1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP 26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP 27 28 #ifndef __STDC_FORMAT_MACROS 29 #define __STDC_FORMAT_MACROS 30 #endif 31 32 #ifdef TARGET_COMPILER_gcc 33 # include "utilities/globalDefinitions_gcc.hpp" 34 #endif 35 #ifdef TARGET_COMPILER_visCPP 36 # include "utilities/globalDefinitions_visCPP.hpp" 37 #endif 38 #ifdef TARGET_COMPILER_sparcWorks 39 # include "utilities/globalDefinitions_sparcWorks.hpp" 40 #endif 41 #ifdef TARGET_COMPILER_xlc 42 # include "utilities/globalDefinitions_xlc.hpp" 43 #endif 44 45 #ifndef PRAGMA_DIAG_PUSH 46 #define PRAGMA_DIAG_PUSH 47 #endif 48 #ifndef PRAGMA_DIAG_POP 49 #define PRAGMA_DIAG_POP 50 #endif 51 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED 52 #define PRAGMA_FORMAT_NONLITERAL_IGNORED 53 #endif 54 #ifndef PRAGMA_FORMAT_IGNORED 55 #define PRAGMA_FORMAT_IGNORED 56 #endif 57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL 58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL 59 #endif 60 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL 61 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL 62 #endif 63 #ifndef ATTRIBUTE_PRINTF 64 #define ATTRIBUTE_PRINTF(fmt, vargs) 65 #endif 66 #ifndef ATTRIBUTE_SCANF 67 #define ATTRIBUTE_SCANF(fmt, vargs) 68 #endif 69 70 71 #include "utilities/macros.hpp" 72 73 // This file holds all globally used constants & types, class (forward) 74 // declarations and a few frequently used utility functions. 75 76 //---------------------------------------------------------------------------------------------------- 77 // Constants 78 79 const int LogBytesPerShort = 1; 80 const int LogBytesPerInt = 2; 81 #ifdef _LP64 82 const int LogBytesPerWord = 3; 83 #else 84 const int LogBytesPerWord = 2; 85 #endif 86 const int LogBytesPerLong = 3; 87 88 const int BytesPerShort = 1 << LogBytesPerShort; 89 const int BytesPerInt = 1 << LogBytesPerInt; 90 const int BytesPerWord = 1 << LogBytesPerWord; 91 const int BytesPerLong = 1 << LogBytesPerLong; 92 93 const int LogBitsPerByte = 3; 94 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort; 95 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt; 96 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord; 97 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong; 98 99 const int BitsPerByte = 1 << LogBitsPerByte; 100 const int BitsPerShort = 1 << LogBitsPerShort; 101 const int BitsPerInt = 1 << LogBitsPerInt; 102 const int BitsPerWord = 1 << LogBitsPerWord; 103 const int BitsPerLong = 1 << LogBitsPerLong; 104 105 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1; 106 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1; 107 108 const int WordsPerLong = 2; // Number of stack entries for longs 109 110 const int oopSize = sizeof(char*); // Full-width oop 111 extern int heapOopSize; // Oop within a java object 112 const int wordSize = sizeof(char*); 113 const int longSize = sizeof(jlong); 114 const int jintSize = sizeof(jint); 115 const int size_tSize = sizeof(size_t); 116 117 const int BytesPerOop = BytesPerWord; // Full-width oop 118 119 extern int LogBytesPerHeapOop; // Oop within a java object 120 extern int LogBitsPerHeapOop; 121 extern int BytesPerHeapOop; 122 extern int BitsPerHeapOop; 123 124 const int BitsPerJavaInteger = 32; 125 const int BitsPerJavaLong = 64; 126 const int BitsPerSize_t = size_tSize * BitsPerByte; 127 128 // Size of a char[] needed to represent a jint as a string in decimal. 129 const int jintAsStringSize = 12; 130 131 // In fact this should be 132 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64); 133 // see os::set_memory_serialize_page() 134 #ifdef _LP64 135 const int SerializePageShiftCount = 4; 136 #else 137 const int SerializePageShiftCount = 3; 138 #endif 139 140 // An opaque struct of heap-word width, so that HeapWord* can be a generic 141 // pointer into the heap. We require that object sizes be measured in 142 // units of heap words, so that that 143 // HeapWord* hw; 144 // hw += oop(hw)->foo(); 145 // works, where foo is a method (like size or scavenge) that returns the 146 // object size. 147 class HeapWord { 148 friend class VMStructs; 149 private: 150 char* i; 151 #ifndef PRODUCT 152 public: 153 char* value() { return i; } 154 #endif 155 }; 156 157 // Analogous opaque struct for metadata allocated from 158 // metaspaces. 159 class MetaWord { 160 friend class VMStructs; 161 private: 162 char* i; 163 }; 164 165 // HeapWordSize must be 2^LogHeapWordSize. 166 const int HeapWordSize = sizeof(HeapWord); 167 #ifdef _LP64 168 const int LogHeapWordSize = 3; 169 #else 170 const int LogHeapWordSize = 2; 171 #endif 172 const int HeapWordsPerLong = BytesPerLong / HeapWordSize; 173 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize; 174 175 // The larger HeapWordSize for 64bit requires larger heaps 176 // for the same application running in 64bit. See bug 4967770. 177 // The minimum alignment to a heap word size is done. Other 178 // parts of the memory system may require additional alignment 179 // and are responsible for those alignments. 180 #ifdef _LP64 181 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize) 182 #else 183 #define ScaleForWordSize(x) (x) 184 #endif 185 186 // The minimum number of native machine words necessary to contain "byte_size" 187 // bytes. 188 inline size_t heap_word_size(size_t byte_size) { 189 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize; 190 } 191 192 const size_t K = 1024; 193 const size_t M = K*K; 194 const size_t G = M*K; 195 const size_t HWperKB = K / sizeof(HeapWord); 196 197 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint 198 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint 199 200 // Constants for converting from a base unit to milli-base units. For 201 // example from seconds to milliseconds and microseconds 202 203 const int MILLIUNITS = 1000; // milli units per base unit 204 const int MICROUNITS = 1000000; // micro units per base unit 205 const int NANOUNITS = 1000000000; // nano units per base unit 206 207 const jlong NANOSECS_PER_SEC = CONST64(1000000000); 208 const jint NANOSECS_PER_MILLISEC = 1000000; 209 210 inline const char* proper_unit_for_byte_size(size_t s) { 211 #ifdef _LP64 212 if (s >= 10*G) { 213 return "G"; 214 } 215 #endif 216 if (s >= 10*M) { 217 return "M"; 218 } else if (s >= 10*K) { 219 return "K"; 220 } else { 221 return "B"; 222 } 223 } 224 225 template <class T> 226 inline T byte_size_in_proper_unit(T s) { 227 #ifdef _LP64 228 if (s >= 10*G) { 229 return (T)(s/G); 230 } 231 #endif 232 if (s >= 10*M) { 233 return (T)(s/M); 234 } else if (s >= 10*K) { 235 return (T)(s/K); 236 } else { 237 return s; 238 } 239 } 240 241 //---------------------------------------------------------------------------------------------------- 242 // VM type definitions 243 244 // intx and uintx are the 'extended' int and 'extended' unsigned int types; 245 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform. 246 247 typedef intptr_t intx; 248 typedef uintptr_t uintx; 249 250 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1); 251 const intx max_intx = (uintx)min_intx - 1; 252 const uintx max_uintx = (uintx)-1; 253 254 // Table of values: 255 // sizeof intx 4 8 256 // min_intx 0x80000000 0x8000000000000000 257 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF 258 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF 259 260 typedef unsigned int uint; NEEDS_CLEANUP 261 262 263 //---------------------------------------------------------------------------------------------------- 264 // Java type definitions 265 266 // All kinds of 'plain' byte addresses 267 typedef signed char s_char; 268 typedef unsigned char u_char; 269 typedef u_char* address; 270 typedef uintptr_t address_word; // unsigned integer which will hold a pointer 271 // except for some implementations of a C++ 272 // linkage pointer to function. Should never 273 // need one of those to be placed in this 274 // type anyway. 275 276 // Utility functions to "portably" (?) bit twiddle pointers 277 // Where portable means keep ANSI C++ compilers quiet 278 279 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); } 280 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); } 281 282 // Utility functions to "portably" make cast to/from function pointers. 283 284 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; } 285 inline address_word castable_address(address x) { return address_word(x) ; } 286 inline address_word castable_address(void* x) { return address_word(x) ; } 287 288 // Pointer subtraction. 289 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have 290 // the range we might need to find differences from one end of the heap 291 // to the other. 292 // A typical use might be: 293 // if (pointer_delta(end(), top()) >= size) { 294 // // enough room for an object of size 295 // ... 296 // and then additions like 297 // ... top() + size ... 298 // are safe because we know that top() is at least size below end(). 299 inline size_t pointer_delta(const void* left, 300 const void* right, 301 size_t element_size) { 302 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size; 303 } 304 // A version specialized for HeapWord*'s. 305 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) { 306 return pointer_delta(left, right, sizeof(HeapWord)); 307 } 308 // A version specialized for MetaWord*'s. 309 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) { 310 return pointer_delta(left, right, sizeof(MetaWord)); 311 } 312 313 // 314 // ANSI C++ does not allow casting from one pointer type to a function pointer 315 // directly without at best a warning. This macro accomplishes it silently 316 // In every case that is present at this point the value be cast is a pointer 317 // to a C linkage function. In somecase the type used for the cast reflects 318 // that linkage and a picky compiler would not complain. In other cases because 319 // there is no convenient place to place a typedef with extern C linkage (i.e 320 // a platform dependent header file) it doesn't. At this point no compiler seems 321 // picky enough to catch these instances (which are few). It is possible that 322 // using templates could fix these for all cases. This use of templates is likely 323 // so far from the middle of the road that it is likely to be problematic in 324 // many C++ compilers. 325 // 326 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value))) 327 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr))) 328 329 // Unsigned byte types for os and stream.hpp 330 331 // Unsigned one, two, four and eigth byte quantities used for describing 332 // the .class file format. See JVM book chapter 4. 333 334 typedef jubyte u1; 335 typedef jushort u2; 336 typedef juint u4; 337 typedef julong u8; 338 339 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte 340 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort 341 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint 342 const julong max_julong = (julong)-1; // 0xFF....FF largest julong 343 344 typedef jbyte s1; 345 typedef jshort s2; 346 typedef jint s4; 347 typedef jlong s8; 348 349 //---------------------------------------------------------------------------------------------------- 350 // JVM spec restrictions 351 352 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134) 353 354 // Default ProtectionDomainCacheSize values 355 356 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017); 357 358 //---------------------------------------------------------------------------------------------------- 359 // Default and minimum StringTableSize values 360 361 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013); 362 const int minimumStringTableSize = 1009; 363 364 const int defaultSymbolTableSize = 20011; 365 const int minimumSymbolTableSize = 1009; 366 367 368 //---------------------------------------------------------------------------------------------------- 369 // HotSwap - for JVMTI aka Class File Replacement and PopFrame 370 // 371 // Determines whether on-the-fly class replacement and frame popping are enabled. 372 373 #define HOTSWAP 374 375 //---------------------------------------------------------------------------------------------------- 376 // Object alignment, in units of HeapWords. 377 // 378 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and 379 // reference fields can be naturally aligned. 380 381 extern int MinObjAlignment; 382 extern int MinObjAlignmentInBytes; 383 extern int MinObjAlignmentInBytesMask; 384 385 extern int LogMinObjAlignment; 386 extern int LogMinObjAlignmentInBytes; 387 388 const int LogKlassAlignmentInBytes = 3; 389 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize; 390 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes; 391 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize; 392 393 // Maximal size of heap where unscaled compression can be used. Also upper bound 394 // for heap placement: 4GB. 395 const uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1); 396 // Maximal size of heap where compressed oops can be used. Also upper bound for heap 397 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes. 398 extern uint64_t OopEncodingHeapMax; 399 400 // Maximal size of compressed class space. Above this limit compression is not possible. 401 // Also upper bound for placement of zero based class space. (Class space is further limited 402 // to be < 3G, see arguments.cpp.) 403 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes; 404 405 // Machine dependent stuff 406 407 // States of Restricted Transactional Memory usage. 408 enum RTMState { 409 NoRTM = 0x2, // Don't use RTM 410 UseRTM = 0x1, // Use RTM 411 ProfileRTM = 0x0 // Use RTM with abort ratio calculation 412 }; 413 414 // The maximum size of the code cache. Can be overridden by targets. 415 #define CODE_CACHE_SIZE_LIMIT (2*G) 416 // Allow targets to reduce the default size of the code cache. 417 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT 418 419 #ifdef TARGET_ARCH_x86 420 # include "globalDefinitions_x86.hpp" 421 #endif 422 #ifdef TARGET_ARCH_sparc 423 # include "globalDefinitions_sparc.hpp" 424 #endif 425 #ifdef TARGET_ARCH_zero 426 # include "globalDefinitions_zero.hpp" 427 #endif 428 #ifdef TARGET_ARCH_arm 429 # include "globalDefinitions_arm.hpp" 430 #endif 431 #ifdef TARGET_ARCH_ppc 432 # include "globalDefinitions_ppc.hpp" 433 #endif 434 #ifdef TARGET_ARCH_aarch64 435 # include "globalDefinitions_aarch64.hpp" 436 #endif 437 438 #ifndef INCLUDE_RTM_OPT 439 #define INCLUDE_RTM_OPT 0 440 #endif 441 #if INCLUDE_RTM_OPT 442 #define RTM_OPT_ONLY(code) code 443 #else 444 #define RTM_OPT_ONLY(code) 445 #endif 446 447 // To assure the IRIW property on processors that are not multiple copy 448 // atomic, sync instructions must be issued between volatile reads to 449 // assure their ordering, instead of after volatile stores. 450 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models" 451 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge) 452 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC 453 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true; 454 #else 455 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false; 456 #endif 457 458 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348. 459 // Note: this value must be a power of 2 460 461 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord) 462 463 // Signed variants of alignment helpers. There are two versions of each, a macro 464 // for use in places like enum definitions that require compile-time constant 465 // expressions and a function for all other places so as to get type checking. 466 467 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1)) 468 469 inline bool is_size_aligned(size_t size, size_t alignment) { 470 return align_size_up_(size, alignment) == size; 471 } 472 473 inline bool is_ptr_aligned(void* ptr, size_t alignment) { 474 return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr; 475 } 476 477 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) { 478 return align_size_up_(size, alignment); 479 } 480 481 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1)) 482 483 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) { 484 return align_size_down_(size, alignment); 485 } 486 487 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment))) 488 489 inline void* align_ptr_up(void* ptr, size_t alignment) { 490 return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment); 491 } 492 493 inline void* align_ptr_down(void* ptr, size_t alignment) { 494 return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment); 495 } 496 497 // Align objects by rounding up their size, in HeapWord units. 498 499 #define align_object_size_(size) align_size_up_(size, MinObjAlignment) 500 501 inline intptr_t align_object_size(intptr_t size) { 502 return align_size_up(size, MinObjAlignment); 503 } 504 505 inline bool is_object_aligned(intptr_t addr) { 506 return addr == align_object_size(addr); 507 } 508 509 // Pad out certain offsets to jlong alignment, in HeapWord units. 510 511 inline intptr_t align_object_offset(intptr_t offset) { 512 return align_size_up(offset, HeapWordsPerLong); 513 } 514 515 inline void* align_pointer_up(const void* addr, size_t size) { 516 return (void*) align_size_up_((uintptr_t)addr, size); 517 } 518 519 // Align down with a lower bound. If the aligning results in 0, return 'alignment'. 520 521 inline size_t align_size_down_bounded(size_t size, size_t alignment) { 522 size_t aligned_size = align_size_down_(size, alignment); 523 return aligned_size > 0 ? aligned_size : alignment; 524 } 525 526 // Clamp an address to be within a specific page 527 // 1. If addr is on the page it is returned as is 528 // 2. If addr is above the page_address the start of the *next* page will be returned 529 // 3. Otherwise, if addr is below the page_address the start of the page will be returned 530 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) { 531 if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) { 532 // address is in the specified page, just return it as is 533 return addr; 534 } else if (addr > page_address) { 535 // address is above specified page, return start of next page 536 return (address)align_size_down(intptr_t(page_address), page_size) + page_size; 537 } else { 538 // address is below specified page, return start of page 539 return (address)align_size_down(intptr_t(page_address), page_size); 540 } 541 } 542 543 544 // The expected size in bytes of a cache line, used to pad data structures. 545 #ifndef DEFAULT_CACHE_LINE_SIZE 546 #define DEFAULT_CACHE_LINE_SIZE 64 547 #endif 548 549 550 //---------------------------------------------------------------------------------------------------- 551 // Utility macros for compilers 552 // used to silence compiler warnings 553 554 #define Unused_Variable(var) var 555 556 557 //---------------------------------------------------------------------------------------------------- 558 // Miscellaneous 559 560 // 6302670 Eliminate Hotspot __fabsf dependency 561 // All fabs() callers should call this function instead, which will implicitly 562 // convert the operand to double, avoiding a dependency on __fabsf which 563 // doesn't exist in early versions of Solaris 8. 564 inline double fabsd(double value) { 565 return fabs(value); 566 } 567 568 //---------------------------------------------------------------------------------------------------- 569 // Special casts 570 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern 571 typedef union { 572 jfloat f; 573 jint i; 574 } FloatIntConv; 575 576 typedef union { 577 jdouble d; 578 jlong l; 579 julong ul; 580 } DoubleLongConv; 581 582 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; } 583 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; } 584 585 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; } 586 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; } 587 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; } 588 589 inline jint low (jlong value) { return jint(value); } 590 inline jint high(jlong value) { return jint(value >> 32); } 591 592 // the fancy casts are a hopefully portable way 593 // to do unsigned 32 to 64 bit type conversion 594 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32; 595 *value |= (jlong)(julong)(juint)low; } 596 597 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff; 598 *value |= (jlong)high << 32; } 599 600 inline jlong jlong_from(jint h, jint l) { 601 jlong result = 0; // initialization to avoid warning 602 set_high(&result, h); 603 set_low(&result, l); 604 return result; 605 } 606 607 union jlong_accessor { 608 jint words[2]; 609 jlong long_value; 610 }; 611 612 void basic_types_init(); // cannot define here; uses assert 613 614 615 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 616 enum BasicType { 617 T_BOOLEAN = 4, 618 T_CHAR = 5, 619 T_FLOAT = 6, 620 T_DOUBLE = 7, 621 T_BYTE = 8, 622 T_SHORT = 9, 623 T_INT = 10, 624 T_LONG = 11, 625 T_OBJECT = 12, 626 T_ARRAY = 13, 627 T_VOID = 14, 628 T_ADDRESS = 15, 629 T_NARROWOOP = 16, 630 T_METADATA = 17, 631 T_NARROWKLASS = 18, 632 T_CONFLICT = 19, // for stack value type with conflicting contents 633 T_ILLEGAL = 99 634 }; 635 636 inline bool is_java_primitive(BasicType t) { 637 return T_BOOLEAN <= t && t <= T_LONG; 638 } 639 640 inline bool is_subword_type(BasicType t) { 641 // these guys are processed exactly like T_INT in calling sequences: 642 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT); 643 } 644 645 inline bool is_signed_subword_type(BasicType t) { 646 return (t == T_BYTE || t == T_SHORT); 647 } 648 649 // Convert a char from a classfile signature to a BasicType 650 inline BasicType char2type(char c) { 651 switch( c ) { 652 case 'B': return T_BYTE; 653 case 'C': return T_CHAR; 654 case 'D': return T_DOUBLE; 655 case 'F': return T_FLOAT; 656 case 'I': return T_INT; 657 case 'J': return T_LONG; 658 case 'S': return T_SHORT; 659 case 'Z': return T_BOOLEAN; 660 case 'V': return T_VOID; 661 case 'L': return T_OBJECT; 662 case '[': return T_ARRAY; 663 } 664 return T_ILLEGAL; 665 } 666 667 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar 668 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; } 669 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements 670 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar 671 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; } 672 extern BasicType name2type(const char* name); 673 674 // Auxilary math routines 675 // least common multiple 676 extern size_t lcm(size_t a, size_t b); 677 678 679 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 680 enum BasicTypeSize { 681 T_BOOLEAN_size = 1, 682 T_CHAR_size = 1, 683 T_FLOAT_size = 1, 684 T_DOUBLE_size = 2, 685 T_BYTE_size = 1, 686 T_SHORT_size = 1, 687 T_INT_size = 1, 688 T_LONG_size = 2, 689 T_OBJECT_size = 1, 690 T_ARRAY_size = 1, 691 T_NARROWOOP_size = 1, 692 T_NARROWKLASS_size = 1, 693 T_VOID_size = 0 694 }; 695 696 697 // maps a BasicType to its instance field storage type: 698 // all sub-word integral types are widened to T_INT 699 extern BasicType type2field[T_CONFLICT+1]; 700 extern BasicType type2wfield[T_CONFLICT+1]; 701 702 703 // size in bytes 704 enum ArrayElementSize { 705 T_BOOLEAN_aelem_bytes = 1, 706 T_CHAR_aelem_bytes = 2, 707 T_FLOAT_aelem_bytes = 4, 708 T_DOUBLE_aelem_bytes = 8, 709 T_BYTE_aelem_bytes = 1, 710 T_SHORT_aelem_bytes = 2, 711 T_INT_aelem_bytes = 4, 712 T_LONG_aelem_bytes = 8, 713 #ifdef _LP64 714 T_OBJECT_aelem_bytes = 8, 715 T_ARRAY_aelem_bytes = 8, 716 #else 717 T_OBJECT_aelem_bytes = 4, 718 T_ARRAY_aelem_bytes = 4, 719 #endif 720 T_NARROWOOP_aelem_bytes = 4, 721 T_NARROWKLASS_aelem_bytes = 4, 722 T_VOID_aelem_bytes = 0 723 }; 724 725 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element 726 #ifdef ASSERT 727 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts 728 #else 729 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; } 730 #endif 731 732 733 // JavaValue serves as a container for arbitrary Java values. 734 735 class JavaValue { 736 737 public: 738 typedef union JavaCallValue { 739 jfloat f; 740 jdouble d; 741 jint i; 742 jlong l; 743 jobject h; 744 } JavaCallValue; 745 746 private: 747 BasicType _type; 748 JavaCallValue _value; 749 750 public: 751 JavaValue(BasicType t = T_ILLEGAL) { _type = t; } 752 753 JavaValue(jfloat value) { 754 _type = T_FLOAT; 755 _value.f = value; 756 } 757 758 JavaValue(jdouble value) { 759 _type = T_DOUBLE; 760 _value.d = value; 761 } 762 763 jfloat get_jfloat() const { return _value.f; } 764 jdouble get_jdouble() const { return _value.d; } 765 jint get_jint() const { return _value.i; } 766 jlong get_jlong() const { return _value.l; } 767 jobject get_jobject() const { return _value.h; } 768 JavaCallValue* get_value_addr() { return &_value; } 769 BasicType get_type() const { return _type; } 770 771 void set_jfloat(jfloat f) { _value.f = f;} 772 void set_jdouble(jdouble d) { _value.d = d;} 773 void set_jint(jint i) { _value.i = i;} 774 void set_jlong(jlong l) { _value.l = l;} 775 void set_jobject(jobject h) { _value.h = h;} 776 void set_type(BasicType t) { _type = t; } 777 778 jboolean get_jboolean() const { return (jboolean) (_value.i);} 779 jbyte get_jbyte() const { return (jbyte) (_value.i);} 780 jchar get_jchar() const { return (jchar) (_value.i);} 781 jshort get_jshort() const { return (jshort) (_value.i);} 782 783 }; 784 785 786 #define STACK_BIAS 0 787 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff 788 // in order to extend the reach of the stack pointer. 789 #if defined(SPARC) && defined(_LP64) 790 #undef STACK_BIAS 791 #define STACK_BIAS 0x7ff 792 #endif 793 794 795 // TosState describes the top-of-stack state before and after the execution of 796 // a bytecode or method. The top-of-stack value may be cached in one or more CPU 797 // registers. The TosState corresponds to the 'machine represention' of this cached 798 // value. There's 4 states corresponding to the JAVA types int, long, float & double 799 // as well as a 5th state in case the top-of-stack value is actually on the top 800 // of stack (in memory) and thus not cached. The atos state corresponds to the itos 801 // state when it comes to machine representation but is used separately for (oop) 802 // type specific operations (e.g. verification code). 803 804 enum TosState { // describes the tos cache contents 805 btos = 0, // byte, bool tos cached 806 ctos = 1, // char tos cached 807 stos = 2, // short tos cached 808 itos = 3, // int tos cached 809 ltos = 4, // long tos cached 810 ftos = 5, // float tos cached 811 dtos = 6, // double tos cached 812 atos = 7, // object cached 813 vtos = 8, // tos not cached 814 number_of_states, 815 ilgl // illegal state: should not occur 816 }; 817 818 819 inline TosState as_TosState(BasicType type) { 820 switch (type) { 821 case T_BYTE : return btos; 822 case T_BOOLEAN: return btos; // FIXME: Add ztos 823 case T_CHAR : return ctos; 824 case T_SHORT : return stos; 825 case T_INT : return itos; 826 case T_LONG : return ltos; 827 case T_FLOAT : return ftos; 828 case T_DOUBLE : return dtos; 829 case T_VOID : return vtos; 830 case T_ARRAY : // fall through 831 case T_OBJECT : return atos; 832 } 833 return ilgl; 834 } 835 836 inline BasicType as_BasicType(TosState state) { 837 switch (state) { 838 //case ztos: return T_BOOLEAN;//FIXME 839 case btos : return T_BYTE; 840 case ctos : return T_CHAR; 841 case stos : return T_SHORT; 842 case itos : return T_INT; 843 case ltos : return T_LONG; 844 case ftos : return T_FLOAT; 845 case dtos : return T_DOUBLE; 846 case atos : return T_OBJECT; 847 case vtos : return T_VOID; 848 } 849 return T_ILLEGAL; 850 } 851 852 853 // Helper function to convert BasicType info into TosState 854 // Note: Cannot define here as it uses global constant at the time being. 855 TosState as_TosState(BasicType type); 856 857 858 // JavaThreadState keeps track of which part of the code a thread is executing in. This 859 // information is needed by the safepoint code. 860 // 861 // There are 4 essential states: 862 // 863 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code) 864 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles 865 // _thread_in_vm : Executing in the vm 866 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub) 867 // 868 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in 869 // a transition from one state to another. These extra states makes it possible for the safepoint code to 870 // handle certain thread_states without having to suspend the thread - making the safepoint code faster. 871 // 872 // Given a state, the xxx_trans state can always be found by adding 1. 873 // 874 enum JavaThreadState { 875 _thread_uninitialized = 0, // should never happen (missing initialization) 876 _thread_new = 2, // just starting up, i.e., in process of being initialized 877 _thread_new_trans = 3, // corresponding transition state (not used, included for completness) 878 _thread_in_native = 4, // running in native code 879 _thread_in_native_trans = 5, // corresponding transition state 880 _thread_in_vm = 6, // running in VM 881 _thread_in_vm_trans = 7, // corresponding transition state 882 _thread_in_Java = 8, // running in Java or in stub code 883 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness) 884 _thread_blocked = 10, // blocked in vm 885 _thread_blocked_trans = 11, // corresponding transition state 886 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation 887 }; 888 889 890 // Handy constants for deciding which compiler mode to use. 891 enum MethodCompilation { 892 InvocationEntryBci = -1 // i.e., not a on-stack replacement compilation 893 }; 894 895 // Enumeration to distinguish tiers of compilation 896 enum CompLevel { 897 CompLevel_any = -1, 898 CompLevel_all = -1, 899 CompLevel_none = 0, // Interpreter 900 CompLevel_simple = 1, // C1 901 CompLevel_limited_profile = 2, // C1, invocation & backedge counters 902 CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo 903 CompLevel_full_optimization = 4, // C2, Shark or JVMCI 904 905 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI 906 CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered or JVMCI and tiered 907 #elif defined(COMPILER1) 908 CompLevel_highest_tier = CompLevel_simple, // pure C1 or JVMCI 909 #else 910 CompLevel_highest_tier = CompLevel_none, 911 #endif 912 913 #if defined(TIERED) 914 CompLevel_initial_compile = CompLevel_full_profile // tiered 915 #elif defined(COMPILER1) || INCLUDE_JVMCI 916 CompLevel_initial_compile = CompLevel_simple // pure C1 or JVMCI 917 #elif defined(COMPILER2) || defined(SHARK) 918 CompLevel_initial_compile = CompLevel_full_optimization // pure C2 919 #else 920 CompLevel_initial_compile = CompLevel_none 921 #endif 922 }; 923 924 inline bool is_c1_compile(int comp_level) { 925 return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization; 926 } 927 928 inline bool is_c2_compile(int comp_level) { 929 return comp_level == CompLevel_full_optimization; 930 } 931 932 inline bool is_highest_tier_compile(int comp_level) { 933 return comp_level == CompLevel_highest_tier; 934 } 935 936 inline bool is_compile(int comp_level) { 937 return is_c1_compile(comp_level) || is_c2_compile(comp_level); 938 } 939 940 //---------------------------------------------------------------------------------------------------- 941 // 'Forward' declarations of frequently used classes 942 // (in order to reduce interface dependencies & reduce 943 // number of unnecessary compilations after changes) 944 945 class ClassFileStream; 946 947 class Event; 948 949 class Thread; 950 class VMThread; 951 class JavaThread; 952 class Threads; 953 954 class VM_Operation; 955 class VMOperationQueue; 956 957 class CodeBlob; 958 class nmethod; 959 class OSRAdapter; 960 class I2CAdapter; 961 class C2IAdapter; 962 class CompiledIC; 963 class relocInfo; 964 class ScopeDesc; 965 class PcDesc; 966 967 class Recompiler; 968 class Recompilee; 969 class RecompilationPolicy; 970 class RFrame; 971 class CompiledRFrame; 972 class InterpretedRFrame; 973 974 class frame; 975 976 class vframe; 977 class javaVFrame; 978 class interpretedVFrame; 979 class compiledVFrame; 980 class deoptimizedVFrame; 981 class externalVFrame; 982 class entryVFrame; 983 984 class RegisterMap; 985 986 class Mutex; 987 class Monitor; 988 class BasicLock; 989 class BasicObjectLock; 990 991 class PeriodicTask; 992 993 class JavaCallWrapper; 994 995 class oopDesc; 996 class metaDataOopDesc; 997 998 class NativeCall; 999 1000 class zone; 1001 1002 class StubQueue; 1003 1004 class outputStream; 1005 1006 class ResourceArea; 1007 1008 class DebugInformationRecorder; 1009 class ScopeValue; 1010 class CompressedStream; 1011 class DebugInfoReadStream; 1012 class DebugInfoWriteStream; 1013 class LocationValue; 1014 class ConstantValue; 1015 class IllegalValue; 1016 1017 class PrivilegedElement; 1018 class MonitorArray; 1019 1020 class MonitorInfo; 1021 1022 class OffsetClosure; 1023 class OopMapCache; 1024 class InterpreterOopMap; 1025 class OopMapCacheEntry; 1026 class OSThread; 1027 1028 typedef int (*OSThreadStartFunc)(void*); 1029 1030 class Space; 1031 1032 class JavaValue; 1033 class methodHandle; 1034 class JavaCallArguments; 1035 1036 // Basic support for errors (general debug facilities not defined at this point fo the include phase) 1037 1038 extern void basic_fatal(const char* msg); 1039 1040 1041 //---------------------------------------------------------------------------------------------------- 1042 // Special constants for debugging 1043 1044 const jint badInt = -3; // generic "bad int" value 1045 const long badAddressVal = -2; // generic "bad address" value 1046 const long badOopVal = -1; // generic "bad oop" value 1047 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC 1048 const int badHandleValue = 0xBC; // value used to zap vm handle area 1049 const int badResourceValue = 0xAB; // value used to zap resource area 1050 const int freeBlockPad = 0xBA; // value used to pad freed blocks. 1051 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks. 1052 const intptr_t badJNIHandleVal = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area 1053 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC 1054 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC 1055 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation 1056 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation 1057 1058 1059 // (These must be implemented as #defines because C++ compilers are 1060 // not obligated to inline non-integral constants!) 1061 #define badAddress ((address)::badAddressVal) 1062 #define badOop (cast_to_oop(::badOopVal)) 1063 #define badHeapWord (::badHeapWordVal) 1064 #define badJNIHandle (cast_to_oop(::badJNIHandleVal)) 1065 1066 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit) 1067 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17)) 1068 1069 //---------------------------------------------------------------------------------------------------- 1070 // Utility functions for bitfield manipulations 1071 1072 const intptr_t AllBits = ~0; // all bits set in a word 1073 const intptr_t NoBits = 0; // no bits set in a word 1074 const jlong NoLongBits = 0; // no bits set in a long 1075 const intptr_t OneBit = 1; // only right_most bit set in a word 1076 1077 // get a word with the n.th or the right-most or left-most n bits set 1078 // (note: #define used only so that they can be used in enum constant definitions) 1079 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n)) 1080 #define right_n_bits(n) (nth_bit(n) - 1) 1081 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n))) 1082 1083 // bit-operations using a mask m 1084 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; } 1085 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; } 1086 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; } 1087 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; } 1088 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; } 1089 1090 // bit-operations using the n.th bit 1091 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); } 1092 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); } 1093 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; } 1094 1095 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!) 1096 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) { 1097 return mask_bits(x >> start_bit_no, right_n_bits(field_length)); 1098 } 1099 1100 1101 //---------------------------------------------------------------------------------------------------- 1102 // Utility functions for integers 1103 1104 // Avoid use of global min/max macros which may cause unwanted double 1105 // evaluation of arguments. 1106 #ifdef max 1107 #undef max 1108 #endif 1109 1110 #ifdef min 1111 #undef min 1112 #endif 1113 1114 #define max(a,b) Do_not_use_max_use_MAX2_instead 1115 #define min(a,b) Do_not_use_min_use_MIN2_instead 1116 1117 // It is necessary to use templates here. Having normal overloaded 1118 // functions does not work because it is necessary to provide both 32- 1119 // and 64-bit overloaded functions, which does not work, and having 1120 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L) 1121 // will be even more error-prone than macros. 1122 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; } 1123 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; } 1124 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); } 1125 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); } 1126 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); } 1127 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); } 1128 1129 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; } 1130 1131 // true if x is a power of 2, false otherwise 1132 inline bool is_power_of_2(intptr_t x) { 1133 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits)); 1134 } 1135 1136 // long version of is_power_of_2 1137 inline bool is_power_of_2_long(jlong x) { 1138 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits)); 1139 } 1140 1141 // Returns largest i such that 2^i <= x. 1142 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine. 1143 // If x == 0, the function returns -1. 1144 inline int log2_intptr(intptr_t x) { 1145 int i = -1; 1146 uintptr_t p = 1; 1147 while (p != 0 && p <= (uintptr_t)x) { 1148 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x) 1149 i++; p *= 2; 1150 } 1151 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1)) 1152 // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size). 1153 return i; 1154 } 1155 1156 //* largest i such that 2^i <= x 1157 // A negative value of 'x' will return '63' 1158 inline int log2_long(jlong x) { 1159 int i = -1; 1160 julong p = 1; 1161 while (p != 0 && p <= (julong)x) { 1162 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x) 1163 i++; p *= 2; 1164 } 1165 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1)) 1166 // (if p = 0 then overflow occurred and i = 63) 1167 return i; 1168 } 1169 1170 //* the argument must be exactly a power of 2 1171 inline int exact_log2(intptr_t x) { 1172 #ifdef ASSERT 1173 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2"); 1174 #endif 1175 return log2_intptr(x); 1176 } 1177 1178 //* the argument must be exactly a power of 2 1179 inline int exact_log2_long(jlong x) { 1180 #ifdef ASSERT 1181 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2"); 1182 #endif 1183 return log2_long(x); 1184 } 1185 1186 1187 // returns integer round-up to the nearest multiple of s (s must be a power of two) 1188 inline intptr_t round_to(intptr_t x, uintx s) { 1189 #ifdef ASSERT 1190 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2"); 1191 #endif 1192 const uintx m = s - 1; 1193 return mask_bits(x + m, ~m); 1194 } 1195 1196 // returns integer round-down to the nearest multiple of s (s must be a power of two) 1197 inline intptr_t round_down(intptr_t x, uintx s) { 1198 #ifdef ASSERT 1199 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2"); 1200 #endif 1201 const uintx m = s - 1; 1202 return mask_bits(x, ~m); 1203 } 1204 1205 1206 inline bool is_odd (intx x) { return x & 1; } 1207 inline bool is_even(intx x) { return !is_odd(x); } 1208 1209 // "to" should be greater than "from." 1210 inline intx byte_size(void* from, void* to) { 1211 return (address)to - (address)from; 1212 } 1213 1214 //---------------------------------------------------------------------------------------------------- 1215 // Avoid non-portable casts with these routines (DEPRECATED) 1216 1217 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE 1218 // Bytes is optimized machine-specifically and may be much faster then the portable routines below. 1219 1220 // Given sequence of four bytes, build into a 32-bit word 1221 // following the conventions used in class files. 1222 // On the 386, this could be realized with a simple address cast. 1223 // 1224 1225 // This routine takes eight bytes: 1226 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { 1227 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 )) 1228 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 )) 1229 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 )) 1230 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 )) 1231 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 )) 1232 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 )) 1233 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 )) 1234 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 )); 1235 } 1236 1237 // This routine takes four bytes: 1238 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) { 1239 return (( u4(c1) << 24 ) & 0xff000000) 1240 | (( u4(c2) << 16 ) & 0x00ff0000) 1241 | (( u4(c3) << 8 ) & 0x0000ff00) 1242 | (( u4(c4) << 0 ) & 0x000000ff); 1243 } 1244 1245 // And this one works if the four bytes are contiguous in memory: 1246 inline u4 build_u4_from( u1* p ) { 1247 return build_u4_from( p[0], p[1], p[2], p[3] ); 1248 } 1249 1250 // Ditto for two-byte ints: 1251 inline u2 build_u2_from( u1 c1, u1 c2 ) { 1252 return u2((( u2(c1) << 8 ) & 0xff00) 1253 | (( u2(c2) << 0 ) & 0x00ff)); 1254 } 1255 1256 // And this one works if the two bytes are contiguous in memory: 1257 inline u2 build_u2_from( u1* p ) { 1258 return build_u2_from( p[0], p[1] ); 1259 } 1260 1261 // Ditto for floats: 1262 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) { 1263 u4 u = build_u4_from( c1, c2, c3, c4 ); 1264 return *(jfloat*)&u; 1265 } 1266 1267 inline jfloat build_float_from( u1* p ) { 1268 u4 u = build_u4_from( p ); 1269 return *(jfloat*)&u; 1270 } 1271 1272 1273 // now (64-bit) longs 1274 1275 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { 1276 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 )) 1277 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 )) 1278 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 )) 1279 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 )) 1280 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 )) 1281 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 )) 1282 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 )) 1283 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 )); 1284 } 1285 1286 inline jlong build_long_from( u1* p ) { 1287 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] ); 1288 } 1289 1290 1291 // Doubles, too! 1292 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { 1293 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 ); 1294 return *(jdouble*)&u; 1295 } 1296 1297 inline jdouble build_double_from( u1* p ) { 1298 jlong u = build_long_from( p ); 1299 return *(jdouble*)&u; 1300 } 1301 1302 1303 // Portable routines to go the other way: 1304 1305 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) { 1306 c1 = u1(x >> 8); 1307 c2 = u1(x); 1308 } 1309 1310 inline void explode_short_to( u2 x, u1* p ) { 1311 explode_short_to( x, p[0], p[1]); 1312 } 1313 1314 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) { 1315 c1 = u1(x >> 24); 1316 c2 = u1(x >> 16); 1317 c3 = u1(x >> 8); 1318 c4 = u1(x); 1319 } 1320 1321 inline void explode_int_to( u4 x, u1* p ) { 1322 explode_int_to( x, p[0], p[1], p[2], p[3]); 1323 } 1324 1325 1326 // Pack and extract shorts to/from ints: 1327 1328 inline int extract_low_short_from_int(jint x) { 1329 return x & 0xffff; 1330 } 1331 1332 inline int extract_high_short_from_int(jint x) { 1333 return (x >> 16) & 0xffff; 1334 } 1335 1336 inline int build_int_from_shorts( jushort low, jushort high ) { 1337 return ((int)((unsigned int)high << 16) | (unsigned int)low); 1338 } 1339 1340 // Convert pointer to intptr_t, for use in printing pointers. 1341 inline intptr_t p2i(const void * p) { 1342 return (intptr_t) p; 1343 } 1344 1345 // swap a & b 1346 template<class T> static void swap(T& a, T& b) { 1347 T tmp = a; 1348 a = b; 1349 b = tmp; 1350 } 1351 1352 // Printf-style formatters for fixed- and variable-width types as pointers and 1353 // integers. These are derived from the definitions in inttypes.h. If the platform 1354 // doesn't provide appropriate definitions, they should be provided in 1355 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp) 1356 1357 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false") 1358 1359 // Format 32-bit quantities. 1360 #define INT32_FORMAT "%" PRId32 1361 #define UINT32_FORMAT "%" PRIu32 1362 #define INT32_FORMAT_W(width) "%" #width PRId32 1363 #define UINT32_FORMAT_W(width) "%" #width PRIu32 1364 1365 #define PTR32_FORMAT "0x%08" PRIx32 1366 #define PTR32_FORMAT_W(width) "0x%" #width PRIx32 1367 1368 // Format 64-bit quantities. 1369 #define INT64_FORMAT "%" PRId64 1370 #define UINT64_FORMAT "%" PRIu64 1371 #define UINT64_FORMAT_X "%" PRIx64 1372 #define INT64_FORMAT_W(width) "%" #width PRId64 1373 #define UINT64_FORMAT_W(width) "%" #width PRIu64 1374 1375 #define PTR64_FORMAT "0x%016" PRIx64 1376 1377 // Format jlong, if necessary 1378 #ifndef JLONG_FORMAT 1379 #define JLONG_FORMAT INT64_FORMAT 1380 #endif 1381 #ifndef JULONG_FORMAT 1382 #define JULONG_FORMAT UINT64_FORMAT 1383 #endif 1384 #ifndef JULONG_FORMAT_X 1385 #define JULONG_FORMAT_X UINT64_FORMAT_X 1386 #endif 1387 1388 // Format pointers which change size between 32- and 64-bit. 1389 #ifdef _LP64 1390 #define INTPTR_FORMAT "0x%016" PRIxPTR 1391 #define PTR_FORMAT "0x%016" PRIxPTR 1392 #else // !_LP64 1393 #define INTPTR_FORMAT "0x%08" PRIxPTR 1394 #define PTR_FORMAT "0x%08" PRIxPTR 1395 #endif // _LP64 1396 1397 #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR 1398 1399 #define SSIZE_FORMAT "%" PRIdPTR 1400 #define SIZE_FORMAT "%" PRIuPTR 1401 #define SIZE_FORMAT_HEX "0x%" PRIxPTR 1402 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR 1403 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR 1404 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR 1405 1406 #define INTX_FORMAT "%" PRIdPTR 1407 #define UINTX_FORMAT "%" PRIuPTR 1408 #define INTX_FORMAT_W(width) "%" #width PRIdPTR 1409 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR 1410 1411 1412 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0])) 1413 1414 // Dereference vptr 1415 // All C++ compilers that we know of have the vtbl pointer in the first 1416 // word. If there are exceptions, this function needs to be made compiler 1417 // specific. 1418 static inline void* dereference_vptr(const void* addr) { 1419 return *(void**)addr; 1420 } 1421 1422 #ifndef PRODUCT 1423 1424 // For unit testing only 1425 class GlobalDefinitions { 1426 public: 1427 static void test_globals(); 1428 }; 1429 1430 #endif // PRODUCT 1431 1432 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP