/* * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_X86_ASSEMBLER_X86_HPP #define CPU_X86_ASSEMBLER_X86_HPP #include "asm/register.hpp" #include "runtime/vm_version.hpp" #include "utilities/powerOfTwo.hpp" class BiasedLockingCounters; // Contains all the definitions needed for x86 assembly code generation. // Calling convention class Argument { public: enum { #ifdef _LP64 #ifdef _WIN64 n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... ) #else n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... ) #endif // _WIN64 n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ... n_float_register_parameters_j = 8 // j_farg0, j_farg1, ... #else n_register_parameters = 0 // 0 registers used to pass arguments #endif // _LP64 }; }; #ifdef _LP64 // Symbolically name the register arguments used by the c calling convention. // Windows is different from linux/solaris. So much for standards... #ifdef _WIN64 REGISTER_DECLARATION(Register, c_rarg0, rcx); REGISTER_DECLARATION(Register, c_rarg1, rdx); REGISTER_DECLARATION(Register, c_rarg2, r8); REGISTER_DECLARATION(Register, c_rarg3, r9); REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0); REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1); REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2); REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3); #else REGISTER_DECLARATION(Register, c_rarg0, rdi); REGISTER_DECLARATION(Register, c_rarg1, rsi); REGISTER_DECLARATION(Register, c_rarg2, rdx); REGISTER_DECLARATION(Register, c_rarg3, rcx); REGISTER_DECLARATION(Register, c_rarg4, r8); REGISTER_DECLARATION(Register, c_rarg5, r9); REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0); REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1); REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2); REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3); REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4); REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5); REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6); REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7); #endif // _WIN64 // Symbolically name the register arguments used by the Java calling convention. // We have control over the convention for java so we can do what we please. // What pleases us is to offset the java calling convention so that when // we call a suitable jni method the arguments are lined up and we don't // have to do little shuffling. A suitable jni method is non-static and a // small number of arguments (two fewer args on windows) // // |-------------------------------------------------------| // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 | // |-------------------------------------------------------| // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg) // | rdi rsi rdx rcx r8 r9 | solaris/linux // |-------------------------------------------------------| // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 | // |-------------------------------------------------------| REGISTER_DECLARATION(Register, j_rarg0, c_rarg1); REGISTER_DECLARATION(Register, j_rarg1, c_rarg2); REGISTER_DECLARATION(Register, j_rarg2, c_rarg3); // Windows runs out of register args here #ifdef _WIN64 REGISTER_DECLARATION(Register, j_rarg3, rdi); REGISTER_DECLARATION(Register, j_rarg4, rsi); #else REGISTER_DECLARATION(Register, j_rarg3, c_rarg4); REGISTER_DECLARATION(Register, j_rarg4, c_rarg5); #endif /* _WIN64 */ REGISTER_DECLARATION(Register, j_rarg5, c_rarg0); REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0); REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1); REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2); REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3); REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4); REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5); REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6); REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7); REGISTER_DECLARATION(Register, rscratch1, r10); // volatile REGISTER_DECLARATION(Register, rscratch2, r11); // volatile REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved #else // rscratch1 will apear in 32bit code that is dead but of course must compile // Using noreg ensures if the dead code is incorrectly live and executed it // will cause an assertion failure #define rscratch1 noreg #define rscratch2 noreg #endif // _LP64 // JSR 292 // On x86, the SP does not have to be saved when invoking method handle intrinsics // or compiled lambda forms. We indicate that by setting rbp_mh_SP_save to noreg. REGISTER_DECLARATION(Register, rbp_mh_SP_save, noreg); // Address is an abstraction used to represent a memory location // using any of the amd64 addressing modes with one object. // // Note: A register location is represented via a Register, not // via an address for efficiency & simplicity reasons. class ArrayAddress; class Address { public: enum ScaleFactor { no_scale = -1, times_1 = 0, times_2 = 1, times_4 = 2, times_8 = 3, times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4) }; static ScaleFactor times(int size) { assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size"); if (size == 8) return times_8; if (size == 4) return times_4; if (size == 2) return times_2; return times_1; } static int scale_size(ScaleFactor scale) { assert(scale != no_scale, ""); assert(((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8), ""); return (1 << (int)scale); } private: Register _base; Register _index; XMMRegister _xmmindex; ScaleFactor _scale; int _disp; bool _isxmmindex; RelocationHolder _rspec; // Easily misused constructors make them private // %%% can we make these go away? NOT_LP64(Address(address loc, RelocationHolder spec);) Address(int disp, address loc, relocInfo::relocType rtype); Address(int disp, address loc, RelocationHolder spec); public: int disp() { return _disp; } // creation Address() : _base(noreg), _index(noreg), _xmmindex(xnoreg), _scale(no_scale), _disp(0), _isxmmindex(false){ } // No default displacement otherwise Register can be implicitly // converted to 0(Register) which is quite a different animal. Address(Register base, int disp) : _base(base), _index(noreg), _xmmindex(xnoreg), _scale(no_scale), _disp(disp), _isxmmindex(false){ } Address(Register base, Register index, ScaleFactor scale, int disp = 0) : _base (base), _index(index), _xmmindex(xnoreg), _scale(scale), _disp (disp), _isxmmindex(false) { assert(!index->is_valid() == (scale == Address::no_scale), "inconsistent address"); } Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0) : _base (base), _index(index.register_or_noreg()), _xmmindex(xnoreg), _scale(scale), _disp (disp + (index.constant_or_zero() * scale_size(scale))), _isxmmindex(false){ if (!index.is_register()) scale = Address::no_scale; assert(!_index->is_valid() == (scale == Address::no_scale), "inconsistent address"); } Address(Register base, XMMRegister index, ScaleFactor scale, int disp = 0) : _base (base), _index(noreg), _xmmindex(index), _scale(scale), _disp(disp), _isxmmindex(true) { assert(!index->is_valid() == (scale == Address::no_scale), "inconsistent address"); } Address plus_disp(int disp) const { Address a = (*this); a._disp += disp; return a; } Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const { Address a = (*this); a._disp += disp.constant_or_zero() * scale_size(scale); if (disp.is_register()) { assert(!a.index()->is_valid(), "competing indexes"); a._index = disp.as_register(); a._scale = scale; } return a; } bool is_same_address(Address a) const { // disregard _rspec return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale; } // The following two overloads are used in connection with the // ByteSize type (see sizes.hpp). They simplify the use of // ByteSize'd arguments in assembly code. Note that their equivalent // for the optimized build are the member functions with int disp // argument since ByteSize is mapped to an int type in that case. // // Note: DO NOT introduce similar overloaded functions for WordSize // arguments as in the optimized mode, both ByteSize and WordSize // are mapped to the same type and thus the compiler cannot make a // distinction anymore (=> compiler errors). #ifdef ASSERT Address(Register base, ByteSize disp) : _base(base), _index(noreg), _xmmindex(xnoreg), _scale(no_scale), _disp(in_bytes(disp)), _isxmmindex(false){ } Address(Register base, Register index, ScaleFactor scale, ByteSize disp) : _base(base), _index(index), _xmmindex(xnoreg), _scale(scale), _disp(in_bytes(disp)), _isxmmindex(false){ assert(!index->is_valid() == (scale == Address::no_scale), "inconsistent address"); } Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp) : _base (base), _index(index.register_or_noreg()), _xmmindex(xnoreg), _scale(scale), _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))), _isxmmindex(false) { if (!index.is_register()) scale = Address::no_scale; assert(!_index->is_valid() == (scale == Address::no_scale), "inconsistent address"); } #endif // ASSERT // accessors bool uses(Register reg) const { return _base == reg || _index == reg; } Register base() const { return _base; } Register index() const { return _index; } XMMRegister xmmindex() const { return _xmmindex; } ScaleFactor scale() const { return _scale; } int disp() const { return _disp; } bool isxmmindex() const { return _isxmmindex; } // Convert the raw encoding form into the form expected by the constructor for // Address. An index of 4 (rsp) corresponds to having no index, so convert // that to noreg for the Address constructor. static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc); static Address make_array(ArrayAddress); private: bool base_needs_rex() const { return _base->is_valid() && _base->encoding() >= 8; } bool index_needs_rex() const { return _index->is_valid() &&_index->encoding() >= 8; } bool xmmindex_needs_rex() const { return _xmmindex->is_valid() && _xmmindex->encoding() >= 8; } relocInfo::relocType reloc() const { return _rspec.type(); } friend class Assembler; friend class MacroAssembler; friend class LIR_Assembler; // base/index/scale/disp }; // // AddressLiteral has been split out from Address because operands of this type // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out // the few instructions that need to deal with address literals are unique and the // MacroAssembler does not have to implement every instruction in the Assembler // in order to search for address literals that may need special handling depending // on the instruction and the platform. As small step on the way to merging i486/amd64 // directories. // class AddressLiteral { friend class ArrayAddress; RelocationHolder _rspec; // Typically we use AddressLiterals we want to use their rval // However in some situations we want the lval (effect address) of the item. // We provide a special factory for making those lvals. bool _is_lval; // If the target is far we'll need to load the ea of this to // a register to reach it. Otherwise if near we can do rip // relative addressing. address _target; protected: // creation AddressLiteral() : _is_lval(false), _target(NULL) {} public: AddressLiteral(address target, relocInfo::relocType rtype); AddressLiteral(address target, RelocationHolder const& rspec) : _rspec(rspec), _is_lval(false), _target(target) {} AddressLiteral addr() { AddressLiteral ret = *this; ret._is_lval = true; return ret; } private: address target() { return _target; } bool is_lval() { return _is_lval; } relocInfo::relocType reloc() const { return _rspec.type(); } const RelocationHolder& rspec() const { return _rspec; } friend class Assembler; friend class MacroAssembler; friend class Address; friend class LIR_Assembler; }; // Convience classes class RuntimeAddress: public AddressLiteral { public: RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {} }; class ExternalAddress: public AddressLiteral { private: static relocInfo::relocType reloc_for_target(address target) { // Sometimes ExternalAddress is used for values which aren't // exactly addresses, like the card table base. // external_word_type can't be used for values in the first page // so just skip the reloc in that case. return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none; } public: ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {} }; class InternalAddress: public AddressLiteral { public: InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {} }; // x86 can do array addressing as a single operation since disp can be an absolute // address amd64 can't. We create a class that expresses the concept but does extra // magic on amd64 to get the final result class ArrayAddress { private: AddressLiteral _base; Address _index; public: ArrayAddress() {}; ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {}; AddressLiteral base() { return _base; } Address index() { return _index; } }; class InstructionAttr; // 64-bit refect the fxsave size which is 512 bytes and the new xsave area on EVEX which is another 2176 bytes // See fxsave and xsave(EVEX enabled) documentation for layout const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY(2688 / wordSize); // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write // is what you get. The Assembler is generating code into a CodeBuffer. class Assembler : public AbstractAssembler { friend class AbstractAssembler; // for the non-virtual hack friend class LIR_Assembler; // as_Address() friend class StubGenerator; public: enum Condition { // The x86 condition codes used for conditional jumps/moves. zero = 0x4, notZero = 0x5, equal = 0x4, notEqual = 0x5, less = 0xc, lessEqual = 0xe, greater = 0xf, greaterEqual = 0xd, below = 0x2, belowEqual = 0x6, above = 0x7, aboveEqual = 0x3, overflow = 0x0, noOverflow = 0x1, carrySet = 0x2, carryClear = 0x3, negative = 0x8, positive = 0x9, parity = 0xa, noParity = 0xb }; enum Prefix { // segment overrides CS_segment = 0x2e, SS_segment = 0x36, DS_segment = 0x3e, ES_segment = 0x26, FS_segment = 0x64, GS_segment = 0x65, REX = 0x40, REX_B = 0x41, REX_X = 0x42, REX_XB = 0x43, REX_R = 0x44, REX_RB = 0x45, REX_RX = 0x46, REX_RXB = 0x47, REX_W = 0x48, REX_WB = 0x49, REX_WX = 0x4A, REX_WXB = 0x4B, REX_WR = 0x4C, REX_WRB = 0x4D, REX_WRX = 0x4E, REX_WRXB = 0x4F, VEX_3bytes = 0xC4, VEX_2bytes = 0xC5, EVEX_4bytes = 0x62, Prefix_EMPTY = 0x0 }; enum VexPrefix { VEX_B = 0x20, VEX_X = 0x40, VEX_R = 0x80, VEX_W = 0x80 }; enum ExexPrefix { EVEX_F = 0x04, EVEX_V = 0x08, EVEX_Rb = 0x10, EVEX_X = 0x40, EVEX_Z = 0x80 }; enum VexSimdPrefix { VEX_SIMD_NONE = 0x0, VEX_SIMD_66 = 0x1, VEX_SIMD_F3 = 0x2, VEX_SIMD_F2 = 0x3 }; enum VexOpcode { VEX_OPCODE_NONE = 0x0, VEX_OPCODE_0F = 0x1, VEX_OPCODE_0F_38 = 0x2, VEX_OPCODE_0F_3A = 0x3, VEX_OPCODE_MASK = 0x1F }; enum AvxVectorLen { AVX_128bit = 0x0, AVX_256bit = 0x1, AVX_512bit = 0x2, AVX_NoVec = 0x4 }; enum EvexTupleType { EVEX_FV = 0, EVEX_HV = 4, EVEX_FVM = 6, EVEX_T1S = 7, EVEX_T1F = 11, EVEX_T2 = 13, EVEX_T4 = 15, EVEX_T8 = 17, EVEX_HVM = 18, EVEX_QVM = 19, EVEX_OVM = 20, EVEX_M128 = 21, EVEX_DUP = 22, EVEX_ETUP = 23 }; enum EvexInputSizeInBits { EVEX_8bit = 0, EVEX_16bit = 1, EVEX_32bit = 2, EVEX_64bit = 3, EVEX_NObit = 4 }; enum WhichOperand { // input to locate_operand, and format code for relocations imm_operand = 0, // embedded 32-bit|64-bit immediate operand disp32_operand = 1, // embedded 32-bit displacement or address call32_operand = 2, // embedded 32-bit self-relative displacement #ifndef _LP64 _WhichOperand_limit = 3 #else narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop _WhichOperand_limit = 4 #endif }; enum ComparisonPredicate { eq = 0, lt = 1, le = 2, _false = 3, neq = 4, nlt = 5, nle = 6, _true = 7 }; //---< calculate length of instruction >--- // As instruction size can't be found out easily on x86/x64, // we just use '4' for len and maxlen. // instruction must start at passed address static unsigned int instr_len(unsigned char *instr) { return 4; } //---< longest instructions >--- // Max instruction length is not specified in architecture documentation. // We could use a "safe enough" estimate (15), but just default to // instruction length guess from above. static unsigned int instr_maxlen() { return 4; } // NOTE: The general philopsophy of the declarations here is that 64bit versions // of instructions are freely declared without the need for wrapping them an ifdef. // (Some dangerous instructions are ifdef's out of inappropriate jvm's.) // In the .cpp file the implementations are wrapped so that they are dropped out // of the resulting jvm. This is done mostly to keep the footprint of MINIMAL // to the size it was prior to merging up the 32bit and 64bit assemblers. // // This does mean you'll get a linker/runtime error if you use a 64bit only instruction // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down. private: bool _legacy_mode_bw; bool _legacy_mode_dq; bool _legacy_mode_vl; bool _legacy_mode_vlbw; NOT_LP64(bool _is_managed;) class InstructionAttr *_attributes; // 64bit prefixes int prefix_and_encode(int reg_enc, bool byteinst = false); int prefixq_and_encode(int reg_enc); int prefix_and_encode(int dst_enc, int src_enc) { return prefix_and_encode(dst_enc, false, src_enc, false); } int prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte); int prefixq_and_encode(int dst_enc, int src_enc); void prefix(Register reg); void prefix(Register dst, Register src, Prefix p); void prefix(Register dst, Address adr, Prefix p); void prefix(Address adr); void prefixq(Address adr); void prefix(Address adr, Register reg, bool byteinst = false); void prefix(Address adr, XMMRegister reg); void prefixq(Address adr, Register reg); void prefixq(Address adr, XMMRegister reg); // Some prefix variant have a total mapping - they always exactly one prefix // byte per input), so beside a prefix-emitting method we provide a method // to get the prefix byte to emit. This byte can then be folded into a byte // stream. This can generate faster, more compact code. int8_t get_prefixq(Address adr); int8_t get_prefixq(Address adr, Register reg); void rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w); int rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w); void vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc); void evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc); void vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes); int vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes); void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes); int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes); // Helper functions for groups of instructions void emit_arith_b(int op1, int op2, Register dst, int imm8); void emit_arith(int op1, int op2, Register dst, int32_t imm32); // Force generation of a 4 byte immediate value even if it fits into 8bit void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32); void emit_arith(int op1, int op2, Register dst, Register src); bool emit_compressed_disp_byte(int &disp); void emit_operand(Register reg, Register base, Register index, Address::ScaleFactor scale, int disp, RelocationHolder const& rspec, int rip_relative_correction = 0); void emit_operand(XMMRegister reg, Register base, XMMRegister index, Address::ScaleFactor scale, int disp, RelocationHolder const& rspec); void emit_operand(Register reg, Address adr, int rip_relative_correction = 0); // operands that only take the original 32bit registers void emit_operand32(Register reg, Address adr); void emit_operand(XMMRegister reg, Register base, Register index, Address::ScaleFactor scale, int disp, RelocationHolder const& rspec); void emit_operand(XMMRegister reg, Address adr); void emit_operand(MMXRegister reg, Address adr); // workaround gcc (3.2.1-7) bug void emit_operand(Address adr, MMXRegister reg); // Immediate-to-memory forms void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32); void emit_farith(int b1, int b2, int i); protected: #ifdef ASSERT void check_relocation(RelocationHolder const& rspec, int format); #endif void emit_data(jint data, relocInfo::relocType rtype, int format); void emit_data(jint data, RelocationHolder const& rspec, int format); void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0); void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0); bool reachable(AddressLiteral adr) NOT_LP64({ return true;}); // These are all easily abused and hence protected // 32BIT ONLY SECTION #ifndef _LP64 // Make these disappear in 64bit mode since they would never be correct void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY #else // 64BIT ONLY SECTION void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec); void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec); void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec); void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec); #endif // _LP64 // These are unique in that we are ensured by the caller that the 32bit // relative in these instructions will always be able to reach the potentially // 64bit address described by entry. Since they can take a 64bit address they // don't have the 32 suffix like the other instructions in this class. void call_literal(address entry, RelocationHolder const& rspec); void jmp_literal(address entry, RelocationHolder const& rspec); // Avoid using directly section // Instructions in this section are actually usable by anyone without danger // of failure but have performance issues that are addressed my enhanced // instructions which will do the proper thing base on the particular cpu. // We protect them because we don't trust you... // Don't use next inc() and dec() methods directly. INC & DEC instructions // could cause a partial flag stall since they don't set CF flag. // Use MacroAssembler::decrement() & MacroAssembler::increment() methods // which call inc() & dec() or add() & sub() in accordance with // the product flag UseIncDec value. void decl(Register dst); void decl(Address dst); void decq(Register dst); void decq(Address dst); void incl(Register dst); void incl(Address dst); void incq(Register dst); void incq(Address dst); // New cpus require use of movsd and movss to avoid partial register stall // when loading from memory. But for old Opteron use movlpd instead of movsd. // The selection is done in MacroAssembler::movdbl() and movflt(). // Move Scalar Single-Precision Floating-Point Values void movss(XMMRegister dst, Address src); void movss(XMMRegister dst, XMMRegister src); void movss(Address dst, XMMRegister src); // Move Scalar Double-Precision Floating-Point Values void movsd(XMMRegister dst, Address src); void movsd(XMMRegister dst, XMMRegister src); void movsd(Address dst, XMMRegister src); void movlpd(XMMRegister dst, Address src); // New cpus require use of movaps and movapd to avoid partial register stall // when moving between registers. void movaps(XMMRegister dst, XMMRegister src); void movapd(XMMRegister dst, XMMRegister src); // End avoid using directly // Instruction prefixes void prefix(Prefix p); public: // Creation Assembler(CodeBuffer* code) : AbstractAssembler(code) { init_attributes(); } // Decoding static address locate_operand(address inst, WhichOperand which); static address locate_next_instruction(address inst); // Utilities static bool is_polling_page_far() NOT_LP64({ return false;}); static bool query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len, int cur_tuple_type, int in_size_in_bits, int cur_encoding); // Generic instructions // Does 32bit or 64bit as needed for the platform. In some sense these // belong in macro assembler but there is no need for both varieties to exist void init_attributes(void) { _legacy_mode_bw = (VM_Version::supports_avx512bw() == false); _legacy_mode_dq = (VM_Version::supports_avx512dq() == false); _legacy_mode_vl = (VM_Version::supports_avx512vl() == false); _legacy_mode_vlbw = (VM_Version::supports_avx512vlbw() == false); NOT_LP64(_is_managed = false;) _attributes = NULL; } void set_attributes(InstructionAttr *attributes) { _attributes = attributes; } void clear_attributes(void) { _attributes = NULL; } void set_managed(void) { NOT_LP64(_is_managed = true;) } void clear_managed(void) { NOT_LP64(_is_managed = false;) } bool is_managed(void) { NOT_LP64(return _is_managed;) LP64_ONLY(return false;) } void lea(Register dst, Address src); void mov(Register dst, Register src); #ifdef _LP64 // support caching the result of some routines // must be called before pusha(), popa(), vzeroupper() - checked with asserts static void precompute_instructions(); void pusha_uncached(); void popa_uncached(); #endif void vzeroupper_uncached(); void pusha(); void popa(); void pushf(); void popf(); void push(int32_t imm32); void push(Register src); void pop(Register dst); // These are dummies to prevent surprise implicit conversions to Register void push(void* v); void pop(void* v); // These do register sized moves/scans void rep_mov(); void rep_stos(); void rep_stosb(); void repne_scan(); #ifdef _LP64 void repne_scanl(); #endif // Vanilla instructions in lexical order void adcl(Address dst, int32_t imm32); void adcl(Address dst, Register src); void adcl(Register dst, int32_t imm32); void adcl(Register dst, Address src); void adcl(Register dst, Register src); void adcq(Register dst, int32_t imm32); void adcq(Register dst, Address src); void adcq(Register dst, Register src); void addb(Address dst, int imm8); void addw(Address dst, int imm16); void addl(Address dst, int32_t imm32); void addl(Address dst, Register src); void addl(Register dst, int32_t imm32); void addl(Register dst, Address src); void addl(Register dst, Register src); void addq(Address dst, int32_t imm32); void addq(Address dst, Register src); void addq(Register dst, int32_t imm32); void addq(Register dst, Address src); void addq(Register dst, Register src); #ifdef _LP64 //Add Unsigned Integers with Carry Flag void adcxq(Register dst, Register src); //Add Unsigned Integers with Overflow Flag void adoxq(Register dst, Register src); #endif void addr_nop_4(); void addr_nop_5(); void addr_nop_7(); void addr_nop_8(); // Add Scalar Double-Precision Floating-Point Values void addsd(XMMRegister dst, Address src); void addsd(XMMRegister dst, XMMRegister src); // Add Scalar Single-Precision Floating-Point Values void addss(XMMRegister dst, Address src); void addss(XMMRegister dst, XMMRegister src); // AES instructions void aesdec(XMMRegister dst, Address src); void aesdec(XMMRegister dst, XMMRegister src); void aesdeclast(XMMRegister dst, Address src); void aesdeclast(XMMRegister dst, XMMRegister src); void aesenc(XMMRegister dst, Address src); void aesenc(XMMRegister dst, XMMRegister src); void aesenclast(XMMRegister dst, Address src); void aesenclast(XMMRegister dst, XMMRegister src); // Vector AES instructions void vaesenc(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vaesenclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vaesdec(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vaesdeclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void andl(Address dst, int32_t imm32); void andl(Register dst, int32_t imm32); void andl(Register dst, Address src); void andl(Register dst, Register src); void andq(Address dst, int32_t imm32); void andq(Register dst, int32_t imm32); void andq(Register dst, Address src); void andq(Register dst, Register src); // BMI instructions void andnl(Register dst, Register src1, Register src2); void andnl(Register dst, Register src1, Address src2); void andnq(Register dst, Register src1, Register src2); void andnq(Register dst, Register src1, Address src2); void blsil(Register dst, Register src); void blsil(Register dst, Address src); void blsiq(Register dst, Register src); void blsiq(Register dst, Address src); void blsmskl(Register dst, Register src); void blsmskl(Register dst, Address src); void blsmskq(Register dst, Register src); void blsmskq(Register dst, Address src); void blsrl(Register dst, Register src); void blsrl(Register dst, Address src); void blsrq(Register dst, Register src); void blsrq(Register dst, Address src); void bsfl(Register dst, Register src); void bsrl(Register dst, Register src); #ifdef _LP64 void bsfq(Register dst, Register src); void bsrq(Register dst, Register src); #endif void bswapl(Register reg); void bswapq(Register reg); void call(Label& L, relocInfo::relocType rtype); void call(Register reg); // push pc; pc <- reg void call(Address adr); // push pc; pc <- adr void cdql(); void cdqq(); void cld(); void clflush(Address adr); void clflushopt(Address adr); void clwb(Address adr); void cmovl(Condition cc, Register dst, Register src); void cmovl(Condition cc, Register dst, Address src); void cmovq(Condition cc, Register dst, Register src); void cmovq(Condition cc, Register dst, Address src); void cmpb(Address dst, int imm8); void cmpl(Address dst, int32_t imm32); void cmpl(Register dst, int32_t imm32); void cmpl(Register dst, Register src); void cmpl(Register dst, Address src); void cmpq(Address dst, int32_t imm32); void cmpq(Address dst, Register src); void cmpq(Register dst, int32_t imm32); void cmpq(Register dst, Register src); void cmpq(Register dst, Address src); // these are dummies used to catch attempting to convert NULL to Register void cmpl(Register dst, void* junk); // dummy void cmpq(Register dst, void* junk); // dummy void cmpw(Address dst, int imm16); void cmpxchg8 (Address adr); void cmpxchgb(Register reg, Address adr); void cmpxchgl(Register reg, Address adr); void cmpxchgq(Register reg, Address adr); // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS void comisd(XMMRegister dst, Address src); void comisd(XMMRegister dst, XMMRegister src); // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS void comiss(XMMRegister dst, Address src); void comiss(XMMRegister dst, XMMRegister src); // Identify processor type and features void cpuid(); // CRC32C void crc32(Register crc, Register v, int8_t sizeInBytes); void crc32(Register crc, Address adr, int8_t sizeInBytes); // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value void cvtsd2ss(XMMRegister dst, XMMRegister src); void cvtsd2ss(XMMRegister dst, Address src); // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value void cvtsi2sdl(XMMRegister dst, Register src); void cvtsi2sdl(XMMRegister dst, Address src); void cvtsi2sdq(XMMRegister dst, Register src); void cvtsi2sdq(XMMRegister dst, Address src); // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value void cvtsi2ssl(XMMRegister dst, Register src); void cvtsi2ssl(XMMRegister dst, Address src); void cvtsi2ssq(XMMRegister dst, Register src); void cvtsi2ssq(XMMRegister dst, Address src); // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value void cvtdq2pd(XMMRegister dst, XMMRegister src); // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value void cvtdq2ps(XMMRegister dst, XMMRegister src); // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value void cvtss2sd(XMMRegister dst, XMMRegister src); void cvtss2sd(XMMRegister dst, Address src); // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer void cvttsd2sil(Register dst, Address src); void cvttsd2sil(Register dst, XMMRegister src); void cvttsd2siq(Register dst, Address src); void cvttsd2siq(Register dst, XMMRegister src); // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer void cvttss2sil(Register dst, XMMRegister src); void cvttss2siq(Register dst, XMMRegister src); void cvttpd2dq(XMMRegister dst, XMMRegister src); //Abs of packed Integer values void pabsb(XMMRegister dst, XMMRegister src); void pabsw(XMMRegister dst, XMMRegister src); void pabsd(XMMRegister dst, XMMRegister src); void vpabsb(XMMRegister dst, XMMRegister src, int vector_len); void vpabsw(XMMRegister dst, XMMRegister src, int vector_len); void vpabsd(XMMRegister dst, XMMRegister src, int vector_len); void evpabsq(XMMRegister dst, XMMRegister src, int vector_len); // Divide Scalar Double-Precision Floating-Point Values void divsd(XMMRegister dst, Address src); void divsd(XMMRegister dst, XMMRegister src); // Divide Scalar Single-Precision Floating-Point Values void divss(XMMRegister dst, Address src); void divss(XMMRegister dst, XMMRegister src); void emms(); #ifndef _LP64 void fabs(); void fadd(int i); void fadd_d(Address src); void fadd_s(Address src); // "Alternate" versions of x87 instructions place result down in FPU // stack instead of on TOS void fadda(int i); // "alternate" fadd void faddp(int i = 1); void fchs(); void fcom(int i); void fcomp(int i = 1); void fcomp_d(Address src); void fcomp_s(Address src); void fcompp(); void fcos(); void fdecstp(); void fdiv(int i); void fdiv_d(Address src); void fdivr_s(Address src); void fdiva(int i); // "alternate" fdiv void fdivp(int i = 1); void fdivr(int i); void fdivr_d(Address src); void fdiv_s(Address src); void fdivra(int i); // "alternate" reversed fdiv void fdivrp(int i = 1); void ffree(int i = 0); void fild_d(Address adr); void fild_s(Address adr); void fincstp(); void finit(); void fist_s (Address adr); void fistp_d(Address adr); void fistp_s(Address adr); void fld1(); void fld_d(Address adr); void fld_s(Address adr); void fld_s(int index); void fld_x(Address adr); // extended-precision (80-bit) format void fldcw(Address src); void fldenv(Address src); void fldlg2(); void fldln2(); void fldz(); void flog(); void flog10(); void fmul(int i); void fmul_d(Address src); void fmul_s(Address src); void fmula(int i); // "alternate" fmul void fmulp(int i = 1); void fnsave(Address dst); void fnstcw(Address src); void fnstsw_ax(); void fprem(); void fprem1(); void frstor(Address src); void fsin(); void fsqrt(); void fst_d(Address adr); void fst_s(Address adr); void fstp_d(Address adr); void fstp_d(int index); void fstp_s(Address adr); void fstp_x(Address adr); // extended-precision (80-bit) format void fsub(int i); void fsub_d(Address src); void fsub_s(Address src); void fsuba(int i); // "alternate" fsub void fsubp(int i = 1); void fsubr(int i); void fsubr_d(Address src); void fsubr_s(Address src); void fsubra(int i); // "alternate" reversed fsub void fsubrp(int i = 1); void ftan(); void ftst(); void fucomi(int i = 1); void fucomip(int i = 1); void fwait(); void fxch(int i = 1); void fyl2x(); void frndint(); void f2xm1(); void fldl2e(); #endif // !_LP64 void fxrstor(Address src); void xrstor(Address src); void fxsave(Address dst); void xsave(Address dst); void hlt(); void idivl(Register src); void divl(Register src); // Unsigned division #ifdef _LP64 void idivq(Register src); #endif void imull(Register src); void imull(Register dst, Register src); void imull(Register dst, Register src, int value); void imull(Register dst, Address src); #ifdef _LP64 void imulq(Register dst, Register src); void imulq(Register dst, Register src, int value); void imulq(Register dst, Address src); #endif // jcc is the generic conditional branch generator to run- // time routines, jcc is used for branches to labels. jcc // takes a branch opcode (cc) and a label (L) and generates // either a backward branch or a forward branch and links it // to the label fixup chain. Usage: // // Label L; // unbound label // jcc(cc, L); // forward branch to unbound label // bind(L); // bind label to the current pc // jcc(cc, L); // backward branch to bound label // bind(L); // illegal: a label may be bound only once // // Note: The same Label can be used for forward and backward branches // but it may be bound only once. void jcc(Condition cc, Label& L, bool maybe_short = true); // Conditional jump to a 8-bit offset to L. // WARNING: be very careful using this for forward jumps. If the label is // not bound within an 8-bit offset of this instruction, a run-time error // will occur. // Use macro to record file and line number. #define jccb(cc, L) jccb_0(cc, L, __FILE__, __LINE__) void jccb_0(Condition cc, Label& L, const char* file, int line); void jmp(Address entry); // pc <- entry // Label operations & relative jumps (PPUM Appendix D) void jmp(Label& L, bool maybe_short = true); // unconditional jump to L void jmp(Register entry); // pc <- entry // Unconditional 8-bit offset jump to L. // WARNING: be very careful using this for forward jumps. If the label is // not bound within an 8-bit offset of this instruction, a run-time error // will occur. // Use macro to record file and line number. #define jmpb(L) jmpb_0(L, __FILE__, __LINE__) void jmpb_0(Label& L, const char* file, int line); void ldmxcsr( Address src ); void leal(Register dst, Address src); void leaq(Register dst, Address src); void lfence(); void lock(); void lzcntl(Register dst, Register src); #ifdef _LP64 void lzcntq(Register dst, Register src); #endif enum Membar_mask_bits { StoreStore = 1 << 3, LoadStore = 1 << 2, StoreLoad = 1 << 1, LoadLoad = 1 << 0 }; // Serializes memory and blows flags void membar(Membar_mask_bits order_constraint) { // We only have to handle StoreLoad if (order_constraint & StoreLoad) { // All usable chips support "locked" instructions which suffice // as barriers, and are much faster than the alternative of // using cpuid instruction. We use here a locked add [esp-C],0. // This is conveniently otherwise a no-op except for blowing // flags, and introducing a false dependency on target memory // location. We can't do anything with flags, but we can avoid // memory dependencies in the current method by locked-adding // somewhere else on the stack. Doing [esp+C] will collide with // something on stack in current method, hence we go for [esp-C]. // It is convenient since it is almost always in data cache, for // any small C. We need to step back from SP to avoid data // dependencies with other things on below SP (callee-saves, for // example). Without a clear way to figure out the minimal safe // distance from SP, it makes sense to step back the complete // cache line, as this will also avoid possible second-order effects // with locked ops against the cache line. Our choice of offset // is bounded by x86 operand encoding, which should stay within // [-128; +127] to have the 8-byte displacement encoding. // // Any change to this code may need to revisit other places in // the code where this idiom is used, in particular the // orderAccess code. int offset = -VM_Version::L1_line_size(); if (offset < -128) { offset = -128; } lock(); addl(Address(rsp, offset), 0);// Assert the lock# signal here } } void mfence(); void sfence(); // Moves void mov64(Register dst, int64_t imm64); void movb(Address dst, Register src); void movb(Address dst, int imm8); void movb(Register dst, Address src); void movddup(XMMRegister dst, XMMRegister src); void kmovbl(KRegister dst, Register src); void kmovbl(Register dst, KRegister src); void kmovwl(KRegister dst, Register src); void kmovwl(KRegister dst, Address src); void kmovwl(Register dst, KRegister src); void kmovdl(KRegister dst, Register src); void kmovdl(Register dst, KRegister src); void kmovql(KRegister dst, KRegister src); void kmovql(Address dst, KRegister src); void kmovql(KRegister dst, Address src); void kmovql(KRegister dst, Register src); void kmovql(Register dst, KRegister src); void knotwl(KRegister dst, KRegister src); void kortestbl(KRegister dst, KRegister src); void kortestwl(KRegister dst, KRegister src); void kortestdl(KRegister dst, KRegister src); void kortestql(KRegister dst, KRegister src); void ktestq(KRegister src1, KRegister src2); void ktestd(KRegister src1, KRegister src2); void ktestql(KRegister dst, KRegister src); void movdl(XMMRegister dst, Register src); void movdl(Register dst, XMMRegister src); void movdl(XMMRegister dst, Address src); void movdl(Address dst, XMMRegister src); // Move Double Quadword void movdq(XMMRegister dst, Register src); void movdq(Register dst, XMMRegister src); // Move Aligned Double Quadword void movdqa(XMMRegister dst, XMMRegister src); void movdqa(XMMRegister dst, Address src); // Move Unaligned Double Quadword void movdqu(Address dst, XMMRegister src); void movdqu(XMMRegister dst, Address src); void movdqu(XMMRegister dst, XMMRegister src); // Move Unaligned 256bit Vector void vmovdqu(Address dst, XMMRegister src); void vmovdqu(XMMRegister dst, Address src); void vmovdqu(XMMRegister dst, XMMRegister src); // Move Unaligned 512bit Vector void evmovdqub(Address dst, XMMRegister src, int vector_len); void evmovdqub(XMMRegister dst, Address src, int vector_len); void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len); void evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len); void evmovdquw(Address dst, XMMRegister src, int vector_len); void evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len); void evmovdquw(XMMRegister dst, Address src, int vector_len); void evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len); void evmovdqul(Address dst, XMMRegister src, int vector_len); void evmovdqul(XMMRegister dst, Address src, int vector_len); void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len); void evmovdquq(Address dst, XMMRegister src, int vector_len); void evmovdquq(XMMRegister dst, Address src, int vector_len); void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len); // Move lower 64bit to high 64bit in 128bit register void movlhps(XMMRegister dst, XMMRegister src); void movl(Register dst, int32_t imm32); void movl(Address dst, int32_t imm32); void movl(Register dst, Register src); void movl(Register dst, Address src); void movl(Address dst, Register src); // These dummies prevent using movl from converting a zero (like NULL) into Register // by giving the compiler two choices it can't resolve void movl(Address dst, void* junk); void movl(Register dst, void* junk); #ifdef _LP64 void movq(Register dst, Register src); void movq(Register dst, Address src); void movq(Address dst, Register src); #endif void movq(Address dst, MMXRegister src ); void movq(MMXRegister dst, Address src ); #ifdef _LP64 // These dummies prevent using movq from converting a zero (like NULL) into Register // by giving the compiler two choices it can't resolve void movq(Address dst, void* dummy); void movq(Register dst, void* dummy); #endif // Move Quadword void movq(Address dst, XMMRegister src); void movq(XMMRegister dst, Address src); void movsbl(Register dst, Address src); void movsbl(Register dst, Register src); #ifdef _LP64 void movsbq(Register dst, Address src); void movsbq(Register dst, Register src); // Move signed 32bit immediate to 64bit extending sign void movslq(Address dst, int32_t imm64); void movslq(Register dst, int32_t imm64); void movslq(Register dst, Address src); void movslq(Register dst, Register src); void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous #endif void movswl(Register dst, Address src); void movswl(Register dst, Register src); #ifdef _LP64 void movswq(Register dst, Address src); void movswq(Register dst, Register src); #endif void movw(Address dst, int imm16); void movw(Register dst, Address src); void movw(Address dst, Register src); void movzbl(Register dst, Address src); void movzbl(Register dst, Register src); #ifdef _LP64 void movzbq(Register dst, Address src); void movzbq(Register dst, Register src); #endif void movzwl(Register dst, Address src); void movzwl(Register dst, Register src); #ifdef _LP64 void movzwq(Register dst, Address src); void movzwq(Register dst, Register src); #endif // Unsigned multiply with RAX destination register void mull(Address src); void mull(Register src); #ifdef _LP64 void mulq(Address src); void mulq(Register src); void mulxq(Register dst1, Register dst2, Register src); #endif // Multiply Scalar Double-Precision Floating-Point Values void mulsd(XMMRegister dst, Address src); void mulsd(XMMRegister dst, XMMRegister src); // Multiply Scalar Single-Precision Floating-Point Values void mulss(XMMRegister dst, Address src); void mulss(XMMRegister dst, XMMRegister src); void negl(Register dst); #ifdef _LP64 void negq(Register dst); #endif void nop(int i = 1); void notl(Register dst); #ifdef _LP64 void notq(Register dst); void btsq(Address dst, int imm8); void btrq(Address dst, int imm8); #endif void orl(Address dst, int32_t imm32); void orl(Register dst, int32_t imm32); void orl(Register dst, Address src); void orl(Register dst, Register src); void orl(Address dst, Register src); void orb(Address dst, int imm8); void orq(Address dst, int32_t imm32); void orq(Register dst, int32_t imm32); void orq(Register dst, Address src); void orq(Register dst, Register src); // Pack with unsigned saturation void packuswb(XMMRegister dst, XMMRegister src); void packuswb(XMMRegister dst, Address src); void vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); // Pemutation of 64bit words void vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len); void vpermq(XMMRegister dst, XMMRegister src, int imm8); void vpermq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vperm2i128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8); void vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8); void evpermi2q(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void pause(); // Undefined Instruction void ud2(); // SSE4.2 string instructions void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8); void pcmpestri(XMMRegister xmm1, Address src, int imm8); void pcmpeqb(XMMRegister dst, XMMRegister src); void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len); void evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len); void evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len); void evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len); void evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len); void evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len); void evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate of, int vector_len); void evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len); void pcmpeqw(XMMRegister dst, XMMRegister src); void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len); void evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len); void pcmpeqd(XMMRegister dst, XMMRegister src); void vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len); void evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len); void pcmpeqq(XMMRegister dst, XMMRegister src); void vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len); void evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len); void pmovmskb(Register dst, XMMRegister src); void vpmovmskb(Register dst, XMMRegister src); // SSE 4.1 extract void pextrd(Register dst, XMMRegister src, int imm8); void pextrq(Register dst, XMMRegister src, int imm8); void pextrd(Address dst, XMMRegister src, int imm8); void pextrq(Address dst, XMMRegister src, int imm8); void pextrb(Address dst, XMMRegister src, int imm8); // SSE 2 extract void pextrw(Register dst, XMMRegister src, int imm8); void pextrw(Address dst, XMMRegister src, int imm8); // SSE 4.1 insert void pinsrd(XMMRegister dst, Register src, int imm8); void pinsrq(XMMRegister dst, Register src, int imm8); void pinsrd(XMMRegister dst, Address src, int imm8); void pinsrq(XMMRegister dst, Address src, int imm8); void pinsrb(XMMRegister dst, Address src, int imm8); // SSE 2 insert void pinsrw(XMMRegister dst, Register src, int imm8); void pinsrw(XMMRegister dst, Address src, int imm8); // SSE4.1 packed move void pmovzxbw(XMMRegister dst, XMMRegister src); void pmovzxbw(XMMRegister dst, Address src); void vpmovzxbw( XMMRegister dst, Address src, int vector_len); void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len); void evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len); void evpmovwb(Address dst, XMMRegister src, int vector_len); void evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len); void vpmovzxwd(XMMRegister dst, XMMRegister src, int vector_len); void evpmovdb(Address dst, XMMRegister src, int vector_len); // Sign extend moves void pmovsxbw(XMMRegister dst, XMMRegister src); void vpmovsxbw(XMMRegister dst, XMMRegister src, int vector_len); // Multiply add void pmaddwd(XMMRegister dst, XMMRegister src); void vpmaddwd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); // Multiply add accumulate void evpdpwssd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); #ifndef _LP64 // no 32bit push/pop on amd64 void popl(Address dst); #endif #ifdef _LP64 void popq(Address dst); #endif void popcntl(Register dst, Address src); void popcntl(Register dst, Register src); void vpopcntd(XMMRegister dst, XMMRegister src, int vector_len); #ifdef _LP64 void popcntq(Register dst, Address src); void popcntq(Register dst, Register src); #endif // Prefetches (SSE, SSE2, 3DNOW only) void prefetchnta(Address src); void prefetchr(Address src); void prefetcht0(Address src); void prefetcht1(Address src); void prefetcht2(Address src); void prefetchw(Address src); // Shuffle Bytes void pshufb(XMMRegister dst, XMMRegister src); void pshufb(XMMRegister dst, Address src); void vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); // Shuffle Packed Doublewords void pshufd(XMMRegister dst, XMMRegister src, int mode); void pshufd(XMMRegister dst, Address src, int mode); void vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len); // Shuffle Packed Low Words void pshuflw(XMMRegister dst, XMMRegister src, int mode); void pshuflw(XMMRegister dst, Address src, int mode); // Shuffle packed values at 128 bit granularity void evshufi64x2(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len); // Shift Right by bytes Logical DoubleQuadword Immediate void psrldq(XMMRegister dst, int shift); // Shift Left by bytes Logical DoubleQuadword Immediate void pslldq(XMMRegister dst, int shift); // Logical Compare 128bit void ptest(XMMRegister dst, XMMRegister src); void ptest(XMMRegister dst, Address src); // Logical Compare 256bit void vptest(XMMRegister dst, XMMRegister src); void vptest(XMMRegister dst, Address src); // Interleave Low Bytes void punpcklbw(XMMRegister dst, XMMRegister src); void punpcklbw(XMMRegister dst, Address src); // Interleave Low Doublewords void punpckldq(XMMRegister dst, XMMRegister src); void punpckldq(XMMRegister dst, Address src); // Interleave Low Quadwords void punpcklqdq(XMMRegister dst, XMMRegister src); #ifndef _LP64 // no 32bit push/pop on amd64 void pushl(Address src); #endif void pushq(Address src); void rcll(Register dst, int imm8); void rclq(Register dst, int imm8); void rcrq(Register dst, int imm8); void rcpps(XMMRegister dst, XMMRegister src); void rcpss(XMMRegister dst, XMMRegister src); void rdtsc(); void ret(int imm16); #ifdef _LP64 void rorq(Register dst, int imm8); void rorxq(Register dst, Register src, int imm8); void rorxd(Register dst, Register src, int imm8); #endif void sahf(); void sarl(Register dst, int imm8); void sarl(Register dst); void sarq(Register dst, int imm8); void sarq(Register dst); void sbbl(Address dst, int32_t imm32); void sbbl(Register dst, int32_t imm32); void sbbl(Register dst, Address src); void sbbl(Register dst, Register src); void sbbq(Address dst, int32_t imm32); void sbbq(Register dst, int32_t imm32); void sbbq(Register dst, Address src); void sbbq(Register dst, Register src); void setb(Condition cc, Register dst); void palignr(XMMRegister dst, XMMRegister src, int imm8); void vpalignr(XMMRegister dst, XMMRegister src1, XMMRegister src2, int imm8, int vector_len); void evalignq(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); void pblendw(XMMRegister dst, XMMRegister src, int imm8); void sha1rnds4(XMMRegister dst, XMMRegister src, int imm8); void sha1nexte(XMMRegister dst, XMMRegister src); void sha1msg1(XMMRegister dst, XMMRegister src); void sha1msg2(XMMRegister dst, XMMRegister src); // xmm0 is implicit additional source to the following instruction. void sha256rnds2(XMMRegister dst, XMMRegister src); void sha256msg1(XMMRegister dst, XMMRegister src); void sha256msg2(XMMRegister dst, XMMRegister src); void shldl(Register dst, Register src); void shldl(Register dst, Register src, int8_t imm8); void shrdl(Register dst, Register src); void shrdl(Register dst, Register src, int8_t imm8); void shll(Register dst, int imm8); void shll(Register dst); void shlq(Register dst, int imm8); void shlq(Register dst); void shrl(Register dst, int imm8); void shrl(Register dst); void shrq(Register dst, int imm8); void shrq(Register dst); void smovl(); // QQQ generic? // Compute Square Root of Scalar Double-Precision Floating-Point Value void sqrtsd(XMMRegister dst, Address src); void sqrtsd(XMMRegister dst, XMMRegister src); void roundsd(XMMRegister dst, Address src, int32_t rmode); void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode); // Compute Square Root of Scalar Single-Precision Floating-Point Value void sqrtss(XMMRegister dst, Address src); void sqrtss(XMMRegister dst, XMMRegister src); void std(); void stmxcsr( Address dst ); void subl(Address dst, int32_t imm32); void subl(Address dst, Register src); void subl(Register dst, int32_t imm32); void subl(Register dst, Address src); void subl(Register dst, Register src); void subq(Address dst, int32_t imm32); void subq(Address dst, Register src); void subq(Register dst, int32_t imm32); void subq(Register dst, Address src); void subq(Register dst, Register src); // Force generation of a 4 byte immediate value even if it fits into 8bit void subl_imm32(Register dst, int32_t imm32); void subq_imm32(Register dst, int32_t imm32); // Subtract Scalar Double-Precision Floating-Point Values void subsd(XMMRegister dst, Address src); void subsd(XMMRegister dst, XMMRegister src); // Subtract Scalar Single-Precision Floating-Point Values void subss(XMMRegister dst, Address src); void subss(XMMRegister dst, XMMRegister src); void testb(Register dst, int imm8); void testb(Address dst, int imm8); void testl(Register dst, int32_t imm32); void testl(Register dst, Register src); void testl(Register dst, Address src); void testq(Register dst, int32_t imm32); void testq(Register dst, Register src); void testq(Register dst, Address src); // BMI - count trailing zeros void tzcntl(Register dst, Register src); void tzcntq(Register dst, Register src); // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS void ucomisd(XMMRegister dst, Address src); void ucomisd(XMMRegister dst, XMMRegister src); // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS void ucomiss(XMMRegister dst, Address src); void ucomiss(XMMRegister dst, XMMRegister src); void xabort(int8_t imm8); void xaddb(Address dst, Register src); void xaddw(Address dst, Register src); void xaddl(Address dst, Register src); void xaddq(Address dst, Register src); void xbegin(Label& abort, relocInfo::relocType rtype = relocInfo::none); void xchgb(Register reg, Address adr); void xchgw(Register reg, Address adr); void xchgl(Register reg, Address adr); void xchgl(Register dst, Register src); void xchgq(Register reg, Address adr); void xchgq(Register dst, Register src); void xend(); // Get Value of Extended Control Register void xgetbv(); void xorl(Register dst, int32_t imm32); void xorl(Register dst, Address src); void xorl(Register dst, Register src); void xorb(Register dst, Address src); void xorq(Register dst, Address src); void xorq(Register dst, Register src); void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0 // AVX 3-operands scalar instructions (encoded with VEX prefix) void vaddsd(XMMRegister dst, XMMRegister nds, Address src); void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src); void vaddss(XMMRegister dst, XMMRegister nds, Address src); void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src); void vdivsd(XMMRegister dst, XMMRegister nds, Address src); void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src); void vdivss(XMMRegister dst, XMMRegister nds, Address src); void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src); void vfmadd231sd(XMMRegister dst, XMMRegister nds, XMMRegister src); void vfmadd231ss(XMMRegister dst, XMMRegister nds, XMMRegister src); void vmulsd(XMMRegister dst, XMMRegister nds, Address src); void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src); void vmulss(XMMRegister dst, XMMRegister nds, Address src); void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src); void vsubsd(XMMRegister dst, XMMRegister nds, Address src); void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src); void vsubss(XMMRegister dst, XMMRegister nds, Address src); void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src); void vmaxss(XMMRegister dst, XMMRegister nds, XMMRegister src); void vmaxsd(XMMRegister dst, XMMRegister nds, XMMRegister src); void vminss(XMMRegister dst, XMMRegister nds, XMMRegister src); void vminsd(XMMRegister dst, XMMRegister nds, XMMRegister src); void shlxl(Register dst, Register src1, Register src2); void shlxq(Register dst, Register src1, Register src2); //====================VECTOR ARITHMETIC===================================== // Add Packed Floating-Point Values void addpd(XMMRegister dst, XMMRegister src); void addpd(XMMRegister dst, Address src); void addps(XMMRegister dst, XMMRegister src); void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); // Subtract Packed Floating-Point Values void subpd(XMMRegister dst, XMMRegister src); void subps(XMMRegister dst, XMMRegister src); void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); // Multiply Packed Floating-Point Values void mulpd(XMMRegister dst, XMMRegister src); void mulpd(XMMRegister dst, Address src); void mulps(XMMRegister dst, XMMRegister src); void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vfmadd231pd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vfmadd231ps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vfmadd231pd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vfmadd231ps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); // Divide Packed Floating-Point Values void divpd(XMMRegister dst, XMMRegister src); void divps(XMMRegister dst, XMMRegister src); void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); // Sqrt Packed Floating-Point Values void vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len); void vsqrtpd(XMMRegister dst, Address src, int vector_len); void vsqrtps(XMMRegister dst, XMMRegister src, int vector_len); void vsqrtps(XMMRegister dst, Address src, int vector_len); // Round Packed Double precision value. void vroundpd(XMMRegister dst, XMMRegister src, int32_t rmode, int vector_len); void vroundpd(XMMRegister dst, Address src, int32_t rmode, int vector_len); void vrndscalepd(XMMRegister dst, XMMRegister src, int32_t rmode, int vector_len); void vrndscalepd(XMMRegister dst, Address src, int32_t rmode, int vector_len); // Bitwise Logical AND of Packed Floating-Point Values void andpd(XMMRegister dst, XMMRegister src); void andps(XMMRegister dst, XMMRegister src); void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void unpckhpd(XMMRegister dst, XMMRegister src); void unpcklpd(XMMRegister dst, XMMRegister src); // Bitwise Logical XOR of Packed Floating-Point Values void xorpd(XMMRegister dst, XMMRegister src); void xorps(XMMRegister dst, XMMRegister src); void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); // Add horizontal packed integers void vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void phaddw(XMMRegister dst, XMMRegister src); void phaddd(XMMRegister dst, XMMRegister src); // Add packed integers void paddb(XMMRegister dst, XMMRegister src); void paddw(XMMRegister dst, XMMRegister src); void paddd(XMMRegister dst, XMMRegister src); void paddd(XMMRegister dst, Address src); void paddq(XMMRegister dst, XMMRegister src); void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len); // Sub packed integers void psubb(XMMRegister dst, XMMRegister src); void psubw(XMMRegister dst, XMMRegister src); void psubd(XMMRegister dst, XMMRegister src); void psubq(XMMRegister dst, XMMRegister src); void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len); // Multiply packed integers (only shorts and ints) void pmullw(XMMRegister dst, XMMRegister src); void pmulld(XMMRegister dst, XMMRegister src); void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len); // Shift left packed integers void psllw(XMMRegister dst, int shift); void pslld(XMMRegister dst, int shift); void psllq(XMMRegister dst, int shift); void psllw(XMMRegister dst, XMMRegister shift); void pslld(XMMRegister dst, XMMRegister shift); void psllq(XMMRegister dst, XMMRegister shift); void vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len); void vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len); void vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len); void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); void vpslldq(XMMRegister dst, XMMRegister src, int shift, int vector_len); // Logical shift right packed integers void psrlw(XMMRegister dst, int shift); void psrld(XMMRegister dst, int shift); void psrlq(XMMRegister dst, int shift); void psrlw(XMMRegister dst, XMMRegister shift); void psrld(XMMRegister dst, XMMRegister shift); void psrlq(XMMRegister dst, XMMRegister shift); void vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len); void vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len); void vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len); void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); void vpsrldq(XMMRegister dst, XMMRegister src, int shift, int vector_len); void evpsrlvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void evpsllvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs) void psraw(XMMRegister dst, int shift); void psrad(XMMRegister dst, int shift); void psraw(XMMRegister dst, XMMRegister shift); void psrad(XMMRegister dst, XMMRegister shift); void vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len); void vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len); void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); void evpsraq(XMMRegister dst, XMMRegister src, int shift, int vector_len); void evpsraq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); void vpshldvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); void vpshrdvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); // And packed integers void pand(XMMRegister dst, XMMRegister src); void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vpandq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); // Andn packed integers void pandn(XMMRegister dst, XMMRegister src); void vpandn(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); // Or packed integers void por(XMMRegister dst, XMMRegister src); void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void vporq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); // Xor packed integers void pxor(XMMRegister dst, XMMRegister src); void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len); void evpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); void evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vector_len); // vinserti forms void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); void vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); void vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); void vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); // vinsertf forms void vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); void vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); void vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); void vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); void vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); void vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); // vextracti forms void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8); void vextracti128(Address dst, XMMRegister src, uint8_t imm8); void vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8); void vextracti32x4(Address dst, XMMRegister src, uint8_t imm8); void vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8); void vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8); void vextracti64x4(Address dst, XMMRegister src, uint8_t imm8); // vextractf forms void vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8); void vextractf128(Address dst, XMMRegister src, uint8_t imm8); void vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8); void vextractf32x4(Address dst, XMMRegister src, uint8_t imm8); void vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8); void vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8); void vextractf64x4(Address dst, XMMRegister src, uint8_t imm8); // xmm/mem sourced byte/word/dword/qword replicate void vpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len); void vpbroadcastb(XMMRegister dst, Address src, int vector_len); void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len); void vpbroadcastw(XMMRegister dst, Address src, int vector_len); void vpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len); void vpbroadcastd(XMMRegister dst, Address src, int vector_len); void vpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len); void vpbroadcastq(XMMRegister dst, Address src, int vector_len); void evbroadcasti64x2(XMMRegister dst, XMMRegister src, int vector_len); void evbroadcasti64x2(XMMRegister dst, Address src, int vector_len); // scalar single/double precision replicate void vbroadcastss(XMMRegister dst, XMMRegister src, int vector_len); void vbroadcastss(XMMRegister dst, Address src, int vector_len); void vbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len); void vbroadcastsd(XMMRegister dst, Address src, int vector_len); // gpr sourced byte/word/dword/qword replicate void evpbroadcastb(XMMRegister dst, Register src, int vector_len); void evpbroadcastw(XMMRegister dst, Register src, int vector_len); void evpbroadcastd(XMMRegister dst, Register src, int vector_len); void evpbroadcastq(XMMRegister dst, Register src, int vector_len); void evpgatherdd(XMMRegister dst, KRegister k1, Address src, int vector_len); // Carry-Less Multiplication Quadword void pclmulqdq(XMMRegister dst, XMMRegister src, int mask); void vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask); void evpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask, int vector_len); // AVX instruction which is used to clear upper 128 bits of YMM registers and // to avoid transaction penalty between AVX and SSE states. There is no // penalty if legacy SSE instructions are encoded using VEX prefix because // they always clear upper 128 bits. It should be used before calling // runtime code and native libraries. void vzeroupper(); // AVX support for vectorized conditional move (float/double). The following two instructions used only coupled. void cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len); void blendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len); void cmpps(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len); void blendvps(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len); void vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len); protected: // Next instructions require address alignment 16 bytes SSE mode. // They should be called only from corresponding MacroAssembler instructions. void andpd(XMMRegister dst, Address src); void andps(XMMRegister dst, Address src); void xorpd(XMMRegister dst, Address src); void xorps(XMMRegister dst, Address src); }; // The Intel x86/Amd64 Assembler attributes: All fields enclosed here are to guide encoding level decisions. // Specific set functions are for specialized use, else defaults or whatever was supplied to object construction // are applied. class InstructionAttr { public: InstructionAttr( int vector_len, // The length of vector to be applied in encoding - for both AVX and EVEX bool rex_vex_w, // Width of data: if 32-bits or less, false, else if 64-bit or specially defined, true bool legacy_mode, // Details if either this instruction is conditionally encoded to AVX or earlier if true else possibly EVEX bool no_reg_mask, // when true, k0 is used when EVEX encoding is chosen, else embedded_opmask_register_specifier is used bool uses_vl) // This instruction may have legacy constraints based on vector length for EVEX : _rex_vex_w(rex_vex_w), _legacy_mode(legacy_mode || UseAVX < 3), _no_reg_mask(no_reg_mask), _uses_vl(uses_vl), _rex_vex_w_reverted(false), _is_evex_instruction(false), _is_clear_context(true), _is_extended_context(false), _avx_vector_len(vector_len), _tuple_type(Assembler::EVEX_ETUP), _input_size_in_bits(Assembler::EVEX_NObit), _evex_encoding(0), _embedded_opmask_register_specifier(0), // hard code k0 _current_assembler(NULL) { } ~InstructionAttr() { if (_current_assembler != NULL) { _current_assembler->clear_attributes(); } _current_assembler = NULL; } private: bool _rex_vex_w; bool _legacy_mode; bool _no_reg_mask; bool _uses_vl; bool _rex_vex_w_reverted; bool _is_evex_instruction; bool _is_clear_context; bool _is_extended_context; int _avx_vector_len; int _tuple_type; int _input_size_in_bits; int _evex_encoding; int _embedded_opmask_register_specifier; Assembler *_current_assembler; public: // query functions for field accessors bool is_rex_vex_w(void) const { return _rex_vex_w; } bool is_legacy_mode(void) const { return _legacy_mode; } bool is_no_reg_mask(void) const { return _no_reg_mask; } bool uses_vl(void) const { return _uses_vl; } bool is_rex_vex_w_reverted(void) { return _rex_vex_w_reverted; } bool is_evex_instruction(void) const { return _is_evex_instruction; } bool is_clear_context(void) const { return _is_clear_context; } bool is_extended_context(void) const { return _is_extended_context; } int get_vector_len(void) const { return _avx_vector_len; } int get_tuple_type(void) const { return _tuple_type; } int get_input_size(void) const { return _input_size_in_bits; } int get_evex_encoding(void) const { return _evex_encoding; } int get_embedded_opmask_register_specifier(void) const { return _embedded_opmask_register_specifier; } // Set the vector len manually void set_vector_len(int vector_len) { _avx_vector_len = vector_len; } // Set revert rex_vex_w for avx encoding void set_rex_vex_w_reverted(void) { _rex_vex_w_reverted = true; } // Set rex_vex_w based on state void set_rex_vex_w(bool state) { _rex_vex_w = state; } // Set the instruction to be encoded in AVX mode void set_is_legacy_mode(void) { _legacy_mode = true; } // Set the current instuction to be encoded as an EVEX instuction void set_is_evex_instruction(void) { _is_evex_instruction = true; } // Internal encoding data used in compressed immediate offset programming void set_evex_encoding(int value) { _evex_encoding = value; } // Set the Evex.Z field to be used to clear all non directed XMM/YMM/ZMM components void reset_is_clear_context(void) { _is_clear_context = false; } // Map back to current asembler so that we can manage object level assocation void set_current_assembler(Assembler *current_assembler) { _current_assembler = current_assembler; } // Address modifiers used for compressed displacement calculation void set_address_attributes(int tuple_type, int input_size_in_bits) { if (VM_Version::supports_evex()) { _tuple_type = tuple_type; _input_size_in_bits = input_size_in_bits; } } // Set embedded opmask register specifier. void set_embedded_opmask_register_specifier(KRegister mask) { _embedded_opmask_register_specifier = (*mask).encoding() & 0x7; } }; #endif // CPU_X86_ASSEMBLER_X86_HPP