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Overview
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BLIS library 
Panama and BLIS 

2D Matrix API 
MSET



• High performance CPU-based library for dense linear algebra operaVons 
– Significant superset of the level 1-3 Basic Linear Algebra Subprograms 

(BLAS) 
– Especially noted is the level 3 performance e.g. GEneric Matrix MulVplicaVon 

(GEMM) 
–One of only 2 libraries to offer GEMM-like extensibility 

• Developed by The Science of High Performance CompuVng Group at the 
University of Texas at AusVn

BLIS linear algebra library
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https://github.com/flame/blis


• Defines a structure, called obj_t, that models a 2D matrix 
– Abstracts many details such as the element type and dimensions 

• Defines operaVons that accept obj_t* as arguments 

• It’s a well designed C API 
– But we can do even be_er binding to it in Java and wrapping it

BLIS Object API
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Using the naVve BLIS Object API
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 1  obj_t a, b, c; 
 2  bli_obj_create( BLIS_DOUBLE, 4, 5, 0, 0, &c ); 
 3  bli_obj_create( BLIS_DOUBLE, 4, 3, 0, 0, &a ); 
 4  bli_obj_create( BLIS_DOUBLE, 3, 5, 0, 0, &b ); 
 5   
 6  obj_t* alpha = &BLIS_ONE; 
 7  obj_t* beta  = &BLIS_ONE; 
 8   
 9  bli_randm( &a ); 
10  bli_setm( &BLIS_ONE, &b ); 
11  bli_setm( &BLIS_ZERO, &c ); 
12   
13  // c := beta * c + alpha * a * b, where 'a', 'b', and 'c' are general. 
14  bli_gemm( alpha, &a, &b, beta, &c ); 
15  ...



• An API by which Java programs can interoperate with code and data 
outside of the Java runVme 
– Available as a preview API in JDK 19 

• Enables Java developers to call naVve libraries and process naVve data 
without the bri_leness and danger of Java NaVve Interface (JNI) 
– Replaces JNI with a superior, pure-Java development model 

• Provides tooling to generate pure-Java bindings to naVve C libraries 
– Autogenerate Java code from naVve library C header files

Panama
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Foreign Function & Memory (FFM) API and tooling



• MemorySegment 
–Models a conVguous region of memory  

– Replaces direct ByteBuffer, overcoming its size limits and memory 
management constraints 

• SegmentAllocator 
– A “malloc”-like abstracVon for producing segments 

• MemorySession (<: SegmentAllocator) 
–Manages the deallocaVon of segments it allocates 
– Controls access to the memory of a segment 

e.g., segment is inaccessible ajer deallocaVon

Foreign Memory API
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BLIS and Panama
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Architectural overview

BLIS native library

Panama BLIS binding 

2D Matrix API

Native

Java

jextractblis.h

Foreign Function 
and Memory API JDK



Using the Java binding to the naVve BLIS Object API
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 1  try (MemorySession s = MemorySession.openConfined()) { 
 2      /* obj_t* */ MemorySegment a = obj_t.allocate(s), 
 3      /* obj_t* */ MemorySegment b = obj_t.allocate(s); 
 4      /* obj_t* */ MemorySegment c = obj_t.allocate(s); 
 5   
 6      bli_obj_create(BLIS_DOUBLE(), 4, 5, 0, 0, c); 
 7      bli_obj_create(BLIS_DOUBLE(), 4, 3, 0, 0, a); 
 8      bli_obj_create(BLIS_DOUBLE(), 3, 5, 0, 0, b); 
 9   
10      /* obj_t* */ MemorySegment alpha = BLIS_ONE$SEGMENT(); 
11      /* obj_t* */ MemorySegment beta = BLIS_ONE$SEGMENT(); 
12   
13      bli_randm(a); 
14      bli_setm(BLIS_ONE$SEGMENT(), b); 
15      bli_setm(BLIS_ZERO$SEGMENT(), c); 
16   
17      // c := beta * c + alpha * a * b, where 'a', 'b', and 'c' are general. 
18      bli_gemm(alpha, a, b, beta, c); 
19      ... 
20  }



• An idiomaVc API for Java developers 
– Hides an API that is idiomaVc for C developers 

–Manages the memory of the obj_t structure 

• Matrix API and BLIS share the matrix structure and buffer of elements 
– No  size limit as with primiVve arrays and ByteBuffer  
–Many level-1/2-like BLAS subprograms can be performed using pure Java 
– Level-3 BLAS subprograms can be performed naVvely using BLIS 

• Higher-order operaVons over the elements using lambda expressions 
– Numpy-like with customized opVmizaVon using λ kernels 

231 − 1

2D Matrix API
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Using the 2D Matrix API
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 1  try (MemorySession s = MemorySession.openConfined()) { 
 2      DoubleMatrix c = Matrix.newDoubleMatrix(s, 4, 5); 
 3      DoubleMatrix a = Matrix.newDoubleMatrix(s, 4, 3); 
 4      DoubleMatrix b = Matrix.newDoubleMatrix(s, 3, 5); 
 5 
 6      Matrix<?> alpha = Matrix.one(); 
 7      Matrix<?> beta = Matrix.one(); 
 8   
 9      BLI.randm(a); 
10      BLI.setm(DoubleMatrix.one(), b); 
11      // c's elements are already initialized to zero 
12   
13      // c := beta * c + alpha * a * b, where 'a', 'b', and 'c' are general. 
14      BLI.gemm(alpha, a, b, beta, c); 
15  }



AllocaVon
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 1  DoubleMatrix newDoubleMatrix(MemorySession scope, long rows, long cols) { 
 2      MemorySegment buffer = scope.allocate( 
 3          MemoryLayout.sequenceLayout(rows * cols, ValueLayout.JAVA_DOUBLE)); 
 4      // Allocate the obj_t struct and attach the buffer 
 5      MemorySegment obj = obj_t.allocate(scope); 
 6      blis_h.bli_obj_create_with_attached_buffer( 
 7              // Element type 
 8              blis_h.BLIS_DOUBLE(), 
 9              // Shape 
11              rows, columns, 
12              // Pointer to elements 
13              buffer, 
14              // Row and column strides, column-major order 
15              1, rows, 
16              obj); 
17      return new DoubleMatrix(scope, obj, buffer); 
18  }



• Unary, binary, and ternary  
– Lambda expressions for the elemental operaVons  

• Binary operaVon for matrixes ,  and  of the same dimensions 
 A.elementwise(B, C, (a, b) -> a + b) 

 

 

• What if  is a singular matrix, row vector, or column vector? 
–We can broadcast  into matrix  of the same dimensions as 

A B C

C = A + B

a b c
d e f
g h i

+ [
j k l
m n o
p q r] =

a + j b + k c + l
d + m e + n f + o
g + p h + q i + r

B
B B′ A

Element-wise operaVons with lambdas
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• Broadcast scalar 

 

• Broadcast row vector 

 

• Broadcast column vector 

a b c
d e f
g h i

+ [j] ≡
a b c
d e f
g h i

+
j j j
j j j
j j j

a b c
d e f
g h i

+ [j k l] ≡
a b c
d e f
g h i

+
j k l
j k l
j k l

a b c
d e f
g h i

+
j
k
l

≡
a b c
d e f
g h i

+
j j j
k k k
l l l

Element-wise operaVons with broadcasVng
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• Reduce all elements 

• Reduce all rows to produce a column vector 

• Reduce all columns to produce a row vector 
A.reductionColumn(m, (a, b) -> a + b) 
m.elementwise(e -> e / A.rows()) 

 A =
a b c
d e f
g h i

m = [(a + d + g)/rows (b + e + h)/rows (c + f + i)/rows]

ReducVon operaVons with lambdas

16ORACLE CLOUDWORLD        COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES



• Higher-order operaVons are very expressive but may not reliably opVmize 
– The operaVon does not know what the lambda expression does, and lambda expression 

does not know how matrix elements are arranged in memory 
– The compiler might not inline the lambda’s body 

• A λ kernel implements the operaVon’s funcVonal interface and the operaVon’s λ 
kernel interface 
–Operates over memory segments, using a custom implementaVon that can fuse loops with 

the lambda expression 

• Enables operaVng on elements in parallel 
– For example, on the CPU using thread-level parallelism over groups of columns using Fork/

Join API, and data-level parallelism over a column using the Vector API  
–Or perhaps on a GPU?

OpVmizing operaVons with λ kernels
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• A λ kernel is passed to an operaVon in place of it’s lambda expression 
A.elementwise(rv1, rv2, B, 
    // (a, v1, v2) -> { ... }   
    MyTernaryKernel.INSTANCE) 

• What if we could dynamically generate a λ kernel from the symbolic 
descripVon of a lambda expression’s body? 
–One potenVal soluVon to Fixing The Inlining “Problem”

OpVmizing operaVons with λ kernels
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https://web.archive.org/web/20170706142150/http://www.azulsystems.com/blog/cliff/2011-04-04-fixing-the-inlining-problem


• MulVvariate State EsVmaVon Technique (MSET) is a machine learning 
algorithm to determine if a system, producing Vme-series data from 
sensors, is operaVng normally or abnormally 
– Anomalies can be detected and resolved before they become criVcal problems 

(including sensor malfuncVon or manipulaVon rather than component 
malfuncVon) 

• MSET was originally developed in 1996 by the US Department of 
Energy’s (DoE) Argonne NaVonal Labs 
– Designed to monitor nuclear power plants and ensure they are safe and secure 
– Broadly applicable to many other areas, such as airplanes, cars, rollercoasters, 

datacenter

MSET
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https://www.anl.gov/nse/ai-ml/mset


• MSET2 is a proprietary enhancement to MSET 
– Can detect anomalies earlier with higher sensiVvity and fewer false alarms than 

MSET 
– Superior than other machine learning approaches, such as neural nets and 

support vector machines, and comparaVvely more efficient

MSET2
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https://blogs.oracle.com/ai-and-datascience/post/fascinating-nuclear-history-behind-new-anomaly-detection-service


• Consider a system with  sensors and  observaVons under normal 
operaVon 

•  

– The ’th normal observaVon for all sensors at Vme , where   

•  

–  is a  matrix 
– Number of rows equals number of sensors 
– Number of columns equals number of observaVons 

•  is commonly referred to as the design matrix

m n

XT
i = [xi1, xi2, . . . , xim]

i ti ti+1 > ti
D = [X1, X2, . . . , Xn]

D m × n

D

Core of the MSET algorithm
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• Given  and current observaVon(s), , can we determine if the 
system behaving normally or abnormally? 

• Given  and , compute  
– The closest normal behavior 

• Then, compute residual,  
–Make a decision based on difference

D Xobs

D Xobs Xest

Xres = Xest − Xobs

Core of the MSET algorithm
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• EsVmate is a linear combinaVon of weights 
–  

–  

–  

• However, systems are typically non-linear 
–Output is not proporVonal to change in input

Xest = Dωest

ωest = (DTD)−1DT Xobs

Xest = D(DTD)−1DT Xobs

Ordinal least squares

23ORACLE CLOUDWORLD        COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES



• Use a different level-3 operaVon, a similarity operaVon , that performs 
a non-linear comparison 
– Transforms from the observaVon space into a feature space, revealing the 

similarity between observaVons 

•  
        

– , referred to as the similarity matrix , an  matrix 

– Compute pseudo-inverse of , 

⊗

ωest = (DT ⊗ D)+(DT ⊗ Xobs)
= D+

sim(DT ⊗ Xobs)
DT ⊗ D Dsim n × n

Dsim D+
sim

Core of the MSET algorithm
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• We can use the 2D Matrix API to compute  but we require some 
enhancements to our architecture 
–We need the  operaVon and pseudo-inverse operaVon 

• The  operaVon is implemented as a BLIS add-on operaVon  
–We take advantage of BLIS’s extensibility and efficient GEMM infrastructure 

• The pseudo-inverse operaVon is provided by the naVve flame library 
– Flame uses BLIS and provides funcVonality similar to LAPACK

ωest

⊗

⊗

Requirements of MSET algorithm
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MSET2 implementaVon

26ORACLE CLOUDWORLD        COPYRIGHT © 2022, ORACLE AND/OR ITS AFFILIATES

Architectural overview

Panama flame 
binding 

2D Matrix API

Native

Java

jextract Panama BLIS 
binding 

BLISflame ⊗

MSET2 implementation

blis.h

flame.h



• BLIS, Panama, and the 2D Matrix API with λ lambda kernels, enabled us 
to rapidly develop an efficient prototype of the MSET2 algorithm in Java 
– The efficiency of BLIS with the producVvity of Java 

• Leveraging a modern CPU (OCI BM.Standard.E4.128) gives GPU-like 
speeds and a hundred Vmes the memory at a tenth the cost 
–MSET2 training and validaVon with 1,000 sensors and 100,000 observaVons took 

under 4 seconds 
–MSET2 esVmaVon with 50,000 sensors and a 1,000,000 observaVons, requiring 4 

terabytes of memory, took under 3 hours

In summary
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BLIS obj_t struct modeling a 2D matrix
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 1  typedef struct obj_s { 
 2      ... 
 3   
 4      dim_t         dim[2];  // Number of rows and columns 
 5   
 6      ... 
 7   
 8      void*         buffer;  // Pointer to elements 
 9   
10      inc_t         rs;      // Row stride 
11      inc_t         cs;      // Column stride 
12   
13      ... 
14  } obj_t;



Row-major and column-major order
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 is a 2x3 matrix

m = [a b c
d e f]

m

Row-major order 
    
    

rs = 3
cs = 1

buf fer → [a b c d e f]

index(i, j) = i * rs + j * cs

 
 

buf fer[index(1,1)] =
buf fer[1 * 3 + 1 * 1] =
buf fer[4] = e

Column-major order 
     
    

rs = 1
cs = 2

buf fer → [a d b e c f]

 
 

buf fer[index(1,1)] =
buf fer[1 * 1 + 1 * 2] =
buf fer[3] = e


