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Overview
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BLIS library

Panama and BLIS


2D Matrix API

MSET



• High performance CPU-based library for dense linear algebra operations

– Significant superset of the level 1-3 Basic Linear Algebra Subprograms 

(BLAS)

– Especially noted is the level 3 performance e.g. GEneric Matrix Multiplication 

(GEMM)

–One of only 2 libraries to offer GEMM-like extensibility


• Developed by The Science of High Performance Computing Group at the 
University of Texas at Austin

BLIS linear algebra library
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https://github.com/flame/blis


• Defines a structure, called obj_t, that models a 2D matrix

– Abstracts many details such as the element type and dimensions


• Defines operations that accept obj_t* as arguments


• It’s a well designed C API

– But we can do even better binding to it in Java and wrapping it

BLIS Object API
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Using the native BLIS Object API
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 1  obj_t a, b, c;

 2  bli_obj_create( BLIS_DOUBLE, 4, 5, 0, 0, &c );

 3  bli_obj_create( BLIS_DOUBLE, 4, 3, 0, 0, &a );

 4  bli_obj_create( BLIS_DOUBLE, 3, 5, 0, 0, &b );

 5  

 6  obj_t* alpha = &BLIS_ONE;

 7  obj_t* beta  = &BLIS_ONE;

 8  

 9  bli_randm( &a );

10  bli_setm( &BLIS_ONE, &b );

11  bli_setm( &BLIS_ZERO, &c );

12  

13  // c := beta * c + alpha * a * b, where 'a', 'b', and 'c' are general.

14  bli_gemm( alpha, &a, &b, beta, &c );

15  ...



• An API by which Java programs can interoperate with code and data 
outside of the Java runtime

– Available as a preview API in JDK 19


• Enables Java developers to call native libraries and process native data 
without the brittleness and danger of Java Native Interface (JNI)

– Replaces JNI with a superior, pure-Java development model


• Provides tooling to generate pure-Java bindings to native C libraries

– Autogenerate Java code from native library C header files

Panama
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Foreign Function & Memory (FFM) API and tooling



• MemorySegment

–Models a contiguous region of memory 


– Replaces direct ByteBuffer, overcoming its size limits and memory 
management constraints


• SegmentAllocator

– A “malloc”-like abstraction for producing segments


• MemorySession (<: SegmentAllocator)

–Manages the deallocation of segments it allocates

– Controls access to the memory of a segment 

e.g., segment is inaccessible after deallocation

Foreign Memory API
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BLIS and Panama
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Architectural overview

BLIS native library

Panama BLIS binding 

2D Matrix API

Native

Java

jextractblis.h

Foreign Function 
and Memory API JDK



Using the Java binding to the native BLIS Object API
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 1  try (MemorySession s = MemorySession.openConfined()) {

 2      /* obj_t* */ MemorySegment a = obj_t.allocate(s),

 3      /* obj_t* */ MemorySegment b = obj_t.allocate(s);

 4      /* obj_t* */ MemorySegment c = obj_t.allocate(s);

 5  

 6      bli_obj_create(BLIS_DOUBLE(), 4, 5, 0, 0, c);

 7      bli_obj_create(BLIS_DOUBLE(), 4, 3, 0, 0, a);

 8      bli_obj_create(BLIS_DOUBLE(), 3, 5, 0, 0, b);

 9  

10      /* obj_t* */ MemorySegment alpha = BLIS_ONE$SEGMENT();

11      /* obj_t* */ MemorySegment beta = BLIS_ONE$SEGMENT();

12  

13      bli_randm(a);

14      bli_setm(BLIS_ONE$SEGMENT(), b);

15      bli_setm(BLIS_ZERO$SEGMENT(), c);

16  

17      // c := beta * c + alpha * a * b, where 'a', 'b', and 'c' are general.

18      bli_gemm(alpha, a, b, beta, c);

19      ...

20  }



• An idiomatic API for Java developers

– Hides an API that is idiomatic for C developers


–Manages the memory of the obj_t structure


• Matrix API and BLIS share the matrix structure and buffer of elements

– No  size limit as with primitive arrays and ByteBuffer 

–Many level-1/2-like BLAS subprograms can be performed using pure Java

– Level-3 BLAS subprograms can be performed natively using BLIS


• Higher-order operations over the elements using lambda expressions

– Numpy-like with customized optimization using λ kernels 

231 − 1

2D Matrix API
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Using the 2D Matrix API
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 1  try (MemorySession s = MemorySession.openConfined()) {

 2      DoubleMatrix c = Matrix.newDoubleMatrix(s, 4, 5);

 3      DoubleMatrix a = Matrix.newDoubleMatrix(s, 4, 3);

 4      DoubleMatrix b = Matrix.newDoubleMatrix(s, 3, 5);

 5

 6      Matrix<?> alpha = Matrix.one();

 7      Matrix<?> beta = Matrix.one();

 8  

 9      BLI.randm(a);

10      BLI.setm(DoubleMatrix.one(), b);

11      // c's elements are already initialized to zero

12  

13      // c := beta * c + alpha * a * b, where 'a', 'b', and 'c' are general.

14      BLI.gemm(alpha, a, b, beta, c);

15  }



Allocation
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 1  DoubleMatrix newDoubleMatrix(MemorySession scope, long rows, long cols) {

 2      MemorySegment buffer = scope.allocate(

 3          MemoryLayout.sequenceLayout(rows * cols, ValueLayout.JAVA_DOUBLE));

 4      // Allocate the obj_t struct and attach the buffer

 5      MemorySegment obj = obj_t.allocate(scope);

 6      blis_h.bli_obj_create_with_attached_buffer(

 7              // Element type

 8              blis_h.BLIS_DOUBLE(),

 9              // Shape

11              rows, columns,

12              // Pointer to elements

13              buffer,

14              // Row and column strides, column-major order

15              1, rows,

16              obj);

17      return new DoubleMatrix(scope, obj, buffer);

18  }



• Unary, binary, and ternary 

– Lambda expressions for the elemental operations 


• Binary operation for matrixes ,  and  of the same dimensions

 A.elementwise(B, C, (a, b) -> a + b)








• What if  is a singular matrix, row vector, or column vector?

–We can broadcast  into matrix  of the same dimensions as 

A B C

C = A + B

a b c
d e f
g h i

+ [
j k l
m n o
p q r] =

a + j b + k c + l
d + m e + n f + o
g + p h + q i + r

B
B B′￼ A

Element-wise operations with lambdas

14ORACLE CLOUDWORLD        COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES



• Broadcast scalar





• Broadcast row vector





• Broadcast column vector


a b c
d e f
g h i

+ [j] ≡
a b c
d e f
g h i

+
j j j
j j j
j j j

a b c
d e f
g h i

+ [j k l] ≡
a b c
d e f
g h i

+
j k l
j k l
j k l

a b c
d e f
g h i

+
j
k
l

≡
a b c
d e f
g h i

+
j j j
k k k
l l l

Element-wise operations with broadcasting
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• Reduce all elements


• Reduce all rows to produce a column vector


• Reduce all columns to produce a row vector

A.reductionColumn(m, (a, b) -> a + b)

m.elementwise(e -> e / A.rows())



A =
a b c
d e f
g h i

m = [(a + d + g)/rows (b + e + h)/rows (c + f + i)/rows]

Reduction operations with lambdas
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• Higher-order operations are very expressive but may not reliably optimize

– The operation does not know what the lambda expression does, and lambda expression 

does not know how matrix elements are arranged in memory

– The compiler might not inline the lambda’s body


• A λ kernel implements the operation’s functional interface and the operation’s λ 
kernel interface

–Operates over memory segments, using a custom implementation that can fuse loops with 

the lambda expression


• Enables operating on elements in parallel

– For example, on the CPU using thread-level parallelism over groups of columns using Fork/

Join API, and data-level parallelism over a column using the Vector API 

–Or perhaps on a GPU?

Optimizing operations with λ kernels
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• A λ kernel is passed to an operation in place of it’s lambda expression

A.elementwise(rv1, rv2, B, 
    // (a, v1, v2) -> { ... }   
    MyTernaryKernel.INSTANCE)


• What if we could dynamically generate a λ kernel from the symbolic 
description of a lambda expression’s body?

–One potential solution to Fixing The Inlining “Problem”

Optimizing operations with λ kernels
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https://web.archive.org/web/20170706142150/http://www.azulsystems.com/blog/cliff/2011-04-04-fixing-the-inlining-problem


• Multivariate State Estimation Technique (MSET) is a machine learning 
algorithm to determine if a system, producing time-series data from 
sensors, is operating normally or abnormally

– Anomalies can be detected and resolved before they become critical problems 

(including sensor malfunction or manipulation rather than component 
malfunction)


• MSET was originally developed in 1996 by the US Department of 
Energy’s (DoE) Argonne National Labs

– Designed to monitor nuclear power plants and ensure they are safe and secure

– Broadly applicable to many other areas, such as airplanes, cars, rollercoasters, 

datacenter

MSET
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https://www.anl.gov/nse/ai-ml/mset


• MSET2 is a proprietary enhancement to MSET

– Can detect anomalies earlier with higher sensitivity and fewer false alarms than 

MSET

– Superior than other machine learning approaches, such as neural nets and 

support vector machines, and comparatively more efficient

MSET2
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https://blogs.oracle.com/ai-and-datascience/post/fascinating-nuclear-history-behind-new-anomaly-detection-service


• Consider a system with  sensors and  observations under normal 
operation


• 


– The ’th normal observation for all sensors at time , where  


• 


–  is a  matrix

– Number of rows equals number of sensors

– Number of columns equals number of observations


•  is commonly referred to as the design matrix

m n

XT
i = [xi1, xi2, . . . , xim]

i ti ti+1 > ti
D = [X1, X2, . . . , Xn]

D m × n

D

Core of the MSET algorithm
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• Given  and current observation(s), , can we determine if the 
system behaving normally or abnormally?


• Given  and , compute 

– The closest normal behavior


• Then, compute residual, 

–Make a decision based on difference

D Xobs

D Xobs Xest

Xres = Xest − Xobs

Core of the MSET algorithm
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• Estimate is a linear combination of weights

– 


– 


– 


• However, systems are typically non-linear

–Output is not proportional to change in input

Xest = Dωest

ωest = (DTD)−1DT Xobs

Xest = D(DTD)−1DT Xobs

Ordinal least squares
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• Use a different level-3 operation, a similarity operation , that performs 
a non-linear comparison

– Transforms from the observation space into a feature space, revealing the 

similarity between observations


•  
       


– , referred to as the similarity matrix , an  matrix


– Compute pseudo-inverse of , 

⊗

ωest = (DT ⊗ D)+(DT ⊗ Xobs)
= D+

sim(DT ⊗ Xobs)
DT ⊗ D Dsim n × n

Dsim D+
sim

Core of the MSET algorithm
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• We can use the 2D Matrix API to compute  but we require some 
enhancements to our architecture

–We need the  operation and pseudo-inverse operation


• The  operation is implemented as a BLIS add-on operation 

–We take advantage of BLIS’s extensibility and efficient GEMM infrastructure


• The pseudo-inverse operation is provided by the native flame library

– Flame uses BLIS and provides functionality similar to LAPACK

ωest

⊗

⊗

Requirements of MSET algorithm
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MSET2 implementation
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Architectural overview

Panama flame 
binding 

2D Matrix API

Native

Java

jextract Panama BLIS 
binding 

BLISflame ⊗

MSET2 implementation

blis.h

flame.h



• BLIS, Panama, and the 2D Matrix API with λ lambda kernels, enabled us 
to rapidly develop an efficient prototype of the MSET2 algorithm in Java

– The efficiency of BLIS with the productivity of Java


• Leveraging a modern CPU (OCI BM.Standard.E4.128) gives GPU-like 
speeds and a hundred times the memory at a tenth the cost

–MSET2 training and validation with 1,000 sensors and 100,000 observations took 

under 4 seconds

–MSET2 estimation with 50,000 sensors and a 1,000,000 observations, requiring 4 

terabytes of memory, took under 3 hours

In summary
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BLIS obj_t struct modeling a 2D matrix
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 1  typedef struct obj_s {

 2      ...

 3  

 4      dim_t         dim[2];  // Number of rows and columns

 5  

 6      ... 
 7  

 8      void*         buffer;  // Pointer to elements

 9  

10      inc_t         rs;      // Row stride

11      inc_t         cs;      // Column stride

12  

13      ...

14  } obj_t;



Row-major and column-major order
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 is a 2x3 matrix

m = [a b c
d e f]

m

Row-major order

   

   


rs = 3
cs = 1

buf fer → [a b c d e f]

index(i, j) = i * rs + j * cs






buf fer[index(1,1)] =
buf fer[1 * 3 + 1 * 1] =
buf fer[4] = e

Column-major order

    

   


rs = 1
cs = 2

buf fer → [a d b e c f]






buf fer[index(1,1)] =
buf fer[1 * 1 + 1 * 2] =
buf fer[3] = e


