
ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES 1

ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES 2

BLISful Linear Algebra 
with Project Panama

Paul Sandoz, Oracle

Overview

3ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

BLIS library

Panama and BLIS

2D Matrix API

MSET

• High performance CPU-based library for dense linear algebra operations

– Significant superset of the level 1-3 Basic Linear Algebra Subprograms 

(BLAS)

– Especially noted is the level 3 performance e.g. GEneric Matrix Multiplication

(GEMM)

–One of only 2 libraries to offer GEMM-like extensibility

• Developed by The Science of High Performance Computing Group at the
University of Texas at Austin

BLIS linear algebra library

4ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

https://github.com/flame/blis

• Defines a structure, called obj_t, that models a 2D matrix

– Abstracts many details such as the element type and dimensions

• Defines operations that accept obj_t* as arguments

• It’s a well designed C API

– But we can do even better binding to it in Java and wrapping it

BLIS Object API

5ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

Using the native BLIS Object API

6ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

 1 obj_t a, b, c;

 2 bli_obj_create(BLIS_DOUBLE, 4, 5, 0, 0, &c);

 3 bli_obj_create(BLIS_DOUBLE, 4, 3, 0, 0, &a);

 4 bli_obj_create(BLIS_DOUBLE, 3, 5, 0, 0, &b);

 5

 6 obj_t* alpha = &BLIS_ONE;

 7 obj_t* beta = &BLIS_ONE;

 8

 9 bli_randm(&a);

10 bli_setm(&BLIS_ONE, &b);

11 bli_setm(&BLIS_ZERO, &c);

12

13 // c := beta * c + alpha * a * b, where 'a', 'b', and 'c' are general.

14 bli_gemm(alpha, &a, &b, beta, &c);

15 ...

• An API by which Java programs can interoperate with code and data
outside of the Java runtime

– Available as a preview API in JDK 19

• Enables Java developers to call native libraries and process native data
without the brittleness and danger of Java Native Interface (JNI)

– Replaces JNI with a superior, pure-Java development model

• Provides tooling to generate pure-Java bindings to native C libraries

– Autogenerate Java code from native library C header files

Panama

7ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

Foreign Function & Memory (FFM) API and tooling

• MemorySegment

–Models a contiguous region of memory

– Replaces direct ByteBuffer, overcoming its size limits and memory
management constraints

• SegmentAllocator

– A “malloc”-like abstraction for producing segments

• MemorySession (<: SegmentAllocator)

–Manages the deallocation of segments it allocates

– Controls access to the memory of a segment 

e.g., segment is inaccessible after deallocation

Foreign Memory API

8ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

BLIS and Panama

9ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

Architectural overview

BLIS native library

Panama BLIS binding

2D Matrix API

Native

Java

jextractblis.h

Foreign Function 
and Memory API JDK

Using the Java binding to the native BLIS Object API

10ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

 1 try (MemorySession s = MemorySession.openConfined()) {

 2 /* obj_t* */ MemorySegment a = obj_t.allocate(s),

 3 /* obj_t* */ MemorySegment b = obj_t.allocate(s);

 4 /* obj_t* */ MemorySegment c = obj_t.allocate(s);

 5

 6 bli_obj_create(BLIS_DOUBLE(), 4, 5, 0, 0, c);

 7 bli_obj_create(BLIS_DOUBLE(), 4, 3, 0, 0, a);

 8 bli_obj_create(BLIS_DOUBLE(), 3, 5, 0, 0, b);

 9

10 /* obj_t* */ MemorySegment alpha = BLIS_ONE$SEGMENT();

11 /* obj_t* */ MemorySegment beta = BLIS_ONE$SEGMENT();

12

13 bli_randm(a);

14 bli_setm(BLIS_ONE$SEGMENT(), b);

15 bli_setm(BLIS_ZERO$SEGMENT(), c);

16

17 // c := beta * c + alpha * a * b, where 'a', 'b', and 'c' are general.

18 bli_gemm(alpha, a, b, beta, c);

19 ...

20 }

• An idiomatic API for Java developers

– Hides an API that is idiomatic for C developers

–Manages the memory of the obj_t structure

• Matrix API and BLIS share the matrix structure and buffer of elements

– No size limit as with primitive arrays and ByteBuffer

–Many level-1/2-like BLAS subprograms can be performed using pure Java

– Level-3 BLAS subprograms can be performed natively using BLIS

• Higher-order operations over the elements using lambda expressions

– Numpy-like with customized optimization using λ kernels

231 − 1

2D Matrix API

11ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

Using the 2D Matrix API

12ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

 1 try (MemorySession s = MemorySession.openConfined()) {

 2 DoubleMatrix c = Matrix.newDoubleMatrix(s, 4, 5);

 3 DoubleMatrix a = Matrix.newDoubleMatrix(s, 4, 3);

 4 DoubleMatrix b = Matrix.newDoubleMatrix(s, 3, 5);

 5

 6 Matrix<?> alpha = Matrix.one();

 7 Matrix<?> beta = Matrix.one();

 8

 9 BLI.randm(a);

10 BLI.setm(DoubleMatrix.one(), b);

11 // c's elements are already initialized to zero

12

13 // c := beta * c + alpha * a * b, where 'a', 'b', and 'c' are general.

14 BLI.gemm(alpha, a, b, beta, c);

15 }

Allocation

13ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

 1 DoubleMatrix newDoubleMatrix(MemorySession scope, long rows, long cols) {

 2 MemorySegment buffer = scope.allocate(

 3 MemoryLayout.sequenceLayout(rows * cols, ValueLayout.JAVA_DOUBLE));

 4 // Allocate the obj_t struct and attach the buffer

 5 MemorySegment obj = obj_t.allocate(scope);

 6 blis_h.bli_obj_create_with_attached_buffer(

 7 // Element type

 8 blis_h.BLIS_DOUBLE(),

 9 // Shape

11 rows, columns,

12 // Pointer to elements

13 buffer,

14 // Row and column strides, column-major order

15 1, rows,

16 obj);

17 return new DoubleMatrix(scope, obj, buffer);

18 }

• Unary, binary, and ternary

– Lambda expressions for the elemental operations

• Binary operation for matrixes , and of the same dimensions

 A.elementwise(B, C, (a, b) -> a + b)

• What if is a singular matrix, row vector, or column vector?

–We can broadcast into matrix of the same dimensions as

A B C

C = A + B

a b c
d e f
g h i

+ [
j k l
m n o
p q r] =

a + j b + k c + l
d + m e + n f + o
g + p h + q i + r

B
B B′￼ A

Element-wise operations with lambdas

14ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

• Broadcast scalar

• Broadcast row vector

• Broadcast column vector

a b c
d e f
g h i

+ [j] ≡
a b c
d e f
g h i

+
j j j
j j j
j j j

a b c
d e f
g h i

+ [j k l] ≡
a b c
d e f
g h i

+
j k l
j k l
j k l

a b c
d e f
g h i

+
j
k
l

≡
a b c
d e f
g h i

+
j j j
k k k
l l l

Element-wise operations with broadcasting

15ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

• Reduce all elements

• Reduce all rows to produce a column vector

• Reduce all columns to produce a row vector

A.reductionColumn(m, (a, b) -> a + b)

m.elementwise(e -> e / A.rows())

A =
a b c
d e f
g h i

m = [(a + d + g)/rows (b + e + h)/rows (c + f + i)/rows]

Reduction operations with lambdas

16ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

• Higher-order operations are very expressive but may not reliably optimize

– The operation does not know what the lambda expression does, and lambda expression

does not know how matrix elements are arranged in memory

– The compiler might not inline the lambda’s body

• A λ kernel implements the operation’s functional interface and the operation’s λ
kernel interface

–Operates over memory segments, using a custom implementation that can fuse loops with

the lambda expression

• Enables operating on elements in parallel

– For example, on the CPU using thread-level parallelism over groups of columns using Fork/

Join API, and data-level parallelism over a column using the Vector API

–Or perhaps on a GPU?

Optimizing operations with λ kernels

17ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

• A λ kernel is passed to an operation in place of it’s lambda expression

A.elementwise(rv1, rv2, B, 
 // (a, v1, v2) -> { ... }  
 MyTernaryKernel.INSTANCE)

• What if we could dynamically generate a λ kernel from the symbolic
description of a lambda expression’s body?

–One potential solution to Fixing The Inlining “Problem”

Optimizing operations with λ kernels

18ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

https://web.archive.org/web/20170706142150/http://www.azulsystems.com/blog/cliff/2011-04-04-fixing-the-inlining-problem

• Multivariate State Estimation Technique (MSET) is a machine learning
algorithm to determine if a system, producing time-series data from
sensors, is operating normally or abnormally

– Anomalies can be detected and resolved before they become critical problems

(including sensor malfunction or manipulation rather than component
malfunction)

• MSET was originally developed in 1996 by the US Department of
Energy’s (DoE) Argonne National Labs

– Designed to monitor nuclear power plants and ensure they are safe and secure

– Broadly applicable to many other areas, such as airplanes, cars, rollercoasters,

datacenter

MSET

19ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

https://www.anl.gov/nse/ai-ml/mset

• MSET2 is a proprietary enhancement to MSET

– Can detect anomalies earlier with higher sensitivity and fewer false alarms than

MSET

– Superior than other machine learning approaches, such as neural nets and

support vector machines, and comparatively more efficient

MSET2

20ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

https://blogs.oracle.com/ai-and-datascience/post/fascinating-nuclear-history-behind-new-anomaly-detection-service

• Consider a system with sensors and observations under normal
operation

•

– The ’th normal observation for all sensors at time , where

•

– is a matrix

– Number of rows equals number of sensors

– Number of columns equals number of observations

• is commonly referred to as the design matrix

m n

XT
i = [xi1, xi2, . . . , xim]

i ti ti+1 > ti
D = [X1, X2, . . . , Xn]

D m × n

D

Core of the MSET algorithm

21ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

• Given and current observation(s), , can we determine if the
system behaving normally or abnormally?

• Given and , compute

– The closest normal behavior

• Then, compute residual,

–Make a decision based on difference

D Xobs

D Xobs Xest

Xres = Xest − Xobs

Core of the MSET algorithm

22ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

• Estimate is a linear combination of weights

–

–

–

• However, systems are typically non-linear

–Output is not proportional to change in input

Xest = Dωest

ωest = (DTD)−1DT Xobs

Xest = D(DTD)−1DT Xobs

Ordinal least squares

23ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

• Use a different level-3 operation, a similarity operation , that performs
a non-linear comparison

– Transforms from the observation space into a feature space, revealing the

similarity between observations

•  

– , referred to as the similarity matrix , an matrix

– Compute pseudo-inverse of ,

⊗

ωest = (DT ⊗ D)+(DT ⊗ Xobs)
= D+

sim(DT ⊗ Xobs)
DT ⊗ D Dsim n × n

Dsim D+
sim

Core of the MSET algorithm

24ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

• We can use the 2D Matrix API to compute but we require some
enhancements to our architecture

–We need the operation and pseudo-inverse operation

• The operation is implemented as a BLIS add-on operation

–We take advantage of BLIS’s extensibility and efficient GEMM infrastructure

• The pseudo-inverse operation is provided by the native flame library

– Flame uses BLIS and provides functionality similar to LAPACK

ωest

⊗

⊗

Requirements of MSET algorithm

25ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

MSET2 implementation

26ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

Architectural overview

Panama flame
binding

2D Matrix API

Native

Java

jextract Panama BLIS
binding

BLISflame ⊗

MSET2 implementation

blis.h

flame.h

• BLIS, Panama, and the 2D Matrix API with λ lambda kernels, enabled us
to rapidly develop an efficient prototype of the MSET2 algorithm in Java

– The efficiency of BLIS with the productivity of Java

• Leveraging a modern CPU (OCI BM.Standard.E4.128) gives GPU-like
speeds and a hundred times the memory at a tenth the cost

–MSET2 training and validation with 1,000 sensors and 100,000 observations took

under 4 seconds

–MSET2 estimation with 50,000 sensors and a 1,000,000 observations, requiring 4

terabytes of memory, took under 3 hours

In summary

27ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES 28

BLIS obj_t struct modeling a 2D matrix

29ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

 1 typedef struct obj_s {

 2 ...

 3

 4 dim_t dim[2]; // Number of rows and columns

 5

 6 ... 
 7

 8 void* buffer; // Pointer to elements

 9

10 inc_t rs; // Row stride

11 inc_t cs; // Column stride

12

13 ...

14 } obj_t;

Row-major and column-major order

30ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

 is a 2x3 matrix

m = [a b c
d e f]

m

Row-major order

rs = 3
cs = 1

buf fer → [a b c d e f]

index(i, j) = i * rs + j * cs

buf fer[index(1,1)] =
buf fer[1 * 3 + 1 * 1] =
buf fer[4] = e

Column-major order

rs = 1
cs = 2

buf fer → [a d b e c f]

buf fer[index(1,1)] =
buf fer[1 * 1 + 1 * 2] =
buf fer[3] = e

