/* * Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "gc/z/zArray.inline.hpp" #include "gc/z/zBackingFile_linux_x86.hpp" #include "gc/z/zBackingPath_linux_x86.hpp" #include "gc/z/zErrno.hpp" #include "gc/z/zLargePages.inline.hpp" #include "logging/log.hpp" #include "runtime/os.hpp" #include "utilities/align.hpp" #include "utilities/debug.hpp" #include #include #include #include #include #include // Filesystem names #define ZFILESYSTEM_TMPFS "tmpfs" #define ZFILESYSTEM_HUGETLBFS "hugetlbfs" // Sysfs file for transparent huge page on tmpfs #define ZFILENAME_SHMEM_ENABLED "/sys/kernel/mm/transparent_hugepage/shmem_enabled" // Java heap filename #define ZFILENAME_HEAP "java_heap" // Support for building on older Linux systems #ifndef __NR_memfd_create #define __NR_memfd_create 319 #endif #ifndef MFD_CLOEXEC #define MFD_CLOEXEC 0x0001U #endif #ifndef MFD_HUGETLB #define MFD_HUGETLB 0x0004U #endif #ifndef O_CLOEXEC #define O_CLOEXEC 02000000 #endif #ifndef O_TMPFILE #define O_TMPFILE (020000000 | O_DIRECTORY) #endif // Filesystem types, see statfs(2) #ifndef TMPFS_MAGIC #define TMPFS_MAGIC 0x01021994 #endif #ifndef HUGETLBFS_MAGIC #define HUGETLBFS_MAGIC 0x958458f6 #endif // Preferred tmpfs mount points, ordered by priority static const char* z_preferred_tmpfs_mountpoints[] = { "/dev/shm", "/run/shm", NULL }; // Preferred tmpfs mount points, ordered by priority static const char* z_preferred_hugetlbfs_mountpoints[] = { "/dev/hugepages", "/hugepages", NULL }; static int z_memfd_create(const char *name, unsigned int flags) { return syscall(__NR_memfd_create, name, flags); } bool ZBackingFile::_hugetlbfs_mmap_retry = true; ZBackingFile::ZBackingFile() : _fd(-1), _filesystem(0), _available(0), _initialized(false) { // Create backing file _fd = create_fd(ZFILENAME_HEAP); if (_fd == -1) { return; } // Get filesystem statistics struct statfs statfs_buf; if (fstatfs(_fd, &statfs_buf) == -1) { ZErrno err; log_error(gc, init)("Failed to determine filesystem type for backing file (%s)", err.to_string()); return; } _filesystem = statfs_buf.f_type; _available = statfs_buf.f_bavail * statfs_buf.f_bsize; // Make sure we're on a supported filesystem if (!is_tmpfs() && !is_hugetlbfs()) { log_error(gc, init)("Backing file must be located on a %s or a %s filesystem", ZFILESYSTEM_TMPFS, ZFILESYSTEM_HUGETLBFS); return; } // Make sure the filesystem type matches requested large page type if (ZLargePages::is_transparent() && !is_tmpfs()) { log_error(gc, init)("-XX:+UseTransparentHugePages can only be enable when using a %s filesystem", ZFILESYSTEM_TMPFS); return; } if (ZLargePages::is_transparent() && !tmpfs_supports_transparent_huge_pages()) { log_error(gc, init)("-XX:+UseTransparentHugePages on a %s filesystem not supported by kernel", ZFILESYSTEM_TMPFS); return; } if (ZLargePages::is_explicit() && !is_hugetlbfs()) { log_error(gc, init)("-XX:+UseLargePages (without -XX:+UseTransparentHugePages) can only be enabled when using a %s filesystem", ZFILESYSTEM_HUGETLBFS); return; } if (!ZLargePages::is_explicit() && is_hugetlbfs()) { log_error(gc, init)("-XX:+UseLargePages must be enabled when using a %s filesystem", ZFILESYSTEM_HUGETLBFS); return; } // Successfully initialized _initialized = true; } int ZBackingFile::create_mem_fd(const char* name) const { // Create file name char filename[PATH_MAX]; snprintf(filename, sizeof(filename), "%s%s", name, ZLargePages::is_explicit() ? ".hugetlb" : ""); // Create file const int extra_flags = ZLargePages::is_explicit() ? MFD_HUGETLB : 0; const int fd = z_memfd_create(filename, MFD_CLOEXEC | extra_flags); if (fd == -1) { ZErrno err; log_debug(gc, init)("Failed to create memfd file (%s)", ((UseLargePages && err == EINVAL) ? "Hugepages not supported" : err.to_string())); return -1; } log_info(gc, init)("Heap backed by file: /memfd:%s", filename); return fd; } int ZBackingFile::create_file_fd(const char* name) const { const char* const filesystem = ZLargePages::is_explicit() ? ZFILESYSTEM_HUGETLBFS : ZFILESYSTEM_TMPFS; const char** const mountpoints = ZLargePages::is_explicit() ? z_preferred_hugetlbfs_mountpoints : z_preferred_tmpfs_mountpoints; // Find mountpoint ZBackingPath path(filesystem, mountpoints); if (path.get() == NULL) { log_error(gc, init)("Use -XX:ZPath to specify the path to a %s filesystem", filesystem); return -1; } // Try to create an anonymous file using the O_TMPFILE flag. Note that this // flag requires kernel >= 3.11. If this fails we fall back to open/unlink. const int fd_anon = open(path.get(), O_TMPFILE|O_EXCL|O_RDWR|O_CLOEXEC, S_IRUSR|S_IWUSR); if (fd_anon == -1) { ZErrno err; log_debug(gc, init)("Failed to create anonymous file in %s (%s)", path.get(), (err == EINVAL ? "Not supported" : err.to_string())); } else { // Get inode number for anonymous file struct stat stat_buf; if (fstat(fd_anon, &stat_buf) == -1) { ZErrno err; log_error(gc, init)("Failed to determine inode number for anonymous file (%s)", err.to_string()); return -1; } log_info(gc, init)("Heap backed by file: %s/#" UINT64_FORMAT, path.get(), (uint64_t)stat_buf.st_ino); return fd_anon; } log_debug(gc, init)("Falling back to open/unlink"); // Create file name char filename[PATH_MAX]; snprintf(filename, sizeof(filename), "%s/%s.%d", path.get(), name, os::current_process_id()); // Create file const int fd = open(filename, O_CREAT|O_EXCL|O_RDWR|O_CLOEXEC, S_IRUSR|S_IWUSR); if (fd == -1) { ZErrno err; log_error(gc, init)("Failed to create file %s (%s)", filename, err.to_string()); return -1; } // Unlink file if (unlink(filename) == -1) { ZErrno err; log_error(gc, init)("Failed to unlink file %s (%s)", filename, err.to_string()); return -1; } log_info(gc, init)("Heap backed by file: %s", filename); return fd; } int ZBackingFile::create_fd(const char* name) const { if (ZPath == NULL) { // If the path is not explicitly specified, then we first try to create a memfd file // instead of looking for a tmpfd/hugetlbfs mount point. Note that memfd_create() might // not be supported at all (requires kernel >= 3.17), or it might not support large // pages (requires kernel >= 4.14). If memfd_create() fails, then we try to create a // file on an accessible tmpfs or hugetlbfs mount point. const int fd = create_mem_fd(name); if (fd != -1) { return fd; } log_debug(gc, init)("Falling back to searching for an accessible mount point"); } return create_file_fd(name); } bool ZBackingFile::is_initialized() const { return _initialized; } int ZBackingFile::fd() const { return _fd; } size_t ZBackingFile::available() const { return _available; } bool ZBackingFile::is_tmpfs() const { return _filesystem == TMPFS_MAGIC; } bool ZBackingFile::is_hugetlbfs() const { return _filesystem == HUGETLBFS_MAGIC; } bool ZBackingFile::tmpfs_supports_transparent_huge_pages() const { // If the shmem_enabled file exists and is readable then we // know the kernel supports transparent huge pages for tmpfs. return access(ZFILENAME_SHMEM_ENABLED, R_OK) == 0; } bool ZBackingFile::try_split_and_expand_tmpfs(size_t offset, size_t length, size_t alignment) const { // Try first smaller part. const size_t offset0 = offset; const size_t length0 = align_up(length / 2, alignment); if (!try_expand_tmpfs(offset0, length0, alignment)) { return false; } // Try second smaller part. const size_t offset1 = offset0 + length0; const size_t length1 = length - length0; if (!try_expand_tmpfs(offset1, length1, alignment)) { return false; } return true; } bool ZBackingFile::try_expand_tmpfs(size_t offset, size_t length, size_t alignment) const { assert(length > 0, "Invalid length"); assert(is_aligned(length, alignment), "Invalid length"); ZErrno err = posix_fallocate(_fd, offset, length); if (err == EINTR && length > alignment) { // Calling posix_fallocate() with a large length can take a long // time to complete. When running profilers, such as VTune, this // syscall will be constantly interrupted by signals. Expanding // the file in smaller steps avoids this problem. return try_split_and_expand_tmpfs(offset, length, alignment); } if (err) { log_error(gc)("Failed to allocate backing file (%s)", err.to_string()); return false; } return true; } bool ZBackingFile::try_expand_tmpfs(size_t offset, size_t length) const { assert(is_tmpfs(), "Wrong filesystem"); return try_expand_tmpfs(offset, length, os::vm_page_size()); } bool ZBackingFile::try_expand_hugetlbfs(size_t offset, size_t length) const { assert(is_hugetlbfs(), "Wrong filesystem"); // Prior to kernel 4.3, hugetlbfs did not support posix_fallocate(). // Instead of posix_fallocate() we can use a well-known workaround, // which involves truncating the file to requested size and then try // to map it to verify that there are enough huge pages available to // back it. while (ftruncate(_fd, offset + length) == -1) { ZErrno err; if (err != EINTR) { log_error(gc)("Failed to truncate backing file (%s)", err.to_string()); return false; } } // If we fail mapping during initialization, i.e. when we are pre-mapping // the heap, then we wait and retry a few times before giving up. Otherwise // there is a risk that running JVMs back-to-back will fail, since there // is a delay between process termination and the huge pages owned by that // process being returned to the huge page pool and made available for new // allocations. void* addr = MAP_FAILED; const int max_attempts = 5; for (int attempt = 1; attempt <= max_attempts; attempt++) { addr = mmap(0, length, PROT_READ|PROT_WRITE, MAP_SHARED, _fd, offset); if (addr != MAP_FAILED || !_hugetlbfs_mmap_retry) { // Mapping was successful or mmap retry is disabled break; } ZErrno err; log_debug(gc)("Failed to map backing file (%s), attempt %d of %d", err.to_string(), attempt, max_attempts); // Wait and retry in one second, in the hope that // huge pages will be available by then. sleep(1); } // Disable mmap retry from now on if (_hugetlbfs_mmap_retry) { _hugetlbfs_mmap_retry = false; } if (addr == MAP_FAILED) { // Not enough huge pages left ZErrno err; log_error(gc)("Failed to map backing file (%s)", err.to_string()); return false; } // Successful mapping, unmap again. From now on the pages we mapped // will be reserved for this file. if (munmap(addr, length) == -1) { ZErrno err; log_error(gc)("Failed to unmap backing file (%s)", err.to_string()); return false; } return true; } bool ZBackingFile::try_expand_tmpfs_or_hugetlbfs(size_t offset, size_t length, size_t alignment) const { assert(is_aligned(offset, alignment), "Invalid offset"); assert(is_aligned(length, alignment), "Invalid length"); log_debug(gc)("Expanding heap from " SIZE_FORMAT "M to " SIZE_FORMAT "M", offset / M, (offset + length) / M); return is_hugetlbfs() ? try_expand_hugetlbfs(offset, length) : try_expand_tmpfs(offset, length); } size_t ZBackingFile::try_expand(size_t offset, size_t length, size_t alignment) const { size_t start = offset; size_t end = offset + length; // Try to expand if (try_expand_tmpfs_or_hugetlbfs(start, length, alignment)) { // Success return end; } // Failed, try to expand as much as possible for (;;) { length = align_down((end - start) / 2, alignment); if (length < alignment) { // Done, don't expand more return start; } if (try_expand_tmpfs_or_hugetlbfs(start, length, alignment)) { // Success, try expand more start += length; } else { // Failed, try expand less end -= length; } } }