
ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES 1

ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES 2

BLISful Linear Algebra
with Project Panama

Paul Sandoz, Oracle

Overview

3ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

BLIS library
Panama and BLIS

2D Matrix API
MSET

• High performance CPU-based library for dense linear algebra operaVons
– Significant superset of the level 1-3 Basic Linear Algebra Subprograms

(BLAS)
– Especially noted is the level 3 performance e.g. GEneric Matrix MulVplicaVon

(GEMM)
–One of only 2 libraries to offer GEMM-like extensibility

• Developed by The Science of High Performance CompuVng Group at the
University of Texas at AusVn

BLIS linear algebra library

4ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

https://github.com/flame/blis

• Defines a structure, called obj_t, that models a 2D matrix
– Abstracts many details such as the element type and dimensions

• Defines operaVons that accept obj_t* as arguments

• It’s a well designed C API
– But we can do even be_er binding to it in Java and wrapping it

BLIS Object API

5ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

Using the naVve BLIS Object API

6ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

 1 obj_t a, b, c;
 2 bli_obj_create(BLIS_DOUBLE, 4, 5, 0, 0, &c);
 3 bli_obj_create(BLIS_DOUBLE, 4, 3, 0, 0, &a);
 4 bli_obj_create(BLIS_DOUBLE, 3, 5, 0, 0, &b);
 5
 6 obj_t* alpha = &BLIS_ONE;
 7 obj_t* beta = &BLIS_ONE;
 8
 9 bli_randm(&a);
10 bli_setm(&BLIS_ONE, &b);
11 bli_setm(&BLIS_ZERO, &c);
12
13 // c := beta * c + alpha * a * b, where 'a', 'b', and 'c' are general.
14 bli_gemm(alpha, &a, &b, beta, &c);
15 ...

• An API by which Java programs can interoperate with code and data
outside of the Java runVme
– Available as a preview API in JDK 19

• Enables Java developers to call naVve libraries and process naVve data
without the bri_leness and danger of Java NaVve Interface (JNI)
– Replaces JNI with a superior, pure-Java development model

• Provides tooling to generate pure-Java bindings to naVve C libraries
– Autogenerate Java code from naVve library C header files

Panama

7ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

Foreign Function & Memory (FFM) API and tooling

• MemorySegment
–Models a conVguous region of memory

– Replaces direct ByteBuffer, overcoming its size limits and memory
management constraints

• SegmentAllocator
– A “malloc”-like abstracVon for producing segments

• MemorySession (<: SegmentAllocator)
–Manages the deallocaVon of segments it allocates
– Controls access to the memory of a segment

e.g., segment is inaccessible ajer deallocaVon

Foreign Memory API

8ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

BLIS and Panama

9ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

Architectural overview

BLIS native library

Panama BLIS binding

2D Matrix API

Native

Java

jextractblis.h

Foreign Function
and Memory API JDK

Using the Java binding to the naVve BLIS Object API

10ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

 1 try (MemorySession s = MemorySession.openConfined()) {
 2 /* obj_t* */ MemorySegment a = obj_t.allocate(s),
 3 /* obj_t* */ MemorySegment b = obj_t.allocate(s);
 4 /* obj_t* */ MemorySegment c = obj_t.allocate(s);
 5
 6 bli_obj_create(BLIS_DOUBLE(), 4, 5, 0, 0, c);
 7 bli_obj_create(BLIS_DOUBLE(), 4, 3, 0, 0, a);
 8 bli_obj_create(BLIS_DOUBLE(), 3, 5, 0, 0, b);
 9
10 /* obj_t* */ MemorySegment alpha = BLIS_ONE$SEGMENT();
11 /* obj_t* */ MemorySegment beta = BLIS_ONE$SEGMENT();
12
13 bli_randm(a);
14 bli_setm(BLIS_ONE$SEGMENT(), b);
15 bli_setm(BLIS_ZERO$SEGMENT(), c);
16
17 // c := beta * c + alpha * a * b, where 'a', 'b', and 'c' are general.
18 bli_gemm(alpha, a, b, beta, c);
19 ...
20 }

• An idiomaVc API for Java developers
– Hides an API that is idiomaVc for C developers

–Manages the memory of the obj_t structure

• Matrix API and BLIS share the matrix structure and buffer of elements
– No size limit as with primiVve arrays and ByteBuffer
–Many level-1/2-like BLAS subprograms can be performed using pure Java
– Level-3 BLAS subprograms can be performed naVvely using BLIS

• Higher-order operaVons over the elements using lambda expressions
– Numpy-like with customized opVmizaVon using λ kernels

231 − 1

2D Matrix API

11ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

Using the 2D Matrix API

12ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

 1 try (MemorySession s = MemorySession.openConfined()) {
 2 DoubleMatrix c = Matrix.newDoubleMatrix(s, 4, 5);
 3 DoubleMatrix a = Matrix.newDoubleMatrix(s, 4, 3);
 4 DoubleMatrix b = Matrix.newDoubleMatrix(s, 3, 5);
 5
 6 Matrix<?> alpha = Matrix.one();
 7 Matrix<?> beta = Matrix.one();
 8
 9 BLI.randm(a);
10 BLI.setm(DoubleMatrix.one(), b);
11 // c's elements are already initialized to zero
12
13 // c := beta * c + alpha * a * b, where 'a', 'b', and 'c' are general.
14 BLI.gemm(alpha, a, b, beta, c);
15 }

AllocaVon

13ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

 1 DoubleMatrix newDoubleMatrix(MemorySession scope, long rows, long cols) {
 2 MemorySegment buffer = scope.allocate(
 3 MemoryLayout.sequenceLayout(rows * cols, ValueLayout.JAVA_DOUBLE));
 4 // Allocate the obj_t struct and attach the buffer
 5 MemorySegment obj = obj_t.allocate(scope);
 6 blis_h.bli_obj_create_with_attached_buffer(
 7 // Element type
 8 blis_h.BLIS_DOUBLE(),
 9 // Shape
11 rows, columns,
12 // Pointer to elements
13 buffer,
14 // Row and column strides, column-major order
15 1, rows,
16 obj);
17 return new DoubleMatrix(scope, obj, buffer);
18 }

• Unary, binary, and ternary
– Lambda expressions for the elemental operaVons

• Binary operaVon for matrixes , and of the same dimensions
 A.elementwise(B, C, (a, b) -> a + b)

• What if is a singular matrix, row vector, or column vector?
–We can broadcast into matrix of the same dimensions as

A B C

C = A + B

a b c
d e f
g h i

+ [
j k l
m n o
p q r] =

a + j b + k c + l
d + m e + n f + o
g + p h + q i + r

B
B B′ A

Element-wise operaVons with lambdas

14ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

• Broadcast scalar

• Broadcast row vector

• Broadcast column vector

a b c
d e f
g h i

+ [j] ≡
a b c
d e f
g h i

+
j j j
j j j
j j j

a b c
d e f
g h i

+ [j k l] ≡
a b c
d e f
g h i

+
j k l
j k l
j k l

a b c
d e f
g h i

+
j
k
l

≡
a b c
d e f
g h i

+
j j j
k k k
l l l

Element-wise operaVons with broadcasVng

15ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

• Reduce all elements

• Reduce all rows to produce a column vector

• Reduce all columns to produce a row vector
A.reductionColumn(m, (a, b) -> a + b)
m.elementwise(e -> e / A.rows())

 A =
a b c
d e f
g h i

m = [(a + d + g)/rows (b + e + h)/rows (c + f + i)/rows]

ReducVon operaVons with lambdas

16ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

• Higher-order operaVons are very expressive but may not reliably opVmize
– The operaVon does not know what the lambda expression does, and lambda expression

does not know how matrix elements are arranged in memory
– The compiler might not inline the lambda’s body

• A λ kernel implements the operaVon’s funcVonal interface and the operaVon’s λ
kernel interface
–Operates over memory segments, using a custom implementaVon that can fuse loops with

the lambda expression

• Enables operaVng on elements in parallel
– For example, on the CPU using thread-level parallelism over groups of columns using Fork/

Join API, and data-level parallelism over a column using the Vector API
–Or perhaps on a GPU?

OpVmizing operaVons with λ kernels

17ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

• A λ kernel is passed to an operaVon in place of it’s lambda expression
A.elementwise(rv1, rv2, B,
 // (a, v1, v2) -> { ... }
 MyTernaryKernel.INSTANCE)

• What if we could dynamically generate a λ kernel from the symbolic
descripVon of a lambda expression’s body?
–One potenVal soluVon to Fixing The Inlining “Problem”

OpVmizing operaVons with λ kernels

18ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

https://web.archive.org/web/20170706142150/http://www.azulsystems.com/blog/cliff/2011-04-04-fixing-the-inlining-problem

• MulVvariate State EsVmaVon Technique (MSET) is a machine learning
algorithm to determine if a system, producing Vme-series data from
sensors, is operaVng normally or abnormally
– Anomalies can be detected and resolved before they become criVcal problems

(including sensor malfuncVon or manipulaVon rather than component
malfuncVon)

• MSET was originally developed in 1996 by the US Department of
Energy’s (DoE) Argonne NaVonal Labs
– Designed to monitor nuclear power plants and ensure they are safe and secure
– Broadly applicable to many other areas, such as airplanes, cars, rollercoasters,

datacenter

MSET

19ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

https://www.anl.gov/nse/ai-ml/mset

• MSET2 is a proprietary enhancement to MSET
– Can detect anomalies earlier with higher sensiVvity and fewer false alarms than

MSET
– Superior than other machine learning approaches, such as neural nets and

support vector machines, and comparaVvely more efficient

MSET2

20ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

https://blogs.oracle.com/ai-and-datascience/post/fascinating-nuclear-history-behind-new-anomaly-detection-service

• Consider a system with sensors and observaVons under normal
operaVon

•

– The ’th normal observaVon for all sensors at Vme , where

•

– is a matrix
– Number of rows equals number of sensors
– Number of columns equals number of observaVons

• is commonly referred to as the design matrix

m n

XT
i = [xi1, xi2, . . . , xim]

i ti ti+1 > ti
D = [X1, X2, . . . , Xn]

D m × n

D

Core of the MSET algorithm

21ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

• Given and current observaVon(s), , can we determine if the
system behaving normally or abnormally?

• Given and , compute
– The closest normal behavior

• Then, compute residual,
–Make a decision based on difference

D Xobs

D Xobs Xest

Xres = Xest − Xobs

Core of the MSET algorithm

22ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

• EsVmate is a linear combinaVon of weights
–

–

–

• However, systems are typically non-linear
–Output is not proporVonal to change in input

Xest = Dωest

ωest = (DTD)−1DT Xobs

Xest = D(DTD)−1DT Xobs

Ordinal least squares

23ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

• Use a different level-3 operaVon, a similarity operaVon , that performs
a non-linear comparison
– Transforms from the observaVon space into a feature space, revealing the

similarity between observaVons

•

– , referred to as the similarity matrix , an matrix

– Compute pseudo-inverse of ,

⊗

ωest = (DT ⊗ D)+(DT ⊗ Xobs)
= D+

sim(DT ⊗ Xobs)
DT ⊗ D Dsim n × n

Dsim D+
sim

Core of the MSET algorithm

24ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

• We can use the 2D Matrix API to compute but we require some
enhancements to our architecture
–We need the operaVon and pseudo-inverse operaVon

• The operaVon is implemented as a BLIS add-on operaVon
–We take advantage of BLIS’s extensibility and efficient GEMM infrastructure

• The pseudo-inverse operaVon is provided by the naVve flame library
– Flame uses BLIS and provides funcVonality similar to LAPACK

ωest

⊗

⊗

Requirements of MSET algorithm

25ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

MSET2 implementaVon

26ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

Architectural overview

Panama flame
binding

2D Matrix API

Native

Java

jextract Panama BLIS
binding

BLISflame ⊗

MSET2 implementation

blis.h

flame.h

• BLIS, Panama, and the 2D Matrix API with λ lambda kernels, enabled us
to rapidly develop an efficient prototype of the MSET2 algorithm in Java
– The efficiency of BLIS with the producVvity of Java

• Leveraging a modern CPU (OCI BM.Standard.E4.128) gives GPU-like
speeds and a hundred Vmes the memory at a tenth the cost
–MSET2 training and validaVon with 1,000 sensors and 100,000 observaVons took

under 4 seconds
–MSET2 esVmaVon with 50,000 sensors and a 1,000,000 observaVons, requiring 4

terabytes of memory, took under 3 hours

In summary

27ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES 28

BLIS obj_t struct modeling a 2D matrix

29ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

 1 typedef struct obj_s {
 2 ...
 3
 4 dim_t dim[2]; // Number of rows and columns
 5
 6 ...
 7
 8 void* buffer; // Pointer to elements
 9
10 inc_t rs; // Row stride
11 inc_t cs; // Column stride
12
13 ...
14 } obj_t;

Row-major and column-major order

30ORACLE CLOUDWORLD COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

 is a 2x3 matrix

m = [a b c
d e f]

m

Row-major order

rs = 3
cs = 1

buf fer → [a b c d e f]

index(i, j) = i * rs + j * cs

buf fer[index(1,1)] =
buf fer[1 * 3 + 1 * 1] =
buf fer[4] = e

Column-major order

rs = 1
cs = 2

buf fer → [a d b e c f]

buf fer[index(1,1)] =
buf fer[1 * 1 + 1 * 2] =
buf fer[3] = e

