java.lang.Object
java.security.Permission
java.security.BasicPermission
java.lang.RuntimePermission
- All Implemented Interfaces:
Serializable
,Guard
This class is for runtime permissions. A
RuntimePermission
contains a name (also referred to as a "target name") but no actions
list; you either have the named permission or you don't.
The target name is the name of the runtime permission (see below). The naming convention follows the hierarchical property naming convention. Also, an asterisk may appear at the end of the name, following a ".", or by itself, to signify a wildcard match. For example: "loadLibrary.*" and "*" signify a wildcard match, while "*loadLibrary" and "a*b" do not.
The following table lists the standard RuntimePermission
target names, and for each provides a description of what the permission
allows and a discussion of the risks of granting code the permission.
Permission Target Name | What the Permission Allows | Risks of Allowing this Permission |
---|---|---|
createClassLoader | Creation of a class loader | This is an extremely dangerous permission to grant. Malicious applications that can instantiate their own class loaders could then load their own rogue classes into the system. These newly loaded classes could be placed into any protection domain by the class loader, thereby automatically granting the classes the permissions for that domain. |
getClassLoader | Retrieval of a class loader (e.g., the class loader for the calling class) | This would grant an attacker permission to get the class loader for a particular class. This is dangerous because having access to a class's class loader allows the attacker to load other classes available to that class loader. The attacker would typically otherwise not have access to those classes. |
setContextClassLoader | Setting of the context class loader used by a thread | The context class loader is used by system code and extensions when they need to lookup resources that might not exist in the system class loader. Granting setContextClassLoader permission would allow code to change which context class loader is used for a particular thread, including system threads. |
enableContextClassLoaderOverride | Subclass implementation of the thread context class loader methods | The context class loader is used by system code and extensions when they need to lookup resources that might not exist in the system class loader. Granting enableContextClassLoaderOverride permission would allow a subclass of Thread to override the methods that are used to get or set the context class loader for a particular thread. |
closeClassLoader | Closing of a ClassLoader | Granting this permission allows code to close any URLClassLoader that it has a reference to. |
setSecurityManager | Setting of the security manager (possibly replacing an existing one) | The security manager is a class that allows applications to implement a security policy. Granting the setSecurityManager permission would allow code to change which security manager is used by installing a different, possibly less restrictive security manager, thereby bypassing checks that would have been enforced by the original security manager. |
createSecurityManager | Creation of a new security manager | This gives code access to protected, sensitive methods that may disclose information about other classes or the execution stack. |
getenv.{variable name} | Reading of the value of the specified environment variable | This would allow code to read the value, or determine the existence, of a particular environment variable. This is dangerous if the variable contains confidential data. |
exitVM.{exit status} | Halting of the Java Virtual Machine with the specified exit status | This allows an attacker to mount a denial-of-service attack by automatically forcing the virtual machine to halt. Note: The "exitVM.*" permission is automatically granted to all code loaded from the application class path, thus enabling applications to terminate themselves. Also, the "exitVM" permission is equivalent to "exitVM.*". |
shutdownHooks | Registration and cancellation of virtual-machine shutdown hooks | This allows an attacker to register a malicious shutdown hook that interferes with the clean shutdown of the virtual machine. |
setFactory | Setting of the socket factory used by ServerSocket or Socket, or of the stream handler factory used by URL | This allows code to set the actual implementation for the socket, server socket, stream handler, or RMI socket factory. An attacker may set a faulty implementation which mangles the data stream. |
setIO | Setting of System.out, System.in, and System.err | This allows changing the value of the standard system streams. An attacker may change System.in to monitor and steal user input, or may set System.err to a "null" OutputStream, which would hide any error messages sent to System.err. |
modifyThread | Modification of threads, e.g., via calls to Thread
interrupt, setDaemon, setPriority, setName and
setUncaughtExceptionHandler methods |
This allows an attacker to modify the behaviour of any thread in the system. |
modifyThreadGroup | modification of thread groups, e.g., via calls to ThreadGroup
getParent , setDaemon , and setMaxPriority methods |
This allows an attacker to create thread groups and set their run priority. |
getProtectionDomain | Retrieval of the ProtectionDomain for a class | This allows code to obtain policy information for a particular code source. While obtaining policy information does not compromise the security of the system, it does give attackers additional information, such as local file names for example, to better aim an attack. |
getFileSystemAttributes | Retrieval of file system attributes | This allows code to obtain file system information such as disk usage or disk space available to the caller. This is potentially dangerous because it discloses information about the system hardware configuration and some information about the caller's privilege to write files. |
readFileDescriptor | Reading of file descriptors | This would allow code to read the particular file associated with the file descriptor read. This is dangerous if the file contains confidential data. |
writeFileDescriptor | Writing to file descriptors | This allows code to write to a particular file associated with the descriptor. This is dangerous because it may allow malicious code to plant viruses or at the very least, fill up your entire disk. |
loadLibrary.{library name} | Dynamic linking of the specified library | It is dangerous to allow an applet permission to load native code libraries, because the Java security architecture is not designed to and does not prevent malicious behavior at the level of native code. |
accessClassInPackage.{package name} | Access to the specified package via a class loader's
loadClass method when that class loader calls
the SecurityManager checkPackageAccess method |
This gives code access to classes in packages to which it normally does not have access. Malicious code may use these classes to help in its attempt to compromise security in the system. |
defineClassInPackage.{package name} | Definition of classes in the specified package, via a class
loader's defineClass method when that class loader calls
the SecurityManager checkPackageDefinition method. |
This grants code permission to define a class
in a particular package. This is dangerous because malicious
code with this permission may define rogue classes in
trusted packages like java.security or java.lang ,
for example. |
defineClass | Define a class with
Lookup.defineClass . |
This grants code with a suitably privileged Lookup object
permission to define classes in the same package as the Lookup 's
lookup class. |
accessDeclaredMembers | Access to the declared members of a class | This grants code permission to query a class for its public, protected, default (package) access, and private fields and/or methods. Although the code would have access to the private and protected field and method names, it would not have access to the private/protected field data and would not be able to invoke any private methods. Nevertheless, malicious code may use this information to better aim an attack. Additionally, it may invoke any public methods and/or access public fields in the class. This could be dangerous if the code would normally not be able to invoke those methods and/or access the fields because it can't cast the object to the class/interface with those methods and fields. |
queuePrintJob | Initiation of a print job request | This could print sensitive information to a printer, or simply waste paper. |
getStackTrace | Retrieval of the stack trace information of another thread. | This allows retrieval of the stack trace information of another thread. This might allow malicious code to monitor the execution of threads and discover vulnerabilities in applications. |
getStackWalkerWithClassReference | Get a stack walker that can retrieve stack frames with class reference. | This allows retrieval of Class objects from stack walking. This might allow malicious code to access Class objects on the stack outside its own context. |
setDefaultUncaughtExceptionHandler | Setting the default handler to be used when a thread terminates abruptly due to an uncaught exception | This allows an attacker to register a malicious uncaught exception handler that could interfere with termination of a thread |
preferences | Represents the permission required to get access to the java.util.prefs.Preferences implementations user or system root which in turn allows retrieval or update operations within the Preferences persistent backing store.) | This permission allows the user to read from or write to the preferences backing store if the user running the code has sufficient OS privileges to read/write to that backing store. The actual backing store may reside within a traditional filesystem directory or within a registry depending on the platform OS |
manageProcess | Native process termination and information about processes
ProcessHandle . |
Allows code to identify and terminate processes that it did not create. |
localeServiceProvider | This RuntimePermission is required to be granted to
classes which subclass and implement
java.util.spi.LocaleServiceProvider . The permission is
checked during invocation of the abstract base class constructor.
This permission ensures trust in classes which implement this
security-sensitive provider mechanism. |
See
java.util.spi.LocaleServiceProvider for more
information. |
loggerFinder | This RuntimePermission is required to be granted to
classes which subclass or call methods on
java.lang.System.LoggerFinder . The permission is
checked during invocation of the abstract base class constructor, as
well as on the invocation of its public methods.
This permission ensures trust in classes which provide loggers
to system classes. |
See java.lang.System.LoggerFinder
for more information. |
accessSystemModules | Access system modules in the runtime image. | This grants the permission to access resources in the system modules in the runtime image. |
inetAddressResolverProvider | This RuntimePermission is required to be granted to
classes which subclass and implement java.net.spi.InetAddressResolverProvider .
The permission is checked during invocation of the abstract base class constructor.
This permission ensures trust in classes which provide resolvers used by
InetAddress hostname and address resolution methods. |
See InetAddressResolverProvider for more information. |
- Implementation Note:
- Implementations may define additional target names, but should use naming conventions such as reverse domain name notation to avoid name clashes.
- Since:
- 1.2
- See Also:
-
Constructor Summary
ConstructorDescriptionRuntimePermission
(String name) Creates a new RuntimePermission with the specified name.RuntimePermission
(String name, String actions) Creates a new RuntimePermission object with the specified name. -
Method Summary
Methods inherited from class java.security.BasicPermission
equals, getActions, hashCode, implies, newPermissionCollection
Methods inherited from class java.security.Permission
checkGuard, getName, toString
-
Constructor Details
-
RuntimePermission
Creates a new RuntimePermission with the specified name. The name is the symbolic name of the RuntimePermission, such as "exit", "setFactory", etc. An asterisk may appear at the end of the name, following a ".", or by itself, to signify a wildcard match.- Parameters:
name
- the name of the RuntimePermission.- Throws:
NullPointerException
- ifname
isnull
.IllegalArgumentException
- ifname
is empty.
-
RuntimePermission
Creates a new RuntimePermission object with the specified name. The name is the symbolic name of the RuntimePermission, and the actions String is currently unused and should be null.- Parameters:
name
- the name of the RuntimePermission.actions
- should be null.- Throws:
NullPointerException
- ifname
isnull
.IllegalArgumentException
- ifname
is empty.
-