1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
  26 #define SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
  27 
  28 #include "memory/referencePolicy.hpp"
  29 #include "memory/referenceProcessorStats.hpp"
  30 #include "memory/referenceType.hpp"
  31 #include "oops/instanceRefKlass.hpp"
  32 
  33 class GCTimer;
  34 
  35 // ReferenceProcessor class encapsulates the per-"collector" processing
  36 // of java.lang.Reference objects for GC. The interface is useful for supporting
  37 // a generational abstraction, in particular when there are multiple
  38 // generations that are being independently collected -- possibly
  39 // concurrently and/or incrementally.  Note, however, that the
  40 // ReferenceProcessor class abstracts away from a generational setting
  41 // by using only a heap interval (called "span" below), thus allowing
  42 // its use in a straightforward manner in a general, non-generational
  43 // setting.
  44 //
  45 // The basic idea is that each ReferenceProcessor object concerns
  46 // itself with ("weak") reference processing in a specific "span"
  47 // of the heap of interest to a specific collector. Currently,
  48 // the span is a convex interval of the heap, but, efficiency
  49 // apart, there seems to be no reason it couldn't be extended
  50 // (with appropriate modifications) to any "non-convex interval".
  51 
  52 // forward references
  53 class ReferencePolicy;
  54 class AbstractRefProcTaskExecutor;
  55 
  56 // List of discovered references.
  57 class DiscoveredList {
  58 public:
  59   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  60   oop head() const     {
  61      return UseCompressedOops ?  oopDesc::decode_heap_oop(_compressed_head) :
  62                                 _oop_head;
  63   }
  64   HeapWord* adr_head() {
  65     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  66                                (HeapWord*)&_oop_head;
  67   }
  68   void set_head(oop o) {
  69     if (UseCompressedOops) {
  70       // Must compress the head ptr.
  71       _compressed_head = oopDesc::encode_heap_oop(o);
  72     } else {
  73       _oop_head = o;
  74     }
  75   }
  76   bool   is_empty() const       { return head() == NULL; }
  77   size_t length()               { return _len; }
  78   void   set_length(size_t len) { _len = len;  }
  79   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  80   void   dec_length(size_t dec) { _len -= dec; }
  81 private:
  82   // Set value depending on UseCompressedOops. This could be a template class
  83   // but then we have to fix all the instantiations and declarations that use this class.
  84   oop       _oop_head;
  85   narrowOop _compressed_head;
  86   size_t _len;
  87 };
  88 
  89 // Iterator for the list of discovered references.
  90 class DiscoveredListIterator {
  91 private:
  92   DiscoveredList&    _refs_list;
  93   HeapWord*          _prev_next;
  94   oop                _prev;
  95   oop                _ref;
  96   HeapWord*          _discovered_addr;
  97   oop                _next;
  98   HeapWord*          _referent_addr;
  99   oop                _referent;
 100   OopClosure*        _keep_alive;
 101   BoolObjectClosure* _is_alive;
 102   bool               _discovered_list_needs_post_barrier;
 103 
 104   DEBUG_ONLY(
 105   oop                _first_seen; // cyclic linked list check
 106   )
 107 
 108   NOT_PRODUCT(
 109   size_t             _processed;
 110   size_t             _removed;
 111   )
 112 
 113 public:
 114   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 115                                 OopClosure*        keep_alive,
 116                                 BoolObjectClosure* is_alive,
 117                                 bool               discovered_list_needs_post_barrier = false):
 118     _refs_list(refs_list),
 119     _prev_next(refs_list.adr_head()),
 120     _prev(NULL),
 121     _ref(refs_list.head()),
 122 #ifdef ASSERT
 123     _first_seen(refs_list.head()),
 124 #endif
 125 #ifndef PRODUCT
 126     _processed(0),
 127     _removed(0),
 128 #endif
 129     _next(NULL),
 130     _keep_alive(keep_alive),
 131     _is_alive(is_alive),
 132     _discovered_list_needs_post_barrier(discovered_list_needs_post_barrier)
 133 { }
 134 
 135   // End Of List.
 136   inline bool has_next() const { return _ref != NULL; }
 137 
 138   // Get oop to the Reference object.
 139   inline oop obj() const { return _ref; }
 140 
 141   // Get oop to the referent object.
 142   inline oop referent() const { return _referent; }
 143 
 144   // Returns true if referent is alive.
 145   inline bool is_referent_alive() const {
 146     return _is_alive->do_object_b(_referent);
 147   }
 148 
 149   // Loads data for the current reference.
 150   // The "allow_null_referent" argument tells us to allow for the possibility
 151   // of a NULL referent in the discovered Reference object. This typically
 152   // happens in the case of concurrent collectors that may have done the
 153   // discovery concurrently, or interleaved, with mutator execution.
 154   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 155 
 156   // Move to the next discovered reference.
 157   inline void next() {
 158     _prev_next = _discovered_addr;
 159     _prev = _ref;
 160     move_to_next();
 161   }
 162 
 163   // Remove the current reference from the list
 164   void remove();
 165 
 166   // Make the Reference object active again.
 167   void make_active();
 168 
 169   // Make the referent alive.
 170   inline void make_referent_alive() {
 171     if (UseCompressedOops) {
 172       _keep_alive->do_oop((narrowOop*)_referent_addr);
 173     } else {
 174       _keep_alive->do_oop((oop*)_referent_addr);
 175     }
 176   }
 177 
 178   // Update the discovered field.
 179   inline void update_discovered() {
 180     // First _prev_next ref actually points into DiscoveredList (gross).
 181     if (UseCompressedOops) {
 182       if (!oopDesc::is_null(*(narrowOop*)_prev_next)) {
 183         _keep_alive->do_oop((narrowOop*)_prev_next);
 184       }
 185     } else {
 186       if (!oopDesc::is_null(*(oop*)_prev_next)) {
 187         _keep_alive->do_oop((oop*)_prev_next);
 188       }
 189     }
 190   }
 191 
 192   // NULL out referent pointer.
 193   void clear_referent();
 194 
 195   // Statistics
 196   NOT_PRODUCT(
 197   inline size_t processed() const { return _processed; }
 198   inline size_t removed() const   { return _removed; }
 199   )
 200 
 201   inline void move_to_next() {
 202     if (_ref == _next) {
 203       // End of the list.
 204       _ref = NULL;
 205     } else {
 206       _ref = _next;
 207     }
 208     assert(_ref != _first_seen, "cyclic ref_list found");
 209     NOT_PRODUCT(_processed++);
 210   }
 211 };
 212 
 213 class ReferenceProcessor : public CHeapObj<mtGC> {
 214 
 215  private:
 216   size_t total_count(DiscoveredList lists[]);
 217 
 218  protected:
 219   // Compatibility with pre-4965777 JDK's
 220   static bool _pending_list_uses_discovered_field;
 221 
 222   // The SoftReference master timestamp clock
 223   static jlong _soft_ref_timestamp_clock;
 224 
 225   MemRegion   _span;                    // (right-open) interval of heap
 226                                         // subject to wkref discovery
 227 
 228   bool        _discovering_refs;        // true when discovery enabled
 229   bool        _discovery_is_atomic;     // if discovery is atomic wrt
 230                                         // other collectors in configuration
 231   bool        _discovery_is_mt;         // true if reference discovery is MT.
 232 
 233   // If true, setting "next" field of a discovered refs list requires
 234   // write post barrier.  (Must be true if used in a collector in which
 235   // elements of a discovered list may be moved during discovery: for
 236   // example, a collector like Garbage-First that moves objects during a
 237   // long-term concurrent marking phase that does weak reference
 238   // discovery.)
 239   bool        _discovered_list_needs_post_barrier;
 240 
 241   bool        _enqueuing_is_done;       // true if all weak references enqueued
 242   bool        _processing_is_mt;        // true during phases when
 243                                         // reference processing is MT.
 244   uint        _next_id;                 // round-robin mod _num_q counter in
 245                                         // support of work distribution
 246 
 247   // For collectors that do not keep GC liveness information
 248   // in the object header, this field holds a closure that
 249   // helps the reference processor determine the reachability
 250   // of an oop. It is currently initialized to NULL for all
 251   // collectors except for CMS and G1.
 252   BoolObjectClosure* _is_alive_non_header;
 253 
 254   // Soft ref clearing policies
 255   // . the default policy
 256   static ReferencePolicy*   _default_soft_ref_policy;
 257   // . the "clear all" policy
 258   static ReferencePolicy*   _always_clear_soft_ref_policy;
 259   // . the current policy below is either one of the above
 260   ReferencePolicy*          _current_soft_ref_policy;
 261 
 262   // The discovered ref lists themselves
 263 
 264   // The active MT'ness degree of the queues below
 265   uint             _num_q;
 266   // The maximum MT'ness degree of the queues below
 267   uint             _max_num_q;
 268 
 269   // Master array of discovered oops
 270   DiscoveredList* _discovered_refs;
 271 
 272   // Arrays of lists of oops, one per thread (pointers into master array above)
 273   DiscoveredList* _discoveredSoftRefs;
 274   DiscoveredList* _discoveredWeakRefs;
 275   DiscoveredList* _discoveredFinalRefs;
 276   DiscoveredList* _discoveredPhantomRefs;
 277 
 278  public:
 279   static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
 280 
 281   uint num_q()                             { return _num_q; }
 282   uint max_num_q()                         { return _max_num_q; }
 283   void set_active_mt_degree(uint v)        { _num_q = v; }
 284 
 285   DiscoveredList* discovered_refs()        { return _discovered_refs; }
 286 
 287   ReferencePolicy* setup_policy(bool always_clear) {
 288     _current_soft_ref_policy = always_clear ?
 289       _always_clear_soft_ref_policy : _default_soft_ref_policy;
 290     _current_soft_ref_policy->setup();   // snapshot the policy threshold
 291     return _current_soft_ref_policy;
 292   }
 293 
 294   // Process references with a certain reachability level.
 295   size_t process_discovered_reflist(DiscoveredList               refs_lists[],
 296                                     ReferencePolicy*             policy,
 297                                     bool                         clear_referent,
 298                                     BoolObjectClosure*           is_alive,
 299                                     OopClosure*                  keep_alive,
 300                                     VoidClosure*                 complete_gc,
 301                                     AbstractRefProcTaskExecutor* task_executor);
 302 
 303   void process_phaseJNI(BoolObjectClosure* is_alive,
 304                         OopClosure*        keep_alive,
 305                         VoidClosure*       complete_gc);
 306 
 307   // Work methods used by the method process_discovered_reflist
 308   // Phase1: keep alive all those referents that are otherwise
 309   // dead but which must be kept alive by policy (and their closure).
 310   void process_phase1(DiscoveredList&     refs_list,
 311                       ReferencePolicy*    policy,
 312                       BoolObjectClosure*  is_alive,
 313                       OopClosure*         keep_alive,
 314                       VoidClosure*        complete_gc);
 315   // Phase2: remove all those references whose referents are
 316   // reachable.
 317   inline void process_phase2(DiscoveredList&    refs_list,
 318                              BoolObjectClosure* is_alive,
 319                              OopClosure*        keep_alive,
 320                              VoidClosure*       complete_gc) {
 321     if (discovery_is_atomic()) {
 322       // complete_gc is ignored in this case for this phase
 323       pp2_work(refs_list, is_alive, keep_alive);
 324     } else {
 325       assert(complete_gc != NULL, "Error");
 326       pp2_work_concurrent_discovery(refs_list, is_alive,
 327                                     keep_alive, complete_gc);
 328     }
 329   }
 330   // Work methods in support of process_phase2
 331   void pp2_work(DiscoveredList&    refs_list,
 332                 BoolObjectClosure* is_alive,
 333                 OopClosure*        keep_alive);
 334   void pp2_work_concurrent_discovery(
 335                 DiscoveredList&    refs_list,
 336                 BoolObjectClosure* is_alive,
 337                 OopClosure*        keep_alive,
 338                 VoidClosure*       complete_gc);
 339   // Phase3: process the referents by either clearing them
 340   // or keeping them alive (and their closure)
 341   void process_phase3(DiscoveredList&    refs_list,
 342                       bool               clear_referent,
 343                       BoolObjectClosure* is_alive,
 344                       OopClosure*        keep_alive,
 345                       VoidClosure*       complete_gc);
 346 
 347   // Enqueue references with a certain reachability level
 348   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
 349 
 350   // "Preclean" all the discovered reference lists
 351   // by removing references with strongly reachable referents.
 352   // The first argument is a predicate on an oop that indicates
 353   // its (strong) reachability and the second is a closure that
 354   // may be used to incrementalize or abort the precleaning process.
 355   // The caller is responsible for taking care of potential
 356   // interference with concurrent operations on these lists
 357   // (or predicates involved) by other threads. Currently
 358   // only used by the CMS collector.
 359   void preclean_discovered_references(BoolObjectClosure* is_alive,
 360                                       OopClosure*        keep_alive,
 361                                       VoidClosure*       complete_gc,
 362                                       YieldClosure*      yield,
 363                                       GCTimer*           gc_timer);
 364 
 365   // Delete entries in the discovered lists that have
 366   // either a null referent or are not active. Such
 367   // Reference objects can result from the clearing
 368   // or enqueueing of Reference objects concurrent
 369   // with their discovery by a (concurrent) collector.
 370   // For a definition of "active" see java.lang.ref.Reference;
 371   // Refs are born active, become inactive when enqueued,
 372   // and never become active again. The state of being
 373   // active is encoded as follows: A Ref is active
 374   // if and only if its "next" field is NULL.
 375   void clean_up_discovered_references();
 376   void clean_up_discovered_reflist(DiscoveredList& refs_list);
 377 
 378   // Returns the name of the discovered reference list
 379   // occupying the i / _num_q slot.
 380   const char* list_name(uint i);
 381 
 382   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
 383 
 384  protected:
 385   // Set the 'discovered' field of the given reference to
 386   // the given value - emitting post barriers depending upon
 387   // the value of _discovered_list_needs_post_barrier.
 388   void set_discovered(oop ref, oop value);
 389 
 390   // "Preclean" the given discovered reference list
 391   // by removing references with strongly reachable referents.
 392   // Currently used in support of CMS only.
 393   void preclean_discovered_reflist(DiscoveredList&    refs_list,
 394                                    BoolObjectClosure* is_alive,
 395                                    OopClosure*        keep_alive,
 396                                    VoidClosure*       complete_gc,
 397                                    YieldClosure*      yield);
 398 
 399   // round-robin mod _num_q (not: _not_ mode _max_num_q)
 400   uint next_id() {
 401     uint id = _next_id;
 402     if (++_next_id == _num_q) {
 403       _next_id = 0;
 404     }
 405     return id;
 406   }
 407   DiscoveredList* get_discovered_list(ReferenceType rt);
 408   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
 409                                         HeapWord* discovered_addr);
 410   void verify_ok_to_handle_reflists() PRODUCT_RETURN;
 411 
 412   void clear_discovered_references(DiscoveredList& refs_list);
 413   void abandon_partial_discovered_list(DiscoveredList& refs_list);
 414 
 415   // Calculate the number of jni handles.
 416   unsigned int count_jni_refs();
 417 
 418   // Balances reference queues.
 419   void balance_queues(DiscoveredList ref_lists[]);
 420 
 421   // Update (advance) the soft ref master clock field.
 422   void update_soft_ref_master_clock();
 423 
 424  public:
 425   // Default parameters give you a vanilla reference processor.
 426   ReferenceProcessor(MemRegion span,
 427                      bool mt_processing = false, uint mt_processing_degree = 1,
 428                      bool mt_discovery  = false, uint mt_discovery_degree  = 1,
 429                      bool atomic_discovery = true,
 430                      BoolObjectClosure* is_alive_non_header = NULL,
 431                      bool discovered_list_needs_post_barrier = false);
 432 
 433   // RefDiscoveryPolicy values
 434   enum DiscoveryPolicy {
 435     ReferenceBasedDiscovery = 0,
 436     ReferentBasedDiscovery  = 1,
 437     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
 438     DiscoveryPolicyMax      = ReferentBasedDiscovery
 439   };
 440 
 441   static void init_statics();
 442 
 443  public:
 444   // get and set "is_alive_non_header" field
 445   BoolObjectClosure* is_alive_non_header() {
 446     return _is_alive_non_header;
 447   }
 448   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
 449     _is_alive_non_header = is_alive_non_header;
 450   }
 451 
 452   // get and set span
 453   MemRegion span()                   { return _span; }
 454   void      set_span(MemRegion span) { _span = span; }
 455 
 456   // start and stop weak ref discovery
 457   void enable_discovery(bool verify_disabled, bool check_no_refs);
 458   void disable_discovery()  { _discovering_refs = false; }
 459   bool discovery_enabled()  { return _discovering_refs;  }
 460 
 461   // whether discovery is atomic wrt other collectors
 462   bool discovery_is_atomic() const { return _discovery_is_atomic; }
 463   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
 464 
 465   // whether the JDK in which we are embedded is a pre-4965777 JDK,
 466   // and thus whether or not it uses the discovered field to chain
 467   // the entries in the pending list.
 468   static bool pending_list_uses_discovered_field() {
 469     return _pending_list_uses_discovered_field;
 470   }
 471 
 472   // whether discovery is done by multiple threads same-old-timeously
 473   bool discovery_is_mt() const { return _discovery_is_mt; }
 474   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
 475 
 476   // Whether we are in a phase when _processing_ is MT.
 477   bool processing_is_mt() const { return _processing_is_mt; }
 478   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
 479 
 480   // whether all enqueueing of weak references is complete
 481   bool enqueuing_is_done()  { return _enqueuing_is_done; }
 482   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
 483 
 484   // iterate over oops
 485   void weak_oops_do(OopClosure* f);       // weak roots
 486 
 487   // Balance each of the discovered lists.
 488   void balance_all_queues();
 489   void verify_list(DiscoveredList& ref_list);
 490 
 491   // Discover a Reference object, using appropriate discovery criteria
 492   bool discover_reference(oop obj, ReferenceType rt);
 493 
 494   // Process references found during GC (called by the garbage collector)
 495   ReferenceProcessorStats
 496   process_discovered_references(BoolObjectClosure*           is_alive,
 497                                 OopClosure*                  keep_alive,
 498                                 VoidClosure*                 complete_gc,
 499                                 AbstractRefProcTaskExecutor* task_executor,
 500                                 GCTimer *gc_timer);
 501 
 502   // Enqueue references at end of GC (called by the garbage collector)
 503   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
 504 
 505   // If a discovery is in process that is being superceded, abandon it: all
 506   // the discovered lists will be empty, and all the objects on them will
 507   // have NULL discovered fields.  Must be called only at a safepoint.
 508   void abandon_partial_discovery();
 509 
 510   // debugging
 511   void verify_no_references_recorded() PRODUCT_RETURN;
 512   void verify_referent(oop obj)        PRODUCT_RETURN;
 513 
 514   // clear the discovered lists (unlinking each entry).
 515   void clear_discovered_references() PRODUCT_RETURN;
 516 };
 517 
 518 // A utility class to disable reference discovery in
 519 // the scope which contains it, for given ReferenceProcessor.
 520 class NoRefDiscovery: StackObj {
 521  private:
 522   ReferenceProcessor* _rp;
 523   bool _was_discovering_refs;
 524  public:
 525   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
 526     _was_discovering_refs = _rp->discovery_enabled();
 527     if (_was_discovering_refs) {
 528       _rp->disable_discovery();
 529     }
 530   }
 531 
 532   ~NoRefDiscovery() {
 533     if (_was_discovering_refs) {
 534       _rp->enable_discovery(true /*verify_disabled*/, false /*check_no_refs*/);
 535     }
 536   }
 537 };
 538 
 539 
 540 // A utility class to temporarily mutate the span of the
 541 // given ReferenceProcessor in the scope that contains it.
 542 class ReferenceProcessorSpanMutator: StackObj {
 543  private:
 544   ReferenceProcessor* _rp;
 545   MemRegion           _saved_span;
 546 
 547  public:
 548   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
 549                                 MemRegion span):
 550     _rp(rp) {
 551     _saved_span = _rp->span();
 552     _rp->set_span(span);
 553   }
 554 
 555   ~ReferenceProcessorSpanMutator() {
 556     _rp->set_span(_saved_span);
 557   }
 558 };
 559 
 560 // A utility class to temporarily change the MT'ness of
 561 // reference discovery for the given ReferenceProcessor
 562 // in the scope that contains it.
 563 class ReferenceProcessorMTDiscoveryMutator: StackObj {
 564  private:
 565   ReferenceProcessor* _rp;
 566   bool                _saved_mt;
 567 
 568  public:
 569   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
 570                                        bool mt):
 571     _rp(rp) {
 572     _saved_mt = _rp->discovery_is_mt();
 573     _rp->set_mt_discovery(mt);
 574   }
 575 
 576   ~ReferenceProcessorMTDiscoveryMutator() {
 577     _rp->set_mt_discovery(_saved_mt);
 578   }
 579 };
 580 
 581 
 582 // A utility class to temporarily change the disposition
 583 // of the "is_alive_non_header" closure field of the
 584 // given ReferenceProcessor in the scope that contains it.
 585 class ReferenceProcessorIsAliveMutator: StackObj {
 586  private:
 587   ReferenceProcessor* _rp;
 588   BoolObjectClosure*  _saved_cl;
 589 
 590  public:
 591   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
 592                                    BoolObjectClosure*  cl):
 593     _rp(rp) {
 594     _saved_cl = _rp->is_alive_non_header();
 595     _rp->set_is_alive_non_header(cl);
 596   }
 597 
 598   ~ReferenceProcessorIsAliveMutator() {
 599     _rp->set_is_alive_non_header(_saved_cl);
 600   }
 601 };
 602 
 603 // A utility class to temporarily change the disposition
 604 // of the "discovery_is_atomic" field of the
 605 // given ReferenceProcessor in the scope that contains it.
 606 class ReferenceProcessorAtomicMutator: StackObj {
 607  private:
 608   ReferenceProcessor* _rp;
 609   bool                _saved_atomic_discovery;
 610 
 611  public:
 612   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
 613                                   bool atomic):
 614     _rp(rp) {
 615     _saved_atomic_discovery = _rp->discovery_is_atomic();
 616     _rp->set_atomic_discovery(atomic);
 617   }
 618 
 619   ~ReferenceProcessorAtomicMutator() {
 620     _rp->set_atomic_discovery(_saved_atomic_discovery);
 621   }
 622 };
 623 
 624 
 625 // A utility class to temporarily change the MT processing
 626 // disposition of the given ReferenceProcessor instance
 627 // in the scope that contains it.
 628 class ReferenceProcessorMTProcMutator: StackObj {
 629  private:
 630   ReferenceProcessor* _rp;
 631   bool  _saved_mt;
 632 
 633  public:
 634   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
 635                                   bool mt):
 636     _rp(rp) {
 637     _saved_mt = _rp->processing_is_mt();
 638     _rp->set_mt_processing(mt);
 639   }
 640 
 641   ~ReferenceProcessorMTProcMutator() {
 642     _rp->set_mt_processing(_saved_mt);
 643   }
 644 };
 645 
 646 
 647 // This class is an interface used to implement task execution for the
 648 // reference processing.
 649 class AbstractRefProcTaskExecutor {
 650 public:
 651 
 652   // Abstract tasks to execute.
 653   class ProcessTask;
 654   class EnqueueTask;
 655 
 656   // Executes a task using worker threads.
 657   virtual void execute(ProcessTask& task) = 0;
 658   virtual void execute(EnqueueTask& task) = 0;
 659 
 660   // Switch to single threaded mode.
 661   virtual void set_single_threaded_mode() { };
 662 };
 663 
 664 // Abstract reference processing task to execute.
 665 class AbstractRefProcTaskExecutor::ProcessTask {
 666 protected:
 667   ProcessTask(ReferenceProcessor& ref_processor,
 668               DiscoveredList      refs_lists[],
 669               bool                marks_oops_alive)
 670     : _ref_processor(ref_processor),
 671       _refs_lists(refs_lists),
 672       _marks_oops_alive(marks_oops_alive)
 673   { }
 674 
 675 public:
 676   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
 677                     OopClosure& keep_alive,
 678                     VoidClosure& complete_gc) = 0;
 679 
 680   // Returns true if a task marks some oops as alive.
 681   bool marks_oops_alive() const
 682   { return _marks_oops_alive; }
 683 
 684 protected:
 685   ReferenceProcessor& _ref_processor;
 686   DiscoveredList*     _refs_lists;
 687   const bool          _marks_oops_alive;
 688 };
 689 
 690 // Abstract reference processing task to execute.
 691 class AbstractRefProcTaskExecutor::EnqueueTask {
 692 protected:
 693   EnqueueTask(ReferenceProcessor& ref_processor,
 694               DiscoveredList      refs_lists[],
 695               HeapWord*           pending_list_addr,
 696               int                 n_queues)
 697     : _ref_processor(ref_processor),
 698       _refs_lists(refs_lists),
 699       _pending_list_addr(pending_list_addr),
 700       _n_queues(n_queues)
 701   { }
 702 
 703 public:
 704   virtual void work(unsigned int work_id) = 0;
 705 
 706 protected:
 707   ReferenceProcessor& _ref_processor;
 708   DiscoveredList*     _refs_lists;
 709   HeapWord*           _pending_list_addr;
 710   int                 _n_queues;
 711 };
 712 
 713 #endif // SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP