }
1412 
1413 void Assembler::andnl(Register dst, Register src1, Register src2) {
1414   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1415   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1416   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1417   emit_int16((unsigned char)0xF2, (unsigned char)(0xC0 | encode));
1418 }
1419 
1420 void Assembler::andnl(Register dst, Register src1, Address src2) {
1421   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1422   InstructionMark im(this);
1423   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1424   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1425   emit_int8((unsigned char)0xF2);
1426   emit_operand(dst, src2);
1427 }
1428 
1429 void Assembler::bsfl(Register dst, Register src) {
1430   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1431   emit_int24(0x0F, (unsigned char)0xBC, (unsigned char)(0xC0 | encode));
1432 }
1433 
1434 void Assembler::bsrl(Register dst, Register src) {
1435   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1436   emit_int24(0x0F, (unsigned char)0xBD, (unsigned char)(0xC0 | encode));
1437 }
1438 
1439 void Assembler::bswapl(Register reg) { // bswap
1440   int encode = prefix_and_encode(reg->encoding());
1441   emit_int16(0x0F, (unsigned char)(0xC8 | encode));
1442 }
1443 
1444 void Assembler::blsil(Register dst, Register src) {
1445   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1446   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1447   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1448   emit_int16((unsigned char)0xF3, (unsigned char)(0xC0 | encode));
1449 }
1450 
1451 void Assembler::blsil(Register dst, Address src) {
1452   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1453   InstructionMark im(this);
1454   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1455   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1456   emit_int8((unsigned char)0xF3);
1457   emit_operand(rbx, src);
1458 }
1459 
1460 void Assembler::blsmskl(Register dst, Register src) {
1461   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1462   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1463   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1464   emit_int16((unsigned char)0xF3, (unsigned char)(0xC0 | encode));
1465 }
1466 
1467 void Assembler::blsmskl(Register dst, Address src) {
1468   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1469   InstructionMark im(this);
1470   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1471   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1472   emit_int8((unsigned char)0xF3);
1473   emit_operand(rdx, src);
1474 }
1475 
1476 void Assembler::blsrl(Register dst, Register src) {
1477   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1478   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1479   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1480   emit_int16((unsigned char)0xF3, (unsigned char)(0xC0 | encode));
1481 }
1482 
1483 void Assembler::blsrl(Register dst, Address src) {
1484   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1485   InstructionMark im(this);
1486   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1487   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1488   emit_int8((unsigned char)0xF3);
1489   emit_operand(rcx, src);
1490 }
1491 
1492 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1493   // suspect disp32 is always good
1494   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1495 
1496   if (L.is_bound()) {
1497     const int long_size = 5;
1498     int offs = (int)( target(L) - pc() );
1499     assert(offs <= 0, "assembler error");
1500     InstructionMark im(this);
1501     // 1110 1000 #32-bit disp
1502     emit_int8((unsigned char)0xE8);
1503     emit_data(offs - long_size, rtype, operand);
1504   } else {
1505     InstructionMark im(this);
1506     // 1110 1000 #32-bit disp
1507     L.add_patch_at(code(), locator());
1508 
1509     emit_int8((unsigned char)0xE8);
1510     emit_data(int(0), rtype, operand);
1511   }
1512 }
1513 
1514 void Assembler::call(Register dst) {
1515   int encode = prefix_and_encode(dst->encoding());
1516   emit_int16((unsigned char)0xFF, (unsigned char)(0xD0 | encode));
1517 }
1518 
1519 
1520 void Assembler::call(Address adr) {
1521   InstructionMark im(this);
1522   prefix(adr);
1523   emit_int8((unsigned char)0xFF);
1524   emit_operand(rdx, adr);
1525 }
1526 
1527 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1528   InstructionMark im(this);
1529   emit_int8((unsigned char)0xE8);
1530   intptr_t disp = entry - (pc() + sizeof(int32_t));
1531   // Entry is NULL in case of a scratch emit.
1532   assert(entry == NULL || is_simm32(disp), "disp=" INTPTR_FORMAT " must be 32bit offset (call2)", disp);
1533   // Technically, should use call32_operand, but this format is
1534   // implied by the fact that we're emitting a call instruction.
1535 
1536   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1537   emit_data((int) disp, rspec, operand);
1538 }
1539 
1540 void Assembler::cdql() {
1541   emit_int8((unsigned char)0x99);
1542 }
1543 
1544 void Assembler::cld() {
1545   emit_int8((unsigned char)0xFC);
1546 }
1547 
1548 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1549   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1550   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1551   emit_int24(0x0F, 0x40 | cc, (unsigned char)(0xC0 | encode));
1552 }
1553 
1554 
1555 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1556   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1557   prefix(src, dst);
1558   emit_int16(0x0F, 0x40 | cc);
1559   emit_operand(dst, src);
1560 }
1561 
1562 void Assembler::cmpb(Address dst, int imm8) {
1563   InstructionMark im(this);
1564   prefix(dst);
1565   emit_int8((unsigned char)0x80);
1566   emit_operand(rdi, dst, 1);
1567   emit_int8(imm8);
1568 }
1569 
1570 void Assembler::cmpl(Address dst, int32_t imm32) {
1571   InstructionMark im(this);
1572   prefix(dst);
1573   emit_int8((unsigned char)0x81);
1574   emit_operand(rdi, dst, 4);
1575   emit_int32(imm32);
1576 }
1577 
1578 void Assembler::cmpl(Register dst, int32_t imm32) {
1579   prefix(dst);
1580   emit_arith(0x81, 0xF8, dst, imm32);
1581 }
1582 
1583 void Assembler::cmpl(Register dst, Register src) {
1584   (void) prefix_and_encode(dst->encoding(), src->encoding());
1585   emit_arith(0x3B, 0xC0, dst, src);
1586 }
1587 
1588 void Assembler::cmpl(Register dst, Address  src) {
1589   InstructionMark im(this);
1590   prefix(src, dst);
1591   emit_int8((unsigned char)0x3B);
1592   emit_operand(dst, src);
1593 }
1594 
1595 void Assembler::cmpw(Address dst, int imm16) {
1596   InstructionMark im(this);
1597   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1598   emit_int16(0x66, (unsigned char)0x81);
1599   emit_operand(rdi, dst, 2);
1600   emit_int16(imm16);
1601 }
1602 
1603 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1604 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1605 // The ZF is set if the compared values were equal, and cleared otherwise.
1606 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1607   InstructionMark im(this);
1608   prefix(adr, reg);
1609   emit_int16(0x0F, (unsigned char)0xB1);
1610   emit_operand(reg, adr);
1611 }
1612 
1613 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1614 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1615 // The ZF is set if the compared values were equal, and cleared otherwise.
1616 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1617   InstructionMark im(this);
1618   prefix(adr, reg, true);
1619   emit_int16(0x0F, (unsigned char)0xB0);
1620   emit_operand(reg, adr);
1621 }
1622 
1623 void Assembler::comisd(XMMRegister dst, Address src) {
1624   // NOTE: dbx seems to decode this as comiss even though the
1625   // 0x66 is there. Strangly ucomisd comes out correct
1626   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1627   InstructionMark im(this);
1628   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1629   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1630   attributes.set_rex_vex_w_reverted();
1631   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1632   emit_int8(0x2F);
1633   emit_operand(dst, src);
1634 }
1635 
1636 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1637   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1638   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1639   attributes.set_rex_vex_w_reverted();
1640   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1641   emit_int16(0x2F, (unsigned char)(0xC0 | encode));
1642 }
1643 
1644 void Assembler::comiss(XMMRegister dst, Address src) {
1645   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1646   InstructionMark im(this);
1647   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1648   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1649   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1650   emit_int8(0x2F);
1651   emit_operand(dst, src);
1652 }
1653 
1654 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1655   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1656   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1657   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1658   emit_int16(0x2F, (unsigned char)(0xC0 | encode));
1659 }
1660 
1661 void Assembler::cpuid() {
1662   emit_int16(0x0F, (unsigned char)0xA2);
1663 }
1664 
1665 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1666 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1667 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1668 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1669 //
1670 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1671 //
1672 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1673 //
1674 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1675 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1676   assert(VM_Version::supports_sse4_2(), "");
1677   int8_t w = 0x01;
1678   Prefix p = Prefix_EMPTY;
1679 
1680   emit_int8((int8_t)0xF2);
1681   switch (sizeInBytes) {
1682   case 1:
1683     w = 0;
1684     break;
1685   case 2:
1686   case 4:
1687     break;
1688   LP64_ONLY(case 8:)
1689     // This instruction is not valid in 32 bits
1690     // Note:
1691     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1692     //
1693     // Page B - 72   Vol. 2C says
1694     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1695     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1696     //                                                                            F0!!!
1697     // while 3 - 208 Vol. 2A
1698     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1699     //
1700     // the 0 on a last bit is reserved for a different flavor of this instruction :
1701     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1702     p = REX_W;
1703     break;
1704   default:
1705     assert(0, "Unsupported value for a sizeInBytes argument");
1706     break;
1707   }
1708   LP64_ONLY(prefix(crc, v, p);)
1709   emit_int32((int8_t)0x0F,
1710              0x38,
1711              (int8_t)(0xF0 | w),
1712              0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1713 }
1714 
1715 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1716   assert(VM_Version::supports_sse4_2(), "");
1717   InstructionMark im(this);
1718   int8_t w = 0x01;
1719   Prefix p = Prefix_EMPTY;
1720 
1721   emit_int8((int8_t)0xF2);
1722   switch (sizeInBytes) {
1723   case 1:
1724     w = 0;
1725     break;
1726   case 2:
1727   case 4:
1728     break;
1729   LP64_ONLY(case 8:)
1730     // This instruction is not valid in 32 bits
1731     p = REX_W;
1732     break;
1733   default:
1734     assert(0, "Unsupported value for a sizeInBytes argument");
1735     break;
1736   }
1737   LP64_ONLY(prefix(crc, adr, p);)
1738   emit_int24(0x0F, 0x38, (unsigned char)(0xF0 | w));
1739   emit_operand(crc, adr);
1740 }
1741 
1742 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1743   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1744   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1745   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1746   emit_int16((unsigned char)0xE6, (unsigned char)(0xC0 | encode));
1747 }
1748 
1749 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1750   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1751   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1752   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1753   emit_int16(0x5B, (unsigned char)(0xC0 | encode));
1754 }
1755 
1756 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1757   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1758   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1759   attributes.set_rex_vex_w_reverted();
1760   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1761   emit_int16(0x5A, (unsigned char)(0xC0 | encode));
1762 }
1763 
1764 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1765   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1766   InstructionMark im(this);
1767   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1768   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1769   attributes.set_rex_vex_w_reverted();
1770   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1771   emit_int8(0x5A);
1772   emit_operand(dst, src);
1773 }
1774 
1775 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1776   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1777   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1778   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1779   emit_int16(0x2A, (unsigned char)(0xC0 | encode));
1780 }
1781 
1782 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1783   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1784   InstructionMark im(this);
1785   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1786   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1787   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1788   emit_int8(0x2A);
1789   emit_operand(dst, src);
1790 }
1791 
1792 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1793   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1794   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1795   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1796   emit_int16(0x2A, (unsigned char)(0xC0 | encode));
1797 }
1798 
1799 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1800   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1801   InstructionMark im(this);
1802   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1803   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1804   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1805   emit_int8(0x2A);
1806   emit_operand(dst, src);
1807 }
1808 
1809 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1810   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1811   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1812   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1813   emit_int16(0x2A, (unsigned char)(0xC0 | encode));
1814 }
1815 
1816 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1817   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1818   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1819   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1820   emit_int16(0x5A, (unsigned char)(0xC0 | encode));
1821 }
1822 
1823 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1824   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1825   InstructionMark im(this);
1826   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1827   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1828   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1829   emit_int8(0x5A);
1830   emit_operand(dst, src);
1831 }
1832 
1833 
1834 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1835   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1836   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1837   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1838   emit_int16(0x2C, (unsigned char)(0xC0 | encode));
1839 }
1840 
1841 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1842   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1843   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1844   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1845   emit_int16(0x2C, (unsigned char)(0xC0 | encode));
1846 }
1847 
1848 void Assembler::cvttpd2dq(XMMRegister dst, XMMRegister src) {
1849   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1850   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
1851   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1852   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1853   emit_int16((unsigned char)0xE6, (unsigned char)(0xC0 | encode));
1854 }
1855 
1856 void Assembler::pabsb(XMMRegister dst, XMMRegister src) {
1857   assert(VM_Version::supports_ssse3(), "");
1858   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
1859   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1860   emit_int16(0x1C, (unsigned char)(0xC0 | encode));
1861 }
1862 
1863 void Assembler::pabsw(XMMRegister dst, XMMRegister src) {
1864   assert(VM_Version::supports_ssse3(), "");
1865   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
1866   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1867   emit_int16(0x1D, (unsigned char)(0xC0 | encode));
1868 }
1869 
1870 void Assembler::pabsd(XMMRegister dst, XMMRegister src) {
1871   assert(VM_Version::supports_ssse3(), "");
1872   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1873   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1874   emit_int16(0x1E, (unsigned char)(0xC0 | encode));
1875 }
1876 
1877 void Assembler::vpabsb(XMMRegister dst, XMMRegister src, int vector_len) {
1878   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
1879   vector_len == AVX_256bit? VM_Version::supports_avx2() :
1880   vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
1881   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
1882   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1883   emit_int16(0x1C, (unsigned char)(0xC0 | encode));
1884 }
1885 
1886 void Assembler::vpabsw(XMMRegister dst, XMMRegister src, int vector_len) {
1887   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
1888   vector_len == AVX_256bit? VM_Version::supports_avx2() :
1889   vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
1890   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
1891   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1892   emit_int16(0x1D, (unsigned char)(0xC0 | encode));
1893 }
1894 
1895 void Assembler::vpabsd(XMMRegister dst, XMMRegister src, int vector_len) {
1896   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
1897   vector_len == AVX_256bit? VM_Version::supports_avx2() :
1898   vector_len == AVX_512bit? VM_Version::supports_evex() : 0, "");
1899   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1900   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1901   emit_int16(0x1E, (unsigned char)(0xC0 | encode));
1902 }
1903 
1904 void Assembler::evpabsq(XMMRegister dst, XMMRegister src, int vector_len) {
1905   assert(UseAVX > 2, "");
1906   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1907   attributes.set_is_evex_instruction();
1908   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1909   emit_int16(0x1F, (unsigned char)(0xC0 | encode));
1910 }
1911 
1912 void Assembler::decl(Address dst) {
1913   // Don't use it directly. Use MacroAssembler::decrement() instead.
1914   InstructionMark im(this);
1915   prefix(dst);
1916   emit_int8((unsigned char)0xFF);
1917   emit_operand(rcx, dst);
1918 }
1919 
1920 void Assembler::divsd(XMMRegister dst, Address src) {
1921   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1922   InstructionMark im(this);
1923   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1924   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1925   attributes.set_rex_vex_w_reverted();
1926   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1927   emit_int8(0x5E);
1928   emit_operand(dst, src);
1929 }
1930 
1931 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1932   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1933   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1934   attributes.set_rex_vex_w_reverted();
1935   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1936   emit_int16(0x5E, (unsigned char)(0xC0 | encode));
1937 }
1938 
1939 void Assembler::divss(XMMRegister dst, Address src) {
1940   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1941   InstructionMark im(this);
1942   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1943   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1944   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1945   emit_int8(0x5E);
1946   emit_operand(dst, src);
1947 }
1948 
1949 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1950   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1951   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1952   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1953   emit_int16(0x5E, (unsigned char)(0xC0 | encode));
1954 }
1955 
1956 void Assembler::emms() {
1957   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1958   emit_int16(0x0F, 0x77);
1959 }
1960 
1961 void Assembler::hlt() {
1962   emit_int8((unsigned char)0xF4);
1963 }
1964 
1965 void Assembler::idivl(Register src) {
1966   int encode = prefix_and_encode(src->encoding());
1967   emit_int16((unsigned char)0xF7, (unsigned char)(0xF8 | encode));
1968 }
1969 
1970 void Assembler::divl(Register src) { // Unsigned
1971   int encode = prefix_and_encode(src->encoding());
1972   emit_int16((unsigned char)0xF7, (unsigned char)(0xF0 | encode));
1973 }
1974 
1975 void Assembler::imull(Register src) {
1976   int encode = prefix_and_encode(src->encoding());
1977   emit_int16((unsigned char)0xF7, (unsigned char)(0xE8 | encode));
1978 }
1979 
1980 void Assembler::imull(Register dst, Register src) {
1981   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1982   emit_int24(0x0F, (unsigned char)0xAF, (unsigned char)(0xC0 | encode));
1983 }
1984 
1985 
1986 void Assembler::imull(Register dst, Register src, int value) {
1987   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1988   if (is8bit(value)) {
1989     emit_int24(0x6B, (unsigned char)(0xC0 | encode), value & 0xFF);
1990   } else {
1991     emit_int16(0x69, (unsigned char)(0xC0 | encode));
1992     emit_int32(value);
1993   }
1994 }
1995 
1996 void Assembler::imull(Register dst, Address src) {
1997   InstructionMark im(this);
1998   prefix(src, dst);
1999   emit_int16(0x0F, (unsigned char) 0xAF);
2000   emit_operand(dst, src);
2001 }
2002 
2003 
2004 void Assembler::incl(Address dst) {
2005   // Don't use it directly. Use MacroAssembler::increment() instead.
2006   InstructionMark im(this);
2007   prefix(dst);
2008   emit_int8((unsigned char)0xFF);
2009   emit_operand(rax, dst);
2010 }
2011 
2012 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
2013   InstructionMark im(this);
2014   assert((0 <= cc) && (cc < 16), "illegal cc");
2015   if (L.is_bound()) {
2016     address dst = target(L);
2017     assert(dst != NULL, "jcc most probably wrong");
2018 
2019     const int short_size = 2;
2020     const int long_size = 6;
2021     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
2022     if (maybe_short && is8bit(offs - short_size)) {
2023       // 0111 tttn #8-bit disp
2024       emit_int16(0x70 | cc, (offs - short_size) & 0xFF);
2025     } else {
2026       // 0000 1111 1000 tttn #32-bit disp
2027       assert(is_simm32(offs - long_size),
2028              "must be 32bit offset (call4)");
2029       emit_int16(0x0F, (unsigned char)(0x80 | cc));
2030       emit_int32(offs - long_size);
2031     }
2032   } else {
2033     // Note: could eliminate cond. jumps to this jump if condition
2034     //       is the same however, seems to be rather unlikely case.
2035     // Note: use jccb() if label to be bound is very close to get
2036     //       an 8-bit displacement
2037     L.add_patch_at(code(), locator());
2038     emit_int16(0x0F, (unsigned char)(0x80 | cc));
2039     emit_int32(0);
2040   }
2041 }
2042 
2043 void Assembler::jccb_0(Condition cc, Label& L, const char* file, int line) {
2044   if (L.is_bound()) {
2045     const int short_size = 2;
2046     address entry = target(L);
2047 #ifdef ASSERT
2048     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2049     intptr_t delta = short_branch_delta();
2050     if (delta != 0) {
2051       dist += (dist < 0 ? (-delta) :delta);
2052     }
2053     assert(is8bit(dist), "Dispacement too large for a short jmp at %s:%d", file, line);
2054 #endif
2055     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
2056     // 0111 tttn #8-bit disp
2057     emit_int16(0x70 | cc, (offs - short_size) & 0xFF);
2058   } else {
2059     InstructionMark im(this);
2060     L.add_patch_at(code(), locator(), file, line);
2061     emit_int16(0x70 | cc, 0);
2062   }
2063 }
2064 
2065 void Assembler::jmp(Address adr) {
2066   InstructionMark im(this);
2067   prefix(adr);
2068   emit_int8((unsigned char)0xFF);
2069   emit_operand(rsp, adr);
2070 }
2071 
2072 void Assembler::jmp(Label& L, bool maybe_short) {
2073   if (L.is_bound()) {
2074     address entry = target(L);
2075     assert(entry != NULL, "jmp most probably wrong");
2076     InstructionMark im(this);
2077     const int short_size = 2;
2078     const int long_size = 5;
2079     intptr_t offs = entry - pc();
2080     if (maybe_short && is8bit(offs - short_size)) {
2081       emit_int16((unsigned char)0xEB, (offs - short_size) & 0xFF);
2082     } else {
2083       emit_int8((unsigned char)0xE9);
2084       emit_int32(offs - long_size);
2085     }
2086   } else {
2087     // By default, forward jumps are always 32-bit displacements, since
2088     // we can't yet know where the label will be bound.  If you're sure that
2089     // the forward jump will not run beyond 256 bytes, use jmpb to
2090     // force an 8-bit displacement.
2091     InstructionMark im(this);
2092     L.add_patch_at(code(), locator());
2093     emit_int8((unsigned char)0xE9);
2094     emit_int32(0);
2095   }
2096 }
2097 
2098 void Assembler::jmp(Register entry) {
2099   int encode = prefix_and_encode(entry->encoding());
2100   emit_int16((unsigned char)0xFF, (unsigned char)(0xE0 | encode));
2101 }
2102 
2103 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2104   InstructionMark im(this);
2105   emit_int8((unsigned char)0xE9);
2106   assert(dest != NULL, "must have a target");
2107   intptr_t disp = dest - (pc() + sizeof(int32_t));
2108   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2109   emit_data(disp, rspec.reloc(), call32_operand);
2110 }
2111 
2112 void Assembler::jmpb_0(Label& L, const char* file, int line) {
2113   if (L.is_bound()) {
2114     const int short_size = 2;
2115     address entry = target(L);
2116     assert(entry != NULL, "jmp most probably wrong");
2117 #ifdef ASSERT
2118     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2119     intptr_t delta = short_branch_delta();
2120     if (delta != 0) {
2121       dist += (dist < 0 ? (-delta) :delta);
2122     }
2123     assert(is8bit(dist), "Dispacement too large for a short jmp at %s:%d", file, line);
2124 #endif
2125     intptr_t offs = entry - pc();
2126     emit_int16((unsigned char)0xEB, (offs - short_size) & 0xFF);
2127   } else {
2128     InstructionMark im(this);
2129     L.add_patch_at(code(), locator(), file, line);
2130     emit_int16((unsigned char)0xEB, 0);
2131   }
2132 }
2133 
2134 void Assembler::ldmxcsr( Address src) {
2135   if (UseAVX > 0 ) {
2136     InstructionMark im(this);
2137     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2138     vex_prefix(src, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2139     emit_int8((unsigned char)0xAE);
2140     emit_operand(as_Register(2), src);
2141   } else {
2142     NOT_LP64(assert(VM_Version::supports_sse(), ""));
2143     InstructionMark im(this);
2144     prefix(src);
2145     emit_int16(0x0F, (unsigned char)0xAE);
2146     emit_operand(as_Register(2), src);
2147   }
2148 }
2149 
2150 void Assembler::leal(Register dst, Address src) {
2151   InstructionMark im(this);
2152 #ifdef _LP64
2153   emit_int8(0x67); // addr32
2154   prefix(src, dst);
2155 #endif // LP64
2156   emit_int8((unsigned char)0x8D);
2157   emit_operand(dst, src);
2158 }
2159 
2160 void Assembler::lfence() {
2161   emit_int24(0x0F, (unsigned char)0xAE, (unsigned char)0xE8);
2162 }
2163 
2164 void Assembler::lock() {
2165   emit_int8((unsigned char)0xF0);
2166 }
2167 
2168 void Assembler::lzcntl(Register dst, Register src) {
2169   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2170   emit_int8((unsigned char)0xF3);
2171   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2172   emit_int24(0x0F, (unsigned char)0xBD, (unsigned char)(0xC0 | encode));
2173 }
2174 
2175 // Emit mfence instruction
2176 void Assembler::mfence() {
2177   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2178   emit_int24(0x0F, (unsigned char)0xAE, (unsigned char)0xF0);
2179 }
2180 
2181 // Emit sfence instruction
2182 void Assembler::sfence() {
2183   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2184   emit_int24(0x0F, (unsigned char)0xAE, (unsigned char)0xF8);
2185 }
2186 
2187 void Assembler::mov(Register dst, Register src) {
2188   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2189 }
2190 
2191 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2192   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2193   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2194   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2195   attributes.set_rex_vex_w_reverted();
2196   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2197   emit_int16(0x28, (unsigned char)(0xC0 | encode));
2198 }
2199 
2200 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2201   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2202   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2203   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2204   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2205   emit_int16(0x28, (unsigned char)(0xC0 | encode));
2206 }
2207 
2208 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2209   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2210   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2211   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2212   emit_int16(0x16, (unsigned char)(0xC0 | encode));
2213 }
2214 
2215 void Assembler::movb(Register dst, Address src) {
2216   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2217   InstructionMark im(this);
2218   prefix(src, dst, true);
2219   emit_int8((unsigned char)0x8A);
2220   emit_operand(dst, src);
2221 }
2222 
2223 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2224   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2225   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2226   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2227   attributes.set_rex_vex_w_reverted();
2228   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2229   emit_int16(0x12, 0xC0 | encode);
2230 }
2231 
2232 void Assembler::kmovbl(KRegister dst, Register src) {
2233   assert(VM_Version::supports_avx512dq(), "");
2234   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2235   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2236   emit_int16((unsigned char)0x92, (unsigned char)(0xC0 | encode));
2237 }
2238 
2239 void Assembler::kmovbl(Register dst, KRegister src) {
2240   assert(VM_Version::supports_avx512dq(), "");
2241   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2242   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2243   emit_int16((unsigned char)0x93, (unsigned char)(0xC0 | encode));
2244 }
2245 
2246 void Assembler::kmovwl(KRegister dst, Register src) {
2247   assert(VM_Version::supports_evex(), "");
2248   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2249   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2250   emit_int16((unsigned char)0x92, (unsigned char)(0xC0 | encode));
2251 }
2252 
2253 void Assembler::kmovwl(Register dst, KRegister src) {
2254   assert(VM_Version::supports_evex(), "");
2255   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2256   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2257   emit_int16((unsigned char)0x93, (unsigned char)(0xC0 | encode));
2258 }
2259 
2260 void Assembler::kmovwl(KRegister dst, Address src) {
2261   assert(VM_Version::supports_evex(), "");
2262   InstructionMark im(this);
2263   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2264   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2265   emit_int8((unsigned char)0x90);
2266   emit_operand((Register)dst, src);
2267 }
2268 
2269 void Assembler::kmovdl(KRegister dst, Register src) {
2270   assert(VM_Version::supports_avx512bw(), "");
2271   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2272   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2273   emit_int16((unsigned char)0x92, (unsigned char)(0xC0 | encode));
2274 }
2275 
2276 void Assembler::kmovdl(Register dst, KRegister src) {
2277   assert(VM_Version::supports_avx512bw(), "");
2278   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2279   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2280   emit_int16((unsigned char)0x93, (unsigned char)(0xC0 | encode));
2281 }
2282 
2283 void Assembler::kmovql(KRegister dst, KRegister src) {
2284   assert(VM_Version::supports_avx512bw(), "");
2285   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2286   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2287   emit_int16((unsigned char)0x90, (unsigned char)(0xC0 | encode));
2288 }
2289 
2290 void Assembler::kmovql(KRegister dst, Address src) {
2291   assert(VM_Version::supports_avx512bw(), "");
2292   InstructionMark im(this);
2293   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2294   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2295   emit_int8((unsigned char)0x90);
2296   emit_operand((Register)dst, src);
2297 }
2298 
2299 void Assembler::kmovql(Address dst, KRegister src) {
2300   assert(VM_Version::supports_avx512bw(), "");
2301   InstructionMark im(this);
2302   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2303   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2304   emit_int8((unsigned char)0x90);
2305   emit_operand((Register)src, dst);
2306 }
2307 
2308 void Assembler::kmovql(KRegister dst, Register src) {
2309   assert(VM_Version::supports_avx512bw(), "");
2310   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2311   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2312   emit_int16((unsigned char)0x92, (unsigned char)(0xC0 | encode));
2313 }
2314 
2315 void Assembler::kmovql(Register dst, KRegister src) {
2316   assert(VM_Version::supports_avx512bw(), "");
2317   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2318   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2319   emit_int16((unsigned char)0x93, (unsigned char)(0xC0 | encode));
2320 }
2321 
2322 void Assembler::knotwl(KRegister dst, KRegister src) {
2323   assert(VM_Version::supports_evex(), "");
2324   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2325   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2326   emit_int16((unsigned char)0x44, (unsigned char)(0xC0 | encode));
2327 }
2328 
2329 // This instruction produces ZF or CF flags
2330 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2331   assert(VM_Version::supports_avx512dq(), "");
2332   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2333   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2334   emit_int16((unsigned char)0x98, (unsigned char)(0xC0 | encode));
2335 }
2336 
2337 // This instruction produces ZF or CF flags
2338 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2339   assert(VM_Version::supports_evex(), "");
2340   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2341   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2342   emit_int16((unsigned char)0x98, (unsigned char)(0xC0 | encode));
2343 }
2344 
2345 // This instruction produces ZF or CF flags
2346 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2347   assert(VM_Version::supports_avx512bw(), "");
2348   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2349   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2350   emit_int16((unsigned char)0x98, (unsigned char)(0xC0 | encode));
2351 }
2352 
2353 // This instruction produces ZF or CF flags
2354 void Assembler::kortestql(KRegister src1, KRegister src2) {
2355   assert(VM_Version::supports_avx512bw(), "");
2356   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2357   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2358   emit_int16((unsigned char)0x98, (unsigned char)(0xC0 | encode));
2359 }
2360 
2361 // This instruction produces ZF or CF flags
2362 void Assembler::ktestql(KRegister src1, KRegister src2) {
2363   assert(VM_Version::supports_avx512bw(), "");
2364   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2365   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2366   emit_int16((unsigned char)0x99, (unsigned char)(0xC0 | encode));
2367 }
2368 
2369 void Assembler::ktestq(KRegister src1, KRegister src2) {
2370   assert(VM_Version::supports_avx512bw(), "");
2371   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2372   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2373   emit_int16((unsigned char)0x99, (unsigned char)(0xC0 | encode));
2374 }
2375 
2376 void Assembler::ktestd(KRegister src1, KRegister src2) {
2377   assert(VM_Version::supports_avx512bw(), "");
2378   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2379   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2380   emit_int16((unsigned char)0x99, (unsigned char)(0xC0 | encode));
2381 }
2382 
2383 void Assembler::movb(Address dst, int imm8) {
2384   InstructionMark im(this);
2385    prefix(dst);
2386   emit_int8((unsigned char)0xC6);
2387   emit_operand(rax, dst, 1);
2388   emit_int8(imm8);
2389 }
2390 
2391 
2392 void Assembler::movb(Address dst, Register src) {
2393   assert(src->has_byte_register(), "must have byte register");
2394   InstructionMark im(this);
2395   prefix(dst, src, true);
2396   emit_int8((unsigned char)0x88);
2397   emit_operand(src, dst);
2398 }
2399 
2400 void Assembler::movdl(XMMRegister dst, Register src) {
2401   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2402   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2403   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2404   emit_int16(0x6E, (unsigned char)(0xC0 | encode));
2405 }
2406 
2407 void Assembler::movdl(Register dst, XMMRegister src) {
2408   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2409   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2410   // swap src/dst to get correct prefix
2411   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2412   emit_int16(0x7E, (unsigned char)(0xC0 | encode));
2413 }
2414 
2415 void Assembler::movdl(XMMRegister dst, Address src) {
2416   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2417   InstructionMark im(this);
2418   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2419   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2420   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2421   emit_int8(0x6E);
2422   emit_operand(dst, src);
2423 }
2424 
2425 void Assembler::movdl(Address dst, XMMRegister src) {
2426   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2427   InstructionMark im(this);
2428   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2429   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2430   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2431   emit_int8(0x7E);
2432   emit_operand(src, dst);
2433 }
2434 
2435 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2436   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2437   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2438   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2439   emit_int16(0x6F, (unsigned char)(0xC0 | encode));
2440 }
2441 
2442 void Assembler::movdqa(XMMRegister dst, Address src) {
2443   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2444   InstructionMark im(this);
2445   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2446   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2447   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2448   emit_int8(0x6F);
2449   emit_operand(dst, src);
2450 }
2451 
2452 void Assembler::movdqu(XMMRegister dst, Address src) {
2453   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2454   InstructionMark im(this);
2455   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2456   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2457   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2458   emit_int8(0x6F);
2459   emit_operand(dst, src);
2460 }
2461 
2462 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2463   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2464   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2465   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2466   emit_int16(0x6F, (unsigned char)(0xC0 | encode));
2467 }
2468 
2469 void Assembler::movdqu(Address dst, XMMRegister src) {
2470   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2471   InstructionMark im(this);
2472   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2473   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2474   attributes.reset_is_clear_context();
2475   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2476   emit_int8(0x7F);
2477   emit_operand(src, dst);
2478 }
2479 
2480 // Move Unaligned 256bit Vector
2481 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2482   assert(UseAVX > 0, "");
2483   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2484   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2485   emit_int16(0x6F, (unsigned char)(0xC0 | encode));
2486 }
2487 
2488 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2489   assert(UseAVX > 0, "");
2490   InstructionMark im(this);
2491   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2492   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2493   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2494   emit_int8(0x6F);
2495   emit_operand(dst, src);
2496 }
2497 
2498 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2499   assert(UseAVX > 0, "");
2500   InstructionMark im(this);
2501   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2502   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2503   attributes.reset_is_clear_context();
2504   // swap src<->dst for encoding
2505   assert(src != xnoreg, "sanity");
2506   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2507   emit_int8(0x7F);
2508   emit_operand(src, dst);
2509 }
2510 
2511 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2512 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2513   assert(VM_Version::supports_evex(), "");
2514   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2515   attributes.set_is_evex_instruction();
2516   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2517   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2518   emit_int16(0x6F, (unsigned char)(0xC0 | encode));
2519 }
2520 
2521 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2522   assert(VM_Version::supports_evex(), "");
2523   InstructionMark im(this);
2524   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2525   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2526   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2527   attributes.set_is_evex_instruction();
2528   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2529   emit_int8(0x6F);
2530   emit_operand(dst, src);
2531 }
2532 
2533 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2534   assert(VM_Version::supports_evex(), "");
2535   assert(src != xnoreg, "sanity");
2536   InstructionMark im(this);
2537   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2538   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2539   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2540   attributes.set_is_evex_instruction();
2541   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2542   emit_int8(0x7F);
2543   emit_operand(src, dst);
2544 }
2545 
2546 void Assembler::evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2547   assert(VM_Version::supports_avx512vlbw(), "");
2548   InstructionMark im(this);
2549   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2550   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2551   attributes.set_embedded_opmask_register_specifier(mask);
2552   attributes.set_is_evex_instruction();
2553   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2554   emit_int8(0x6F);
2555   emit_operand(dst, src);
2556 }
2557 
2558 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2559   assert(VM_Version::supports_evex(), "");
2560   InstructionMark im(this);
2561   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2562   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2563   attributes.set_is_evex_instruction();
2564   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2565   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2566   emit_int8(0x6F);
2567   emit_operand(dst, src);
2568 }
2569 
2570 void Assembler::evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2571   assert(VM_Version::supports_avx512vlbw(), "");
2572   InstructionMark im(this);
2573   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2574   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2575   attributes.set_embedded_opmask_register_specifier(mask);
2576   attributes.set_is_evex_instruction();
2577   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2578   emit_int8(0x6F);
2579   emit_operand(dst, src);
2580 }
2581 
2582 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2583   assert(VM_Version::supports_evex(), "");
2584   assert(src != xnoreg, "sanity");
2585   InstructionMark im(this);
2586   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2587   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2588   attributes.set_is_evex_instruction();
2589   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2590   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2591   emit_int8(0x7F);
2592   emit_operand(src, dst);
2593 }
2594 
2595 void Assembler::evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len) {
2596   assert(VM_Version::supports_avx512vlbw(), "");
2597   assert(src != xnoreg, "sanity");
2598   InstructionMark im(this);
2599   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2600   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2601   attributes.reset_is_clear_context();
2602   attributes.set_embedded_opmask_register_specifier(mask);
2603   attributes.set_is_evex_instruction();
2604   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2605   emit_int8(0x7F);
2606   emit_operand(src, dst);
2607 }
2608 
2609 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2610   assert(VM_Version::supports_evex(), "");
2611   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2612   attributes.set_is_evex_instruction();
2613   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2614   emit_int16(0x6F, (unsigned char)(0xC0 | encode));
2615 }
2616 
2617 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2618   assert(VM_Version::supports_evex(), "");
2619   InstructionMark im(this);
2620   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true , /* uses_vl */ true);
2621   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2622   attributes.set_is_evex_instruction();
2623   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2624   emit_int8(0x6F);
2625   emit_operand(dst, src);
2626 }
2627 
2628 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2629   assert(VM_Version::supports_evex(), "");
2630   assert(src != xnoreg, "sanity");
2631   InstructionMark im(this);
2632   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2633   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2634   attributes.reset_is_clear_context();
2635   attributes.set_is_evex_instruction();
2636   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2637   emit_int8(0x7F);
2638   emit_operand(src, dst);
2639 }
2640 
2641 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2642   assert(VM_Version::supports_evex(), "");
2643   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2644   attributes.set_is_evex_instruction();
2645   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2646   emit_int16(0x6F, (unsigned char)(0xC0 | encode));
2647 }
2648 
2649 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2650   assert(VM_Version::supports_evex(), "");
2651   InstructionMark im(this);
2652   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2653   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2654   attributes.set_is_evex_instruction();
2655   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2656   emit_int8(0x6F);
2657   emit_operand(dst, src);
2658 }
2659 
2660 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2661   assert(VM_Version::supports_evex(), "");
2662   assert(src != xnoreg, "sanity");
2663   InstructionMark im(this);
2664   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2665   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2666   attributes.reset_is_clear_context();
2667   attributes.set_is_evex_instruction();
2668   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2669   emit_int8(0x7F);
2670   emit_operand(src, dst);
2671 }
2672 
2673 // Uses zero extension on 64bit
2674 
2675 void Assembler::movl(Register dst, int32_t imm32) {
2676   int encode = prefix_and_encode(dst->encoding());
2677   emit_int8((unsigned char)(0xB8 | encode));
2678   emit_int32(imm32);
2679 }
2680 
2681 void Assembler::movl(Register dst, Register src) {
2682   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2683   emit_int16((unsigned char)0x8B, (unsigned char)(0xC0 | encode));
2684 }
2685 
2686 void Assembler::movl(Register dst, Address src) {
2687   InstructionMark im(this);
2688   prefix(src, dst);
2689   emit_int8((unsigned char)0x8B);
2690   emit_operand(dst, src);
2691 }
2692 
2693 void Assembler::movl(Address dst, int32_t imm32) {
2694   InstructionMark im(this);
2695   prefix(dst);
2696   emit_int8((unsigned char)0xC7);
2697   emit_operand(rax, dst, 4);
2698   emit_int32(imm32);
2699 }
2700 
2701 void Assembler::movl(Address dst, Register src) {
2702   InstructionMark im(this);
2703   prefix(dst, src);
2704   emit_int8((unsigned char)0x89);
2705   emit_operand(src, dst);
2706 }
2707 
2708 // New cpus require to use movsd and movss to avoid partial register stall
2709 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2710 // The selection is done in MacroAssembler::movdbl() and movflt().
2711 void Assembler::movlpd(XMMRegister dst, Address src) {
2712   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2713   InstructionMark im(this);
2714   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2715   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2716   attributes.set_rex_vex_w_reverted();
2717   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2718   emit_int8(0x12);
2719   emit_operand(dst, src);
2720 }
2721 
2722 void Assembler::movq( MMXRegister dst, Address src ) {
2723   assert( VM_Version::supports_mmx(), "" );
2724   emit_int16(0x0F, 0x6F);
2725   emit_operand(dst, src);
2726 }
2727 
2728 void Assembler::movq( Address dst, MMXRegister src ) {
2729   assert( VM_Version::supports_mmx(), "" );
2730   emit_int16(0x0F, 0x7F);
2731   // workaround gcc (3.2.1-7a) bug
2732   // In that version of gcc with only an emit_operand(MMX, Address)
2733   // gcc will tail jump and try and reverse the parameters completely
2734   // obliterating dst in the process. By having a version available
2735   // that doesn't need to swap the args at the tail jump the bug is
2736   // avoided.
2737   emit_operand(dst, src);
2738 }
2739 
2740 void Assembler::movq(XMMRegister dst, Address src) {
2741   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2742   InstructionMark im(this);
2743   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2744   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2745   attributes.set_rex_vex_w_reverted();
2746   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2747   emit_int8(0x7E);
2748   emit_operand(dst, src);
2749 }
2750 
2751 void Assembler::movq(Address dst, XMMRegister src) {
2752   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2753   InstructionMark im(this);
2754   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2755   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2756   attributes.set_rex_vex_w_reverted();
2757   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2758   emit_int8((unsigned char)0xD6);
2759   emit_operand(src, dst);
2760 }
2761 
2762 void Assembler::movsbl(Register dst, Address src) { // movsxb
2763   InstructionMark im(this);
2764   prefix(src, dst);
2765   emit_int16(0x0F, (unsigned char)0xBE);
2766   emit_operand(dst, src);
2767 }
2768 
2769 void Assembler::movsbl(Register dst, Register src) { // movsxb
2770   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2771   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2772   emit_int24(0x0F, (unsigned char)0xBE, (unsigned char)(0xC0 | encode));
2773 }
2774 
2775 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2776   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2777   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2778   attributes.set_rex_vex_w_reverted();
2779   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2780   emit_int16(0x10, (unsigned char)(0xC0 | encode));
2781 }
2782 
2783 void Assembler::movsd(XMMRegister dst, Address src) {
2784   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2785   InstructionMark im(this);
2786   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2787   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2788   attributes.set_rex_vex_w_reverted();
2789   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2790   emit_int8(0x10);
2791   emit_operand(dst, src);
2792 }
2793 
2794 void Assembler::movsd(Address dst, XMMRegister src) {
2795   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2796   InstructionMark im(this);
2797   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2798   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2799   attributes.reset_is_clear_context();
2800   attributes.set_rex_vex_w_reverted();
2801   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2802   emit_int8(0x11);
2803   emit_operand(src, dst);
2804 }
2805 
2806 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2807   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2808   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2809   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2810   emit_int16(0x10, (unsigned char)(0xC0 | encode));
2811 }
2812 
2813 void Assembler::movss(XMMRegister dst, Address src) {
2814   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2815   InstructionMark im(this);
2816   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2817   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2818   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2819   emit_int8(0x10);
2820   emit_operand(dst, src);
2821 }
2822 
2823 void Assembler::movss(Address dst, XMMRegister src) {
2824   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2825   InstructionMark im(this);
2826   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2827   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2828   attributes.reset_is_clear_context();
2829   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2830   emit_int8(0x11);
2831   emit_operand(src, dst);
2832 }
2833 
2834 void Assembler::movswl(Register dst, Address src) { // movsxw
2835   InstructionMark im(this);
2836   prefix(src, dst);
2837   emit_int16(0x0F, (unsigned char)0xBF);
2838   emit_operand(dst, src);
2839 }
2840 
2841 void Assembler::movswl(Register dst, Register src) { // movsxw
2842   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2843   emit_int24(0x0F, (unsigned char)0xBF, (unsigned char)(0xC0 | encode));
2844 }
2845 
2846 void Assembler::movw(Address dst, int imm16) {
2847   InstructionMark im(this);
2848 
2849   emit_int8(0x66); // switch to 16-bit mode
2850   prefix(dst);
2851   emit_int8((unsigned char)0xC7);
2852   emit_operand(rax, dst, 2);
2853   emit_int16(imm16);
2854 }
2855 
2856 void Assembler::movw(Register dst, Address src) {
2857   InstructionMark im(this);
2858   emit_int8(0x66);
2859   prefix(src, dst);
2860   emit_int8((unsigned char)0x8B);
2861   emit_operand(dst, src);
2862 }
2863 
2864 void Assembler::movw(Address dst, Register src) {
2865   InstructionMark im(this);
2866   emit_int8(0x66);
2867   prefix(dst, src);
2868   emit_int8((unsigned char)0x89);
2869   emit_operand(src, dst);
2870 }
2871 
2872 void Assembler::movzbl(Register dst, Address src) { // movzxb
2873   InstructionMark im(this);
2874   prefix(src, dst);
2875   emit_int16(0x0F, (unsigned char)0xB6);
2876   emit_operand(dst, src);
2877 }
2878 
2879 void Assembler::movzbl(Register dst, Register src) { // movzxb
2880   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2881   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2882   emit_int24(0x0F, (unsigned char)0xB6, 0xC0 | encode);
2883 }
2884 
2885 void Assembler::movzwl(Register dst, Address src) { // movzxw
2886   InstructionMark im(this);
2887   prefix(src, dst);
2888   emit_int16(0x0F, (unsigned char)0xB7);
2889   emit_operand(dst, src);
2890 }
2891 
2892 void Assembler::movzwl(Register dst, Register src) { // movzxw
2893   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2894   emit_int24(0x0F, (unsigned char)0xB7, 0xC0 | encode);
2895 }
2896 
2897 void Assembler::mull(Address src) {
2898   InstructionMark im(this);
2899   prefix(src);
2900   emit_int8((unsigned char)0xF7);
2901   emit_operand(rsp, src);
2902 }
2903 
2904 void Assembler::mull(Register src) {
2905   int encode = prefix_and_encode(src->encoding());
2906   emit_int16((unsigned char)0xF7, (unsigned char)(0xE0 | encode));
2907 }
2908 
2909 void Assembler::mulsd(XMMRegister dst, Address src) {
2910   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2911   InstructionMark im(this);
2912   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2913   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2914   attributes.set_rex_vex_w_reverted();
2915   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2916   emit_int8(0x59);
2917   emit_operand(dst, src);
2918 }
2919 
2920 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2921   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2922   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2923   attributes.set_rex_vex_w_reverted();
2924   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2925   emit_int16(0x59, (unsigned char)(0xC0 | encode));
2926 }
2927 
2928 void Assembler::mulss(XMMRegister dst, Address src) {
2929   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2930   InstructionMark im(this);
2931   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2932   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2933   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2934   emit_int8(0x59);
2935   emit_operand(dst, src);
2936 }
2937 
2938 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2939   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2940   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2941   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2942   emit_int16(0x59, (unsigned char)(0xC0 | encode));
2943 }
2944 
2945 void Assembler::negl(Register dst) {
2946   int encode = prefix_and_encode(dst->encoding());
2947   emit_int16((unsigned char)0xF7, (unsigned char)(0xD8 | encode));
2948 }
2949 
2950 void Assembler::nop(int i) {
2951 #ifdef ASSERT
2952   assert(i > 0, " ");
2953   // The fancy nops aren't currently recognized by debuggers making it a
2954   // pain to disassemble code while debugging. If asserts are on clearly
2955   // speed is not an issue so simply use the single byte traditional nop
2956   // to do alignment.
2957 
2958   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2959   return;
2960 
2961 #endif // ASSERT
2962 
2963   if (UseAddressNop && VM_Version::is_intel()) {
2964     //
2965     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2966     //  1: 0x90
2967     //  2: 0x66 0x90
2968     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2969     //  4: 0x0F 0x1F 0x40 0x00
2970     //  5: 0x0F 0x1F 0x44 0x00 0x00
2971     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2972     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2973     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2974     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2975     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2976     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2977 
2978     // The rest coding is Intel specific - don't use consecutive address nops
2979 
2980     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2981     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2982     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2983     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2984 
2985     while(i >= 15) {
2986       // For Intel don't generate consecutive addess nops (mix with regular nops)
2987       i -= 15;
2988       emit_int24(0x66, 0x66, 0x66);
2989       addr_nop_8();
2990       emit_int32(0x66, 0x66, 0x66, (unsigned char)0x90);
2991     }
2992     switch (i) {
2993       case 14:
2994         emit_int8(0x66); // size prefix
2995       case 13:
2996         emit_int8(0x66); // size prefix
2997       case 12:
2998         addr_nop_8();
2999         emit_int32(0x66, 0x66, 0x66, (unsigned char)0x90);
3000         break;
3001       case 11:
3002         emit_int8(0x66); // size prefix
3003       case 10:
3004         emit_int8(0x66); // size prefix
3005       case 9:
3006         emit_int8(0x66); // size prefix
3007       case 8:
3008         addr_nop_8();
3009         break;
3010       case 7:
3011         addr_nop_7();
3012         break;
3013       case 6:
3014         emit_int8(0x66); // size prefix
3015       case 5:
3016         addr_nop_5();
3017         break;
3018       case 4:
3019         addr_nop_4();
3020         break;
3021       case 3:
3022         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3023         emit_int8(0x66); // size prefix
3024       case 2:
3025         emit_int8(0x66); // size prefix
3026       case 1:
3027         emit_int8((unsigned char)0x90);
3028                          // nop
3029         break;
3030       default:
3031         assert(i == 0, " ");
3032     }
3033     return;
3034   }
3035   if (UseAddressNop && VM_Version::is_amd_family()) {
3036     //
3037     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
3038     //  1: 0x90
3039     //  2: 0x66 0x90
3040     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3041     //  4: 0x0F 0x1F 0x40 0x00
3042     //  5: 0x0F 0x1F 0x44 0x00 0x00
3043     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3044     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3045     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3046     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3047     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3048     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3049 
3050     // The rest coding is AMD specific - use consecutive address nops
3051 
3052     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3053     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3054     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3055     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3056     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3057     //     Size prefixes (0x66) are added for larger sizes
3058 
3059     while(i >= 22) {
3060       i -= 11;
3061       emit_int24(0x66, 0x66, 0x66);
3062       addr_nop_8();
3063     }
3064     // Generate first nop for size between 21-12
3065     switch (i) {
3066       case 21:
3067         i -= 1;
3068         emit_int8(0x66); // size prefix
3069       case 20:
3070       case 19:
3071         i -= 1;
3072         emit_int8(0x66); // size prefix
3073       case 18:
3074       case 17:
3075         i -= 1;
3076         emit_int8(0x66); // size prefix
3077       case 16:
3078       case 15:
3079         i -= 8;
3080         addr_nop_8();
3081         break;
3082       case 14:
3083       case 13:
3084         i -= 7;
3085         addr_nop_7();
3086         break;
3087       case 12:
3088         i -= 6;
3089         emit_int8(0x66); // size prefix
3090         addr_nop_5();
3091         break;
3092       default:
3093         assert(i < 12, " ");
3094     }
3095 
3096     // Generate second nop for size between 11-1
3097     switch (i) {
3098       case 11:
3099         emit_int8(0x66); // size prefix
3100       case 10:
3101         emit_int8(0x66); // size prefix
3102       case 9:
3103         emit_int8(0x66); // size prefix
3104       case 8:
3105         addr_nop_8();
3106         break;
3107       case 7:
3108         addr_nop_7();
3109         break;
3110       case 6:
3111         emit_int8(0x66); // size prefix
3112       case 5:
3113         addr_nop_5();
3114         break;
3115       case 4:
3116         addr_nop_4();
3117         break;
3118       case 3:
3119         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3120         emit_int8(0x66); // size prefix
3121       case 2:
3122         emit_int8(0x66); // size prefix
3123       case 1:
3124         emit_int8((unsigned char)0x90);
3125                          // nop
3126         break;
3127       default:
3128         assert(i == 0, " ");
3129     }
3130     return;
3131   }
3132 
3133   if (UseAddressNop && VM_Version::is_zx()) {
3134     //
3135     // Using multi-bytes nops "0x0F 0x1F [address]" for ZX
3136     //  1: 0x90
3137     //  2: 0x66 0x90
3138     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3139     //  4: 0x0F 0x1F 0x40 0x00
3140     //  5: 0x0F 0x1F 0x44 0x00 0x00
3141     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3142     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3143     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3144     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3145     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3146     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3147 
3148     // The rest coding is ZX specific - don't use consecutive address nops
3149 
3150     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3151     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3152     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3153     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3154 
3155     while (i >= 15) {
3156       // For ZX don't generate consecutive addess nops (mix with regular nops)
3157       i -= 15;
3158       emit_int24(0x66, 0x66, 0x66);
3159       addr_nop_8();
3160       emit_int32(0x66, 0x66, 0x66, (unsigned char)0x90);
3161     }
3162     switch (i) {
3163       case 14:
3164         emit_int8(0x66); // size prefix
3165       case 13:
3166         emit_int8(0x66); // size prefix
3167       case 12:
3168         addr_nop_8();
3169         emit_int32(0x66, 0x66, 0x66, (unsigned char)0x90);
3170         break;
3171       case 11:
3172         emit_int8(0x66); // size prefix
3173       case 10:
3174         emit_int8(0x66); // size prefix
3175       case 9:
3176         emit_int8(0x66); // size prefix
3177       case 8:
3178         addr_nop_8();
3179         break;
3180       case 7:
3181         addr_nop_7();
3182         break;
3183       case 6:
3184         emit_int8(0x66); // size prefix
3185       case 5:
3186         addr_nop_5();
3187         break;
3188       case 4:
3189         addr_nop_4();
3190         break;
3191       case 3:
3192         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3193         emit_int8(0x66); // size prefix
3194       case 2:
3195         emit_int8(0x66); // size prefix
3196       case 1:
3197         emit_int8((unsigned char)0x90);
3198                          // nop
3199         break;
3200       default:
3201         assert(i == 0, " ");
3202     }
3203     return;
3204   }
3205 
3206   // Using nops with size prefixes "0x66 0x90".
3207   // From AMD Optimization Guide:
3208   //  1: 0x90
3209   //  2: 0x66 0x90
3210   //  3: 0x66 0x66 0x90
3211   //  4: 0x66 0x66 0x66 0x90
3212   //  5: 0x66 0x66 0x90 0x66 0x90
3213   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3214   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3215   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3216   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3217   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3218   //
3219   while (i > 12) {
3220     i -= 4;
3221     emit_int32(0x66, 0x66, 0x66, (unsigned char)0x90);
3222   }
3223   // 1 - 12 nops
3224   if (i > 8) {
3225     if (i > 9) {
3226       i -= 1;
3227       emit_int8(0x66);
3228     }
3229     i -= 3;
3230     emit_int24(0x66, 0x66, (unsigned char)0x90);
3231   }
3232   // 1 - 8 nops
3233   if (i > 4) {
3234     if (i > 6) {
3235       i -= 1;
3236       emit_int8(0x66);
3237     }
3238     i -= 3;
3239     emit_int24(0x66, 0x66, (unsigned char)0x90);
3240   }
3241   switch (i) {
3242     case 4:
3243       emit_int8(0x66);
3244     case 3:
3245       emit_int8(0x66);
3246     case 2:
3247       emit_int8(0x66);
3248     case 1:
3249       emit_int8((unsigned char)0x90);
3250       break;
3251     default:
3252       assert(i == 0, " ");
3253   }
3254 }
3255 
3256 void Assembler::notl(Register dst) {
3257   int encode = prefix_and_encode(dst->encoding());
3258   emit_int16((unsigned char)0xF7, (unsigned char)(0xD0 | encode));
3259 }
3260 
3261 void Assembler::orl(Address dst, int32_t imm32) {
3262   InstructionMark im(this);
3263   prefix(dst);
3264   emit_arith_operand(0x81, rcx, dst, imm32);
3265 }
3266 
3267 void Assembler::orl(Register dst, int32_t imm32) {
3268   prefix(dst);
3269   emit_arith(0x81, 0xC8, dst, imm32);
3270 }
3271 
3272 void Assembler::orl(Register dst, Address src) {
3273   InstructionMark im(this);
3274   prefix(src, dst);
3275   emit_int8(0x0B);
3276   emit_operand(dst, src);
3277 }
3278 
3279 void Assembler::orl(Register dst, Register src) {
3280   (void) prefix_and_encode(dst->encoding(), src->encoding());
3281   emit_arith(0x0B, 0xC0, dst, src);
3282 }
3283 
3284 void Assembler::orl(Address dst, Register src) {
3285   InstructionMark im(this);
3286   prefix(dst, src);
3287   emit_int8(0x09);
3288   emit_operand(src, dst);
3289 }
3290 
3291 void Assembler::orb(Address dst, int imm8) {
3292   InstructionMark im(this);
3293   prefix(dst);
3294   emit_int8((unsigned char)0x80);
3295   emit_operand(rcx, dst, 1);
3296   emit_int8(imm8);
3297 }
3298 
3299 void Assembler::packuswb(XMMRegister dst, Address src) {
3300   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3301   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3302   InstructionMark im(this);
3303   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3304   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3305   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3306   emit_int8(0x67);
3307   emit_operand(dst, src);
3308 }
3309 
3310 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3311   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3312   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3313   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3314   emit_int16(0x67, (unsigned char)(0xC0 | encode));
3315 }
3316 
3317 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3318   assert(UseAVX > 0, "some form of AVX must be enabled");
3319   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3320   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3321   emit_int16(0x67, (unsigned char)(0xC0 | encode));
3322 }
3323 
3324 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3325   assert(VM_Version::supports_avx2(), "");
3326   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3327   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3328   emit_int24(0x00, (unsigned char)(0xC0 | encode), imm8);
3329 }
3330 
3331 void Assembler::vpermq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3332   assert(UseAVX > 2, "requires AVX512F");
3333   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3334   attributes.set_is_evex_instruction();
3335   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3336   emit_int16((unsigned char)0x36, (unsigned char)(0xC0 | encode));
3337 }
3338 
3339 void Assembler::vperm2i128(XMMRegister dst,  XMMRegister nds, XMMRegister src, int imm8) {
3340   assert(VM_Version::supports_avx2(), "");
3341   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3342   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3343   emit_int24(0x46, 0xC0 | encode, imm8);
3344 }
3345 
3346 void Assembler::vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8) {
3347   assert(VM_Version::supports_avx(), "");
3348   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3349   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3350   emit_int24(0x06, 0xC0 | encode, imm8);
3351 }
3352 
3353 void Assembler::evpermi2q(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3354   assert(VM_Version::supports_evex(), "");
3355   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3356   attributes.set_is_evex_instruction();
3357   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3358   emit_int16(0x76, (unsigned char)(0xC0 | encode));
3359 }
3360 
3361 
3362 void Assembler::pause() {
3363   emit_int16((unsigned char)0xF3, (unsigned char)0x90);
3364 }
3365 
3366 void Assembler::ud2() {
3367   emit_int16(0x0F, 0x0B);
3368 }
3369 
3370 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3371   assert(VM_Version::supports_sse4_2(), "");
3372   InstructionMark im(this);
3373   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3374   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3375   emit_int8(0x61);
3376   emit_operand(dst, src);
3377   emit_int8(imm8);
3378 }
3379 
3380 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3381   assert(VM_Version::supports_sse4_2(), "");
3382   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3383   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3384   emit_int24(0x61, (unsigned char)(0xC0 | encode), imm8);
3385 }
3386 
3387 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3388 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3389   assert(VM_Version::supports_sse2(), "");
3390   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3391   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3392   emit_int16(0x74, (unsigned char)(0xC0 | encode));
3393 }
3394 
3395 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3396 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3397   assert(VM_Version::supports_avx(), "");
3398   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3399   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3400   emit_int16(0x74, (unsigned char)(0xC0 | encode));
3401 }
3402 
3403 // In this context, kdst is written the mask used to process the equal components
3404 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3405   assert(VM_Version::supports_avx512bw(), "");
3406   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3407   attributes.set_is_evex_instruction();
3408   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3409   emit_int16(0x74, (unsigned char)(0xC0 | encode));
3410 }
3411 
3412 void Assembler::evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3413   assert(VM_Version::supports_avx512vlbw(), "");
3414   InstructionMark im(this);
3415   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3416   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3417   attributes.set_is_evex_instruction();
3418   int dst_enc = kdst->encoding();
3419   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3420   emit_int8(0x64);
3421   emit_operand(as_Register(dst_enc), src);
3422 }
3423 
3424 void Assembler::evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3425   assert(VM_Version::supports_avx512vlbw(), "");
3426   InstructionMark im(this);
3427   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3428   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3429   attributes.reset_is_clear_context();
3430   attributes.set_embedded_opmask_register_specifier(mask);
3431   attributes.set_is_evex_instruction();
3432   int dst_enc = kdst->encoding();
3433   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3434   emit_int8(0x64);
3435   emit_operand(as_Register(dst_enc), src);
3436 }
3437 
3438 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3439   assert(VM_Version::supports_avx512vlbw(), "");
3440   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3441   attributes.set_is_evex_instruction();
3442   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3443   emit_int24(0x3E, (unsigned char)(0xC0 | encode), vcc);
3444 }
3445 
3446 void Assembler::evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3447   assert(VM_Version::supports_avx512vlbw(), "");
3448   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3449   attributes.reset_is_clear_context();
3450   attributes.set_embedded_opmask_register_specifier(mask);
3451   attributes.set_is_evex_instruction();
3452   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3453   emit_int24(0x3E, (unsigned char)(0xC0 | encode), vcc);
3454 }
3455 
3456 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len) {
3457   assert(VM_Version::supports_avx512vlbw(), "");
3458   InstructionMark im(this);
3459   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3460   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3461   attributes.set_is_evex_instruction();
3462   int dst_enc = kdst->encoding();
3463   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3464   emit_int8(0x3E);
3465   emit_operand(as_Register(dst_enc), src);
3466   emit_int8(vcc);
3467 }
3468 
3469 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3470   assert(VM_Version::supports_avx512bw(), "");
3471   InstructionMark im(this);
3472   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3473   attributes.set_is_evex_instruction();
3474   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3475   int dst_enc = kdst->encoding();
3476   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3477   emit_int8(0x74);
3478   emit_operand(as_Register(dst_enc), src);
3479 }
3480 
3481 void Assembler::evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3482   assert(VM_Version::supports_avx512vlbw(), "");
3483   InstructionMark im(this);
3484   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_reg_mask */ false, /* uses_vl */ true);
3485   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3486   attributes.reset_is_clear_context();
3487   attributes.set_embedded_opmask_register_specifier(mask);
3488   attributes.set_is_evex_instruction();
3489   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3490   emit_int8(0x74);
3491   emit_operand(as_Register(kdst->encoding()), src);
3492 }
3493 
3494 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3495 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3496   assert(VM_Version::supports_sse2(), "");
3497   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3498   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3499   emit_int16(0x75, (unsigned char)(0xC0 | encode));
3500 }
3501 
3502 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3503 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3504   assert(VM_Version::supports_avx(), "");
3505   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3506   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3507   emit_int16(0x75, (unsigned char)(0xC0 | encode));
3508 }
3509 
3510 // In this context, kdst is written the mask used to process the equal components
3511 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3512   assert(VM_Version::supports_avx512bw(), "");
3513   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3514   attributes.set_is_evex_instruction();
3515   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3516   emit_int16(0x75, (unsigned char)(0xC0 | encode));
3517 }
3518 
3519 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3520   assert(VM_Version::supports_avx512bw(), "");
3521   InstructionMark im(this);
3522   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3523   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3524   attributes.set_is_evex_instruction();
3525   int dst_enc = kdst->encoding();
3526   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3527   emit_int8(0x75);
3528   emit_operand(as_Register(dst_enc), src);
3529 }
3530 
3531 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3532 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3533   assert(VM_Version::supports_sse2(), "");
3534   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3535   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3536   emit_int8(0x76);
3537   emit_int8((unsigned char)(0xC0 | encode));
3538 }
3539 
3540 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3541 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3542   assert(VM_Version::supports_avx(), "");
3543   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3544   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3545   emit_int16(0x76, (unsigned char)(0xC0 | encode));
3546 }
3547 
3548 // In this context, kdst is written the mask used to process the equal components
3549 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3550   assert(VM_Version::supports_evex(), "");
3551   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3552   attributes.set_is_evex_instruction();
3553   attributes.reset_is_clear_context();
3554   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3555   emit_int16(0x76, (unsigned char)(0xC0 | encode));
3556 }
3557 
3558 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3559   assert(VM_Version::supports_evex(), "");
3560   InstructionMark im(this);
3561   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3562   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3563   attributes.reset_is_clear_context();
3564   attributes.set_is_evex_instruction();
3565   int dst_enc = kdst->encoding();
3566   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3567   emit_int8(0x76);
3568   emit_operand(as_Register(dst_enc), src);
3569 }
3570 
3571 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3572 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3573   assert(VM_Version::supports_sse4_1(), "");
3574   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3575   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3576   emit_int16(0x29, (unsigned char)(0xC0 | encode));
3577 }
3578 
3579 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3580 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3581   assert(VM_Version::supports_avx(), "");
3582   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3583   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3584   emit_int16(0x29, (unsigned char)(0xC0 | encode));
3585 }
3586 
3587 // In this context, kdst is written the mask used to process the equal components
3588 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3589   assert(VM_Version::supports_evex(), "");
3590   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3591   attributes.reset_is_clear_context();
3592   attributes.set_is_evex_instruction();
3593   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3594   emit_int16(0x29, (unsigned char)(0xC0 | encode));
3595 }
3596 
3597 // In this context, kdst is written the mask used to process the equal components
3598 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3599   assert(VM_Version::supports_evex(), "");
3600   InstructionMark im(this);
3601   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3602   attributes.reset_is_clear_context();
3603   attributes.set_is_evex_instruction();
3604   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3605   int dst_enc = kdst->encoding();
3606   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3607   emit_int8(0x29);
3608   emit_operand(as_Register(dst_enc), src);
3609 }
3610 
3611 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3612   assert(VM_Version::supports_sse2(), "");
3613   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3614   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3615   emit_int16((unsigned char)0xD7, (unsigned char)(0xC0 | encode));
3616 }
3617 
3618 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3619   assert(VM_Version::supports_avx2(), "");
3620   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3621   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3622   emit_int16((unsigned char)0xD7, (unsigned char)(0xC0 | encode));
3623 }
3624 
3625 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3626   assert(VM_Version::supports_sse4_1(), "");
3627   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3628   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3629   emit_int24(0x16, (unsigned char)(0xC0 | encode), imm8);
3630 }
3631 
3632 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
3633   assert(VM_Version::supports_sse4_1(), "");
3634   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3635   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3636   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3637   emit_int8(0x16);
3638   emit_operand(src, dst);
3639   emit_int8(imm8);
3640 }
3641 
3642 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3643   assert(VM_Version::supports_sse4_1(), "");
3644   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3645   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3646   emit_int24(0x16, (unsigned char)(0xC0 | encode), imm8);
3647 }
3648 
3649 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
3650   assert(VM_Version::supports_sse4_1(), "");
3651   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3652   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3653   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3654   emit_int8(0x16);
3655   emit_operand(src, dst);
3656   emit_int8(imm8);
3657 }
3658 
3659 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3660   assert(VM_Version::supports_sse2(), "");
3661   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3662   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3663   emit_int24((unsigned char)0xC5, (unsigned char)(0xC0 | encode), imm8);
3664 }
3665 
3666 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
3667   assert(VM_Version::supports_sse4_1(), "");
3668   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3669   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3670   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3671   emit_int8((unsigned char)0x15);
3672   emit_operand(src, dst);
3673   emit_int8(imm8);
3674 }
3675 
3676 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
3677   assert(VM_Version::supports_sse4_1(), "");
3678   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3679   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3680   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3681   emit_int8(0x14);
3682   emit_operand(src, dst);
3683   emit_int8(imm8);
3684 }
3685 
3686 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3687   assert(VM_Version::supports_sse4_1(), "");
3688   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3689   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3690   emit_int24(0x22, (unsigned char)(0xC0 | encode), imm8);
3691 }
3692 
3693 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
3694   assert(VM_Version::supports_sse4_1(), "");
3695   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3696   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3697   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3698   emit_int8(0x22);
3699   emit_operand(dst,src);
3700   emit_int8(imm8);
3701 }
3702 
3703 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3704   assert(VM_Version::supports_sse4_1(), "");
3705   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3706   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3707   emit_int24(0x22, (unsigned char)(0xC0 | encode), imm8);
3708 }
3709 
3710 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
3711   assert(VM_Version::supports_sse4_1(), "");
3712   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3713   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3714   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3715   emit_int8(0x22);
3716   emit_operand(dst, src);
3717   emit_int8(imm8);
3718 }
3719 
3720 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3721   assert(VM_Version::supports_sse2(), "");
3722   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3723   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3724   emit_int24((unsigned char)0xC4, (unsigned char)(0xC0 | encode), imm8);
3725 }
3726 
3727 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
3728   assert(VM_Version::supports_sse2(), "");
3729   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3730   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3731   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3732   emit_int8((unsigned char)0xC4);
3733   emit_operand(dst, src);
3734   emit_int8(imm8);
3735 }
3736 
3737 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
3738   assert(VM_Version::supports_sse4_1(), "");
3739   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3740   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3741   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3742   emit_int8(0x20);
3743   emit_operand(dst, src);
3744   emit_int8(imm8);
3745 }
3746 
3747 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3748   assert(VM_Version::supports_sse4_1(), "");
3749   InstructionMark im(this);
3750   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3751   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3752   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3753   emit_int8(0x30);
3754   emit_operand(dst, src);
3755 }
3756 
3757 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3758   assert(VM_Version::supports_sse4_1(), "");
3759   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3760   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3761   emit_int16(0x30, (unsigned char)(0xC0 | encode));
3762 }
3763 
3764 void Assembler::pmovsxbw(XMMRegister dst, XMMRegister src) {
3765   assert(VM_Version::supports_sse4_1(), "");
3766   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3767   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3768   emit_int16(0x20, (unsigned char)(0xC0 | encode));
3769 }
3770 
3771 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3772   assert(VM_Version::supports_avx(), "");
3773   InstructionMark im(this);
3774   assert(dst != xnoreg, "sanity");
3775   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3776   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3777   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3778   emit_int8(0x30);
3779   emit_operand(dst, src);
3780 }
3781 
3782 void Assembler::vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) {
3783   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3784   vector_len == AVX_256bit? VM_Version::supports_avx2() :
3785   vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
3786   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3787   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3788   emit_int16(0x30, (unsigned char) (0xC0 | encode));
3789 }
3790 
3791 void Assembler::vpmovsxbw(XMMRegister dst, XMMRegister src, int vector_len) {
3792   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3793   vector_len == AVX_256bit? VM_Version::supports_avx2() :
3794   vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
3795   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3796   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3797   emit_int16(0x20, (unsigned char)(0xC0 | encode));
3798 }
3799 
3800 void Assembler::evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
3801   assert(VM_Version::supports_avx512vlbw(), "");
3802   assert(dst != xnoreg, "sanity");
3803   InstructionMark im(this);
3804   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3805   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3806   attributes.set_embedded_opmask_register_specifier(mask);
3807   attributes.set_is_evex_instruction();
3808   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3809   emit_int8(0x30);
3810   emit_operand(dst, src);
3811 }
3812 void Assembler::evpmovwb(Address dst, XMMRegister src, int vector_len) {
3813   assert(VM_Version::supports_avx512vlbw(), "");
3814   assert(src != xnoreg, "sanity");
3815   InstructionMark im(this);
3816   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3817   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3818   attributes.set_is_evex_instruction();
3819   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3820   emit_int8(0x30);
3821   emit_operand(src, dst);
3822 }
3823 
3824 void Assembler::evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len) {
3825   assert(VM_Version::supports_avx512vlbw(), "");
3826   assert(src != xnoreg, "sanity");
3827   InstructionMark im(this);
3828   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3829   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3830   attributes.reset_is_clear_context();
3831   attributes.set_embedded_opmask_register_specifier(mask);
3832   attributes.set_is_evex_instruction();
3833   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3834   emit_int8(0x30);
3835   emit_operand(src, dst);
3836 }
3837 
3838 void Assembler::evpmovdb(Address dst, XMMRegister src, int vector_len) {
3839   assert(VM_Version::supports_evex(), "");
3840   assert(src != xnoreg, "sanity");
3841   InstructionMark im(this);
3842   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3843   attributes.set_address_attributes(/* tuple_type */ EVEX_QVM, /* input_size_in_bits */ EVEX_NObit);
3844   attributes.set_is_evex_instruction();
3845   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3846   emit_int8(0x31);
3847   emit_operand(src, dst);
3848 }
3849 
3850 void Assembler::vpmovzxwd(XMMRegister dst, XMMRegister src, int vector_len) {
3851   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3852   vector_len == AVX_256bit? VM_Version::supports_avx2() :
3853   vector_len == AVX_512bit? VM_Version::supports_evex() : 0, " ");
3854   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3855   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3856   emit_int16(0x33, (unsigned char)(0xC0 | encode));
3857 }
3858 
3859 void Assembler::pmaddwd(XMMRegister dst, XMMRegister src) {
3860   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3861   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3862   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3863   emit_int16((unsigned char)0xF5, (unsigned char)(0xC0 | encode));
3864 }
3865 
3866 void Assembler::vpmaddwd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3867   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
3868     (vector_len == AVX_256bit ? VM_Version::supports_avx2() :
3869     (vector_len == AVX_512bit ? VM_Version::supports_evex() : 0)), "");
3870   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3871   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3872   emit_int16((unsigned char)0xF5, (unsigned char)(0xC0 | encode));
3873 }
3874 
3875 void Assembler::evpdpwssd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3876   assert(VM_Version::supports_evex(), "");
3877   assert(VM_Version::supports_avx512_vnni(), "must support vnni");
3878   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3879   attributes.set_is_evex_instruction();
3880   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3881   emit_int16(0x52, (unsigned char)(0xC0 | encode));
3882 }
3883 
3884 // generic
3885 void Assembler::pop(Register dst) {
3886   int encode = prefix_and_encode(dst->encoding());
3887   emit_int8(0x58 | encode);
3888 }
3889 
3890 void Assembler::popcntl(Register dst, Address src) {
3891   assert(VM_Version::supports_popcnt(), "must support");
3892   InstructionMark im(this);
3893   emit_int8((unsigned char)0xF3);
3894   prefix(src, dst);
3895   emit_int16(0x0F, (unsigned char)0xB8);
3896   emit_operand(dst, src);
3897 }
3898 
3899 void Assembler::popcntl(Register dst, Register src) {
3900   assert(VM_Version::supports_popcnt(), "must support");
3901   emit_int8((unsigned char)0xF3);
3902   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3903   emit_int24(0x0F, (unsigned char)0xB8, (unsigned char)(0xC0 | encode));
3904 }
3905 
3906 void Assembler::vpopcntd(XMMRegister dst, XMMRegister src, int vector_len) {
3907   assert(VM_Version::supports_avx512_vpopcntdq(), "must support vpopcntdq feature");
3908   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3909   attributes.set_is_evex_instruction();
3910   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3911   emit_int16(0x55, (unsigned char)(0xC0 | encode));
3912 }
3913 
3914 void Assembler::popf() {
3915   emit_int8((unsigned char)0x9D);
3916 }
3917 
3918 #ifndef _LP64 // no 32bit push/pop on amd64
3919 void Assembler::popl(Address dst) {
3920   // NOTE: this will adjust stack by 8byte on 64bits
3921   InstructionMark im(this);
3922   prefix(dst);
3923   emit_int8((unsigned char)0x8F);
3924   emit_operand(rax, dst);
3925 }
3926 #endif
3927 
3928 void Assembler::prefetchnta(Address src) {
3929   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3930   InstructionMark im(this);
3931   prefix(src);
3932   emit_int16(0x0F, 0x18);
3933   emit_operand(rax, src); // 0, src
3934 }
3935 
3936 void Assembler::prefetchr(Address src) {
3937   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3938   InstructionMark im(this);
3939   prefix(src);
3940   emit_int16(0x0F, 0x0D);
3941   emit_operand(rax, src); // 0, src
3942 }
3943 
3944 void Assembler::prefetcht0(Address src) {
3945   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3946   InstructionMark im(this);
3947   prefix(src);
3948   emit_int16(0x0F, 0x18);
3949   emit_operand(rcx, src); // 1, src
3950 }
3951 
3952 void Assembler::prefetcht1(Address src) {
3953   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3954   InstructionMark im(this);
3955   prefix(src);
3956   emit_int16(0x0F, 0x18);
3957   emit_operand(rdx, src); // 2, src
3958 }
3959 
3960 void Assembler::prefetcht2(Address src) {
3961   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3962   InstructionMark im(this);
3963   prefix(src);
3964   emit_int16(0x0F, 0x18);
3965   emit_operand(rbx, src); // 3, src
3966 }
3967 
3968 void Assembler::prefetchw(Address src) {
3969   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3970   InstructionMark im(this);
3971   prefix(src);
3972   emit_int16(0x0F, 0x0D);
3973   emit_operand(rcx, src); // 1, src
3974 }
3975 
3976 void Assembler::prefix(Prefix p) {
3977   emit_int8(p);
3978 }
3979 
3980 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3981   assert(VM_Version::supports_ssse3(), "");
3982   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3983   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3984   emit_int16(0x00, (unsigned char)(0xC0 | encode));
3985 }
3986 
3987 void Assembler::vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3988   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3989          vector_len == AVX_256bit? VM_Version::supports_avx2() :
3990          vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
3991   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3992   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3993   emit_int16(0x00, (unsigned char)(0xC0 | encode));
3994 }
3995 
3996 void Assembler::pshufb(XMMRegister dst, Address src) {
3997   assert(VM_Version::supports_ssse3(), "");
3998   InstructionMark im(this);
3999   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4000   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4001   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4002   emit_int8(0x00);
4003   emit_operand(dst, src);
4004 }
4005 
4006 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
4007   assert(isByte(mode), "invalid value");
4008   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4009   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
4010   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4011   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4012   emit_int24(0x70, (unsigned char)(0xC0 | encode), mode & 0xFF);
4013 }
4014 
4015 void Assembler::vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len) {
4016   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4017          (vector_len == AVX_256bit? VM_Version::supports_avx2() :
4018          (vector_len == AVX_512bit? VM_Version::supports_evex() : 0)), "");
4019   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4020   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4021   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4022   emit_int24(0x70, (unsigned char)(0xC0 | encode), mode & 0xFF);
4023 }
4024 
4025 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
4026   assert(isByte(mode), "invalid value");
4027   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4028   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4029   InstructionMark im(this);
4030   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4031   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4032   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4033   emit_int8(0x70);
4034   emit_operand(dst, src);
4035   emit_int8(mode & 0xFF);
4036 }
4037 
4038 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4039   assert(isByte(mode), "invalid value");
4040   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4041   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4042   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4043   emit_int24(0x70, (unsigned char)(0xC0 | encode), mode & 0xFF);
4044 }
4045 
4046 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
4047   assert(isByte(mode), "invalid value");
4048   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4049   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4050   InstructionMark im(this);
4051   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4052   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4053   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4054   emit_int8(0x70);
4055   emit_operand(dst, src);
4056   emit_int8(mode & 0xFF);
4057 }
4058 
4059 void Assembler::evshufi64x2(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4060   assert(VM_Version::supports_evex(), "requires EVEX support");
4061   assert(vector_len == Assembler::AVX_256bit || vector_len == Assembler::AVX_512bit, "");
4062   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4063   attributes.set_is_evex_instruction();
4064   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4065   emit_int24(0x43, (unsigned char)(0xC0 | encode), imm8 & 0xFF);
4066 }
4067 
4068 void Assembler::psrldq(XMMRegister dst, int shift) {
4069   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4070   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4071   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4072   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4073   emit_int24(0x73, (unsigned char)(0xC0 | encode), shift);
4074 }
4075 
4076 void Assembler::vpsrldq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4077   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
4078          vector_len == AVX_256bit ? VM_Version::supports_avx2() :
4079          vector_len == AVX_512bit ? VM_Version::supports_avx512bw() : 0, "");
4080   InstructionAttr attributes(vector_len, /*vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4081   int encode = vex_prefix_and_encode(xmm3->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4082   emit_int24(0x73, (unsigned char)(0xC0 | encode), shift & 0xFF);
4083 }
4084 
4085 void Assembler::pslldq(XMMRegister dst, int shift) {
4086   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4087   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4088   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4089   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
4090   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4091   emit_int24(0x73, (unsigned char)(0xC0 | encode), shift);
4092 }
4093 
4094 void Assembler::vpslldq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4095   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
4096          vector_len == AVX_256bit ? VM_Version::supports_avx2() :
4097          vector_len == AVX_512bit ? VM_Version::supports_avx512bw() : 0, "");
4098   InstructionAttr attributes(vector_len, /*vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4099   int encode = vex_prefix_and_encode(xmm7->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4100   emit_int24(0x73, (unsigned char)(0xC0 | encode), shift & 0xFF);
4101 }
4102 
4103 void Assembler::ptest(XMMRegister dst, Address src) {
4104   assert(VM_Version::supports_sse4_1(), "");
4105   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4106   InstructionMark im(this);
4107   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4108   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4109   emit_int8(0x17);
4110   emit_operand(dst, src);
4111 }
4112 
4113 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
4114   assert(VM_Version::supports_sse4_1() || VM_Version::supports_avx(), "");
4115   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4116   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4117   emit_int8(0x17);
4118   emit_int8((unsigned char)(0xC0 | encode));
4119 }
4120 
4121 void Assembler::vptest(XMMRegister dst, Address src) {
4122   assert(VM_Version::supports_avx(), "");
4123   InstructionMark im(this);
4124   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4125   assert(dst != xnoreg, "sanity");
4126   // swap src<->dst for encoding
4127   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4128   emit_int8(0x17);
4129   emit_operand(dst, src);
4130 }
4131 
4132 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
4133   assert(VM_Version::supports_avx(), "");
4134   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4135   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4136   emit_int16(0x17, (unsigned char)(0xC0 | encode));
4137 }
4138 
4139 void Assembler::punpcklbw(XMMRegister dst, Address src) {
4140   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4141   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4142   InstructionMark im(this);
4143   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ true, /* uses_vl */ true);
4144   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4145   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4146   emit_int8(0x60);
4147   emit_operand(dst, src);
4148 }
4149 
4150 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4151   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4152   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ true, /* uses_vl */ true);
4153   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4154   emit_int16(0x60, (unsigned char)(0xC0 | encode));
4155 }
4156 
4157 void Assembler::punpckldq(XMMRegister dst, Address src) {
4158   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4159   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4160   InstructionMark im(this);
4161   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4162   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4163   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4164   emit_int8(0x62);
4165   emit_operand(dst, src);
4166 }
4167 
4168 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
4169   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4170   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4171   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4172   emit_int16(0x62, (unsigned char)(0xC0 | encode));
4173 }
4174 
4175 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
4176   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4177   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4178   attributes.set_rex_vex_w_reverted();
4179   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4180   emit_int16(0x6C, (unsigned char)(0xC0 | encode));
4181 }
4182 
4183 void Assembler::push(int32_t imm32) {
4184   // in 64bits we push 64bits onto the stack but only
4185   // take a 32bit immediate
4186   emit_int8(0x68);
4187   emit_int32(imm32);
4188 }
4189 
4190 void Assembler::push(Register src) {
4191   int encode = prefix_and_encode(src->encoding());
4192   emit_int8(0x50 | encode);
4193 }
4194 
4195 void Assembler::pushf() {
4196   emit_int8((unsigned char)0x9C);
4197 }
4198 
4199 #ifndef _LP64 // no 32bit push/pop on amd64
4200 void Assembler::pushl(Address src) {
4201   // Note this will push 64bit on 64bit
4202   InstructionMark im(this);
4203   prefix(src);
4204   emit_int8((unsigned char)0xFF);
4205   emit_operand(rsi, src);
4206 }
4207 #endif
4208 
4209 void Assembler::rcll(Register dst, int imm8) {
4210   assert(isShiftCount(imm8), "illegal shift count");
4211   int encode = prefix_and_encode(dst->encoding());
4212   if (imm8 == 1) {
4213     emit_int16((unsigned char)0xD1, (unsigned char)(0xD0 | encode));
4214   } else {
4215     emit_int24((unsigned char)0xC1, (unsigned char)0xD0 | encode, imm8);
4216   }
4217 }
4218 
4219 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
4220   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4221   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4222   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4223   emit_int16(0x53, (unsigned char)(0xC0 | encode));
4224 }
4225 
4226 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
4227   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4228   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4229   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4230   emit_int16(0x53, (unsigned char)(0xC0 | encode));
4231 }
4232 
4233 void Assembler::rdtsc() {
4234   emit_int16((unsigned char)0x0F, (unsigned char)0x31);
4235 }
4236 
4237 // copies data from [esi] to [edi] using rcx pointer sized words
4238 // generic
4239 void Assembler::rep_mov() {
4240   // REP
4241   // MOVSQ
4242   LP64_ONLY(emit_int24((unsigned char)0xF3, REX_W, (unsigned char)0xA5);)
4243   NOT_LP64( emit_int16((unsigned char)0xF3,        (unsigned char)0xA5);)
4244 }
4245 
4246 // sets rcx bytes with rax, value at [edi]
4247 void Assembler::rep_stosb() {
4248   // REP
4249   // STOSB
4250   LP64_ONLY(emit_int24((unsigned char)0xF3, REX_W, (unsigned char)0xAA);)
4251   NOT_LP64( emit_int16((unsigned char)0xF3,        (unsigned char)0xAA);)
4252 }
4253 
4254 // sets rcx pointer sized words with rax, value at [edi]
4255 // generic
4256 void Assembler::rep_stos() {
4257   // REP
4258   // LP64:STOSQ, LP32:STOSD
4259   LP64_ONLY(emit_int24((unsigned char)0xF3, REX_W, (unsigned char)0xAB);)
4260   NOT_LP64( emit_int16((unsigned char)0xF3,        (unsigned char)0xAB);)
4261 }
4262 
4263 // scans rcx pointer sized words at [edi] for occurance of rax,
4264 // generic
4265 void Assembler::repne_scan() { // repne_scan
4266   // SCASQ
4267   LP64_ONLY(emit_int24((unsigned char)0xF2, REX_W, (unsigned char)0xAF);)
4268   NOT_LP64( emit_int16((unsigned char)0xF2,        (unsigned char)0xAF);)
4269 }
4270 
4271 #ifdef _LP64
4272 // scans rcx 4 byte words at [edi] for occurance of rax,
4273 // generic
4274 void Assembler::repne_scanl() { // repne_scan
4275   // SCASL
4276   emit_int16((unsigned char)0xF2, (unsigned char)0xAF);
4277 }
4278 #endif
4279 
4280 void Assembler::ret(int imm16) {
4281   if (imm16 == 0) {
4282     emit_int8((unsigned char)0xC3);
4283   } else {
4284     emit_int8((unsigned char)0xC2);
4285     emit_int16(imm16);
4286   }
4287 }
4288 
4289 void Assembler::sahf() {
4290 #ifdef _LP64
4291   // Not supported in 64bit mode
4292   ShouldNotReachHere();
4293 #endif
4294   emit_int8((unsigned char)0x9E);
4295 }
4296 
4297 void Assembler::sarl(Register dst, int imm8) {
4298   int encode = prefix_and_encode(dst->encoding());
4299   assert(isShiftCount(imm8), "illegal shift count");
4300   if (imm8 == 1) {
4301     emit_int16((unsigned char)0xD1, (unsigned char)(0xF8 | encode));
4302   } else {
4303     emit_int24((unsigned char)0xC1, (unsigned char)(0xF8 | encode), imm8);
4304   }
4305 }
4306 
4307 void Assembler::sarl(Register dst) {
4308   int encode = prefix_and_encode(dst->encoding());
4309   emit_int16((unsigned char)0xD3, (unsigned char)(0xF8 | encode));
4310 }
4311 
4312 void Assembler::sbbl(Address dst, int32_t imm32) {
4313   InstructionMark im(this);
4314   prefix(dst);
4315   emit_arith_operand(0x81, rbx, dst, imm32);
4316 }
4317 
4318 void Assembler::sbbl(Register dst, int32_t imm32) {
4319   prefix(dst);
4320   emit_arith(0x81, 0xD8, dst, imm32);
4321 }
4322 
4323 
4324 void Assembler::sbbl(Register dst, Address src) {
4325   InstructionMark im(this);
4326   prefix(src, dst);
4327   emit_int8(0x1B);
4328   emit_operand(dst, src);
4329 }
4330 
4331 void Assembler::sbbl(Register dst, Register src) {
4332   (void) prefix_and_encode(dst->encoding(), src->encoding());
4333   emit_arith(0x1B, 0xC0, dst, src);
4334 }
4335 
4336 void Assembler::setb(Condition cc, Register dst) {
4337   assert(0 <= cc && cc < 16, "illegal cc");
4338   int encode = prefix_and_encode(dst->encoding(), true);
4339   emit_int24(0x0F, (unsigned char)0x90 | cc, (unsigned char)(0xC0 | encode));
4340 }
4341 
4342 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
4343   assert(VM_Version::supports_ssse3(), "");
4344   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4345   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4346   emit_int24((unsigned char)0x0F, (unsigned char)(0xC0 | encode), imm8);
4347 }
4348 
4349 void Assembler::vpalignr(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4350   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4351          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4352          0, "");
4353   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4354   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4355   emit_int24((unsigned char)0x0F, (unsigned char)(0xC0 | encode), imm8);
4356 }
4357 
4358 void Assembler::evalignq(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
4359   assert(VM_Version::supports_evex(), "");
4360   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4361   attributes.set_is_evex_instruction();
4362   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4363   emit_int24(0x3, (unsigned char)(0xC0 | encode), imm8);
4364 }
4365 
4366 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
4367   assert(VM_Version::supports_sse4_1(), "");
4368   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4369   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4370   emit_int24((unsigned char)0x0E, (unsigned char)(0xC0 | encode), imm8);
4371 }
4372 
4373 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
4374   assert(VM_Version::supports_sha(), "");
4375   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_3A, /* rex_w */ false);
4376   emit_int24((unsigned char)0xCC, (unsigned char)(0xC0 | encode), (unsigned char)imm8);
4377 }
4378 
4379 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
4380   assert(VM_Version::supports_sha(), "");
4381   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4382   emit_int16((unsigned char)0xC8, (unsigned char)(0xC0 | encode));
4383 }
4384 
4385 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
4386   assert(VM_Version::supports_sha(), "");
4387   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4388   emit_int16((unsigned char)0xC9, (unsigned char)(0xC0 | encode));
4389 }
4390 
4391 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
4392   assert(VM_Version::supports_sha(), "");
4393   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4394   emit_int16((unsigned char)0xCA, (unsigned char)(0xC0 | encode));
4395 }
4396 
4397 // xmm0 is implicit additional source to this instruction.
4398 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
4399   assert(VM_Version::supports_sha(), "");
4400   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4401   emit_int16((unsigned char)0xCB, (unsigned char)(0xC0 | encode));
4402 }
4403 
4404 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
4405   assert(VM_Version::supports_sha(), "");
4406   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4407   emit_int16((unsigned char)0xCC, (unsigned char)(0xC0 | encode));
4408 }
4409 
4410 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
4411   assert(VM_Version::supports_sha(), "");
4412   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4413   emit_int16((unsigned char)0xCD, (unsigned char)(0xC0 | encode));
4414 }
4415 
4416 
4417 void Assembler::shll(Register dst, int imm8) {
4418   assert(isShiftCount(imm8), "illegal shift count");
4419   int encode = prefix_and_encode(dst->encoding());
4420   if (imm8 == 1 ) {
4421     emit_int16((unsigned char)0xD1, (unsigned char)(0xE0 | encode));
4422   } else {
4423     emit_int24((unsigned char)0xC1, (unsigned char)(0xE0 | encode), imm8);
4424   }
4425 }
4426 
4427 void Assembler::shll(Register dst) {
4428   int encode = prefix_and_encode(dst->encoding());
4429   emit_int16((unsigned char)0xD3, (unsigned char)(0xE0 | encode));
4430 }
4431 
4432 void Assembler::shrl(Register dst, int imm8) {
4433   assert(isShiftCount(imm8), "illegal shift count");
4434   int encode = prefix_and_encode(dst->encoding());
4435   emit_int24((unsigned char)0xC1, (unsigned char)(0xE8 | encode), imm8);
4436 }
4437 
4438 void Assembler::shrl(Register dst) {
4439   int encode = prefix_and_encode(dst->encoding());
4440   emit_int16((unsigned char)0xD3, (unsigned char)(0xE8 | encode));
4441 }
4442 
4443 void Assembler::shldl(Register dst, Register src) {
4444   int encode = prefix_and_encode(src->encoding(), dst->encoding());
4445   emit_int24(0x0F, (unsigned char)0xA5, (unsigned char)(0xC0 | encode));
4446 }
4447 
4448 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
4449   int encode = prefix_and_encode(src->encoding(), dst->encoding());
4450   emit_int32(0x0F, (unsigned char)0xA4, (unsigned char)(0xC0 | encode), imm8);
4451 }
4452 
4453 void Assembler::shrdl(Register dst, Register src) {
4454   int encode = prefix_and_encode(src->encoding(), dst->encoding());
4455   emit_int24(0x0F, (unsigned char)0xAD, (unsigned char)(0xC0 | encode));
4456 }
4457 
4458 void Assembler::shrdl(Register dst, Register src, int8_t imm8) {
4459   int encode = prefix_and_encode(src->encoding(), dst->encoding());
4460   emit_int32(0x0F, (unsigned char)0xAC, (unsigned char)(0xC0 | encode), imm8);
4461 }
4462 
4463 // copies a single word from [esi] to [edi]
4464 void Assembler::smovl() {
4465   emit_int8((unsigned char)0xA5);
4466 }
4467 
4468 void Assembler::roundsd(XMMRegister dst, XMMRegister src, int32_t rmode) {
4469   assert(VM_Version::supports_sse4_1(), "");
4470   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4471   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4472   emit_int24(0x0B, (unsigned char)(0xC0 | encode), (unsigned char)rmode);
4473 }
4474 
4475 void Assembler::roundsd(XMMRegister dst, Address src, int32_t rmode) {
4476   assert(VM_Version::supports_sse4_1(), "");
4477   InstructionMark im(this);
4478   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4479   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4480   emit_int8(0x0B);
4481   emit_operand(dst, src);
4482   emit_int8((unsigned char)rmode);
4483 }
4484 
4485 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
4486   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4487   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4488   attributes.set_rex_vex_w_reverted();
4489   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4490   emit_int16(0x51, (unsigned char)(0xC0 | encode));
4491 }
4492 
4493 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4494   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4495   InstructionMark im(this);
4496   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4497   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4498   attributes.set_rex_vex_w_reverted();
4499   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4500   emit_int8(0x51);
4501   emit_operand(dst, src);
4502 }
4503 
4504 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
4505   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4506   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4507   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4508   emit_int16(0x51, (unsigned char)(0xC0 | encode));
4509 }
4510 
4511 void Assembler::std() {
4512   emit_int8((unsigned char)0xFD);
4513 }
4514 
4515 void Assembler::sqrtss(XMMRegister dst, Address src) {
4516   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4517   InstructionMark im(this);
4518   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4519   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4520   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4521   emit_int8(0x51);
4522   emit_operand(dst, src);
4523 }
4524 
4525 void Assembler::stmxcsr( Address dst) {
4526   if (UseAVX > 0 ) {
4527     assert(VM_Version::supports_avx(), "");
4528     InstructionMark im(this);
4529     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4530     vex_prefix(dst, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4531     emit_int8((unsigned char)0xAE);
4532     emit_operand(as_Register(3), dst);
4533   } else {
4534     NOT_LP64(assert(VM_Version::supports_sse(), ""));
4535     InstructionMark im(this);
4536     prefix(dst);
4537     emit_int16(0x0F, (unsigned char)0xAE);
4538     emit_operand(as_Register(3), dst);
4539   }
4540 }
4541 
4542 void Assembler::subl(Address dst, int32_t imm32) {
4543   InstructionMark im(this);
4544   prefix(dst);
4545   emit_arith_operand(0x81, rbp, dst, imm32);
4546 }
4547 
4548 void Assembler::subl(Address dst, Register src) {
4549   InstructionMark im(this);
4550   prefix(dst, src);
4551   emit_int8(0x29);
4552   emit_operand(src, dst);
4553 }
4554 
4555 void Assembler::subl(Register dst, int32_t imm32) {
4556   prefix(dst);
4557   emit_arith(0x81, 0xE8, dst, imm32);
4558 }
4559 
4560 // Force generation of a 4 byte immediate value even if it fits into 8bit
4561 void Assembler::subl_imm32(Register dst, int32_t imm32) {
4562   prefix(dst);
4563   emit_arith_imm32(0x81, 0xE8, dst, imm32);
4564 }
4565 
4566 void Assembler::subl(Register dst, Address src) {
4567   InstructionMark im(this);
4568   prefix(src, dst);
4569   emit_int8(0x2B);
4570   emit_operand(dst, src);
4571 }
4572 
4573 void Assembler::subl(Register dst, Register src) {
4574   (void) prefix_and_encode(dst->encoding(), src->encoding());
4575   emit_arith(0x2B, 0xC0, dst, src);
4576 }
4577 
4578 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
4579   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4580   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4581   attributes.set_rex_vex_w_reverted();
4582   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4583   emit_int16(0x5C, (unsigned char)(0xC0 | encode));
4584 }
4585 
4586 void Assembler::subsd(XMMRegister dst, Address src) {
4587   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4588   InstructionMark im(this);
4589   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4590   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4591   attributes.set_rex_vex_w_reverted();
4592   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4593   emit_int8(0x5C);
4594   emit_operand(dst, src);
4595 }
4596 
4597 void Assembler::subss(XMMRegister dst, XMMRegister src) {
4598   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4599   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true , /* uses_vl */ false);
4600   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4601   emit_int16(0x5C, (unsigned char)(0xC0 | encode));
4602 }
4603 
4604 void Assembler::subss(XMMRegister dst, Address src) {
4605   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4606   InstructionMark im(this);
4607   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4608   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4609   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4610   emit_int8(0x5C);
4611   emit_operand(dst, src);
4612 }
4613 
4614 void Assembler::testb(Register dst, int imm8) {
4615   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
4616   (void) prefix_and_encode(dst->encoding(), true);
4617   emit_arith_b(0xF6, 0xC0, dst, imm8);
4618 }
4619 
4620 void Assembler::testb(Address dst, int imm8) {
4621   InstructionMark im(this);
4622   prefix(dst);
4623   emit_int8((unsigned char)0xF6);
4624   emit_operand(rax, dst, 1);
4625   emit_int8(imm8);
4626 }
4627 
4628 void Assembler::testl(Register dst, int32_t imm32) {
4629   // not using emit_arith because test
4630   // doesn't support sign-extension of
4631   // 8bit operands
4632   int encode = dst->encoding();
4633   if (encode == 0) {
4634     emit_int8((unsigned char)0xA9);
4635   } else {
4636     encode = prefix_and_encode(encode);
4637     emit_int16((unsigned char)0xF7, (unsigned char)(0xC0 | encode));
4638   }
4639   emit_int32(imm32);
4640 }
4641 
4642 void Assembler::testl(Register dst, Register src) {
4643   (void) prefix_and_encode(dst->encoding(), src->encoding());
4644   emit_arith(0x85, 0xC0, dst, src);
4645 }
4646 
4647 void Assembler::testl(Register dst, Address src) {
4648   InstructionMark im(this);
4649   prefix(src, dst);
4650   emit_int8((unsigned char)0x85);
4651   emit_operand(dst, src);
4652 }
4653 
4654 void Assembler::tzcntl(Register dst, Register src) {
4655   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4656   emit_int8((unsigned char)0xF3);
4657   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4658   emit_int24(0x0F, (unsigned char)0xBC, (unsigned char)0xC0 | encode);
4659 }
4660 
4661 void Assembler::tzcntq(Register dst, Register src) {
4662   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4663   emit_int8((unsigned char)0xF3);
4664   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4665   emit_int24(0x0F, (unsigned char)0xBC, (unsigned char)(0xC0 | encode));
4666 }
4667 
4668 void Assembler::ucomisd(XMMRegister dst, Address src) {
4669   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4670   InstructionMark im(this);
4671   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4672   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4673   attributes.set_rex_vex_w_reverted();
4674   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4675   emit_int8(0x2E);
4676   emit_operand(dst, src);
4677 }
4678 
4679 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4680   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4681   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4682   attributes.set_rex_vex_w_reverted();
4683   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4684   emit_int16(0x2E, (unsigned char)(0xC0 | encode));
4685 }
4686 
4687 void Assembler::ucomiss(XMMRegister dst, Address src) {
4688   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4689   InstructionMark im(this);
4690   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4691   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4692   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4693   emit_int8(0x2E);
4694   emit_operand(dst, src);
4695 }
4696 
4697 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4698   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4699   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4700   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4701   emit_int16(0x2E, (unsigned char)(0xC0 | encode));
4702 }
4703 
4704 void Assembler::xabort(int8_t imm8) {
4705   emit_int24((unsigned char)0xC6, (unsigned char)0xF8, (unsigned char)(imm8 & 0xFF));
4706 }
4707 
4708 void Assembler::xaddb(Address dst, Register src) {
4709   InstructionMark im(this);
4710   prefix(dst, src, true);
4711   emit_int16(0x0F, (unsigned char)0xC0);
4712   emit_operand(src, dst);
4713 }
4714 
4715 void Assembler::xaddw(Address dst, Register src) {
4716   InstructionMark im(this);
4717   emit_int8(0x66);
4718   prefix(dst, src);
4719   emit_int16(0x0F, (unsigned char)0xC1);
4720   emit_operand(src, dst);
4721 }
4722 
4723 void Assembler::xaddl(Address dst, Register src) {
4724   InstructionMark im(this);
4725   prefix(dst, src);
4726   emit_int16(0x0F, (unsigned char)0xC1);
4727   emit_operand(src, dst);
4728 }
4729 
4730 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4731   InstructionMark im(this);
4732   relocate(rtype);
4733   if (abort.is_bound()) {
4734     address entry = target(abort);
4735     assert(entry != NULL, "abort entry NULL");
4736     intptr_t offset = entry - pc();
4737     emit_int16((unsigned char)0xC7, (unsigned char)0xF8);
4738     emit_int32(offset - 6); // 2 opcode + 4 address
4739   } else {
4740     abort.add_patch_at(code(), locator());
4741     emit_int16((unsigned char)0xC7, (unsigned char)0xF8);
4742     emit_int32(0);
4743   }
4744 }
4745 
4746 void Assembler::xchgb(Register dst, Address src) { // xchg
4747   InstructionMark im(this);
4748   prefix(src, dst, true);
4749   emit_int8((unsigned char)0x86);
4750   emit_operand(dst, src);
4751 }
4752 
4753 void Assembler::xchgw(Register dst, Address src) { // xchg
4754   InstructionMark im(this);
4755   emit_int8(0x66);
4756   prefix(src, dst);
4757   emit_int8((unsigned char)0x87);
4758   emit_operand(dst, src);
4759 }
4760 
4761 void Assembler::xchgl(Register dst, Address src) { // xchg
4762   InstructionMark im(this);
4763   prefix(src, dst);
4764   emit_int8((unsigned char)0x87);
4765   emit_operand(dst, src);
4766 }
4767 
4768 void Assembler::xchgl(Register dst, Register src) {
4769   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4770   emit_int16((unsigned char)0x87, (unsigned char)(0xC0 | encode));
4771 }
4772 
4773 void Assembler::xend() {
4774   emit_int24((unsigned char)0x0F, (unsigned char)0x01, (unsigned char)0xD5);
4775 }
4776 
4777 void Assembler::xgetbv() {
4778   emit_int24(0x0F, 0x01, (unsigned char)0xD0);
4779 }
4780 
4781 void Assembler::xorl(Register dst, int32_t imm32) {
4782   prefix(dst);
4783   emit_arith(0x81, 0xF0, dst, imm32);
4784 }
4785 
4786 void Assembler::xorl(Register dst, Address src) {
4787   InstructionMark im(this);
4788   prefix(src, dst);
4789   emit_int8(0x33);
4790   emit_operand(dst, src);
4791 }
4792 
4793 void Assembler::xorl(Register dst, Register src) {
4794   (void) prefix_and_encode(dst->encoding(), src->encoding());
4795   emit_arith(0x33, 0xC0, dst, src);
4796 }
4797 
4798 void Assembler::xorb(Register dst, Address src) {
4799   InstructionMark im(this);
4800   prefix(src, dst);
4801   emit_int8(0x32);
4802   emit_operand(dst, src);
4803 }
4804 
4805 // AVX 3-operands scalar float-point arithmetic instructions
4806 
4807 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4808   assert(VM_Version::supports_avx(), "");
4809   InstructionMark im(this);
4810   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4811   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4812   attributes.set_rex_vex_w_reverted();
4813   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4814   emit_int8(0x58);
4815   emit_operand(dst, src);
4816 }
4817 
4818 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4819   assert(VM_Version::supports_avx(), "");
4820   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4821   attributes.set_rex_vex_w_reverted();
4822   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4823   emit_int16(0x58, (unsigned char)(0xC0 | encode));
4824 }
4825 
4826 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4827   assert(VM_Version::supports_avx(), "");
4828   InstructionMark im(this);
4829   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4830   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4831   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4832   emit_int8(0x58);
4833   emit_operand(dst, src);
4834 }
4835 
4836 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4837   assert(VM_Version::supports_avx(), "");
4838   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4839   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4840   emit_int16(0x58, (unsigned char)(0xC0 | encode));
4841 }
4842 
4843 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
4844   assert(VM_Version::supports_avx(), "");
4845   InstructionMark im(this);
4846   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4847   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4848   attributes.set_rex_vex_w_reverted();
4849   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4850   emit_int8(0x5E);
4851   emit_operand(dst, src);
4852 }
4853 
4854 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4855   assert(VM_Version::supports_avx(), "");
4856   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4857   attributes.set_rex_vex_w_reverted();
4858   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4859   emit_int16(0x5E, (unsigned char)(0xC0 | encode));
4860 }
4861 
4862 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
4863   assert(VM_Version::supports_avx(), "");
4864   InstructionMark im(this);
4865   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4866   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4867   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4868   emit_int8(0x5E);
4869   emit_operand(dst, src);
4870 }
4871 
4872 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4873   assert(VM_Version::supports_avx(), "");
4874   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4875   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4876   emit_int16(0x5E, (unsigned char)(0xC0 | encode));
4877 }
4878 
4879 void Assembler::vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
4880   assert(VM_Version::supports_fma(), "");
4881   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4882   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4883   emit_int16((unsigned char)0xB9, (unsigned char)(0xC0 | encode));
4884 }
4885 
4886 void Assembler::vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
4887   assert(VM_Version::supports_fma(), "");
4888   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4889   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4890   emit_int16((unsigned char)0xB9, (unsigned char)(0xC0 | encode));
4891 }
4892 
4893 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
4894   assert(VM_Version::supports_avx(), "");
4895   InstructionMark im(this);
4896   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4897   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4898   attributes.set_rex_vex_w_reverted();
4899   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4900   emit_int8(0x59);
4901   emit_operand(dst, src);
4902 }
4903 
4904 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4905   assert(VM_Version::supports_avx(), "");
4906   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4907   attributes.set_rex_vex_w_reverted();
4908   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4909   emit_int16(0x59, (unsigned char)(0xC0 | encode));
4910 }
4911 
4912 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
4913   assert(VM_Version::supports_avx(), "");
4914   InstructionMark im(this);
4915   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4916   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4917   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4918   emit_int8(0x59);
4919   emit_operand(dst, src);
4920 }
4921 
4922 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4923   assert(VM_Version::supports_avx(), "");
4924   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4925   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4926   emit_int16(0x59, (unsigned char)(0xC0 | encode));
4927 }
4928 
4929 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
4930   assert(VM_Version::supports_avx(), "");
4931   InstructionMark im(this);
4932   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4933   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4934   attributes.set_rex_vex_w_reverted();
4935   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4936   emit_int8(0x5C);
4937   emit_operand(dst, src);
4938 }
4939 
4940 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4941   assert(VM_Version::supports_avx(), "");
4942   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4943   attributes.set_rex_vex_w_reverted();
4944   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4945   emit_int16(0x5C, (unsigned char)(0xC0 | encode));
4946 }
4947 
4948 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
4949   assert(VM_Version::supports_avx(), "");
4950   InstructionMark im(this);
4951   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4952   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4953   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4954   emit_int8(0x5C);
4955   emit_operand(dst, src);
4956 }
4957 
4958 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4959   assert(VM_Version::supports_avx(), "");
4960   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4961   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4962   emit_int16(0x5C, (unsigned char)(0xC0 | encode));
4963 }
4964 
4965 //====================VECTOR ARITHMETIC=====================================
4966 
4967 // Float-point vector arithmetic
4968 
4969 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
4970   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4971   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4972   attributes.set_rex_vex_w_reverted();
4973   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4974   emit_int16(0x58, (unsigned char)(0xC0 | encode));
4975 }
4976 
4977 void Assembler::addpd(XMMRegister dst, Address src) {
4978   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4979   InstructionMark im(this);
4980   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4981   attributes.set_rex_vex_w_reverted();
4982   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4983   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4984   emit_int8(0x58);
4985   emit_operand(dst, src);
4986 }
4987 
4988 
4989 void Assembler::addps(XMMRegister dst, XMMRegister src) {
4990   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4991   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4992   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4993   emit_int16(0x58, (unsigned char)(0xC0 | encode));
4994 }
4995 
4996 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4997   assert(VM_Version::supports_avx(), "");
4998   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4999   attributes.set_rex_vex_w_reverted();
5000   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5001   emit_int16(0x58, (unsigned char)(0xC0 | encode));
5002 }
5003 
5004 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5005   assert(VM_Version::supports_avx(), "");
5006   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5007   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5008   emit_int16(0x58, (unsigned char)(0xC0 | encode));
5009 }
5010 
5011 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5012   assert(VM_Version::supports_avx(), "");
5013   InstructionMark im(this);
5014   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5015   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5016   attributes.set_rex_vex_w_reverted();
5017   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5018   emit_int8(0x58);
5019   emit_operand(dst, src);
5020 }
5021 
5022 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5023   assert(VM_Version::supports_avx(), "");
5024   InstructionMark im(this);
5025   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5026   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5027   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5028   emit_int8(0x58);
5029   emit_operand(dst, src);
5030 }
5031 
5032 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
5033   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5034   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5035   attributes.set_rex_vex_w_reverted();
5036   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5037   emit_int16(0x5C, (unsigned char)(0xC0 | encode));
5038 }
5039 
5040 void Assembler::subps(XMMRegister dst, XMMRegister src) {
5041   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5042   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5043   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5044   emit_int16(0x5C, (unsigned char)(0xC0 | encode));
5045 }
5046 
5047 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5048   assert(VM_Version::supports_avx(), "");
5049   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5050   attributes.set_rex_vex_w_reverted();
5051   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5052   emit_int16(0x5C, (unsigned char)(0xC0 | encode));
5053 }
5054 
5055 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5056   assert(VM_Version::supports_avx(), "");
5057   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5058   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5059   emit_int16(0x5C, (unsigned char)(0xC0 | encode));
5060 }
5061 
5062 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5063   assert(VM_Version::supports_avx(), "");
5064   InstructionMark im(this);
5065   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5066   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5067   attributes.set_rex_vex_w_reverted();
5068   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5069   emit_int8(0x5C);
5070   emit_operand(dst, src);
5071 }
5072 
5073 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5074   assert(VM_Version::supports_avx(), "");
5075   InstructionMark im(this);
5076   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5077   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5078   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5079   emit_int8(0x5C);
5080   emit_operand(dst, src);
5081 }
5082 
5083 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
5084   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5085   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5086   attributes.set_rex_vex_w_reverted();
5087   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5088   emit_int16(0x59, (unsigned char)(0xC0 | encode));
5089 }
5090 
5091 void Assembler::mulpd(XMMRegister dst, Address src) {
5092   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5093   InstructionMark im(this);
5094   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5095   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5096   attributes.set_rex_vex_w_reverted();
5097   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5098   emit_int8(0x59);
5099   emit_operand(dst, src);
5100 }
5101 
5102 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
5103   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5104   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5105   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5106   emit_int16(0x59, (unsigned char)(0xC0 | encode));
5107 }
5108 
5109 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5110   assert(VM_Version::supports_avx(), "");
5111   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5112   attributes.set_rex_vex_w_reverted();
5113   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5114   emit_int16(0x59, (unsigned char)(0xC0 | encode));
5115 }
5116 
5117 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5118   assert(VM_Version::supports_avx(), "");
5119   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5120   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5121   emit_int16(0x59, (unsigned char)(0xC0 | encode));
5122 }
5123 
5124 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5125   assert(VM_Version::supports_avx(), "");
5126   InstructionMark im(this);
5127   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5128   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5129   attributes.set_rex_vex_w_reverted();
5130   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5131   emit_int8(0x59);
5132   emit_operand(dst, src);
5133 }
5134 
5135 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5136   assert(VM_Version::supports_avx(), "");
5137   InstructionMark im(this);
5138   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5139   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5140   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5141   emit_int8(0x59);
5142   emit_operand(dst, src);
5143 }
5144 
5145 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5146   assert(VM_Version::supports_fma(), "");
5147   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5148   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5149   emit_int16((unsigned char)0xB8, (unsigned char)(0xC0 | encode));
5150 }
5151 
5152 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5153   assert(VM_Version::supports_fma(), "");
5154   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5155   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5156   emit_int16((unsigned char)0xB8, (unsigned char)(0xC0 | encode));
5157 }
5158 
5159 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5160   assert(VM_Version::supports_fma(), "");
5161   InstructionMark im(this);
5162   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5163   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5164   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5165   emit_int8((unsigned char)0xB8);
5166   emit_operand(dst, src2);
5167 }
5168 
5169 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5170   assert(VM_Version::supports_fma(), "");
5171   InstructionMark im(this);
5172   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5173   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5174   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5175   emit_int8((unsigned char)0xB8);
5176   emit_operand(dst, src2);
5177 }
5178 
5179 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
5180   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5181   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5182   attributes.set_rex_vex_w_reverted();
5183   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5184   emit_int16(0x5E, (unsigned char)(0xC0 | encode));
5185 }
5186 
5187 void Assembler::divps(XMMRegister dst, XMMRegister src) {
5188   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5189   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5190   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5191   emit_int16(0x5E, (unsigned char)(0xC0 | encode));
5192 }
5193 
5194 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5195   assert(VM_Version::supports_avx(), "");
5196   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5197   attributes.set_rex_vex_w_reverted();
5198   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5199   emit_int16(0x5E, (unsigned char)(0xC0 | encode));
5200 }
5201 
5202 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5203   assert(VM_Version::supports_avx(), "");
5204   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5205   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5206   emit_int16(0x5E, (unsigned char)(0xC0 | encode));
5207 }
5208 
5209 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5210   assert(VM_Version::supports_avx(), "");
5211   InstructionMark im(this);
5212   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5213   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5214   attributes.set_rex_vex_w_reverted();
5215   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5216   emit_int8(0x5E);
5217   emit_operand(dst, src);
5218 }
5219 
5220 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5221   assert(VM_Version::supports_avx(), "");
5222   InstructionMark im(this);
5223   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5224   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5225   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5226   emit_int8(0x5E);
5227   emit_operand(dst, src);
5228 }
5229 
5230 void Assembler::vroundpd(XMMRegister dst, XMMRegister src, int32_t rmode, int vector_len) {
5231   assert(VM_Version::supports_avx(), "");
5232   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
5233   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5234   emit_int24(0x09, (unsigned char)(0xC0 | encode), (unsigned char)(rmode));
5235 }
5236 
5237 void Assembler::vroundpd(XMMRegister dst, Address src, int32_t rmode,  int vector_len) {
5238   assert(VM_Version::supports_avx(), "");
5239   InstructionMark im(this);
5240   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
5241   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5242   emit_int8(0x09);
5243   emit_operand(dst, src);
5244   emit_int8((unsigned char)(rmode));
5245 }
5246 
5247 void Assembler::vrndscalepd(XMMRegister dst,  XMMRegister src,  int32_t rmode, int vector_len) {
5248   assert(VM_Version::supports_evex(), "requires EVEX support");
5249   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5250   attributes.set_is_evex_instruction();
5251   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5252   emit_int24((unsigned char)0x09, (unsigned char)(0xC0 | encode), (unsigned char)(rmode));
5253 }
5254 
5255 void Assembler::vrndscalepd(XMMRegister dst, Address src, int32_t rmode, int vector_len) {
5256   assert(VM_Version::supports_evex(), "requires EVEX support");
5257   assert(dst != xnoreg, "sanity");
5258   InstructionMark im(this);
5259   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5260   attributes.set_is_evex_instruction();
5261   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5262   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5263   emit_int8((unsigned char)0x09);
5264   emit_operand(dst, src);
5265   emit_int8((unsigned char)(rmode));
5266 }
5267 
5268 
5269 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
5270   assert(VM_Version::supports_avx(), "");
5271   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5272   attributes.set_rex_vex_w_reverted();
5273   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5274   emit_int16(0x51, (unsigned char)(0xC0 | encode));
5275 }
5276 
5277 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
5278   assert(VM_Version::supports_avx(), "");
5279   InstructionMark im(this);
5280   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5281   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5282   attributes.set_rex_vex_w_reverted();
5283   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5284   emit_int8(0x51);
5285   emit_operand(dst, src);
5286 }
5287 
5288 void Assembler::vsqrtps(XMMRegister dst, XMMRegister src, int vector_len) {
5289   assert(VM_Version::supports_avx(), "");
5290   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5291   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5292   emit_int16(0x51, (unsigned char)(0xC0 | encode));
5293 }
5294 
5295 void Assembler::vsqrtps(XMMRegister dst, Address src, int vector_len) {
5296   assert(VM_Version::supports_avx(), "");
5297   InstructionMark im(this);
5298   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5299   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5300   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5301   emit_int8(0x51);
5302   emit_operand(dst, src);
5303 }
5304 
5305 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
5306   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5307   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5308   attributes.set_rex_vex_w_reverted();
5309   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5310   emit_int16(0x54, (unsigned char)(0xC0 | encode));
5311 }
5312 
5313 void Assembler::andps(XMMRegister dst, XMMRegister src) {
5314   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5315   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5316   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5317   emit_int16(0x54, (unsigned char)(0xC0 | encode));
5318 }
5319 
5320 void Assembler::andps(XMMRegister dst, Address src) {
5321   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5322   InstructionMark im(this);
5323   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5324   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5325   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5326   emit_int8(0x54);
5327   emit_operand(dst, src);
5328 }
5329 
5330 void Assembler::andpd(XMMRegister dst, Address src) {
5331   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5332   InstructionMark im(this);
5333   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5334   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5335   attributes.set_rex_vex_w_reverted();
5336   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5337   emit_int8(0x54);
5338   emit_operand(dst, src);
5339 }
5340 
5341 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5342   assert(VM_Version::supports_avx(), "");
5343   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5344   attributes.set_rex_vex_w_reverted();
5345   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5346   emit_int16(0x54, (unsigned char)(0xC0 | encode));
5347 }
5348 
5349 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5350   assert(VM_Version::supports_avx(), "");
5351   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5352   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5353   emit_int16(0x54, (unsigned char)(0xC0 | encode));
5354 }
5355 
5356 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5357   assert(VM_Version::supports_avx(), "");
5358   InstructionMark im(this);
5359   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5360   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5361   attributes.set_rex_vex_w_reverted();
5362   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5363   emit_int8(0x54);
5364   emit_operand(dst, src);
5365 }
5366 
5367 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5368   assert(VM_Version::supports_avx(), "");
5369   InstructionMark im(this);
5370   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5371   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5372   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5373   emit_int8(0x54);
5374   emit_operand(dst, src);
5375 }
5376 
5377 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
5378   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5379   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5380   attributes.set_rex_vex_w_reverted();
5381   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5382   emit_int8(0x15);
5383   emit_int8((unsigned char)(0xC0 | encode));
5384 }
5385 
5386 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
5387   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5388   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5389   attributes.set_rex_vex_w_reverted();
5390   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5391   emit_int16(0x14, (unsigned char)(0xC0 | encode));
5392 }
5393 
5394 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
5395   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5396   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5397   attributes.set_rex_vex_w_reverted();
5398   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5399   emit_int16(0x57, (unsigned char)(0xC0 | encode));
5400 }
5401 
5402 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
5403   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5404   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5405   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5406   emit_int16(0x57, (unsigned char)(0xC0 | encode));
5407 }
5408 
5409 void Assembler::xorpd(XMMRegister dst, Address src) {
5410   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5411   InstructionMark im(this);
5412   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5413   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5414   attributes.set_rex_vex_w_reverted();
5415   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5416   emit_int8(0x57);
5417   emit_operand(dst, src);
5418 }
5419 
5420 void Assembler::xorps(XMMRegister dst, Address src) {
5421   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5422   InstructionMark im(this);
5423   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5424   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5425   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5426   emit_int8(0x57);
5427   emit_operand(dst, src);
5428 }
5429 
5430 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5431   assert(VM_Version::supports_avx(), "");
5432   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5433   attributes.set_rex_vex_w_reverted();
5434   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5435   emit_int16(0x57, (unsigned char)(0xC0 | encode));
5436 }
5437 
5438 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5439   assert(VM_Version::supports_avx(), "");
5440   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5441   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5442   emit_int16(0x57, (unsigned char)(0xC0 | encode));
5443 }
5444 
5445 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5446   assert(VM_Version::supports_avx(), "");
5447   InstructionMark im(this);
5448   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5449   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5450   attributes.set_rex_vex_w_reverted();
5451   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5452   emit_int8(0x57);
5453   emit_operand(dst, src);
5454 }
5455 
5456 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5457   assert(VM_Version::supports_avx(), "");
5458   InstructionMark im(this);
5459   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5460   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5461   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5462   emit_int8(0x57);
5463   emit_operand(dst, src);
5464 }
5465 
5466 // Integer vector arithmetic
5467 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5468   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5469          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5470   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5471   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5472   emit_int16(0x01, (unsigned char)(0xC0 | encode));
5473 }
5474 
5475 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5476   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5477          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5478   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5479   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5480   emit_int16(0x02, (unsigned char)(0xC0 | encode));
5481 }
5482 
5483 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
5484   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5485   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5486   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5487   emit_int16((unsigned char)0xFC, (unsigned char)(0xC0 | encode));
5488 }
5489 
5490 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
5491   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5492   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5493   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5494   emit_int16((unsigned char)0xFD, (unsigned char)(0xC0 | encode));
5495 }
5496 
5497 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
5498   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5499   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5500   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5501   emit_int16((unsigned char)0xFE, (unsigned char)(0xC0 | encode));
5502 }
5503 
5504 void Assembler::paddd(XMMRegister dst, Address src) {
5505   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5506   InstructionMark im(this);
5507   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5508   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5509   emit_int8((unsigned char)0xFE);
5510   emit_operand(dst, src);
5511 }
5512 
5513 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
5514   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5515   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5516   attributes.set_rex_vex_w_reverted();
5517   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5518   emit_int16((unsigned char)0xD4, (unsigned char)(0xC0 | encode));
5519 }
5520 
5521 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
5522   assert(VM_Version::supports_sse3(), "");
5523   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5524   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5525   emit_int16(0x01, (unsigned char)(0xC0 | encode));
5526 }
5527 
5528 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
5529   assert(VM_Version::supports_sse3(), "");
5530   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5531   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5532   emit_int16(0x02, (unsigned char)(0xC0 | encode));
5533 }
5534 
5535 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5536   assert(UseAVX > 0, "requires some form of AVX");
5537   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5538   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5539   emit_int16((unsigned char)0xFC, (unsigned char)(0xC0 | encode));
5540 }
5541 
5542 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5543   assert(UseAVX > 0, "requires some form of AVX");
5544   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5545   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5546   emit_int16((unsigned char)0xFD, (unsigned char)(0xC0 | encode));
5547 }
5548 
5549 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5550   assert(UseAVX > 0, "requires some form of AVX");
5551   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5552   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5553   emit_int16((unsigned char)0xFE, (unsigned char)(0xC0 | encode));
5554 }
5555 
5556 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5557   assert(UseAVX > 0, "requires some form of AVX");
5558   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5559   attributes.set_rex_vex_w_reverted();
5560   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5561   emit_int16((unsigned char)0xD4, (unsigned char)(0xC0 | encode));
5562 }
5563 
5564 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5565   assert(UseAVX > 0, "requires some form of AVX");
5566   InstructionMark im(this);
5567   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5568   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5569   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5570   emit_int8((unsigned char)0xFC);
5571   emit_operand(dst, src);
5572 }
5573 
5574 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5575   assert(UseAVX > 0, "requires some form of AVX");
5576   InstructionMark im(this);
5577   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5578   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5579   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5580   emit_int8((unsigned char)0xFD);
5581   emit_operand(dst, src);
5582 }
5583 
5584 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5585   assert(UseAVX > 0, "requires some form of AVX");
5586   InstructionMark im(this);
5587   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5588   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5589   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5590   emit_int8((unsigned char)0xFE);
5591   emit_operand(dst, src);
5592 }
5593 
5594 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5595   assert(UseAVX > 0, "requires some form of AVX");
5596   InstructionMark im(this);
5597   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5598   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5599   attributes.set_rex_vex_w_reverted();
5600   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5601   emit_int8((unsigned char)0xD4);
5602   emit_operand(dst, src);
5603 }
5604 
5605 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
5606   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5607   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5608   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5609   emit_int16((unsigned char)0xF8, (unsigned char)(0xC0 | encode));
5610 }
5611 
5612 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
5613   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5614   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5615   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5616   emit_int16((unsigned char)0xF9, (unsigned char)(0xC0 | encode));
5617 }
5618 
5619 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
5620   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5621   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5622   emit_int16((unsigned char)0xFA, (unsigned char)(0xC0 | encode));
5623 }
5624 
5625 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
5626   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5627   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5628   attributes.set_rex_vex_w_reverted();
5629   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5630   emit_int8((unsigned char)0xFB);
5631   emit_int8((unsigned char)(0xC0 | encode));
5632 }
5633 
5634 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5635   assert(UseAVX > 0, "requires some form of AVX");
5636   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5637   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5638   emit_int16((unsigned char)0xF8, (unsigned char)(0xC0 | encode));
5639 }
5640 
5641 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5642   assert(UseAVX > 0, "requires some form of AVX");
5643   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5644   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5645   emit_int16((unsigned char)0xF9, (unsigned char)(0xC0 | encode));
5646 }
5647 
5648 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5649   assert(UseAVX > 0, "requires some form of AVX");
5650   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5651   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5652   emit_int16((unsigned char)0xFA, (unsigned char)(0xC0 | encode));
5653 }
5654 
5655 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5656   assert(UseAVX > 0, "requires some form of AVX");
5657   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5658   attributes.set_rex_vex_w_reverted();
5659   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5660   emit_int16((unsigned char)0xFB, (unsigned char)(0xC0 | encode));
5661 }
5662 
5663 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5664   assert(UseAVX > 0, "requires some form of AVX");
5665   InstructionMark im(this);
5666   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5667   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5668   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5669   emit_int8((unsigned char)0xF8);
5670   emit_operand(dst, src);
5671 }
5672 
5673 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5674   assert(UseAVX > 0, "requires some form of AVX");
5675   InstructionMark im(this);
5676   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5677   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5678   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5679   emit_int8((unsigned char)0xF9);
5680   emit_operand(dst, src);
5681 }
5682 
5683 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5684   assert(UseAVX > 0, "requires some form of AVX");
5685   InstructionMark im(this);
5686   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5687   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5688   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5689   emit_int8((unsigned char)0xFA);
5690   emit_operand(dst, src);
5691 }
5692 
5693 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5694   assert(UseAVX > 0, "requires some form of AVX");
5695   InstructionMark im(this);
5696   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5697   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5698   attributes.set_rex_vex_w_reverted();
5699   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5700   emit_int8((unsigned char)0xFB);
5701   emit_operand(dst, src);
5702 }
5703 
5704 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
5705   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5706   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5707   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5708   emit_int16((unsigned char)0xD5, (unsigned char)(0xC0 | encode));
5709 }
5710 
5711 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
5712   assert(VM_Version::supports_sse4_1(), "");
5713   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5714   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5715   emit_int16(0x40, (unsigned char)(0xC0 | encode));
5716 }
5717 
5718 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5719   assert(UseAVX > 0, "requires some form of AVX");
5720   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5721   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5722   emit_int16((unsigned char)0xD5, (unsigned char)(0xC0 | encode));
5723 }
5724 
5725 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5726   assert(UseAVX > 0, "requires some form of AVX");
5727   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5728   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5729   emit_int16(0x40, (unsigned char)(0xC0 | encode));
5730 }
5731 
5732 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5733   assert(UseAVX > 2, "requires some form of EVEX");
5734   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5735   attributes.set_is_evex_instruction();
5736   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5737   emit_int16(0x40, (unsigned char)(0xC0 | encode));
5738 }
5739 
5740 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5741   assert(UseAVX > 0, "requires some form of AVX");
5742   InstructionMark im(this);
5743   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5744   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5745   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5746   emit_int8((unsigned char)0xD5);
5747   emit_operand(dst, src);
5748 }
5749 
5750 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5751   assert(UseAVX > 0, "requires some form of AVX");
5752   InstructionMark im(this);
5753   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5754   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5755   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5756   emit_int8(0x40);
5757   emit_operand(dst, src);
5758 }
5759 
5760 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5761   assert(UseAVX > 2, "requires some form of EVEX");
5762   InstructionMark im(this);
5763   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5764   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5765   attributes.set_is_evex_instruction();
5766   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5767   emit_int8(0x40);
5768   emit_operand(dst, src);
5769 }
5770 
5771 // Shift packed integers left by specified number of bits.
5772 void Assembler::psllw(XMMRegister dst, int shift) {
5773   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5774   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5775   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5776   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5777   emit_int24(0x71, (unsigned char)(0xC0 | encode), shift & 0xFF);
5778 }
5779 
5780 void Assembler::pslld(XMMRegister dst, int shift) {
5781   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5782   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5783   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5784   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5785   emit_int24(0x72, (unsigned char)(0xC0 | encode), shift & 0xFF);
5786 }
5787 
5788 void Assembler::psllq(XMMRegister dst, int shift) {
5789   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5790   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5791   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5792   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5793   emit_int24(0x73, (unsigned char)(0xC0 | encode), shift & 0xFF);
5794 }
5795 
5796 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5797   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5798   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5799   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5800   emit_int16((unsigned char)0xF1, (unsigned char)(0xC0 | encode));
5801 }
5802 
5803 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
5804   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5805   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5806   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5807   emit_int16((unsigned char)0xF2, (unsigned char)(0xC0 | encode));
5808 }
5809 
5810 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
5811   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5812   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5813   attributes.set_rex_vex_w_reverted();
5814   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5815   emit_int16((unsigned char)0xF3, (unsigned char)(0xC0 | encode));
5816 }
5817 
5818 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5819   assert(UseAVX > 0, "requires some form of AVX");
5820   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5821   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5822   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5823   emit_int24(0x71, (unsigned char)(0xC0 | encode), shift & 0xFF);
5824 }
5825 
5826 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5827   assert(UseAVX > 0, "requires some form of AVX");
5828   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5829   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5830   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5831   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5832   emit_int24(0x72, (unsigned char)(0xC0 | encode), shift & 0xFF);
5833 }
5834 
5835 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5836   assert(UseAVX > 0, "requires some form of AVX");
5837   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5838   attributes.set_rex_vex_w_reverted();
5839   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5840   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5841   emit_int24(0x73, (unsigned char)(0xC0 | encode), shift & 0xFF);
5842 }
5843 
5844 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5845   assert(UseAVX > 0, "requires some form of AVX");
5846   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5847   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5848   emit_int16((unsigned char)0xF1, (unsigned char)(0xC0 | encode));
5849 }
5850 
5851 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5852   assert(UseAVX > 0, "requires some form of AVX");
5853   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5854   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5855   emit_int16((unsigned char)0xF2, (unsigned char)(0xC0 | encode));
5856 }
5857 
5858 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5859   assert(UseAVX > 0, "requires some form of AVX");
5860   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5861   attributes.set_rex_vex_w_reverted();
5862   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5863   emit_int16((unsigned char)0xF3, (unsigned char)(0xC0 | encode));
5864 }
5865 
5866 // Shift packed integers logically right by specified number of bits.
5867 void Assembler::psrlw(XMMRegister dst, int shift) {
5868   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5869   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5870   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5871   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5872   emit_int24(0x71, (unsigned char)(0xC0 | encode), shift & 0xFF);
5873 }
5874 
5875 void Assembler::psrld(XMMRegister dst, int shift) {
5876   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5877   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5878   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5879   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5880   emit_int24(0x72, (unsigned char)(0xC0 | encode), shift & 0xFF);
5881 }
5882 
5883 void Assembler::psrlq(XMMRegister dst, int shift) {
5884   // Do not confuse it with psrldq SSE2 instruction which
5885   // shifts 128 bit value in xmm register by number of bytes.
5886   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5887   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5888   attributes.set_rex_vex_w_reverted();
5889   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5890   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5891   emit_int24(0x73, (unsigned char)(0xC0 | encode), shift & 0xFF);
5892 }
5893 
5894 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
5895   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5896   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5897   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5898   emit_int16((unsigned char)0xD1, (unsigned char)(0xC0 | encode));
5899 }
5900 
5901 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
5902   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5903   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5904   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5905   emit_int16((unsigned char)0xD2, (unsigned char)(0xC0 | encode));
5906 }
5907 
5908 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
5909   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5910   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5911   attributes.set_rex_vex_w_reverted();
5912   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5913   emit_int16((unsigned char)0xD3, (unsigned char)(0xC0 | encode));
5914 }
5915 
5916 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5917   assert(UseAVX > 0, "requires some form of AVX");
5918   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5919   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5920   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5921   emit_int24(0x71, (unsigned char)(0xC0 | encode), shift & 0xFF);
5922 }
5923 
5924 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5925   assert(UseAVX > 0, "requires some form of AVX");
5926   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5927   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5928   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5929   emit_int24(0x72, (unsigned char)(0xC0 | encode), shift & 0xFF);
5930 }
5931 
5932 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5933   assert(UseAVX > 0, "requires some form of AVX");
5934   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5935   attributes.set_rex_vex_w_reverted();
5936   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5937   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5938   emit_int24(0x73, (unsigned char)(0xC0 | encode), shift & 0xFF);
5939 }
5940 
5941 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5942   assert(UseAVX > 0, "requires some form of AVX");
5943   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5944   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5945   emit_int16((unsigned char)0xD1, (unsigned char)(0xC0 | encode));
5946 }
5947 
5948 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5949   assert(UseAVX > 0, "requires some form of AVX");
5950   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5951   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5952   emit_int16((unsigned char)0xD2, (unsigned char)(0xC0 | encode));
5953 }
5954 
5955 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5956   assert(UseAVX > 0, "requires some form of AVX");
5957   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5958   attributes.set_rex_vex_w_reverted();
5959   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5960   emit_int16((unsigned char)0xD3, (unsigned char)(0xC0 | encode));
5961 }
5962 
5963 void Assembler::evpsrlvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5964   assert(VM_Version::supports_avx512bw(), "");
5965   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5966   attributes.set_is_evex_instruction();
5967   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5968   emit_int16(0x10, (unsigned char)(0xC0 | encode));
5969 }
5970 
5971 void Assembler::evpsllvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5972   assert(VM_Version::supports_avx512bw(), "");
5973   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5974   attributes.set_is_evex_instruction();
5975   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5976   emit_int16(0x12, (unsigned char)(0xC0 | encode));
5977 }
5978 
5979 // Shift packed integers arithmetically right by specified number of bits.
5980 void Assembler::psraw(XMMRegister dst, int shift) {
5981   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5982   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5983   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5984   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5985   emit_int24(0x71, (unsigned char)(0xC0 | encode), shift & 0xFF);
5986 }
5987 
5988 void Assembler::psrad(XMMRegister dst, int shift) {
5989   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5990   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5991   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
5992   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5993   emit_int8(0x72);
5994   emit_int8((unsigned char)(0xC0 | encode));
5995   emit_int8(shift & 0xFF);
5996 }
5997 
5998 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
5999   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6000   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6001   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6002   emit_int16((unsigned char)0xE1, (unsigned char)(0xC0 | encode));
6003 }
6004 
6005 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
6006   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6007   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6008   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6009   emit_int16((unsigned char)0xE2, (unsigned char)(0xC0 | encode));
6010 }
6011 
6012 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6013   assert(UseAVX > 0, "requires some form of AVX");
6014   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6015   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6016   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6017   emit_int24(0x71, (unsigned char)(0xC0 | encode), shift & 0xFF);
6018 }
6019 
6020 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6021   assert(UseAVX > 0, "requires some form of AVX");
6022   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6023   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6024   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6025   emit_int24(0x72, (unsigned char)(0xC0 | encode), shift & 0xFF);
6026 }
6027 
6028 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6029   assert(UseAVX > 0, "requires some form of AVX");
6030   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6031   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6032   emit_int16((unsigned char)0xE1, (unsigned char)(0xC0 | encode));
6033 }
6034 
6035 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6036   assert(UseAVX > 0, "requires some form of AVX");
6037   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6038   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6039   emit_int16((unsigned char)0xE2, (unsigned char)(0xC0 | encode));
6040 }
6041 
6042 void Assembler::evpsraq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6043   assert(UseAVX > 2, "requires AVX512");
6044   assert ((VM_Version::supports_avx512vl() || vector_len == 2), "requires AVX512vl");
6045   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6046   attributes.set_is_evex_instruction();
6047   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6048   emit_int24((unsigned char)0x72, (unsigned char)(0xC0 | encode), shift & 0xFF);
6049 }
6050 
6051 void Assembler::evpsraq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6052   assert(UseAVX > 2, "requires AVX512");
6053   assert ((VM_Version::supports_avx512vl() || vector_len == 2), "requires AVX512vl");
6054   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6055   attributes.set_is_evex_instruction();
6056   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6057   emit_int16((unsigned char)0xE2, (unsigned char)(0xC0 | encode));
6058 }
6059 
6060 // logical operations packed integers
6061 void Assembler::pand(XMMRegister dst, XMMRegister src) {
6062   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6063   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6064   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6065   emit_int16((unsigned char)0xDB, (unsigned char)(0xC0 | encode));
6066 }
6067 
6068 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6069   assert(UseAVX > 0, "requires some form of AVX");
6070   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6071   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6072   emit_int16((unsigned char)0xDB, (unsigned char)(0xC0 | encode));
6073 }
6074 
6075 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6076   assert(UseAVX > 0, "requires some form of AVX");
6077   InstructionMark im(this);
6078   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6079   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6080   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6081   emit_int8((unsigned char)0xDB);
6082   emit_operand(dst, src);
6083 }
6084 
6085 void Assembler::vpandq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6086   assert(VM_Version::supports_evex(), "");
6087   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6088   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6089   emit_int16((unsigned char)0xDB, (unsigned char)(0xC0 | encode));
6090 }
6091 
6092 void Assembler::vpshldvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6093   assert(VM_Version::supports_avx512_vbmi2(), "requires vbmi2");
6094   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6095   attributes.set_is_evex_instruction();
6096   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6097   emit_int8(0x71);
6098   emit_int8((unsigned char)(0xC0 | encode));
6099 }
6100 
6101 void Assembler::vpshrdvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6102   assert(VM_Version::supports_avx512_vbmi2(), "requires vbmi2");
6103   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6104   attributes.set_is_evex_instruction();
6105   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6106   emit_int16(0x73, (unsigned char)(0xC0 | encode));
6107 }
6108 
6109 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
6110   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6111   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6112   attributes.set_rex_vex_w_reverted();
6113   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6114   emit_int16((unsigned char)0xDF, (unsigned char)(0xC0 | encode));
6115 }
6116 
6117 void Assembler::vpandn(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6118   assert(UseAVX > 0, "requires some form of AVX");
6119   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6120   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6121   emit_int16((unsigned char)0xDF, (unsigned char)(0xC0 | encode));
6122 }
6123 
6124 
6125 void Assembler::por(XMMRegister dst, XMMRegister src) {
6126   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6127   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6128   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6129   emit_int16((unsigned char)0xEB, (unsigned char)(0xC0 | encode));
6130 }
6131 
6132 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6133   assert(UseAVX > 0, "requires some form of AVX");
6134   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6135   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6136   emit_int16((unsigned char)0xEB, (unsigned char)(0xC0 | encode));
6137 }
6138 
6139 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6140   assert(UseAVX > 0, "requires some form of AVX");
6141   InstructionMark im(this);
6142   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6143   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6144   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6145   emit_int8((unsigned char)0xEB);
6146   emit_operand(dst, src);
6147 }
6148 
6149 void Assembler::vporq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6150   assert(VM_Version::supports_evex(), "");
6151   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6152   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6153   emit_int16((unsigned char)0xEB, (unsigned char)(0xC0 | encode));
6154 }
6155 
6156 
6157 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
6158   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6159   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6160   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6161   emit_int16((unsigned char)0xEF, (unsigned char)(0xC0 | encode));
6162 }
6163 
6164 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6165   assert(UseAVX > 0, "requires some form of AVX");
6166   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6167   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6168   emit_int16((unsigned char)0xEF, (unsigned char)(0xC0 | encode));
6169 }
6170 
6171 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6172   assert(UseAVX > 0, "requires some form of AVX");
6173   InstructionMark im(this);
6174   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6175   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6176   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6177   emit_int8((unsigned char)0xEF);
6178   emit_operand(dst, src);
6179 }
6180 
6181 void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6182   assert(VM_Version::supports_evex(), "requires EVEX support");
6183   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6184   attributes.set_is_evex_instruction();
6185   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6186   emit_int8((unsigned char)0xEF);
6187   emit_int8((unsigned char)(0xC0 | encode));
6188 }
6189 
6190 void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6191   assert(VM_Version::supports_evex(), "requires EVEX support");
6192   assert(dst != xnoreg, "sanity");
6193   InstructionMark im(this);
6194   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6195   attributes.set_is_evex_instruction();
6196   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6197   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6198   emit_int8((unsigned char)0xEF);
6199   emit_operand(dst, src);
6200 }
6201 
6202 
6203 // vinserti forms
6204 
6205 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6206   assert(VM_Version::supports_avx2(), "");
6207   assert(imm8 <= 0x01, "imm8: %u", imm8);
6208   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6209   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6210   // last byte:
6211   // 0x00 - insert into lower 128 bits
6212   // 0x01 - insert into upper 128 bits
6213   emit_int24(0x38, (unsigned char)(0xC0 | encode), imm8 & 0x01);
6214 }
6215 
6216 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6217   assert(VM_Version::supports_avx2(), "");
6218   assert(dst != xnoreg, "sanity");
6219   assert(imm8 <= 0x01, "imm8: %u", imm8);
6220   InstructionMark im(this);
6221   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6222   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6223   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6224   emit_int8(0x38);
6225   emit_operand(dst, src);
6226   // 0x00 - insert into lower 128 bits
6227   // 0x01 - insert into upper 128 bits
6228   emit_int8(imm8 & 0x01);
6229 }
6230 
6231 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6232   assert(VM_Version::supports_evex(), "");
6233   assert(imm8 <= 0x03, "imm8: %u", imm8);
6234   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6235   attributes.set_is_evex_instruction();
6236   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6237   // imm8:
6238   // 0x00 - insert into q0 128 bits (0..127)
6239   // 0x01 - insert into q1 128 bits (128..255)
6240   // 0x02 - insert into q2 128 bits (256..383)
6241   // 0x03 - insert into q3 128 bits (384..511)
6242   emit_int24(0x38, (unsigned char)(0xC0 | encode), imm8 & 0x03);
6243 }
6244 
6245 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6246   assert(VM_Version::supports_avx(), "");
6247   assert(dst != xnoreg, "sanity");
6248   assert(imm8 <= 0x03, "imm8: %u", imm8);
6249   InstructionMark im(this);
6250   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6251   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6252   attributes.set_is_evex_instruction();
6253   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6254   emit_int8(0x18);
6255   emit_operand(dst, src);
6256   // 0x00 - insert into q0 128 bits (0..127)
6257   // 0x01 - insert into q1 128 bits (128..255)
6258   // 0x02 - insert into q2 128 bits (256..383)
6259   // 0x03 - insert into q3 128 bits (384..511)
6260   emit_int8(imm8 & 0x03);
6261 }
6262 
6263 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6264   assert(VM_Version::supports_evex(), "");
6265   assert(imm8 <= 0x01, "imm8: %u", imm8);
6266   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6267   attributes.set_is_evex_instruction();
6268   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6269   //imm8:
6270   // 0x00 - insert into lower 256 bits
6271   // 0x01 - insert into upper 256 bits
6272   emit_int24(0x3A, (unsigned char)(0xC0 | encode), imm8 & 0x01);
6273 }
6274 
6275 
6276 // vinsertf forms
6277 
6278 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6279   assert(VM_Version::supports_avx(), "");
6280   assert(imm8 <= 0x01, "imm8: %u", imm8);
6281   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6282   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6283   // imm8:
6284   // 0x00 - insert into lower 128 bits
6285   // 0x01 - insert into upper 128 bits
6286   emit_int24(0x18, (unsigned char)(0xC0 | encode), imm8 & 0x01);
6287 }
6288 
6289 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6290   assert(VM_Version::supports_avx(), "");
6291   assert(dst != xnoreg, "sanity");
6292   assert(imm8 <= 0x01, "imm8: %u", imm8);
6293   InstructionMark im(this);
6294   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6295   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6296   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6297   emit_int8(0x18);
6298   emit_operand(dst, src);
6299   // 0x00 - insert into lower 128 bits
6300   // 0x01 - insert into upper 128 bits
6301   emit_int8(imm8 & 0x01);
6302 }
6303 
6304 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6305   assert(VM_Version::supports_avx2(), "");
6306   assert(imm8 <= 0x03, "imm8: %u", imm8);
6307   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6308   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6309   // imm8:
6310   // 0x00 - insert into q0 128 bits (0..127)
6311   // 0x01 - insert into q1 128 bits (128..255)
6312   // 0x02 - insert into q0 128 bits (256..383)
6313   // 0x03 - insert into q1 128 bits (384..512)
6314   emit_int24(0x18, (unsigned char)(0xC0 | encode), imm8 & 0x03);
6315 }
6316 
6317 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6318   assert(VM_Version::supports_avx(), "");
6319   assert(dst != xnoreg, "sanity");
6320   assert(imm8 <= 0x03, "imm8: %u", imm8);
6321   InstructionMark im(this);
6322   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6323   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6324   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6325   emit_int8(0x18);
6326   emit_operand(dst, src);
6327   // 0x00 - insert into q0 128 bits (0..127)
6328   // 0x01 - insert into q1 128 bits (128..255)
6329   // 0x02 - insert into q0 128 bits (256..383)
6330   // 0x03 - insert into q1 128 bits (384..512)
6331   emit_int8(imm8 & 0x03);
6332 }
6333 
6334 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6335   assert(VM_Version::supports_evex(), "");
6336   assert(imm8 <= 0x01, "imm8: %u", imm8);
6337   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6338   attributes.set_is_evex_instruction();
6339   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6340   // imm8:
6341   // 0x00 - insert into lower 256 bits
6342   // 0x01 - insert into upper 256 bits
6343   emit_int24(0x1A, (unsigned char)(0xC0 | encode), imm8 & 0x01);
6344 }
6345 
6346 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6347   assert(VM_Version::supports_evex(), "");
6348   assert(dst != xnoreg, "sanity");
6349   assert(imm8 <= 0x01, "imm8: %u", imm8);
6350   InstructionMark im(this);
6351   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6352   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
6353   attributes.set_is_evex_instruction();
6354   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6355   emit_int8(0x1A);
6356   emit_operand(dst, src);
6357   // 0x00 - insert into lower 256 bits
6358   // 0x01 - insert into upper 256 bits
6359   emit_int8(imm8 & 0x01);
6360 }
6361 
6362 
6363 // vextracti forms
6364 
6365 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6366   assert(VM_Version::supports_avx2(), "");
6367   assert(imm8 <= 0x01, "imm8: %u", imm8);
6368   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6369   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6370   // imm8:
6371   // 0x00 - extract from lower 128 bits
6372   // 0x01 - extract from upper 128 bits
6373   emit_int24(0x39, (unsigned char)(0xC0 | encode), imm8 & 0x01);
6374 }
6375 
6376 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
6377   assert(VM_Version::supports_avx2(), "");
6378   assert(src != xnoreg, "sanity");
6379   assert(imm8 <= 0x01, "imm8: %u", imm8);
6380   InstructionMark im(this);
6381   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6382   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6383   attributes.reset_is_clear_context();
6384   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6385   emit_int8(0x39);
6386   emit_operand(src, dst);
6387   // 0x00 - extract from lower 128 bits
6388   // 0x01 - extract from upper 128 bits
6389   emit_int8(imm8 & 0x01);
6390 }
6391 
6392 void Assembler::vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6393   assert(VM_Version::supports_evex(), "");
6394   assert(imm8 <= 0x03, "imm8: %u", imm8);
6395   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6396   attributes.set_is_evex_instruction();
6397   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6398   // imm8:
6399   // 0x00 - extract from bits 127:0
6400   // 0x01 - extract from bits 255:128
6401   // 0x02 - extract from bits 383:256
6402   // 0x03 - extract from bits 511:384
6403   emit_int24(0x39, (unsigned char)(0xC0 | encode), imm8 & 0x03);
6404 }
6405 
6406 void Assembler::vextracti32x4(Address dst, XMMRegister src, uint8_t imm8) {
6407   assert(VM_Version::supports_evex(), "");
6408   assert(src != xnoreg, "sanity");
6409   assert(imm8 <= 0x03, "imm8: %u", imm8);
6410   InstructionMark im(this);
6411   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6412   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6413   attributes.reset_is_clear_context();
6414   attributes.set_is_evex_instruction();
6415   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6416   emit_int8(0x39);
6417   emit_operand(src, dst);
6418   // 0x00 - extract from bits 127:0
6419   // 0x01 - extract from bits 255:128
6420   // 0x02 - extract from bits 383:256
6421   // 0x03 - extract from bits 511:384
6422   emit_int8(imm8 & 0x03);
6423 }
6424 
6425 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6426   assert(VM_Version::supports_avx512dq(), "");
6427   assert(imm8 <= 0x03, "imm8: %u", imm8);
6428   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6429   attributes.set_is_evex_instruction();
6430   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6431   // imm8:
6432   // 0x00 - extract from bits 127:0
6433   // 0x01 - extract from bits 255:128
6434   // 0x02 - extract from bits 383:256
6435   // 0x03 - extract from bits 511:384
6436   emit_int24(0x39, (unsigned char)(0xC0 | encode), imm8 & 0x03);
6437 }
6438 
6439 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6440   assert(VM_Version::supports_evex(), "");
6441   assert(imm8 <= 0x01, "imm8: %u", imm8);
6442   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6443   attributes.set_is_evex_instruction();
6444   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6445   // imm8:
6446   // 0x00 - extract from lower 256 bits
6447   // 0x01 - extract from upper 256 bits
6448   emit_int24(0x3B, (unsigned char)(0xC0 | encode), imm8 & 0x01);
6449 }
6450 
6451 void Assembler::vextracti64x4(Address dst, XMMRegister src, uint8_t imm8) {
6452   assert(VM_Version::supports_evex(), "");
6453   assert(src != xnoreg, "sanity");
6454   assert(imm8 <= 0x01, "imm8: %u", imm8);
6455   InstructionMark im(this);
6456   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6457   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
6458   attributes.reset_is_clear_context();
6459   attributes.set_is_evex_instruction();
6460   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6461   emit_int8(0x38);
6462   emit_operand(src, dst);
6463   // 0x00 - extract from lower 256 bits
6464   // 0x01 - extract from upper 256 bits
6465   emit_int8(imm8 & 0x01);
6466 }
6467 // vextractf forms
6468 
6469 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6470   assert(VM_Version::supports_avx(), "");
6471   assert(imm8 <= 0x01, "imm8: %u", imm8);
6472   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6473   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6474   // imm8:
6475   // 0x00 - extract from lower 128 bits
6476   // 0x01 - extract from upper 128 bits
6477   emit_int24(0x19, (unsigned char)(0xC0 | encode), imm8 & 0x01);
6478 }
6479 
6480 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
6481   assert(VM_Version::supports_avx(), "");
6482   assert(src != xnoreg, "sanity");
6483   assert(imm8 <= 0x01, "imm8: %u", imm8);
6484   InstructionMark im(this);
6485   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6486   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6487   attributes.reset_is_clear_context();
6488   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6489   emit_int8(0x19);
6490   emit_operand(src, dst);
6491   // 0x00 - extract from lower 128 bits
6492   // 0x01 - extract from upper 128 bits
6493   emit_int8(imm8 & 0x01);
6494 }
6495 
6496 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6497   assert(VM_Version::supports_evex(), "");
6498   assert(imm8 <= 0x03, "imm8: %u", imm8);
6499   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6500   attributes.set_is_evex_instruction();
6501   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6502   // imm8:
6503   // 0x00 - extract from bits 127:0
6504   // 0x01 - extract from bits 255:128
6505   // 0x02 - extract from bits 383:256
6506   // 0x03 - extract from bits 511:384
6507   emit_int24(0x19, (unsigned char)(0xC0 | encode), imm8 & 0x03);
6508 }
6509 
6510 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
6511   assert(VM_Version::supports_evex(), "");
6512   assert(src != xnoreg, "sanity");
6513   assert(imm8 <= 0x03, "imm8: %u", imm8);
6514   InstructionMark im(this);
6515   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6516   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6517   attributes.reset_is_clear_context();
6518   attributes.set_is_evex_instruction();
6519   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6520   emit_int8(0x19);
6521   emit_operand(src, dst);
6522   // 0x00 - extract from bits 127:0
6523   // 0x01 - extract from bits 255:128
6524   // 0x02 - extract from bits 383:256
6525   // 0x03 - extract from bits 511:384
6526   emit_int8(imm8 & 0x03);
6527 }
6528 
6529 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6530   assert(VM_Version::supports_avx512dq(), "");
6531   assert(imm8 <= 0x03, "imm8: %u", imm8);
6532   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6533   attributes.set_is_evex_instruction();
6534   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6535   // imm8:
6536   // 0x00 - extract from bits 127:0
6537   // 0x01 - extract from bits 255:128
6538   // 0x02 - extract from bits 383:256
6539   // 0x03 - extract from bits 511:384
6540   emit_int24(0x19, (unsigned char)(0xC0 | encode), imm8 & 0x03);
6541 }
6542 
6543 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6544   assert(VM_Version::supports_evex(), "");
6545   assert(imm8 <= 0x01, "imm8: %u", imm8);
6546   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6547   attributes.set_is_evex_instruction();
6548   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6549   // imm8:
6550   // 0x00 - extract from lower 256 bits
6551   // 0x01 - extract from upper 256 bits
6552   emit_int24(0x1B, (unsigned char)(0xC0 | encode), imm8 & 0x01);
6553 }
6554 
6555 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
6556   assert(VM_Version::supports_evex(), "");
6557   assert(src != xnoreg, "sanity");
6558   assert(imm8 <= 0x01, "imm8: %u", imm8);
6559   InstructionMark im(this);
6560   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6561   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
6562   attributes.reset_is_clear_context();
6563   attributes.set_is_evex_instruction();
6564   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6565   emit_int8(0x1B);
6566   emit_operand(src, dst);
6567   // 0x00 - extract from lower 256 bits
6568   // 0x01 - extract from upper 256 bits
6569   emit_int8(imm8 & 0x01);
6570 }
6571 
6572 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6573 void Assembler::vpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
6574   assert(VM_Version::supports_avx2(), "");
6575   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6576   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6577   emit_int16(0x78, (unsigned char)(0xC0 | encode));
6578 }
6579 
6580 void Assembler::vpbroadcastb(XMMRegister dst, Address src, int vector_len) {
6581   assert(VM_Version::supports_avx2(), "");
6582   assert(dst != xnoreg, "sanity");
6583   InstructionMark im(this);
6584   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6585   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
6586   // swap src<->dst for encoding
6587   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6588   emit_int8(0x78);
6589   emit_operand(dst, src);
6590 }
6591 
6592 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6593 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
6594   assert(VM_Version::supports_avx2(), "");
6595   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6596   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6597   emit_int16(0x79, (unsigned char)(0xC0 | encode));
6598 }
6599 
6600 void Assembler::vpbroadcastw(XMMRegister dst, Address src, int vector_len) {
6601   assert(VM_Version::supports_avx2(), "");
6602   assert(dst != xnoreg, "sanity");
6603   InstructionMark im(this);
6604   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6605   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
6606   // swap src<->dst for encoding
6607   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6608   emit_int8(0x79);
6609   emit_operand(dst, src);
6610 }
6611 
6612 // xmm/mem sourced byte/word/dword/qword replicate
6613 
6614 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6615 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
6616   assert(UseAVX >= 2, "");
6617   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6618   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6619   emit_int16(0x58, (unsigned char)(0xC0 | encode));
6620 }
6621 
6622 void Assembler::vpbroadcastd(XMMRegister dst, Address src, int vector_len) {
6623   assert(VM_Version::supports_avx2(), "");
6624   assert(dst != xnoreg, "sanity");
6625   InstructionMark im(this);
6626   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6627   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6628   // swap src<->dst for encoding
6629   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6630   emit_int8(0x58);
6631   emit_operand(dst, src);
6632 }
6633 
6634 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6635 void Assembler::vpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
6636   assert(VM_Version::supports_avx2(), "");
6637   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6638   attributes.set_rex_vex_w_reverted();
6639   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6640   emit_int16(0x59, (unsigned char)(0xC0 | encode));
6641 }
6642 
6643 void Assembler::vpbroadcastq(XMMRegister dst, Address src, int vector_len) {
6644   assert(VM_Version::supports_avx2(), "");
6645   assert(dst != xnoreg, "sanity");
6646   InstructionMark im(this);
6647   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6648   attributes.set_rex_vex_w_reverted();
6649   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6650   // swap src<->dst for encoding
6651   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6652   emit_int8(0x59);
6653   emit_operand(dst, src);
6654 }
6655 void Assembler::evbroadcasti64x2(XMMRegister dst, XMMRegister src, int vector_len) {
6656   assert(vector_len != Assembler::AVX_128bit, "");
6657   assert(VM_Version::supports_avx512dq(), "");
6658   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6659   attributes.set_rex_vex_w_reverted();
6660   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6661   emit_int16(0x5A, (unsigned char)(0xC0 | encode));
6662 }
6663 
6664 void Assembler::evbroadcasti64x2(XMMRegister dst, Address src, int vector_len) {
6665   assert(vector_len != Assembler::AVX_128bit, "");
6666   assert(VM_Version::supports_avx512dq(), "");
6667   assert(dst != xnoreg, "sanity");
6668   InstructionMark im(this);
6669   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6670   attributes.set_rex_vex_w_reverted();
6671   attributes.set_address_attributes(/* tuple_type */ EVEX_T2, /* input_size_in_bits */ EVEX_64bit);
6672   // swap src<->dst for encoding
6673   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6674   emit_int8(0x5A);
6675   emit_operand(dst, src);
6676 }
6677 
6678 // scalar single/double precision replicate
6679 
6680 // duplicate single precision data from src into programmed locations in dest : requires AVX512VL
6681 void Assembler::vbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
6682   assert(VM_Version::supports_avx2(), "");
6683   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6684   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6685   emit_int16(0x18, (unsigned char)(0xC0 | encode));
6686 }
6687 
6688 void Assembler::vbroadcastss(XMMRegister dst, Address src, int vector_len) {
6689   assert(VM_Version::supports_avx(), "");
6690   assert(dst != xnoreg, "sanity");
6691   InstructionMark im(this);
6692   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6693   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6694   // swap src<->dst for encoding
6695   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6696   emit_int8(0x18);
6697   emit_operand(dst, src);
6698 }
6699 
6700 // duplicate double precision data from src into programmed locations in dest : requires AVX512VL
6701 void Assembler::vbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
6702   assert(VM_Version::supports_avx2(), "");
6703   assert(vector_len == AVX_256bit || vector_len == AVX_512bit, "");
6704   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6705   attributes.set_rex_vex_w_reverted();
6706   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6707   emit_int16(0x19, (unsigned char)(0xC0 | encode));
6708 }
6709 
6710 void Assembler::vbroadcastsd(XMMRegister dst, Address src, int vector_len) {
6711   assert(VM_Version::supports_avx(), "");
6712   assert(vector_len == AVX_256bit || vector_len == AVX_512bit, "");
6713   assert(dst != xnoreg, "sanity");
6714   InstructionMark im(this);
6715   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6716   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6717   attributes.set_rex_vex_w_reverted();
6718   // swap src<->dst for encoding
6719   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6720   emit_int8(0x19);
6721   emit_operand(dst, src);
6722 }
6723 
6724 
6725 // gpr source broadcast forms
6726 
6727 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6728 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
6729   assert(VM_Version::supports_avx512bw(), "");
6730   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6731   attributes.set_is_evex_instruction();
6732   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6733   emit_int16(0x7A, (unsigned char)(0xC0 | encode));
6734 }
6735 
6736 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6737 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
6738   assert(VM_Version::supports_avx512bw(), "");
6739   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6740   attributes.set_is_evex_instruction();
6741   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6742   emit_int16(0x7B, (unsigned char)(0xC0 | encode));
6743 }
6744 
6745 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6746 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
6747   assert(VM_Version::supports_evex(), "");
6748   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6749   attributes.set_is_evex_instruction();
6750   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6751   emit_int16(0x7C, (unsigned char)(0xC0 | encode));
6752 }
6753 
6754 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6755 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
6756   assert(VM_Version::supports_evex(), "");
6757   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6758   attributes.set_is_evex_instruction();
6759   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6760   emit_int16(0x7C, (unsigned char)(0xC0 | encode));
6761 }
6762 void Assembler::evpgatherdd(XMMRegister dst, KRegister mask, Address src, int vector_len) {
6763   assert(VM_Version::supports_evex(), "");
6764   assert(dst != xnoreg, "sanity");
6765   InstructionMark im(this);
6766   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6767   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6768   attributes.reset_is_clear_context();
6769   attributes.set_embedded_opmask_register_specifier(mask);
6770   attributes.set_is_evex_instruction();
6771   // swap src<->dst for encoding
6772   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6773   emit_int8((unsigned char)0x90);
6774   emit_operand(dst, src);
6775 }
6776 // Carry-Less Multiplication Quadword
6777 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
6778   assert(VM_Version::supports_clmul(), "");
6779   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
6780   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6781   emit_int24(0x44, (unsigned char)(0xC0 | encode), (unsigned char)mask);
6782 }
6783 
6784 // Carry-Less Multiplication Quadword
6785 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
6786   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
6787   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
6788   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6789   emit_int24(0x44, (unsigned char)(0xC0 | encode), (unsigned char)mask);
6790 }
6791 
6792 void Assembler::evpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask, int vector_len) {
6793   assert(VM_Version::supports_avx512_vpclmulqdq(), "Requires vector carryless multiplication support");
6794   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6795   attributes.set_is_evex_instruction();
6796   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6797   emit_int24(0x44, (unsigned char)(0xC0 | encode), (unsigned char)mask);
6798 }
6799 
6800 void Assembler::vzeroupper_uncached() {
6801   if (VM_Version::supports_vzeroupper()) {
6802     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
6803     (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6804     emit_int8(0x77);
6805   }
6806 }
6807 
6808 #ifndef _LP64
6809 // 32bit only pieces of the assembler
6810 
6811 void Assembler::vzeroupper() {
6812   vzeroupper_uncached();
6813 }
6814 
6815 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6816   // NO PREFIX AS NEVER 64BIT
6817   InstructionMark im(this);
6818   emit_int8((unsigned char)0x81, (unsigned char)(0xF8 | src1->encoding()));
6819   emit_data(imm32, rspec, 0);
6820 }
6821 
6822 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6823   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
6824   InstructionMark im(this);
6825   emit_int8((unsigned char)0x81);
6826   emit_operand(rdi, src1);
6827   emit_data(imm32, rspec, 0);
6828 }
6829 
6830 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
6831 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
6832 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
6833 void Assembler::cmpxchg8(Address adr) {
6834   InstructionMark im(this);
6835   emit_int16(0x0F, (unsigned char)0xC7);
6836   emit_operand(rcx, adr);
6837 }
6838 
6839 void Assembler::decl(Register dst) {
6840   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6841  emit_int8(0x48 | dst->encoding());
6842 }
6843 
6844 // 64bit doesn't use the x87
6845 
6846 void Assembler::fabs() {
6847   emit_int16((unsigned char)0xD9, (unsigned char)0xE1);
6848 }
6849 
6850 void Assembler::fadd(int i) {
6851   emit_farith(0xD8, 0xC0, i);
6852 }
6853 
6854 void Assembler::fadd_d(Address src) {
6855   InstructionMark im(this);
6856   emit_int8((unsigned char)0xDC);
6857   emit_operand32(rax, src);
6858 }
6859 
6860 void Assembler::fadd_s(Address src) {
6861   InstructionMark im(this);
6862   emit_int8((unsigned char)0xD8);
6863   emit_operand32(rax, src);
6864 }
6865 
6866 void Assembler::fadda(int i) {
6867   emit_farith(0xDC, 0xC0, i);
6868 }
6869 
6870 void Assembler::faddp(int i) {
6871   emit_farith(0xDE, 0xC0, i);
6872 }
6873 
6874 void Assembler::fchs() {
6875   emit_int16((unsigned char)0xD9, (unsigned char)0xE0);
6876 }
6877 
6878 void Assembler::fcom(int i) {
6879   emit_farith(0xD8, 0xD0, i);
6880 }
6881 
6882 void Assembler::fcomp(int i) {
6883   emit_farith(0xD8, 0xD8, i);
6884 }
6885 
6886 void Assembler::fcomp_d(Address src) {
6887   InstructionMark im(this);
6888   emit_int8((unsigned char)0xDC);
6889   emit_operand32(rbx, src);
6890 }
6891 
6892 void Assembler::fcomp_s(Address src) {
6893   InstructionMark im(this);
6894   emit_int8((unsigned char)0xD8);
6895   emit_operand32(rbx, src);
6896 }
6897 
6898 void Assembler::fcompp() {
6899   emit_int16((unsigned char)0xDE, (unsigned char)0xD9);
6900 }
6901 
6902 void Assembler::fcos() {
6903   emit_int16((unsigned char)0xD9, (unsigned char)0xFF);
6904 }
6905 
6906 void Assembler::fdecstp() {
6907   emit_int16((unsigned char)0xD9, (unsigned char)0xF6);
6908 }
6909 
6910 void Assembler::fdiv(int i) {
6911   emit_farith(0xD8, 0xF0, i);
6912 }
6913 
6914 void Assembler::fdiv_d(Address src) {
6915   InstructionMark im(this);
6916   emit_int8((unsigned char)0xDC);
6917   emit_operand32(rsi, src);
6918 }
6919 
6920 void Assembler::fdiv_s(Address src) {
6921   InstructionMark im(this);
6922   emit_int8((unsigned char)0xD8);
6923   emit_operand32(rsi, src);
6924 }
6925 
6926 void Assembler::fdiva(int i) {
6927   emit_farith(0xDC, 0xF8, i);
6928 }
6929 
6930 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
6931 //       is erroneous for some of the floating-point instructions below.
6932 
6933 void Assembler::fdivp(int i) {
6934   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
6935 }
6936 
6937 void Assembler::fdivr(int i) {
6938   emit_farith(0xD8, 0xF8, i);
6939 }
6940 
6941 void Assembler::fdivr_d(Address src) {
6942   InstructionMark im(this);
6943   emit_int8((unsigned char)0xDC);
6944   emit_operand32(rdi, src);
6945 }
6946 
6947 void Assembler::fdivr_s(Address src) {
6948   InstructionMark im(this);
6949   emit_int8((unsigned char)0xD8);
6950   emit_operand32(rdi, src);
6951 }
6952 
6953 void Assembler::fdivra(int i) {
6954   emit_farith(0xDC, 0xF0, i);
6955 }
6956 
6957 void Assembler::fdivrp(int i) {
6958   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
6959 }
6960 
6961 void Assembler::ffree(int i) {
6962   emit_farith(0xDD, 0xC0, i);
6963 }
6964 
6965 void Assembler::fild_d(Address adr) {
6966   InstructionMark im(this);
6967   emit_int8((unsigned char)0xDF);
6968   emit_operand32(rbp, adr);
6969 }
6970 
6971 void Assembler::fild_s(Address adr) {
6972   InstructionMark im(this);
6973   emit_int8((unsigned char)0xDB);
6974   emit_operand32(rax, adr);
6975 }
6976 
6977 void Assembler::fincstp() {
6978   emit_int16((unsigned char)0xD9, (unsigned char)0xF7);
6979 }
6980 
6981 void Assembler::finit() {
6982   emit_int24((unsigned char)0x9B, (unsigned char)0xDB, (unsigned char)0xE3);
6983 }
6984 
6985 void Assembler::fist_s(Address adr) {
6986   InstructionMark im(this);
6987   emit_int8((unsigned char)0xDB);
6988   emit_operand32(rdx, adr);
6989 }
6990 
6991 void Assembler::fistp_d(Address adr) {
6992   InstructionMark im(this);
6993   emit_int8((unsigned char)0xDF);
6994   emit_operand32(rdi, adr);
6995 }
6996 
6997 void Assembler::fistp_s(Address adr) {
6998   InstructionMark im(this);
6999   emit_int8((unsigned char)0xDB);
7000   emit_operand32(rbx, adr);
7001 }
7002 
7003 void Assembler::fld1() {
7004   emit_int16((unsigned char)0xD9, (unsigned char)0xE8);
7005 }
7006 
7007 void Assembler::fld_d(Address adr) {
7008   InstructionMark im(this);
7009   emit_int8((unsigned char)0xDD);
7010   emit_operand32(rax, adr);
7011 }
7012 
7013 void Assembler::fld_s(Address adr) {
7014   InstructionMark im(this);
7015   emit_int8((unsigned char)0xD9);
7016   emit_operand32(rax, adr);
7017 }
7018 
7019 
7020 void Assembler::fld_s(int index) {
7021   emit_farith(0xD9, 0xC0, index);
7022 }
7023 
7024 void Assembler::fld_x(Address adr) {
7025   InstructionMark im(this);
7026   emit_int8((unsigned char)0xDB);
7027   emit_operand32(rbp, adr);
7028 }
7029 
7030 void Assembler::fldcw(Address src) {
7031   InstructionMark im(this);
7032   emit_int8((unsigned char)0xD9);
7033   emit_operand32(rbp, src);
7034 }
7035 
7036 void Assembler::fldenv(Address src) {
7037   InstructionMark im(this);
7038   emit_int8((unsigned char)0xD9);
7039   emit_operand32(rsp, src);
7040 }
7041 
7042 void Assembler::fldlg2() {
7043   emit_int16((unsigned char)0xD9, (unsigned char)0xEC);
7044 }
7045 
7046 void Assembler::fldln2() {
7047   emit_int16((unsigned char)0xD9, (unsigned char)0xED);
7048 }
7049 
7050 void Assembler::fldz() {
7051   emit_int16((unsigned char)0xD9, (unsigned char)0xEE);
7052 }
7053 
7054 void Assembler::flog() {
7055   fldln2();
7056   fxch();
7057   fyl2x();
7058 }
7059 
7060 void Assembler::flog10() {
7061   fldlg2();
7062   fxch();
7063   fyl2x();
7064 }
7065 
7066 void Assembler::fmul(int i) {
7067   emit_farith(0xD8, 0xC8, i);
7068 }
7069 
7070 void Assembler::fmul_d(Address src) {
7071   InstructionMark im(this);
7072   emit_int8((unsigned char)0xDC);
7073   emit_operand32(rcx, src);
7074 }
7075 
7076 void Assembler::fmul_s(Address src) {
7077   InstructionMark im(this);
7078   emit_int8((unsigned char)0xD8);
7079   emit_operand32(rcx, src);
7080 }
7081 
7082 void Assembler::fmula(int i) {
7083   emit_farith(0xDC, 0xC8, i);
7084 }
7085 
7086 void Assembler::fmulp(int i) {
7087   emit_farith(0xDE, 0xC8, i);
7088 }
7089 
7090 void Assembler::fnsave(Address dst) {
7091   InstructionMark im(this);
7092   emit_int8((unsigned char)0xDD);
7093   emit_operand32(rsi, dst);
7094 }
7095 
7096 void Assembler::fnstcw(Address src) {
7097   InstructionMark im(this);
7098   emit_int16((unsigned char)0x9B, (unsigned char)0xD9);
7099   emit_operand32(rdi, src);
7100 }
7101 
7102 void Assembler::fnstsw_ax() {
7103   emit_int16((unsigned char)0xDF, (unsigned char)0xE0);
7104 }
7105 
7106 void Assembler::fprem() {
7107   emit_int16((unsigned char)0xD9, (unsigned char)0xF8);
7108 }
7109 
7110 void Assembler::fprem1() {
7111   emit_int16((unsigned char)0xD9, (unsigned char)0xF5);
7112 }
7113 
7114 void Assembler::frstor(Address src) {
7115   InstructionMark im(this);
7116   emit_int8((unsigned char)0xDD);
7117   emit_operand32(rsp, src);
7118 }
7119 
7120 void Assembler::fsin() {
7121   emit_int16((unsigned char)0xD9, (unsigned char)0xFE);
7122 }
7123 
7124 void Assembler::fsqrt() {
7125   emit_int16((unsigned char)0xD9, (unsigned char)0xFA);
7126 }
7127 
7128 void Assembler::fst_d(Address adr) {
7129   InstructionMark im(this);
7130   emit_int8((unsigned char)0xDD);
7131   emit_operand32(rdx, adr);
7132 }
7133 
7134 void Assembler::fst_s(Address adr) {
7135   InstructionMark im(this);
7136   emit_int8((unsigned char)0xD9);
7137   emit_operand32(rdx, adr);
7138 }
7139 
7140 void Assembler::fstp_d(Address adr) {
7141   InstructionMark im(this);
7142   emit_int8((unsigned char)0xDD);
7143   emit_operand32(rbx, adr);
7144 }
7145 
7146 void Assembler::fstp_d(int index) {
7147   emit_farith(0xDD, 0xD8, index);
7148 }
7149 
7150 void Assembler::fstp_s(Address adr) {
7151   InstructionMark im(this);
7152   emit_int8((unsigned char)0xD9);
7153   emit_operand32(rbx, adr);
7154 }
7155 
7156 void Assembler::fstp_x(Address adr) {
7157   InstructionMark im(this);
7158   emit_int8((unsigned char)0xDB);
7159   emit_operand32(rdi, adr);
7160 }
7161 
7162 void Assembler::fsub(int i) {
7163   emit_farith(0xD8, 0xE0, i);
7164 }
7165 
7166 void Assembler::fsub_d(Address src) {
7167   InstructionMark im(this);
7168   emit_int8((unsigned char)0xDC);
7169   emit_operand32(rsp, src);
7170 }
7171 
7172 void Assembler::fsub_s(Address src) {
7173   InstructionMark im(this);
7174   emit_int8((unsigned char)0xD8);
7175   emit_operand32(rsp, src);
7176 }
7177 
7178 void Assembler::fsuba(int i) {
7179   emit_farith(0xDC, 0xE8, i);
7180 }
7181 
7182 void Assembler::fsubp(int i) {
7183   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
7184 }
7185 
7186 void Assembler::fsubr(int i) {
7187   emit_farith(0xD8, 0xE8, i);
7188 }
7189 
7190 void Assembler::fsubr_d(Address src) {
7191   InstructionMark im(this);
7192   emit_int8((unsigned char)0xDC);
7193   emit_operand32(rbp, src);
7194 }
7195 
7196 void Assembler::fsubr_s(Address src) {
7197   InstructionMark im(this);
7198   emit_int8((unsigned char)0xD8);
7199   emit_operand32(rbp, src);
7200 }
7201 
7202 void Assembler::fsubra(int i) {
7203   emit_farith(0xDC, 0xE0, i);
7204 }
7205 
7206 void Assembler::fsubrp(int i) {
7207   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
7208 }
7209 
7210 void Assembler::ftan() {
7211   emit_int32((unsigned char)0xD9, (unsigned char)0xF2, (unsigned char)0xDD, (unsigned char)0xD8);
7212 }
7213 
7214 void Assembler::ftst() {
7215   emit_int16((unsigned char)0xD9, (unsigned char)0xE4);
7216 }
7217 
7218 void Assembler::fucomi(int i) {
7219   // make sure the instruction is supported (introduced for P6, together with cmov)
7220   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7221   emit_farith(0xDB, 0xE8, i);
7222 }
7223 
7224 void Assembler::fucomip(int i) {
7225   // make sure the instruction is supported (introduced for P6, together with cmov)
7226   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7227   emit_farith(0xDF, 0xE8, i);
7228 }
7229 
7230 void Assembler::fwait() {
7231   emit_int8((unsigned char)0x9B);
7232 }
7233 
7234 void Assembler::fxch(int i) {
7235   emit_farith(0xD9, 0xC8, i);
7236 }
7237 
7238 void Assembler::fyl2x() {
7239   emit_int16((unsigned char)0xD9, (unsigned char)0xF1);
7240 }
7241 
7242 void Assembler::frndint() {
7243   emit_int16((unsigned char)0xD9, (unsigned char)0xFC);
7244 }
7245 
7246 void Assembler::f2xm1() {
7247   emit_int16((unsigned char)0xD9, (unsigned char)0xF0);
7248 }
7249 
7250 void Assembler::fldl2e() {
7251   emit_int16((unsigned char)0xD9, (unsigned char)0xEA);
7252 }
7253 #endif // !_LP64
7254 
7255 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
7256 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
7257 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
7258 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
7259 
7260 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
7261 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7262   if (pre > 0) {
7263     emit_int8(simd_pre[pre]);
7264   }
7265   if (rex_w) {
7266     prefixq(adr, xreg);
7267   } else {
7268     prefix(adr, xreg);
7269   }
7270   if (opc > 0) {
7271     emit_int8(0x0F);
7272     int opc2 = simd_opc[opc];
7273     if (opc2 > 0) {
7274       emit_int8(opc2);
7275     }
7276   }
7277 }
7278 
7279 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7280   if (pre > 0) {
7281     emit_int8(simd_pre[pre]);
7282   }
7283   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
7284   if (opc > 0) {
7285     emit_int8(0x0F);
7286     int opc2 = simd_opc[opc];
7287     if (opc2 > 0) {
7288       emit_int8(opc2);
7289     }
7290   }
7291   return encode;
7292 }
7293 
7294 
7295 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
7296   int vector_len = _attributes->get_vector_len();
7297   bool vex_w = _attributes->is_rex_vex_w();
7298   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
7299     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
7300     byte1 = (~byte1) & 0xE0;
7301     byte1 |= opc;
7302 
7303     int byte2 = ((~nds_enc) & 0xf) << 3;
7304     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
7305 
7306     emit_int24((unsigned char)VEX_3bytes, byte1, byte2);
7307   } else {
7308     int byte1 = vex_r ? VEX_R : 0;
7309     byte1 = (~byte1) & 0x80;
7310     byte1 |= ((~nds_enc) & 0xf) << 3;
7311     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
7312     emit_int16((unsigned char)VEX_2bytes, byte1);
7313   }
7314 }
7315 
7316 // This is a 4 byte encoding
7317 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
7318   // EVEX 0x62 prefix
7319   // byte1 = EVEX_4bytes;
7320 
7321   bool vex_w = _attributes->is_rex_vex_w();
7322   int evex_encoding = (vex_w ? VEX_W : 0);
7323   // EVEX.b is not currently used for broadcast of single element or data rounding modes
7324   _attributes->set_evex_encoding(evex_encoding);
7325 
7326   // P0: byte 2, initialized to RXBR`00mm
7327   // instead of not'd
7328   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
7329   byte2 = (~byte2) & 0xF0;
7330   // confine opc opcode extensions in mm bits to lower two bits
7331   // of form {0F, 0F_38, 0F_3A}
7332   byte2 |= opc;
7333 
7334   // P1: byte 3 as Wvvvv1pp
7335   int byte3 = ((~nds_enc) & 0xf) << 3;
7336   // p[10] is always 1
7337   byte3 |= EVEX_F;
7338   byte3 |= (vex_w & 1) << 7;
7339   // confine pre opcode extensions in pp bits to lower two bits
7340   // of form {66, F3, F2}
7341   byte3 |= pre;
7342 
7343   // P2: byte 4 as zL'Lbv'aaa
7344   // kregs are implemented in the low 3 bits as aaa
7345   int byte4 = (_attributes->is_no_reg_mask()) ?
7346               0 :
7347               _attributes->get_embedded_opmask_register_specifier();
7348   // EVEX.v` for extending EVEX.vvvv or VIDX
7349   byte4 |= (evex_v ? 0: EVEX_V);
7350   // third EXEC.b for broadcast actions
7351   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
7352   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
7353   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
7354   // last is EVEX.z for zero/merge actions
7355   if (_attributes->is_no_reg_mask() == false) {
7356     byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
7357   }
7358 
7359   emit_int32(EVEX_4bytes, byte2, byte3, byte4);
7360 }
7361 
7362 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7363   bool vex_r = (xreg_enc & 8) == 8;
7364   bool vex_b = adr.base_needs_rex();
7365   bool vex_x;
7366   if (adr.isxmmindex()) {
7367     vex_x = adr.xmmindex_needs_rex();
7368   } else {
7369     vex_x = adr.index_needs_rex();
7370   }
7371   set_attributes(attributes);
7372   attributes->set_current_assembler(this);
7373 
7374   // For EVEX instruction (which is not marked as pure EVEX instruction) check and see if this instruction
7375   // is allowed in legacy mode and has resources which will fit in it.
7376   // Pure EVEX instructions will have is_evex_instruction set in their definition.
7377   if (!attributes->is_legacy_mode()) {
7378     if (UseAVX > 2 && !attributes->is_evex_instruction() && !is_managed()) {
7379       if ((attributes->get_vector_len() != AVX_512bit) && (nds_enc < 16) && (xreg_enc < 16)) {
7380           attributes->set_is_legacy_mode();
7381       }
7382     }
7383   }
7384 
7385   if (UseAVX > 2) {
7386     assert(((!attributes->uses_vl()) ||
7387             (attributes->get_vector_len() == AVX_512bit) ||
7388             (!_legacy_mode_vl) ||
7389             (attributes->is_legacy_mode())),"XMM register should be 0-15");
7390     assert(((nds_enc < 16 && xreg_enc < 16) || (!attributes->is_legacy_mode())),"XMM register should be 0-15");
7391   }
7392 
7393   clear_managed();
7394   if (UseAVX > 2 && !attributes->is_legacy_mode())
7395   {
7396     bool evex_r = (xreg_enc >= 16);
7397     bool evex_v;
7398     // EVEX.V' is set to true when VSIB is used as we may need to use higher order XMM registers (16-31)
7399     if (adr.isxmmindex())  {
7400       evex_v = ((adr._xmmindex->encoding() > 15) ? true : false);
7401     } else {
7402       evex_v = (nds_enc >= 16);
7403     }
7404     attributes->set_is_evex_instruction();
7405     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7406   } else {
7407     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7408       attributes->set_rex_vex_w(false);
7409     }
7410     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7411   }
7412 }
7413 
7414 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7415   bool vex_r = (dst_enc & 8) == 8;
7416   bool vex_b = (src_enc & 8) == 8;
7417   bool vex_x = false;
7418   set_attributes(attributes);
7419   attributes->set_current_assembler(this);
7420 
7421   // For EVEX instruction (which is not marked as pure EVEX instruction) check and see if this instruction
7422   // is allowed in legacy mode and has resources which will fit in it.
7423   // Pure EVEX instructions will have is_evex_instruction set in their definition.
7424   if (!attributes->is_legacy_mode()) {
7425     if (UseAVX > 2 && !attributes->is_evex_instruction() && !is_managed()) {
7426       if ((!attributes->uses_vl() || (attributes->get_vector_len() != AVX_512bit)) &&
7427           (dst_enc < 16) && (nds_enc < 16) && (src_enc < 16)) {
7428           attributes->set_is_legacy_mode();
7429       }
7430     }
7431   }
7432 
7433   if (UseAVX > 2) {
7434     // All the scalar fp instructions (with uses_vl as false) can have legacy_mode as false
7435     // Instruction with uses_vl true are vector instructions
7436     // All the vector instructions with AVX_512bit length can have legacy_mode as false
7437     // All the vector instructions with < AVX_512bit length can have legacy_mode as false if AVX512vl() is supported
7438     // Rest all should have legacy_mode set as true
7439     assert(((!attributes->uses_vl()) ||
7440             (attributes->get_vector_len() == AVX_512bit) ||
7441             (!_legacy_mode_vl) ||
7442             (attributes->is_legacy_mode())),"XMM register should be 0-15");
7443     // Instruction with legacy_mode true should have dst, nds and src < 15
7444     assert(((dst_enc < 16 && nds_enc < 16 && src_enc < 16) || (!attributes->is_legacy_mode())),"XMM register should be 0-15");
7445   }
7446 
7447   clear_managed();
7448   if (UseAVX > 2 && !attributes->is_legacy_mode())
7449   {
7450     bool evex_r = (dst_enc >= 16);
7451     bool evex_v = (nds_enc >= 16);
7452     // can use vex_x as bank extender on rm encoding
7453     vex_x = (src_enc >= 16);
7454     attributes->set_is_evex_instruction();
7455     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7456   } else {
7457     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7458       attributes->set_rex_vex_w(false);
7459     }
7460     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7461   }
7462 
7463   // return modrm byte components for operands
7464   return (((dst_enc & 7) << 3) | (src_enc & 7));
7465 }
7466 
7467 
7468 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
7469                             VexOpcode opc, InstructionAttr *attributes) {
7470   if (UseAVX > 0) {
7471     int xreg_enc = xreg->encoding();
7472     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7473     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
7474   } else {
7475     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
7476     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
7477   }
7478 }
7479 
7480 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
7481                                       VexOpcode opc, InstructionAttr *attributes) {
7482   int dst_enc = dst->encoding();
7483   int src_enc = src->encoding();
7484   if (UseAVX > 0) {
7485     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7486     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
7487   } else {
7488     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
7489     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
7490   }
7491 }
7492 
7493 void Assembler::vmaxss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
7494   assert(VM_Version::supports_avx(), "");
7495   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7496   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7497   emit_int16(0x5F, (unsigned char)(0xC0 | encode));
7498 }
7499 
7500 void Assembler::vmaxsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
7501   assert(VM_Version::supports_avx(), "");
7502   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7503   attributes.set_rex_vex_w_reverted();
7504   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7505   emit_int16(0x5F, (unsigned char)(0xC0 | encode));
7506 }
7507 
7508 void Assembler::vminss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
7509   assert(VM_Version::supports_avx(), "");
7510   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7511   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7512   emit_int16(0x5D, (unsigned char)(0xC0 | encode));
7513 }
7514 
7515 void Assembler::vminsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
7516   assert(VM_Version::supports_avx(), "");
7517   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7518   attributes.set_rex_vex_w_reverted();
7519   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7520   emit_int16(0x5D, (unsigned char)(0xC0 | encode));
7521 }
7522 
7523 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7524   assert(VM_Version::supports_avx(), "");
7525   assert(vector_len <= AVX_256bit, "");
7526   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7527   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7528   emit_int24((unsigned char)0xC2, (unsigned char)(0xC0 | encode), (unsigned char)(0xF & cop));
7529 }
7530 
7531 void Assembler::blendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7532   assert(VM_Version::supports_avx(), "");
7533   assert(vector_len <= AVX_256bit, "");
7534   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7535   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7536   int src2_enc = src2->encoding();
7537   emit_int24((unsigned char)0x4B, (unsigned char)(0xC0 | encode), (unsigned char)(0xF0 & src2_enc << 4));
7538 }
7539 
7540 void Assembler::cmpps(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7541   assert(VM_Version::supports_avx(), "");
7542   assert(vector_len <= AVX_256bit, "");
7543   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7544   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
7545   emit_int24((unsigned char)0xC2, (unsigned char)(0xC0 | encode), (unsigned char)(0xF & cop));
7546 }
7547 
7548 void Assembler::blendvps(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7549   assert(VM_Version::supports_avx(), "");
7550   assert(vector_len <= AVX_256bit, "");
7551   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7552   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7553   int src2_enc = src2->encoding();
7554   emit_int24((unsigned char)0x4A, (unsigned char)(0xC0 | encode), (unsigned char)(0xF0 & src2_enc << 4));
7555 }
7556 
7557 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
7558   assert(VM_Version::supports_avx2(), "");
7559   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7560   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7561   emit_int24((unsigned char)0x02, (unsigned char)(0xC0 | encode), (unsigned char)imm8);
7562 }
7563 
7564 void Assembler::shlxl(Register dst, Register src1, Register src2) {
7565   assert(VM_Version::supports_bmi2(), "");
7566   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7567   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7568   emit_int16((unsigned char)0xF7, (unsigned char)(0xC0 | encode));
7569 }
7570 
7571 void Assembler::shlxq(Register dst, Register src1, Register src2) {
7572   assert(VM_Version::supports_bmi2(), "");
7573   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7574   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7575   emit_int16((unsigned char)0xF7, (unsigned char)(0xC0 | encode));
7576 }
7577 
7578 #ifndef _LP64
7579 
7580 void Assembler::incl(Register dst) {
7581   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7582   emit_int8(0x40 | dst->encoding());
7583 }
7584 
7585 void Assembler::lea(Register dst, Address src) {
7586   leal(dst, src);
7587 }
7588 
7589 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
7590   InstructionMark im(this);
7591   emit_int8((unsigned char)0xC7);
7592   emit_operand(rax, dst);
7593   emit_data((int)imm32, rspec, 0);
7594 }
7595 
7596 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7597   InstructionMark im(this);
7598   int encode = prefix_and_encode(dst->encoding());
7599   emit_int8((unsigned char)(0xB8 | encode));
7600   emit_data((int)imm32, rspec, 0);
7601 }
7602 
7603 void Assembler::popa() { // 32bit
7604   emit_int8(0x61);
7605 }
7606 
7607 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
7608   InstructionMark im(this);
7609   emit_int8(0x68);
7610   emit_data(imm32, rspec, 0);
7611 }
7612 
7613 void Assembler::pusha() { // 32bit
7614   emit_int8(0x60);
7615 }
7616 
7617 void Assembler::set_byte_if_not_zero(Register dst) {
7618   emit_int8(0x0F, (unsigned char)0x95, (unsigned char)(0xE0 | dst->encoding()));
7619 }
7620 
7621 #else // LP64
7622 
7623 void Assembler::set_byte_if_not_zero(Register dst) {
7624   int enc = prefix_and_encode(dst->encoding(), true);
7625   emit_int24(0x0F, (unsigned char)0x95, (unsigned char)(0xE0 | enc));
7626 }
7627 
7628 // 64bit only pieces of the assembler
7629 // This should only be used by 64bit instructions that can use rip-relative
7630 // it cannot be used by instructions that want an immediate value.
7631 
7632 bool Assembler::reachable(AddressLiteral adr) {
7633   int64_t disp;
7634   relocInfo::relocType relocType = adr.reloc();
7635 
7636   // None will force a 64bit literal to the code stream. Likely a placeholder
7637   // for something that will be patched later and we need to certain it will
7638   // always be reachable.
7639   if (relocType == relocInfo::none) {
7640     return false;
7641   }
7642   if (relocType == relocInfo::internal_word_type) {
7643     // This should be rip relative and easily reachable.
7644     return true;
7645   }
7646   if (relocType == relocInfo::virtual_call_type ||
7647       relocType == relocInfo::opt_virtual_call_type ||
7648       relocType == relocInfo::static_call_type ||
7649       relocType == relocInfo::static_stub_type ) {
7650     // This should be rip relative within the code cache and easily
7651     // reachable until we get huge code caches. (At which point
7652     // ic code is going to have issues).
7653     return true;
7654   }
7655   if (relocType != relocInfo::external_word_type &&
7656       relocType != relocInfo::poll_return_type &&  // these are really external_word but need special
7657       relocType != relocInfo::poll_type &&         // relocs to identify them
7658       relocType != relocInfo::runtime_call_type ) {
7659     return false;
7660   }
7661 
7662   // Stress the correction code
7663   if (ForceUnreachable) {
7664     // Must be runtimecall reloc, see if it is in the codecache
7665     // Flipping stuff in the codecache to be unreachable causes issues
7666     // with things like inline caches where the additional instructions
7667     // are not handled.
7668     if (CodeCache::find_blob(adr._target) == NULL) {
7669       return false;
7670     }
7671   }
7672   // For external_word_type/runtime_call_type if it is reachable from where we
7673   // are now (possibly a temp buffer) and where we might end up
7674   // anywhere in the codeCache then we are always reachable.
7675   // This would have to change if we ever save/restore shared code
7676   // to be more pessimistic.
7677   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
7678   if (!is_simm32(disp)) return false;
7679   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
7680   if (!is_simm32(disp)) return false;
7681 
7682   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
7683 
7684   // Because rip relative is a disp + address_of_next_instruction and we
7685   // don't know the value of address_of_next_instruction we apply a fudge factor
7686   // to make sure we will be ok no matter the size of the instruction we get placed into.
7687   // We don't have to fudge the checks above here because they are already worst case.
7688 
7689   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
7690   // + 4 because better safe than sorry.
7691   const int fudge = 12 + 4;
7692   if (disp < 0) {
7693     disp -= fudge;
7694   } else {
7695     disp += fudge;
7696   }
7697   return is_simm32(disp);
7698 }
7699 
7700 // Check if the polling page is not reachable from the code cache using rip-relative
7701 // addressing.
7702 bool Assembler::is_polling_page_far() {
7703   intptr_t addr = (intptr_t)os::get_polling_page();
7704   return ForceUnreachable ||
7705          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
7706          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
7707 }
7708 
7709 void Assembler::emit_data64(jlong data,
7710                             relocInfo::relocType rtype,
7711                             int format) {
7712   if (rtype == relocInfo::none) {
7713     emit_int64(data);
7714   } else {
7715     emit_data64(data, Relocation::spec_simple(rtype), format);
7716   }
7717 }
7718 
7719 void Assembler::emit_data64(jlong data,
7720                             RelocationHolder const& rspec,
7721                             int format) {
7722   assert(imm_operand == 0, "default format must be immediate in this file");
7723   assert(imm_operand == format, "must be immediate");
7724   assert(inst_mark() != NULL, "must be inside InstructionMark");
7725   // Do not use AbstractAssembler::relocate, which is not intended for
7726   // embedded words.  Instead, relocate to the enclosing instruction.
7727   code_section()->relocate(inst_mark(), rspec, format);
7728 #ifdef ASSERT
7729   check_relocation(rspec, format);
7730 #endif
7731   emit_int64(data);
7732 }
7733 
7734 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
7735   if (reg_enc >= 8) {
7736     prefix(REX_B);
7737     reg_enc -= 8;
7738   } else if (byteinst && reg_enc >= 4) {
7739     prefix(REX);
7740   }
7741   return reg_enc;
7742 }
7743 
7744 int Assembler::prefixq_and_encode(int reg_enc) {
7745   if (reg_enc < 8) {
7746     prefix(REX_W);
7747   } else {
7748     prefix(REX_WB);
7749     reg_enc -= 8;
7750   }
7751   return reg_enc;
7752 }
7753 
7754 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
7755   if (dst_enc < 8) {
7756     if (src_enc >= 8) {
7757       prefix(REX_B);
7758       src_enc -= 8;
7759     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
7760       prefix(REX);
7761     }
7762   } else {
7763     if (src_enc < 8) {
7764       prefix(REX_R);
7765     } else {
7766       prefix(REX_RB);
7767       src_enc -= 8;
7768     }
7769     dst_enc -= 8;
7770   }
7771   return dst_enc << 3 | src_enc;
7772 }
7773 
7774 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
7775   static const int8_t prefixes[] = {
7776       REX_W,
7777       REX_WB,
7778       REX_WR,
7779       REX_WRB
7780   };
7781   int idx = 0;
7782   if (dst_enc >= 8) {
7783     idx |= 2;
7784     dst_enc -= 8;
7785   }
7786   if (src_enc >= 8) {
7787     src_enc -= 8;
7788     idx |= 1;
7789   }
7790   emit_int8(prefixes[idx]);
7791   return dst_enc << 3 | src_enc;
7792 }
7793 
7794 void Assembler::prefix(Register reg) {
7795   if (reg->encoding() >= 8) {
7796     prefix(REX_B);
7797   }
7798 }
7799 
7800 void Assembler::prefix(Register dst, Register src, Prefix p) {
7801   if (src->encoding() >= 8) {
7802     p = (Prefix)(p | REX_B);
7803   }
7804   if (dst->encoding() >= 8) {
7805     p = (Prefix)( p | REX_R);
7806   }
7807   if (p != Prefix_EMPTY) {
7808     // do not generate an empty prefix
7809     prefix(p);
7810   }
7811 }
7812 
7813 void Assembler::prefix(Register dst, Address adr, Prefix p) {
7814   if (adr.base_needs_rex()) {
7815     if (adr.index_needs_rex()) {
7816       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7817     } else {
7818       prefix(REX_B);
7819     }
7820   } else {
7821     if (adr.index_needs_rex()) {
7822       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7823     }
7824   }
7825   if (dst->encoding() >= 8) {
7826     p = (Prefix)(p | REX_R);
7827   }
7828   if (p != Prefix_EMPTY) {
7829     // do not generate an empty prefix
7830     prefix(p);
7831   }
7832 }
7833 
7834 void Assembler::prefix(Address adr) {
7835   if (adr.base_needs_rex()) {
7836     if (adr.index_needs_rex()) {
7837       prefix(REX_XB);
7838     } else {
7839       prefix(REX_B);
7840     }
7841   } else {
7842     if (adr.index_needs_rex()) {
7843       prefix(REX_X);
7844     }
7845   }
7846 }
7847 
7848 int8_t Assembler::get_prefixq(Address adr) {
7849   static const Assembler::Prefix prefixes[] = {
7850       REX_W,
7851       REX_WX,
7852       REX_WB,
7853       REX_WXB
7854   };
7855   int idx = (int)adr.index_needs_rex() | ((int)adr.base_needs_rex() << 1);
7856   Assembler::Prefix prfx = prefixes[idx];
7857 #ifdef ASSERT
7858   if (adr.base_needs_rex()) {
7859     if (adr.index_needs_rex()) {
7860       assert(prfx == REX_WXB, "must be");
7861     } else {
7862       assert(prfx == REX_WB, "must be");
7863     }
7864   } else {
7865     if (adr.index_needs_rex()) {
7866       assert(prfx == REX_WX, "must be");
7867     } else {
7868       assert(prfx == REX_W, "must be");
7869     }
7870   }
7871 #endif
7872   return (int8_t)prfx;
7873 }
7874 
7875 void Assembler::prefixq(Address adr) {
7876   emit_int8(get_prefixq(adr));
7877 }
7878 
7879 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
7880   if (reg->encoding() < 8) {
7881     if (adr.base_needs_rex()) {
7882       if (adr.index_needs_rex()) {
7883         prefix(REX_XB);
7884       } else {
7885         prefix(REX_B);
7886       }
7887     } else {
7888       if (adr.index_needs_rex()) {
7889         prefix(REX_X);
7890       } else if (byteinst && reg->encoding() >= 4 ) {
7891         prefix(REX);
7892       }
7893     }
7894   } else {
7895     if (adr.base_needs_rex()) {
7896       if (adr.index_needs_rex()) {
7897         prefix(REX_RXB);
7898       } else {
7899         prefix(REX_RB);
7900       }
7901     } else {
7902       if (adr.index_needs_rex()) {
7903         prefix(REX_RX);
7904       } else {
7905         prefix(REX_R);
7906       }
7907     }
7908   }
7909 }
7910 
7911 int8_t Assembler::get_prefixq(Address adr, Register src) {
7912   static const int8_t prefixes[] = {
7913       REX_WR,
7914       REX_WRX,
7915       REX_WRB,
7916       REX_WRXB,
7917       REX_W,
7918       REX_WX,
7919       REX_WB,
7920       REX_WXB,
7921   };
7922   int idx = (int)adr.index_needs_rex() | ((int)adr.base_needs_rex() << 1) | ((int)(src->encoding() < 8) << 2);
7923   return prefixes[idx];
7924 }
7925 
7926 void Assembler::prefixq(Address adr, Register src) {
7927   emit_int8(get_prefixq(adr, src));
7928 }
7929 
7930 void Assembler::prefix(Address adr, XMMRegister reg) {
7931   if (reg->encoding() < 8) {
7932     if (adr.base_needs_rex()) {
7933       if (adr.index_needs_rex()) {
7934         prefix(REX_XB);
7935       } else {
7936         prefix(REX_B);
7937       }
7938     } else {
7939       if (adr.index_needs_rex()) {
7940         prefix(REX_X);
7941       }
7942     }
7943   } else {
7944     if (adr.base_needs_rex()) {
7945       if (adr.index_needs_rex()) {
7946         prefix(REX_RXB);
7947       } else {
7948         prefix(REX_RB);
7949       }
7950     } else {
7951       if (adr.index_needs_rex()) {
7952         prefix(REX_RX);
7953       } else {
7954         prefix(REX_R);
7955       }
7956     }
7957   }
7958 }
7959 
7960 void Assembler::prefixq(Address adr, XMMRegister src) {
7961   if (src->encoding() < 8) {
7962     if (adr.base_needs_rex()) {
7963       if (adr.index_needs_rex()) {
7964         prefix(REX_WXB);
7965       } else {
7966         prefix(REX_WB);
7967       }
7968     } else {
7969       if (adr.index_needs_rex()) {
7970         prefix(REX_WX);
7971       } else {
7972         prefix(REX_W);
7973       }
7974     }
7975   } else {
7976     if (adr.base_needs_rex()) {
7977       if (adr.index_needs_rex()) {
7978         prefix(REX_WRXB);
7979       } else {
7980         prefix(REX_WRB);
7981       }
7982     } else {
7983       if (adr.index_needs_rex()) {
7984         prefix(REX_WRX);
7985       } else {
7986         prefix(REX_WR);
7987       }
7988     }
7989   }
7990 }
7991 
7992 void Assembler::adcq(Register dst, int32_t imm32) {
7993   (void) prefixq_and_encode(dst->encoding());
7994   emit_arith(0x81, 0xD0, dst, imm32);
7995 }
7996 
7997 void Assembler::adcq(Register dst, Address src) {
7998   InstructionMark im(this);
7999   emit_int16(get_prefixq(src, dst),
8000              0x13);
8001   emit_operand(dst, src);
8002 }
8003 
8004 void Assembler::adcq(Register dst, Register src) {
8005   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8006   emit_arith(0x13, 0xC0, dst, src);
8007 }
8008 
8009 void Assembler::addq(Address dst, int32_t imm32) {
8010   InstructionMark im(this);
8011   prefixq(dst);
8012   emit_arith_operand(0x81, rax, dst,imm32);
8013 }
8014 
8015 void Assembler::addq(Address dst, Register src) {
8016   InstructionMark im(this);
8017   emit_int16(get_prefixq(dst, src),
8018              0x01);
8019   emit_operand(src, dst);
8020 }
8021 
8022 void Assembler::addq(Register dst, int32_t imm32) {
8023   (void) prefixq_and_encode(dst->encoding());
8024   emit_arith(0x81, 0xC0, dst, imm32);
8025 }
8026 
8027 void Assembler::addq(Register dst, Address src) {
8028   InstructionMark im(this);
8029   emit_int16(get_prefixq(src, dst), 0x03);
8030   emit_operand(dst, src);
8031 }
8032 
8033 void Assembler::addq(Register dst, Register src) {
8034   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8035   emit_arith(0x03, 0xC0, dst, src);
8036 }
8037 
8038 void Assembler::adcxq(Register dst, Register src) {
8039   //assert(VM_Version::supports_adx(), "adx instructions not supported");
8040   emit_int8((unsigned char)0x66);
8041   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8042   emit_int32(0x0F,
8043              0x38,
8044              (unsigned char)0xF6,
8045              (unsigned char)(0xC0 | encode));
8046 }
8047 
8048 void Assembler::adoxq(Register dst, Register src) {
8049   //assert(VM_Version::supports_adx(), "adx instructions not supported");
8050   emit_int8((unsigned char)0xF3);
8051   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8052   emit_int32(0x0F,
8053              0x38,
8054              (unsigned char)0xF6,
8055              (unsigned char)(0xC0 | encode));
8056 }
8057 
8058 void Assembler::andq(Address dst, int32_t imm32) {
8059   InstructionMark im(this);
8060   emit_int16(get_prefixq(dst),
8061              (unsigned char)0x81);
8062   emit_operand(rsp, dst, 4);
8063   emit_int32(imm32);
8064 }
8065 
8066 void Assembler::andq(Register dst, int32_t imm32) {
8067   (void) prefixq_and_encode(dst->encoding());
8068   emit_arith(0x81, 0xE0, dst, imm32);
8069 }
8070 
8071 void Assembler::andq(Register dst, Address src) {
8072   InstructionMark im(this);
8073   emit_int16(get_prefixq(src, dst), 0x23);
8074   emit_operand(dst, src);
8075 }
8076 
8077 void Assembler::andq(Register dst, Register src) {
8078   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8079   emit_arith(0x23, 0xC0, dst, src);
8080 }
8081 
8082 void Assembler::andnq(Register dst, Register src1, Register src2) {
8083   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8084   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8085   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8086   emit_int16((unsigned char)0xF2, (unsigned char)(0xC0 | encode));
8087 }
8088 
8089 void Assembler::andnq(Register dst, Register src1, Address src2) {
8090   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8091   InstructionMark im(this);
8092   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8093   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8094   emit_int8((unsigned char)0xF2);
8095   emit_operand(dst, src2);
8096 }
8097 
8098 void Assembler::bsfq(Register dst, Register src) {
8099   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8100   emit_int24(0x0F, (unsigned char)0xBC, (unsigned char)(0xC0 | encode));
8101 }
8102 
8103 void Assembler::bsrq(Register dst, Register src) {
8104   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8105   emit_int24(0x0F, (unsigned char)0xBD, (unsigned char)(0xC0 | encode));
8106 }
8107 
8108 void Assembler::bswapq(Register reg) {
8109   int encode = prefixq_and_encode(reg->encoding());
8110   emit_int16(0x0F, (unsigned char)(0xC8 | encode));
8111 }
8112 
8113 void Assembler::blsiq(Register dst, Register src) {
8114   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8115   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8116   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8117   emit_int16((unsigned char)0xF3, (unsigned char)(0xC0 | encode));
8118 }
8119 
8120 void Assembler::blsiq(Register dst, Address src) {
8121   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8122   InstructionMark im(this);
8123   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8124   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8125   emit_int8((unsigned char)0xF3);
8126   emit_operand(rbx, src);
8127 }
8128 
8129 void Assembler::blsmskq(Register dst, Register src) {
8130   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8131   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8132   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8133   emit_int16((unsigned char)0xF3, (unsigned char)(0xC0 | encode));
8134 }
8135 
8136 void Assembler::blsmskq(Register dst, Address src) {
8137   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8138   InstructionMark im(this);
8139   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8140   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8141   emit_int8((unsigned char)0xF3);
8142   emit_operand(rdx, src);
8143 }
8144 
8145 void Assembler::blsrq(Register dst, Register src) {
8146   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8147   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8148   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8149   emit_int16((unsigned char)0xF3, (unsigned char)(0xC0 | encode));
8150 }
8151 
8152 void Assembler::blsrq(Register dst, Address src) {
8153   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8154   InstructionMark im(this);
8155   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8156   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8157   emit_int8((unsigned char)0xF3);
8158   emit_operand(rcx, src);
8159 }
8160 
8161 void Assembler::cdqq() {
8162   emit_int16(REX_W, (unsigned char)0x99);
8163 }
8164 
8165 void Assembler::clflush(Address adr) {
8166   assert(VM_Version::supports_clflush(), "should do");
8167   prefix(adr);
8168   emit_int16(0x0F, (unsigned char)0xAE);
8169   emit_operand(rdi, adr);
8170 }
8171 
8172 void Assembler::clflushopt(Address adr) {
8173   assert(VM_Version::supports_clflushopt(), "should do!");
8174   // adr should be base reg only with no index or offset
8175   assert(adr.index() == noreg, "index should be noreg");
8176   assert(adr.scale() == Address::no_scale, "scale should be no_scale");
8177   assert(adr.disp() == 0, "displacement should be 0");
8178   // instruction prefix is 0x66
8179   emit_int8(0x66);
8180   prefix(adr);
8181   // opcode family is 0x0F 0xAE
8182   emit_int16(0x0F, (unsigned char)0xAE);
8183   // extended opcode byte is 7 == rdi
8184   emit_operand(rdi, adr);
8185 }
8186 
8187 void Assembler::clwb(Address adr) {
8188   assert(VM_Version::supports_clwb(), "should do!");
8189   // adr should be base reg only with no index or offset
8190   assert(adr.index() == noreg, "index should be noreg");
8191   assert(adr.scale() == Address::no_scale, "scale should be no_scale");
8192   assert(adr.disp() == 0, "displacement should be 0");
8193   // instruction prefix is 0x66
8194   emit_int8(0x66);
8195   prefix(adr);
8196   // opcode family is 0x0f 0xAE
8197   emit_int16(0x0F, (unsigned char)0xAE);
8198   // extended opcode byte is 6 == rsi
8199   emit_operand(rsi, adr);
8200 }
8201 
8202 void Assembler::cmovq(Condition cc, Register dst, Register src) {
8203   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8204   emit_int24(0x0F, 0x40 | cc, (unsigned char)(0xC0 | encode));
8205 }
8206 
8207 void Assembler::cmovq(Condition cc, Register dst, Address src) {
8208   InstructionMark im(this);
8209   emit_int24(get_prefixq(src, dst), 0x0F, 0x40 | cc);
8210   emit_operand(dst, src);
8211 }
8212 
8213 void Assembler::cmpq(Address dst, int32_t imm32) {
8214   InstructionMark im(this);
8215   emit_int16(get_prefixq(dst), (unsigned char)0x81);
8216   emit_operand(rdi, dst, 4);
8217   emit_int32(imm32);
8218 }
8219 
8220 void Assembler::cmpq(Register dst, int32_t imm32) {
8221   (void) prefixq_and_encode(dst->encoding());
8222   emit_arith(0x81, 0xF8, dst, imm32);
8223 }
8224 
8225 void Assembler::cmpq(Address dst, Register src) {
8226   InstructionMark im(this);
8227   emit_int16(get_prefixq(dst, src), 0x3B);
8228   emit_operand(src, dst);
8229 }
8230 
8231 void Assembler::cmpq(Register dst, Register src) {
8232   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8233   emit_arith(0x3B, 0xC0, dst, src);
8234 }
8235 
8236 void Assembler::cmpq(Register dst, Address  src) {
8237   InstructionMark im(this);
8238   emit_int16(get_prefixq(src, dst), 0x3B);
8239   emit_operand(dst, src);
8240 }
8241 
8242 void Assembler::cmpxchgq(Register reg, Address adr) {
8243   InstructionMark im(this);
8244   emit_int24(get_prefixq(adr, reg), 0x0F, (unsigned char)0xB1);
8245   emit_operand(reg, adr);
8246 }
8247 
8248 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
8249   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8250   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8251   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8252   emit_int16(0x2A, (unsigned char)(0xC0 | encode));
8253 }
8254 
8255 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
8256   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8257   InstructionMark im(this);
8258   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8259   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8260   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8261   emit_int8(0x2A);
8262   emit_operand(dst, src);
8263 }
8264 
8265 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
8266   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8267   InstructionMark im(this);
8268   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8269   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8270   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8271   emit_int8(0x2A);
8272   emit_operand(dst, src);
8273 }
8274 
8275 void Assembler::cvttsd2siq(Register dst, Address src) {
8276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8277   // F2 REX.W 0F 2C /r
8278   // CVTTSD2SI r64, xmm1/m64
8279   InstructionMark im(this);
8280   emit_int32((unsigned char)0xF2, REX_W, 0x0F, 0x2C);
8281   emit_operand(dst, src);
8282 }
8283 
8284 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
8285   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8286   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8287   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8288   emit_int16(0x2C, (unsigned char)(0xC0 | encode));
8289 }
8290 
8291 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
8292   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8293   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8294   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8295   emit_int16(0x2C, (unsigned char)(0xC0 | encode));
8296 }
8297 
8298 void Assembler::decl(Register dst) {
8299   // Don't use it directly. Use MacroAssembler::decrementl() instead.
8300   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
8301   int encode = prefix_and_encode(dst->encoding());
8302   emit_int16((unsigned char)0xFF, (unsigned char)(0xC8 | encode));
8303 }
8304 
8305 void Assembler::decq(Register dst) {
8306   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8307   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8308   int encode = prefixq_and_encode(dst->encoding());
8309   emit_int16((unsigned char)0xFF, 0xC8 | encode);
8310 }
8311 
8312 void Assembler::decq(Address dst) {
8313   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8314   InstructionMark im(this);
8315   emit_int16(get_prefixq(dst), (unsigned char)0xFF);
8316   emit_operand(rcx, dst);
8317 }
8318 
8319 void Assembler::fxrstor(Address src) {
8320   emit_int24(get_prefixq(src), 0x0F, (unsigned char)0xAE);
8321   emit_operand(as_Register(1), src);
8322 }
8323 
8324 void Assembler::xrstor(Address src) {
8325   emit_int24(get_prefixq(src), 0x0F, (unsigned char)0xAE);
8326   emit_operand(as_Register(5), src);
8327 }
8328 
8329 void Assembler::fxsave(Address dst) {
8330   emit_int24(get_prefixq(dst), 0x0F, (unsigned char)0xAE);
8331   emit_operand(as_Register(0), dst);
8332 }
8333 
8334 void Assembler::xsave(Address dst) {
8335   emit_int24(get_prefixq(dst), 0x0F, (unsigned char)0xAE);
8336   emit_operand(as_Register(4), dst);
8337 }
8338 
8339 void Assembler::idivq(Register src) {
8340   int encode = prefixq_and_encode(src->encoding());
8341   emit_int16((unsigned char)0xF7, (unsigned char)(0xF8 | encode));
8342 }
8343 
8344 void Assembler::imulq(Register dst, Register src) {
8345   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8346   emit_int24(0x0F, (unsigned char)0xAF, (unsigned char)(0xC0 | encode));
8347 }
8348 
8349 void Assembler::imulq(Register dst, Register src, int value) {
8350   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8351   if (is8bit(value)) {
8352     emit_int24(0x6B, (unsigned char)(0xC0 | encode), value & 0xFF);
8353   } else {
8354     emit_int16(0x69, (unsigned char)(0xC0 | encode));
8355     emit_int32(value);
8356   }
8357 }
8358 
8359 void Assembler::imulq(Register dst, Address src) {
8360   InstructionMark im(this);
8361   emit_int24(get_prefixq(src, dst), 0x0F, (unsigned char)0xAF);
8362   emit_operand(dst, src);
8363 }
8364 
8365 void Assembler::incl(Register dst) {
8366   // Don't use it directly. Use MacroAssembler::incrementl() instead.
8367   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8368   int encode = prefix_and_encode(dst->encoding());
8369   emit_int16((unsigned char)0xFF, (unsigned char)(0xC0 | encode));
8370 }
8371 
8372 void Assembler::incq(Register dst) {
8373   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8374   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8375   int encode = prefixq_and_encode(dst->encoding());
8376   emit_int16((unsigned char)0xFF, (unsigned char)(0xC0 | encode));
8377 }
8378 
8379 void Assembler::incq(Address dst) {
8380   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8381   InstructionMark im(this);
8382   emit_int16(get_prefixq(dst), (unsigned char)0xFF);
8383   emit_operand(rax, dst);
8384 }
8385 
8386 void Assembler::lea(Register dst, Address src) {
8387   leaq(dst, src);
8388 }
8389 
8390 void Assembler::leaq(Register dst, Address src) {
8391   InstructionMark im(this);
8392   emit_int16(get_prefixq(src, dst), (unsigned char)0x8D);
8393   emit_operand(dst, src);
8394 }
8395 
8396 void Assembler::mov64(Register dst, int64_t imm64) {
8397   InstructionMark im(this);
8398   int encode = prefixq_and_encode(dst->encoding());
8399   emit_int8((unsigned char)(0xB8 | encode));
8400   emit_int64(imm64);
8401 }
8402 
8403 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
8404   InstructionMark im(this);
8405   int encode = prefixq_and_encode(dst->encoding());
8406   emit_int8(0xB8 | encode);
8407   emit_data64(imm64, rspec);
8408 }
8409 
8410 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
8411   InstructionMark im(this);
8412   int encode = prefix_and_encode(dst->encoding());
8413   emit_int8((unsigned char)(0xB8 | encode));
8414   emit_data((int)imm32, rspec, narrow_oop_operand);
8415 }
8416 
8417 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
8418   InstructionMark im(this);
8419   prefix(dst);
8420   emit_int8((unsigned char)0xC7);
8421   emit_operand(rax, dst, 4);
8422   emit_data((int)imm32, rspec, narrow_oop_operand);
8423 }
8424 
8425 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
8426   InstructionMark im(this);
8427   int encode = prefix_and_encode(src1->encoding());
8428   emit_int16((unsigned char)0x81, (unsigned char)(0xF8 | encode));
8429   emit_data((int)imm32, rspec, narrow_oop_operand);
8430 }
8431 
8432 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
8433   InstructionMark im(this);
8434   prefix(src1);
8435   emit_int8((unsigned char)0x81);
8436   emit_operand(rax, src1, 4);
8437   emit_data((int)imm32, rspec, narrow_oop_operand);
8438 }
8439 
8440 void Assembler::lzcntq(Register dst, Register src) {
8441   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
8442   emit_int8((unsigned char)0xF3);
8443   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8444   emit_int24(0x0F, (unsigned char)0xBD, (unsigned char)(0xC0 | encode));
8445 }
8446 
8447 void Assembler::movdq(XMMRegister dst, Register src) {
8448   // table D-1 says MMX/SSE2
8449   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8450   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8451   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8452   emit_int16(0x6E, (unsigned char)(0xC0 | encode));
8453 }
8454 
8455 void Assembler::movdq(Register dst, XMMRegister src) {
8456   // table D-1 says MMX/SSE2
8457   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8458   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8459   // swap src/dst to get correct prefix
8460   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8461   emit_int16(0x7E, (unsigned char)(0xC0 | encode));
8462 }
8463 
8464 void Assembler::movq(Register dst, Register src) {
8465   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8466   emit_int16((unsigned char)0x8B, (unsigned char)(0xC0 | encode));
8467 }
8468 
8469 void Assembler::movq(Register dst, Address src) {
8470   InstructionMark im(this);
8471   emit_int16(get_prefixq(src, dst), (unsigned char)0x8B);
8472   emit_operand(dst, src);
8473 }
8474 
8475 void Assembler::movq(Address dst, Register src) {
8476   InstructionMark im(this);
8477   emit_int16(get_prefixq(dst, src), (unsigned char)0x89);
8478   emit_operand(src, dst);
8479 }
8480 
8481 void Assembler::movsbq(Register dst, Address src) {
8482   InstructionMark im(this);
8483   emit_int24(get_prefixq(src, dst), 0x0F, (unsigned char)0xBE);
8484   emit_operand(dst, src);
8485 }
8486 
8487 void Assembler::movsbq(Register dst, Register src) {
8488   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8489   emit_int24(0x0F, (unsigned char)0xBE, (unsigned char)(0xC0 | encode));
8490 }
8491 
8492 void Assembler::movslq(Register dst, int32_t imm32) {
8493   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
8494   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
8495   // as a result we shouldn't use until tested at runtime...
8496   ShouldNotReachHere();
8497   InstructionMark im(this);
8498   int encode = prefixq_and_encode(dst->encoding());
8499   emit_int8((unsigned char)(0xC7 | encode));
8500   emit_int32(imm32);
8501 }
8502 
8503 void Assembler::movslq(Address dst, int32_t imm32) {
8504   assert(is_simm32(imm32), "lost bits");
8505   InstructionMark im(this);
8506   emit_int16(get_prefixq(dst), (unsigned char)0xC7);
8507   emit_operand(rax, dst, 4);
8508   emit_int32(imm32);
8509 }
8510 
8511 void Assembler::movslq(Register dst, Address src) {
8512   InstructionMark im(this);
8513   emit_int16(get_prefixq(src, dst), 0x63);
8514   emit_operand(dst, src);
8515 }
8516 
8517 void Assembler::movslq(Register dst, Register src) {
8518   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8519   emit_int16(0x63, (unsigned char)(0xC0 | encode));
8520 }
8521 
8522 void Assembler::movswq(Register dst, Address src) {
8523   InstructionMark im(this);
8524   emit_int24(get_prefixq(src, dst), 0x0F, (unsigned char)0xBF);
8525   emit_operand(dst, src);
8526 }
8527 
8528 void Assembler::movswq(Register dst, Register src) {
8529   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8530   emit_int24((unsigned char)0x0F, (unsigned char)0xBF, (unsigned char)(0xC0 | encode));
8531 }
8532 
8533 void Assembler::movzbq(Register dst, Address src) {
8534   InstructionMark im(this);
8535   emit_int24(get_prefixq(src, dst), (unsigned char)0x0F, (unsigned char)0xB6);
8536   emit_operand(dst, src);
8537 }
8538 
8539 void Assembler::movzbq(Register dst, Register src) {
8540   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8541   emit_int24(0x0F, (unsigned char)0xB6, 0xC0 | encode);
8542 }
8543 
8544 void Assembler::movzwq(Register dst, Address src) {
8545   InstructionMark im(this);
8546   emit_int24(get_prefixq(src, dst), (unsigned char)0x0F, (unsigned char)0xB7);
8547   emit_operand(dst, src);
8548 }
8549 
8550 void Assembler::movzwq(Register dst, Register src) {
8551   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8552   emit_int24((unsigned char)0x0F, (unsigned char)0xB7, (unsigned char)(0xC0 | encode));
8553 }
8554 
8555 void Assembler::mulq(Address src) {
8556   InstructionMark im(this);
8557   emit_int16(get_prefixq(src), (unsigned char)0xF7);
8558   emit_operand(rsp, src);
8559 }
8560 
8561 void Assembler::mulq(Register src) {
8562   int encode = prefixq_and_encode(src->encoding());
8563   emit_int16((unsigned char)0xF7, (unsigned char)(0xE0 | encode));
8564 }
8565 
8566 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
8567   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8568   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8569   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
8570   emit_int16((unsigned char)0xF6, (unsigned char)(0xC0 | encode));
8571 }
8572 
8573 void Assembler::negq(Register dst) {
8574   int encode = prefixq_and_encode(dst->encoding());
8575   emit_int16((unsigned char)0xF7, (unsigned char)(0xD8 | encode));
8576 }
8577 
8578 void Assembler::notq(Register dst) {
8579   int encode = prefixq_and_encode(dst->encoding());
8580   emit_int16((unsigned char)0xF7, (unsigned char)(0xD0 | encode));
8581 }
8582 
8583 void Assembler::btsq(Address dst, int imm8) {
8584   assert(isByte(imm8), "not a byte");
8585   InstructionMark im(this);
8586   emit_int24(get_prefixq(dst), (unsigned char)0x0F, (unsigned char)0xBA);
8587   emit_operand(rbp /* 5 */, dst, 1);
8588   emit_int8(imm8);
8589 }
8590 
8591 void Assembler::btrq(Address dst, int imm8) {
8592   assert(isByte(imm8), "not a byte");
8593   InstructionMark im(this);
8594   emit_int24(get_prefixq(dst), (unsigned char)0x0F, (unsigned char)0xBA);
8595   emit_operand(rsi /* 6 */, dst, 1);
8596   emit_int8(imm8);
8597 }
8598 
8599 void Assembler::orq(Address dst, int32_t imm32) {
8600   InstructionMark im(this);
8601   emit_int16(get_prefixq(dst), (unsigned char)0x81);
8602   emit_operand(rcx, dst, 4);
8603   emit_int32(imm32);
8604 }
8605 
8606 void Assembler::orq(Register dst, int32_t imm32) {
8607   (void) prefixq_and_encode(dst->encoding());
8608   emit_arith(0x81, 0xC8, dst, imm32);
8609 }
8610 
8611 void Assembler::orq(Register dst, Address src) {
8612   InstructionMark im(this);
8613   emit_int16(get_prefixq(src, dst), 0x0B);
8614   emit_operand(dst, src);
8615 }
8616 
8617 void Assembler::orq(Register dst, Register src) {
8618   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8619   emit_arith(0x0B, 0xC0, dst, src);
8620 }
8621 
8622 void Assembler::popcntq(Register dst, Address src) {
8623   assert(VM_Version::supports_popcnt(), "must support");
8624   InstructionMark im(this);
8625   emit_int32((unsigned char)0xF3, get_prefixq(src, dst), (unsigned char)0x0F, (unsigned char)0xB8);
8626   emit_operand(dst, src);
8627 }
8628 
8629 void Assembler::popcntq(Register dst, Register src) {
8630   assert(VM_Version::supports_popcnt(), "must support");
8631   emit_int8((unsigned char)0xF3);
8632   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8633   emit_int24((unsigned char)0x0F, (unsigned char)0xB8, (unsigned char)(0xC0 | encode));
8634 }
8635 
8636 void Assembler::popq(Address dst) {
8637   InstructionMark im(this);
8638   emit_int16(get_prefixq(dst), (unsigned char)0x8F);
8639   emit_operand(rax, dst);
8640 }
8641 
8642 // Precomputable: popa, pusha, vzeroupper
8643 
8644 // The result of these routines are invariant from one invocation to another
8645 // invocation for the duration of a run. Caching the result on bootstrap
8646 // and copying it out on subsequent invocations can thus be beneficial
8647 static bool     precomputed = false;
8648 
8649 static u_char* popa_code  = NULL;
8650 static int     popa_len   = 0;
8651 
8652 static u_char* pusha_code = NULL;
8653 static int     pusha_len  = 0;
8654 
8655 static u_char* vzup_code  = NULL;
8656 static int     vzup_len   = 0;
8657 
8658 void Assembler::precompute_instructions() {
8659   assert(!Universe::is_fully_initialized(), "must still be single threaded");
8660   guarantee(!precomputed, "only once");
8661   precomputed = true;
8662   ResourceMark rm;
8663 
8664   // Make a temporary buffer big enough for the routines we're capturing
8665   int size = 256;
8666   char* tmp_code = NEW_RESOURCE_ARRAY(char, size);
8667   CodeBuffer buffer((address)tmp_code, size);
8668   MacroAssembler masm(&buffer);
8669 
8670   address begin_popa  = masm.code_section()->end();
8671   masm.popa_uncached();
8672   address end_popa    = masm.code_section()->end();
8673   masm.pusha_uncached();
8674   address end_pusha   = masm.code_section()->end();
8675   masm.vzeroupper_uncached();
8676   address end_vzup    = masm.code_section()->end();
8677 
8678   // Save the instructions to permanent buffers.
8679   popa_len = (int)(end_popa - begin_popa);
8680   popa_code = NEW_C_HEAP_ARRAY(u_char, popa_len, mtInternal);
8681   memcpy(popa_code, begin_popa, popa_len);
8682 
8683   pusha_len = (int)(end_pusha - end_popa);
8684   pusha_code = NEW_C_HEAP_ARRAY(u_char, pusha_len, mtInternal);
8685   memcpy(pusha_code, end_popa, pusha_len);
8686 
8687   vzup_len = (int)(end_vzup - end_pusha);
8688   if (vzup_len > 0) {
8689     vzup_code = NEW_C_HEAP_ARRAY(u_char, vzup_len, mtInternal);
8690     memcpy(vzup_code, end_pusha, vzup_len);
8691   } else {
8692     vzup_code = pusha_code; // dummy
8693   }
8694 
8695   assert(masm.code()->total_oop_size() == 0 &&
8696          masm.code()->total_metadata_size() == 0 &&
8697          masm.code()->total_relocation_size() == 0,
8698          "pre-computed code can't reference oops, metadata or contain relocations");
8699 }
8700 
8701 static void emit_copy(CodeSection* code_section, u_char* src, int src_len) {
8702   assert(src != NULL, "code to copy must have been pre-computed");
8703   assert(code_section->limit() - code_section->end() > src_len, "code buffer not large enough");
8704   address end = code_section->end();
8705   memcpy(end, src, src_len);
8706   code_section->set_end(end + src_len);
8707 }
8708 
8709 
8710 void Assembler::popa() { // 64bit
8711   emit_copy(code_section(), popa_code, popa_len);
8712 }
8713 
8714 void Assembler::popa_uncached() { // 64bit
8715   movq(r15, Address(rsp, 0));
8716   movq(r14, Address(rsp, wordSize));
8717   movq(r13, Address(rsp, 2 * wordSize));
8718   movq(r12, Address(rsp, 3 * wordSize));
8719   movq(r11, Address(rsp, 4 * wordSize));
8720   movq(r10, Address(rsp, 5 * wordSize));
8721   movq(r9,  Address(rsp, 6 * wordSize));
8722   movq(r8,  Address(rsp, 7 * wordSize));
8723   movq(rdi, Address(rsp, 8 * wordSize));
8724   movq(rsi, Address(rsp, 9 * wordSize));
8725   movq(rbp, Address(rsp, 10 * wordSize));
8726   // skip rsp
8727   movq(rbx, Address(rsp, 12 * wordSize));
8728   movq(rdx, Address(rsp, 13 * wordSize));
8729   movq(rcx, Address(rsp, 14 * wordSize));
8730   movq(rax, Address(rsp, 15 * wordSize));
8731 
8732   addq(rsp, 16 * wordSize);
8733 }
8734 
8735 void Assembler::pusha() { // 64bit
8736   emit_copy(code_section(), pusha_code, pusha_len);
8737 }
8738 
8739 void Assembler::pusha_uncached() { // 64bit
8740   // we have to store original rsp.  ABI says that 128 bytes
8741   // below rsp are local scratch.
8742   movq(Address(rsp, -5 * wordSize), rsp);
8743 
8744   subq(rsp, 16 * wordSize);
8745 
8746   movq(Address(rsp, 15 * wordSize), rax);
8747   movq(Address(rsp, 14 * wordSize), rcx);
8748   movq(Address(rsp, 13 * wordSize), rdx);
8749   movq(Address(rsp, 12 * wordSize), rbx);
8750   // skip rsp
8751   movq(Address(rsp, 10 * wordSize), rbp);
8752   movq(Address(rsp, 9 * wordSize), rsi);
8753   movq(Address(rsp, 8 * wordSize), rdi);
8754   movq(Address(rsp, 7 * wordSize), r8);
8755   movq(Address(rsp, 6 * wordSize), r9);
8756   movq(Address(rsp, 5 * wordSize), r10);
8757   movq(Address(rsp, 4 * wordSize), r11);
8758   movq(Address(rsp, 3 * wordSize), r12);
8759   movq(Address(rsp, 2 * wordSize), r13);
8760   movq(Address(rsp, wordSize), r14);
8761   movq(Address(rsp, 0), r15);
8762 }
8763 
8764 void Assembler::vzeroupper() {
8765   emit_copy(code_section(), vzup_code, vzup_len);
8766 }
8767 
8768 void Assembler::pushq(Address src) {
8769   InstructionMark im(this);
8770   emit_int16(get_prefixq(src), (unsigned char)0xFF);
8771   emit_operand(rsi, src);
8772 }
8773 
8774 void Assembler::rclq(Register dst, int imm8) {
8775   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8776   int encode = prefixq_and_encode(dst->encoding());
8777   if (imm8 == 1) {
8778     emit_int16((unsigned char)0xD1, (unsigned char)(0xD0 | encode));
8779   } else {
8780     emit_int24((unsigned char)0xC1, (unsigned char)(0xD0 | encode), imm8);
8781   }
8782 }
8783 
8784 void Assembler::rcrq(Register dst, int imm8) {
8785   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8786   int encode = prefixq_and_encode(dst->encoding());
8787   if (imm8 == 1) {
8788     emit_int16((unsigned char)0xD1, (unsigned char)(0xD8 | encode));
8789   } else {
8790     emit_int24((unsigned char)0xC1, (unsigned char)(0xD8 | encode), imm8);
8791   }
8792 }
8793 
8794 void Assembler::rorq(Register dst, int imm8) {
8795   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8796   int encode = prefixq_and_encode(dst->encoding());
8797   if (imm8 == 1) {
8798     emit_int16((unsigned char)0xD1, (unsigned char)(0xC8 | encode));
8799   } else {
8800     emit_int24((unsigned char)0xC1, (unsigned char)(0xc8 | encode), imm8);
8801   }
8802 }
8803 
8804 void Assembler::rorxq(Register dst, Register src, int imm8) {
8805   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8806   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8807   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8808   emit_int24((unsigned char)0xF0, (unsigned char)(0xC0 | encode), imm8);
8809 }
8810 
8811 void Assembler::rorxd(Register dst, Register src, int imm8) {
8812   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8813   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8814   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8815   emit_int24((unsigned char)0xF0, (unsigned char)(0xC0 | encode), imm8);
8816 }
8817 
8818 void Assembler::sarq(Register dst, int imm8) {
8819   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8820   int encode = prefixq_and_encode(dst->encoding());
8821   if (imm8 == 1) {
8822     emit_int16((unsigned char)0xD1, (unsigned char)(0xF8 | encode));
8823   } else {
8824     emit_int24((unsigned char)0xC1, (unsigned char)(0xF8 | encode), imm8);
8825   }
8826 }
8827 
8828 void Assembler::sarq(Register dst) {
8829   int encode = prefixq_and_encode(dst->encoding());
8830   emit_int16((unsigned char)0xD3, (unsigned char)(0xF8 | encode));
8831 }
8832 
8833 void Assembler::sbbq(Address dst, int32_t imm32) {
8834   InstructionMark im(this);
8835   prefixq(dst);
8836   emit_arith_operand(0x81, rbx, dst, imm32);
8837 }
8838 
8839 void Assembler::sbbq(Register dst, int32_t imm32) {
8840   (void) prefixq_and_encode(dst->encoding());
8841   emit_arith(0x81, 0xD8, dst, imm32);
8842 }
8843 
8844 void Assembler::sbbq(Register dst, Address src) {
8845   InstructionMark im(this);
8846   emit_int16(get_prefixq(src, dst), 0x1B);
8847   emit_operand(dst, src);
8848 }
8849 
8850 void Assembler::sbbq(Register dst, Register src) {
8851   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8852   emit_arith(0x1B, 0xC0, dst, src);
8853 }
8854 
8855 void Assembler::shlq(Register dst, int imm8) {
8856   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8857   int encode = prefixq_and_encode(dst->encoding());
8858   if (imm8 == 1) {
8859     emit_int16((unsigned char)0xD1, (unsigned char)(0xE0 | encode));
8860   } else {
8861     emit_int24((unsigned char)0xC1, (unsigned char)(0xE0 | encode), imm8);
8862   }
8863 }
8864 
8865 void Assembler::shlq(Register dst) {
8866   int encode = prefixq_and_encode(dst->encoding());
8867   emit_int16((unsigned char)0xD3, (unsigned char)(0xE0 | encode));
8868 }
8869 
8870 void Assembler::shrq(Register dst, int imm8) {
8871   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8872   int encode = prefixq_and_encode(dst->encoding());
8873   emit_int24((unsigned char)0xC1, (unsigned char)(0xE8 | encode), imm8);
8874 }
8875 
8876 void Assembler::shrq(Register dst) {
8877   int encode = prefixq_and_encode(dst->encoding());
8878   emit_int16((unsigned char)0xD3, 0xE8 | encode);
8879 }
8880 
8881 void Assembler::subq(Address dst, int32_t imm32) {
8882   InstructionMark im(this);
8883   prefixq(dst);
8884   emit_arith_operand(0x81, rbp, dst, imm32);
8885 }
8886 
8887 void Assembler::subq(Address dst, Register src) {
8888   InstructionMark im(this);
8889   emit_int16(get_prefixq(dst, src), 0x29);
8890   emit_operand(src, dst);
8891 }
8892 
8893 void Assembler::subq(Register dst, int32_t imm32) {
8894   (void) prefixq_and_encode(dst->encoding());
8895   emit_arith(0x81, 0xE8, dst, imm32);
8896 }
8897 
8898 // Force generation of a 4 byte immediate value even if it fits into 8bit
8899 void Assembler::subq_imm32(Register dst, int32_t imm32) {
8900   (void) prefixq_and_encode(dst->encoding());
8901   emit_arith_imm32(0x81, 0xE8, dst, imm32);
8902 }
8903 
8904 void Assembler::subq(Register dst, Address src) {
8905   InstructionMark im(this);
8906   emit_int16(get_prefixq(src, dst), 0x2B);
8907   emit_operand(dst, src);
8908 }
8909 
8910 void Assembler::subq(Register dst, Register src) {
8911   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8912   emit_arith(0x2B, 0xC0, dst, src);
8913 }
8914 
8915 void Assembler::testq(Register dst, int32_t imm32) {
8916   // not using emit_arith because test
8917   // doesn't support sign-extension of
8918   // 8bit operands
8919   int encode = dst->encoding();
8920   if (encode == 0) {
8921     emit_int16(REX_W, (unsigned char)0xA9);
8922   } else {
8923     encode = prefixq_and_encode(encode);
8924     emit_int16((unsigned char)0xF7, (unsigned char)(0xC0 | encode));
8925   }
8926   emit_int32(imm32);
8927 }
8928 
8929 void Assembler::testq(Register dst, Register src) {
8930   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8931   emit_arith(0x85, 0xC0, dst, src);
8932 }
8933 
8934 void Assembler::testq(Register dst, Address src) {
8935   InstructionMark im(this);
8936   emit_int16(get_prefixq(src, dst), (unsigned char)0x85);
8937   emit_operand(dst, src);
8938 }
8939 
8940 void Assembler::xaddq(Address dst, Register src) {
8941   InstructionMark im(this);
8942   emit_int24(get_prefixq(dst, src), 0x0F, (unsigned char)0xC1);
8943   emit_operand(src, dst);
8944 }
8945 
8946 void Assembler::xchgq(Register dst, Address src) {
8947   InstructionMark im(this);
8948   emit_int16(get_prefixq(src, dst), (unsigned char)0x87);
8949   emit_operand(dst, src);
8950 }
8951 
8952 void Assembler::xchgq(Register dst, Register src) {
8953   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8954   emit_int16((unsigned char)0x87, (unsigned char)(0xc0 | encode));
8955 }
8956 
8957 void Assembler::xorq(Register dst, Register src) {
8958   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8959   emit_arith(0x33, 0xC0, dst, src);
8960 }
8961 
8962 void Assembler::xorq(Register dst, Address src) {
8963   InstructionMark im(this);
8964   emit_int16(get_prefixq(src, dst), 0x33);
8965   emit_operand(dst, src);
8966 }
8967 
8968 #endif // !LP64