$\stackrel{\int}{6}$ JavaOne

BLISful Linear Algebra with Project Panama

Paul Sandoz, Oracle

JavaOne

Overview

BLIS library
Panama and BLIS
2D Matrix API
MSET

BLIS linear algebra library

- High performance CPU-based library for dense linear algebra operations
- Significant superset of the level 1-3 Basic Linear Algebra Subprograms (BLAS)
- Especially noted is the level 3 performance e.g. GEneric Matrix Multiplication (GEMM)
- One of only 2 libraries to offer GEMM-like extensibility
- Developed by The Science of High Performance Computing Group at the University of Texas at Austin

BLIS Object API

- Defines a structure, called obj_t, that models a 2D matrix
- Abstracts many details such as the element type and dimensions
- Defines operations that accept obj_t* as arguments
- It's a well designed C API
- But we can do even better binding to it in Java and wrapping it

Using the native BLIS Object API

```
obj_t a, b, c;
    bli_obj_create( BLIS_DOUBLE, 4, 5, 0, 0, &c );
    bli_obj_create( BLIS_DOUBLE, 4, 3, 0, 0, &a );
    bli_obj_create( BLIS_DOUBLE, 3, 5, 0, 0, &b );
    obj_t* alpha = &BLIS_ONE;
    obj_t* beta = &BLIS_ONE;
    bli_randm( &a );
        bli_setm( &BLIS_ONE, &b );
        bli_setm( &BLIS_ZERO, &c );
    // c := beta * c + alpha * a * b, where 'a', 'b', and 'c' are general.
    bli_gemm( alpha, &a, &b, beta, &c );
15 ..'
```


Panama
 Foreign Function \& Memory (FFM) API and tooling

- An API by which Java programs can interoperate with code and data outside of the Java runtime
- Available as a preview API in JDK 19
- Enables Java developers to call native libraries and process native data without the brittleness and danger of Java Native Interface (JNI)
- Replaces JNI with a superior, pure-Java development model
- Provides tooling to generate pure-Java bindings to native C libraries
- Autogenerate Java code from native library C header files

Foreign Memory API

- MemorySegment
- Models a contiguous region of memory
- Replaces direct ByteBuffer, overcoming its size limits and memory management constraints
- SegmentAllocator
- A "malloc"-like abstraction for producing segments
- MemorySession (<: SegmentAllocator)
- Manages the deallocation of segments it allocates
- Controls access to the memory of a segment e.g., segment is inaccessible after deallocation

BLIS and Panama
 Architectural overview

Using the Java binding to the native BLIS Object API

```
try (MemorySession s = MemorySession.openConfined()) {
    /* obj_t* */ MemorySegment a = obj_t.allocate(s),
    /* obj_t* */ MemorySegment b = obj_t.allocate(s);
    /* obj_t* */ MemorySegment c = obj_t.allocate(s);
    bli_obj_create(BLIS_DOUBLE(), 4, 5, 0, 0, c);
    bli_obj_create(BLIS_DOUBLE(), 4, 3, 0, 0, a);
    bli_obj_create(BLIS_DOUBLE(), 3, 5, 0, 0, b);
    /* obj_t* */ MemorySegment alpha = BLIS_ONE$SEGMENT();
    /* obj_t* */ MemorySegment beta = BLIS_ONE$SEGMENT();
    bli_randm(a);
    bli_setm(BLIS_ONE$SEGMENT(), b);
    bli_setm(BLIS_ZERO$SEGMENT(), c);
    // c := beta * c + alpha * a * b, where 'a', 'b', and 'c' are general.
    bli_gemm(alpha, a, b, beta, c);
}
```


2D Matrix API

- An idiomatic API for Java developers
- Hides an API that is idiomatic for C developers
- Manages the memory of the obj_t structure
- Matrix API and BLIS share the matrix structure and buffer of elements
- No $2^{31}-1$ size limit as with primitive arrays and ByteBuffer
- Many level-1/2-like BLAS subprograms can be performed using pure Java
- Level-3 BLAS subprograms can be performed natively using BLIS
- Higher-order operations over the elements using lambda expressions
- Numpy-like with customized optimization using λ kernels

Using the 2D Matrix API

```
try (MemorySession s = MemorySession.openConfined()) {
    DoubleMatrix c = Matrix.newDoubleMatrix(s, 4, 5);
    DoubleMatrix a = Matrix.newDoubleMatrix(s, 4, 3);
    DoubleMatrix b = Matrix.newDoubleMatrix(s, 3, 5);
    Matrix<?> alpha = Matrix.one();
    Matrix<?> beta = Matrix.one();
    BLI.randm(a);
    BLI.setm(DoubleMatrix.one(), b);
    // c's elements are already initialized to zero
    // c := beta * c + alpha * a * b, where 'a', 'b', and 'c' are general.
    BLI.gemm(alpha, a, b, beta, c);
}
```


Allocation

```
DoubleMatrix newDoubleMatrix(MemorySession scope, long rows, long cols) {
    MemorySegment buffer = scope.allocate(
        MemoryLayout.sequenceLayout(rows * cols, ValueLayout.JAVA_DOUBLE));
    // Allocate the obj_t struct and attach the buffer
    MemorySegment obj = obj_t.allocate(scope);
    blis_h.bli_obj_create_with_attached_buffer(
        // Element type
        blis_h.BLIS_DOUBLE(),
        // Shape
        rows, columns,
        // Pointer to elements
        buffer,
        // Row and column strides, column-major order
        1, rows,
        obj);
    return new DoubleMatrix(scope, obj, buffer);
}
```


Element-wise operations with lambdas

- Unary, binary, and ternary
- Lambda expressions for the elemental operations
- Binary operation for matrixes A, B and C of the same dimensions

$$
\begin{aligned}
& \text { A.elementwise(B, C, (} \mathrm{a}, \mathrm{~b}) \rightarrow \mathrm{a}+\mathrm{b}) \\
& C=A+B \\
& {\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]+\left[\begin{array}{lll}
j & k & l \\
m & n & o \\
p & q & r
\end{array}\right]=\left[\begin{array}{lll}
a+j & b+k & c+l \\
d+m & e+n & f+o \\
g+p & h+q & i+r
\end{array}\right]}
\end{aligned}
$$

-What if B is a singular matrix, row vector, or column vector?

- We can broadcast B into matrix B^{\prime} of the same dimensions as A

Element-wise operations with broadcasting

- Broadcast scalar

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]+[j] \equiv\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]+\left[\begin{array}{lll}
j & j & j \\
j & j & j \\
j & j & j
\end{array}\right]
$$

- Broadcast row vector

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]+\left[\begin{array}{lll}
j & k & l
\end{array}\right] \equiv\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]+\left[\begin{array}{lll}
j & k & l \\
j & k & l \\
j & k & l
\end{array}\right]
$$

- Broadcast column vector

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]+\left[\begin{array}{l}
j \\
k \\
l
\end{array}\right] \equiv\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]+\left[\begin{array}{lll}
j & j & j \\
k & k & k \\
l & l & l
\end{array}\right]
$$

Reduction operations with lambdas

- Reduce all elements
- Reduce all rows to produce a column vector
- Reduce all columns to produce a row vector

```
A.reductionColumn(m, (a, b) -> a + b)
m.elementwise(e -> e / A.rows())
```

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \\
& m=\left[\begin{array}{ll}
(a+d+g) / \text { rows } & (b+e+h) / \text { rows } \quad(c+f+i) / \text { rows }
\end{array}\right]
\end{aligned}
$$

Optimizing operations with λ kernels

- Higher-order operations are very expressive but may not reliably optimize
- The operation does not know what the lambda expression does, and lambda expression does not know how matrix elements are arranged in memory
- The compiler might not inline the lambda's body
- A $\boldsymbol{\lambda}$ kernel implements the operation's functional interface and the operation's $\boldsymbol{\lambda}$ kernel interface
- Operates over memory segments, using a custom implementation that can fuse loops with the lambda expression
- Enables operating on elements in parallel
- For example, on the CPU using thread-level parallelism over groups of columns using Fork/ Join API, and data-level parallelism over a column using the Vector API
- Or perhaps on a GPU?

Optimizing operations with λ kernels

- A $\boldsymbol{\lambda}$ kernel is passed to an operation in place of it's lambda expression
A.elementwise(rv1, rv2, B, // (a, v1, v2) -> \{ : MyTernaryKernel. INSTANCE)
- What if we could dynamically generate a λ kernel from the symbolic description of a lambda expression's body?
- One potential solution to Fixing The Inlining "Problem"

MSET

- Multivariate State Estimation Technique (MSET) is a machine learning algorithm to determine if a system, producing time-series data from sensors, is operating normally or abnormally
- Anomalies can be detected and resolved before they become critical problems (including sensor malfunction or manipulation rather than component malfunction)
- MSET was originally developed in 1996 by the US Department of Energy's (DoE) Argonne National Labs
- Designed to monitor nuclear power plants and ensure they are safe and secure - Broadly applicable to many other areas, such as airplanes, cars, rollercoasters, datacenter

MSET2

- MSET2 is a proprietary enhancement to MSET
- Can detect anomalies earlier with higher sensitivity and fewer false alarms than MSET
- Superior than other machine learning approaches, such as neural nets and support vector machines, and comparatively more efficient

Core of the MSET algorithm

- Consider a system with m sensors and n observations under normal operation
- $X_{i}^{T}=\left[x_{i 1}, x_{i 2}, \ldots, x_{i m}\right]$
- The i^{\prime} 'th normal observation for all sensors at time t_{i}, where $t_{i+1}>t_{i}$
- $D=\left[X_{1}, X_{2}, \ldots, X_{n}\right]$
$-D$ is a $m \times n$ matrix
- Number of rows equals number of sensors
- Number of columns equals number of observations
- D is commonly referred to as the design matrix

Core of the MSET algorithm

- Given D and current observation(s), $X_{\text {obs }}$, can we determine if the system behaving normally or abnormally?
- Given D and $X_{\text {obs }}$, compute $X_{\text {est }}$
- The closest normal behavior
- Then, compute residual, $X_{\text {res }}=X_{e s t}-X_{o b s}$
- Make a decision based on difference

Ordinal least squares

- Estimate is a linear combination of weights
$-X_{e s t}=D \omega_{\text {est }}$
$-\omega_{\text {est }}=\left(D^{T} D\right)^{-1} D^{T} X_{\text {obs }}$
${ }_{-} X_{e s t}=D\left(D^{T} D\right)^{-1} D^{T} X_{\text {obs }}$
- However, systems are typically non-linear
- Output is not proportional to change in input

Core of the MSET algorithm

- Use a different level-3 operation, a similarity operation \otimes, that performs a non-linear comparison
- Transforms from the observation space into a feature space, revealing the similarity between observations

$$
\text { - } \begin{aligned}
\omega_{e s t} & =\left(D^{T} \otimes D\right)^{+}\left(D^{T} \otimes X_{o b s}\right) \\
& =D_{\text {sim }}^{+}\left(D^{T} \otimes X_{o b s}\right)
\end{aligned}
$$

${ }_{-} D^{T} \otimes D$, referred to as the similarity matrix $D_{\text {sim }}$, an $n \times n$ matrix

- Compute pseudo-inverse of $D_{\text {sim }} D_{\text {sim }}^{+}$

Requirements of MSET algorithm

- We can use the 2D Matrix API to compute $\omega_{\text {est }}$ but we require some enhancements to our architecture
- We need the \otimes operation and pseudo-inverse operation
- The \otimes operation is implemented as a BLIS add-on operation
- We take advantage of BLIS's extensibility and efficient GEMM infrastructure
- The pseudo-inverse operation is provided by the native flame library
- Flame uses BLIS and provides functionality similar to LAPACK

MSET2 implementation

Architectural overview

In summary

- BLIS, Panama, and the 2D Matrix API with λ lambda kernels, enabled us to rapidly develop an efficient prototype of the MSET2 algorithm in Java
- The efficiency of BLIS with the productivity of Java
- Leveraging a modern CPU (OCI BM.Standard.E4.128) gives GPU-like speeds and a hundred times the memory at a tenth the cost
- MSET2 training and validation with 1,000 sensors and 100,000 observations took under 4 seconds
- MSET2 estimation with 50,000 sensors and a 1,000,000 observations, requiring 4 terabytes of memory, took under 3 hours

$\stackrel{\int}{6}$ JavaOne

BLIS obj_t struct modeling a 2D matrix

Row-major and column-major order

$$
\begin{aligned}
& m=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right] \\
& m \text { is a } 2 \times 3 \text { matrix }
\end{aligned}
$$

Row-major order		Column-major order	
$r s$	$=3$	$r s$	$=1$
$c s$	$=1$		
$c s$	$=2$		
buffer	$\rightarrow\left[\begin{array}{llllllll}a & b & c & d & e & f\end{array}\right]$	buffer	$\rightarrow\left[\begin{array}{llllll}a & d & b & e & c & f\end{array}\right]$

$$
\operatorname{index}(i, j)=i * r s+j * c s
$$

buffer $[$ index $(1,1)]=$ $\operatorname{buffer}[1 * 3+1 * 1]=$ buffer[4] $=e$
$\operatorname{buffer}[\operatorname{index}(1,1)]=$
buffer $[1 * 1+1 * 2]=$ buffer[3] $=e$

