
 Code Reflection

1JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

Paul Sandoz

JVM Language Summit 
August 7–9, 2023 

Overview

2JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

Motivation

Code reflection | noitcelfer edoC

Plan

• It should be easy for developers to write and support Java programs that
represent:

– GPU kernels, and kernel call graphs

– Differentiable programs

–Machine learning models

– SQL statements (or anything C# LINQ can do)

– Parallel graph programs (Parallel Graph AnalytiX)

– Probabilistic programs (Vate: Runtime Adaptable Probabilistic Programming in Java)

– Secure programs (leveraging CPU secure enclaves)

– Lane-wise/element-wise vectorizable programs

– C programs bound to Panama FFM upcalls from native code

Motivation — broaden Java in nontraditional domains

3JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

https://www.oracle.com/middleware/technologies/parallel-graph-analytix.html
https://labs.oracle.com/pls/apex/f?p=94065:10:109345727860596:7229

• Developers should not have to

– Embed snippets of non-Java code in text blocks, or string templates

–Write tedious Java code that builds up data structures to represent their program

– Use non-standard/internal APIs to access and analyze their program in unsuitable

formats that contain too much or too little information

• They should be able to write novel programs combining APIs with Java
language features

– Rather than using APIs that poorly emulate language features

• With today's Java platform this is hard to do — let’s fix that

Motivation

4JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

// Developers should not have to write this code, the compiler should do that
var fModel = func("f", methodType(double.class, double.class, double.class))
 .body(entry -> {
 var x = entry.parameters().get(0);
 var y = entry.parameters().get(1);

 var r = entry.op(mul(
 entry.op(mul(
 x,
 entry.op(add(
 entry.op(neg(
 entry.op(call(MATH_SIN,
 entry.op(mul(
 x,
 y)))))),
 y)))),
 entry.op(constant(DOUBLE, 4.0))));
 entry.op(_return(r));
 });

// Developers should write ordinary Java code
static double f(double x, double y) {
 return x * (-Math.sin(x * y) + y) * 4.0d;
}

Method to be differentiated — tedious code

5JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

// Developers should write ordinary Java code
static double f(double x, double y) {
 return x * (-Math.sin(x * y) + y) * 4.0d;
}

// Library developers should not have to use non-standard access to code
// in a format unsuitable for analysis

// Find class file bytes for class file with method f
ClassLoader l = ...
byte[] classbytes = l.getResourceAsStream(“....class")
 .readAllBytes();

// Parse the class file bytes and obtain the (byte) code model for method f
CodeModel fMethodModel = Classfile.of().parse(classbytes).methods().stream()
 .filter(methodModel -> methodModel.methodName().equalsString("f"))
 .flatMap(methodModel -> methodModel.code().stream())
 .findFirst().orElseThrow();
List<CodeElement> fCodeModel = fModel.elementList();

// Transform the (byte) code elements into a suitable format for analysis
// - Manage the stack
// - Reconstruct structure and type information
// - Reverse engineer the source compiler's translation strategy

Method to be differentiated — difficult access and format

6JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

• Those Java programs are domain specific

– Not all Java programs can or should execute on a GPU

– Not all Java programs are differentiable

• In many cases program meaning may differ from that specified by the
Java platform

– The byte code is never intended to be executed

Observation — domain specific programming models

7JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

• Why don’t we “just” enhance the Java platform to support these
programming models?

• This is a terrible way to grow the Java language

– Complicated and costly process to update the Java specifications and implement

– Does not scale as new programming models are requested

– Does not compose — models will surely conflict

How to grow a language, not!

8JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

• A domain specific programming model can be implemented as a Java
program that

– Accesses the code of the domain specific Java program

– Analyzes that program; and then

– Transforms it to a new program

• The transformation need not preserve Java program meaning

– The new program might not be a Java program

• The transforming program could be “just” an ordinary Java library

–We don’t need to add new programing domains to Java’s programming model

Observation — Java programs transforming Java programs

9JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

• Today's Java platform features supporting PAAT are limited and hard to
use

• There are two choices, each available at two distinct phases in the life
cycle of the program

1. At source compile time, with access to the unspecified Abstract Syntax Tree
(AST), derived from the specified grammar, and produced by the Java compiler

2. At run time, with access to the specified bytecode of the class files produced by
the Java compiler

• Both are insufficient to meet the needs of PAAT

Limited Program Access, Analysis, and Transformation

10JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

• Neither the AST nor bytecode is fully accessible using public Java APIs

– The compile time mirror API and run time reflection API only reflect the “surface” details

• Neither provide a suitable program model for PAAT

– AST is designed to be processed by the source compiler

• Containing surface syntax details and grammatical idiosyncrasies

• Specific to each Java compiler implementation

– Bytecode is designed for “shipping” to and execution by the Java run time

• Types are erased, program structure is stripped away

• Arrangement is specific to the Java compiler’s translation strategy

• Operating on the program at both compile time and run time requires the use
of two APIs and two models

Limited PAAT

11JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

1. Modeling Java programs as code models

– Suitable for access, analysis, and transformation

– Preserving program structure and type information

2. Enhancements to Java reflection

– Identifying areas of Java source code to reflect over and give access to as code

models at compile time and run time

– e.g., code of method bodies and lambda bodies

3. API to build, analyze, and transform code models

– For use at compile time and run time

– e.g, domain-specific errors can be reported at compile time

Code reflection — deepen and broaden Java reflection

12JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

Example — Automatic differentiation

13JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

// Identify that f has a code model
@CodeReflection
static double f(double x, double y) {
 return x * (-Math.sin(x * y) + y) * 4.0d;
}

...

// Reflect on method f using existing Reflection API
Method mf = ClassWithF.class.getDeclaredMethod("f", double.class, double.class);
// Get the code model of f's body using new Reflection API
var cmf = mf.getCodeModel().orElseThrow();

// Differentiate f using an AD library
// Code models in, code models out -- code model *composition*
var d_cmf = AutoDiff.differentiate(cmf);

// Compile the differentiated code method to a method handle
MethodHandle mh_d_cmf = d_cmf.compile();

// Execute to obtain the gradient at a particular point
double a = ...
double b = ...
double[] gv = (double[]) mh_d_cmf.invoke(a, b);

Example — Automatic differentiation

14JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

// Hide the code model

// Pass a method reference to f
GradientFunction gf = AutoDiff.differentiate(ClassWithF::f);
double[] gv = gf.apply(a, b);

...

// Pass lambda expression, passes code model for lambda body
GradientFunction gf = AutoDiff.differentiate((double x, double y) ->
 x * (-Math.sin(x * y) + y) * 4.0d
);
double[] gv = gf.apply(a, b);

...

@FunctionalInterface
interface GradientFunction {
 double[] apply(double... args);
}

• At source compile time the Java compiler

– Transforms the AST of f to a code model (using the API to build)

– Serializes the code model (using the API to traverse)

– Stores the serialized code model in the class file ClassWithF.class

• Accessing the code model of f at run time

– Checks that the caller has permission to access the code model

– Loads the serialized code model from the class file ClassWithF.class

– Deserializes the code model (using the API to build)

– Returns the code model to the caller

Example — What is the Java compiler and run time doing?

15JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

Example — Parallel Graph AnalytiX (PGX) Algorithm

16JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

@CodeReflection
public void pagerank(PgxGraph g, double tol, double damp,
 @Out VertexProperty<Double> rank) {
 Scalar<Double> diff = Scalar.create();
 double n = g.getNumVertices();

 rank.setAll(1 / n);
 do {
 diff.set(0d);

 g.getVertices().forEach(v -> {
 double inSum = v.getInNeighbors().sum(w -> rank.get(w) / w.getOutDegree());
 double val = (1 - damp) / n + damp * inSum;
 diff.reduceAdd(Math.abs(val - rank.get(v)));
 rank.setDeferred(v, val);
 });
 } while (diff.get() > tol);
}

• The PGX Algorithm compiler is an OpenJDK compiler plugin operating on the AST

• We have implemented a prototype PGX compiler that operates on the code model
— which is easier to develop, maintain, and aligns with the Java platform

• The PGX runtime can then be enhanced to use the new compiler 

var data = ...
try (PgxSession session = Pgx.createSession("pgx-algorithm-session")) {
 // Transform the PGX Algorithm to executable Java code
 CompiledProgram program = session.compileProgram(oracle.pgx.PgxAlgorithm.Pagerank::pagerank);

 // Create the input graph
 PgxGraph graph = session.readGraphWithProperties(createGraphConfig(data));
 VertexProperty<Object, Object> rank = graph.createVertexProperty(PropertyType.DOUBLE);

 // Run the compiled program
 program.run(graph, TOLERANCE, DAMPING, rank);

 // Process rank result
 ...
}

Example — Parallel Graph AnalytiX (PGX)

17JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

Modeling Java programs — spectrum of possibilities

18JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

AST Bytecode?

Java compiler & 
annotation  
processors

Java Virtual machineCode model analyzers & 
transformers

Modeling Java programs — an interval

19JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

AST Bytecode

Java compiler & 
annotation  
processors

Java Virtual machineCode model analyzers & 
transformers

Modeling Java programs — progressive lowering

20JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

AST Bytecode

Java compiler & 
annotation  
processors

Java Virtual machineCode model analyzers & 
transformers

Modeling Java programs — progressive lowering

21JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

AST Bytecode

Java compiler & 
annotation  
processors

Java Virtual machineOpenCL C 99 or 
PGX

SPIRV or 
PTX

Interchange

Modeling Java programs — progressively harder lifting

22JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

AST Bytecode

Java compiler & 
annotation  
processors

Java Virtual machineOpenCL C 99 or 
PGX

SPIRV or 
PTX

Interchange

• We need to devise a code meta-model that is flexible to model a broad
set of Java programs as code models

– At a high level closer to the AST; and be transformed (using the API) to

– A lower level closer to the bytecode

–Where program meaning is preserved

• Some programming domains are more suited to higher levels, where as
others to lower levels

– The same modeling capabilities and API should apply

• The meta-model should be comprehensible to many Java developers

Code meta-model

23JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

• Drawing inspiration from MLIR we can design a meta-model with the following
properties

– Decomposition of a program into operations, bodies, and (basic) blocks

– An operation is comprised of bodies; a body is comprised of blocks, that may form the vertices of

a control-flow graph; and a block is comprised of operations

– An operation produces a result and a block has parameters (equiv. to phi nodes), 

both values in Static Single Assignment (SSA) form; values have types

– An operation has operands (value use), a terminal operation may reference successor blocks with

arguments (value use)

• A code model is a shallow tree structure

–Control flow graphs and data dependency graphs are emergent properties

• This meta-model is extremely flexible and is capable of modeling many Java language
constructs at high and lower levels

Code meta-model — op → body* → block+ → op+

24JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

• Operations specify program behavior — we define two sets

– A set of core operations, that model a broad set of Java programs

– A set of auxiliary operations, that model certain Java language constructs

• Auxiliary operations model higher level Java language constructs

– e.g., loops, try statements, switch expressions, patterns, conditionals

–With fewer constraints than the modeled language constructs specified by the JLS

– Each auxiliary operation can lower itself (using the API) into a substructure of core operations

• A code model supplied by the platform is comprised of auxiliary and core
operations

– A code model is never supplied for invalid Java source code, since it will fail to compile

– It may be transformed into a model comprised only of core operations, while preserving

program meaning

Code meta-model — operations

25JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

• Java method to differentiate

@CodeReflection
static double f(double x, double y) {
 return x * (-Math.sin(x * y) + y) * 4.0d;
}

• Serialized code model

func @"f" (%0 : double, %1 : double)double -> {

 %2 : Var<double> = var %0 @"x";

 %3 : Var<double> = var %1 @"y";

 %4 : double = var.load %2;

 %5 : double = var.load %2;

 %6 : double = var.load %3;

 %7 : double = mul %5 %6;

 %8 : double = call %7 @"java.lang.Math::sin(double)double";

 %9 : double = neg %8;

 %10 : double = var.load %3;

 %11 : double = add %9 %10;

 %12 : double = mul %4 %11;

 %13 : double = constant @"4.0";

 %14 : double = mul %12 %13;

 return %14;

};

Example — serialized code model as text*

26JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

*Lets not get too distracted by the syntax!

func @"f" (%0 : double, %1 : double)double -> {

 %7 : double = mul %0 %1;

 %8 : double = call %7 @"java.lang.Math::sin(double)double";

 %9 : double = neg %8;

 %11 : double = add %9 %1;

 %12 : double = mul %0 %11;

 %13 : double = constant @"4.0";

 %14 : double = mul %12 %13;

 return %14;

};

Example — lower with pure SSA transform

27JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

func @"f" (%0 : double, %1 : double)double -> {

 Tload @index=0 @type="D";

 Tload @index=2 @type="D";

 Tmul @type="D";

 invoke @kind="STATIC" @desc="java.lang.Math::sin(double)double";

 Tneg @type="D";

 Tload @index=2 @type="D";

 Tadd @type="D";

 Tstore @index=2 @type="D";

 Tload @index=0 @type="D";

 Tload @index=2 @type="D";

 Tmul @type="D";

 ldc @type="double" @value="4.0";

 Tmul @type="D";

 Treturn @type="D";

};

Example — translate to bytecode operations*

28JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

*Speculative modeling of other domains

- class name: f
 version: 66.0
 flags: [PUBLIC]
 superclass: java/lang/Object
 interfaces: []
 attributes: []
 fields:
 methods:
 - method name: f
 flags: [PUBLIC, STATIC]
 method type: (DD)D
 attributes: [Code]
 code:
 max stack: 4
 max locals: 4
 attributes: []
 //stack map frame @0: {locals: [double, double2, double, double2], stack: []}
 0: {opcode: DLOAD_0, slot: 0}
 1: {opcode: DLOAD_2, slot: 2}
 2: {opcode: DMUL}
 3: {opcode: INVOKESTATIC, owner: java/lang/Math, method name: sin, method type: (D)D}
 6: {opcode: DNEG}
 7: {opcode: DLOAD_2, slot: 2}
 8: {opcode: DADD}
 9: {opcode: DSTORE_2, slot: 2}
 10: {opcode: DLOAD_0, slot: 0}
 11: {opcode: DLOAD_2, slot: 2}
 12: {opcode: DMUL}
 13: {opcode: LDC2_W, constant value: 4.0}
 16: {opcode: DMUL}
 17: {opcode: DRETURN}

Example — translate to bytecode

29JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

@CodeReflection
static String f(boolean v, String a, String b) {
 return v ? a : b;
}

• The Java language specification states (in section 15.25) 
 
“The conditional operator has three operand expressions. ? appears
between the first and second expressions, and : appears between the
second and third expressions."

• We can model this as an operation comprised of three bodies, each
comprised of operations modeling the operand expressions (in order)

Example — modeling conditional operator ? :

30JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

https://docs.oracle.com/javase/specs/jls/se20/html/jls-15.html#jls-15.25

func @"f" (%0 : boolean, %1 : java.lang.String, %2 : java.lang.String)java.lang.String -> {

 %3 : Var<boolean> = var %0 @"v";

 %4 : Var<java.lang.String> = var %1 @"a";

 %5 : Var<java.lang.String> = var %2 @"b";

 %6 : java.lang.String = java.cexpression

 ^cond()boolean -> {

 %7 : boolean = var.load %3;

 yield %7;

 }

 ^truepart()java.lang.String -> {

 %8 : java.lang.String = var.load %4;

 yield %8;

 }

 ^falsepart()java.lang.String -> {

 %9 : java.lang.String = var.load %5;

 yield %9;

 };

 return %6;

};

Example — serialized code model as text

31JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

func @"f" (%0 : boolean, %1 : java.lang.String, %2 : java.lang.String)java.lang.String -> {

 %3 : Var<boolean> = var %0 @"v";

 %4 : Var<java.lang.String> = var %1 @"a";

 %5 : Var<java.lang.String> = var %2 @"b";

 %7 : boolean = var.load %3;

 cond_br %7 ^then ^else;

 ^then:

 %8 : java.lang.String = var.load %4;

 br ^exit(%8);

 ^else:

 %9 : java.lang.String = var.load %5;

 br ^exit(%9);

 ^exit(%3_1 : java.lang.String):

 return %3_1;

};

Example — lower with auxiliary operation transform

32JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

func @"f" (%0 : boolean, %1 : java.lang.String, %2 : java.lang.String)java.lang.String -> {

 cond_br %0 ^then ^else;

 ^then:

 br ^exit(%1);

 ^else:

 br ^exit(%2);

 ^exit(%3 : java.lang.String):

 return %3;

};

Example — lower with pure SSA transform

33JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

func @"f" (%0 : boolean, %1 : java.lang.String, %2 : java.lang.String)java.lang.String -> {

 Tload @index=0 @type="I";

 ifC ^br_T ^br_F @cond="EQ";

 ^br_T:

 goto ^then;

 ^then:

 Tload @index=1 @type="A";

 Tstore @index=0 @type="A";

 goto ^exit;

 ^br_F:

 goto ^else;

 ^else:

 Tload @index=2 @type="A";

 Tstore @index=0 @type="A";

 goto ^exit;

 ^exit:

 Tload @index=0 @type="A";

 Treturn @type="A";

};

Example — translate to bytecode operations

34JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

- class name: f
 version: 66.0
 flags: [PUBLIC]
 superclass: java/lang/Object
 interfaces: []
 attributes: []
 fields:
 methods:
 - method name: f
 flags: [PUBLIC, STATIC]
 method type: (ZLjava/lang/String;Ljava/lang/String;)Ljava/lang/String;
 attributes: [Code]
 code:
 max stack: 1
 max locals: 3
 attributes: [StackMapTable]
 stack map frames:
 9: {locals: [int, java/lang/String, java/lang/String], stack: []}
 11: {locals: [java/lang/String, java/lang/String, java/lang/String], stack: []}
 //stack map frame @0: {locals: [int, java/lang/String, java/lang/String], stack: []}
 0: {opcode: ILOAD_0, slot: 0}
 1: {opcode: IFEQ, target: 9}
 4: {opcode: ALOAD_1, slot: 1}
 5: {opcode: ASTORE_0, slot: 0}
 6: {opcode: GOTO, target: 11}
 //stack map frame @9: {locals: [int, java/lang/String, java/lang/String], stack: []}
 9: {opcode: ALOAD_2, slot: 2}
 10: {opcode: ASTORE_0, slot: 0}
 //stack map frame @11: {locals: [java/lang/String, java/lang/String, java/lang/String], stack: []}
 11: {opcode: ALOAD_0, slot: 0}
 12: {opcode: ARETURN}

Example — translate to bytecode

35JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

• Identify parts of a program to be deeply and broadly reflected over

• Grant access to those parts as code models at compile time and 
run time

–With appropriate access control restrictions

• At a minimum identify individual methods and lambda expressions

– e.g., annotate methods, target type lambda expressions

• Perhaps as a convenience broaden the scope to that of all methods of
class and its nest

Enhancements to Java reflection

36JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

int c = 42;
IntUnaryOperator f = (Quotable & IntUnaryOperator) z -> {
 return z + c;
};

Quotable quotableF = (Quotable) f;
Quoted quotedF = quotableF.quoted();
quotedF.op().writeTo(System.out);
System.out.println(quotedF.capturedValues());

• Target lambda expressions as being quotable

– Similar to them being serializable

• An instance of a quotable functional interface encapsulates the code
model of the lambda expression and any captured values

• We now have the means to experiment with C# LINQ-like APIs

Identifying lambda expressions

37JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

• A run time instance of a code model should have the following desirable
properties

– Immutable

– Easily traversed down and up its tree structure

– Dominance relationships are easily queryable

– Values report their users, from which data dependency graphs can be constructed

– Blocks in a body are sorted topologically in reverse postorder

• A code model is built using a builder

– During building a code model is in a larval state, when building is complete it is frozen, and

thereafter is unmodifiable

• Code models can be serialized to and deserialized from text

– Primarily for debugging and testing, but also very convenient for storage and transfer

API to build, analyze, and transform code models

38JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

• Transformation is an emergent property of traversal combined with
building

– Inspired by the transformation pattern supported by the Classfile API

• We can traverse an input code model and flat map its contents into a
builder of the output code model

– Flat mapping supports a zero to many transformation enabling removal, copying,

or replacement

• Alternative forms of transformation can perform their own traversal and
building

API to build, analyze, and transform code models

39JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

• Each auxiliary operation implements its own transformation

• We can implement the lowering of a code model by composing the
transforms of all the auxiliary operations in the model

– Thereby lowering the code model in a single transformation pass

– (This includes lowering loops with labeled break and continue statements and

nested try statements) 

var lf = f.transform((blockBuilder, op) -> {
 if (op instanceof Op.Lowerable lop) {
 return lop.lower(blockBuilder);
 } else {
 blockBuilder.apply(op);
 return blockBuilder;
 }
});

API to build, analyze, and transform code models

40JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

• How many Java language constructs do we need to directly model?

– Do we need to model class declarations?

• Can the code model design evolve with evolution of the language?

– Skating to where the language puck will be on an N-dimensional ice rink

– Core set of operations evolves slowly (like byte code)

– Auxiliary set of operations evolves faster — lower to core if unrecognized

• Increases the incremental cost of adding new language features

• How performant do we need to be when building and transforming?

– Some costs may be offset by shifting when transformations are performed

Known unknowns and risks

41JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

• Submit an OpenJDK project proposal

– Project name TBD

– Scope will also include exploration of GPU programming domains

• Open source the prototype code reflection JDK

– Enable and further experimentation

– Needs tidying up first, but generally in good shape

Plan* — some time this year

42JVMLS AUGUST 7-9 2023. COPYRIGHT©2023,ORACLE AND/OR ITS AFFILIATES

*The plan is the plan until the plan changes

