1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/castnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/connode.hpp"
  32 #include "opto/loopnode.hpp"
  33 #include "opto/machnode.hpp"
  34 #include "opto/matcher.hpp"
  35 #include "opto/node.hpp"
  36 #include "opto/opcodes.hpp"
  37 #include "opto/regmask.hpp"
  38 #include "opto/type.hpp"
  39 #include "utilities/copy.hpp"
  40 
  41 class RegMask;
  42 // #include "phase.hpp"
  43 class PhaseTransform;
  44 class PhaseGVN;
  45 
  46 // Arena we are currently building Nodes in
  47 const uint Node::NotAMachineReg = 0xffff0000;
  48 
  49 #ifndef PRODUCT
  50 extern int nodes_created;
  51 #endif
  52 #ifdef __clang__
  53 #pragma clang diagnostic push
  54 #pragma GCC diagnostic ignored "-Wuninitialized"
  55 #endif
  56 
  57 #ifdef ASSERT
  58 
  59 //-------------------------- construct_node------------------------------------
  60 // Set a breakpoint here to identify where a particular node index is built.
  61 void Node::verify_construction() {
  62   _debug_orig = NULL;
  63   int old_debug_idx = Compile::debug_idx();
  64   int new_debug_idx = old_debug_idx+1;
  65   if (new_debug_idx > 0) {
  66     // Arrange that the lowest five decimal digits of _debug_idx
  67     // will repeat those of _idx. In case this is somehow pathological,
  68     // we continue to assign negative numbers (!) consecutively.
  69     const int mod = 100000;
  70     int bump = (int)(_idx - new_debug_idx) % mod;
  71     if (bump < 0)  bump += mod;
  72     assert(bump >= 0 && bump < mod, "");
  73     new_debug_idx += bump;
  74   }
  75   Compile::set_debug_idx(new_debug_idx);
  76   set_debug_idx( new_debug_idx );
  77   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  78   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
  79   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  80     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  81     BREAKPOINT;
  82     os::message_box("xxx", "yyy");
  83   }
  84 #if OPTO_DU_ITERATOR_ASSERT
  85   _last_del = NULL;
  86   _del_tick = 0;
  87 #endif
  88   _hash_lock = 0;
  89 }
  90 
  91 
  92 // #ifdef ASSERT ...
  93 
  94 #if OPTO_DU_ITERATOR_ASSERT
  95 void DUIterator_Common::sample(const Node* node) {
  96   _vdui     = VerifyDUIterators;
  97   _node     = node;
  98   _outcnt   = node->_outcnt;
  99   _del_tick = node->_del_tick;
 100   _last     = NULL;
 101 }
 102 
 103 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
 104   assert(_node     == node, "consistent iterator source");
 105   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
 106 }
 107 
 108 void DUIterator_Common::verify_resync() {
 109   // Ensure that the loop body has just deleted the last guy produced.
 110   const Node* node = _node;
 111   // Ensure that at least one copy of the last-seen edge was deleted.
 112   // Note:  It is OK to delete multiple copies of the last-seen edge.
 113   // Unfortunately, we have no way to verify that all the deletions delete
 114   // that same edge.  On this point we must use the Honor System.
 115   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 116   assert(node->_last_del == _last, "must have deleted the edge just produced");
 117   // We liked this deletion, so accept the resulting outcnt and tick.
 118   _outcnt   = node->_outcnt;
 119   _del_tick = node->_del_tick;
 120 }
 121 
 122 void DUIterator_Common::reset(const DUIterator_Common& that) {
 123   if (this == &that)  return;  // ignore assignment to self
 124   if (!_vdui) {
 125     // We need to initialize everything, overwriting garbage values.
 126     _last = that._last;
 127     _vdui = that._vdui;
 128   }
 129   // Note:  It is legal (though odd) for an iterator over some node x
 130   // to be reassigned to iterate over another node y.  Some doubly-nested
 131   // progress loops depend on being able to do this.
 132   const Node* node = that._node;
 133   // Re-initialize everything, except _last.
 134   _node     = node;
 135   _outcnt   = node->_outcnt;
 136   _del_tick = node->_del_tick;
 137 }
 138 
 139 void DUIterator::sample(const Node* node) {
 140   DUIterator_Common::sample(node);      // Initialize the assertion data.
 141   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 142 }
 143 
 144 void DUIterator::verify(const Node* node, bool at_end_ok) {
 145   DUIterator_Common::verify(node, at_end_ok);
 146   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 147 }
 148 
 149 void DUIterator::verify_increment() {
 150   if (_refresh_tick & 1) {
 151     // We have refreshed the index during this loop.
 152     // Fix up _idx to meet asserts.
 153     if (_idx > _outcnt)  _idx = _outcnt;
 154   }
 155   verify(_node, true);
 156 }
 157 
 158 void DUIterator::verify_resync() {
 159   // Note:  We do not assert on _outcnt, because insertions are OK here.
 160   DUIterator_Common::verify_resync();
 161   // Make sure we are still in sync, possibly with no more out-edges:
 162   verify(_node, true);
 163 }
 164 
 165 void DUIterator::reset(const DUIterator& that) {
 166   if (this == &that)  return;  // self assignment is always a no-op
 167   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 168   assert(that._idx          == 0, "assign only the result of Node::outs()");
 169   assert(_idx               == that._idx, "already assigned _idx");
 170   if (!_vdui) {
 171     // We need to initialize everything, overwriting garbage values.
 172     sample(that._node);
 173   } else {
 174     DUIterator_Common::reset(that);
 175     if (_refresh_tick & 1) {
 176       _refresh_tick++;                  // Clear the "was refreshed" flag.
 177     }
 178     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 179   }
 180 }
 181 
 182 void DUIterator::refresh() {
 183   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 184   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 185 }
 186 
 187 void DUIterator::verify_finish() {
 188   // If the loop has killed the node, do not require it to re-run.
 189   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 190   // If this assert triggers, it means that a loop used refresh_out_pos
 191   // to re-synch an iteration index, but the loop did not correctly
 192   // re-run itself, using a "while (progress)" construct.
 193   // This iterator enforces the rule that you must keep trying the loop
 194   // until it "runs clean" without any need for refreshing.
 195   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 196 }
 197 
 198 
 199 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 200   DUIterator_Common::verify(node, at_end_ok);
 201   Node** out    = node->_out;
 202   uint   cnt    = node->_outcnt;
 203   assert(cnt == _outcnt, "no insertions allowed");
 204   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 205   // This last check is carefully designed to work for NO_OUT_ARRAY.
 206 }
 207 
 208 void DUIterator_Fast::verify_limit() {
 209   const Node* node = _node;
 210   verify(node, true);
 211   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 212 }
 213 
 214 void DUIterator_Fast::verify_resync() {
 215   const Node* node = _node;
 216   if (_outp == node->_out + _outcnt) {
 217     // Note that the limit imax, not the pointer i, gets updated with the
 218     // exact count of deletions.  (For the pointer it's always "--i".)
 219     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 220     // This is a limit pointer, with a name like "imax".
 221     // Fudge the _last field so that the common assert will be happy.
 222     _last = (Node*) node->_last_del;
 223     DUIterator_Common::verify_resync();
 224   } else {
 225     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 226     // A normal internal pointer.
 227     DUIterator_Common::verify_resync();
 228     // Make sure we are still in sync, possibly with no more out-edges:
 229     verify(node, true);
 230   }
 231 }
 232 
 233 void DUIterator_Fast::verify_relimit(uint n) {
 234   const Node* node = _node;
 235   assert((int)n > 0, "use imax -= n only with a positive count");
 236   // This must be a limit pointer, with a name like "imax".
 237   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 238   // The reported number of deletions must match what the node saw.
 239   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 240   // Fudge the _last field so that the common assert will be happy.
 241   _last = (Node*) node->_last_del;
 242   DUIterator_Common::verify_resync();
 243 }
 244 
 245 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 246   assert(_outp              == that._outp, "already assigned _outp");
 247   DUIterator_Common::reset(that);
 248 }
 249 
 250 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 251   // at_end_ok means the _outp is allowed to underflow by 1
 252   _outp += at_end_ok;
 253   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 254   _outp -= at_end_ok;
 255   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 256 }
 257 
 258 void DUIterator_Last::verify_limit() {
 259   // Do not require the limit address to be resynched.
 260   //verify(node, true);
 261   assert(_outp == _node->_out, "limit still correct");
 262 }
 263 
 264 void DUIterator_Last::verify_step(uint num_edges) {
 265   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 266   _outcnt   -= num_edges;
 267   _del_tick += num_edges;
 268   // Make sure we are still in sync, possibly with no more out-edges:
 269   const Node* node = _node;
 270   verify(node, true);
 271   assert(node->_last_del == _last, "must have deleted the edge just produced");
 272 }
 273 
 274 #endif //OPTO_DU_ITERATOR_ASSERT
 275 
 276 
 277 #endif //ASSERT
 278 
 279 
 280 // This constant used to initialize _out may be any non-null value.
 281 // The value NULL is reserved for the top node only.
 282 #define NO_OUT_ARRAY ((Node**)-1)
 283 
 284 // Out-of-line code from node constructors.
 285 // Executed only when extra debug info. is being passed around.
 286 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 287   C->set_node_notes_at(idx, nn);
 288 }
 289 
 290 // Shared initialization code.
 291 inline int Node::Init(int req) {
 292   Compile* C = Compile::current();
 293   int idx = C->next_unique();
 294 
 295   // Allocate memory for the necessary number of edges.
 296   if (req > 0) {
 297     // Allocate space for _in array to have double alignment.
 298     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 299   }
 300   // If there are default notes floating around, capture them:
 301   Node_Notes* nn = C->default_node_notes();
 302   if (nn != NULL)  init_node_notes(C, idx, nn);
 303 
 304   // Note:  At this point, C is dead,
 305   // and we begin to initialize the new Node.
 306 
 307   _cnt = _max = req;
 308   _outcnt = _outmax = 0;
 309   _class_id = Class_Node;
 310   _flags = 0;
 311   _out = NO_OUT_ARRAY;
 312   return idx;
 313 }
 314 
 315 //------------------------------Node-------------------------------------------
 316 // Create a Node, with a given number of required edges.
 317 Node::Node(uint req)
 318   : _idx(Init(req))
 319 #ifdef ASSERT
 320   , _parse_idx(_idx)
 321 #endif
 322 {
 323   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 324   debug_only( verify_construction() );
 325   NOT_PRODUCT(nodes_created++);
 326   if (req == 0) {
 327     _in = NULL;
 328   } else {
 329     Node** to = _in;
 330     for(uint i = 0; i < req; i++) {
 331       to[i] = NULL;
 332     }
 333   }
 334 }
 335 
 336 //------------------------------Node-------------------------------------------
 337 Node::Node(Node *n0)
 338   : _idx(Init(1))
 339 #ifdef ASSERT
 340   , _parse_idx(_idx)
 341 #endif
 342 {
 343   debug_only( verify_construction() );
 344   NOT_PRODUCT(nodes_created++);
 345   assert( is_not_dead(n0), "can not use dead node");
 346   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 347 }
 348 
 349 //------------------------------Node-------------------------------------------
 350 Node::Node(Node *n0, Node *n1)
 351   : _idx(Init(2))
 352 #ifdef ASSERT
 353   , _parse_idx(_idx)
 354 #endif
 355 {
 356   debug_only( verify_construction() );
 357   NOT_PRODUCT(nodes_created++);
 358   assert( is_not_dead(n0), "can not use dead node");
 359   assert( is_not_dead(n1), "can not use dead node");
 360   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 361   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 362 }
 363 
 364 //------------------------------Node-------------------------------------------
 365 Node::Node(Node *n0, Node *n1, Node *n2)
 366   : _idx(Init(3))
 367 #ifdef ASSERT
 368   , _parse_idx(_idx)
 369 #endif
 370 {
 371   debug_only( verify_construction() );
 372   NOT_PRODUCT(nodes_created++);
 373   assert( is_not_dead(n0), "can not use dead node");
 374   assert( is_not_dead(n1), "can not use dead node");
 375   assert( is_not_dead(n2), "can not use dead node");
 376   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 377   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 378   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 379 }
 380 
 381 //------------------------------Node-------------------------------------------
 382 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 383   : _idx(Init(4))
 384 #ifdef ASSERT
 385   , _parse_idx(_idx)
 386 #endif
 387 {
 388   debug_only( verify_construction() );
 389   NOT_PRODUCT(nodes_created++);
 390   assert( is_not_dead(n0), "can not use dead node");
 391   assert( is_not_dead(n1), "can not use dead node");
 392   assert( is_not_dead(n2), "can not use dead node");
 393   assert( is_not_dead(n3), "can not use dead node");
 394   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 395   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 396   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 397   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 398 }
 399 
 400 //------------------------------Node-------------------------------------------
 401 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 402   : _idx(Init(5))
 403 #ifdef ASSERT
 404   , _parse_idx(_idx)
 405 #endif
 406 {
 407   debug_only( verify_construction() );
 408   NOT_PRODUCT(nodes_created++);
 409   assert( is_not_dead(n0), "can not use dead node");
 410   assert( is_not_dead(n1), "can not use dead node");
 411   assert( is_not_dead(n2), "can not use dead node");
 412   assert( is_not_dead(n3), "can not use dead node");
 413   assert( is_not_dead(n4), "can not use dead node");
 414   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 415   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 416   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 417   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 418   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 419 }
 420 
 421 //------------------------------Node-------------------------------------------
 422 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 423                      Node *n4, Node *n5)
 424   : _idx(Init(6))
 425 #ifdef ASSERT
 426   , _parse_idx(_idx)
 427 #endif
 428 {
 429   debug_only( verify_construction() );
 430   NOT_PRODUCT(nodes_created++);
 431   assert( is_not_dead(n0), "can not use dead node");
 432   assert( is_not_dead(n1), "can not use dead node");
 433   assert( is_not_dead(n2), "can not use dead node");
 434   assert( is_not_dead(n3), "can not use dead node");
 435   assert( is_not_dead(n4), "can not use dead node");
 436   assert( is_not_dead(n5), "can not use dead node");
 437   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 438   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 439   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 440   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 441   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 442   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 443 }
 444 
 445 //------------------------------Node-------------------------------------------
 446 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 447                      Node *n4, Node *n5, Node *n6)
 448   : _idx(Init(7))
 449 #ifdef ASSERT
 450   , _parse_idx(_idx)
 451 #endif
 452 {
 453   debug_only( verify_construction() );
 454   NOT_PRODUCT(nodes_created++);
 455   assert( is_not_dead(n0), "can not use dead node");
 456   assert( is_not_dead(n1), "can not use dead node");
 457   assert( is_not_dead(n2), "can not use dead node");
 458   assert( is_not_dead(n3), "can not use dead node");
 459   assert( is_not_dead(n4), "can not use dead node");
 460   assert( is_not_dead(n5), "can not use dead node");
 461   assert( is_not_dead(n6), "can not use dead node");
 462   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 463   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 464   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 465   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 466   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 467   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 468   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 469 }
 470 
 471 #ifdef __clang__
 472 #pragma clang diagnostic pop
 473 #endif
 474 
 475 
 476 //------------------------------clone------------------------------------------
 477 // Clone a Node.
 478 Node *Node::clone() const {
 479   Compile* C = Compile::current();
 480   uint s = size_of();           // Size of inherited Node
 481   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 482   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 483   // Set the new input pointer array
 484   n->_in = (Node**)(((char*)n)+s);
 485   // Cannot share the old output pointer array, so kill it
 486   n->_out = NO_OUT_ARRAY;
 487   // And reset the counters to 0
 488   n->_outcnt = 0;
 489   n->_outmax = 0;
 490   // Unlock this guy, since he is not in any hash table.
 491   debug_only(n->_hash_lock = 0);
 492   // Walk the old node's input list to duplicate its edges
 493   uint i;
 494   for( i = 0; i < len(); i++ ) {
 495     Node *x = in(i);
 496     n->_in[i] = x;
 497     if (x != NULL) x->add_out(n);
 498   }
 499   if (is_macro())
 500     C->add_macro_node(n);
 501   if (is_expensive())
 502     C->add_expensive_node(n);
 503   if (is_LoadBarrier()) {
 504     C->add_load_barrier_node(n->as_LoadBarrier());
 505   }
 506   // If the cloned node is a range check dependent CastII, add it to the list.
 507   CastIINode* cast = n->isa_CastII();
 508   if (cast != NULL && cast->has_range_check()) {
 509     C->add_range_check_cast(cast);
 510   }
 511 
 512   n->set_idx(C->next_unique()); // Get new unique index as well
 513   debug_only( n->verify_construction() );
 514   NOT_PRODUCT(nodes_created++);
 515   // Do not patch over the debug_idx of a clone, because it makes it
 516   // impossible to break on the clone's moment of creation.
 517   //debug_only( n->set_debug_idx( debug_idx() ) );
 518 
 519   C->copy_node_notes_to(n, (Node*) this);
 520 
 521   // MachNode clone
 522   uint nopnds;
 523   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 524     MachNode *mach  = n->as_Mach();
 525     MachNode *mthis = this->as_Mach();
 526     // Get address of _opnd_array.
 527     // It should be the same offset since it is the clone of this node.
 528     MachOper **from = mthis->_opnds;
 529     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 530                     pointer_delta((const void*)from,
 531                                   (const void*)(&mthis->_opnds), 1));
 532     mach->_opnds = to;
 533     for ( uint i = 0; i < nopnds; ++i ) {
 534       to[i] = from[i]->clone();
 535     }
 536   }
 537   // cloning CallNode may need to clone JVMState
 538   if (n->is_Call()) {
 539     n->as_Call()->clone_jvms(C);
 540   }
 541   if (n->is_SafePoint()) {
 542     n->as_SafePoint()->clone_replaced_nodes();
 543   }
 544   return n;                     // Return the clone
 545 }
 546 
 547 //---------------------------setup_is_top--------------------------------------
 548 // Call this when changing the top node, to reassert the invariants
 549 // required by Node::is_top.  See Compile::set_cached_top_node.
 550 void Node::setup_is_top() {
 551   if (this == (Node*)Compile::current()->top()) {
 552     // This node has just become top.  Kill its out array.
 553     _outcnt = _outmax = 0;
 554     _out = NULL;                           // marker value for top
 555     assert(is_top(), "must be top");
 556   } else {
 557     if (_out == NULL)  _out = NO_OUT_ARRAY;
 558     assert(!is_top(), "must not be top");
 559   }
 560 }
 561 
 562 
 563 //------------------------------~Node------------------------------------------
 564 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 565 void Node::destruct() {
 566   // Eagerly reclaim unique Node numberings
 567   Compile* compile = Compile::current();
 568   if ((uint)_idx+1 == compile->unique()) {
 569     compile->set_unique(compile->unique()-1);
 570   }
 571   // Clear debug info:
 572   Node_Notes* nn = compile->node_notes_at(_idx);
 573   if (nn != NULL)  nn->clear();
 574   // Walk the input array, freeing the corresponding output edges
 575   _cnt = _max;  // forget req/prec distinction
 576   uint i;
 577   for( i = 0; i < _max; i++ ) {
 578     set_req(i, NULL);
 579     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 580   }
 581   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 582   // See if the input array was allocated just prior to the object
 583   int edge_size = _max*sizeof(void*);
 584   int out_edge_size = _outmax*sizeof(void*);
 585   char *edge_end = ((char*)_in) + edge_size;
 586   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 587   int node_size = size_of();
 588 
 589   // Free the output edge array
 590   if (out_edge_size > 0) {
 591     compile->node_arena()->Afree(out_array, out_edge_size);
 592   }
 593 
 594   // Free the input edge array and the node itself
 595   if( edge_end == (char*)this ) {
 596     // It was; free the input array and object all in one hit
 597 #ifndef ASSERT
 598     compile->node_arena()->Afree(_in,edge_size+node_size);
 599 #endif
 600   } else {
 601     // Free just the input array
 602     compile->node_arena()->Afree(_in,edge_size);
 603 
 604     // Free just the object
 605 #ifndef ASSERT
 606     compile->node_arena()->Afree(this,node_size);
 607 #endif
 608   }
 609   if (is_macro()) {
 610     compile->remove_macro_node(this);
 611   }
 612   if (is_expensive()) {
 613     compile->remove_expensive_node(this);
 614   }
 615   CastIINode* cast = isa_CastII();
 616   if (cast != NULL && cast->has_range_check()) {
 617     compile->remove_range_check_cast(cast);
 618   }
 619 
 620   if (is_SafePoint()) {
 621     as_SafePoint()->delete_replaced_nodes();
 622   }
 623   if (is_LoadBarrier()) {
 624     compile->remove_load_barrier_node(this->as_LoadBarrier());
 625   }
 626 #ifdef ASSERT
 627   // We will not actually delete the storage, but we'll make the node unusable.
 628   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 629   _in = _out = (Node**) badAddress;
 630   _max = _cnt = _outmax = _outcnt = 0;
 631   compile->remove_modified_node(this);
 632 #endif
 633 }
 634 
 635 //------------------------------grow-------------------------------------------
 636 // Grow the input array, making space for more edges
 637 void Node::grow( uint len ) {
 638   Arena* arena = Compile::current()->node_arena();
 639   uint new_max = _max;
 640   if( new_max == 0 ) {
 641     _max = 4;
 642     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 643     Node** to = _in;
 644     to[0] = NULL;
 645     to[1] = NULL;
 646     to[2] = NULL;
 647     to[3] = NULL;
 648     return;
 649   }
 650   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 651   // Trimming to limit allows a uint8 to handle up to 255 edges.
 652   // Previously I was using only powers-of-2 which peaked at 128 edges.
 653   //if( new_max >= limit ) new_max = limit-1;
 654   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 655   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 656   _max = new_max;               // Record new max length
 657   // This assertion makes sure that Node::_max is wide enough to
 658   // represent the numerical value of new_max.
 659   assert(_max == new_max && _max > len, "int width of _max is too small");
 660 }
 661 
 662 //-----------------------------out_grow----------------------------------------
 663 // Grow the input array, making space for more edges
 664 void Node::out_grow( uint len ) {
 665   assert(!is_top(), "cannot grow a top node's out array");
 666   Arena* arena = Compile::current()->node_arena();
 667   uint new_max = _outmax;
 668   if( new_max == 0 ) {
 669     _outmax = 4;
 670     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 671     return;
 672   }
 673   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 674   // Trimming to limit allows a uint8 to handle up to 255 edges.
 675   // Previously I was using only powers-of-2 which peaked at 128 edges.
 676   //if( new_max >= limit ) new_max = limit-1;
 677   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 678   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 679   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 680   _outmax = new_max;               // Record new max length
 681   // This assertion makes sure that Node::_max is wide enough to
 682   // represent the numerical value of new_max.
 683   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 684 }
 685 
 686 #ifdef ASSERT
 687 //------------------------------is_dead----------------------------------------
 688 bool Node::is_dead() const {
 689   // Mach and pinch point nodes may look like dead.
 690   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 691     return false;
 692   for( uint i = 0; i < _max; i++ )
 693     if( _in[i] != NULL )
 694       return false;
 695   dump();
 696   return true;
 697 }
 698 #endif
 699 
 700 
 701 //------------------------------is_unreachable---------------------------------
 702 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 703   assert(!is_Mach(), "doesn't work with MachNodes");
 704   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
 705 }
 706 
 707 //------------------------------add_req----------------------------------------
 708 // Add a new required input at the end
 709 void Node::add_req( Node *n ) {
 710   assert( is_not_dead(n), "can not use dead node");
 711 
 712   // Look to see if I can move precedence down one without reallocating
 713   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 714     grow( _max+1 );
 715 
 716   // Find a precedence edge to move
 717   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 718     uint i;
 719     for( i=_cnt; i<_max; i++ )
 720       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 721         break;                  // There must be one, since we grew the array
 722     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 723   }
 724   _in[_cnt++] = n;            // Stuff over old prec edge
 725   if (n != NULL) n->add_out((Node *)this);
 726 }
 727 
 728 //---------------------------add_req_batch-------------------------------------
 729 // Add a new required input at the end
 730 void Node::add_req_batch( Node *n, uint m ) {
 731   assert( is_not_dead(n), "can not use dead node");
 732   // check various edge cases
 733   if ((int)m <= 1) {
 734     assert((int)m >= 0, "oob");
 735     if (m != 0)  add_req(n);
 736     return;
 737   }
 738 
 739   // Look to see if I can move precedence down one without reallocating
 740   if( (_cnt+m) > _max || _in[_max-m] )
 741     grow( _max+m );
 742 
 743   // Find a precedence edge to move
 744   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 745     uint i;
 746     for( i=_cnt; i<_max; i++ )
 747       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 748         break;                  // There must be one, since we grew the array
 749     // Slide all the precs over by m positions (assume #prec << m).
 750     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 751   }
 752 
 753   // Stuff over the old prec edges
 754   for(uint i=0; i<m; i++ ) {
 755     _in[_cnt++] = n;
 756   }
 757 
 758   // Insert multiple out edges on the node.
 759   if (n != NULL && !n->is_top()) {
 760     for(uint i=0; i<m; i++ ) {
 761       n->add_out((Node *)this);
 762     }
 763   }
 764 }
 765 
 766 //------------------------------del_req----------------------------------------
 767 // Delete the required edge and compact the edge array
 768 void Node::del_req( uint idx ) {
 769   assert( idx < _cnt, "oob");
 770   assert( !VerifyHashTableKeys || _hash_lock == 0,
 771           "remove node from hash table before modifying it");
 772   // First remove corresponding def-use edge
 773   Node *n = in(idx);
 774   if (n != NULL) n->del_out((Node *)this);
 775   _in[idx] = in(--_cnt); // Compact the array
 776   // Avoid spec violation: Gap in prec edges.
 777   close_prec_gap_at(_cnt);
 778   Compile::current()->record_modified_node(this);
 779 }
 780 
 781 //------------------------------del_req_ordered--------------------------------
 782 // Delete the required edge and compact the edge array with preserved order
 783 void Node::del_req_ordered( uint idx ) {
 784   assert( idx < _cnt, "oob");
 785   assert( !VerifyHashTableKeys || _hash_lock == 0,
 786           "remove node from hash table before modifying it");
 787   // First remove corresponding def-use edge
 788   Node *n = in(idx);
 789   if (n != NULL) n->del_out((Node *)this);
 790   if (idx < --_cnt) {    // Not last edge ?
 791     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
 792   }
 793   // Avoid spec violation: Gap in prec edges.
 794   close_prec_gap_at(_cnt);
 795   Compile::current()->record_modified_node(this);
 796 }
 797 
 798 //------------------------------ins_req----------------------------------------
 799 // Insert a new required input at the end
 800 void Node::ins_req( uint idx, Node *n ) {
 801   assert( is_not_dead(n), "can not use dead node");
 802   add_req(NULL);                // Make space
 803   assert( idx < _max, "Must have allocated enough space");
 804   // Slide over
 805   if(_cnt-idx-1 > 0) {
 806     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 807   }
 808   _in[idx] = n;                            // Stuff over old required edge
 809   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 810 }
 811 
 812 //-----------------------------find_edge---------------------------------------
 813 int Node::find_edge(Node* n) {
 814   for (uint i = 0; i < len(); i++) {
 815     if (_in[i] == n)  return i;
 816   }
 817   return -1;
 818 }
 819 
 820 //----------------------------replace_edge-------------------------------------
 821 int Node::replace_edge(Node* old, Node* neww) {
 822   if (old == neww)  return 0;  // nothing to do
 823   uint nrep = 0;
 824   for (uint i = 0; i < len(); i++) {
 825     if (in(i) == old) {
 826       if (i < req()) {
 827         set_req(i, neww);
 828       } else {
 829         assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
 830         set_prec(i, neww);
 831       }
 832       nrep++;
 833     }
 834   }
 835   return nrep;
 836 }
 837 
 838 /**
 839  * Replace input edges in the range pointing to 'old' node.
 840  */
 841 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
 842   if (old == neww)  return 0;  // nothing to do
 843   uint nrep = 0;
 844   for (int i = start; i < end; i++) {
 845     if (in(i) == old) {
 846       set_req(i, neww);
 847       nrep++;
 848     }
 849   }
 850   return nrep;
 851 }
 852 
 853 //-------------------------disconnect_inputs-----------------------------------
 854 // NULL out all inputs to eliminate incoming Def-Use edges.
 855 // Return the number of edges between 'n' and 'this'
 856 int Node::disconnect_inputs(Node *n, Compile* C) {
 857   int edges_to_n = 0;
 858 
 859   uint cnt = req();
 860   for( uint i = 0; i < cnt; ++i ) {
 861     if( in(i) == 0 ) continue;
 862     if( in(i) == n ) ++edges_to_n;
 863     set_req(i, NULL);
 864   }
 865   // Remove precedence edges if any exist
 866   // Note: Safepoints may have precedence edges, even during parsing
 867   if( (req() != len()) && (in(req()) != NULL) ) {
 868     uint max = len();
 869     for( uint i = 0; i < max; ++i ) {
 870       if( in(i) == 0 ) continue;
 871       if( in(i) == n ) ++edges_to_n;
 872       set_prec(i, NULL);
 873     }
 874   }
 875 
 876   // Node::destruct requires all out edges be deleted first
 877   // debug_only(destruct();)   // no reuse benefit expected
 878   if (edges_to_n == 0) {
 879     C->record_dead_node(_idx);
 880   }
 881   return edges_to_n;
 882 }
 883 
 884 //-----------------------------uncast---------------------------------------
 885 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 886 // Strip away casting.  (It is depth-limited.)
 887 Node* Node::uncast() const {
 888   // Should be inline:
 889   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 890   if (is_ConstraintCast())
 891     return uncast_helper(this);
 892   else
 893     return (Node*) this;
 894 }
 895 
 896 // Find out of current node that matches opcode.
 897 Node* Node::find_out_with(int opcode) {
 898   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 899     Node* use = fast_out(i);
 900     if (use->Opcode() == opcode) {
 901       return use;
 902     }
 903   }
 904   return NULL;
 905 }
 906 
 907 // Return true if the current node has an out that matches opcode.
 908 bool Node::has_out_with(int opcode) {
 909   return (find_out_with(opcode) != NULL);
 910 }
 911 
 912 // Return true if the current node has an out that matches any of the opcodes.
 913 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
 914   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 915       int opcode = fast_out(i)->Opcode();
 916       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
 917         return true;
 918       }
 919   }
 920   return false;
 921 }
 922 
 923 
 924 //---------------------------uncast_helper-------------------------------------
 925 Node* Node::uncast_helper(const Node* p) {
 926 #ifdef ASSERT
 927   uint depth_count = 0;
 928   const Node* orig_p = p;
 929 #endif
 930 
 931   while (true) {
 932 #ifdef ASSERT
 933     if (depth_count >= K) {
 934       orig_p->dump(4);
 935       if (p != orig_p)
 936         p->dump(1);
 937     }
 938     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 939 #endif
 940     if (p == NULL || p->req() != 2) {
 941       break;
 942     } else if (p->is_ConstraintCast()) {
 943       p = p->in(1);
 944     } else {
 945       break;
 946     }
 947   }
 948   return (Node*) p;
 949 }
 950 
 951 //------------------------------add_prec---------------------------------------
 952 // Add a new precedence input.  Precedence inputs are unordered, with
 953 // duplicates removed and NULLs packed down at the end.
 954 void Node::add_prec( Node *n ) {
 955   assert( is_not_dead(n), "can not use dead node");
 956 
 957   // Check for NULL at end
 958   if( _cnt >= _max || in(_max-1) )
 959     grow( _max+1 );
 960 
 961   // Find a precedence edge to move
 962   uint i = _cnt;
 963   while( in(i) != NULL ) {
 964     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
 965     i++;
 966   }
 967   _in[i] = n;                                // Stuff prec edge over NULL
 968   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 969 
 970 #ifdef ASSERT
 971   while ((++i)<_max) { assert(_in[i] == NULL, "spec violation: Gap in prec edges (node %d)", _idx); }
 972 #endif
 973 }
 974 
 975 //------------------------------rm_prec----------------------------------------
 976 // Remove a precedence input.  Precedence inputs are unordered, with
 977 // duplicates removed and NULLs packed down at the end.
 978 void Node::rm_prec( uint j ) {
 979   assert(j < _max, "oob: i=%d, _max=%d", j, _max);
 980   assert(j >= _cnt, "not a precedence edge");
 981   if (_in[j] == NULL) return;   // Avoid spec violation: Gap in prec edges.
 982   _in[j]->del_out((Node *)this);
 983   close_prec_gap_at(j);
 984 }
 985 
 986 //------------------------------size_of----------------------------------------
 987 uint Node::size_of() const { return sizeof(*this); }
 988 
 989 //------------------------------ideal_reg--------------------------------------
 990 uint Node::ideal_reg() const { return 0; }
 991 
 992 //------------------------------jvms-------------------------------------------
 993 JVMState* Node::jvms() const { return NULL; }
 994 
 995 #ifdef ASSERT
 996 //------------------------------jvms-------------------------------------------
 997 bool Node::verify_jvms(const JVMState* using_jvms) const {
 998   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 999     if (jvms == using_jvms)  return true;
1000   }
1001   return false;
1002 }
1003 
1004 //------------------------------init_NodeProperty------------------------------
1005 void Node::init_NodeProperty() {
1006   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
1007   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
1008 }
1009 #endif
1010 
1011 //------------------------------format-----------------------------------------
1012 // Print as assembly
1013 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1014 //------------------------------emit-------------------------------------------
1015 // Emit bytes starting at parameter 'ptr'.
1016 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1017 //------------------------------size-------------------------------------------
1018 // Size of instruction in bytes
1019 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1020 
1021 //------------------------------CFG Construction-------------------------------
1022 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1023 // Goto and Return.
1024 const Node *Node::is_block_proj() const { return 0; }
1025 
1026 // Minimum guaranteed type
1027 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1028 
1029 
1030 //------------------------------raise_bottom_type------------------------------
1031 // Get the worst-case Type output for this Node.
1032 void Node::raise_bottom_type(const Type* new_type) {
1033   if (is_Type()) {
1034     TypeNode *n = this->as_Type();
1035     if (VerifyAliases) {
1036       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1037     }
1038     n->set_type(new_type);
1039   } else if (is_Load()) {
1040     LoadNode *n = this->as_Load();
1041     if (VerifyAliases) {
1042       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1043     }
1044     n->set_type(new_type);
1045   }
1046 }
1047 
1048 //------------------------------Identity---------------------------------------
1049 // Return a node that the given node is equivalent to.
1050 Node* Node::Identity(PhaseGVN* phase) {
1051   return this;                  // Default to no identities
1052 }
1053 
1054 //------------------------------Value------------------------------------------
1055 // Compute a new Type for a node using the Type of the inputs.
1056 const Type* Node::Value(PhaseGVN* phase) const {
1057   return bottom_type();         // Default to worst-case Type
1058 }
1059 
1060 //------------------------------Ideal------------------------------------------
1061 //
1062 // 'Idealize' the graph rooted at this Node.
1063 //
1064 // In order to be efficient and flexible there are some subtle invariants
1065 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1066 // these invariants, although its too slow to have on by default.  If you are
1067 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1068 //
1069 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1070 // pointer.  If ANY change is made, it must return the root of the reshaped
1071 // graph - even if the root is the same Node.  Example: swapping the inputs
1072 // to an AddINode gives the same answer and same root, but you still have to
1073 // return the 'this' pointer instead of NULL.
1074 //
1075 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1076 // Identity call to return an old Node; basically if Identity can find
1077 // another Node have the Ideal call make no change and return NULL.
1078 // Example: AddINode::Ideal must check for add of zero; in this case it
1079 // returns NULL instead of doing any graph reshaping.
1080 //
1081 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1082 // sharing there may be other users of the old Nodes relying on their current
1083 // semantics.  Modifying them will break the other users.
1084 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1085 // "X+3" unchanged in case it is shared.
1086 //
1087 // If you modify the 'this' pointer's inputs, you should use
1088 // 'set_req'.  If you are making a new Node (either as the new root or
1089 // some new internal piece) you may use 'init_req' to set the initial
1090 // value.  You can make a new Node with either 'new' or 'clone'.  In
1091 // either case, def-use info is correctly maintained.
1092 //
1093 // Example: reshape "(X+3)+4" into "X+7":
1094 //    set_req(1, in(1)->in(1));
1095 //    set_req(2, phase->intcon(7));
1096 //    return this;
1097 // Example: reshape "X*4" into "X<<2"
1098 //    return new LShiftINode(in(1), phase->intcon(2));
1099 //
1100 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1101 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1102 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1103 //    return new AddINode(shift, in(1));
1104 //
1105 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1106 // These forms are faster than 'phase->transform(new ConNode())' and Do
1107 // The Right Thing with def-use info.
1108 //
1109 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1110 // graph uses the 'this' Node it must be the root.  If you want a Node with
1111 // the same Opcode as the 'this' pointer use 'clone'.
1112 //
1113 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1114   return NULL;                  // Default to being Ideal already
1115 }
1116 
1117 // Some nodes have specific Ideal subgraph transformations only if they are
1118 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1119 // for the transformations to happen.
1120 bool Node::has_special_unique_user() const {
1121   assert(outcnt() == 1, "match only for unique out");
1122   Node* n = unique_out();
1123   int op  = Opcode();
1124   if (this->is_Store()) {
1125     // Condition for back-to-back stores folding.
1126     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1127   } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) {
1128     // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input
1129     return n->Opcode() == Op_MemBarAcquire;
1130   } else if (op == Op_AddL) {
1131     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1132     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1133   } else if (op == Op_SubI || op == Op_SubL) {
1134     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1135     return n->Opcode() == op && n->in(2) == this;
1136   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1137     // See IfProjNode::Identity()
1138     return true;
1139   }
1140   return false;
1141 };
1142 
1143 //--------------------------find_exact_control---------------------------------
1144 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1145 Node* Node::find_exact_control(Node* ctrl) {
1146   if (ctrl == NULL && this->is_Region())
1147     ctrl = this->as_Region()->is_copy();
1148 
1149   if (ctrl != NULL && ctrl->is_CatchProj()) {
1150     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1151       ctrl = ctrl->in(0);
1152     if (ctrl != NULL && !ctrl->is_top())
1153       ctrl = ctrl->in(0);
1154   }
1155 
1156   if (ctrl != NULL && ctrl->is_Proj())
1157     ctrl = ctrl->in(0);
1158 
1159   return ctrl;
1160 }
1161 
1162 //--------------------------dominates------------------------------------------
1163 // Helper function for MemNode::all_controls_dominate().
1164 // Check if 'this' control node dominates or equal to 'sub' control node.
1165 // We already know that if any path back to Root or Start reaches 'this',
1166 // then all paths so, so this is a simple search for one example,
1167 // not an exhaustive search for a counterexample.
1168 bool Node::dominates(Node* sub, Node_List &nlist) {
1169   assert(this->is_CFG(), "expecting control");
1170   assert(sub != NULL && sub->is_CFG(), "expecting control");
1171 
1172   // detect dead cycle without regions
1173   int iterations_without_region_limit = DominatorSearchLimit;
1174 
1175   Node* orig_sub = sub;
1176   Node* dom      = this;
1177   bool  met_dom  = false;
1178   nlist.clear();
1179 
1180   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1181   // After seeing 'dom', continue up to Root or Start.
1182   // If we hit a region (backward split point), it may be a loop head.
1183   // Keep going through one of the region's inputs.  If we reach the
1184   // same region again, go through a different input.  Eventually we
1185   // will either exit through the loop head, or give up.
1186   // (If we get confused, break out and return a conservative 'false'.)
1187   while (sub != NULL) {
1188     if (sub->is_top())  break; // Conservative answer for dead code.
1189     if (sub == dom) {
1190       if (nlist.size() == 0) {
1191         // No Region nodes except loops were visited before and the EntryControl
1192         // path was taken for loops: it did not walk in a cycle.
1193         return true;
1194       } else if (met_dom) {
1195         break;          // already met before: walk in a cycle
1196       } else {
1197         // Region nodes were visited. Continue walk up to Start or Root
1198         // to make sure that it did not walk in a cycle.
1199         met_dom = true; // first time meet
1200         iterations_without_region_limit = DominatorSearchLimit; // Reset
1201      }
1202     }
1203     if (sub->is_Start() || sub->is_Root()) {
1204       // Success if we met 'dom' along a path to Start or Root.
1205       // We assume there are no alternative paths that avoid 'dom'.
1206       // (This assumption is up to the caller to ensure!)
1207       return met_dom;
1208     }
1209     Node* up = sub->in(0);
1210     // Normalize simple pass-through regions and projections:
1211     up = sub->find_exact_control(up);
1212     // If sub == up, we found a self-loop.  Try to push past it.
1213     if (sub == up && sub->is_Loop()) {
1214       // Take loop entry path on the way up to 'dom'.
1215       up = sub->in(1); // in(LoopNode::EntryControl);
1216     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1217       // Always take in(1) path on the way up to 'dom' for clone regions
1218       // (with only one input) or regions which merge > 2 paths
1219       // (usually used to merge fast/slow paths).
1220       up = sub->in(1);
1221     } else if (sub == up && sub->is_Region()) {
1222       // Try both paths for Regions with 2 input paths (it may be a loop head).
1223       // It could give conservative 'false' answer without information
1224       // which region's input is the entry path.
1225       iterations_without_region_limit = DominatorSearchLimit; // Reset
1226 
1227       bool region_was_visited_before = false;
1228       // Was this Region node visited before?
1229       // If so, we have reached it because we accidentally took a
1230       // loop-back edge from 'sub' back into the body of the loop,
1231       // and worked our way up again to the loop header 'sub'.
1232       // So, take the first unexplored path on the way up to 'dom'.
1233       for (int j = nlist.size() - 1; j >= 0; j--) {
1234         intptr_t ni = (intptr_t)nlist.at(j);
1235         Node* visited = (Node*)(ni & ~1);
1236         bool  visited_twice_already = ((ni & 1) != 0);
1237         if (visited == sub) {
1238           if (visited_twice_already) {
1239             // Visited 2 paths, but still stuck in loop body.  Give up.
1240             return false;
1241           }
1242           // The Region node was visited before only once.
1243           // (We will repush with the low bit set, below.)
1244           nlist.remove(j);
1245           // We will find a new edge and re-insert.
1246           region_was_visited_before = true;
1247           break;
1248         }
1249       }
1250 
1251       // Find an incoming edge which has not been seen yet; walk through it.
1252       assert(up == sub, "");
1253       uint skip = region_was_visited_before ? 1 : 0;
1254       for (uint i = 1; i < sub->req(); i++) {
1255         Node* in = sub->in(i);
1256         if (in != NULL && !in->is_top() && in != sub) {
1257           if (skip == 0) {
1258             up = in;
1259             break;
1260           }
1261           --skip;               // skip this nontrivial input
1262         }
1263       }
1264 
1265       // Set 0 bit to indicate that both paths were taken.
1266       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1267     }
1268 
1269     if (up == sub) {
1270       break;    // some kind of tight cycle
1271     }
1272     if (up == orig_sub && met_dom) {
1273       // returned back after visiting 'dom'
1274       break;    // some kind of cycle
1275     }
1276     if (--iterations_without_region_limit < 0) {
1277       break;    // dead cycle
1278     }
1279     sub = up;
1280   }
1281 
1282   // Did not meet Root or Start node in pred. chain.
1283   // Conservative answer for dead code.
1284   return false;
1285 }
1286 
1287 //------------------------------remove_dead_region-----------------------------
1288 // This control node is dead.  Follow the subgraph below it making everything
1289 // using it dead as well.  This will happen normally via the usual IterGVN
1290 // worklist but this call is more efficient.  Do not update use-def info
1291 // inside the dead region, just at the borders.
1292 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1293   // Con's are a popular node to re-hit in the hash table again.
1294   if( dead->is_Con() ) return;
1295 
1296   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1297   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1298   Node_List  nstack(Thread::current()->resource_area());
1299 
1300   Node *top = igvn->C->top();
1301   nstack.push(dead);
1302   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1303 
1304   while (nstack.size() > 0) {
1305     dead = nstack.pop();
1306     if (dead->outcnt() > 0) {
1307       // Keep dead node on stack until all uses are processed.
1308       nstack.push(dead);
1309       // For all Users of the Dead...    ;-)
1310       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1311         Node* use = dead->last_out(k);
1312         igvn->hash_delete(use);       // Yank from hash table prior to mod
1313         if (use->in(0) == dead) {     // Found another dead node
1314           assert (!use->is_Con(), "Control for Con node should be Root node.");
1315           use->set_req(0, top);       // Cut dead edge to prevent processing
1316           nstack.push(use);           // the dead node again.
1317         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1318                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1319                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1320           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1321           use->set_req(0, top);       // Cut self edge
1322           nstack.push(use);
1323         } else {                      // Else found a not-dead user
1324           // Dead if all inputs are top or null
1325           bool dead_use = !use->is_Root(); // Keep empty graph alive
1326           for (uint j = 1; j < use->req(); j++) {
1327             Node* in = use->in(j);
1328             if (in == dead) {         // Turn all dead inputs into TOP
1329               use->set_req(j, top);
1330             } else if (in != NULL && !in->is_top()) {
1331               dead_use = false;
1332             }
1333           }
1334           if (dead_use) {
1335             if (use->is_Region()) {
1336               use->set_req(0, top);   // Cut self edge
1337             }
1338             nstack.push(use);
1339           } else {
1340             igvn->_worklist.push(use);
1341           }
1342         }
1343         // Refresh the iterator, since any number of kills might have happened.
1344         k = dead->last_outs(kmin);
1345       }
1346     } else { // (dead->outcnt() == 0)
1347       // Done with outputs.
1348       igvn->hash_delete(dead);
1349       igvn->_worklist.remove(dead);
1350       igvn->C->remove_modified_node(dead);
1351       igvn->set_type(dead, Type::TOP);
1352       if (dead->is_macro()) {
1353         igvn->C->remove_macro_node(dead);
1354       }
1355       if (dead->is_expensive()) {
1356         igvn->C->remove_expensive_node(dead);
1357       }
1358       CastIINode* cast = dead->isa_CastII();
1359       if (cast != NULL && cast->has_range_check()) {
1360         igvn->C->remove_range_check_cast(cast);
1361       }
1362       if (dead->is_LoadBarrier()) {
1363         igvn->C->remove_load_barrier_node(dead->as_LoadBarrier());
1364       }
1365       igvn->C->record_dead_node(dead->_idx);
1366       // Kill all inputs to the dead guy
1367       for (uint i=0; i < dead->req(); i++) {
1368         Node *n = dead->in(i);      // Get input to dead guy
1369         if (n != NULL && !n->is_top()) { // Input is valid?
1370           dead->set_req(i, top);    // Smash input away
1371           if (n->outcnt() == 0) {   // Input also goes dead?
1372             if (!n->is_Con())
1373               nstack.push(n);       // Clear it out as well
1374           } else if (n->outcnt() == 1 &&
1375                      n->has_special_unique_user()) {
1376             igvn->add_users_to_worklist( n );
1377           } else if (n->outcnt() <= 2 && n->is_Store()) {
1378             // Push store's uses on worklist to enable folding optimization for
1379             // store/store and store/load to the same address.
1380             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1381             // and remove_globally_dead_node().
1382             igvn->add_users_to_worklist( n );
1383           } else if (n->is_LoadBarrier() && !n->as_LoadBarrier()->has_true_uses()) {
1384             igvn->_worklist.push(n);
1385           }
1386         }
1387       }
1388     } // (dead->outcnt() == 0)
1389   }   // while (nstack.size() > 0) for outputs
1390   return;
1391 }
1392 
1393 //------------------------------remove_dead_region-----------------------------
1394 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1395   Node *n = in(0);
1396   if( !n ) return false;
1397   // Lost control into this guy?  I.e., it became unreachable?
1398   // Aggressively kill all unreachable code.
1399   if (can_reshape && n->is_top()) {
1400     kill_dead_code(this, phase->is_IterGVN());
1401     return false; // Node is dead.
1402   }
1403 
1404   if( n->is_Region() && n->as_Region()->is_copy() ) {
1405     Node *m = n->nonnull_req();
1406     set_req(0, m);
1407     return true;
1408   }
1409   return false;
1410 }
1411 
1412 //------------------------------hash-------------------------------------------
1413 // Hash function over Nodes.
1414 uint Node::hash() const {
1415   uint sum = 0;
1416   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1417     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1418   return (sum>>2) + _cnt + Opcode();
1419 }
1420 
1421 //------------------------------cmp--------------------------------------------
1422 // Compare special parts of simple Nodes
1423 uint Node::cmp( const Node &n ) const {
1424   return 1;                     // Must be same
1425 }
1426 
1427 //------------------------------rematerialize-----------------------------------
1428 // Should we clone rather than spill this instruction?
1429 bool Node::rematerialize() const {
1430   if ( is_Mach() )
1431     return this->as_Mach()->rematerialize();
1432   else
1433     return (_flags & Flag_rematerialize) != 0;
1434 }
1435 
1436 //------------------------------needs_anti_dependence_check---------------------
1437 // Nodes which use memory without consuming it, hence need antidependences.
1438 bool Node::needs_anti_dependence_check() const {
1439   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1440     return false;
1441   else
1442     return in(1)->bottom_type()->has_memory();
1443 }
1444 
1445 
1446 // Get an integer constant from a ConNode (or CastIINode).
1447 // Return a default value if there is no apparent constant here.
1448 const TypeInt* Node::find_int_type() const {
1449   if (this->is_Type()) {
1450     return this->as_Type()->type()->isa_int();
1451   } else if (this->is_Con()) {
1452     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1453     return this->bottom_type()->isa_int();
1454   }
1455   return NULL;
1456 }
1457 
1458 // Get a pointer constant from a ConstNode.
1459 // Returns the constant if it is a pointer ConstNode
1460 intptr_t Node::get_ptr() const {
1461   assert( Opcode() == Op_ConP, "" );
1462   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1463 }
1464 
1465 // Get a narrow oop constant from a ConNNode.
1466 intptr_t Node::get_narrowcon() const {
1467   assert( Opcode() == Op_ConN, "" );
1468   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1469 }
1470 
1471 // Get a long constant from a ConNode.
1472 // Return a default value if there is no apparent constant here.
1473 const TypeLong* Node::find_long_type() const {
1474   if (this->is_Type()) {
1475     return this->as_Type()->type()->isa_long();
1476   } else if (this->is_Con()) {
1477     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1478     return this->bottom_type()->isa_long();
1479   }
1480   return NULL;
1481 }
1482 
1483 
1484 /**
1485  * Return a ptr type for nodes which should have it.
1486  */
1487 const TypePtr* Node::get_ptr_type() const {
1488   const TypePtr* tp = this->bottom_type()->make_ptr();
1489 #ifdef ASSERT
1490   if (tp == NULL) {
1491     this->dump(1);
1492     assert((tp != NULL), "unexpected node type");
1493   }
1494 #endif
1495   return tp;
1496 }
1497 
1498 // Get a double constant from a ConstNode.
1499 // Returns the constant if it is a double ConstNode
1500 jdouble Node::getd() const {
1501   assert( Opcode() == Op_ConD, "" );
1502   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1503 }
1504 
1505 // Get a float constant from a ConstNode.
1506 // Returns the constant if it is a float ConstNode
1507 jfloat Node::getf() const {
1508   assert( Opcode() == Op_ConF, "" );
1509   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1510 }
1511 
1512 #ifndef PRODUCT
1513 
1514 //------------------------------find------------------------------------------
1515 // Find a neighbor of this Node with the given _idx
1516 // If idx is negative, find its absolute value, following both _in and _out.
1517 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1518                         VectorSet* old_space, VectorSet* new_space ) {
1519   int node_idx = (idx >= 0) ? idx : -idx;
1520   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1521   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1522   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1523   if( v->test(n->_idx) ) return;
1524   if( (int)n->_idx == node_idx
1525       debug_only(|| n->debug_idx() == node_idx) ) {
1526     if (result != NULL)
1527       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1528                  (uintptr_t)result, (uintptr_t)n, node_idx);
1529     result = n;
1530   }
1531   v->set(n->_idx);
1532   for( uint i=0; i<n->len(); i++ ) {
1533     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1534     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1535   }
1536   // Search along forward edges also:
1537   if (idx < 0 && !only_ctrl) {
1538     for( uint j=0; j<n->outcnt(); j++ ) {
1539       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1540     }
1541   }
1542 #ifdef ASSERT
1543   // Search along debug_orig edges last, checking for cycles
1544   Node* orig = n->debug_orig();
1545   if (orig != NULL) {
1546     do {
1547       if (NotANode(orig))  break;
1548       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1549       orig = orig->debug_orig();
1550     } while (orig != NULL && orig != n->debug_orig());
1551   }
1552 #endif //ASSERT
1553 }
1554 
1555 // call this from debugger:
1556 Node* find_node(Node* n, int idx) {
1557   return n->find(idx);
1558 }
1559 
1560 //------------------------------find-------------------------------------------
1561 Node* Node::find(int idx) const {
1562   ResourceArea *area = Thread::current()->resource_area();
1563   VectorSet old_space(area), new_space(area);
1564   Node* result = NULL;
1565   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1566   return result;
1567 }
1568 
1569 //------------------------------find_ctrl--------------------------------------
1570 // Find an ancestor to this node in the control history with given _idx
1571 Node* Node::find_ctrl(int idx) const {
1572   ResourceArea *area = Thread::current()->resource_area();
1573   VectorSet old_space(area), new_space(area);
1574   Node* result = NULL;
1575   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1576   return result;
1577 }
1578 #endif
1579 
1580 
1581 
1582 #ifndef PRODUCT
1583 
1584 // -----------------------------Name-------------------------------------------
1585 extern const char *NodeClassNames[];
1586 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1587 
1588 static bool is_disconnected(const Node* n) {
1589   for (uint i = 0; i < n->req(); i++) {
1590     if (n->in(i) != NULL)  return false;
1591   }
1592   return true;
1593 }
1594 
1595 #ifdef ASSERT
1596 static void dump_orig(Node* orig, outputStream *st) {
1597   Compile* C = Compile::current();
1598   if (NotANode(orig)) orig = NULL;
1599   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1600   if (orig == NULL) return;
1601   st->print(" !orig=");
1602   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1603   if (NotANode(fast)) fast = NULL;
1604   while (orig != NULL) {
1605     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1606     if (discon) st->print("[");
1607     if (!Compile::current()->node_arena()->contains(orig))
1608       st->print("o");
1609     st->print("%d", orig->_idx);
1610     if (discon) st->print("]");
1611     orig = orig->debug_orig();
1612     if (NotANode(orig)) orig = NULL;
1613     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1614     if (orig != NULL) st->print(",");
1615     if (fast != NULL) {
1616       // Step fast twice for each single step of orig:
1617       fast = fast->debug_orig();
1618       if (NotANode(fast)) fast = NULL;
1619       if (fast != NULL && fast != orig) {
1620         fast = fast->debug_orig();
1621         if (NotANode(fast)) fast = NULL;
1622       }
1623       if (fast == orig) {
1624         st->print("...");
1625         break;
1626       }
1627     }
1628   }
1629 }
1630 
1631 void Node::set_debug_orig(Node* orig) {
1632   _debug_orig = orig;
1633   if (BreakAtNode == 0)  return;
1634   if (NotANode(orig))  orig = NULL;
1635   int trip = 10;
1636   while (orig != NULL) {
1637     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1638       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1639                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1640       BREAKPOINT;
1641     }
1642     orig = orig->debug_orig();
1643     if (NotANode(orig))  orig = NULL;
1644     if (trip-- <= 0)  break;
1645   }
1646 }
1647 #endif //ASSERT
1648 
1649 //------------------------------dump------------------------------------------
1650 // Dump a Node
1651 void Node::dump(const char* suffix, bool mark, outputStream *st) const {
1652   Compile* C = Compile::current();
1653   bool is_new = C->node_arena()->contains(this);
1654   C->_in_dump_cnt++;
1655   st->print("%c%d%s\t%s\t=== ", is_new ? ' ' : 'o', _idx, mark ? " >" : "", Name());
1656 
1657   // Dump the required and precedence inputs
1658   dump_req(st);
1659   dump_prec(st);
1660   // Dump the outputs
1661   dump_out(st);
1662 
1663   if (is_disconnected(this)) {
1664 #ifdef ASSERT
1665     st->print("  [%d]",debug_idx());
1666     dump_orig(debug_orig(), st);
1667 #endif
1668     st->cr();
1669     C->_in_dump_cnt--;
1670     return;                     // don't process dead nodes
1671   }
1672 
1673   if (C->clone_map().value(_idx) != 0) {
1674     C->clone_map().dump(_idx);
1675   }
1676   // Dump node-specific info
1677   dump_spec(st);
1678 #ifdef ASSERT
1679   // Dump the non-reset _debug_idx
1680   if (Verbose && WizardMode) {
1681     st->print("  [%d]",debug_idx());
1682   }
1683 #endif
1684 
1685   const Type *t = bottom_type();
1686 
1687   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1688     const TypeInstPtr  *toop = t->isa_instptr();
1689     const TypeKlassPtr *tkls = t->isa_klassptr();
1690     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1691     if (klass && klass->is_loaded() && klass->is_interface()) {
1692       st->print("  Interface:");
1693     } else if (toop) {
1694       st->print("  Oop:");
1695     } else if (tkls) {
1696       st->print("  Klass:");
1697     }
1698     t->dump_on(st);
1699   } else if (t == Type::MEMORY) {
1700     st->print("  Memory:");
1701     MemNode::dump_adr_type(this, adr_type(), st);
1702   } else if (Verbose || WizardMode) {
1703     st->print("  Type:");
1704     if (t) {
1705       t->dump_on(st);
1706     } else {
1707       st->print("no type");
1708     }
1709   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1710     // Dump MachSpillcopy vector type.
1711     t->dump_on(st);
1712   }
1713   if (is_new) {
1714     debug_only(dump_orig(debug_orig(), st));
1715     Node_Notes* nn = C->node_notes_at(_idx);
1716     if (nn != NULL && !nn->is_clear()) {
1717       if (nn->jvms() != NULL) {
1718         st->print(" !jvms:");
1719         nn->jvms()->dump_spec(st);
1720       }
1721     }
1722   }
1723   if (suffix) st->print("%s", suffix);
1724   C->_in_dump_cnt--;
1725 }
1726 
1727 //------------------------------dump_req--------------------------------------
1728 void Node::dump_req(outputStream *st) const {
1729   // Dump the required input edges
1730   for (uint i = 0; i < req(); i++) {    // For all required inputs
1731     Node* d = in(i);
1732     if (d == NULL) {
1733       st->print("_ ");
1734     } else if (NotANode(d)) {
1735       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1736     } else {
1737       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1738     }
1739   }
1740 }
1741 
1742 
1743 //------------------------------dump_prec-------------------------------------
1744 void Node::dump_prec(outputStream *st) const {
1745   // Dump the precedence edges
1746   int any_prec = 0;
1747   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1748     Node* p = in(i);
1749     if (p != NULL) {
1750       if (!any_prec++) st->print(" |");
1751       if (NotANode(p)) { st->print("NotANode "); continue; }
1752       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1753     }
1754   }
1755 }
1756 
1757 //------------------------------dump_out--------------------------------------
1758 void Node::dump_out(outputStream *st) const {
1759   // Delimit the output edges
1760   st->print(" [[");
1761   // Dump the output edges
1762   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1763     Node* u = _out[i];
1764     if (u == NULL) {
1765       st->print("_ ");
1766     } else if (NotANode(u)) {
1767       st->print("NotANode ");
1768     } else {
1769       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1770     }
1771   }
1772   st->print("]] ");
1773 }
1774 
1775 //----------------------------collect_nodes_i----------------------------------
1776 // Collects nodes from an Ideal graph, starting from a given start node and
1777 // moving in a given direction until a certain depth (distance from the start
1778 // node) is reached. Duplicates are ignored.
1779 // Arguments:
1780 //   nstack:        the nodes are collected into this array.
1781 //   start:         the node at which to start collecting.
1782 //   direction:     if this is a positive number, collect input nodes; if it is
1783 //                  a negative number, collect output nodes.
1784 //   depth:         collect nodes up to this distance from the start node.
1785 //   include_start: whether to include the start node in the result collection.
1786 //   only_ctrl:     whether to regard control edges only during traversal.
1787 //   only_data:     whether to regard data edges only during traversal.
1788 static void collect_nodes_i(GrowableArray<Node*> *nstack, const Node* start, int direction, uint depth, bool include_start, bool only_ctrl, bool only_data) {
1789   Node* s = (Node*) start; // remove const
1790   nstack->append(s);
1791   int begin = 0;
1792   int end = 0;
1793   for(uint i = 0; i < depth; i++) {
1794     end = nstack->length();
1795     for(int j = begin; j < end; j++) {
1796       Node* tp  = nstack->at(j);
1797       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1798       for(uint k = 0; k < limit; k++) {
1799         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1800 
1801         if (NotANode(n))  continue;
1802         // do not recurse through top or the root (would reach unrelated stuff)
1803         if (n->is_Root() || n->is_top()) continue;
1804         if (only_ctrl && !n->is_CFG()) continue;
1805         if (only_data && n->is_CFG()) continue;
1806 
1807         bool on_stack = nstack->contains(n);
1808         if (!on_stack) {
1809           nstack->append(n);
1810         }
1811       }
1812     }
1813     begin = end;
1814   }
1815   if (!include_start) {
1816     nstack->remove(s);
1817   }
1818 }
1819 
1820 //------------------------------dump_nodes-------------------------------------
1821 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1822   if (NotANode(start)) return;
1823 
1824   GrowableArray <Node *> nstack(Compile::current()->live_nodes());
1825   collect_nodes_i(&nstack, start, d, (uint) ABS(d), true, only_ctrl, false);
1826 
1827   int end = nstack.length();
1828   if (d > 0) {
1829     for(int j = end-1; j >= 0; j--) {
1830       nstack.at(j)->dump();
1831     }
1832   } else {
1833     for(int j = 0; j < end; j++) {
1834       nstack.at(j)->dump();
1835     }
1836   }
1837 }
1838 
1839 //------------------------------dump-------------------------------------------
1840 void Node::dump(int d) const {
1841   dump_nodes(this, d, false);
1842 }
1843 
1844 //------------------------------dump_ctrl--------------------------------------
1845 // Dump a Node's control history to depth
1846 void Node::dump_ctrl(int d) const {
1847   dump_nodes(this, d, true);
1848 }
1849 
1850 //-----------------------------dump_compact------------------------------------
1851 void Node::dump_comp() const {
1852   this->dump_comp("\n");
1853 }
1854 
1855 //-----------------------------dump_compact------------------------------------
1856 // Dump a Node in compact representation, i.e., just print its name and index.
1857 // Nodes can specify additional specifics to print in compact representation by
1858 // implementing dump_compact_spec.
1859 void Node::dump_comp(const char* suffix, outputStream *st) const {
1860   Compile* C = Compile::current();
1861   C->_in_dump_cnt++;
1862   st->print("%s(%d)", Name(), _idx);
1863   this->dump_compact_spec(st);
1864   if (suffix) {
1865     st->print("%s", suffix);
1866   }
1867   C->_in_dump_cnt--;
1868 }
1869 
1870 //----------------------------dump_related-------------------------------------
1871 // Dump a Node's related nodes - the notion of "related" depends on the Node at
1872 // hand and is determined by the implementation of the virtual method rel.
1873 void Node::dump_related() const {
1874   Compile* C = Compile::current();
1875   GrowableArray <Node *> in_rel(C->unique());
1876   GrowableArray <Node *> out_rel(C->unique());
1877   this->related(&in_rel, &out_rel, false);
1878   for (int i = in_rel.length() - 1; i >= 0; i--) {
1879     in_rel.at(i)->dump();
1880   }
1881   this->dump("\n", true);
1882   for (int i = 0; i < out_rel.length(); i++) {
1883     out_rel.at(i)->dump();
1884   }
1885 }
1886 
1887 //----------------------------dump_related-------------------------------------
1888 // Dump a Node's related nodes up to a given depth (distance from the start
1889 // node).
1890 // Arguments:
1891 //   d_in:  depth for input nodes.
1892 //   d_out: depth for output nodes (note: this also is a positive number).
1893 void Node::dump_related(uint d_in, uint d_out) const {
1894   Compile* C = Compile::current();
1895   GrowableArray <Node *> in_rel(C->unique());
1896   GrowableArray <Node *> out_rel(C->unique());
1897 
1898   // call collect_nodes_i directly
1899   collect_nodes_i(&in_rel, this, 1, d_in, false, false, false);
1900   collect_nodes_i(&out_rel, this, -1, d_out, false, false, false);
1901 
1902   for (int i = in_rel.length() - 1; i >= 0; i--) {
1903     in_rel.at(i)->dump();
1904   }
1905   this->dump("\n", true);
1906   for (int i = 0; i < out_rel.length(); i++) {
1907     out_rel.at(i)->dump();
1908   }
1909 }
1910 
1911 //------------------------dump_related_compact---------------------------------
1912 // Dump a Node's related nodes in compact representation. The notion of
1913 // "related" depends on the Node at hand and is determined by the implementation
1914 // of the virtual method rel.
1915 void Node::dump_related_compact() const {
1916   Compile* C = Compile::current();
1917   GrowableArray <Node *> in_rel(C->unique());
1918   GrowableArray <Node *> out_rel(C->unique());
1919   this->related(&in_rel, &out_rel, true);
1920   int n_in = in_rel.length();
1921   int n_out = out_rel.length();
1922 
1923   this->dump_comp(n_in == 0 ? "\n" : "  ");
1924   for (int i = 0; i < n_in; i++) {
1925     in_rel.at(i)->dump_comp(i == n_in - 1 ? "\n" : "  ");
1926   }
1927   for (int i = 0; i < n_out; i++) {
1928     out_rel.at(i)->dump_comp(i == n_out - 1 ? "\n" : "  ");
1929   }
1930 }
1931 
1932 //------------------------------related----------------------------------------
1933 // Collect a Node's related nodes. The default behaviour just collects the
1934 // inputs and outputs at depth 1, including both control and data flow edges,
1935 // regardless of whether the presentation is compact or not. For data nodes,
1936 // the default is to collect all data inputs (till level 1 if compact), and
1937 // outputs till level 1.
1938 void Node::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1939   if (this->is_CFG()) {
1940     collect_nodes_i(in_rel, this, 1, 1, false, false, false);
1941     collect_nodes_i(out_rel, this, -1, 1, false, false, false);
1942   } else {
1943     if (compact) {
1944       this->collect_nodes(in_rel, 1, false, true);
1945     } else {
1946       this->collect_nodes_in_all_data(in_rel, false);
1947     }
1948     this->collect_nodes(out_rel, -1, false, false);
1949   }
1950 }
1951 
1952 //---------------------------collect_nodes-------------------------------------
1953 // An entry point to the low-level node collection facility, to start from a
1954 // given node in the graph. The start node is by default not included in the
1955 // result.
1956 // Arguments:
1957 //   ns:   collect the nodes into this data structure.
1958 //   d:    the depth (distance from start node) to which nodes should be
1959 //         collected. A value >0 indicates input nodes, a value <0, output
1960 //         nodes.
1961 //   ctrl: include only control nodes.
1962 //   data: include only data nodes.
1963 void Node::collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const {
1964   if (ctrl && data) {
1965     // ignore nonsensical combination
1966     return;
1967   }
1968   collect_nodes_i(ns, this, d, (uint) ABS(d), false, ctrl, data);
1969 }
1970 
1971 //--------------------------collect_nodes_in-----------------------------------
1972 static void collect_nodes_in(Node* start, GrowableArray<Node*> *ns, bool primary_is_data, bool collect_secondary) {
1973   // The maximum depth is determined using a BFS that visits all primary (data
1974   // or control) inputs and increments the depth at each level.
1975   uint d_in = 0;
1976   GrowableArray<Node*> nodes(Compile::current()->unique());
1977   nodes.push(start);
1978   int nodes_at_current_level = 1;
1979   int n_idx = 0;
1980   while (nodes_at_current_level > 0) {
1981     // Add all primary inputs reachable from the current level to the list, and
1982     // increase the depth if there were any.
1983     int nodes_at_next_level = 0;
1984     bool nodes_added = false;
1985     while (nodes_at_current_level > 0) {
1986       nodes_at_current_level--;
1987       Node* current = nodes.at(n_idx++);
1988       for (uint i = 0; i < current->len(); i++) {
1989         Node* n = current->in(i);
1990         if (NotANode(n)) {
1991           continue;
1992         }
1993         if ((primary_is_data && n->is_CFG()) || (!primary_is_data && !n->is_CFG())) {
1994           continue;
1995         }
1996         if (!nodes.contains(n)) {
1997           nodes.push(n);
1998           nodes_added = true;
1999           nodes_at_next_level++;
2000         }
2001       }
2002     }
2003     if (nodes_added) {
2004       d_in++;
2005     }
2006     nodes_at_current_level = nodes_at_next_level;
2007   }
2008   start->collect_nodes(ns, d_in, !primary_is_data, primary_is_data);
2009   if (collect_secondary) {
2010     // Now, iterate over the secondary nodes in ns and add the respective
2011     // boundary reachable from them.
2012     GrowableArray<Node*> sns(Compile::current()->unique());
2013     for (GrowableArrayIterator<Node*> it = ns->begin(); it != ns->end(); ++it) {
2014       Node* n = *it;
2015       n->collect_nodes(&sns, 1, primary_is_data, !primary_is_data);
2016       for (GrowableArrayIterator<Node*> d = sns.begin(); d != sns.end(); ++d) {
2017         ns->append_if_missing(*d);
2018       }
2019       sns.clear();
2020     }
2021   }
2022 }
2023 
2024 //---------------------collect_nodes_in_all_data-------------------------------
2025 // Collect the entire data input graph. Include the control boundary if
2026 // requested.
2027 // Arguments:
2028 //   ns:   collect the nodes into this data structure.
2029 //   ctrl: if true, include the control boundary.
2030 void Node::collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const {
2031   collect_nodes_in((Node*) this, ns, true, ctrl);
2032 }
2033 
2034 //--------------------------collect_nodes_in_all_ctrl--------------------------
2035 // Collect the entire control input graph. Include the data boundary if
2036 // requested.
2037 //   ns:   collect the nodes into this data structure.
2038 //   data: if true, include the control boundary.
2039 void Node::collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const {
2040   collect_nodes_in((Node*) this, ns, false, data);
2041 }
2042 
2043 //------------------collect_nodes_out_all_ctrl_boundary------------------------
2044 // Collect the entire output graph until hitting control node boundaries, and
2045 // include those.
2046 void Node::collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const {
2047   // Perform a BFS and stop at control nodes.
2048   GrowableArray<Node*> nodes(Compile::current()->unique());
2049   nodes.push((Node*) this);
2050   while (nodes.length() > 0) {
2051     Node* current = nodes.pop();
2052     if (NotANode(current)) {
2053       continue;
2054     }
2055     ns->append_if_missing(current);
2056     if (!current->is_CFG()) {
2057       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2058         nodes.push(current->out(i));
2059       }
2060     }
2061   }
2062   ns->remove((Node*) this);
2063 }
2064 
2065 // VERIFICATION CODE
2066 // For each input edge to a node (ie - for each Use-Def edge), verify that
2067 // there is a corresponding Def-Use edge.
2068 //------------------------------verify_edges-----------------------------------
2069 void Node::verify_edges(Unique_Node_List &visited) {
2070   uint i, j, idx;
2071   int  cnt;
2072   Node *n;
2073 
2074   // Recursive termination test
2075   if (visited.member(this))  return;
2076   visited.push(this);
2077 
2078   // Walk over all input edges, checking for correspondence
2079   for( i = 0; i < len(); i++ ) {
2080     n = in(i);
2081     if (n != NULL && !n->is_top()) {
2082       // Count instances of (Node *)this
2083       cnt = 0;
2084       for (idx = 0; idx < n->_outcnt; idx++ ) {
2085         if (n->_out[idx] == (Node *)this)  cnt++;
2086       }
2087       assert( cnt > 0,"Failed to find Def-Use edge." );
2088       // Check for duplicate edges
2089       // walk the input array downcounting the input edges to n
2090       for( j = 0; j < len(); j++ ) {
2091         if( in(j) == n ) cnt--;
2092       }
2093       assert( cnt == 0,"Mismatched edge count.");
2094     } else if (n == NULL) {
2095       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
2096     } else {
2097       assert(n->is_top(), "sanity");
2098       // Nothing to check.
2099     }
2100   }
2101   // Recursive walk over all input edges
2102   for( i = 0; i < len(); i++ ) {
2103     n = in(i);
2104     if( n != NULL )
2105       in(i)->verify_edges(visited);
2106   }
2107 }
2108 
2109 //------------------------------verify_recur-----------------------------------
2110 static const Node *unique_top = NULL;
2111 
2112 void Node::verify_recur(const Node *n, int verify_depth,
2113                         VectorSet &old_space, VectorSet &new_space) {
2114   if ( verify_depth == 0 )  return;
2115   if (verify_depth > 0)  --verify_depth;
2116 
2117   Compile* C = Compile::current();
2118 
2119   // Contained in new_space or old_space?
2120   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
2121   // Check for visited in the proper space.  Numberings are not unique
2122   // across spaces so we need a separate VectorSet for each space.
2123   if( v->test_set(n->_idx) ) return;
2124 
2125   if (n->is_Con() && n->bottom_type() == Type::TOP) {
2126     if (C->cached_top_node() == NULL)
2127       C->set_cached_top_node((Node*)n);
2128     assert(C->cached_top_node() == n, "TOP node must be unique");
2129   }
2130 
2131   for( uint i = 0; i < n->len(); i++ ) {
2132     Node *x = n->in(i);
2133     if (!x || x->is_top()) continue;
2134 
2135     // Verify my input has a def-use edge to me
2136     if (true /*VerifyDefUse*/) {
2137       // Count use-def edges from n to x
2138       int cnt = 0;
2139       for( uint j = 0; j < n->len(); j++ )
2140         if( n->in(j) == x )
2141           cnt++;
2142       // Count def-use edges from x to n
2143       uint max = x->_outcnt;
2144       for( uint k = 0; k < max; k++ )
2145         if (x->_out[k] == n)
2146           cnt--;
2147       assert( cnt == 0, "mismatched def-use edge counts" );
2148     }
2149 
2150     verify_recur(x, verify_depth, old_space, new_space);
2151   }
2152 
2153 }
2154 
2155 //------------------------------verify-----------------------------------------
2156 // Check Def-Use info for my subgraph
2157 void Node::verify() const {
2158   Compile* C = Compile::current();
2159   Node* old_top = C->cached_top_node();
2160   ResourceMark rm;
2161   ResourceArea *area = Thread::current()->resource_area();
2162   VectorSet old_space(area), new_space(area);
2163   verify_recur(this, -1, old_space, new_space);
2164   C->set_cached_top_node(old_top);
2165 }
2166 #endif
2167 
2168 
2169 //------------------------------walk-------------------------------------------
2170 // Graph walk, with both pre-order and post-order functions
2171 void Node::walk(NFunc pre, NFunc post, void *env) {
2172   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
2173   walk_(pre, post, env, visited);
2174 }
2175 
2176 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
2177   if( visited.test_set(_idx) ) return;
2178   pre(*this,env);               // Call the pre-order walk function
2179   for( uint i=0; i<_max; i++ )
2180     if( in(i) )                 // Input exists and is not walked?
2181       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
2182   post(*this,env);              // Call the post-order walk function
2183 }
2184 
2185 void Node::nop(Node &, void*) {}
2186 
2187 //------------------------------Registers--------------------------------------
2188 // Do we Match on this edge index or not?  Generally false for Control
2189 // and true for everything else.  Weird for calls & returns.
2190 uint Node::match_edge(uint idx) const {
2191   return idx;                   // True for other than index 0 (control)
2192 }
2193 
2194 static RegMask _not_used_at_all;
2195 // Register classes are defined for specific machines
2196 const RegMask &Node::out_RegMask() const {
2197   ShouldNotCallThis();
2198   return _not_used_at_all;
2199 }
2200 
2201 const RegMask &Node::in_RegMask(uint) const {
2202   ShouldNotCallThis();
2203   return _not_used_at_all;
2204 }
2205 
2206 //=============================================================================
2207 //-----------------------------------------------------------------------------
2208 void Node_Array::reset( Arena *new_arena ) {
2209   _a->Afree(_nodes,_max*sizeof(Node*));
2210   _max   = 0;
2211   _nodes = NULL;
2212   _a     = new_arena;
2213 }
2214 
2215 //------------------------------clear------------------------------------------
2216 // Clear all entries in _nodes to NULL but keep storage
2217 void Node_Array::clear() {
2218   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
2219 }
2220 
2221 //-----------------------------------------------------------------------------
2222 void Node_Array::grow( uint i ) {
2223   if( !_max ) {
2224     _max = 1;
2225     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
2226     _nodes[0] = NULL;
2227   }
2228   uint old = _max;
2229   while( i >= _max ) _max <<= 1;        // Double to fit
2230   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2231   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2232 }
2233 
2234 //-----------------------------------------------------------------------------
2235 void Node_Array::insert( uint i, Node *n ) {
2236   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
2237   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
2238   _nodes[i] = n;
2239 }
2240 
2241 //-----------------------------------------------------------------------------
2242 void Node_Array::remove( uint i ) {
2243   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
2244   _nodes[_max-1] = NULL;
2245 }
2246 
2247 //-----------------------------------------------------------------------------
2248 void Node_Array::sort( C_sort_func_t func) {
2249   qsort( _nodes, _max, sizeof( Node* ), func );
2250 }
2251 
2252 //-----------------------------------------------------------------------------
2253 void Node_Array::dump() const {
2254 #ifndef PRODUCT
2255   for( uint i = 0; i < _max; i++ ) {
2256     Node *nn = _nodes[i];
2257     if( nn != NULL ) {
2258       tty->print("%5d--> ",i); nn->dump();
2259     }
2260   }
2261 #endif
2262 }
2263 
2264 //--------------------------is_iteratively_computed------------------------------
2265 // Operation appears to be iteratively computed (such as an induction variable)
2266 // It is possible for this operation to return false for a loop-varying
2267 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2268 bool Node::is_iteratively_computed() {
2269   if (ideal_reg()) { // does operation have a result register?
2270     for (uint i = 1; i < req(); i++) {
2271       Node* n = in(i);
2272       if (n != NULL && n->is_Phi()) {
2273         for (uint j = 1; j < n->req(); j++) {
2274           if (n->in(j) == this) {
2275             return true;
2276           }
2277         }
2278       }
2279     }
2280   }
2281   return false;
2282 }
2283 
2284 //--------------------------find_similar------------------------------
2285 // Return a node with opcode "opc" and same inputs as "this" if one can
2286 // be found; Otherwise return NULL;
2287 Node* Node::find_similar(int opc) {
2288   if (req() >= 2) {
2289     Node* def = in(1);
2290     if (def && def->outcnt() >= 2) {
2291       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2292         Node* use = def->fast_out(i);
2293         if (use != this &&
2294             use->Opcode() == opc &&
2295             use->req() == req()) {
2296           uint j;
2297           for (j = 0; j < use->req(); j++) {
2298             if (use->in(j) != in(j)) {
2299               break;
2300             }
2301           }
2302           if (j == use->req()) {
2303             return use;
2304           }
2305         }
2306       }
2307     }
2308   }
2309   return NULL;
2310 }
2311 
2312 
2313 //--------------------------unique_ctrl_out------------------------------
2314 // Return the unique control out if only one. Null if none or more than one.
2315 Node* Node::unique_ctrl_out() const {
2316   Node* found = NULL;
2317   for (uint i = 0; i < outcnt(); i++) {
2318     Node* use = raw_out(i);
2319     if (use->is_CFG() && use != this) {
2320       if (found != NULL) return NULL;
2321       found = use;
2322     }
2323   }
2324   return found;
2325 }
2326 
2327 void Node::ensure_control_or_add_prec(Node* c) {
2328   if (in(0) == NULL) {
2329     set_req(0, c);
2330   } else if (in(0) != c) {
2331     add_prec(c);
2332   }
2333 }
2334 
2335 //=============================================================================
2336 //------------------------------yank-------------------------------------------
2337 // Find and remove
2338 void Node_List::yank( Node *n ) {
2339   uint i;
2340   for( i = 0; i < _cnt; i++ )
2341     if( _nodes[i] == n )
2342       break;
2343 
2344   if( i < _cnt )
2345     _nodes[i] = _nodes[--_cnt];
2346 }
2347 
2348 //------------------------------dump-------------------------------------------
2349 void Node_List::dump() const {
2350 #ifndef PRODUCT
2351   for( uint i = 0; i < _cnt; i++ )
2352     if( _nodes[i] ) {
2353       tty->print("%5d--> ",i);
2354       _nodes[i]->dump();
2355     }
2356 #endif
2357 }
2358 
2359 void Node_List::dump_simple() const {
2360 #ifndef PRODUCT
2361   for( uint i = 0; i < _cnt; i++ )
2362     if( _nodes[i] ) {
2363       tty->print(" %d", _nodes[i]->_idx);
2364     } else {
2365       tty->print(" NULL");
2366     }
2367 #endif
2368 }
2369 
2370 //=============================================================================
2371 //------------------------------remove-----------------------------------------
2372 void Unique_Node_List::remove( Node *n ) {
2373   if( _in_worklist[n->_idx] ) {
2374     for( uint i = 0; i < size(); i++ )
2375       if( _nodes[i] == n ) {
2376         map(i,Node_List::pop());
2377         _in_worklist >>= n->_idx;
2378         return;
2379       }
2380     ShouldNotReachHere();
2381   }
2382 }
2383 
2384 //-----------------------remove_useless_nodes----------------------------------
2385 // Remove useless nodes from worklist
2386 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2387 
2388   for( uint i = 0; i < size(); ++i ) {
2389     Node *n = at(i);
2390     assert( n != NULL, "Did not expect null entries in worklist");
2391     if( ! useful.test(n->_idx) ) {
2392       _in_worklist >>= n->_idx;
2393       map(i,Node_List::pop());
2394       // Node *replacement = Node_List::pop();
2395       // if( i != size() ) { // Check if removing last entry
2396       //   _nodes[i] = replacement;
2397       // }
2398       --i;  // Visit popped node
2399       // If it was last entry, loop terminates since size() was also reduced
2400     }
2401   }
2402 }
2403 
2404 //=============================================================================
2405 void Node_Stack::grow() {
2406   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2407   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2408   size_t max = old_max << 1;             // max * 2
2409   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2410   _inode_max = _inodes + max;
2411   _inode_top = _inodes + old_top;        // restore _top
2412 }
2413 
2414 // Node_Stack is used to map nodes.
2415 Node* Node_Stack::find(uint idx) const {
2416   uint sz = size();
2417   for (uint i=0; i < sz; i++) {
2418     if (idx == index_at(i) )
2419       return node_at(i);
2420   }
2421   return NULL;
2422 }
2423 
2424 //=============================================================================
2425 uint TypeNode::size_of() const { return sizeof(*this); }
2426 #ifndef PRODUCT
2427 void TypeNode::dump_spec(outputStream *st) const {
2428   if( !Verbose && !WizardMode ) {
2429     // standard dump does this in Verbose and WizardMode
2430     st->print(" #"); _type->dump_on(st);
2431   }
2432 }
2433 
2434 void TypeNode::dump_compact_spec(outputStream *st) const {
2435   st->print("#");
2436   _type->dump_on(st);
2437 }
2438 #endif
2439 uint TypeNode::hash() const {
2440   return Node::hash() + _type->hash();
2441 }
2442 uint TypeNode::cmp( const Node &n ) const
2443 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2444 const Type *TypeNode::bottom_type() const { return _type; }
2445 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
2446 
2447 //------------------------------ideal_reg--------------------------------------
2448 uint TypeNode::ideal_reg() const {
2449   return _type->ideal_reg();
2450 }