1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoader.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/codeCacheExtensions.hpp" 32 #include "code/scopeDesc.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "gc/shared/gcLocker.inline.hpp" 35 #include "gc/shared/workgroup.hpp" 36 #include "interpreter/interpreter.hpp" 37 #include "interpreter/linkResolver.hpp" 38 #include "interpreter/oopMapCache.hpp" 39 #include "jvmtifiles/jvmtiEnv.hpp" 40 #include "logging/logConfiguration.hpp" 41 #include "memory/metaspaceShared.hpp" 42 #include "memory/oopFactory.hpp" 43 #include "memory/universe.inline.hpp" 44 #include "oops/instanceKlass.hpp" 45 #include "oops/objArrayOop.hpp" 46 #include "oops/oop.inline.hpp" 47 #include "oops/symbol.hpp" 48 #include "oops/verifyOopClosure.hpp" 49 #include "prims/jvm_misc.hpp" 50 #include "prims/jvmtiExport.hpp" 51 #include "prims/jvmtiThreadState.hpp" 52 #include "prims/privilegedStack.hpp" 53 #include "runtime/arguments.hpp" 54 #include "runtime/atomic.inline.hpp" 55 #include "runtime/biasedLocking.hpp" 56 #include "runtime/commandLineFlagConstraintList.hpp" 57 #include "runtime/commandLineFlagRangeList.hpp" 58 #include "runtime/deoptimization.hpp" 59 #include "runtime/fprofiler.hpp" 60 #include "runtime/frame.inline.hpp" 61 #include "runtime/globals.hpp" 62 #include "runtime/init.hpp" 63 #include "runtime/interfaceSupport.hpp" 64 #include "runtime/java.hpp" 65 #include "runtime/javaCalls.hpp" 66 #include "runtime/jniPeriodicChecker.hpp" 67 #include "runtime/memprofiler.hpp" 68 #include "runtime/mutexLocker.hpp" 69 #include "runtime/objectMonitor.hpp" 70 #include "runtime/orderAccess.inline.hpp" 71 #include "runtime/osThread.hpp" 72 #include "runtime/safepoint.hpp" 73 #include "runtime/sharedRuntime.hpp" 74 #include "runtime/statSampler.hpp" 75 #include "runtime/stubRoutines.hpp" 76 #include "runtime/sweeper.hpp" 77 #include "runtime/task.hpp" 78 #include "runtime/thread.inline.hpp" 79 #include "runtime/threadCritical.hpp" 80 #include "runtime/threadLocalStorage.hpp" 81 #include "runtime/vframe.hpp" 82 #include "runtime/vframeArray.hpp" 83 #include "runtime/vframe_hp.hpp" 84 #include "runtime/vmThread.hpp" 85 #include "runtime/vm_operations.hpp" 86 #include "runtime/vm_version.hpp" 87 #include "services/attachListener.hpp" 88 #include "services/management.hpp" 89 #include "services/memTracker.hpp" 90 #include "services/threadService.hpp" 91 #include "trace/traceMacros.hpp" 92 #include "trace/tracing.hpp" 93 #include "utilities/defaultStream.hpp" 94 #include "utilities/dtrace.hpp" 95 #include "utilities/events.hpp" 96 #include "utilities/macros.hpp" 97 #include "utilities/preserveException.hpp" 98 #if INCLUDE_ALL_GCS 99 #include "gc/cms/concurrentMarkSweepThread.hpp" 100 #include "gc/g1/concurrentMarkThread.inline.hpp" 101 #include "gc/parallel/pcTasks.hpp" 102 #endif // INCLUDE_ALL_GCS 103 #ifdef COMPILER1 104 #include "c1/c1_Compiler.hpp" 105 #endif 106 #ifdef COMPILER2 107 #include "opto/c2compiler.hpp" 108 #include "opto/idealGraphPrinter.hpp" 109 #endif 110 #if INCLUDE_RTM_OPT 111 #include "runtime/rtmLocking.hpp" 112 #endif 113 114 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC 115 116 #ifdef DTRACE_ENABLED 117 118 // Only bother with this argument setup if dtrace is available 119 120 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START 121 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP 122 123 #define DTRACE_THREAD_PROBE(probe, javathread) \ 124 { \ 125 ResourceMark rm(this); \ 126 int len = 0; \ 127 const char* name = (javathread)->get_thread_name(); \ 128 len = strlen(name); \ 129 HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */ \ 130 (char *) name, len, \ 131 java_lang_Thread::thread_id((javathread)->threadObj()), \ 132 (uintptr_t) (javathread)->osthread()->thread_id(), \ 133 java_lang_Thread::is_daemon((javathread)->threadObj())); \ 134 } 135 136 #else // ndef DTRACE_ENABLED 137 138 #define DTRACE_THREAD_PROBE(probe, javathread) 139 140 #endif // ndef DTRACE_ENABLED 141 142 143 // Class hierarchy 144 // - Thread 145 // - VMThread 146 // - WatcherThread 147 // - ConcurrentMarkSweepThread 148 // - JavaThread 149 // - CompilerThread 150 151 // ======= Thread ======== 152 // Support for forcing alignment of thread objects for biased locking 153 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) { 154 if (UseBiasedLocking) { 155 const int alignment = markOopDesc::biased_lock_alignment; 156 size_t aligned_size = size + (alignment - sizeof(intptr_t)); 157 void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC) 158 : AllocateHeap(aligned_size, flags, CURRENT_PC, 159 AllocFailStrategy::RETURN_NULL); 160 void* aligned_addr = (void*) align_size_up((intptr_t) real_malloc_addr, alignment); 161 assert(((uintptr_t) aligned_addr + (uintptr_t) size) <= 162 ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size), 163 "JavaThread alignment code overflowed allocated storage"); 164 if (TraceBiasedLocking) { 165 if (aligned_addr != real_malloc_addr) { 166 tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT, 167 real_malloc_addr, aligned_addr); 168 } 169 } 170 ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr; 171 return aligned_addr; 172 } else { 173 return throw_excpt? AllocateHeap(size, flags, CURRENT_PC) 174 : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL); 175 } 176 } 177 178 void Thread::operator delete(void* p) { 179 if (UseBiasedLocking) { 180 void* real_malloc_addr = ((Thread*) p)->_real_malloc_address; 181 FreeHeap(real_malloc_addr); 182 } else { 183 FreeHeap(p); 184 } 185 } 186 187 188 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread, 189 // JavaThread 190 191 192 Thread::Thread() { 193 // stack and get_thread 194 set_stack_base(NULL); 195 set_stack_size(0); 196 set_self_raw_id(0); 197 set_lgrp_id(-1); 198 DEBUG_ONLY(clear_suspendible_thread();) 199 200 // allocated data structures 201 set_osthread(NULL); 202 set_resource_area(new (mtThread)ResourceArea()); 203 DEBUG_ONLY(_current_resource_mark = NULL;) 204 set_handle_area(new (mtThread) HandleArea(NULL)); 205 set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true)); 206 set_active_handles(NULL); 207 set_free_handle_block(NULL); 208 set_last_handle_mark(NULL); 209 210 // This initial value ==> never claimed. 211 _oops_do_parity = 0; 212 213 // the handle mark links itself to last_handle_mark 214 new HandleMark(this); 215 216 // plain initialization 217 debug_only(_owned_locks = NULL;) 218 debug_only(_allow_allocation_count = 0;) 219 NOT_PRODUCT(_allow_safepoint_count = 0;) 220 NOT_PRODUCT(_skip_gcalot = false;) 221 _jvmti_env_iteration_count = 0; 222 set_allocated_bytes(0); 223 _vm_operation_started_count = 0; 224 _vm_operation_completed_count = 0; 225 _current_pending_monitor = NULL; 226 _current_pending_monitor_is_from_java = true; 227 _current_waiting_monitor = NULL; 228 _num_nested_signal = 0; 229 omFreeList = NULL; 230 omFreeCount = 0; 231 omFreeProvision = 32; 232 omInUseList = NULL; 233 omInUseCount = 0; 234 235 #ifdef ASSERT 236 _visited_for_critical_count = false; 237 #endif 238 239 _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true, 240 Monitor::_safepoint_check_sometimes); 241 _suspend_flags = 0; 242 243 // thread-specific hashCode stream generator state - Marsaglia shift-xor form 244 _hashStateX = os::random(); 245 _hashStateY = 842502087; 246 _hashStateZ = 0x8767; // (int)(3579807591LL & 0xffff) ; 247 _hashStateW = 273326509; 248 249 _OnTrap = 0; 250 _schedctl = NULL; 251 _Stalled = 0; 252 _TypeTag = 0x2BAD; 253 254 // Many of the following fields are effectively final - immutable 255 // Note that nascent threads can't use the Native Monitor-Mutex 256 // construct until the _MutexEvent is initialized ... 257 // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents 258 // we might instead use a stack of ParkEvents that we could provision on-demand. 259 // The stack would act as a cache to avoid calls to ParkEvent::Allocate() 260 // and ::Release() 261 _ParkEvent = ParkEvent::Allocate(this); 262 _SleepEvent = ParkEvent::Allocate(this); 263 _MutexEvent = ParkEvent::Allocate(this); 264 _MuxEvent = ParkEvent::Allocate(this); 265 266 #ifdef CHECK_UNHANDLED_OOPS 267 if (CheckUnhandledOops) { 268 _unhandled_oops = new UnhandledOops(this); 269 } 270 #endif // CHECK_UNHANDLED_OOPS 271 #ifdef ASSERT 272 if (UseBiasedLocking) { 273 assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed"); 274 assert(this == _real_malloc_address || 275 this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment), 276 "bug in forced alignment of thread objects"); 277 } 278 #endif // ASSERT 279 } 280 281 // Non-inlined version to be used where thread.inline.hpp shouldn't be included. 282 Thread* Thread::current_noinline() { 283 return Thread::current(); 284 } 285 286 void Thread::initialize_thread_local_storage() { 287 // Note: Make sure this method only calls 288 // non-blocking operations. Otherwise, it might not work 289 // with the thread-startup/safepoint interaction. 290 291 // During Java thread startup, safepoint code should allow this 292 // method to complete because it may need to allocate memory to 293 // store information for the new thread. 294 295 // initialize structure dependent on thread local storage 296 ThreadLocalStorage::set_thread(this); 297 } 298 299 void Thread::record_stack_base_and_size() { 300 set_stack_base(os::current_stack_base()); 301 set_stack_size(os::current_stack_size()); 302 if (is_Java_thread()) { 303 ((JavaThread*) this)->set_stack_overflow_limit(); 304 } 305 // CR 7190089: on Solaris, primordial thread's stack is adjusted 306 // in initialize_thread(). Without the adjustment, stack size is 307 // incorrect if stack is set to unlimited (ulimit -s unlimited). 308 // So far, only Solaris has real implementation of initialize_thread(). 309 // 310 // set up any platform-specific state. 311 os::initialize_thread(this); 312 313 #if INCLUDE_NMT 314 // record thread's native stack, stack grows downward 315 address stack_low_addr = stack_base() - stack_size(); 316 MemTracker::record_thread_stack(stack_low_addr, stack_size()); 317 #endif // INCLUDE_NMT 318 } 319 320 321 Thread::~Thread() { 322 // Reclaim the objectmonitors from the omFreeList of the moribund thread. 323 ObjectSynchronizer::omFlush(this); 324 325 EVENT_THREAD_DESTRUCT(this); 326 327 // stack_base can be NULL if the thread is never started or exited before 328 // record_stack_base_and_size called. Although, we would like to ensure 329 // that all started threads do call record_stack_base_and_size(), there is 330 // not proper way to enforce that. 331 #if INCLUDE_NMT 332 if (_stack_base != NULL) { 333 address low_stack_addr = stack_base() - stack_size(); 334 MemTracker::release_thread_stack(low_stack_addr, stack_size()); 335 #ifdef ASSERT 336 set_stack_base(NULL); 337 #endif 338 } 339 #endif // INCLUDE_NMT 340 341 // deallocate data structures 342 delete resource_area(); 343 // since the handle marks are using the handle area, we have to deallocated the root 344 // handle mark before deallocating the thread's handle area, 345 assert(last_handle_mark() != NULL, "check we have an element"); 346 delete last_handle_mark(); 347 assert(last_handle_mark() == NULL, "check we have reached the end"); 348 349 // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads. 350 // We NULL out the fields for good hygiene. 351 ParkEvent::Release(_ParkEvent); _ParkEvent = NULL; 352 ParkEvent::Release(_SleepEvent); _SleepEvent = NULL; 353 ParkEvent::Release(_MutexEvent); _MutexEvent = NULL; 354 ParkEvent::Release(_MuxEvent); _MuxEvent = NULL; 355 356 delete handle_area(); 357 delete metadata_handles(); 358 359 // osthread() can be NULL, if creation of thread failed. 360 if (osthread() != NULL) os::free_thread(osthread()); 361 362 delete _SR_lock; 363 364 // clear thread local storage if the Thread is deleting itself 365 if (this == Thread::current()) { 366 ThreadLocalStorage::set_thread(NULL); 367 } else { 368 // In the case where we're not the current thread, invalidate all the 369 // caches in case some code tries to get the current thread or the 370 // thread that was destroyed, and gets stale information. 371 ThreadLocalStorage::invalidate_all(); 372 } 373 CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();) 374 } 375 376 // NOTE: dummy function for assertion purpose. 377 void Thread::run() { 378 ShouldNotReachHere(); 379 } 380 381 #ifdef ASSERT 382 // Private method to check for dangling thread pointer 383 void check_for_dangling_thread_pointer(Thread *thread) { 384 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(), 385 "possibility of dangling Thread pointer"); 386 } 387 #endif 388 389 ThreadPriority Thread::get_priority(const Thread* const thread) { 390 ThreadPriority priority; 391 // Can return an error! 392 (void)os::get_priority(thread, priority); 393 assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found"); 394 return priority; 395 } 396 397 void Thread::set_priority(Thread* thread, ThreadPriority priority) { 398 debug_only(check_for_dangling_thread_pointer(thread);) 399 // Can return an error! 400 (void)os::set_priority(thread, priority); 401 } 402 403 404 void Thread::start(Thread* thread) { 405 // Start is different from resume in that its safety is guaranteed by context or 406 // being called from a Java method synchronized on the Thread object. 407 if (!DisableStartThread) { 408 if (thread->is_Java_thread()) { 409 // Initialize the thread state to RUNNABLE before starting this thread. 410 // Can not set it after the thread started because we do not know the 411 // exact thread state at that time. It could be in MONITOR_WAIT or 412 // in SLEEPING or some other state. 413 java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(), 414 java_lang_Thread::RUNNABLE); 415 } 416 os::start_thread(thread); 417 } 418 } 419 420 // Enqueue a VM_Operation to do the job for us - sometime later 421 void Thread::send_async_exception(oop java_thread, oop java_throwable) { 422 VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable); 423 VMThread::execute(vm_stop); 424 } 425 426 427 // Check if an external suspend request has completed (or has been 428 // cancelled). Returns true if the thread is externally suspended and 429 // false otherwise. 430 // 431 // The bits parameter returns information about the code path through 432 // the routine. Useful for debugging: 433 // 434 // set in is_ext_suspend_completed(): 435 // 0x00000001 - routine was entered 436 // 0x00000010 - routine return false at end 437 // 0x00000100 - thread exited (return false) 438 // 0x00000200 - suspend request cancelled (return false) 439 // 0x00000400 - thread suspended (return true) 440 // 0x00001000 - thread is in a suspend equivalent state (return true) 441 // 0x00002000 - thread is native and walkable (return true) 442 // 0x00004000 - thread is native_trans and walkable (needed retry) 443 // 444 // set in wait_for_ext_suspend_completion(): 445 // 0x00010000 - routine was entered 446 // 0x00020000 - suspend request cancelled before loop (return false) 447 // 0x00040000 - thread suspended before loop (return true) 448 // 0x00080000 - suspend request cancelled in loop (return false) 449 // 0x00100000 - thread suspended in loop (return true) 450 // 0x00200000 - suspend not completed during retry loop (return false) 451 452 // Helper class for tracing suspend wait debug bits. 453 // 454 // 0x00000100 indicates that the target thread exited before it could 455 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and 456 // 0x00080000 each indicate a cancelled suspend request so they don't 457 // count as wait failures either. 458 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000) 459 460 class TraceSuspendDebugBits : public StackObj { 461 private: 462 JavaThread * jt; 463 bool is_wait; 464 bool called_by_wait; // meaningful when !is_wait 465 uint32_t * bits; 466 467 public: 468 TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait, 469 uint32_t *_bits) { 470 jt = _jt; 471 is_wait = _is_wait; 472 called_by_wait = _called_by_wait; 473 bits = _bits; 474 } 475 476 ~TraceSuspendDebugBits() { 477 if (!is_wait) { 478 #if 1 479 // By default, don't trace bits for is_ext_suspend_completed() calls. 480 // That trace is very chatty. 481 return; 482 #else 483 if (!called_by_wait) { 484 // If tracing for is_ext_suspend_completed() is enabled, then only 485 // trace calls to it from wait_for_ext_suspend_completion() 486 return; 487 } 488 #endif 489 } 490 491 if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) { 492 if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) { 493 MutexLocker ml(Threads_lock); // needed for get_thread_name() 494 ResourceMark rm; 495 496 tty->print_cr( 497 "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)", 498 jt->get_thread_name(), *bits); 499 500 guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed"); 501 } 502 } 503 } 504 }; 505 #undef DEBUG_FALSE_BITS 506 507 508 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, 509 uint32_t *bits) { 510 TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits); 511 512 bool did_trans_retry = false; // only do thread_in_native_trans retry once 513 bool do_trans_retry; // flag to force the retry 514 515 *bits |= 0x00000001; 516 517 do { 518 do_trans_retry = false; 519 520 if (is_exiting()) { 521 // Thread is in the process of exiting. This is always checked 522 // first to reduce the risk of dereferencing a freed JavaThread. 523 *bits |= 0x00000100; 524 return false; 525 } 526 527 if (!is_external_suspend()) { 528 // Suspend request is cancelled. This is always checked before 529 // is_ext_suspended() to reduce the risk of a rogue resume 530 // confusing the thread that made the suspend request. 531 *bits |= 0x00000200; 532 return false; 533 } 534 535 if (is_ext_suspended()) { 536 // thread is suspended 537 *bits |= 0x00000400; 538 return true; 539 } 540 541 // Now that we no longer do hard suspends of threads running 542 // native code, the target thread can be changing thread state 543 // while we are in this routine: 544 // 545 // _thread_in_native -> _thread_in_native_trans -> _thread_blocked 546 // 547 // We save a copy of the thread state as observed at this moment 548 // and make our decision about suspend completeness based on the 549 // copy. This closes the race where the thread state is seen as 550 // _thread_in_native_trans in the if-thread_blocked check, but is 551 // seen as _thread_blocked in if-thread_in_native_trans check. 552 JavaThreadState save_state = thread_state(); 553 554 if (save_state == _thread_blocked && is_suspend_equivalent()) { 555 // If the thread's state is _thread_blocked and this blocking 556 // condition is known to be equivalent to a suspend, then we can 557 // consider the thread to be externally suspended. This means that 558 // the code that sets _thread_blocked has been modified to do 559 // self-suspension if the blocking condition releases. We also 560 // used to check for CONDVAR_WAIT here, but that is now covered by 561 // the _thread_blocked with self-suspension check. 562 // 563 // Return true since we wouldn't be here unless there was still an 564 // external suspend request. 565 *bits |= 0x00001000; 566 return true; 567 } else if (save_state == _thread_in_native && frame_anchor()->walkable()) { 568 // Threads running native code will self-suspend on native==>VM/Java 569 // transitions. If its stack is walkable (should always be the case 570 // unless this function is called before the actual java_suspend() 571 // call), then the wait is done. 572 *bits |= 0x00002000; 573 return true; 574 } else if (!called_by_wait && !did_trans_retry && 575 save_state == _thread_in_native_trans && 576 frame_anchor()->walkable()) { 577 // The thread is transitioning from thread_in_native to another 578 // thread state. check_safepoint_and_suspend_for_native_trans() 579 // will force the thread to self-suspend. If it hasn't gotten 580 // there yet we may have caught the thread in-between the native 581 // code check above and the self-suspend. Lucky us. If we were 582 // called by wait_for_ext_suspend_completion(), then it 583 // will be doing the retries so we don't have to. 584 // 585 // Since we use the saved thread state in the if-statement above, 586 // there is a chance that the thread has already transitioned to 587 // _thread_blocked by the time we get here. In that case, we will 588 // make a single unnecessary pass through the logic below. This 589 // doesn't hurt anything since we still do the trans retry. 590 591 *bits |= 0x00004000; 592 593 // Once the thread leaves thread_in_native_trans for another 594 // thread state, we break out of this retry loop. We shouldn't 595 // need this flag to prevent us from getting back here, but 596 // sometimes paranoia is good. 597 did_trans_retry = true; 598 599 // We wait for the thread to transition to a more usable state. 600 for (int i = 1; i <= SuspendRetryCount; i++) { 601 // We used to do an "os::yield_all(i)" call here with the intention 602 // that yielding would increase on each retry. However, the parameter 603 // is ignored on Linux which means the yield didn't scale up. Waiting 604 // on the SR_lock below provides a much more predictable scale up for 605 // the delay. It also provides a simple/direct point to check for any 606 // safepoint requests from the VMThread 607 608 // temporarily drops SR_lock while doing wait with safepoint check 609 // (if we're a JavaThread - the WatcherThread can also call this) 610 // and increase delay with each retry 611 SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay); 612 613 // check the actual thread state instead of what we saved above 614 if (thread_state() != _thread_in_native_trans) { 615 // the thread has transitioned to another thread state so 616 // try all the checks (except this one) one more time. 617 do_trans_retry = true; 618 break; 619 } 620 } // end retry loop 621 622 623 } 624 } while (do_trans_retry); 625 626 *bits |= 0x00000010; 627 return false; 628 } 629 630 // Wait for an external suspend request to complete (or be cancelled). 631 // Returns true if the thread is externally suspended and false otherwise. 632 // 633 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay, 634 uint32_t *bits) { 635 TraceSuspendDebugBits tsdb(this, true /* is_wait */, 636 false /* !called_by_wait */, bits); 637 638 // local flag copies to minimize SR_lock hold time 639 bool is_suspended; 640 bool pending; 641 uint32_t reset_bits; 642 643 // set a marker so is_ext_suspend_completed() knows we are the caller 644 *bits |= 0x00010000; 645 646 // We use reset_bits to reinitialize the bits value at the top of 647 // each retry loop. This allows the caller to make use of any 648 // unused bits for their own marking purposes. 649 reset_bits = *bits; 650 651 { 652 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 653 is_suspended = is_ext_suspend_completed(true /* called_by_wait */, 654 delay, bits); 655 pending = is_external_suspend(); 656 } 657 // must release SR_lock to allow suspension to complete 658 659 if (!pending) { 660 // A cancelled suspend request is the only false return from 661 // is_ext_suspend_completed() that keeps us from entering the 662 // retry loop. 663 *bits |= 0x00020000; 664 return false; 665 } 666 667 if (is_suspended) { 668 *bits |= 0x00040000; 669 return true; 670 } 671 672 for (int i = 1; i <= retries; i++) { 673 *bits = reset_bits; // reinit to only track last retry 674 675 // We used to do an "os::yield_all(i)" call here with the intention 676 // that yielding would increase on each retry. However, the parameter 677 // is ignored on Linux which means the yield didn't scale up. Waiting 678 // on the SR_lock below provides a much more predictable scale up for 679 // the delay. It also provides a simple/direct point to check for any 680 // safepoint requests from the VMThread 681 682 { 683 MutexLocker ml(SR_lock()); 684 // wait with safepoint check (if we're a JavaThread - the WatcherThread 685 // can also call this) and increase delay with each retry 686 SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay); 687 688 is_suspended = is_ext_suspend_completed(true /* called_by_wait */, 689 delay, bits); 690 691 // It is possible for the external suspend request to be cancelled 692 // (by a resume) before the actual suspend operation is completed. 693 // Refresh our local copy to see if we still need to wait. 694 pending = is_external_suspend(); 695 } 696 697 if (!pending) { 698 // A cancelled suspend request is the only false return from 699 // is_ext_suspend_completed() that keeps us from staying in the 700 // retry loop. 701 *bits |= 0x00080000; 702 return false; 703 } 704 705 if (is_suspended) { 706 *bits |= 0x00100000; 707 return true; 708 } 709 } // end retry loop 710 711 // thread did not suspend after all our retries 712 *bits |= 0x00200000; 713 return false; 714 } 715 716 #ifndef PRODUCT 717 void JavaThread::record_jump(address target, address instr, const char* file, 718 int line) { 719 720 // This should not need to be atomic as the only way for simultaneous 721 // updates is via interrupts. Even then this should be rare or non-existent 722 // and we don't care that much anyway. 723 724 int index = _jmp_ring_index; 725 _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1); 726 _jmp_ring[index]._target = (intptr_t) target; 727 _jmp_ring[index]._instruction = (intptr_t) instr; 728 _jmp_ring[index]._file = file; 729 _jmp_ring[index]._line = line; 730 } 731 #endif // PRODUCT 732 733 // Called by flat profiler 734 // Callers have already called wait_for_ext_suspend_completion 735 // The assertion for that is currently too complex to put here: 736 bool JavaThread::profile_last_Java_frame(frame* _fr) { 737 bool gotframe = false; 738 // self suspension saves needed state. 739 if (has_last_Java_frame() && _anchor.walkable()) { 740 *_fr = pd_last_frame(); 741 gotframe = true; 742 } 743 return gotframe; 744 } 745 746 void Thread::interrupt(Thread* thread) { 747 debug_only(check_for_dangling_thread_pointer(thread);) 748 os::interrupt(thread); 749 } 750 751 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) { 752 debug_only(check_for_dangling_thread_pointer(thread);) 753 // Note: If clear_interrupted==false, this simply fetches and 754 // returns the value of the field osthread()->interrupted(). 755 return os::is_interrupted(thread, clear_interrupted); 756 } 757 758 759 // GC Support 760 bool Thread::claim_oops_do_par_case(int strong_roots_parity) { 761 jint thread_parity = _oops_do_parity; 762 if (thread_parity != strong_roots_parity) { 763 jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity); 764 if (res == thread_parity) { 765 return true; 766 } else { 767 guarantee(res == strong_roots_parity, "Or else what?"); 768 return false; 769 } 770 } 771 return false; 772 } 773 774 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 775 active_handles()->oops_do(f); 776 // Do oop for ThreadShadow 777 f->do_oop((oop*)&_pending_exception); 778 handle_area()->oops_do(f); 779 } 780 781 void Thread::nmethods_do(CodeBlobClosure* cf) { 782 // no nmethods in a generic thread... 783 } 784 785 void Thread::metadata_handles_do(void f(Metadata*)) { 786 // Only walk the Handles in Thread. 787 if (metadata_handles() != NULL) { 788 for (int i = 0; i< metadata_handles()->length(); i++) { 789 f(metadata_handles()->at(i)); 790 } 791 } 792 } 793 794 void Thread::print_on(outputStream* st) const { 795 // get_priority assumes osthread initialized 796 if (osthread() != NULL) { 797 int os_prio; 798 if (os::get_native_priority(this, &os_prio) == OS_OK) { 799 st->print("os_prio=%d ", os_prio); 800 } 801 st->print("tid=" INTPTR_FORMAT " ", this); 802 ext().print_on(st); 803 osthread()->print_on(st); 804 } 805 debug_only(if (WizardMode) print_owned_locks_on(st);) 806 } 807 808 // Thread::print_on_error() is called by fatal error handler. Don't use 809 // any lock or allocate memory. 810 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const { 811 if (is_VM_thread()) st->print("VMThread"); 812 else if (is_Compiler_thread()) st->print("CompilerThread"); 813 else if (is_Java_thread()) st->print("JavaThread"); 814 else if (is_GC_task_thread()) st->print("GCTaskThread"); 815 else if (is_Watcher_thread()) st->print("WatcherThread"); 816 else if (is_ConcurrentGC_thread()) st->print("ConcurrentGCThread"); 817 else st->print("Thread"); 818 819 st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]", 820 _stack_base - _stack_size, _stack_base); 821 822 if (osthread()) { 823 st->print(" [id=%d]", osthread()->thread_id()); 824 } 825 } 826 827 #ifdef ASSERT 828 void Thread::print_owned_locks_on(outputStream* st) const { 829 Monitor *cur = _owned_locks; 830 if (cur == NULL) { 831 st->print(" (no locks) "); 832 } else { 833 st->print_cr(" Locks owned:"); 834 while (cur) { 835 cur->print_on(st); 836 cur = cur->next(); 837 } 838 } 839 } 840 841 static int ref_use_count = 0; 842 843 bool Thread::owns_locks_but_compiled_lock() const { 844 for (Monitor *cur = _owned_locks; cur; cur = cur->next()) { 845 if (cur != Compile_lock) return true; 846 } 847 return false; 848 } 849 850 851 #endif 852 853 #ifndef PRODUCT 854 855 // The flag: potential_vm_operation notifies if this particular safepoint state could potential 856 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that 857 // no threads which allow_vm_block's are held 858 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) { 859 // Check if current thread is allowed to block at a safepoint 860 if (!(_allow_safepoint_count == 0)) { 861 fatal("Possible safepoint reached by thread that does not allow it"); 862 } 863 if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) { 864 fatal("LEAF method calling lock?"); 865 } 866 867 #ifdef ASSERT 868 if (potential_vm_operation && is_Java_thread() 869 && !Universe::is_bootstrapping()) { 870 // Make sure we do not hold any locks that the VM thread also uses. 871 // This could potentially lead to deadlocks 872 for (Monitor *cur = _owned_locks; cur; cur = cur->next()) { 873 // Threads_lock is special, since the safepoint synchronization will not start before this is 874 // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock, 875 // since it is used to transfer control between JavaThreads and the VMThread 876 // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first! 877 if ((cur->allow_vm_block() && 878 cur != Threads_lock && 879 cur != Compile_lock && // Temporary: should not be necessary when we get separate compilation 880 cur != VMOperationRequest_lock && 881 cur != VMOperationQueue_lock) || 882 cur->rank() == Mutex::special) { 883 fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name())); 884 } 885 } 886 } 887 888 if (GCALotAtAllSafepoints) { 889 // We could enter a safepoint here and thus have a gc 890 InterfaceSupport::check_gc_alot(); 891 } 892 #endif 893 } 894 #endif 895 896 bool Thread::is_in_stack(address adr) const { 897 assert(Thread::current() == this, "is_in_stack can only be called from current thread"); 898 address end = os::current_stack_pointer(); 899 // Allow non Java threads to call this without stack_base 900 if (_stack_base == NULL) return true; 901 if (stack_base() >= adr && adr >= end) return true; 902 903 return false; 904 } 905 906 907 bool Thread::is_in_usable_stack(address adr) const { 908 size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0; 909 size_t usable_stack_size = _stack_size - stack_guard_size; 910 911 return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size)); 912 } 913 914 915 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter 916 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being 917 // used for compilation in the future. If that change is made, the need for these methods 918 // should be revisited, and they should be removed if possible. 919 920 bool Thread::is_lock_owned(address adr) const { 921 return on_local_stack(adr); 922 } 923 924 bool Thread::set_as_starting_thread() { 925 // NOTE: this must be called inside the main thread. 926 return os::create_main_thread((JavaThread*)this); 927 } 928 929 static void initialize_class(Symbol* class_name, TRAPS) { 930 Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK); 931 InstanceKlass::cast(klass)->initialize(CHECK); 932 } 933 934 935 // Creates the initial ThreadGroup 936 static Handle create_initial_thread_group(TRAPS) { 937 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH); 938 instanceKlassHandle klass (THREAD, k); 939 940 Handle system_instance = klass->allocate_instance_handle(CHECK_NH); 941 { 942 JavaValue result(T_VOID); 943 JavaCalls::call_special(&result, 944 system_instance, 945 klass, 946 vmSymbols::object_initializer_name(), 947 vmSymbols::void_method_signature(), 948 CHECK_NH); 949 } 950 Universe::set_system_thread_group(system_instance()); 951 952 Handle main_instance = klass->allocate_instance_handle(CHECK_NH); 953 { 954 JavaValue result(T_VOID); 955 Handle string = java_lang_String::create_from_str("main", CHECK_NH); 956 JavaCalls::call_special(&result, 957 main_instance, 958 klass, 959 vmSymbols::object_initializer_name(), 960 vmSymbols::threadgroup_string_void_signature(), 961 system_instance, 962 string, 963 CHECK_NH); 964 } 965 return main_instance; 966 } 967 968 // Creates the initial Thread 969 static oop create_initial_thread(Handle thread_group, JavaThread* thread, 970 TRAPS) { 971 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL); 972 instanceKlassHandle klass (THREAD, k); 973 instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL); 974 975 java_lang_Thread::set_thread(thread_oop(), thread); 976 java_lang_Thread::set_priority(thread_oop(), NormPriority); 977 thread->set_threadObj(thread_oop()); 978 979 Handle string = java_lang_String::create_from_str("main", CHECK_NULL); 980 981 JavaValue result(T_VOID); 982 JavaCalls::call_special(&result, thread_oop, 983 klass, 984 vmSymbols::object_initializer_name(), 985 vmSymbols::threadgroup_string_void_signature(), 986 thread_group, 987 string, 988 CHECK_NULL); 989 return thread_oop(); 990 } 991 992 static void call_initializeSystemClass(TRAPS) { 993 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK); 994 instanceKlassHandle klass (THREAD, k); 995 996 JavaValue result(T_VOID); 997 JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(), 998 vmSymbols::void_method_signature(), CHECK); 999 } 1000 1001 char java_runtime_name[128] = ""; 1002 char java_runtime_version[128] = ""; 1003 1004 // extract the JRE name from sun.misc.Version.java_runtime_name 1005 static const char* get_java_runtime_name(TRAPS) { 1006 Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(), 1007 Handle(), Handle(), CHECK_AND_CLEAR_NULL); 1008 fieldDescriptor fd; 1009 bool found = k != NULL && 1010 InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(), 1011 vmSymbols::string_signature(), &fd); 1012 if (found) { 1013 oop name_oop = k->java_mirror()->obj_field(fd.offset()); 1014 if (name_oop == NULL) { 1015 return NULL; 1016 } 1017 const char* name = java_lang_String::as_utf8_string(name_oop, 1018 java_runtime_name, 1019 sizeof(java_runtime_name)); 1020 return name; 1021 } else { 1022 return NULL; 1023 } 1024 } 1025 1026 // extract the JRE version from sun.misc.Version.java_runtime_version 1027 static const char* get_java_runtime_version(TRAPS) { 1028 Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(), 1029 Handle(), Handle(), CHECK_AND_CLEAR_NULL); 1030 fieldDescriptor fd; 1031 bool found = k != NULL && 1032 InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(), 1033 vmSymbols::string_signature(), &fd); 1034 if (found) { 1035 oop name_oop = k->java_mirror()->obj_field(fd.offset()); 1036 if (name_oop == NULL) { 1037 return NULL; 1038 } 1039 const char* name = java_lang_String::as_utf8_string(name_oop, 1040 java_runtime_version, 1041 sizeof(java_runtime_version)); 1042 return name; 1043 } else { 1044 return NULL; 1045 } 1046 } 1047 1048 // General purpose hook into Java code, run once when the VM is initialized. 1049 // The Java library method itself may be changed independently from the VM. 1050 static void call_postVMInitHook(TRAPS) { 1051 Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD); 1052 instanceKlassHandle klass (THREAD, k); 1053 if (klass.not_null()) { 1054 JavaValue result(T_VOID); 1055 JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(), 1056 vmSymbols::void_method_signature(), 1057 CHECK); 1058 } 1059 } 1060 1061 static void reset_vm_info_property(TRAPS) { 1062 // the vm info string 1063 ResourceMark rm(THREAD); 1064 const char *vm_info = VM_Version::vm_info_string(); 1065 1066 // java.lang.System class 1067 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK); 1068 instanceKlassHandle klass (THREAD, k); 1069 1070 // setProperty arguments 1071 Handle key_str = java_lang_String::create_from_str("java.vm.info", CHECK); 1072 Handle value_str = java_lang_String::create_from_str(vm_info, CHECK); 1073 1074 // return value 1075 JavaValue r(T_OBJECT); 1076 1077 // public static String setProperty(String key, String value); 1078 JavaCalls::call_static(&r, 1079 klass, 1080 vmSymbols::setProperty_name(), 1081 vmSymbols::string_string_string_signature(), 1082 key_str, 1083 value_str, 1084 CHECK); 1085 } 1086 1087 1088 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name, 1089 bool daemon, TRAPS) { 1090 assert(thread_group.not_null(), "thread group should be specified"); 1091 assert(threadObj() == NULL, "should only create Java thread object once"); 1092 1093 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK); 1094 instanceKlassHandle klass (THREAD, k); 1095 instanceHandle thread_oop = klass->allocate_instance_handle(CHECK); 1096 1097 java_lang_Thread::set_thread(thread_oop(), this); 1098 java_lang_Thread::set_priority(thread_oop(), NormPriority); 1099 set_threadObj(thread_oop()); 1100 1101 JavaValue result(T_VOID); 1102 if (thread_name != NULL) { 1103 Handle name = java_lang_String::create_from_str(thread_name, CHECK); 1104 // Thread gets assigned specified name and null target 1105 JavaCalls::call_special(&result, 1106 thread_oop, 1107 klass, 1108 vmSymbols::object_initializer_name(), 1109 vmSymbols::threadgroup_string_void_signature(), 1110 thread_group, // Argument 1 1111 name, // Argument 2 1112 THREAD); 1113 } else { 1114 // Thread gets assigned name "Thread-nnn" and null target 1115 // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument) 1116 JavaCalls::call_special(&result, 1117 thread_oop, 1118 klass, 1119 vmSymbols::object_initializer_name(), 1120 vmSymbols::threadgroup_runnable_void_signature(), 1121 thread_group, // Argument 1 1122 Handle(), // Argument 2 1123 THREAD); 1124 } 1125 1126 1127 if (daemon) { 1128 java_lang_Thread::set_daemon(thread_oop()); 1129 } 1130 1131 if (HAS_PENDING_EXCEPTION) { 1132 return; 1133 } 1134 1135 KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass()); 1136 Handle threadObj(THREAD, this->threadObj()); 1137 1138 JavaCalls::call_special(&result, 1139 thread_group, 1140 group, 1141 vmSymbols::add_method_name(), 1142 vmSymbols::thread_void_signature(), 1143 threadObj, // Arg 1 1144 THREAD); 1145 } 1146 1147 // NamedThread -- non-JavaThread subclasses with multiple 1148 // uniquely named instances should derive from this. 1149 NamedThread::NamedThread() : Thread() { 1150 _name = NULL; 1151 _processed_thread = NULL; 1152 } 1153 1154 NamedThread::~NamedThread() { 1155 if (_name != NULL) { 1156 FREE_C_HEAP_ARRAY(char, _name); 1157 _name = NULL; 1158 } 1159 } 1160 1161 void NamedThread::set_name(const char* format, ...) { 1162 guarantee(_name == NULL, "Only get to set name once."); 1163 _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread); 1164 guarantee(_name != NULL, "alloc failure"); 1165 va_list ap; 1166 va_start(ap, format); 1167 jio_vsnprintf(_name, max_name_len, format, ap); 1168 va_end(ap); 1169 } 1170 1171 void NamedThread::initialize_named_thread() { 1172 set_native_thread_name(name()); 1173 } 1174 1175 void NamedThread::print_on(outputStream* st) const { 1176 st->print("\"%s\" ", name()); 1177 Thread::print_on(st); 1178 st->cr(); 1179 } 1180 1181 1182 // ======= WatcherThread ======== 1183 1184 // The watcher thread exists to simulate timer interrupts. It should 1185 // be replaced by an abstraction over whatever native support for 1186 // timer interrupts exists on the platform. 1187 1188 WatcherThread* WatcherThread::_watcher_thread = NULL; 1189 bool WatcherThread::_startable = false; 1190 volatile bool WatcherThread::_should_terminate = false; 1191 1192 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) { 1193 assert(watcher_thread() == NULL, "we can only allocate one WatcherThread"); 1194 if (os::create_thread(this, os::watcher_thread)) { 1195 _watcher_thread = this; 1196 1197 // Set the watcher thread to the highest OS priority which should not be 1198 // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY 1199 // is created. The only normal thread using this priority is the reference 1200 // handler thread, which runs for very short intervals only. 1201 // If the VMThread's priority is not lower than the WatcherThread profiling 1202 // will be inaccurate. 1203 os::set_priority(this, MaxPriority); 1204 if (!DisableStartThread) { 1205 os::start_thread(this); 1206 } 1207 } 1208 } 1209 1210 int WatcherThread::sleep() const { 1211 // The WatcherThread does not participate in the safepoint protocol 1212 // for the PeriodicTask_lock because it is not a JavaThread. 1213 MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag); 1214 1215 if (_should_terminate) { 1216 // check for termination before we do any housekeeping or wait 1217 return 0; // we did not sleep. 1218 } 1219 1220 // remaining will be zero if there are no tasks, 1221 // causing the WatcherThread to sleep until a task is 1222 // enrolled 1223 int remaining = PeriodicTask::time_to_wait(); 1224 int time_slept = 0; 1225 1226 // we expect this to timeout - we only ever get unparked when 1227 // we should terminate or when a new task has been enrolled 1228 OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */); 1229 1230 jlong time_before_loop = os::javaTimeNanos(); 1231 1232 while (true) { 1233 bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, 1234 remaining); 1235 jlong now = os::javaTimeNanos(); 1236 1237 if (remaining == 0) { 1238 // if we didn't have any tasks we could have waited for a long time 1239 // consider the time_slept zero and reset time_before_loop 1240 time_slept = 0; 1241 time_before_loop = now; 1242 } else { 1243 // need to recalculate since we might have new tasks in _tasks 1244 time_slept = (int) ((now - time_before_loop) / 1000000); 1245 } 1246 1247 // Change to task list or spurious wakeup of some kind 1248 if (timedout || _should_terminate) { 1249 break; 1250 } 1251 1252 remaining = PeriodicTask::time_to_wait(); 1253 if (remaining == 0) { 1254 // Last task was just disenrolled so loop around and wait until 1255 // another task gets enrolled 1256 continue; 1257 } 1258 1259 remaining -= time_slept; 1260 if (remaining <= 0) { 1261 break; 1262 } 1263 } 1264 1265 return time_slept; 1266 } 1267 1268 void WatcherThread::run() { 1269 assert(this == watcher_thread(), "just checking"); 1270 1271 this->record_stack_base_and_size(); 1272 this->initialize_thread_local_storage(); 1273 this->set_native_thread_name(this->name()); 1274 this->set_active_handles(JNIHandleBlock::allocate_block()); 1275 while (true) { 1276 assert(watcher_thread() == Thread::current(), "thread consistency check"); 1277 assert(watcher_thread() == this, "thread consistency check"); 1278 1279 // Calculate how long it'll be until the next PeriodicTask work 1280 // should be done, and sleep that amount of time. 1281 int time_waited = sleep(); 1282 1283 if (is_error_reported()) { 1284 // A fatal error has happened, the error handler(VMError::report_and_die) 1285 // should abort JVM after creating an error log file. However in some 1286 // rare cases, the error handler itself might deadlock. Here we try to 1287 // kill JVM if the fatal error handler fails to abort in 2 minutes. 1288 // 1289 // This code is in WatcherThread because WatcherThread wakes up 1290 // periodically so the fatal error handler doesn't need to do anything; 1291 // also because the WatcherThread is less likely to crash than other 1292 // threads. 1293 1294 for (;;) { 1295 if (!ShowMessageBoxOnError 1296 && (OnError == NULL || OnError[0] == '\0') 1297 && Arguments::abort_hook() == NULL) { 1298 os::sleep(this, ErrorLogTimeout * 60 * 1000, false); 1299 fdStream err(defaultStream::output_fd()); 1300 err.print_raw_cr("# [ timer expired, abort... ]"); 1301 // skip atexit/vm_exit/vm_abort hooks 1302 os::die(); 1303 } 1304 1305 // Wake up 5 seconds later, the fatal handler may reset OnError or 1306 // ShowMessageBoxOnError when it is ready to abort. 1307 os::sleep(this, 5 * 1000, false); 1308 } 1309 } 1310 1311 if (_should_terminate) { 1312 // check for termination before posting the next tick 1313 break; 1314 } 1315 1316 PeriodicTask::real_time_tick(time_waited); 1317 } 1318 1319 // Signal that it is terminated 1320 { 1321 MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag); 1322 _watcher_thread = NULL; 1323 Terminator_lock->notify(); 1324 } 1325 1326 // Thread destructor usually does this.. 1327 ThreadLocalStorage::set_thread(NULL); 1328 } 1329 1330 void WatcherThread::start() { 1331 assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required"); 1332 1333 if (watcher_thread() == NULL && _startable) { 1334 _should_terminate = false; 1335 // Create the single instance of WatcherThread 1336 new WatcherThread(); 1337 } 1338 } 1339 1340 void WatcherThread::make_startable() { 1341 assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required"); 1342 _startable = true; 1343 } 1344 1345 void WatcherThread::stop() { 1346 { 1347 // Follow normal safepoint aware lock enter protocol since the 1348 // WatcherThread is stopped by another JavaThread. 1349 MutexLocker ml(PeriodicTask_lock); 1350 _should_terminate = true; 1351 1352 WatcherThread* watcher = watcher_thread(); 1353 if (watcher != NULL) { 1354 // unpark the WatcherThread so it can see that it should terminate 1355 watcher->unpark(); 1356 } 1357 } 1358 1359 MutexLocker mu(Terminator_lock); 1360 1361 while (watcher_thread() != NULL) { 1362 // This wait should make safepoint checks, wait without a timeout, 1363 // and wait as a suspend-equivalent condition. 1364 // 1365 // Note: If the FlatProfiler is running, then this thread is waiting 1366 // for the WatcherThread to terminate and the WatcherThread, via the 1367 // FlatProfiler task, is waiting for the external suspend request on 1368 // this thread to complete. wait_for_ext_suspend_completion() will 1369 // eventually timeout, but that takes time. Making this wait a 1370 // suspend-equivalent condition solves that timeout problem. 1371 // 1372 Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0, 1373 Mutex::_as_suspend_equivalent_flag); 1374 } 1375 } 1376 1377 void WatcherThread::unpark() { 1378 assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required"); 1379 PeriodicTask_lock->notify(); 1380 } 1381 1382 void WatcherThread::print_on(outputStream* st) const { 1383 st->print("\"%s\" ", name()); 1384 Thread::print_on(st); 1385 st->cr(); 1386 } 1387 1388 // ======= JavaThread ======== 1389 1390 // A JavaThread is a normal Java thread 1391 1392 void JavaThread::initialize() { 1393 // Initialize fields 1394 1395 // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids) 1396 set_claimed_par_id(UINT_MAX); 1397 1398 set_saved_exception_pc(NULL); 1399 set_threadObj(NULL); 1400 _anchor.clear(); 1401 set_entry_point(NULL); 1402 set_jni_functions(jni_functions()); 1403 set_callee_target(NULL); 1404 set_vm_result(NULL); 1405 set_vm_result_2(NULL); 1406 set_vframe_array_head(NULL); 1407 set_vframe_array_last(NULL); 1408 set_deferred_locals(NULL); 1409 set_deopt_mark(NULL); 1410 set_deopt_nmethod(NULL); 1411 clear_must_deopt_id(); 1412 set_monitor_chunks(NULL); 1413 set_next(NULL); 1414 set_thread_state(_thread_new); 1415 _terminated = _not_terminated; 1416 _privileged_stack_top = NULL; 1417 _array_for_gc = NULL; 1418 _suspend_equivalent = false; 1419 _in_deopt_handler = 0; 1420 _doing_unsafe_access = false; 1421 _stack_guard_state = stack_guard_unused; 1422 (void)const_cast<oop&>(_exception_oop = oop(NULL)); 1423 _exception_pc = 0; 1424 _exception_handler_pc = 0; 1425 _is_method_handle_return = 0; 1426 _jvmti_thread_state= NULL; 1427 _should_post_on_exceptions_flag = JNI_FALSE; 1428 _jvmti_get_loaded_classes_closure = NULL; 1429 _interp_only_mode = 0; 1430 _special_runtime_exit_condition = _no_async_condition; 1431 _pending_async_exception = NULL; 1432 _thread_stat = NULL; 1433 _thread_stat = new ThreadStatistics(); 1434 _blocked_on_compilation = false; 1435 _jni_active_critical = 0; 1436 _pending_jni_exception_check_fn = NULL; 1437 _do_not_unlock_if_synchronized = false; 1438 _cached_monitor_info = NULL; 1439 _parker = Parker::Allocate(this); 1440 1441 #ifndef PRODUCT 1442 _jmp_ring_index = 0; 1443 for (int ji = 0; ji < jump_ring_buffer_size; ji++) { 1444 record_jump(NULL, NULL, NULL, 0); 1445 } 1446 #endif // PRODUCT 1447 1448 set_thread_profiler(NULL); 1449 if (FlatProfiler::is_active()) { 1450 // This is where we would decide to either give each thread it's own profiler 1451 // or use one global one from FlatProfiler, 1452 // or up to some count of the number of profiled threads, etc. 1453 ThreadProfiler* pp = new ThreadProfiler(); 1454 pp->engage(); 1455 set_thread_profiler(pp); 1456 } 1457 1458 // Setup safepoint state info for this thread 1459 ThreadSafepointState::create(this); 1460 1461 debug_only(_java_call_counter = 0); 1462 1463 // JVMTI PopFrame support 1464 _popframe_condition = popframe_inactive; 1465 _popframe_preserved_args = NULL; 1466 _popframe_preserved_args_size = 0; 1467 _frames_to_pop_failed_realloc = 0; 1468 1469 pd_initialize(); 1470 } 1471 1472 #if INCLUDE_ALL_GCS 1473 SATBMarkQueueSet JavaThread::_satb_mark_queue_set; 1474 DirtyCardQueueSet JavaThread::_dirty_card_queue_set; 1475 #endif // INCLUDE_ALL_GCS 1476 1477 JavaThread::JavaThread(bool is_attaching_via_jni) : 1478 Thread() 1479 #if INCLUDE_ALL_GCS 1480 , _satb_mark_queue(&_satb_mark_queue_set), 1481 _dirty_card_queue(&_dirty_card_queue_set) 1482 #endif // INCLUDE_ALL_GCS 1483 { 1484 initialize(); 1485 if (is_attaching_via_jni) { 1486 _jni_attach_state = _attaching_via_jni; 1487 } else { 1488 _jni_attach_state = _not_attaching_via_jni; 1489 } 1490 assert(deferred_card_mark().is_empty(), "Default MemRegion ctor"); 1491 } 1492 1493 bool JavaThread::reguard_stack(address cur_sp) { 1494 if (_stack_guard_state != stack_guard_yellow_disabled) { 1495 return true; // Stack already guarded or guard pages not needed. 1496 } 1497 1498 if (register_stack_overflow()) { 1499 // For those architectures which have separate register and 1500 // memory stacks, we must check the register stack to see if 1501 // it has overflowed. 1502 return false; 1503 } 1504 1505 // Java code never executes within the yellow zone: the latter is only 1506 // there to provoke an exception during stack banging. If java code 1507 // is executing there, either StackShadowPages should be larger, or 1508 // some exception code in c1, c2 or the interpreter isn't unwinding 1509 // when it should. 1510 guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages"); 1511 1512 enable_stack_yellow_zone(); 1513 return true; 1514 } 1515 1516 bool JavaThread::reguard_stack(void) { 1517 return reguard_stack(os::current_stack_pointer()); 1518 } 1519 1520 1521 void JavaThread::block_if_vm_exited() { 1522 if (_terminated == _vm_exited) { 1523 // _vm_exited is set at safepoint, and Threads_lock is never released 1524 // we will block here forever 1525 Threads_lock->lock_without_safepoint_check(); 1526 ShouldNotReachHere(); 1527 } 1528 } 1529 1530 1531 // Remove this ifdef when C1 is ported to the compiler interface. 1532 static void compiler_thread_entry(JavaThread* thread, TRAPS); 1533 static void sweeper_thread_entry(JavaThread* thread, TRAPS); 1534 1535 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) : 1536 Thread() 1537 #if INCLUDE_ALL_GCS 1538 , _satb_mark_queue(&_satb_mark_queue_set), 1539 _dirty_card_queue(&_dirty_card_queue_set) 1540 #endif // INCLUDE_ALL_GCS 1541 { 1542 initialize(); 1543 _jni_attach_state = _not_attaching_via_jni; 1544 set_entry_point(entry_point); 1545 // Create the native thread itself. 1546 // %note runtime_23 1547 os::ThreadType thr_type = os::java_thread; 1548 thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread : 1549 os::java_thread; 1550 os::create_thread(this, thr_type, stack_sz); 1551 // The _osthread may be NULL here because we ran out of memory (too many threads active). 1552 // We need to throw and OutOfMemoryError - however we cannot do this here because the caller 1553 // may hold a lock and all locks must be unlocked before throwing the exception (throwing 1554 // the exception consists of creating the exception object & initializing it, initialization 1555 // will leave the VM via a JavaCall and then all locks must be unlocked). 1556 // 1557 // The thread is still suspended when we reach here. Thread must be explicit started 1558 // by creator! Furthermore, the thread must also explicitly be added to the Threads list 1559 // by calling Threads:add. The reason why this is not done here, is because the thread 1560 // object must be fully initialized (take a look at JVM_Start) 1561 } 1562 1563 JavaThread::~JavaThread() { 1564 1565 // JSR166 -- return the parker to the free list 1566 Parker::Release(_parker); 1567 _parker = NULL; 1568 1569 // Free any remaining previous UnrollBlock 1570 vframeArray* old_array = vframe_array_last(); 1571 1572 if (old_array != NULL) { 1573 Deoptimization::UnrollBlock* old_info = old_array->unroll_block(); 1574 old_array->set_unroll_block(NULL); 1575 delete old_info; 1576 delete old_array; 1577 } 1578 1579 GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals(); 1580 if (deferred != NULL) { 1581 // This can only happen if thread is destroyed before deoptimization occurs. 1582 assert(deferred->length() != 0, "empty array!"); 1583 do { 1584 jvmtiDeferredLocalVariableSet* dlv = deferred->at(0); 1585 deferred->remove_at(0); 1586 // individual jvmtiDeferredLocalVariableSet are CHeapObj's 1587 delete dlv; 1588 } while (deferred->length() != 0); 1589 delete deferred; 1590 } 1591 1592 // All Java related clean up happens in exit 1593 ThreadSafepointState::destroy(this); 1594 if (_thread_profiler != NULL) delete _thread_profiler; 1595 if (_thread_stat != NULL) delete _thread_stat; 1596 } 1597 1598 1599 // The first routine called by a new Java thread 1600 void JavaThread::run() { 1601 // initialize thread-local alloc buffer related fields 1602 this->initialize_tlab(); 1603 1604 // used to test validity of stack trace backs 1605 this->record_base_of_stack_pointer(); 1606 1607 // Record real stack base and size. 1608 this->record_stack_base_and_size(); 1609 1610 // Initialize thread local storage; set before calling MutexLocker 1611 this->initialize_thread_local_storage(); 1612 1613 this->create_stack_guard_pages(); 1614 1615 this->cache_global_variables(); 1616 1617 // Thread is now sufficient initialized to be handled by the safepoint code as being 1618 // in the VM. Change thread state from _thread_new to _thread_in_vm 1619 ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm); 1620 1621 assert(JavaThread::current() == this, "sanity check"); 1622 assert(!Thread::current()->owns_locks(), "sanity check"); 1623 1624 DTRACE_THREAD_PROBE(start, this); 1625 1626 // This operation might block. We call that after all safepoint checks for a new thread has 1627 // been completed. 1628 this->set_active_handles(JNIHandleBlock::allocate_block()); 1629 1630 if (JvmtiExport::should_post_thread_life()) { 1631 JvmtiExport::post_thread_start(this); 1632 } 1633 1634 EventThreadStart event; 1635 if (event.should_commit()) { 1636 event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj())); 1637 event.commit(); 1638 } 1639 1640 // We call another function to do the rest so we are sure that the stack addresses used 1641 // from there will be lower than the stack base just computed 1642 thread_main_inner(); 1643 1644 // Note, thread is no longer valid at this point! 1645 } 1646 1647 1648 void JavaThread::thread_main_inner() { 1649 assert(JavaThread::current() == this, "sanity check"); 1650 assert(this->threadObj() != NULL, "just checking"); 1651 1652 // Execute thread entry point unless this thread has a pending exception 1653 // or has been stopped before starting. 1654 // Note: Due to JVM_StopThread we can have pending exceptions already! 1655 if (!this->has_pending_exception() && 1656 !java_lang_Thread::is_stillborn(this->threadObj())) { 1657 { 1658 ResourceMark rm(this); 1659 this->set_native_thread_name(this->get_thread_name()); 1660 } 1661 HandleMark hm(this); 1662 this->entry_point()(this, this); 1663 } 1664 1665 DTRACE_THREAD_PROBE(stop, this); 1666 1667 this->exit(false); 1668 delete this; 1669 } 1670 1671 1672 static void ensure_join(JavaThread* thread) { 1673 // We do not need to grap the Threads_lock, since we are operating on ourself. 1674 Handle threadObj(thread, thread->threadObj()); 1675 assert(threadObj.not_null(), "java thread object must exist"); 1676 ObjectLocker lock(threadObj, thread); 1677 // Ignore pending exception (ThreadDeath), since we are exiting anyway 1678 thread->clear_pending_exception(); 1679 // Thread is exiting. So set thread_status field in java.lang.Thread class to TERMINATED. 1680 java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED); 1681 // Clear the native thread instance - this makes isAlive return false and allows the join() 1682 // to complete once we've done the notify_all below 1683 java_lang_Thread::set_thread(threadObj(), NULL); 1684 lock.notify_all(thread); 1685 // Ignore pending exception (ThreadDeath), since we are exiting anyway 1686 thread->clear_pending_exception(); 1687 } 1688 1689 1690 // For any new cleanup additions, please check to see if they need to be applied to 1691 // cleanup_failed_attach_current_thread as well. 1692 void JavaThread::exit(bool destroy_vm, ExitType exit_type) { 1693 assert(this == JavaThread::current(), "thread consistency check"); 1694 1695 HandleMark hm(this); 1696 Handle uncaught_exception(this, this->pending_exception()); 1697 this->clear_pending_exception(); 1698 Handle threadObj(this, this->threadObj()); 1699 assert(threadObj.not_null(), "Java thread object should be created"); 1700 1701 if (get_thread_profiler() != NULL) { 1702 get_thread_profiler()->disengage(); 1703 ResourceMark rm; 1704 get_thread_profiler()->print(get_thread_name()); 1705 } 1706 1707 1708 // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place 1709 { 1710 EXCEPTION_MARK; 1711 1712 CLEAR_PENDING_EXCEPTION; 1713 } 1714 if (!destroy_vm) { 1715 if (uncaught_exception.not_null()) { 1716 EXCEPTION_MARK; 1717 // Call method Thread.dispatchUncaughtException(). 1718 KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass()); 1719 JavaValue result(T_VOID); 1720 JavaCalls::call_virtual(&result, 1721 threadObj, thread_klass, 1722 vmSymbols::dispatchUncaughtException_name(), 1723 vmSymbols::throwable_void_signature(), 1724 uncaught_exception, 1725 THREAD); 1726 if (HAS_PENDING_EXCEPTION) { 1727 ResourceMark rm(this); 1728 jio_fprintf(defaultStream::error_stream(), 1729 "\nException: %s thrown from the UncaughtExceptionHandler" 1730 " in thread \"%s\"\n", 1731 pending_exception()->klass()->external_name(), 1732 get_thread_name()); 1733 CLEAR_PENDING_EXCEPTION; 1734 } 1735 } 1736 1737 // Called before the java thread exit since we want to read info 1738 // from java_lang_Thread object 1739 EventThreadEnd event; 1740 if (event.should_commit()) { 1741 event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj())); 1742 event.commit(); 1743 } 1744 1745 // Call after last event on thread 1746 EVENT_THREAD_EXIT(this); 1747 1748 // Call Thread.exit(). We try 3 times in case we got another Thread.stop during 1749 // the execution of the method. If that is not enough, then we don't really care. Thread.stop 1750 // is deprecated anyhow. 1751 if (!is_Compiler_thread()) { 1752 int count = 3; 1753 while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) { 1754 EXCEPTION_MARK; 1755 JavaValue result(T_VOID); 1756 KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass()); 1757 JavaCalls::call_virtual(&result, 1758 threadObj, thread_klass, 1759 vmSymbols::exit_method_name(), 1760 vmSymbols::void_method_signature(), 1761 THREAD); 1762 CLEAR_PENDING_EXCEPTION; 1763 } 1764 } 1765 // notify JVMTI 1766 if (JvmtiExport::should_post_thread_life()) { 1767 JvmtiExport::post_thread_end(this); 1768 } 1769 1770 // We have notified the agents that we are exiting, before we go on, 1771 // we must check for a pending external suspend request and honor it 1772 // in order to not surprise the thread that made the suspend request. 1773 while (true) { 1774 { 1775 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 1776 if (!is_external_suspend()) { 1777 set_terminated(_thread_exiting); 1778 ThreadService::current_thread_exiting(this); 1779 break; 1780 } 1781 // Implied else: 1782 // Things get a little tricky here. We have a pending external 1783 // suspend request, but we are holding the SR_lock so we 1784 // can't just self-suspend. So we temporarily drop the lock 1785 // and then self-suspend. 1786 } 1787 1788 ThreadBlockInVM tbivm(this); 1789 java_suspend_self(); 1790 1791 // We're done with this suspend request, but we have to loop around 1792 // and check again. Eventually we will get SR_lock without a pending 1793 // external suspend request and will be able to mark ourselves as 1794 // exiting. 1795 } 1796 // no more external suspends are allowed at this point 1797 } else { 1798 // before_exit() has already posted JVMTI THREAD_END events 1799 } 1800 1801 // Notify waiters on thread object. This has to be done after exit() is called 1802 // on the thread (if the thread is the last thread in a daemon ThreadGroup the 1803 // group should have the destroyed bit set before waiters are notified). 1804 ensure_join(this); 1805 assert(!this->has_pending_exception(), "ensure_join should have cleared"); 1806 1807 // 6282335 JNI DetachCurrentThread spec states that all Java monitors 1808 // held by this thread must be released. The spec does not distinguish 1809 // between JNI-acquired and regular Java monitors. We can only see 1810 // regular Java monitors here if monitor enter-exit matching is broken. 1811 // 1812 // Optionally release any monitors for regular JavaThread exits. This 1813 // is provided as a work around for any bugs in monitor enter-exit 1814 // matching. This can be expensive so it is not enabled by default. 1815 // ObjectMonitor::Knob_ExitRelease is a superset of the 1816 // JNIDetachReleasesMonitors option. 1817 // 1818 // ensure_join() ignores IllegalThreadStateExceptions, and so does 1819 // ObjectSynchronizer::release_monitors_owned_by_thread(). 1820 if ((exit_type == jni_detach && JNIDetachReleasesMonitors) || 1821 ObjectMonitor::Knob_ExitRelease) { 1822 // Sanity check even though JNI DetachCurrentThread() would have 1823 // returned JNI_ERR if there was a Java frame. JavaThread exit 1824 // should be done executing Java code by the time we get here. 1825 assert(!this->has_last_Java_frame(), 1826 "should not have a Java frame when detaching or exiting"); 1827 ObjectSynchronizer::release_monitors_owned_by_thread(this); 1828 assert(!this->has_pending_exception(), "release_monitors should have cleared"); 1829 } 1830 1831 // These things needs to be done while we are still a Java Thread. Make sure that thread 1832 // is in a consistent state, in case GC happens 1833 assert(_privileged_stack_top == NULL, "must be NULL when we get here"); 1834 1835 if (active_handles() != NULL) { 1836 JNIHandleBlock* block = active_handles(); 1837 set_active_handles(NULL); 1838 JNIHandleBlock::release_block(block); 1839 } 1840 1841 if (free_handle_block() != NULL) { 1842 JNIHandleBlock* block = free_handle_block(); 1843 set_free_handle_block(NULL); 1844 JNIHandleBlock::release_block(block); 1845 } 1846 1847 // These have to be removed while this is still a valid thread. 1848 remove_stack_guard_pages(); 1849 1850 if (UseTLAB) { 1851 tlab().make_parsable(true); // retire TLAB 1852 } 1853 1854 if (JvmtiEnv::environments_might_exist()) { 1855 JvmtiExport::cleanup_thread(this); 1856 } 1857 1858 // We must flush any deferred card marks before removing a thread from 1859 // the list of active threads. 1860 Universe::heap()->flush_deferred_store_barrier(this); 1861 assert(deferred_card_mark().is_empty(), "Should have been flushed"); 1862 1863 #if INCLUDE_ALL_GCS 1864 // We must flush the G1-related buffers before removing a thread 1865 // from the list of active threads. We must do this after any deferred 1866 // card marks have been flushed (above) so that any entries that are 1867 // added to the thread's dirty card queue as a result are not lost. 1868 if (UseG1GC) { 1869 flush_barrier_queues(); 1870 } 1871 #endif // INCLUDE_ALL_GCS 1872 1873 // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread 1874 Threads::remove(this); 1875 } 1876 1877 #if INCLUDE_ALL_GCS 1878 // Flush G1-related queues. 1879 void JavaThread::flush_barrier_queues() { 1880 satb_mark_queue().flush(); 1881 dirty_card_queue().flush(); 1882 } 1883 1884 void JavaThread::initialize_queues() { 1885 assert(!SafepointSynchronize::is_at_safepoint(), 1886 "we should not be at a safepoint"); 1887 1888 ObjPtrQueue& satb_queue = satb_mark_queue(); 1889 SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set(); 1890 // The SATB queue should have been constructed with its active 1891 // field set to false. 1892 assert(!satb_queue.is_active(), "SATB queue should not be active"); 1893 assert(satb_queue.is_empty(), "SATB queue should be empty"); 1894 // If we are creating the thread during a marking cycle, we should 1895 // set the active field of the SATB queue to true. 1896 if (satb_queue_set.is_active()) { 1897 satb_queue.set_active(true); 1898 } 1899 1900 DirtyCardQueue& dirty_queue = dirty_card_queue(); 1901 // The dirty card queue should have been constructed with its 1902 // active field set to true. 1903 assert(dirty_queue.is_active(), "dirty card queue should be active"); 1904 } 1905 #endif // INCLUDE_ALL_GCS 1906 1907 void JavaThread::cleanup_failed_attach_current_thread() { 1908 if (get_thread_profiler() != NULL) { 1909 get_thread_profiler()->disengage(); 1910 ResourceMark rm; 1911 get_thread_profiler()->print(get_thread_name()); 1912 } 1913 1914 if (active_handles() != NULL) { 1915 JNIHandleBlock* block = active_handles(); 1916 set_active_handles(NULL); 1917 JNIHandleBlock::release_block(block); 1918 } 1919 1920 if (free_handle_block() != NULL) { 1921 JNIHandleBlock* block = free_handle_block(); 1922 set_free_handle_block(NULL); 1923 JNIHandleBlock::release_block(block); 1924 } 1925 1926 // These have to be removed while this is still a valid thread. 1927 remove_stack_guard_pages(); 1928 1929 if (UseTLAB) { 1930 tlab().make_parsable(true); // retire TLAB, if any 1931 } 1932 1933 #if INCLUDE_ALL_GCS 1934 if (UseG1GC) { 1935 flush_barrier_queues(); 1936 } 1937 #endif // INCLUDE_ALL_GCS 1938 1939 Threads::remove(this); 1940 delete this; 1941 } 1942 1943 1944 1945 1946 JavaThread* JavaThread::active() { 1947 Thread* thread = ThreadLocalStorage::thread(); 1948 assert(thread != NULL, "just checking"); 1949 if (thread->is_Java_thread()) { 1950 return (JavaThread*) thread; 1951 } else { 1952 assert(thread->is_VM_thread(), "this must be a vm thread"); 1953 VM_Operation* op = ((VMThread*) thread)->vm_operation(); 1954 JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread(); 1955 assert(ret->is_Java_thread(), "must be a Java thread"); 1956 return ret; 1957 } 1958 } 1959 1960 bool JavaThread::is_lock_owned(address adr) const { 1961 if (Thread::is_lock_owned(adr)) return true; 1962 1963 for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) { 1964 if (chunk->contains(adr)) return true; 1965 } 1966 1967 return false; 1968 } 1969 1970 1971 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) { 1972 chunk->set_next(monitor_chunks()); 1973 set_monitor_chunks(chunk); 1974 } 1975 1976 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) { 1977 guarantee(monitor_chunks() != NULL, "must be non empty"); 1978 if (monitor_chunks() == chunk) { 1979 set_monitor_chunks(chunk->next()); 1980 } else { 1981 MonitorChunk* prev = monitor_chunks(); 1982 while (prev->next() != chunk) prev = prev->next(); 1983 prev->set_next(chunk->next()); 1984 } 1985 } 1986 1987 // JVM support. 1988 1989 // Note: this function shouldn't block if it's called in 1990 // _thread_in_native_trans state (such as from 1991 // check_special_condition_for_native_trans()). 1992 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) { 1993 1994 if (has_last_Java_frame() && has_async_condition()) { 1995 // If we are at a polling page safepoint (not a poll return) 1996 // then we must defer async exception because live registers 1997 // will be clobbered by the exception path. Poll return is 1998 // ok because the call we a returning from already collides 1999 // with exception handling registers and so there is no issue. 2000 // (The exception handling path kills call result registers but 2001 // this is ok since the exception kills the result anyway). 2002 2003 if (is_at_poll_safepoint()) { 2004 // if the code we are returning to has deoptimized we must defer 2005 // the exception otherwise live registers get clobbered on the 2006 // exception path before deoptimization is able to retrieve them. 2007 // 2008 RegisterMap map(this, false); 2009 frame caller_fr = last_frame().sender(&map); 2010 assert(caller_fr.is_compiled_frame(), "what?"); 2011 if (caller_fr.is_deoptimized_frame()) { 2012 if (TraceExceptions) { 2013 ResourceMark rm; 2014 tty->print_cr("deferred async exception at compiled safepoint"); 2015 } 2016 return; 2017 } 2018 } 2019 } 2020 2021 JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition(); 2022 if (condition == _no_async_condition) { 2023 // Conditions have changed since has_special_runtime_exit_condition() 2024 // was called: 2025 // - if we were here only because of an external suspend request, 2026 // then that was taken care of above (or cancelled) so we are done 2027 // - if we were here because of another async request, then it has 2028 // been cleared between the has_special_runtime_exit_condition() 2029 // and now so again we are done 2030 return; 2031 } 2032 2033 // Check for pending async. exception 2034 if (_pending_async_exception != NULL) { 2035 // Only overwrite an already pending exception, if it is not a threadDeath. 2036 if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) { 2037 2038 // We cannot call Exceptions::_throw(...) here because we cannot block 2039 set_pending_exception(_pending_async_exception, __FILE__, __LINE__); 2040 2041 if (TraceExceptions) { 2042 ResourceMark rm; 2043 tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this); 2044 if (has_last_Java_frame()) { 2045 frame f = last_frame(); 2046 tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp()); 2047 } 2048 tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name()); 2049 } 2050 _pending_async_exception = NULL; 2051 clear_has_async_exception(); 2052 } 2053 } 2054 2055 if (check_unsafe_error && 2056 condition == _async_unsafe_access_error && !has_pending_exception()) { 2057 condition = _no_async_condition; // done 2058 switch (thread_state()) { 2059 case _thread_in_vm: { 2060 JavaThread* THREAD = this; 2061 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation"); 2062 } 2063 case _thread_in_native: { 2064 ThreadInVMfromNative tiv(this); 2065 JavaThread* THREAD = this; 2066 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation"); 2067 } 2068 case _thread_in_Java: { 2069 ThreadInVMfromJava tiv(this); 2070 JavaThread* THREAD = this; 2071 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code"); 2072 } 2073 default: 2074 ShouldNotReachHere(); 2075 } 2076 } 2077 2078 assert(condition == _no_async_condition || has_pending_exception() || 2079 (!check_unsafe_error && condition == _async_unsafe_access_error), 2080 "must have handled the async condition, if no exception"); 2081 } 2082 2083 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) { 2084 // 2085 // Check for pending external suspend. Internal suspend requests do 2086 // not use handle_special_runtime_exit_condition(). 2087 // If JNIEnv proxies are allowed, don't self-suspend if the target 2088 // thread is not the current thread. In older versions of jdbx, jdbx 2089 // threads could call into the VM with another thread's JNIEnv so we 2090 // can be here operating on behalf of a suspended thread (4432884). 2091 bool do_self_suspend = is_external_suspend_with_lock(); 2092 if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) { 2093 // 2094 // Because thread is external suspended the safepoint code will count 2095 // thread as at a safepoint. This can be odd because we can be here 2096 // as _thread_in_Java which would normally transition to _thread_blocked 2097 // at a safepoint. We would like to mark the thread as _thread_blocked 2098 // before calling java_suspend_self like all other callers of it but 2099 // we must then observe proper safepoint protocol. (We can't leave 2100 // _thread_blocked with a safepoint in progress). However we can be 2101 // here as _thread_in_native_trans so we can't use a normal transition 2102 // constructor/destructor pair because they assert on that type of 2103 // transition. We could do something like: 2104 // 2105 // JavaThreadState state = thread_state(); 2106 // set_thread_state(_thread_in_vm); 2107 // { 2108 // ThreadBlockInVM tbivm(this); 2109 // java_suspend_self() 2110 // } 2111 // set_thread_state(_thread_in_vm_trans); 2112 // if (safepoint) block; 2113 // set_thread_state(state); 2114 // 2115 // but that is pretty messy. Instead we just go with the way the 2116 // code has worked before and note that this is the only path to 2117 // java_suspend_self that doesn't put the thread in _thread_blocked 2118 // mode. 2119 2120 frame_anchor()->make_walkable(this); 2121 java_suspend_self(); 2122 2123 // We might be here for reasons in addition to the self-suspend request 2124 // so check for other async requests. 2125 } 2126 2127 if (check_asyncs) { 2128 check_and_handle_async_exceptions(); 2129 } 2130 } 2131 2132 void JavaThread::send_thread_stop(oop java_throwable) { 2133 assert(Thread::current()->is_VM_thread(), "should be in the vm thread"); 2134 assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code"); 2135 assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped"); 2136 2137 // Do not throw asynchronous exceptions against the compiler thread 2138 // (the compiler thread should not be a Java thread -- fix in 1.4.2) 2139 if (is_Compiler_thread()) return; 2140 2141 { 2142 // Actually throw the Throwable against the target Thread - however 2143 // only if there is no thread death exception installed already. 2144 if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) { 2145 // If the topmost frame is a runtime stub, then we are calling into 2146 // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..) 2147 // must deoptimize the caller before continuing, as the compiled exception handler table 2148 // may not be valid 2149 if (has_last_Java_frame()) { 2150 frame f = last_frame(); 2151 if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) { 2152 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass 2153 RegisterMap reg_map(this, UseBiasedLocking); 2154 frame compiled_frame = f.sender(®_map); 2155 if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) { 2156 Deoptimization::deoptimize(this, compiled_frame, ®_map); 2157 } 2158 } 2159 } 2160 2161 // Set async. pending exception in thread. 2162 set_pending_async_exception(java_throwable); 2163 2164 if (TraceExceptions) { 2165 ResourceMark rm; 2166 tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name()); 2167 } 2168 // for AbortVMOnException flag 2169 NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name())); 2170 } 2171 } 2172 2173 2174 // Interrupt thread so it will wake up from a potential wait() 2175 Thread::interrupt(this); 2176 } 2177 2178 // External suspension mechanism. 2179 // 2180 // Tell the VM to suspend a thread when ever it knows that it does not hold on 2181 // to any VM_locks and it is at a transition 2182 // Self-suspension will happen on the transition out of the vm. 2183 // Catch "this" coming in from JNIEnv pointers when the thread has been freed 2184 // 2185 // Guarantees on return: 2186 // + Target thread will not execute any new bytecode (that's why we need to 2187 // force a safepoint) 2188 // + Target thread will not enter any new monitors 2189 // 2190 void JavaThread::java_suspend() { 2191 { MutexLocker mu(Threads_lock); 2192 if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) { 2193 return; 2194 } 2195 } 2196 2197 { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 2198 if (!is_external_suspend()) { 2199 // a racing resume has cancelled us; bail out now 2200 return; 2201 } 2202 2203 // suspend is done 2204 uint32_t debug_bits = 0; 2205 // Warning: is_ext_suspend_completed() may temporarily drop the 2206 // SR_lock to allow the thread to reach a stable thread state if 2207 // it is currently in a transient thread state. 2208 if (is_ext_suspend_completed(false /* !called_by_wait */, 2209 SuspendRetryDelay, &debug_bits)) { 2210 return; 2211 } 2212 } 2213 2214 VM_ForceSafepoint vm_suspend; 2215 VMThread::execute(&vm_suspend); 2216 } 2217 2218 // Part II of external suspension. 2219 // A JavaThread self suspends when it detects a pending external suspend 2220 // request. This is usually on transitions. It is also done in places 2221 // where continuing to the next transition would surprise the caller, 2222 // e.g., monitor entry. 2223 // 2224 // Returns the number of times that the thread self-suspended. 2225 // 2226 // Note: DO NOT call java_suspend_self() when you just want to block current 2227 // thread. java_suspend_self() is the second stage of cooperative 2228 // suspension for external suspend requests and should only be used 2229 // to complete an external suspend request. 2230 // 2231 int JavaThread::java_suspend_self() { 2232 int ret = 0; 2233 2234 // we are in the process of exiting so don't suspend 2235 if (is_exiting()) { 2236 clear_external_suspend(); 2237 return ret; 2238 } 2239 2240 assert(_anchor.walkable() || 2241 (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()), 2242 "must have walkable stack"); 2243 2244 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 2245 2246 assert(!this->is_ext_suspended(), 2247 "a thread trying to self-suspend should not already be suspended"); 2248 2249 if (this->is_suspend_equivalent()) { 2250 // If we are self-suspending as a result of the lifting of a 2251 // suspend equivalent condition, then the suspend_equivalent 2252 // flag is not cleared until we set the ext_suspended flag so 2253 // that wait_for_ext_suspend_completion() returns consistent 2254 // results. 2255 this->clear_suspend_equivalent(); 2256 } 2257 2258 // A racing resume may have cancelled us before we grabbed SR_lock 2259 // above. Or another external suspend request could be waiting for us 2260 // by the time we return from SR_lock()->wait(). The thread 2261 // that requested the suspension may already be trying to walk our 2262 // stack and if we return now, we can change the stack out from under 2263 // it. This would be a "bad thing (TM)" and cause the stack walker 2264 // to crash. We stay self-suspended until there are no more pending 2265 // external suspend requests. 2266 while (is_external_suspend()) { 2267 ret++; 2268 this->set_ext_suspended(); 2269 2270 // _ext_suspended flag is cleared by java_resume() 2271 while (is_ext_suspended()) { 2272 this->SR_lock()->wait(Mutex::_no_safepoint_check_flag); 2273 } 2274 } 2275 2276 return ret; 2277 } 2278 2279 #ifdef ASSERT 2280 // verify the JavaThread has not yet been published in the Threads::list, and 2281 // hence doesn't need protection from concurrent access at this stage 2282 void JavaThread::verify_not_published() { 2283 if (!Threads_lock->owned_by_self()) { 2284 MutexLockerEx ml(Threads_lock, Mutex::_no_safepoint_check_flag); 2285 assert(!Threads::includes(this), 2286 "java thread shouldn't have been published yet!"); 2287 } else { 2288 assert(!Threads::includes(this), 2289 "java thread shouldn't have been published yet!"); 2290 } 2291 } 2292 #endif 2293 2294 // Slow path when the native==>VM/Java barriers detect a safepoint is in 2295 // progress or when _suspend_flags is non-zero. 2296 // Current thread needs to self-suspend if there is a suspend request and/or 2297 // block if a safepoint is in progress. 2298 // Async exception ISN'T checked. 2299 // Note only the ThreadInVMfromNative transition can call this function 2300 // directly and when thread state is _thread_in_native_trans 2301 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) { 2302 assert(thread->thread_state() == _thread_in_native_trans, "wrong state"); 2303 2304 JavaThread *curJT = JavaThread::current(); 2305 bool do_self_suspend = thread->is_external_suspend(); 2306 2307 assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition"); 2308 2309 // If JNIEnv proxies are allowed, don't self-suspend if the target 2310 // thread is not the current thread. In older versions of jdbx, jdbx 2311 // threads could call into the VM with another thread's JNIEnv so we 2312 // can be here operating on behalf of a suspended thread (4432884). 2313 if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) { 2314 JavaThreadState state = thread->thread_state(); 2315 2316 // We mark this thread_blocked state as a suspend-equivalent so 2317 // that a caller to is_ext_suspend_completed() won't be confused. 2318 // The suspend-equivalent state is cleared by java_suspend_self(). 2319 thread->set_suspend_equivalent(); 2320 2321 // If the safepoint code sees the _thread_in_native_trans state, it will 2322 // wait until the thread changes to other thread state. There is no 2323 // guarantee on how soon we can obtain the SR_lock and complete the 2324 // self-suspend request. It would be a bad idea to let safepoint wait for 2325 // too long. Temporarily change the state to _thread_blocked to 2326 // let the VM thread know that this thread is ready for GC. The problem 2327 // of changing thread state is that safepoint could happen just after 2328 // java_suspend_self() returns after being resumed, and VM thread will 2329 // see the _thread_blocked state. We must check for safepoint 2330 // after restoring the state and make sure we won't leave while a safepoint 2331 // is in progress. 2332 thread->set_thread_state(_thread_blocked); 2333 thread->java_suspend_self(); 2334 thread->set_thread_state(state); 2335 // Make sure new state is seen by VM thread 2336 if (os::is_MP()) { 2337 if (UseMembar) { 2338 // Force a fence between the write above and read below 2339 OrderAccess::fence(); 2340 } else { 2341 // Must use this rather than serialization page in particular on Windows 2342 InterfaceSupport::serialize_memory(thread); 2343 } 2344 } 2345 } 2346 2347 if (SafepointSynchronize::do_call_back()) { 2348 // If we are safepointing, then block the caller which may not be 2349 // the same as the target thread (see above). 2350 SafepointSynchronize::block(curJT); 2351 } 2352 2353 if (thread->is_deopt_suspend()) { 2354 thread->clear_deopt_suspend(); 2355 RegisterMap map(thread, false); 2356 frame f = thread->last_frame(); 2357 while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) { 2358 f = f.sender(&map); 2359 } 2360 if (f.id() == thread->must_deopt_id()) { 2361 thread->clear_must_deopt_id(); 2362 f.deoptimize(thread); 2363 } else { 2364 fatal("missed deoptimization!"); 2365 } 2366 } 2367 } 2368 2369 // Slow path when the native==>VM/Java barriers detect a safepoint is in 2370 // progress or when _suspend_flags is non-zero. 2371 // Current thread needs to self-suspend if there is a suspend request and/or 2372 // block if a safepoint is in progress. 2373 // Also check for pending async exception (not including unsafe access error). 2374 // Note only the native==>VM/Java barriers can call this function and when 2375 // thread state is _thread_in_native_trans. 2376 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) { 2377 check_safepoint_and_suspend_for_native_trans(thread); 2378 2379 if (thread->has_async_exception()) { 2380 // We are in _thread_in_native_trans state, don't handle unsafe 2381 // access error since that may block. 2382 thread->check_and_handle_async_exceptions(false); 2383 } 2384 } 2385 2386 // This is a variant of the normal 2387 // check_special_condition_for_native_trans with slightly different 2388 // semantics for use by critical native wrappers. It does all the 2389 // normal checks but also performs the transition back into 2390 // thread_in_Java state. This is required so that critical natives 2391 // can potentially block and perform a GC if they are the last thread 2392 // exiting the GC_locker. 2393 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) { 2394 check_special_condition_for_native_trans(thread); 2395 2396 // Finish the transition 2397 thread->set_thread_state(_thread_in_Java); 2398 2399 if (thread->do_critical_native_unlock()) { 2400 ThreadInVMfromJavaNoAsyncException tiv(thread); 2401 GC_locker::unlock_critical(thread); 2402 thread->clear_critical_native_unlock(); 2403 } 2404 } 2405 2406 // We need to guarantee the Threads_lock here, since resumes are not 2407 // allowed during safepoint synchronization 2408 // Can only resume from an external suspension 2409 void JavaThread::java_resume() { 2410 assert_locked_or_safepoint(Threads_lock); 2411 2412 // Sanity check: thread is gone, has started exiting or the thread 2413 // was not externally suspended. 2414 if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) { 2415 return; 2416 } 2417 2418 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 2419 2420 clear_external_suspend(); 2421 2422 if (is_ext_suspended()) { 2423 clear_ext_suspended(); 2424 SR_lock()->notify_all(); 2425 } 2426 } 2427 2428 void JavaThread::create_stack_guard_pages() { 2429 if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return; 2430 address low_addr = stack_base() - stack_size(); 2431 size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size(); 2432 2433 int allocate = os::allocate_stack_guard_pages(); 2434 // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len); 2435 2436 if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) { 2437 warning("Attempt to allocate stack guard pages failed."); 2438 return; 2439 } 2440 2441 if (os::guard_memory((char *) low_addr, len)) { 2442 _stack_guard_state = stack_guard_enabled; 2443 } else { 2444 warning("Attempt to protect stack guard pages failed."); 2445 if (os::uncommit_memory((char *) low_addr, len)) { 2446 warning("Attempt to deallocate stack guard pages failed."); 2447 } 2448 } 2449 } 2450 2451 void JavaThread::remove_stack_guard_pages() { 2452 assert(Thread::current() == this, "from different thread"); 2453 if (_stack_guard_state == stack_guard_unused) return; 2454 address low_addr = stack_base() - stack_size(); 2455 size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size(); 2456 2457 if (os::allocate_stack_guard_pages()) { 2458 if (os::remove_stack_guard_pages((char *) low_addr, len)) { 2459 _stack_guard_state = stack_guard_unused; 2460 } else { 2461 warning("Attempt to deallocate stack guard pages failed."); 2462 } 2463 } else { 2464 if (_stack_guard_state == stack_guard_unused) return; 2465 if (os::unguard_memory((char *) low_addr, len)) { 2466 _stack_guard_state = stack_guard_unused; 2467 } else { 2468 warning("Attempt to unprotect stack guard pages failed."); 2469 } 2470 } 2471 } 2472 2473 void JavaThread::enable_stack_yellow_zone() { 2474 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2475 assert(_stack_guard_state != stack_guard_enabled, "already enabled"); 2476 2477 // The base notation is from the stacks point of view, growing downward. 2478 // We need to adjust it to work correctly with guard_memory() 2479 address base = stack_yellow_zone_base() - stack_yellow_zone_size(); 2480 2481 guarantee(base < stack_base(), "Error calculating stack yellow zone"); 2482 guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone"); 2483 2484 if (os::guard_memory((char *) base, stack_yellow_zone_size())) { 2485 _stack_guard_state = stack_guard_enabled; 2486 } else { 2487 warning("Attempt to guard stack yellow zone failed."); 2488 } 2489 enable_register_stack_guard(); 2490 } 2491 2492 void JavaThread::disable_stack_yellow_zone() { 2493 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2494 assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled"); 2495 2496 // Simply return if called for a thread that does not use guard pages. 2497 if (_stack_guard_state == stack_guard_unused) return; 2498 2499 // The base notation is from the stacks point of view, growing downward. 2500 // We need to adjust it to work correctly with guard_memory() 2501 address base = stack_yellow_zone_base() - stack_yellow_zone_size(); 2502 2503 if (os::unguard_memory((char *)base, stack_yellow_zone_size())) { 2504 _stack_guard_state = stack_guard_yellow_disabled; 2505 } else { 2506 warning("Attempt to unguard stack yellow zone failed."); 2507 } 2508 disable_register_stack_guard(); 2509 } 2510 2511 void JavaThread::enable_stack_red_zone() { 2512 // The base notation is from the stacks point of view, growing downward. 2513 // We need to adjust it to work correctly with guard_memory() 2514 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2515 address base = stack_red_zone_base() - stack_red_zone_size(); 2516 2517 guarantee(base < stack_base(), "Error calculating stack red zone"); 2518 guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone"); 2519 2520 if (!os::guard_memory((char *) base, stack_red_zone_size())) { 2521 warning("Attempt to guard stack red zone failed."); 2522 } 2523 } 2524 2525 void JavaThread::disable_stack_red_zone() { 2526 // The base notation is from the stacks point of view, growing downward. 2527 // We need to adjust it to work correctly with guard_memory() 2528 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2529 address base = stack_red_zone_base() - stack_red_zone_size(); 2530 if (!os::unguard_memory((char *)base, stack_red_zone_size())) { 2531 warning("Attempt to unguard stack red zone failed."); 2532 } 2533 } 2534 2535 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) { 2536 // ignore is there is no stack 2537 if (!has_last_Java_frame()) return; 2538 // traverse the stack frames. Starts from top frame. 2539 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2540 frame* fr = fst.current(); 2541 f(fr, fst.register_map()); 2542 } 2543 } 2544 2545 2546 #ifndef PRODUCT 2547 // Deoptimization 2548 // Function for testing deoptimization 2549 void JavaThread::deoptimize() { 2550 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass 2551 StackFrameStream fst(this, UseBiasedLocking); 2552 bool deopt = false; // Dump stack only if a deopt actually happens. 2553 bool only_at = strlen(DeoptimizeOnlyAt) > 0; 2554 // Iterate over all frames in the thread and deoptimize 2555 for (; !fst.is_done(); fst.next()) { 2556 if (fst.current()->can_be_deoptimized()) { 2557 2558 if (only_at) { 2559 // Deoptimize only at particular bcis. DeoptimizeOnlyAt 2560 // consists of comma or carriage return separated numbers so 2561 // search for the current bci in that string. 2562 address pc = fst.current()->pc(); 2563 nmethod* nm = (nmethod*) fst.current()->cb(); 2564 ScopeDesc* sd = nm->scope_desc_at(pc); 2565 char buffer[8]; 2566 jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci()); 2567 size_t len = strlen(buffer); 2568 const char * found = strstr(DeoptimizeOnlyAt, buffer); 2569 while (found != NULL) { 2570 if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') && 2571 (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) { 2572 // Check that the bci found is bracketed by terminators. 2573 break; 2574 } 2575 found = strstr(found + 1, buffer); 2576 } 2577 if (!found) { 2578 continue; 2579 } 2580 } 2581 2582 if (DebugDeoptimization && !deopt) { 2583 deopt = true; // One-time only print before deopt 2584 tty->print_cr("[BEFORE Deoptimization]"); 2585 trace_frames(); 2586 trace_stack(); 2587 } 2588 Deoptimization::deoptimize(this, *fst.current(), fst.register_map()); 2589 } 2590 } 2591 2592 if (DebugDeoptimization && deopt) { 2593 tty->print_cr("[AFTER Deoptimization]"); 2594 trace_frames(); 2595 } 2596 } 2597 2598 2599 // Make zombies 2600 void JavaThread::make_zombies() { 2601 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2602 if (fst.current()->can_be_deoptimized()) { 2603 // it is a Java nmethod 2604 nmethod* nm = CodeCache::find_nmethod(fst.current()->pc()); 2605 nm->make_not_entrant(); 2606 } 2607 } 2608 } 2609 #endif // PRODUCT 2610 2611 2612 void JavaThread::deoptimized_wrt_marked_nmethods() { 2613 if (!has_last_Java_frame()) return; 2614 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass 2615 StackFrameStream fst(this, UseBiasedLocking); 2616 for (; !fst.is_done(); fst.next()) { 2617 if (fst.current()->should_be_deoptimized()) { 2618 if (LogCompilation && xtty != NULL) { 2619 nmethod* nm = fst.current()->cb()->as_nmethod_or_null(); 2620 xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'", 2621 this->name(), nm != NULL ? nm->compile_id() : -1); 2622 } 2623 2624 Deoptimization::deoptimize(this, *fst.current(), fst.register_map()); 2625 } 2626 } 2627 } 2628 2629 2630 // If the caller is a NamedThread, then remember, in the current scope, 2631 // the given JavaThread in its _processed_thread field. 2632 class RememberProcessedThread: public StackObj { 2633 NamedThread* _cur_thr; 2634 public: 2635 RememberProcessedThread(JavaThread* jthr) { 2636 Thread* thread = Thread::current(); 2637 if (thread->is_Named_thread()) { 2638 _cur_thr = (NamedThread *)thread; 2639 _cur_thr->set_processed_thread(jthr); 2640 } else { 2641 _cur_thr = NULL; 2642 } 2643 } 2644 2645 ~RememberProcessedThread() { 2646 if (_cur_thr) { 2647 _cur_thr->set_processed_thread(NULL); 2648 } 2649 } 2650 }; 2651 2652 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 2653 // Verify that the deferred card marks have been flushed. 2654 assert(deferred_card_mark().is_empty(), "Should be empty during GC"); 2655 2656 // The ThreadProfiler oops_do is done from FlatProfiler::oops_do 2657 // since there may be more than one thread using each ThreadProfiler. 2658 2659 // Traverse the GCHandles 2660 Thread::oops_do(f, cld_f, cf); 2661 2662 assert((!has_last_Java_frame() && java_call_counter() == 0) || 2663 (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!"); 2664 2665 if (has_last_Java_frame()) { 2666 // Record JavaThread to GC thread 2667 RememberProcessedThread rpt(this); 2668 2669 // Traverse the privileged stack 2670 if (_privileged_stack_top != NULL) { 2671 _privileged_stack_top->oops_do(f); 2672 } 2673 2674 // traverse the registered growable array 2675 if (_array_for_gc != NULL) { 2676 for (int index = 0; index < _array_for_gc->length(); index++) { 2677 f->do_oop(_array_for_gc->adr_at(index)); 2678 } 2679 } 2680 2681 // Traverse the monitor chunks 2682 for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) { 2683 chunk->oops_do(f); 2684 } 2685 2686 // Traverse the execution stack 2687 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2688 fst.current()->oops_do(f, cld_f, cf, fst.register_map()); 2689 } 2690 } 2691 2692 // callee_target is never live across a gc point so NULL it here should 2693 // it still contain a methdOop. 2694 2695 set_callee_target(NULL); 2696 2697 assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!"); 2698 // If we have deferred set_locals there might be oops waiting to be 2699 // written 2700 GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals(); 2701 if (list != NULL) { 2702 for (int i = 0; i < list->length(); i++) { 2703 list->at(i)->oops_do(f); 2704 } 2705 } 2706 2707 // Traverse instance variables at the end since the GC may be moving things 2708 // around using this function 2709 f->do_oop((oop*) &_threadObj); 2710 f->do_oop((oop*) &_vm_result); 2711 f->do_oop((oop*) &_exception_oop); 2712 f->do_oop((oop*) &_pending_async_exception); 2713 2714 if (jvmti_thread_state() != NULL) { 2715 jvmti_thread_state()->oops_do(f); 2716 } 2717 } 2718 2719 void JavaThread::nmethods_do(CodeBlobClosure* cf) { 2720 Thread::nmethods_do(cf); // (super method is a no-op) 2721 2722 assert((!has_last_Java_frame() && java_call_counter() == 0) || 2723 (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!"); 2724 2725 if (has_last_Java_frame()) { 2726 // Traverse the execution stack 2727 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2728 fst.current()->nmethods_do(cf); 2729 } 2730 } 2731 } 2732 2733 void JavaThread::metadata_do(void f(Metadata*)) { 2734 if (has_last_Java_frame()) { 2735 // Traverse the execution stack to call f() on the methods in the stack 2736 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2737 fst.current()->metadata_do(f); 2738 } 2739 } else if (is_Compiler_thread()) { 2740 // need to walk ciMetadata in current compile tasks to keep alive. 2741 CompilerThread* ct = (CompilerThread*)this; 2742 if (ct->env() != NULL) { 2743 ct->env()->metadata_do(f); 2744 } 2745 if (ct->task() != NULL) { 2746 ct->task()->metadata_do(f); 2747 } 2748 } 2749 } 2750 2751 // Printing 2752 const char* _get_thread_state_name(JavaThreadState _thread_state) { 2753 switch (_thread_state) { 2754 case _thread_uninitialized: return "_thread_uninitialized"; 2755 case _thread_new: return "_thread_new"; 2756 case _thread_new_trans: return "_thread_new_trans"; 2757 case _thread_in_native: return "_thread_in_native"; 2758 case _thread_in_native_trans: return "_thread_in_native_trans"; 2759 case _thread_in_vm: return "_thread_in_vm"; 2760 case _thread_in_vm_trans: return "_thread_in_vm_trans"; 2761 case _thread_in_Java: return "_thread_in_Java"; 2762 case _thread_in_Java_trans: return "_thread_in_Java_trans"; 2763 case _thread_blocked: return "_thread_blocked"; 2764 case _thread_blocked_trans: return "_thread_blocked_trans"; 2765 default: return "unknown thread state"; 2766 } 2767 } 2768 2769 #ifndef PRODUCT 2770 void JavaThread::print_thread_state_on(outputStream *st) const { 2771 st->print_cr(" JavaThread state: %s", _get_thread_state_name(_thread_state)); 2772 }; 2773 void JavaThread::print_thread_state() const { 2774 print_thread_state_on(tty); 2775 } 2776 #endif // PRODUCT 2777 2778 // Called by Threads::print() for VM_PrintThreads operation 2779 void JavaThread::print_on(outputStream *st) const { 2780 st->print("\"%s\" ", get_thread_name()); 2781 oop thread_oop = threadObj(); 2782 if (thread_oop != NULL) { 2783 st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop)); 2784 if (java_lang_Thread::is_daemon(thread_oop)) st->print("daemon "); 2785 st->print("prio=%d ", java_lang_Thread::priority(thread_oop)); 2786 } 2787 Thread::print_on(st); 2788 // print guess for valid stack memory region (assume 4K pages); helps lock debugging 2789 st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12)); 2790 if (thread_oop != NULL) { 2791 st->print_cr(" java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop)); 2792 } 2793 #ifndef PRODUCT 2794 print_thread_state_on(st); 2795 _safepoint_state->print_on(st); 2796 #endif // PRODUCT 2797 } 2798 2799 // Called by fatal error handler. The difference between this and 2800 // JavaThread::print() is that we can't grab lock or allocate memory. 2801 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const { 2802 st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen)); 2803 oop thread_obj = threadObj(); 2804 if (thread_obj != NULL) { 2805 if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon"); 2806 } 2807 st->print(" ["); 2808 st->print("%s", _get_thread_state_name(_thread_state)); 2809 if (osthread()) { 2810 st->print(", id=%d", osthread()->thread_id()); 2811 } 2812 st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")", 2813 _stack_base - _stack_size, _stack_base); 2814 st->print("]"); 2815 return; 2816 } 2817 2818 // Verification 2819 2820 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); } 2821 2822 void JavaThread::verify() { 2823 // Verify oops in the thread. 2824 oops_do(&VerifyOopClosure::verify_oop, NULL, NULL); 2825 2826 // Verify the stack frames. 2827 frames_do(frame_verify); 2828 } 2829 2830 // CR 6300358 (sub-CR 2137150) 2831 // Most callers of this method assume that it can't return NULL but a 2832 // thread may not have a name whilst it is in the process of attaching to 2833 // the VM - see CR 6412693, and there are places where a JavaThread can be 2834 // seen prior to having it's threadObj set (eg JNI attaching threads and 2835 // if vm exit occurs during initialization). These cases can all be accounted 2836 // for such that this method never returns NULL. 2837 const char* JavaThread::get_thread_name() const { 2838 #ifdef ASSERT 2839 // early safepoints can hit while current thread does not yet have TLS 2840 if (!SafepointSynchronize::is_at_safepoint()) { 2841 Thread *cur = Thread::current(); 2842 if (!(cur->is_Java_thread() && cur == this)) { 2843 // Current JavaThreads are allowed to get their own name without 2844 // the Threads_lock. 2845 assert_locked_or_safepoint(Threads_lock); 2846 } 2847 } 2848 #endif // ASSERT 2849 return get_thread_name_string(); 2850 } 2851 2852 // Returns a non-NULL representation of this thread's name, or a suitable 2853 // descriptive string if there is no set name 2854 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const { 2855 const char* name_str; 2856 oop thread_obj = threadObj(); 2857 if (thread_obj != NULL) { 2858 oop name = java_lang_Thread::name(thread_obj); 2859 if (name != NULL) { 2860 if (buf == NULL) { 2861 name_str = java_lang_String::as_utf8_string(name); 2862 } else { 2863 name_str = java_lang_String::as_utf8_string(name, buf, buflen); 2864 } 2865 } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306 2866 name_str = "<no-name - thread is attaching>"; 2867 } else { 2868 name_str = Thread::name(); 2869 } 2870 } else { 2871 name_str = Thread::name(); 2872 } 2873 assert(name_str != NULL, "unexpected NULL thread name"); 2874 return name_str; 2875 } 2876 2877 2878 const char* JavaThread::get_threadgroup_name() const { 2879 debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);) 2880 oop thread_obj = threadObj(); 2881 if (thread_obj != NULL) { 2882 oop thread_group = java_lang_Thread::threadGroup(thread_obj); 2883 if (thread_group != NULL) { 2884 typeArrayOop name = java_lang_ThreadGroup::name(thread_group); 2885 // ThreadGroup.name can be null 2886 if (name != NULL) { 2887 const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length()); 2888 return str; 2889 } 2890 } 2891 } 2892 return NULL; 2893 } 2894 2895 const char* JavaThread::get_parent_name() const { 2896 debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);) 2897 oop thread_obj = threadObj(); 2898 if (thread_obj != NULL) { 2899 oop thread_group = java_lang_Thread::threadGroup(thread_obj); 2900 if (thread_group != NULL) { 2901 oop parent = java_lang_ThreadGroup::parent(thread_group); 2902 if (parent != NULL) { 2903 typeArrayOop name = java_lang_ThreadGroup::name(parent); 2904 // ThreadGroup.name can be null 2905 if (name != NULL) { 2906 const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length()); 2907 return str; 2908 } 2909 } 2910 } 2911 } 2912 return NULL; 2913 } 2914 2915 ThreadPriority JavaThread::java_priority() const { 2916 oop thr_oop = threadObj(); 2917 if (thr_oop == NULL) return NormPriority; // Bootstrapping 2918 ThreadPriority priority = java_lang_Thread::priority(thr_oop); 2919 assert(MinPriority <= priority && priority <= MaxPriority, "sanity check"); 2920 return priority; 2921 } 2922 2923 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) { 2924 2925 assert(Threads_lock->owner() == Thread::current(), "must have threads lock"); 2926 // Link Java Thread object <-> C++ Thread 2927 2928 // Get the C++ thread object (an oop) from the JNI handle (a jthread) 2929 // and put it into a new Handle. The Handle "thread_oop" can then 2930 // be used to pass the C++ thread object to other methods. 2931 2932 // Set the Java level thread object (jthread) field of the 2933 // new thread (a JavaThread *) to C++ thread object using the 2934 // "thread_oop" handle. 2935 2936 // Set the thread field (a JavaThread *) of the 2937 // oop representing the java_lang_Thread to the new thread (a JavaThread *). 2938 2939 Handle thread_oop(Thread::current(), 2940 JNIHandles::resolve_non_null(jni_thread)); 2941 assert(InstanceKlass::cast(thread_oop->klass())->is_linked(), 2942 "must be initialized"); 2943 set_threadObj(thread_oop()); 2944 java_lang_Thread::set_thread(thread_oop(), this); 2945 2946 if (prio == NoPriority) { 2947 prio = java_lang_Thread::priority(thread_oop()); 2948 assert(prio != NoPriority, "A valid priority should be present"); 2949 } 2950 2951 // Push the Java priority down to the native thread; needs Threads_lock 2952 Thread::set_priority(this, prio); 2953 2954 prepare_ext(); 2955 2956 // Add the new thread to the Threads list and set it in motion. 2957 // We must have threads lock in order to call Threads::add. 2958 // It is crucial that we do not block before the thread is 2959 // added to the Threads list for if a GC happens, then the java_thread oop 2960 // will not be visited by GC. 2961 Threads::add(this); 2962 } 2963 2964 oop JavaThread::current_park_blocker() { 2965 // Support for JSR-166 locks 2966 oop thread_oop = threadObj(); 2967 if (thread_oop != NULL && 2968 JDK_Version::current().supports_thread_park_blocker()) { 2969 return java_lang_Thread::park_blocker(thread_oop); 2970 } 2971 return NULL; 2972 } 2973 2974 2975 void JavaThread::print_stack_on(outputStream* st) { 2976 if (!has_last_Java_frame()) return; 2977 ResourceMark rm; 2978 HandleMark hm; 2979 2980 RegisterMap reg_map(this); 2981 vframe* start_vf = last_java_vframe(®_map); 2982 int count = 0; 2983 for (vframe* f = start_vf; f; f = f->sender()) { 2984 if (f->is_java_frame()) { 2985 javaVFrame* jvf = javaVFrame::cast(f); 2986 java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci()); 2987 2988 // Print out lock information 2989 if (JavaMonitorsInStackTrace) { 2990 jvf->print_lock_info_on(st, count); 2991 } 2992 } else { 2993 // Ignore non-Java frames 2994 } 2995 2996 // Bail-out case for too deep stacks 2997 count++; 2998 if (MaxJavaStackTraceDepth == count) return; 2999 } 3000 } 3001 3002 3003 // JVMTI PopFrame support 3004 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) { 3005 assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments"); 3006 if (in_bytes(size_in_bytes) != 0) { 3007 _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread); 3008 _popframe_preserved_args_size = in_bytes(size_in_bytes); 3009 Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size); 3010 } 3011 } 3012 3013 void* JavaThread::popframe_preserved_args() { 3014 return _popframe_preserved_args; 3015 } 3016 3017 ByteSize JavaThread::popframe_preserved_args_size() { 3018 return in_ByteSize(_popframe_preserved_args_size); 3019 } 3020 3021 WordSize JavaThread::popframe_preserved_args_size_in_words() { 3022 int sz = in_bytes(popframe_preserved_args_size()); 3023 assert(sz % wordSize == 0, "argument size must be multiple of wordSize"); 3024 return in_WordSize(sz / wordSize); 3025 } 3026 3027 void JavaThread::popframe_free_preserved_args() { 3028 assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice"); 3029 FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args); 3030 _popframe_preserved_args = NULL; 3031 _popframe_preserved_args_size = 0; 3032 } 3033 3034 #ifndef PRODUCT 3035 3036 void JavaThread::trace_frames() { 3037 tty->print_cr("[Describe stack]"); 3038 int frame_no = 1; 3039 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 3040 tty->print(" %d. ", frame_no++); 3041 fst.current()->print_value_on(tty, this); 3042 tty->cr(); 3043 } 3044 } 3045 3046 class PrintAndVerifyOopClosure: public OopClosure { 3047 protected: 3048 template <class T> inline void do_oop_work(T* p) { 3049 oop obj = oopDesc::load_decode_heap_oop(p); 3050 if (obj == NULL) return; 3051 tty->print(INTPTR_FORMAT ": ", p); 3052 if (obj->is_oop_or_null()) { 3053 if (obj->is_objArray()) { 3054 tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj); 3055 } else { 3056 obj->print(); 3057 } 3058 } else { 3059 tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj); 3060 } 3061 tty->cr(); 3062 } 3063 public: 3064 virtual void do_oop(oop* p) { do_oop_work(p); } 3065 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 3066 }; 3067 3068 3069 static void oops_print(frame* f, const RegisterMap *map) { 3070 PrintAndVerifyOopClosure print; 3071 f->print_value(); 3072 f->oops_do(&print, NULL, NULL, (RegisterMap*)map); 3073 } 3074 3075 // Print our all the locations that contain oops and whether they are 3076 // valid or not. This useful when trying to find the oldest frame 3077 // where an oop has gone bad since the frame walk is from youngest to 3078 // oldest. 3079 void JavaThread::trace_oops() { 3080 tty->print_cr("[Trace oops]"); 3081 frames_do(oops_print); 3082 } 3083 3084 3085 #ifdef ASSERT 3086 // Print or validate the layout of stack frames 3087 void JavaThread::print_frame_layout(int depth, bool validate_only) { 3088 ResourceMark rm; 3089 PRESERVE_EXCEPTION_MARK; 3090 FrameValues values; 3091 int frame_no = 0; 3092 for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) { 3093 fst.current()->describe(values, ++frame_no); 3094 if (depth == frame_no) break; 3095 } 3096 if (validate_only) { 3097 values.validate(); 3098 } else { 3099 tty->print_cr("[Describe stack layout]"); 3100 values.print(this); 3101 } 3102 } 3103 #endif 3104 3105 void JavaThread::trace_stack_from(vframe* start_vf) { 3106 ResourceMark rm; 3107 int vframe_no = 1; 3108 for (vframe* f = start_vf; f; f = f->sender()) { 3109 if (f->is_java_frame()) { 3110 javaVFrame::cast(f)->print_activation(vframe_no++); 3111 } else { 3112 f->print(); 3113 } 3114 if (vframe_no > StackPrintLimit) { 3115 tty->print_cr("...<more frames>..."); 3116 return; 3117 } 3118 } 3119 } 3120 3121 3122 void JavaThread::trace_stack() { 3123 if (!has_last_Java_frame()) return; 3124 ResourceMark rm; 3125 HandleMark hm; 3126 RegisterMap reg_map(this); 3127 trace_stack_from(last_java_vframe(®_map)); 3128 } 3129 3130 3131 #endif // PRODUCT 3132 3133 3134 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) { 3135 assert(reg_map != NULL, "a map must be given"); 3136 frame f = last_frame(); 3137 for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) { 3138 if (vf->is_java_frame()) return javaVFrame::cast(vf); 3139 } 3140 return NULL; 3141 } 3142 3143 3144 Klass* JavaThread::security_get_caller_class(int depth) { 3145 vframeStream vfst(this); 3146 vfst.security_get_caller_frame(depth); 3147 if (!vfst.at_end()) { 3148 return vfst.method()->method_holder(); 3149 } 3150 return NULL; 3151 } 3152 3153 static void compiler_thread_entry(JavaThread* thread, TRAPS) { 3154 assert(thread->is_Compiler_thread(), "must be compiler thread"); 3155 CompileBroker::compiler_thread_loop(); 3156 } 3157 3158 static void sweeper_thread_entry(JavaThread* thread, TRAPS) { 3159 NMethodSweeper::sweeper_loop(); 3160 } 3161 3162 // Create a CompilerThread 3163 CompilerThread::CompilerThread(CompileQueue* queue, 3164 CompilerCounters* counters) 3165 : JavaThread(&compiler_thread_entry) { 3166 _env = NULL; 3167 _log = NULL; 3168 _task = NULL; 3169 _queue = queue; 3170 _counters = counters; 3171 _buffer_blob = NULL; 3172 _compiler = NULL; 3173 3174 #ifndef PRODUCT 3175 _ideal_graph_printer = NULL; 3176 #endif 3177 } 3178 3179 // Create sweeper thread 3180 CodeCacheSweeperThread::CodeCacheSweeperThread() 3181 : JavaThread(&sweeper_thread_entry) { 3182 _scanned_nmethod = NULL; 3183 } 3184 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 3185 JavaThread::oops_do(f, cld_f, cf); 3186 if (_scanned_nmethod != NULL && cf != NULL) { 3187 // Safepoints can occur when the sweeper is scanning an nmethod so 3188 // process it here to make sure it isn't unloaded in the middle of 3189 // a scan. 3190 cf->do_code_blob(_scanned_nmethod); 3191 } 3192 } 3193 3194 3195 // ======= Threads ======== 3196 3197 // The Threads class links together all active threads, and provides 3198 // operations over all threads. It is protected by its own Mutex 3199 // lock, which is also used in other contexts to protect thread 3200 // operations from having the thread being operated on from exiting 3201 // and going away unexpectedly (e.g., safepoint synchronization) 3202 3203 JavaThread* Threads::_thread_list = NULL; 3204 int Threads::_number_of_threads = 0; 3205 int Threads::_number_of_non_daemon_threads = 0; 3206 int Threads::_return_code = 0; 3207 int Threads::_thread_claim_parity = 0; 3208 size_t JavaThread::_stack_size_at_create = 0; 3209 #ifdef ASSERT 3210 bool Threads::_vm_complete = false; 3211 #endif 3212 3213 // All JavaThreads 3214 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next()) 3215 3216 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system) 3217 void Threads::threads_do(ThreadClosure* tc) { 3218 assert_locked_or_safepoint(Threads_lock); 3219 // ALL_JAVA_THREADS iterates through all JavaThreads 3220 ALL_JAVA_THREADS(p) { 3221 tc->do_thread(p); 3222 } 3223 // Someday we could have a table or list of all non-JavaThreads. 3224 // For now, just manually iterate through them. 3225 tc->do_thread(VMThread::vm_thread()); 3226 Universe::heap()->gc_threads_do(tc); 3227 WatcherThread *wt = WatcherThread::watcher_thread(); 3228 // Strictly speaking, the following NULL check isn't sufficient to make sure 3229 // the data for WatcherThread is still valid upon being examined. However, 3230 // considering that WatchThread terminates when the VM is on the way to 3231 // exit at safepoint, the chance of the above is extremely small. The right 3232 // way to prevent termination of WatcherThread would be to acquire 3233 // Terminator_lock, but we can't do that without violating the lock rank 3234 // checking in some cases. 3235 if (wt != NULL) { 3236 tc->do_thread(wt); 3237 } 3238 3239 // If CompilerThreads ever become non-JavaThreads, add them here 3240 } 3241 3242 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) { 3243 TraceTime timer("Initialize java.lang classes", TraceStartupTime); 3244 3245 if (EagerXrunInit && Arguments::init_libraries_at_startup()) { 3246 create_vm_init_libraries(); 3247 } 3248 3249 initialize_class(vmSymbols::java_lang_String(), CHECK); 3250 3251 // Initialize java_lang.System (needed before creating the thread) 3252 initialize_class(vmSymbols::java_lang_System(), CHECK); 3253 // The VM creates & returns objects of this class. Make sure it's initialized. 3254 initialize_class(vmSymbols::java_lang_Class(), CHECK); 3255 initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK); 3256 Handle thread_group = create_initial_thread_group(CHECK); 3257 Universe::set_main_thread_group(thread_group()); 3258 initialize_class(vmSymbols::java_lang_Thread(), CHECK); 3259 oop thread_object = create_initial_thread(thread_group, main_thread, CHECK); 3260 main_thread->set_threadObj(thread_object); 3261 // Set thread status to running since main thread has 3262 // been started and running. 3263 java_lang_Thread::set_thread_status(thread_object, 3264 java_lang_Thread::RUNNABLE); 3265 3266 // The VM preresolves methods to these classes. Make sure that they get initialized 3267 initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK); 3268 initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK); 3269 call_initializeSystemClass(CHECK); 3270 3271 // get the Java runtime name after java.lang.System is initialized 3272 JDK_Version::set_runtime_name(get_java_runtime_name(THREAD)); 3273 JDK_Version::set_runtime_version(get_java_runtime_version(THREAD)); 3274 3275 // an instance of OutOfMemory exception has been allocated earlier 3276 initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK); 3277 initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK); 3278 initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK); 3279 initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK); 3280 initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK); 3281 initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK); 3282 initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK); 3283 initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK); 3284 } 3285 3286 void Threads::initialize_jsr292_core_classes(TRAPS) { 3287 initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK); 3288 initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK); 3289 initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK); 3290 } 3291 3292 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) { 3293 extern void JDK_Version_init(); 3294 3295 // Preinitialize version info. 3296 VM_Version::early_initialize(); 3297 3298 // Check version 3299 if (!is_supported_jni_version(args->version)) return JNI_EVERSION; 3300 3301 // Initialize the output stream module 3302 ostream_init(); 3303 3304 // Process java launcher properties. 3305 Arguments::process_sun_java_launcher_properties(args); 3306 3307 // Initialize the os module before using TLS 3308 os::init(); 3309 3310 // Record VM creation timing statistics 3311 TraceVmCreationTime create_vm_timer; 3312 create_vm_timer.start(); 3313 3314 // Initialize system properties. 3315 Arguments::init_system_properties(); 3316 3317 // So that JDK version can be used as a discriminator when parsing arguments 3318 JDK_Version_init(); 3319 3320 // Update/Initialize System properties after JDK version number is known 3321 Arguments::init_version_specific_system_properties(); 3322 3323 // Make sure to initialize log configuration *before* parsing arguments 3324 LogConfiguration::initialize(create_vm_timer.begin_time()); 3325 3326 // Parse arguments 3327 jint parse_result = Arguments::parse(args); 3328 if (parse_result != JNI_OK) return parse_result; 3329 3330 os::init_before_ergo(); 3331 3332 jint ergo_result = Arguments::apply_ergo(); 3333 if (ergo_result != JNI_OK) return ergo_result; 3334 3335 // Final check of all ranges after ergonomics which may change values. 3336 if (!CommandLineFlagRangeList::check_ranges()) { 3337 return JNI_EINVAL; 3338 } 3339 3340 // Final check of all 'AfterErgo' constraints after ergonomics which may change values. 3341 bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo); 3342 if (!constraint_result) { 3343 return JNI_EINVAL; 3344 } 3345 3346 if (PauseAtStartup) { 3347 os::pause(); 3348 } 3349 3350 HOTSPOT_VM_INIT_BEGIN(); 3351 3352 // Timing (must come after argument parsing) 3353 TraceTime timer("Create VM", TraceStartupTime); 3354 3355 // Initialize the os module after parsing the args 3356 jint os_init_2_result = os::init_2(); 3357 if (os_init_2_result != JNI_OK) return os_init_2_result; 3358 3359 jint adjust_after_os_result = Arguments::adjust_after_os(); 3360 if (adjust_after_os_result != JNI_OK) return adjust_after_os_result; 3361 3362 // initialize TLS 3363 ThreadLocalStorage::init(); 3364 3365 // Initialize output stream logging 3366 ostream_init_log(); 3367 3368 // Convert -Xrun to -agentlib: if there is no JVM_OnLoad 3369 // Must be before create_vm_init_agents() 3370 if (Arguments::init_libraries_at_startup()) { 3371 convert_vm_init_libraries_to_agents(); 3372 } 3373 3374 // Launch -agentlib/-agentpath and converted -Xrun agents 3375 if (Arguments::init_agents_at_startup()) { 3376 create_vm_init_agents(); 3377 } 3378 3379 // Initialize Threads state 3380 _thread_list = NULL; 3381 _number_of_threads = 0; 3382 _number_of_non_daemon_threads = 0; 3383 3384 // Initialize global data structures and create system classes in heap 3385 vm_init_globals(); 3386 3387 // Attach the main thread to this os thread 3388 JavaThread* main_thread = new JavaThread(); 3389 main_thread->set_thread_state(_thread_in_vm); 3390 // must do this before set_active_handles and initialize_thread_local_storage 3391 // Note: on solaris initialize_thread_local_storage() will (indirectly) 3392 // change the stack size recorded here to one based on the java thread 3393 // stacksize. This adjusted size is what is used to figure the placement 3394 // of the guard pages. 3395 main_thread->record_stack_base_and_size(); 3396 main_thread->initialize_thread_local_storage(); 3397 3398 main_thread->set_active_handles(JNIHandleBlock::allocate_block()); 3399 3400 if (!main_thread->set_as_starting_thread()) { 3401 vm_shutdown_during_initialization( 3402 "Failed necessary internal allocation. Out of swap space"); 3403 delete main_thread; 3404 *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again 3405 return JNI_ENOMEM; 3406 } 3407 3408 // Enable guard page *after* os::create_main_thread(), otherwise it would 3409 // crash Linux VM, see notes in os_linux.cpp. 3410 main_thread->create_stack_guard_pages(); 3411 3412 // Initialize Java-Level synchronization subsystem 3413 ObjectMonitor::Initialize(); 3414 3415 // Initialize global modules 3416 jint status = init_globals(); 3417 if (status != JNI_OK) { 3418 delete main_thread; 3419 *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again 3420 return status; 3421 } 3422 3423 // Should be done after the heap is fully created 3424 main_thread->cache_global_variables(); 3425 3426 HandleMark hm; 3427 3428 { MutexLocker mu(Threads_lock); 3429 Threads::add(main_thread); 3430 } 3431 3432 // Any JVMTI raw monitors entered in onload will transition into 3433 // real raw monitor. VM is setup enough here for raw monitor enter. 3434 JvmtiExport::transition_pending_onload_raw_monitors(); 3435 3436 // Create the VMThread 3437 { TraceTime timer("Start VMThread", TraceStartupTime); 3438 VMThread::create(); 3439 Thread* vmthread = VMThread::vm_thread(); 3440 3441 if (!os::create_thread(vmthread, os::vm_thread)) { 3442 vm_exit_during_initialization("Cannot create VM thread. " 3443 "Out of system resources."); 3444 } 3445 3446 // Wait for the VM thread to become ready, and VMThread::run to initialize 3447 // Monitors can have spurious returns, must always check another state flag 3448 { 3449 MutexLocker ml(Notify_lock); 3450 os::start_thread(vmthread); 3451 while (vmthread->active_handles() == NULL) { 3452 Notify_lock->wait(); 3453 } 3454 } 3455 } 3456 3457 assert(Universe::is_fully_initialized(), "not initialized"); 3458 if (VerifyDuringStartup) { 3459 // Make sure we're starting with a clean slate. 3460 VM_Verify verify_op; 3461 VMThread::execute(&verify_op); 3462 } 3463 3464 Thread* THREAD = Thread::current(); 3465 3466 // At this point, the Universe is initialized, but we have not executed 3467 // any byte code. Now is a good time (the only time) to dump out the 3468 // internal state of the JVM for sharing. 3469 if (DumpSharedSpaces) { 3470 MetaspaceShared::preload_and_dump(CHECK_JNI_ERR); 3471 ShouldNotReachHere(); 3472 } 3473 3474 // Always call even when there are not JVMTI environments yet, since environments 3475 // may be attached late and JVMTI must track phases of VM execution 3476 JvmtiExport::enter_start_phase(); 3477 3478 // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents. 3479 JvmtiExport::post_vm_start(); 3480 3481 initialize_java_lang_classes(main_thread, CHECK_JNI_ERR); 3482 3483 // We need this for ClassDataSharing - the initial vm.info property is set 3484 // with the default value of CDS "sharing" which may be reset through 3485 // command line options. 3486 reset_vm_info_property(CHECK_JNI_ERR); 3487 3488 quicken_jni_functions(); 3489 3490 // Must be run after init_ft which initializes ft_enabled 3491 if (TRACE_INITIALIZE() != JNI_OK) { 3492 vm_exit_during_initialization("Failed to initialize tracing backend"); 3493 } 3494 3495 // Set flag that basic initialization has completed. Used by exceptions and various 3496 // debug stuff, that does not work until all basic classes have been initialized. 3497 set_init_completed(); 3498 3499 LogConfiguration::post_initialize(); 3500 Metaspace::post_initialize(); 3501 3502 HOTSPOT_VM_INIT_END(); 3503 3504 // record VM initialization completion time 3505 #if INCLUDE_MANAGEMENT 3506 Management::record_vm_init_completed(); 3507 #endif // INCLUDE_MANAGEMENT 3508 3509 // Compute system loader. Note that this has to occur after set_init_completed, since 3510 // valid exceptions may be thrown in the process. 3511 // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and 3512 // set_init_completed has just been called, causing exceptions not to be shortcut 3513 // anymore. We call vm_exit_during_initialization directly instead. 3514 SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR); 3515 3516 #if INCLUDE_ALL_GCS 3517 // Support for ConcurrentMarkSweep. This should be cleaned up 3518 // and better encapsulated. The ugly nested if test would go away 3519 // once things are properly refactored. XXX YSR 3520 if (UseConcMarkSweepGC || UseG1GC) { 3521 if (UseConcMarkSweepGC) { 3522 ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR); 3523 } else { 3524 ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR); 3525 } 3526 } 3527 #endif // INCLUDE_ALL_GCS 3528 3529 // Always call even when there are not JVMTI environments yet, since environments 3530 // may be attached late and JVMTI must track phases of VM execution 3531 JvmtiExport::enter_live_phase(); 3532 3533 // Signal Dispatcher needs to be started before VMInit event is posted 3534 os::signal_init(); 3535 3536 // Start Attach Listener if +StartAttachListener or it can't be started lazily 3537 if (!DisableAttachMechanism) { 3538 AttachListener::vm_start(); 3539 if (StartAttachListener || AttachListener::init_at_startup()) { 3540 AttachListener::init(); 3541 } 3542 } 3543 3544 // Launch -Xrun agents 3545 // Must be done in the JVMTI live phase so that for backward compatibility the JDWP 3546 // back-end can launch with -Xdebug -Xrunjdwp. 3547 if (!EagerXrunInit && Arguments::init_libraries_at_startup()) { 3548 create_vm_init_libraries(); 3549 } 3550 3551 // Notify JVMTI agents that VM initialization is complete - nop if no agents. 3552 JvmtiExport::post_vm_initialized(); 3553 3554 if (TRACE_START() != JNI_OK) { 3555 vm_exit_during_initialization("Failed to start tracing backend."); 3556 } 3557 3558 if (CleanChunkPoolAsync) { 3559 Chunk::start_chunk_pool_cleaner_task(); 3560 } 3561 3562 // initialize compiler(s) 3563 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) 3564 CompileBroker::compilation_init(); 3565 #endif 3566 3567 // Pre-initialize some JSR292 core classes to avoid deadlock during class loading. 3568 // It is done after compilers are initialized, because otherwise compilations of 3569 // signature polymorphic MH intrinsics can be missed 3570 // (see SystemDictionary::find_method_handle_intrinsic). 3571 initialize_jsr292_core_classes(CHECK_JNI_ERR); 3572 3573 #if INCLUDE_MANAGEMENT 3574 Management::initialize(THREAD); 3575 3576 if (HAS_PENDING_EXCEPTION) { 3577 // management agent fails to start possibly due to 3578 // configuration problem and is responsible for printing 3579 // stack trace if appropriate. Simply exit VM. 3580 vm_exit(1); 3581 } 3582 #endif // INCLUDE_MANAGEMENT 3583 3584 if (Arguments::has_profile()) FlatProfiler::engage(main_thread, true); 3585 if (MemProfiling) MemProfiler::engage(); 3586 StatSampler::engage(); 3587 if (CheckJNICalls) JniPeriodicChecker::engage(); 3588 3589 BiasedLocking::init(); 3590 3591 #if INCLUDE_RTM_OPT 3592 RTMLockingCounters::init(); 3593 #endif 3594 3595 if (JDK_Version::current().post_vm_init_hook_enabled()) { 3596 call_postVMInitHook(THREAD); 3597 // The Java side of PostVMInitHook.run must deal with all 3598 // exceptions and provide means of diagnosis. 3599 if (HAS_PENDING_EXCEPTION) { 3600 CLEAR_PENDING_EXCEPTION; 3601 } 3602 } 3603 3604 { 3605 MutexLocker ml(PeriodicTask_lock); 3606 // Make sure the WatcherThread can be started by WatcherThread::start() 3607 // or by dynamic enrollment. 3608 WatcherThread::make_startable(); 3609 // Start up the WatcherThread if there are any periodic tasks 3610 // NOTE: All PeriodicTasks should be registered by now. If they 3611 // aren't, late joiners might appear to start slowly (we might 3612 // take a while to process their first tick). 3613 if (PeriodicTask::num_tasks() > 0) { 3614 WatcherThread::start(); 3615 } 3616 } 3617 3618 CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM); 3619 3620 create_vm_timer.end(); 3621 #ifdef ASSERT 3622 _vm_complete = true; 3623 #endif 3624 return JNI_OK; 3625 } 3626 3627 // type for the Agent_OnLoad and JVM_OnLoad entry points 3628 extern "C" { 3629 typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *); 3630 } 3631 // Find a command line agent library and return its entry point for 3632 // -agentlib: -agentpath: -Xrun 3633 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array. 3634 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, 3635 const char *on_load_symbols[], 3636 size_t num_symbol_entries) { 3637 OnLoadEntry_t on_load_entry = NULL; 3638 void *library = NULL; 3639 3640 if (!agent->valid()) { 3641 char buffer[JVM_MAXPATHLEN]; 3642 char ebuf[1024] = ""; 3643 const char *name = agent->name(); 3644 const char *msg = "Could not find agent library "; 3645 3646 // First check to see if agent is statically linked into executable 3647 if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) { 3648 library = agent->os_lib(); 3649 } else if (agent->is_absolute_path()) { 3650 library = os::dll_load(name, ebuf, sizeof ebuf); 3651 if (library == NULL) { 3652 const char *sub_msg = " in absolute path, with error: "; 3653 size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1; 3654 char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread); 3655 jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf); 3656 // If we can't find the agent, exit. 3657 vm_exit_during_initialization(buf, NULL); 3658 FREE_C_HEAP_ARRAY(char, buf); 3659 } 3660 } else { 3661 // Try to load the agent from the standard dll directory 3662 if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), 3663 name)) { 3664 library = os::dll_load(buffer, ebuf, sizeof ebuf); 3665 } 3666 if (library == NULL) { // Try the local directory 3667 char ns[1] = {0}; 3668 if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) { 3669 library = os::dll_load(buffer, ebuf, sizeof ebuf); 3670 } 3671 if (library == NULL) { 3672 const char *sub_msg = " on the library path, with error: "; 3673 size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1; 3674 char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread); 3675 jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf); 3676 // If we can't find the agent, exit. 3677 vm_exit_during_initialization(buf, NULL); 3678 FREE_C_HEAP_ARRAY(char, buf); 3679 } 3680 } 3681 } 3682 agent->set_os_lib(library); 3683 agent->set_valid(); 3684 } 3685 3686 // Find the OnLoad function. 3687 on_load_entry = 3688 CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent, 3689 false, 3690 on_load_symbols, 3691 num_symbol_entries)); 3692 return on_load_entry; 3693 } 3694 3695 // Find the JVM_OnLoad entry point 3696 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) { 3697 const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS; 3698 return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*)); 3699 } 3700 3701 // Find the Agent_OnLoad entry point 3702 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) { 3703 const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS; 3704 return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*)); 3705 } 3706 3707 // For backwards compatibility with -Xrun 3708 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be 3709 // treated like -agentpath: 3710 // Must be called before agent libraries are created 3711 void Threads::convert_vm_init_libraries_to_agents() { 3712 AgentLibrary* agent; 3713 AgentLibrary* next; 3714 3715 for (agent = Arguments::libraries(); agent != NULL; agent = next) { 3716 next = agent->next(); // cache the next agent now as this agent may get moved off this list 3717 OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent); 3718 3719 // If there is an JVM_OnLoad function it will get called later, 3720 // otherwise see if there is an Agent_OnLoad 3721 if (on_load_entry == NULL) { 3722 on_load_entry = lookup_agent_on_load(agent); 3723 if (on_load_entry != NULL) { 3724 // switch it to the agent list -- so that Agent_OnLoad will be called, 3725 // JVM_OnLoad won't be attempted and Agent_OnUnload will 3726 Arguments::convert_library_to_agent(agent); 3727 } else { 3728 vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name()); 3729 } 3730 } 3731 } 3732 } 3733 3734 // Create agents for -agentlib: -agentpath: and converted -Xrun 3735 // Invokes Agent_OnLoad 3736 // Called very early -- before JavaThreads exist 3737 void Threads::create_vm_init_agents() { 3738 extern struct JavaVM_ main_vm; 3739 AgentLibrary* agent; 3740 3741 JvmtiExport::enter_onload_phase(); 3742 3743 for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) { 3744 OnLoadEntry_t on_load_entry = lookup_agent_on_load(agent); 3745 3746 if (on_load_entry != NULL) { 3747 // Invoke the Agent_OnLoad function 3748 jint err = (*on_load_entry)(&main_vm, agent->options(), NULL); 3749 if (err != JNI_OK) { 3750 vm_exit_during_initialization("agent library failed to init", agent->name()); 3751 } 3752 } else { 3753 vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name()); 3754 } 3755 } 3756 JvmtiExport::enter_primordial_phase(); 3757 } 3758 3759 extern "C" { 3760 typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *); 3761 } 3762 3763 void Threads::shutdown_vm_agents() { 3764 // Send any Agent_OnUnload notifications 3765 const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS; 3766 size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols); 3767 extern struct JavaVM_ main_vm; 3768 for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) { 3769 3770 // Find the Agent_OnUnload function. 3771 Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t, 3772 os::find_agent_function(agent, 3773 false, 3774 on_unload_symbols, 3775 num_symbol_entries)); 3776 3777 // Invoke the Agent_OnUnload function 3778 if (unload_entry != NULL) { 3779 JavaThread* thread = JavaThread::current(); 3780 ThreadToNativeFromVM ttn(thread); 3781 HandleMark hm(thread); 3782 (*unload_entry)(&main_vm); 3783 } 3784 } 3785 } 3786 3787 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries 3788 // Invokes JVM_OnLoad 3789 void Threads::create_vm_init_libraries() { 3790 extern struct JavaVM_ main_vm; 3791 AgentLibrary* agent; 3792 3793 for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) { 3794 OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent); 3795 3796 if (on_load_entry != NULL) { 3797 // Invoke the JVM_OnLoad function 3798 JavaThread* thread = JavaThread::current(); 3799 ThreadToNativeFromVM ttn(thread); 3800 HandleMark hm(thread); 3801 jint err = (*on_load_entry)(&main_vm, agent->options(), NULL); 3802 if (err != JNI_OK) { 3803 vm_exit_during_initialization("-Xrun library failed to init", agent->name()); 3804 } 3805 } else { 3806 vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name()); 3807 } 3808 } 3809 } 3810 3811 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) { 3812 assert(Threads_lock->owned_by_self(), "Must hold Threads_lock"); 3813 3814 JavaThread* java_thread = NULL; 3815 // Sequential search for now. Need to do better optimization later. 3816 for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) { 3817 oop tobj = thread->threadObj(); 3818 if (!thread->is_exiting() && 3819 tobj != NULL && 3820 java_tid == java_lang_Thread::thread_id(tobj)) { 3821 java_thread = thread; 3822 break; 3823 } 3824 } 3825 return java_thread; 3826 } 3827 3828 3829 // Last thread running calls java.lang.Shutdown.shutdown() 3830 void JavaThread::invoke_shutdown_hooks() { 3831 HandleMark hm(this); 3832 3833 // We could get here with a pending exception, if so clear it now. 3834 if (this->has_pending_exception()) { 3835 this->clear_pending_exception(); 3836 } 3837 3838 EXCEPTION_MARK; 3839 Klass* k = 3840 SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(), 3841 THREAD); 3842 if (k != NULL) { 3843 // SystemDictionary::resolve_or_null will return null if there was 3844 // an exception. If we cannot load the Shutdown class, just don't 3845 // call Shutdown.shutdown() at all. This will mean the shutdown hooks 3846 // and finalizers (if runFinalizersOnExit is set) won't be run. 3847 // Note that if a shutdown hook was registered or runFinalizersOnExit 3848 // was called, the Shutdown class would have already been loaded 3849 // (Runtime.addShutdownHook and runFinalizersOnExit will load it). 3850 instanceKlassHandle shutdown_klass (THREAD, k); 3851 JavaValue result(T_VOID); 3852 JavaCalls::call_static(&result, 3853 shutdown_klass, 3854 vmSymbols::shutdown_method_name(), 3855 vmSymbols::void_method_signature(), 3856 THREAD); 3857 } 3858 CLEAR_PENDING_EXCEPTION; 3859 } 3860 3861 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when 3862 // the program falls off the end of main(). Another VM exit path is through 3863 // vm_exit() when the program calls System.exit() to return a value or when 3864 // there is a serious error in VM. The two shutdown paths are not exactly 3865 // the same, but they share Shutdown.shutdown() at Java level and before_exit() 3866 // and VM_Exit op at VM level. 3867 // 3868 // Shutdown sequence: 3869 // + Shutdown native memory tracking if it is on 3870 // + Wait until we are the last non-daemon thread to execute 3871 // <-- every thing is still working at this moment --> 3872 // + Call java.lang.Shutdown.shutdown(), which will invoke Java level 3873 // shutdown hooks, run finalizers if finalization-on-exit 3874 // + Call before_exit(), prepare for VM exit 3875 // > run VM level shutdown hooks (they are registered through JVM_OnExit(), 3876 // currently the only user of this mechanism is File.deleteOnExit()) 3877 // > stop flat profiler, StatSampler, watcher thread, CMS threads, 3878 // post thread end and vm death events to JVMTI, 3879 // stop signal thread 3880 // + Call JavaThread::exit(), it will: 3881 // > release JNI handle blocks, remove stack guard pages 3882 // > remove this thread from Threads list 3883 // <-- no more Java code from this thread after this point --> 3884 // + Stop VM thread, it will bring the remaining VM to a safepoint and stop 3885 // the compiler threads at safepoint 3886 // <-- do not use anything that could get blocked by Safepoint --> 3887 // + Disable tracing at JNI/JVM barriers 3888 // + Set _vm_exited flag for threads that are still running native code 3889 // + Delete this thread 3890 // + Call exit_globals() 3891 // > deletes tty 3892 // > deletes PerfMemory resources 3893 // + Return to caller 3894 3895 bool Threads::destroy_vm() { 3896 JavaThread* thread = JavaThread::current(); 3897 3898 #ifdef ASSERT 3899 _vm_complete = false; 3900 #endif 3901 // Wait until we are the last non-daemon thread to execute 3902 { MutexLocker nu(Threads_lock); 3903 while (Threads::number_of_non_daemon_threads() > 1) 3904 // This wait should make safepoint checks, wait without a timeout, 3905 // and wait as a suspend-equivalent condition. 3906 // 3907 // Note: If the FlatProfiler is running and this thread is waiting 3908 // for another non-daemon thread to finish, then the FlatProfiler 3909 // is waiting for the external suspend request on this thread to 3910 // complete. wait_for_ext_suspend_completion() will eventually 3911 // timeout, but that takes time. Making this wait a suspend- 3912 // equivalent condition solves that timeout problem. 3913 // 3914 Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0, 3915 Mutex::_as_suspend_equivalent_flag); 3916 } 3917 3918 // Hang forever on exit if we are reporting an error. 3919 if (ShowMessageBoxOnError && is_error_reported()) { 3920 os::infinite_sleep(); 3921 } 3922 os::wait_for_keypress_at_exit(); 3923 3924 // run Java level shutdown hooks 3925 thread->invoke_shutdown_hooks(); 3926 3927 before_exit(thread); 3928 3929 thread->exit(true); 3930 3931 // Stop VM thread. 3932 { 3933 // 4945125 The vm thread comes to a safepoint during exit. 3934 // GC vm_operations can get caught at the safepoint, and the 3935 // heap is unparseable if they are caught. Grab the Heap_lock 3936 // to prevent this. The GC vm_operations will not be able to 3937 // queue until after the vm thread is dead. After this point, 3938 // we'll never emerge out of the safepoint before the VM exits. 3939 3940 MutexLocker ml(Heap_lock); 3941 3942 VMThread::wait_for_vm_thread_exit(); 3943 assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint"); 3944 VMThread::destroy(); 3945 } 3946 3947 // clean up ideal graph printers 3948 #if defined(COMPILER2) && !defined(PRODUCT) 3949 IdealGraphPrinter::clean_up(); 3950 #endif 3951 3952 // Now, all Java threads are gone except daemon threads. Daemon threads 3953 // running Java code or in VM are stopped by the Safepoint. However, 3954 // daemon threads executing native code are still running. But they 3955 // will be stopped at native=>Java/VM barriers. Note that we can't 3956 // simply kill or suspend them, as it is inherently deadlock-prone. 3957 3958 #ifndef PRODUCT 3959 // disable function tracing at JNI/JVM barriers 3960 TraceJNICalls = false; 3961 TraceJVMCalls = false; 3962 TraceRuntimeCalls = false; 3963 #endif 3964 3965 VM_Exit::set_vm_exited(); 3966 3967 notify_vm_shutdown(); 3968 3969 delete thread; 3970 3971 // exit_globals() will delete tty 3972 exit_globals(); 3973 3974 LogConfiguration::finalize(); 3975 3976 return true; 3977 } 3978 3979 3980 jboolean Threads::is_supported_jni_version_including_1_1(jint version) { 3981 if (version == JNI_VERSION_1_1) return JNI_TRUE; 3982 return is_supported_jni_version(version); 3983 } 3984 3985 3986 jboolean Threads::is_supported_jni_version(jint version) { 3987 if (version == JNI_VERSION_1_2) return JNI_TRUE; 3988 if (version == JNI_VERSION_1_4) return JNI_TRUE; 3989 if (version == JNI_VERSION_1_6) return JNI_TRUE; 3990 if (version == JNI_VERSION_1_8) return JNI_TRUE; 3991 return JNI_FALSE; 3992 } 3993 3994 3995 void Threads::add(JavaThread* p, bool force_daemon) { 3996 // The threads lock must be owned at this point 3997 assert_locked_or_safepoint(Threads_lock); 3998 3999 // See the comment for this method in thread.hpp for its purpose and 4000 // why it is called here. 4001 p->initialize_queues(); 4002 p->set_next(_thread_list); 4003 _thread_list = p; 4004 _number_of_threads++; 4005 oop threadObj = p->threadObj(); 4006 bool daemon = true; 4007 // Bootstrapping problem: threadObj can be null for initial 4008 // JavaThread (or for threads attached via JNI) 4009 if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) { 4010 _number_of_non_daemon_threads++; 4011 daemon = false; 4012 } 4013 4014 ThreadService::add_thread(p, daemon); 4015 4016 // Possible GC point. 4017 Events::log(p, "Thread added: " INTPTR_FORMAT, p); 4018 } 4019 4020 void Threads::remove(JavaThread* p) { 4021 // Extra scope needed for Thread_lock, so we can check 4022 // that we do not remove thread without safepoint code notice 4023 { MutexLocker ml(Threads_lock); 4024 4025 assert(includes(p), "p must be present"); 4026 4027 JavaThread* current = _thread_list; 4028 JavaThread* prev = NULL; 4029 4030 while (current != p) { 4031 prev = current; 4032 current = current->next(); 4033 } 4034 4035 if (prev) { 4036 prev->set_next(current->next()); 4037 } else { 4038 _thread_list = p->next(); 4039 } 4040 _number_of_threads--; 4041 oop threadObj = p->threadObj(); 4042 bool daemon = true; 4043 if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) { 4044 _number_of_non_daemon_threads--; 4045 daemon = false; 4046 4047 // Only one thread left, do a notify on the Threads_lock so a thread waiting 4048 // on destroy_vm will wake up. 4049 if (number_of_non_daemon_threads() == 1) { 4050 Threads_lock->notify_all(); 4051 } 4052 } 4053 ThreadService::remove_thread(p, daemon); 4054 4055 // Make sure that safepoint code disregard this thread. This is needed since 4056 // the thread might mess around with locks after this point. This can cause it 4057 // to do callbacks into the safepoint code. However, the safepoint code is not aware 4058 // of this thread since it is removed from the queue. 4059 p->set_terminated_value(); 4060 } // unlock Threads_lock 4061 4062 // Since Events::log uses a lock, we grab it outside the Threads_lock 4063 Events::log(p, "Thread exited: " INTPTR_FORMAT, p); 4064 } 4065 4066 // Threads_lock must be held when this is called (or must be called during a safepoint) 4067 bool Threads::includes(JavaThread* p) { 4068 assert(Threads_lock->is_locked(), "sanity check"); 4069 ALL_JAVA_THREADS(q) { 4070 if (q == p) { 4071 return true; 4072 } 4073 } 4074 return false; 4075 } 4076 4077 // Operations on the Threads list for GC. These are not explicitly locked, 4078 // but the garbage collector must provide a safe context for them to run. 4079 // In particular, these things should never be called when the Threads_lock 4080 // is held by some other thread. (Note: the Safepoint abstraction also 4081 // uses the Threads_lock to guarantee this property. It also makes sure that 4082 // all threads gets blocked when exiting or starting). 4083 4084 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 4085 ALL_JAVA_THREADS(p) { 4086 p->oops_do(f, cld_f, cf); 4087 } 4088 VMThread::vm_thread()->oops_do(f, cld_f, cf); 4089 } 4090 4091 void Threads::change_thread_claim_parity() { 4092 // Set the new claim parity. 4093 assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2, 4094 "Not in range."); 4095 _thread_claim_parity++; 4096 if (_thread_claim_parity == 3) _thread_claim_parity = 1; 4097 assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2, 4098 "Not in range."); 4099 } 4100 4101 #ifdef ASSERT 4102 void Threads::assert_all_threads_claimed() { 4103 ALL_JAVA_THREADS(p) { 4104 const int thread_parity = p->oops_do_parity(); 4105 assert((thread_parity == _thread_claim_parity), 4106 err_msg("Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity)); 4107 } 4108 } 4109 #endif // ASSERT 4110 4111 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 4112 int cp = Threads::thread_claim_parity(); 4113 ALL_JAVA_THREADS(p) { 4114 if (p->claim_oops_do(is_par, cp)) { 4115 p->oops_do(f, cld_f, cf); 4116 } 4117 } 4118 VMThread* vmt = VMThread::vm_thread(); 4119 if (vmt->claim_oops_do(is_par, cp)) { 4120 vmt->oops_do(f, cld_f, cf); 4121 } 4122 } 4123 4124 #if INCLUDE_ALL_GCS 4125 // Used by ParallelScavenge 4126 void Threads::create_thread_roots_tasks(GCTaskQueue* q) { 4127 ALL_JAVA_THREADS(p) { 4128 q->enqueue(new ThreadRootsTask(p)); 4129 } 4130 q->enqueue(new ThreadRootsTask(VMThread::vm_thread())); 4131 } 4132 4133 // Used by Parallel Old 4134 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) { 4135 ALL_JAVA_THREADS(p) { 4136 q->enqueue(new ThreadRootsMarkingTask(p)); 4137 } 4138 q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread())); 4139 } 4140 #endif // INCLUDE_ALL_GCS 4141 4142 void Threads::nmethods_do(CodeBlobClosure* cf) { 4143 ALL_JAVA_THREADS(p) { 4144 p->nmethods_do(cf); 4145 } 4146 VMThread::vm_thread()->nmethods_do(cf); 4147 } 4148 4149 void Threads::metadata_do(void f(Metadata*)) { 4150 ALL_JAVA_THREADS(p) { 4151 p->metadata_do(f); 4152 } 4153 } 4154 4155 class ThreadHandlesClosure : public ThreadClosure { 4156 void (*_f)(Metadata*); 4157 public: 4158 ThreadHandlesClosure(void f(Metadata*)) : _f(f) {} 4159 virtual void do_thread(Thread* thread) { 4160 thread->metadata_handles_do(_f); 4161 } 4162 }; 4163 4164 void Threads::metadata_handles_do(void f(Metadata*)) { 4165 // Only walk the Handles in Thread. 4166 ThreadHandlesClosure handles_closure(f); 4167 threads_do(&handles_closure); 4168 } 4169 4170 void Threads::deoptimized_wrt_marked_nmethods() { 4171 ALL_JAVA_THREADS(p) { 4172 p->deoptimized_wrt_marked_nmethods(); 4173 } 4174 } 4175 4176 4177 // Get count Java threads that are waiting to enter the specified monitor. 4178 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count, 4179 address monitor, 4180 bool doLock) { 4181 assert(doLock || SafepointSynchronize::is_at_safepoint(), 4182 "must grab Threads_lock or be at safepoint"); 4183 GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count); 4184 4185 int i = 0; 4186 { 4187 MutexLockerEx ml(doLock ? Threads_lock : NULL); 4188 ALL_JAVA_THREADS(p) { 4189 if (p->is_Compiler_thread()) continue; 4190 4191 address pending = (address)p->current_pending_monitor(); 4192 if (pending == monitor) { // found a match 4193 if (i < count) result->append(p); // save the first count matches 4194 i++; 4195 } 4196 } 4197 } 4198 return result; 4199 } 4200 4201 4202 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, 4203 bool doLock) { 4204 assert(doLock || 4205 Threads_lock->owned_by_self() || 4206 SafepointSynchronize::is_at_safepoint(), 4207 "must grab Threads_lock or be at safepoint"); 4208 4209 // NULL owner means not locked so we can skip the search 4210 if (owner == NULL) return NULL; 4211 4212 { 4213 MutexLockerEx ml(doLock ? Threads_lock : NULL); 4214 ALL_JAVA_THREADS(p) { 4215 // first, see if owner is the address of a Java thread 4216 if (owner == (address)p) return p; 4217 } 4218 } 4219 // Cannot assert on lack of success here since this function may be 4220 // used by code that is trying to report useful problem information 4221 // like deadlock detection. 4222 if (UseHeavyMonitors) return NULL; 4223 4224 // If we didn't find a matching Java thread and we didn't force use of 4225 // heavyweight monitors, then the owner is the stack address of the 4226 // Lock Word in the owning Java thread's stack. 4227 // 4228 JavaThread* the_owner = NULL; 4229 { 4230 MutexLockerEx ml(doLock ? Threads_lock : NULL); 4231 ALL_JAVA_THREADS(q) { 4232 if (q->is_lock_owned(owner)) { 4233 the_owner = q; 4234 break; 4235 } 4236 } 4237 } 4238 // cannot assert on lack of success here; see above comment 4239 return the_owner; 4240 } 4241 4242 // Threads::print_on() is called at safepoint by VM_PrintThreads operation. 4243 void Threads::print_on(outputStream* st, bool print_stacks, 4244 bool internal_format, bool print_concurrent_locks) { 4245 char buf[32]; 4246 st->print_cr("%s", os::local_time_string(buf, sizeof(buf))); 4247 4248 st->print_cr("Full thread dump %s (%s %s):", 4249 Abstract_VM_Version::vm_name(), 4250 Abstract_VM_Version::vm_release(), 4251 Abstract_VM_Version::vm_info_string()); 4252 st->cr(); 4253 4254 #if INCLUDE_SERVICES 4255 // Dump concurrent locks 4256 ConcurrentLocksDump concurrent_locks; 4257 if (print_concurrent_locks) { 4258 concurrent_locks.dump_at_safepoint(); 4259 } 4260 #endif // INCLUDE_SERVICES 4261 4262 ALL_JAVA_THREADS(p) { 4263 ResourceMark rm; 4264 p->print_on(st); 4265 if (print_stacks) { 4266 if (internal_format) { 4267 p->trace_stack(); 4268 } else { 4269 p->print_stack_on(st); 4270 } 4271 } 4272 st->cr(); 4273 #if INCLUDE_SERVICES 4274 if (print_concurrent_locks) { 4275 concurrent_locks.print_locks_on(p, st); 4276 } 4277 #endif // INCLUDE_SERVICES 4278 } 4279 4280 VMThread::vm_thread()->print_on(st); 4281 st->cr(); 4282 Universe::heap()->print_gc_threads_on(st); 4283 WatcherThread* wt = WatcherThread::watcher_thread(); 4284 if (wt != NULL) { 4285 wt->print_on(st); 4286 st->cr(); 4287 } 4288 CompileBroker::print_compiler_threads_on(st); 4289 st->flush(); 4290 } 4291 4292 // Threads::print_on_error() is called by fatal error handler. It's possible 4293 // that VM is not at safepoint and/or current thread is inside signal handler. 4294 // Don't print stack trace, as the stack may not be walkable. Don't allocate 4295 // memory (even in resource area), it might deadlock the error handler. 4296 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, 4297 int buflen) { 4298 bool found_current = false; 4299 st->print_cr("Java Threads: ( => current thread )"); 4300 ALL_JAVA_THREADS(thread) { 4301 bool is_current = (current == thread); 4302 found_current = found_current || is_current; 4303 4304 st->print("%s", is_current ? "=>" : " "); 4305 4306 st->print(PTR_FORMAT, thread); 4307 st->print(" "); 4308 thread->print_on_error(st, buf, buflen); 4309 st->cr(); 4310 } 4311 st->cr(); 4312 4313 st->print_cr("Other Threads:"); 4314 if (VMThread::vm_thread()) { 4315 bool is_current = (current == VMThread::vm_thread()); 4316 found_current = found_current || is_current; 4317 st->print("%s", current == VMThread::vm_thread() ? "=>" : " "); 4318 4319 st->print(PTR_FORMAT, VMThread::vm_thread()); 4320 st->print(" "); 4321 VMThread::vm_thread()->print_on_error(st, buf, buflen); 4322 st->cr(); 4323 } 4324 WatcherThread* wt = WatcherThread::watcher_thread(); 4325 if (wt != NULL) { 4326 bool is_current = (current == wt); 4327 found_current = found_current || is_current; 4328 st->print("%s", is_current ? "=>" : " "); 4329 4330 st->print(PTR_FORMAT, wt); 4331 st->print(" "); 4332 wt->print_on_error(st, buf, buflen); 4333 st->cr(); 4334 } 4335 if (!found_current) { 4336 st->cr(); 4337 st->print("=>" PTR_FORMAT " (exited) ", current); 4338 current->print_on_error(st, buf, buflen); 4339 st->cr(); 4340 } 4341 } 4342 4343 // Internal SpinLock and Mutex 4344 // Based on ParkEvent 4345 4346 // Ad-hoc mutual exclusion primitives: SpinLock and Mux 4347 // 4348 // We employ SpinLocks _only for low-contention, fixed-length 4349 // short-duration critical sections where we're concerned 4350 // about native mutex_t or HotSpot Mutex:: latency. 4351 // The mux construct provides a spin-then-block mutual exclusion 4352 // mechanism. 4353 // 4354 // Testing has shown that contention on the ListLock guarding gFreeList 4355 // is common. If we implement ListLock as a simple SpinLock it's common 4356 // for the JVM to devolve to yielding with little progress. This is true 4357 // despite the fact that the critical sections protected by ListLock are 4358 // extremely short. 4359 // 4360 // TODO-FIXME: ListLock should be of type SpinLock. 4361 // We should make this a 1st-class type, integrated into the lock 4362 // hierarchy as leaf-locks. Critically, the SpinLock structure 4363 // should have sufficient padding to avoid false-sharing and excessive 4364 // cache-coherency traffic. 4365 4366 4367 typedef volatile int SpinLockT; 4368 4369 void Thread::SpinAcquire(volatile int * adr, const char * LockName) { 4370 if (Atomic::cmpxchg (1, adr, 0) == 0) { 4371 return; // normal fast-path return 4372 } 4373 4374 // Slow-path : We've encountered contention -- Spin/Yield/Block strategy. 4375 TEVENT(SpinAcquire - ctx); 4376 int ctr = 0; 4377 int Yields = 0; 4378 for (;;) { 4379 while (*adr != 0) { 4380 ++ctr; 4381 if ((ctr & 0xFFF) == 0 || !os::is_MP()) { 4382 if (Yields > 5) { 4383 os::naked_short_sleep(1); 4384 } else { 4385 os::naked_yield(); 4386 ++Yields; 4387 } 4388 } else { 4389 SpinPause(); 4390 } 4391 } 4392 if (Atomic::cmpxchg(1, adr, 0) == 0) return; 4393 } 4394 } 4395 4396 void Thread::SpinRelease(volatile int * adr) { 4397 assert(*adr != 0, "invariant"); 4398 OrderAccess::fence(); // guarantee at least release consistency. 4399 // Roach-motel semantics. 4400 // It's safe if subsequent LDs and STs float "up" into the critical section, 4401 // but prior LDs and STs within the critical section can't be allowed 4402 // to reorder or float past the ST that releases the lock. 4403 // Loads and stores in the critical section - which appear in program 4404 // order before the store that releases the lock - must also appear 4405 // before the store that releases the lock in memory visibility order. 4406 // Conceptually we need a #loadstore|#storestore "release" MEMBAR before 4407 // the ST of 0 into the lock-word which releases the lock, so fence 4408 // more than covers this on all platforms. 4409 *adr = 0; 4410 } 4411 4412 // muxAcquire and muxRelease: 4413 // 4414 // * muxAcquire and muxRelease support a single-word lock-word construct. 4415 // The LSB of the word is set IFF the lock is held. 4416 // The remainder of the word points to the head of a singly-linked list 4417 // of threads blocked on the lock. 4418 // 4419 // * The current implementation of muxAcquire-muxRelease uses its own 4420 // dedicated Thread._MuxEvent instance. If we're interested in 4421 // minimizing the peak number of extant ParkEvent instances then 4422 // we could eliminate _MuxEvent and "borrow" _ParkEvent as long 4423 // as certain invariants were satisfied. Specifically, care would need 4424 // to be taken with regards to consuming unpark() "permits". 4425 // A safe rule of thumb is that a thread would never call muxAcquire() 4426 // if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently 4427 // park(). Otherwise the _ParkEvent park() operation in muxAcquire() could 4428 // consume an unpark() permit intended for monitorenter, for instance. 4429 // One way around this would be to widen the restricted-range semaphore 4430 // implemented in park(). Another alternative would be to provide 4431 // multiple instances of the PlatformEvent() for each thread. One 4432 // instance would be dedicated to muxAcquire-muxRelease, for instance. 4433 // 4434 // * Usage: 4435 // -- Only as leaf locks 4436 // -- for short-term locking only as muxAcquire does not perform 4437 // thread state transitions. 4438 // 4439 // Alternatives: 4440 // * We could implement muxAcquire and muxRelease with MCS or CLH locks 4441 // but with parking or spin-then-park instead of pure spinning. 4442 // * Use Taura-Oyama-Yonenzawa locks. 4443 // * It's possible to construct a 1-0 lock if we encode the lockword as 4444 // (List,LockByte). Acquire will CAS the full lockword while Release 4445 // will STB 0 into the LockByte. The 1-0 scheme admits stranding, so 4446 // acquiring threads use timers (ParkTimed) to detect and recover from 4447 // the stranding window. Thread/Node structures must be aligned on 256-byte 4448 // boundaries by using placement-new. 4449 // * Augment MCS with advisory back-link fields maintained with CAS(). 4450 // Pictorially: LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner. 4451 // The validity of the backlinks must be ratified before we trust the value. 4452 // If the backlinks are invalid the exiting thread must back-track through the 4453 // the forward links, which are always trustworthy. 4454 // * Add a successor indication. The LockWord is currently encoded as 4455 // (List, LOCKBIT:1). We could also add a SUCCBIT or an explicit _succ variable 4456 // to provide the usual futile-wakeup optimization. 4457 // See RTStt for details. 4458 // * Consider schedctl.sc_nopreempt to cover the critical section. 4459 // 4460 4461 4462 typedef volatile intptr_t MutexT; // Mux Lock-word 4463 enum MuxBits { LOCKBIT = 1 }; 4464 4465 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) { 4466 intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0); 4467 if (w == 0) return; 4468 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4469 return; 4470 } 4471 4472 TEVENT(muxAcquire - Contention); 4473 ParkEvent * const Self = Thread::current()->_MuxEvent; 4474 assert((intptr_t(Self) & LOCKBIT) == 0, "invariant"); 4475 for (;;) { 4476 int its = (os::is_MP() ? 100 : 0) + 1; 4477 4478 // Optional spin phase: spin-then-park strategy 4479 while (--its >= 0) { 4480 w = *Lock; 4481 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4482 return; 4483 } 4484 } 4485 4486 Self->reset(); 4487 Self->OnList = intptr_t(Lock); 4488 // The following fence() isn't _strictly necessary as the subsequent 4489 // CAS() both serializes execution and ratifies the fetched *Lock value. 4490 OrderAccess::fence(); 4491 for (;;) { 4492 w = *Lock; 4493 if ((w & LOCKBIT) == 0) { 4494 if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4495 Self->OnList = 0; // hygiene - allows stronger asserts 4496 return; 4497 } 4498 continue; // Interference -- *Lock changed -- Just retry 4499 } 4500 assert(w & LOCKBIT, "invariant"); 4501 Self->ListNext = (ParkEvent *) (w & ~LOCKBIT); 4502 if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break; 4503 } 4504 4505 while (Self->OnList != 0) { 4506 Self->park(); 4507 } 4508 } 4509 } 4510 4511 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) { 4512 intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0); 4513 if (w == 0) return; 4514 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4515 return; 4516 } 4517 4518 TEVENT(muxAcquire - Contention); 4519 ParkEvent * ReleaseAfter = NULL; 4520 if (ev == NULL) { 4521 ev = ReleaseAfter = ParkEvent::Allocate(NULL); 4522 } 4523 assert((intptr_t(ev) & LOCKBIT) == 0, "invariant"); 4524 for (;;) { 4525 guarantee(ev->OnList == 0, "invariant"); 4526 int its = (os::is_MP() ? 100 : 0) + 1; 4527 4528 // Optional spin phase: spin-then-park strategy 4529 while (--its >= 0) { 4530 w = *Lock; 4531 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4532 if (ReleaseAfter != NULL) { 4533 ParkEvent::Release(ReleaseAfter); 4534 } 4535 return; 4536 } 4537 } 4538 4539 ev->reset(); 4540 ev->OnList = intptr_t(Lock); 4541 // The following fence() isn't _strictly necessary as the subsequent 4542 // CAS() both serializes execution and ratifies the fetched *Lock value. 4543 OrderAccess::fence(); 4544 for (;;) { 4545 w = *Lock; 4546 if ((w & LOCKBIT) == 0) { 4547 if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4548 ev->OnList = 0; 4549 // We call ::Release while holding the outer lock, thus 4550 // artificially lengthening the critical section. 4551 // Consider deferring the ::Release() until the subsequent unlock(), 4552 // after we've dropped the outer lock. 4553 if (ReleaseAfter != NULL) { 4554 ParkEvent::Release(ReleaseAfter); 4555 } 4556 return; 4557 } 4558 continue; // Interference -- *Lock changed -- Just retry 4559 } 4560 assert(w & LOCKBIT, "invariant"); 4561 ev->ListNext = (ParkEvent *) (w & ~LOCKBIT); 4562 if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break; 4563 } 4564 4565 while (ev->OnList != 0) { 4566 ev->park(); 4567 } 4568 } 4569 } 4570 4571 // Release() must extract a successor from the list and then wake that thread. 4572 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme 4573 // similar to that used by ParkEvent::Allocate() and ::Release(). DMR-based 4574 // Release() would : 4575 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list. 4576 // (B) Extract a successor from the private list "in-hand" 4577 // (C) attempt to CAS() the residual back into *Lock over null. 4578 // If there were any newly arrived threads and the CAS() would fail. 4579 // In that case Release() would detach the RATs, re-merge the list in-hand 4580 // with the RATs and repeat as needed. Alternately, Release() might 4581 // detach and extract a successor, but then pass the residual list to the wakee. 4582 // The wakee would be responsible for reattaching and remerging before it 4583 // competed for the lock. 4584 // 4585 // Both "pop" and DMR are immune from ABA corruption -- there can be 4586 // multiple concurrent pushers, but only one popper or detacher. 4587 // This implementation pops from the head of the list. This is unfair, 4588 // but tends to provide excellent throughput as hot threads remain hot. 4589 // (We wake recently run threads first). 4590 // 4591 // All paths through muxRelease() will execute a CAS. 4592 // Release consistency -- We depend on the CAS in muxRelease() to provide full 4593 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations 4594 // executed within the critical section are complete and globally visible before the 4595 // store (CAS) to the lock-word that releases the lock becomes globally visible. 4596 void Thread::muxRelease(volatile intptr_t * Lock) { 4597 for (;;) { 4598 const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT); 4599 assert(w & LOCKBIT, "invariant"); 4600 if (w == LOCKBIT) return; 4601 ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT); 4602 assert(List != NULL, "invariant"); 4603 assert(List->OnList == intptr_t(Lock), "invariant"); 4604 ParkEvent * const nxt = List->ListNext; 4605 guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant"); 4606 4607 // The following CAS() releases the lock and pops the head element. 4608 // The CAS() also ratifies the previously fetched lock-word value. 4609 if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) { 4610 continue; 4611 } 4612 List->OnList = 0; 4613 OrderAccess::fence(); 4614 List->unpark(); 4615 return; 4616 } 4617 } 4618 4619 4620 void Threads::verify() { 4621 ALL_JAVA_THREADS(p) { 4622 p->verify(); 4623 } 4624 VMThread* thread = VMThread::vm_thread(); 4625 if (thread != NULL) thread->verify(); 4626 }