1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/cms/cmsCollectorPolicy.hpp"
  32 #include "gc/cms/cmsOopClosures.inline.hpp"
  33 #include "gc/cms/compactibleFreeListSpace.hpp"
  34 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc/cms/concurrentMarkSweepThread.hpp"
  36 #include "gc/cms/parNewGeneration.hpp"
  37 #include "gc/cms/vmCMSOperations.hpp"
  38 #include "gc/serial/genMarkSweep.hpp"
  39 #include "gc/serial/tenuredGeneration.hpp"
  40 #include "gc/shared/adaptiveSizePolicy.hpp"
  41 #include "gc/shared/cardGeneration.inline.hpp"
  42 #include "gc/shared/cardTableRS.hpp"
  43 #include "gc/shared/collectedHeap.inline.hpp"
  44 #include "gc/shared/collectorCounters.hpp"
  45 #include "gc/shared/collectorPolicy.hpp"
  46 #include "gc/shared/gcLocker.inline.hpp"
  47 #include "gc/shared/gcPolicyCounters.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.hpp"
  51 #include "gc/shared/genCollectedHeap.hpp"
  52 #include "gc/shared/genOopClosures.inline.hpp"
  53 #include "gc/shared/isGCActiveMark.hpp"
  54 #include "gc/shared/referencePolicy.hpp"
  55 #include "gc/shared/strongRootsScope.hpp"
  56 #include "gc/shared/taskqueue.inline.hpp"
  57 #include "memory/allocation.hpp"
  58 #include "memory/iterator.inline.hpp"
  59 #include "memory/padded.hpp"
  60 #include "memory/resourceArea.hpp"
  61 #include "oops/oop.inline.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "runtime/atomic.inline.hpp"
  64 #include "runtime/globals_extension.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/java.hpp"
  67 #include "runtime/orderAccess.inline.hpp"
  68 #include "runtime/vmThread.hpp"
  69 #include "services/memoryService.hpp"
  70 #include "services/runtimeService.hpp"
  71 #include "utilities/stack.inline.hpp"
  72 
  73 // statics
  74 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  75 bool CMSCollector::_full_gc_requested = false;
  76 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  77 
  78 //////////////////////////////////////////////////////////////////
  79 // In support of CMS/VM thread synchronization
  80 //////////////////////////////////////////////////////////////////
  81 // We split use of the CGC_lock into 2 "levels".
  82 // The low-level locking is of the usual CGC_lock monitor. We introduce
  83 // a higher level "token" (hereafter "CMS token") built on top of the
  84 // low level monitor (hereafter "CGC lock").
  85 // The token-passing protocol gives priority to the VM thread. The
  86 // CMS-lock doesn't provide any fairness guarantees, but clients
  87 // should ensure that it is only held for very short, bounded
  88 // durations.
  89 //
  90 // When either of the CMS thread or the VM thread is involved in
  91 // collection operations during which it does not want the other
  92 // thread to interfere, it obtains the CMS token.
  93 //
  94 // If either thread tries to get the token while the other has
  95 // it, that thread waits. However, if the VM thread and CMS thread
  96 // both want the token, then the VM thread gets priority while the
  97 // CMS thread waits. This ensures, for instance, that the "concurrent"
  98 // phases of the CMS thread's work do not block out the VM thread
  99 // for long periods of time as the CMS thread continues to hog
 100 // the token. (See bug 4616232).
 101 //
 102 // The baton-passing functions are, however, controlled by the
 103 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 104 // and here the low-level CMS lock, not the high level token,
 105 // ensures mutual exclusion.
 106 //
 107 // Two important conditions that we have to satisfy:
 108 // 1. if a thread does a low-level wait on the CMS lock, then it
 109 //    relinquishes the CMS token if it were holding that token
 110 //    when it acquired the low-level CMS lock.
 111 // 2. any low-level notifications on the low-level lock
 112 //    should only be sent when a thread has relinquished the token.
 113 //
 114 // In the absence of either property, we'd have potential deadlock.
 115 //
 116 // We protect each of the CMS (concurrent and sequential) phases
 117 // with the CMS _token_, not the CMS _lock_.
 118 //
 119 // The only code protected by CMS lock is the token acquisition code
 120 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 121 // baton-passing code.
 122 //
 123 // Unfortunately, i couldn't come up with a good abstraction to factor and
 124 // hide the naked CGC_lock manipulation in the baton-passing code
 125 // further below. That's something we should try to do. Also, the proof
 126 // of correctness of this 2-level locking scheme is far from obvious,
 127 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 128 // that there may be a theoretical possibility of delay/starvation in the
 129 // low-level lock/wait/notify scheme used for the baton-passing because of
 130 // potential interference with the priority scheme embodied in the
 131 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 132 // invocation further below and marked with "XXX 20011219YSR".
 133 // Indeed, as we note elsewhere, this may become yet more slippery
 134 // in the presence of multiple CMS and/or multiple VM threads. XXX
 135 
 136 class CMSTokenSync: public StackObj {
 137  private:
 138   bool _is_cms_thread;
 139  public:
 140   CMSTokenSync(bool is_cms_thread):
 141     _is_cms_thread(is_cms_thread) {
 142     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 143            "Incorrect argument to constructor");
 144     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 145   }
 146 
 147   ~CMSTokenSync() {
 148     assert(_is_cms_thread ?
 149              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 150              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 151           "Incorrect state");
 152     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 153   }
 154 };
 155 
 156 // Convenience class that does a CMSTokenSync, and then acquires
 157 // upto three locks.
 158 class CMSTokenSyncWithLocks: public CMSTokenSync {
 159  private:
 160   // Note: locks are acquired in textual declaration order
 161   // and released in the opposite order
 162   MutexLockerEx _locker1, _locker2, _locker3;
 163  public:
 164   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 165                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 166     CMSTokenSync(is_cms_thread),
 167     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 168     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 169     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 170   { }
 171 };
 172 
 173 
 174 //////////////////////////////////////////////////////////////////
 175 //  Concurrent Mark-Sweep Generation /////////////////////////////
 176 //////////////////////////////////////////////////////////////////
 177 
 178 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 179 
 180 // This struct contains per-thread things necessary to support parallel
 181 // young-gen collection.
 182 class CMSParGCThreadState: public CHeapObj<mtGC> {
 183  public:
 184   CFLS_LAB lab;
 185   PromotionInfo promo;
 186 
 187   // Constructor.
 188   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 189     promo.setSpace(cfls);
 190   }
 191 };
 192 
 193 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 194      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 195   CardGeneration(rs, initial_byte_size, ct),
 196   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 197   _did_compact(false)
 198 {
 199   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 200   HeapWord* end    = (HeapWord*) _virtual_space.high();
 201 
 202   _direct_allocated_words = 0;
 203   NOT_PRODUCT(
 204     _numObjectsPromoted = 0;
 205     _numWordsPromoted = 0;
 206     _numObjectsAllocated = 0;
 207     _numWordsAllocated = 0;
 208   )
 209 
 210   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 211   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 212   _cmsSpace->_old_gen = this;
 213 
 214   _gc_stats = new CMSGCStats();
 215 
 216   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 217   // offsets match. The ability to tell free chunks from objects
 218   // depends on this property.
 219   debug_only(
 220     FreeChunk* junk = NULL;
 221     assert(UseCompressedClassPointers ||
 222            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 223            "Offset of FreeChunk::_prev within FreeChunk must match"
 224            "  that of OopDesc::_klass within OopDesc");
 225   )
 226 
 227   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 228   for (uint i = 0; i < ParallelGCThreads; i++) {
 229     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 230   }
 231 
 232   _incremental_collection_failed = false;
 233   // The "dilatation_factor" is the expansion that can occur on
 234   // account of the fact that the minimum object size in the CMS
 235   // generation may be larger than that in, say, a contiguous young
 236   //  generation.
 237   // Ideally, in the calculation below, we'd compute the dilatation
 238   // factor as: MinChunkSize/(promoting_gen's min object size)
 239   // Since we do not have such a general query interface for the
 240   // promoting generation, we'll instead just use the minimum
 241   // object size (which today is a header's worth of space);
 242   // note that all arithmetic is in units of HeapWords.
 243   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 244   assert(_dilatation_factor >= 1.0, "from previous assert");
 245 }
 246 
 247 
 248 // The field "_initiating_occupancy" represents the occupancy percentage
 249 // at which we trigger a new collection cycle.  Unless explicitly specified
 250 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 251 // is calculated by:
 252 //
 253 //   Let "f" be MinHeapFreeRatio in
 254 //
 255 //    _initiating_occupancy = 100-f +
 256 //                           f * (CMSTriggerRatio/100)
 257 //   where CMSTriggerRatio is the argument "tr" below.
 258 //
 259 // That is, if we assume the heap is at its desired maximum occupancy at the
 260 // end of a collection, we let CMSTriggerRatio of the (purported) free
 261 // space be allocated before initiating a new collection cycle.
 262 //
 263 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 264   assert(io <= 100 && tr <= 100, "Check the arguments");
 265   if (io >= 0) {
 266     _initiating_occupancy = (double)io / 100.0;
 267   } else {
 268     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 269                              (double)(tr * MinHeapFreeRatio) / 100.0)
 270                             / 100.0;
 271   }
 272 }
 273 
 274 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 275   assert(collector() != NULL, "no collector");
 276   collector()->ref_processor_init();
 277 }
 278 
 279 void CMSCollector::ref_processor_init() {
 280   if (_ref_processor == NULL) {
 281     // Allocate and initialize a reference processor
 282     _ref_processor =
 283       new ReferenceProcessor(_span,                               // span
 284                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 285                              ParallelGCThreads,                   // mt processing degree
 286                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 287                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 288                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 289                              &_is_alive_closure);                 // closure for liveness info
 290     // Initialize the _ref_processor field of CMSGen
 291     _cmsGen->set_ref_processor(_ref_processor);
 292 
 293   }
 294 }
 295 
 296 AdaptiveSizePolicy* CMSCollector::size_policy() {
 297   GenCollectedHeap* gch = GenCollectedHeap::heap();
 298   return gch->gen_policy()->size_policy();
 299 }
 300 
 301 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 302 
 303   const char* gen_name = "old";
 304   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 305   // Generation Counters - generation 1, 1 subspace
 306   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 307       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 308 
 309   _space_counters = new GSpaceCounters(gen_name, 0,
 310                                        _virtual_space.reserved_size(),
 311                                        this, _gen_counters);
 312 }
 313 
 314 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 315   _cms_gen(cms_gen)
 316 {
 317   assert(alpha <= 100, "bad value");
 318   _saved_alpha = alpha;
 319 
 320   // Initialize the alphas to the bootstrap value of 100.
 321   _gc0_alpha = _cms_alpha = 100;
 322 
 323   _cms_begin_time.update();
 324   _cms_end_time.update();
 325 
 326   _gc0_duration = 0.0;
 327   _gc0_period = 0.0;
 328   _gc0_promoted = 0;
 329 
 330   _cms_duration = 0.0;
 331   _cms_period = 0.0;
 332   _cms_allocated = 0;
 333 
 334   _cms_used_at_gc0_begin = 0;
 335   _cms_used_at_gc0_end = 0;
 336   _allow_duty_cycle_reduction = false;
 337   _valid_bits = 0;
 338 }
 339 
 340 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 341   // TBD: CR 6909490
 342   return 1.0;
 343 }
 344 
 345 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 346 }
 347 
 348 // If promotion failure handling is on use
 349 // the padded average size of the promotion for each
 350 // young generation collection.
 351 double CMSStats::time_until_cms_gen_full() const {
 352   size_t cms_free = _cms_gen->cmsSpace()->free();
 353   GenCollectedHeap* gch = GenCollectedHeap::heap();
 354   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 355                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 356   if (cms_free > expected_promotion) {
 357     // Start a cms collection if there isn't enough space to promote
 358     // for the next young collection.  Use the padded average as
 359     // a safety factor.
 360     cms_free -= expected_promotion;
 361 
 362     // Adjust by the safety factor.
 363     double cms_free_dbl = (double)cms_free;
 364     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 365     // Apply a further correction factor which tries to adjust
 366     // for recent occurance of concurrent mode failures.
 367     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 368     cms_free_dbl = cms_free_dbl * cms_adjustment;
 369 
 370     if (PrintGCDetails && Verbose) {
 371       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 372         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 373         cms_free, expected_promotion);
 374       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 375         cms_free_dbl, cms_consumption_rate() + 1.0);
 376     }
 377     // Add 1 in case the consumption rate goes to zero.
 378     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 379   }
 380   return 0.0;
 381 }
 382 
 383 // Compare the duration of the cms collection to the
 384 // time remaining before the cms generation is empty.
 385 // Note that the time from the start of the cms collection
 386 // to the start of the cms sweep (less than the total
 387 // duration of the cms collection) can be used.  This
 388 // has been tried and some applications experienced
 389 // promotion failures early in execution.  This was
 390 // possibly because the averages were not accurate
 391 // enough at the beginning.
 392 double CMSStats::time_until_cms_start() const {
 393   // We add "gc0_period" to the "work" calculation
 394   // below because this query is done (mostly) at the
 395   // end of a scavenge, so we need to conservatively
 396   // account for that much possible delay
 397   // in the query so as to avoid concurrent mode failures
 398   // due to starting the collection just a wee bit too
 399   // late.
 400   double work = cms_duration() + gc0_period();
 401   double deadline = time_until_cms_gen_full();
 402   // If a concurrent mode failure occurred recently, we want to be
 403   // more conservative and halve our expected time_until_cms_gen_full()
 404   if (work > deadline) {
 405     if (Verbose && PrintGCDetails) {
 406       gclog_or_tty->print(
 407         " CMSCollector: collect because of anticipated promotion "
 408         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 409         gc0_period(), time_until_cms_gen_full());
 410     }
 411     return 0.0;
 412   }
 413   return work - deadline;
 414 }
 415 
 416 #ifndef PRODUCT
 417 void CMSStats::print_on(outputStream *st) const {
 418   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 419   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 420                gc0_duration(), gc0_period(), gc0_promoted());
 421   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 422             cms_duration(), cms_period(), cms_allocated());
 423   st->print(",cms_since_beg=%g,cms_since_end=%g",
 424             cms_time_since_begin(), cms_time_since_end());
 425   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 426             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 427 
 428   if (valid()) {
 429     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 430               promotion_rate(), cms_allocation_rate());
 431     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 432               cms_consumption_rate(), time_until_cms_gen_full());
 433   }
 434   st->print(" ");
 435 }
 436 #endif // #ifndef PRODUCT
 437 
 438 CMSCollector::CollectorState CMSCollector::_collectorState =
 439                              CMSCollector::Idling;
 440 bool CMSCollector::_foregroundGCIsActive = false;
 441 bool CMSCollector::_foregroundGCShouldWait = false;
 442 
 443 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 444                            CardTableRS*                   ct,
 445                            ConcurrentMarkSweepPolicy*     cp):
 446   _cmsGen(cmsGen),
 447   _ct(ct),
 448   _ref_processor(NULL),    // will be set later
 449   _conc_workers(NULL),     // may be set later
 450   _abort_preclean(false),
 451   _start_sampling(false),
 452   _between_prologue_and_epilogue(false),
 453   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 454   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 455                  -1 /* lock-free */, "No_lock" /* dummy */),
 456   _modUnionClosurePar(&_modUnionTable),
 457   // Adjust my span to cover old (cms) gen
 458   _span(cmsGen->reserved()),
 459   // Construct the is_alive_closure with _span & markBitMap
 460   _is_alive_closure(_span, &_markBitMap),
 461   _restart_addr(NULL),
 462   _overflow_list(NULL),
 463   _stats(cmsGen),
 464   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 465                              //verify that this lock should be acquired with safepoint check.
 466                              Monitor::_safepoint_check_sometimes)),
 467   _eden_chunk_array(NULL),     // may be set in ctor body
 468   _eden_chunk_capacity(0),     // -- ditto --
 469   _eden_chunk_index(0),        // -- ditto --
 470   _survivor_plab_array(NULL),  // -- ditto --
 471   _survivor_chunk_array(NULL), // -- ditto --
 472   _survivor_chunk_capacity(0), // -- ditto --
 473   _survivor_chunk_index(0),    // -- ditto --
 474   _ser_pmc_preclean_ovflw(0),
 475   _ser_kac_preclean_ovflw(0),
 476   _ser_pmc_remark_ovflw(0),
 477   _par_pmc_remark_ovflw(0),
 478   _ser_kac_ovflw(0),
 479   _par_kac_ovflw(0),
 480 #ifndef PRODUCT
 481   _num_par_pushes(0),
 482 #endif
 483   _collection_count_start(0),
 484   _verifying(false),
 485   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 486   _completed_initialization(false),
 487   _collector_policy(cp),
 488   _should_unload_classes(CMSClassUnloadingEnabled),
 489   _concurrent_cycles_since_last_unload(0),
 490   _roots_scanning_options(GenCollectedHeap::SO_None),
 491   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 492   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 493   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 494   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 495   _cms_start_registered(false)
 496 {
 497   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 498     ExplicitGCInvokesConcurrent = true;
 499   }
 500   // Now expand the span and allocate the collection support structures
 501   // (MUT, marking bit map etc.) to cover both generations subject to
 502   // collection.
 503 
 504   // For use by dirty card to oop closures.
 505   _cmsGen->cmsSpace()->set_collector(this);
 506 
 507   // Allocate MUT and marking bit map
 508   {
 509     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 510     if (!_markBitMap.allocate(_span)) {
 511       warning("Failed to allocate CMS Bit Map");
 512       return;
 513     }
 514     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 515   }
 516   {
 517     _modUnionTable.allocate(_span);
 518     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 519   }
 520 
 521   if (!_markStack.allocate(MarkStackSize)) {
 522     warning("Failed to allocate CMS Marking Stack");
 523     return;
 524   }
 525 
 526   // Support for multi-threaded concurrent phases
 527   if (CMSConcurrentMTEnabled) {
 528     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 529       // just for now
 530       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 531     }
 532     if (ConcGCThreads > 1) {
 533       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 534                                  ConcGCThreads, true);
 535       if (_conc_workers == NULL) {
 536         warning("GC/CMS: _conc_workers allocation failure: "
 537               "forcing -CMSConcurrentMTEnabled");
 538         CMSConcurrentMTEnabled = false;
 539       } else {
 540         _conc_workers->initialize_workers();
 541       }
 542     } else {
 543       CMSConcurrentMTEnabled = false;
 544     }
 545   }
 546   if (!CMSConcurrentMTEnabled) {
 547     ConcGCThreads = 0;
 548   } else {
 549     // Turn off CMSCleanOnEnter optimization temporarily for
 550     // the MT case where it's not fixed yet; see 6178663.
 551     CMSCleanOnEnter = false;
 552   }
 553   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 554          "Inconsistency");
 555 
 556   // Parallel task queues; these are shared for the
 557   // concurrent and stop-world phases of CMS, but
 558   // are not shared with parallel scavenge (ParNew).
 559   {
 560     uint i;
 561     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 562 
 563     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 564          || ParallelRefProcEnabled)
 565         && num_queues > 0) {
 566       _task_queues = new OopTaskQueueSet(num_queues);
 567       if (_task_queues == NULL) {
 568         warning("task_queues allocation failure.");
 569         return;
 570       }
 571       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 572       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 573       for (i = 0; i < num_queues; i++) {
 574         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 575         if (q == NULL) {
 576           warning("work_queue allocation failure.");
 577           return;
 578         }
 579         _task_queues->register_queue(i, q);
 580       }
 581       for (i = 0; i < num_queues; i++) {
 582         _task_queues->queue(i)->initialize();
 583         _hash_seed[i] = 17;  // copied from ParNew
 584       }
 585     }
 586   }
 587 
 588   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 589 
 590   // Clip CMSBootstrapOccupancy between 0 and 100.
 591   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 592 
 593   // Now tell CMS generations the identity of their collector
 594   ConcurrentMarkSweepGeneration::set_collector(this);
 595 
 596   // Create & start a CMS thread for this CMS collector
 597   _cmsThread = ConcurrentMarkSweepThread::start(this);
 598   assert(cmsThread() != NULL, "CMS Thread should have been created");
 599   assert(cmsThread()->collector() == this,
 600          "CMS Thread should refer to this gen");
 601   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 602 
 603   // Support for parallelizing young gen rescan
 604   GenCollectedHeap* gch = GenCollectedHeap::heap();
 605   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 606   _young_gen = (ParNewGeneration*)gch->young_gen();
 607   if (gch->supports_inline_contig_alloc()) {
 608     _top_addr = gch->top_addr();
 609     _end_addr = gch->end_addr();
 610     assert(_young_gen != NULL, "no _young_gen");
 611     _eden_chunk_index = 0;
 612     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 613     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 614   }
 615 
 616   // Support for parallelizing survivor space rescan
 617   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 618     const size_t max_plab_samples =
 619       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 620 
 621     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 622     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 623     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 624     _survivor_chunk_capacity = max_plab_samples;
 625     for (uint i = 0; i < ParallelGCThreads; i++) {
 626       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 627       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 628       assert(cur->end() == 0, "Should be 0");
 629       assert(cur->array() == vec, "Should be vec");
 630       assert(cur->capacity() == max_plab_samples, "Error");
 631     }
 632   }
 633 
 634   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 635   _gc_counters = new CollectorCounters("CMS", 1);
 636   _completed_initialization = true;
 637   _inter_sweep_timer.start();  // start of time
 638 }
 639 
 640 const char* ConcurrentMarkSweepGeneration::name() const {
 641   return "concurrent mark-sweep generation";
 642 }
 643 void ConcurrentMarkSweepGeneration::update_counters() {
 644   if (UsePerfData) {
 645     _space_counters->update_all();
 646     _gen_counters->update_all();
 647   }
 648 }
 649 
 650 // this is an optimized version of update_counters(). it takes the
 651 // used value as a parameter rather than computing it.
 652 //
 653 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 654   if (UsePerfData) {
 655     _space_counters->update_used(used);
 656     _space_counters->update_capacity();
 657     _gen_counters->update_all();
 658   }
 659 }
 660 
 661 void ConcurrentMarkSweepGeneration::print() const {
 662   Generation::print();
 663   cmsSpace()->print();
 664 }
 665 
 666 #ifndef PRODUCT
 667 void ConcurrentMarkSweepGeneration::print_statistics() {
 668   cmsSpace()->printFLCensus(0);
 669 }
 670 #endif
 671 
 672 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 673   GenCollectedHeap* gch = GenCollectedHeap::heap();
 674   if (PrintGCDetails) {
 675     // I didn't want to change the logging when removing the level concept,
 676     // but I guess this logging could say "old" or something instead of "1".
 677     assert(gch->is_old_gen(this),
 678            "The CMS generation should be the old generation");
 679     uint level = 1;
 680     if (Verbose) {
 681       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "(" SIZE_FORMAT ")]",
 682         level, short_name(), s, used(), capacity());
 683     } else {
 684       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)]",
 685         level, short_name(), s, used() / K, capacity() / K);
 686     }
 687   }
 688   if (Verbose) {
 689     gclog_or_tty->print(" " SIZE_FORMAT "(" SIZE_FORMAT ")",
 690               gch->used(), gch->capacity());
 691   } else {
 692     gclog_or_tty->print(" " SIZE_FORMAT "K(" SIZE_FORMAT "K)",
 693               gch->used() / K, gch->capacity() / K);
 694   }
 695 }
 696 
 697 size_t
 698 ConcurrentMarkSweepGeneration::contiguous_available() const {
 699   // dld proposes an improvement in precision here. If the committed
 700   // part of the space ends in a free block we should add that to
 701   // uncommitted size in the calculation below. Will make this
 702   // change later, staying with the approximation below for the
 703   // time being. -- ysr.
 704   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 705 }
 706 
 707 size_t
 708 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 709   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 710 }
 711 
 712 size_t ConcurrentMarkSweepGeneration::max_available() const {
 713   return free() + _virtual_space.uncommitted_size();
 714 }
 715 
 716 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 717   size_t available = max_available();
 718   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 719   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 720   if (Verbose && PrintGCDetails) {
 721     gclog_or_tty->print_cr(
 722       "CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "),"
 723       "max_promo(" SIZE_FORMAT ")",
 724       res? "":" not", available, res? ">=":"<",
 725       av_promo, max_promotion_in_bytes);
 726   }
 727   return res;
 728 }
 729 
 730 // At a promotion failure dump information on block layout in heap
 731 // (cms old generation).
 732 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 733   if (CMSDumpAtPromotionFailure) {
 734     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 735   }
 736 }
 737 
 738 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 739   // Clear the promotion information.  These pointers can be adjusted
 740   // along with all the other pointers into the heap but
 741   // compaction is expected to be a rare event with
 742   // a heap using cms so don't do it without seeing the need.
 743   for (uint i = 0; i < ParallelGCThreads; i++) {
 744     _par_gc_thread_states[i]->promo.reset();
 745   }
 746 }
 747 
 748 void ConcurrentMarkSweepGeneration::compute_new_size() {
 749   assert_locked_or_safepoint(Heap_lock);
 750 
 751   // If incremental collection failed, we just want to expand
 752   // to the limit.
 753   if (incremental_collection_failed()) {
 754     clear_incremental_collection_failed();
 755     grow_to_reserved();
 756     return;
 757   }
 758 
 759   // The heap has been compacted but not reset yet.
 760   // Any metric such as free() or used() will be incorrect.
 761 
 762   CardGeneration::compute_new_size();
 763 
 764   // Reset again after a possible resizing
 765   if (did_compact()) {
 766     cmsSpace()->reset_after_compaction();
 767   }
 768 }
 769 
 770 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 771   assert_locked_or_safepoint(Heap_lock);
 772 
 773   // If incremental collection failed, we just want to expand
 774   // to the limit.
 775   if (incremental_collection_failed()) {
 776     clear_incremental_collection_failed();
 777     grow_to_reserved();
 778     return;
 779   }
 780 
 781   double free_percentage = ((double) free()) / capacity();
 782   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 783   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 784 
 785   // compute expansion delta needed for reaching desired free percentage
 786   if (free_percentage < desired_free_percentage) {
 787     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 788     assert(desired_capacity >= capacity(), "invalid expansion size");
 789     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 790     if (PrintGCDetails && Verbose) {
 791       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 792       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 793       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 794       gclog_or_tty->print_cr("  Desired free fraction %f", desired_free_percentage);
 795       gclog_or_tty->print_cr("  Maximum free fraction %f", maximum_free_percentage);
 796       gclog_or_tty->print_cr("  Capacity " SIZE_FORMAT, capacity() / 1000);
 797       gclog_or_tty->print_cr("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 798       GenCollectedHeap* gch = GenCollectedHeap::heap();
 799       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 800       size_t young_size = gch->young_gen()->capacity();
 801       gclog_or_tty->print_cr("  Young gen size " SIZE_FORMAT, young_size / 1000);
 802       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 803       gclog_or_tty->print_cr("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 804       gclog_or_tty->print_cr("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 805     }
 806     // safe if expansion fails
 807     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 808     if (PrintGCDetails && Verbose) {
 809       gclog_or_tty->print_cr("  Expanded free fraction %f", ((double) free()) / capacity());
 810     }
 811   } else {
 812     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 813     assert(desired_capacity <= capacity(), "invalid expansion size");
 814     size_t shrink_bytes = capacity() - desired_capacity;
 815     // Don't shrink unless the delta is greater than the minimum shrink we want
 816     if (shrink_bytes >= MinHeapDeltaBytes) {
 817       shrink_free_list_by(shrink_bytes);
 818     }
 819   }
 820 }
 821 
 822 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 823   return cmsSpace()->freelistLock();
 824 }
 825 
 826 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 827   CMSSynchronousYieldRequest yr;
 828   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 829   return have_lock_and_allocate(size, tlab);
 830 }
 831 
 832 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 833                                                                 bool   tlab /* ignored */) {
 834   assert_lock_strong(freelistLock());
 835   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 836   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 837   // Allocate the object live (grey) if the background collector has
 838   // started marking. This is necessary because the marker may
 839   // have passed this address and consequently this object will
 840   // not otherwise be greyed and would be incorrectly swept up.
 841   // Note that if this object contains references, the writing
 842   // of those references will dirty the card containing this object
 843   // allowing the object to be blackened (and its references scanned)
 844   // either during a preclean phase or at the final checkpoint.
 845   if (res != NULL) {
 846     // We may block here with an uninitialized object with
 847     // its mark-bit or P-bits not yet set. Such objects need
 848     // to be safely navigable by block_start().
 849     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 850     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 851     collector()->direct_allocated(res, adjustedSize);
 852     _direct_allocated_words += adjustedSize;
 853     // allocation counters
 854     NOT_PRODUCT(
 855       _numObjectsAllocated++;
 856       _numWordsAllocated += (int)adjustedSize;
 857     )
 858   }
 859   return res;
 860 }
 861 
 862 // In the case of direct allocation by mutators in a generation that
 863 // is being concurrently collected, the object must be allocated
 864 // live (grey) if the background collector has started marking.
 865 // This is necessary because the marker may
 866 // have passed this address and consequently this object will
 867 // not otherwise be greyed and would be incorrectly swept up.
 868 // Note that if this object contains references, the writing
 869 // of those references will dirty the card containing this object
 870 // allowing the object to be blackened (and its references scanned)
 871 // either during a preclean phase or at the final checkpoint.
 872 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 873   assert(_markBitMap.covers(start, size), "Out of bounds");
 874   if (_collectorState >= Marking) {
 875     MutexLockerEx y(_markBitMap.lock(),
 876                     Mutex::_no_safepoint_check_flag);
 877     // [see comments preceding SweepClosure::do_blk() below for details]
 878     //
 879     // Can the P-bits be deleted now?  JJJ
 880     //
 881     // 1. need to mark the object as live so it isn't collected
 882     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 883     // 3. need to mark the end of the object so marking, precleaning or sweeping
 884     //    can skip over uninitialized or unparsable objects. An allocated
 885     //    object is considered uninitialized for our purposes as long as
 886     //    its klass word is NULL.  All old gen objects are parsable
 887     //    as soon as they are initialized.)
 888     _markBitMap.mark(start);          // object is live
 889     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 890     _markBitMap.mark(start + size - 1);
 891                                       // mark end of object
 892   }
 893   // check that oop looks uninitialized
 894   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 895 }
 896 
 897 void CMSCollector::promoted(bool par, HeapWord* start,
 898                             bool is_obj_array, size_t obj_size) {
 899   assert(_markBitMap.covers(start), "Out of bounds");
 900   // See comment in direct_allocated() about when objects should
 901   // be allocated live.
 902   if (_collectorState >= Marking) {
 903     // we already hold the marking bit map lock, taken in
 904     // the prologue
 905     if (par) {
 906       _markBitMap.par_mark(start);
 907     } else {
 908       _markBitMap.mark(start);
 909     }
 910     // We don't need to mark the object as uninitialized (as
 911     // in direct_allocated above) because this is being done with the
 912     // world stopped and the object will be initialized by the
 913     // time the marking, precleaning or sweeping get to look at it.
 914     // But see the code for copying objects into the CMS generation,
 915     // where we need to ensure that concurrent readers of the
 916     // block offset table are able to safely navigate a block that
 917     // is in flux from being free to being allocated (and in
 918     // transition while being copied into) and subsequently
 919     // becoming a bona-fide object when the copy/promotion is complete.
 920     assert(SafepointSynchronize::is_at_safepoint(),
 921            "expect promotion only at safepoints");
 922 
 923     if (_collectorState < Sweeping) {
 924       // Mark the appropriate cards in the modUnionTable, so that
 925       // this object gets scanned before the sweep. If this is
 926       // not done, CMS generation references in the object might
 927       // not get marked.
 928       // For the case of arrays, which are otherwise precisely
 929       // marked, we need to dirty the entire array, not just its head.
 930       if (is_obj_array) {
 931         // The [par_]mark_range() method expects mr.end() below to
 932         // be aligned to the granularity of a bit's representation
 933         // in the heap. In the case of the MUT below, that's a
 934         // card size.
 935         MemRegion mr(start,
 936                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 937                         CardTableModRefBS::card_size /* bytes */));
 938         if (par) {
 939           _modUnionTable.par_mark_range(mr);
 940         } else {
 941           _modUnionTable.mark_range(mr);
 942         }
 943       } else {  // not an obj array; we can just mark the head
 944         if (par) {
 945           _modUnionTable.par_mark(start);
 946         } else {
 947           _modUnionTable.mark(start);
 948         }
 949       }
 950     }
 951   }
 952 }
 953 
 954 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 955   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 956   // allocate, copy and if necessary update promoinfo --
 957   // delegate to underlying space.
 958   assert_lock_strong(freelistLock());
 959 
 960 #ifndef PRODUCT
 961   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 962     return NULL;
 963   }
 964 #endif  // #ifndef PRODUCT
 965 
 966   oop res = _cmsSpace->promote(obj, obj_size);
 967   if (res == NULL) {
 968     // expand and retry
 969     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 970     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 971     // Since this is the old generation, we don't try to promote
 972     // into a more senior generation.
 973     res = _cmsSpace->promote(obj, obj_size);
 974   }
 975   if (res != NULL) {
 976     // See comment in allocate() about when objects should
 977     // be allocated live.
 978     assert(obj->is_oop(), "Will dereference klass pointer below");
 979     collector()->promoted(false,           // Not parallel
 980                           (HeapWord*)res, obj->is_objArray(), obj_size);
 981     // promotion counters
 982     NOT_PRODUCT(
 983       _numObjectsPromoted++;
 984       _numWordsPromoted +=
 985         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 986     )
 987   }
 988   return res;
 989 }
 990 
 991 
 992 // IMPORTANT: Notes on object size recognition in CMS.
 993 // ---------------------------------------------------
 994 // A block of storage in the CMS generation is always in
 995 // one of three states. A free block (FREE), an allocated
 996 // object (OBJECT) whose size() method reports the correct size,
 997 // and an intermediate state (TRANSIENT) in which its size cannot
 998 // be accurately determined.
 999 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1000 // -----------------------------------------------------
1001 // FREE:      klass_word & 1 == 1; mark_word holds block size
1002 //
1003 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1004 //            obj->size() computes correct size
1005 //
1006 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1007 //
1008 // STATE IDENTIFICATION: (64 bit+COOPS)
1009 // ------------------------------------
1010 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1011 //
1012 // OBJECT:    klass_word installed; klass_word != 0;
1013 //            obj->size() computes correct size
1014 //
1015 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1016 //
1017 //
1018 // STATE TRANSITION DIAGRAM
1019 //
1020 //        mut / parnew                     mut  /  parnew
1021 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1022 //  ^                                                                   |
1023 //  |------------------------ DEAD <------------------------------------|
1024 //         sweep                            mut
1025 //
1026 // While a block is in TRANSIENT state its size cannot be determined
1027 // so readers will either need to come back later or stall until
1028 // the size can be determined. Note that for the case of direct
1029 // allocation, P-bits, when available, may be used to determine the
1030 // size of an object that may not yet have been initialized.
1031 
1032 // Things to support parallel young-gen collection.
1033 oop
1034 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1035                                            oop old, markOop m,
1036                                            size_t word_sz) {
1037 #ifndef PRODUCT
1038   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1039     return NULL;
1040   }
1041 #endif  // #ifndef PRODUCT
1042 
1043   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1044   PromotionInfo* promoInfo = &ps->promo;
1045   // if we are tracking promotions, then first ensure space for
1046   // promotion (including spooling space for saving header if necessary).
1047   // then allocate and copy, then track promoted info if needed.
1048   // When tracking (see PromotionInfo::track()), the mark word may
1049   // be displaced and in this case restoration of the mark word
1050   // occurs in the (oop_since_save_marks_)iterate phase.
1051   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1052     // Out of space for allocating spooling buffers;
1053     // try expanding and allocating spooling buffers.
1054     if (!expand_and_ensure_spooling_space(promoInfo)) {
1055       return NULL;
1056     }
1057   }
1058   assert(promoInfo->has_spooling_space(), "Control point invariant");
1059   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1060   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1061   if (obj_ptr == NULL) {
1062      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1063      if (obj_ptr == NULL) {
1064        return NULL;
1065      }
1066   }
1067   oop obj = oop(obj_ptr);
1068   OrderAccess::storestore();
1069   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1070   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1071   // IMPORTANT: See note on object initialization for CMS above.
1072   // Otherwise, copy the object.  Here we must be careful to insert the
1073   // klass pointer last, since this marks the block as an allocated object.
1074   // Except with compressed oops it's the mark word.
1075   HeapWord* old_ptr = (HeapWord*)old;
1076   // Restore the mark word copied above.
1077   obj->set_mark(m);
1078   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1079   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1080   OrderAccess::storestore();
1081 
1082   if (UseCompressedClassPointers) {
1083     // Copy gap missed by (aligned) header size calculation below
1084     obj->set_klass_gap(old->klass_gap());
1085   }
1086   if (word_sz > (size_t)oopDesc::header_size()) {
1087     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1088                                  obj_ptr + oopDesc::header_size(),
1089                                  word_sz - oopDesc::header_size());
1090   }
1091 
1092   // Now we can track the promoted object, if necessary.  We take care
1093   // to delay the transition from uninitialized to full object
1094   // (i.e., insertion of klass pointer) until after, so that it
1095   // atomically becomes a promoted object.
1096   if (promoInfo->tracking()) {
1097     promoInfo->track((PromotedObject*)obj, old->klass());
1098   }
1099   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1100   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1101   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1102 
1103   // Finally, install the klass pointer (this should be volatile).
1104   OrderAccess::storestore();
1105   obj->set_klass(old->klass());
1106   // We should now be able to calculate the right size for this object
1107   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1108 
1109   collector()->promoted(true,          // parallel
1110                         obj_ptr, old->is_objArray(), word_sz);
1111 
1112   NOT_PRODUCT(
1113     Atomic::inc_ptr(&_numObjectsPromoted);
1114     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1115   )
1116 
1117   return obj;
1118 }
1119 
1120 void
1121 ConcurrentMarkSweepGeneration::
1122 par_promote_alloc_done(int thread_num) {
1123   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1124   ps->lab.retire(thread_num);
1125 }
1126 
1127 void
1128 ConcurrentMarkSweepGeneration::
1129 par_oop_since_save_marks_iterate_done(int thread_num) {
1130   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1131   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1132   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1133 }
1134 
1135 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1136                                                    size_t size,
1137                                                    bool   tlab)
1138 {
1139   // We allow a STW collection only if a full
1140   // collection was requested.
1141   return full || should_allocate(size, tlab); // FIX ME !!!
1142   // This and promotion failure handling are connected at the
1143   // hip and should be fixed by untying them.
1144 }
1145 
1146 bool CMSCollector::shouldConcurrentCollect() {
1147   if (_full_gc_requested) {
1148     if (Verbose && PrintGCDetails) {
1149       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1150                              " gc request (or gc_locker)");
1151     }
1152     return true;
1153   }
1154 
1155   FreelistLocker x(this);
1156   // ------------------------------------------------------------------
1157   // Print out lots of information which affects the initiation of
1158   // a collection.
1159   if (PrintCMSInitiationStatistics && stats().valid()) {
1160     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1161     gclog_or_tty->stamp();
1162     gclog_or_tty->cr();
1163     stats().print_on(gclog_or_tty);
1164     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1165       stats().time_until_cms_gen_full());
1166     gclog_or_tty->print_cr("free=" SIZE_FORMAT, _cmsGen->free());
1167     gclog_or_tty->print_cr("contiguous_available=" SIZE_FORMAT,
1168                            _cmsGen->contiguous_available());
1169     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1170     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1171     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1172     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1173     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1174     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1175     gclog_or_tty->print_cr("metadata initialized %d",
1176       MetaspaceGC::should_concurrent_collect());
1177   }
1178   // ------------------------------------------------------------------
1179 
1180   // If the estimated time to complete a cms collection (cms_duration())
1181   // is less than the estimated time remaining until the cms generation
1182   // is full, start a collection.
1183   if (!UseCMSInitiatingOccupancyOnly) {
1184     if (stats().valid()) {
1185       if (stats().time_until_cms_start() == 0.0) {
1186         return true;
1187       }
1188     } else {
1189       // We want to conservatively collect somewhat early in order
1190       // to try and "bootstrap" our CMS/promotion statistics;
1191       // this branch will not fire after the first successful CMS
1192       // collection because the stats should then be valid.
1193       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1194         if (Verbose && PrintGCDetails) {
1195           gclog_or_tty->print_cr(
1196             " CMSCollector: collect for bootstrapping statistics:"
1197             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1198             _bootstrap_occupancy);
1199         }
1200         return true;
1201       }
1202     }
1203   }
1204 
1205   // Otherwise, we start a collection cycle if
1206   // old gen want a collection cycle started. Each may use
1207   // an appropriate criterion for making this decision.
1208   // XXX We need to make sure that the gen expansion
1209   // criterion dovetails well with this. XXX NEED TO FIX THIS
1210   if (_cmsGen->should_concurrent_collect()) {
1211     if (Verbose && PrintGCDetails) {
1212       gclog_or_tty->print_cr("CMS old gen initiated");
1213     }
1214     return true;
1215   }
1216 
1217   // We start a collection if we believe an incremental collection may fail;
1218   // this is not likely to be productive in practice because it's probably too
1219   // late anyway.
1220   GenCollectedHeap* gch = GenCollectedHeap::heap();
1221   assert(gch->collector_policy()->is_generation_policy(),
1222          "You may want to check the correctness of the following");
1223   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1224     if (Verbose && PrintGCDetails) {
1225       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1226     }
1227     return true;
1228   }
1229 
1230   if (MetaspaceGC::should_concurrent_collect()) {
1231     if (Verbose && PrintGCDetails) {
1232       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1233     }
1234     return true;
1235   }
1236 
1237   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1238   if (CMSTriggerInterval >= 0) {
1239     if (CMSTriggerInterval == 0) {
1240       // Trigger always
1241       return true;
1242     }
1243 
1244     // Check the CMS time since begin (we do not check the stats validity
1245     // as we want to be able to trigger the first CMS cycle as well)
1246     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1247       if (Verbose && PrintGCDetails) {
1248         if (stats().valid()) {
1249           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1250                                  stats().cms_time_since_begin());
1251         } else {
1252           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1253         }
1254       }
1255       return true;
1256     }
1257   }
1258 
1259   return false;
1260 }
1261 
1262 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1263 
1264 // Clear _expansion_cause fields of constituent generations
1265 void CMSCollector::clear_expansion_cause() {
1266   _cmsGen->clear_expansion_cause();
1267 }
1268 
1269 // We should be conservative in starting a collection cycle.  To
1270 // start too eagerly runs the risk of collecting too often in the
1271 // extreme.  To collect too rarely falls back on full collections,
1272 // which works, even if not optimum in terms of concurrent work.
1273 // As a work around for too eagerly collecting, use the flag
1274 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1275 // giving the user an easily understandable way of controlling the
1276 // collections.
1277 // We want to start a new collection cycle if any of the following
1278 // conditions hold:
1279 // . our current occupancy exceeds the configured initiating occupancy
1280 //   for this generation, or
1281 // . we recently needed to expand this space and have not, since that
1282 //   expansion, done a collection of this generation, or
1283 // . the underlying space believes that it may be a good idea to initiate
1284 //   a concurrent collection (this may be based on criteria such as the
1285 //   following: the space uses linear allocation and linear allocation is
1286 //   going to fail, or there is believed to be excessive fragmentation in
1287 //   the generation, etc... or ...
1288 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1289 //   the case of the old generation; see CR 6543076):
1290 //   we may be approaching a point at which allocation requests may fail because
1291 //   we will be out of sufficient free space given allocation rate estimates.]
1292 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1293 
1294   assert_lock_strong(freelistLock());
1295   if (occupancy() > initiating_occupancy()) {
1296     if (PrintGCDetails && Verbose) {
1297       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1298         short_name(), occupancy(), initiating_occupancy());
1299     }
1300     return true;
1301   }
1302   if (UseCMSInitiatingOccupancyOnly) {
1303     return false;
1304   }
1305   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1306     if (PrintGCDetails && Verbose) {
1307       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1308         short_name());
1309     }
1310     return true;
1311   }
1312   return false;
1313 }
1314 
1315 void ConcurrentMarkSweepGeneration::collect(bool   full,
1316                                             bool   clear_all_soft_refs,
1317                                             size_t size,
1318                                             bool   tlab)
1319 {
1320   collector()->collect(full, clear_all_soft_refs, size, tlab);
1321 }
1322 
1323 void CMSCollector::collect(bool   full,
1324                            bool   clear_all_soft_refs,
1325                            size_t size,
1326                            bool   tlab)
1327 {
1328   // The following "if" branch is present for defensive reasons.
1329   // In the current uses of this interface, it can be replaced with:
1330   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1331   // But I am not placing that assert here to allow future
1332   // generality in invoking this interface.
1333   if (GC_locker::is_active()) {
1334     // A consistency test for GC_locker
1335     assert(GC_locker::needs_gc(), "Should have been set already");
1336     // Skip this foreground collection, instead
1337     // expanding the heap if necessary.
1338     // Need the free list locks for the call to free() in compute_new_size()
1339     compute_new_size();
1340     return;
1341   }
1342   acquire_control_and_collect(full, clear_all_soft_refs);
1343 }
1344 
1345 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1346   GenCollectedHeap* gch = GenCollectedHeap::heap();
1347   unsigned int gc_count = gch->total_full_collections();
1348   if (gc_count == full_gc_count) {
1349     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1350     _full_gc_requested = true;
1351     _full_gc_cause = cause;
1352     CGC_lock->notify();   // nudge CMS thread
1353   } else {
1354     assert(gc_count > full_gc_count, "Error: causal loop");
1355   }
1356 }
1357 
1358 bool CMSCollector::is_external_interruption() {
1359   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1360   return GCCause::is_user_requested_gc(cause) ||
1361          GCCause::is_serviceability_requested_gc(cause);
1362 }
1363 
1364 void CMSCollector::report_concurrent_mode_interruption() {
1365   if (is_external_interruption()) {
1366     if (PrintGCDetails) {
1367       gclog_or_tty->print(" (concurrent mode interrupted)");
1368     }
1369   } else {
1370     if (PrintGCDetails) {
1371       gclog_or_tty->print(" (concurrent mode failure)");
1372     }
1373     _gc_tracer_cm->report_concurrent_mode_failure();
1374   }
1375 }
1376 
1377 
1378 // The foreground and background collectors need to coordinate in order
1379 // to make sure that they do not mutually interfere with CMS collections.
1380 // When a background collection is active,
1381 // the foreground collector may need to take over (preempt) and
1382 // synchronously complete an ongoing collection. Depending on the
1383 // frequency of the background collections and the heap usage
1384 // of the application, this preemption can be seldom or frequent.
1385 // There are only certain
1386 // points in the background collection that the "collection-baton"
1387 // can be passed to the foreground collector.
1388 //
1389 // The foreground collector will wait for the baton before
1390 // starting any part of the collection.  The foreground collector
1391 // will only wait at one location.
1392 //
1393 // The background collector will yield the baton before starting a new
1394 // phase of the collection (e.g., before initial marking, marking from roots,
1395 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1396 // of the loop which switches the phases. The background collector does some
1397 // of the phases (initial mark, final re-mark) with the world stopped.
1398 // Because of locking involved in stopping the world,
1399 // the foreground collector should not block waiting for the background
1400 // collector when it is doing a stop-the-world phase.  The background
1401 // collector will yield the baton at an additional point just before
1402 // it enters a stop-the-world phase.  Once the world is stopped, the
1403 // background collector checks the phase of the collection.  If the
1404 // phase has not changed, it proceeds with the collection.  If the
1405 // phase has changed, it skips that phase of the collection.  See
1406 // the comments on the use of the Heap_lock in collect_in_background().
1407 //
1408 // Variable used in baton passing.
1409 //   _foregroundGCIsActive - Set to true by the foreground collector when
1410 //      it wants the baton.  The foreground clears it when it has finished
1411 //      the collection.
1412 //   _foregroundGCShouldWait - Set to true by the background collector
1413 //        when it is running.  The foreground collector waits while
1414 //      _foregroundGCShouldWait is true.
1415 //  CGC_lock - monitor used to protect access to the above variables
1416 //      and to notify the foreground and background collectors.
1417 //  _collectorState - current state of the CMS collection.
1418 //
1419 // The foreground collector
1420 //   acquires the CGC_lock
1421 //   sets _foregroundGCIsActive
1422 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1423 //     various locks acquired in preparation for the collection
1424 //     are released so as not to block the background collector
1425 //     that is in the midst of a collection
1426 //   proceeds with the collection
1427 //   clears _foregroundGCIsActive
1428 //   returns
1429 //
1430 // The background collector in a loop iterating on the phases of the
1431 //      collection
1432 //   acquires the CGC_lock
1433 //   sets _foregroundGCShouldWait
1434 //   if _foregroundGCIsActive is set
1435 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1436 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1437 //     and exits the loop.
1438 //   otherwise
1439 //     proceed with that phase of the collection
1440 //     if the phase is a stop-the-world phase,
1441 //       yield the baton once more just before enqueueing
1442 //       the stop-world CMS operation (executed by the VM thread).
1443 //   returns after all phases of the collection are done
1444 //
1445 
1446 void CMSCollector::acquire_control_and_collect(bool full,
1447         bool clear_all_soft_refs) {
1448   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1449   assert(!Thread::current()->is_ConcurrentGC_thread(),
1450          "shouldn't try to acquire control from self!");
1451 
1452   // Start the protocol for acquiring control of the
1453   // collection from the background collector (aka CMS thread).
1454   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1455          "VM thread should have CMS token");
1456   // Remember the possibly interrupted state of an ongoing
1457   // concurrent collection
1458   CollectorState first_state = _collectorState;
1459 
1460   // Signal to a possibly ongoing concurrent collection that
1461   // we want to do a foreground collection.
1462   _foregroundGCIsActive = true;
1463 
1464   // release locks and wait for a notify from the background collector
1465   // releasing the locks in only necessary for phases which
1466   // do yields to improve the granularity of the collection.
1467   assert_lock_strong(bitMapLock());
1468   // We need to lock the Free list lock for the space that we are
1469   // currently collecting.
1470   assert(haveFreelistLocks(), "Must be holding free list locks");
1471   bitMapLock()->unlock();
1472   releaseFreelistLocks();
1473   {
1474     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1475     if (_foregroundGCShouldWait) {
1476       // We are going to be waiting for action for the CMS thread;
1477       // it had better not be gone (for instance at shutdown)!
1478       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1479              "CMS thread must be running");
1480       // Wait here until the background collector gives us the go-ahead
1481       ConcurrentMarkSweepThread::clear_CMS_flag(
1482         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1483       // Get a possibly blocked CMS thread going:
1484       //   Note that we set _foregroundGCIsActive true above,
1485       //   without protection of the CGC_lock.
1486       CGC_lock->notify();
1487       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1488              "Possible deadlock");
1489       while (_foregroundGCShouldWait) {
1490         // wait for notification
1491         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1492         // Possibility of delay/starvation here, since CMS token does
1493         // not know to give priority to VM thread? Actually, i think
1494         // there wouldn't be any delay/starvation, but the proof of
1495         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1496       }
1497       ConcurrentMarkSweepThread::set_CMS_flag(
1498         ConcurrentMarkSweepThread::CMS_vm_has_token);
1499     }
1500   }
1501   // The CMS_token is already held.  Get back the other locks.
1502   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1503          "VM thread should have CMS token");
1504   getFreelistLocks();
1505   bitMapLock()->lock_without_safepoint_check();
1506   if (TraceCMSState) {
1507     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1508       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1509     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1510   }
1511 
1512   // Inform cms gen if this was due to partial collection failing.
1513   // The CMS gen may use this fact to determine its expansion policy.
1514   GenCollectedHeap* gch = GenCollectedHeap::heap();
1515   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1516     assert(!_cmsGen->incremental_collection_failed(),
1517            "Should have been noticed, reacted to and cleared");
1518     _cmsGen->set_incremental_collection_failed();
1519   }
1520 
1521   if (first_state > Idling) {
1522     report_concurrent_mode_interruption();
1523   }
1524 
1525   set_did_compact(true);
1526 
1527   // If the collection is being acquired from the background
1528   // collector, there may be references on the discovered
1529   // references lists.  Abandon those references, since some
1530   // of them may have become unreachable after concurrent
1531   // discovery; the STW compacting collector will redo discovery
1532   // more precisely, without being subject to floating garbage.
1533   // Leaving otherwise unreachable references in the discovered
1534   // lists would require special handling.
1535   ref_processor()->disable_discovery();
1536   ref_processor()->abandon_partial_discovery();
1537   ref_processor()->verify_no_references_recorded();
1538 
1539   if (first_state > Idling) {
1540     save_heap_summary();
1541   }
1542 
1543   do_compaction_work(clear_all_soft_refs);
1544 
1545   // Has the GC time limit been exceeded?
1546   size_t max_eden_size = _young_gen->max_eden_size();
1547   GCCause::Cause gc_cause = gch->gc_cause();
1548   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1549                                          _young_gen->eden()->used(),
1550                                          _cmsGen->max_capacity(),
1551                                          max_eden_size,
1552                                          full,
1553                                          gc_cause,
1554                                          gch->collector_policy());
1555 
1556   // Reset the expansion cause, now that we just completed
1557   // a collection cycle.
1558   clear_expansion_cause();
1559   _foregroundGCIsActive = false;
1560   return;
1561 }
1562 
1563 // Resize the tenured generation
1564 // after obtaining the free list locks for the
1565 // two generations.
1566 void CMSCollector::compute_new_size() {
1567   assert_locked_or_safepoint(Heap_lock);
1568   FreelistLocker z(this);
1569   MetaspaceGC::compute_new_size();
1570   _cmsGen->compute_new_size_free_list();
1571 }
1572 
1573 // A work method used by the foreground collector to do
1574 // a mark-sweep-compact.
1575 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1576   GenCollectedHeap* gch = GenCollectedHeap::heap();
1577 
1578   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1579   gc_timer->register_gc_start();
1580 
1581   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1582   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1583 
1584   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
1585 
1586   // Temporarily widen the span of the weak reference processing to
1587   // the entire heap.
1588   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1589   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1590   // Temporarily, clear the "is_alive_non_header" field of the
1591   // reference processor.
1592   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1593   // Temporarily make reference _processing_ single threaded (non-MT).
1594   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1595   // Temporarily make refs discovery atomic
1596   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1597   // Temporarily make reference _discovery_ single threaded (non-MT)
1598   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1599 
1600   ref_processor()->set_enqueuing_is_done(false);
1601   ref_processor()->enable_discovery();
1602   ref_processor()->setup_policy(clear_all_soft_refs);
1603   // If an asynchronous collection finishes, the _modUnionTable is
1604   // all clear.  If we are assuming the collection from an asynchronous
1605   // collection, clear the _modUnionTable.
1606   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1607     "_modUnionTable should be clear if the baton was not passed");
1608   _modUnionTable.clear_all();
1609   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1610     "mod union for klasses should be clear if the baton was passed");
1611   _ct->klass_rem_set()->clear_mod_union();
1612 
1613   // We must adjust the allocation statistics being maintained
1614   // in the free list space. We do so by reading and clearing
1615   // the sweep timer and updating the block flux rate estimates below.
1616   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1617   if (_inter_sweep_timer.is_active()) {
1618     _inter_sweep_timer.stop();
1619     // Note that we do not use this sample to update the _inter_sweep_estimate.
1620     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1621                                             _inter_sweep_estimate.padded_average(),
1622                                             _intra_sweep_estimate.padded_average());
1623   }
1624 
1625   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1626   #ifdef ASSERT
1627     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1628     size_t free_size = cms_space->free();
1629     assert(free_size ==
1630            pointer_delta(cms_space->end(), cms_space->compaction_top())
1631            * HeapWordSize,
1632       "All the free space should be compacted into one chunk at top");
1633     assert(cms_space->dictionary()->total_chunk_size(
1634                                       debug_only(cms_space->freelistLock())) == 0 ||
1635            cms_space->totalSizeInIndexedFreeLists() == 0,
1636       "All the free space should be in a single chunk");
1637     size_t num = cms_space->totalCount();
1638     assert((free_size == 0 && num == 0) ||
1639            (free_size > 0  && (num == 1 || num == 2)),
1640          "There should be at most 2 free chunks after compaction");
1641   #endif // ASSERT
1642   _collectorState = Resetting;
1643   assert(_restart_addr == NULL,
1644          "Should have been NULL'd before baton was passed");
1645   reset_stw();
1646   _cmsGen->reset_after_compaction();
1647   _concurrent_cycles_since_last_unload = 0;
1648 
1649   // Clear any data recorded in the PLAB chunk arrays.
1650   if (_survivor_plab_array != NULL) {
1651     reset_survivor_plab_arrays();
1652   }
1653 
1654   // Adjust the per-size allocation stats for the next epoch.
1655   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1656   // Restart the "inter sweep timer" for the next epoch.
1657   _inter_sweep_timer.reset();
1658   _inter_sweep_timer.start();
1659 
1660   gc_timer->register_gc_end();
1661 
1662   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1663 
1664   // For a mark-sweep-compact, compute_new_size() will be called
1665   // in the heap's do_collection() method.
1666 }
1667 
1668 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1669   ContiguousSpace* eden_space = _young_gen->eden();
1670   ContiguousSpace* from_space = _young_gen->from();
1671   ContiguousSpace* to_space   = _young_gen->to();
1672   // Eden
1673   if (_eden_chunk_array != NULL) {
1674     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1675                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1676                            p2i(eden_space->end()), eden_space->capacity());
1677     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1678                            "_eden_chunk_capacity=" SIZE_FORMAT,
1679                            _eden_chunk_index, _eden_chunk_capacity);
1680     for (size_t i = 0; i < _eden_chunk_index; i++) {
1681       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1682                              i, p2i(_eden_chunk_array[i]));
1683     }
1684   }
1685   // Survivor
1686   if (_survivor_chunk_array != NULL) {
1687     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1688                            p2i(from_space->bottom()), p2i(from_space->top()),
1689                            p2i(from_space->end()), from_space->capacity());
1690     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1691                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1692                            _survivor_chunk_index, _survivor_chunk_capacity);
1693     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1694       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1695                              i, p2i(_survivor_chunk_array[i]));
1696     }
1697   }
1698 }
1699 
1700 void CMSCollector::getFreelistLocks() const {
1701   // Get locks for all free lists in all generations that this
1702   // collector is responsible for
1703   _cmsGen->freelistLock()->lock_without_safepoint_check();
1704 }
1705 
1706 void CMSCollector::releaseFreelistLocks() const {
1707   // Release locks for all free lists in all generations that this
1708   // collector is responsible for
1709   _cmsGen->freelistLock()->unlock();
1710 }
1711 
1712 bool CMSCollector::haveFreelistLocks() const {
1713   // Check locks for all free lists in all generations that this
1714   // collector is responsible for
1715   assert_lock_strong(_cmsGen->freelistLock());
1716   PRODUCT_ONLY(ShouldNotReachHere());
1717   return true;
1718 }
1719 
1720 // A utility class that is used by the CMS collector to
1721 // temporarily "release" the foreground collector from its
1722 // usual obligation to wait for the background collector to
1723 // complete an ongoing phase before proceeding.
1724 class ReleaseForegroundGC: public StackObj {
1725  private:
1726   CMSCollector* _c;
1727  public:
1728   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1729     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1730     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1731     // allow a potentially blocked foreground collector to proceed
1732     _c->_foregroundGCShouldWait = false;
1733     if (_c->_foregroundGCIsActive) {
1734       CGC_lock->notify();
1735     }
1736     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1737            "Possible deadlock");
1738   }
1739 
1740   ~ReleaseForegroundGC() {
1741     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1742     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1743     _c->_foregroundGCShouldWait = true;
1744   }
1745 };
1746 
1747 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1748   assert(Thread::current()->is_ConcurrentGC_thread(),
1749     "A CMS asynchronous collection is only allowed on a CMS thread.");
1750 
1751   GenCollectedHeap* gch = GenCollectedHeap::heap();
1752   {
1753     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1754     MutexLockerEx hl(Heap_lock, safepoint_check);
1755     FreelistLocker fll(this);
1756     MutexLockerEx x(CGC_lock, safepoint_check);
1757     if (_foregroundGCIsActive) {
1758       // The foreground collector is. Skip this
1759       // background collection.
1760       assert(!_foregroundGCShouldWait, "Should be clear");
1761       return;
1762     } else {
1763       assert(_collectorState == Idling, "Should be idling before start.");
1764       _collectorState = InitialMarking;
1765       register_gc_start(cause);
1766       // Reset the expansion cause, now that we are about to begin
1767       // a new cycle.
1768       clear_expansion_cause();
1769 
1770       // Clear the MetaspaceGC flag since a concurrent collection
1771       // is starting but also clear it after the collection.
1772       MetaspaceGC::set_should_concurrent_collect(false);
1773     }
1774     // Decide if we want to enable class unloading as part of the
1775     // ensuing concurrent GC cycle.
1776     update_should_unload_classes();
1777     _full_gc_requested = false;           // acks all outstanding full gc requests
1778     _full_gc_cause = GCCause::_no_gc;
1779     // Signal that we are about to start a collection
1780     gch->increment_total_full_collections();  // ... starting a collection cycle
1781     _collection_count_start = gch->total_full_collections();
1782   }
1783 
1784   // Used for PrintGC
1785   size_t prev_used = 0;
1786   if (PrintGC && Verbose) {
1787     prev_used = _cmsGen->used();
1788   }
1789 
1790   // The change of the collection state is normally done at this level;
1791   // the exceptions are phases that are executed while the world is
1792   // stopped.  For those phases the change of state is done while the
1793   // world is stopped.  For baton passing purposes this allows the
1794   // background collector to finish the phase and change state atomically.
1795   // The foreground collector cannot wait on a phase that is done
1796   // while the world is stopped because the foreground collector already
1797   // has the world stopped and would deadlock.
1798   while (_collectorState != Idling) {
1799     if (TraceCMSState) {
1800       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1801         p2i(Thread::current()), _collectorState);
1802     }
1803     // The foreground collector
1804     //   holds the Heap_lock throughout its collection.
1805     //   holds the CMS token (but not the lock)
1806     //     except while it is waiting for the background collector to yield.
1807     //
1808     // The foreground collector should be blocked (not for long)
1809     //   if the background collector is about to start a phase
1810     //   executed with world stopped.  If the background
1811     //   collector has already started such a phase, the
1812     //   foreground collector is blocked waiting for the
1813     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1814     //   are executed in the VM thread.
1815     //
1816     // The locking order is
1817     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1818     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1819     //   CMS token  (claimed in
1820     //                stop_world_and_do() -->
1821     //                  safepoint_synchronize() -->
1822     //                    CMSThread::synchronize())
1823 
1824     {
1825       // Check if the FG collector wants us to yield.
1826       CMSTokenSync x(true); // is cms thread
1827       if (waitForForegroundGC()) {
1828         // We yielded to a foreground GC, nothing more to be
1829         // done this round.
1830         assert(_foregroundGCShouldWait == false, "We set it to false in "
1831                "waitForForegroundGC()");
1832         if (TraceCMSState) {
1833           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1834             " exiting collection CMS state %d",
1835             p2i(Thread::current()), _collectorState);
1836         }
1837         return;
1838       } else {
1839         // The background collector can run but check to see if the
1840         // foreground collector has done a collection while the
1841         // background collector was waiting to get the CGC_lock
1842         // above.  If yes, break so that _foregroundGCShouldWait
1843         // is cleared before returning.
1844         if (_collectorState == Idling) {
1845           break;
1846         }
1847       }
1848     }
1849 
1850     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1851       "should be waiting");
1852 
1853     switch (_collectorState) {
1854       case InitialMarking:
1855         {
1856           ReleaseForegroundGC x(this);
1857           stats().record_cms_begin();
1858           VM_CMS_Initial_Mark initial_mark_op(this);
1859           VMThread::execute(&initial_mark_op);
1860         }
1861         // The collector state may be any legal state at this point
1862         // since the background collector may have yielded to the
1863         // foreground collector.
1864         break;
1865       case Marking:
1866         // initial marking in checkpointRootsInitialWork has been completed
1867         if (markFromRoots()) { // we were successful
1868           assert(_collectorState == Precleaning, "Collector state should "
1869             "have changed");
1870         } else {
1871           assert(_foregroundGCIsActive, "Internal state inconsistency");
1872         }
1873         break;
1874       case Precleaning:
1875         // marking from roots in markFromRoots has been completed
1876         preclean();
1877         assert(_collectorState == AbortablePreclean ||
1878                _collectorState == FinalMarking,
1879                "Collector state should have changed");
1880         break;
1881       case AbortablePreclean:
1882         abortable_preclean();
1883         assert(_collectorState == FinalMarking, "Collector state should "
1884           "have changed");
1885         break;
1886       case FinalMarking:
1887         {
1888           ReleaseForegroundGC x(this);
1889 
1890           VM_CMS_Final_Remark final_remark_op(this);
1891           VMThread::execute(&final_remark_op);
1892         }
1893         assert(_foregroundGCShouldWait, "block post-condition");
1894         break;
1895       case Sweeping:
1896         // final marking in checkpointRootsFinal has been completed
1897         sweep();
1898         assert(_collectorState == Resizing, "Collector state change "
1899           "to Resizing must be done under the free_list_lock");
1900 
1901       case Resizing: {
1902         // Sweeping has been completed...
1903         // At this point the background collection has completed.
1904         // Don't move the call to compute_new_size() down
1905         // into code that might be executed if the background
1906         // collection was preempted.
1907         {
1908           ReleaseForegroundGC x(this);   // unblock FG collection
1909           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1910           CMSTokenSync        z(true);   // not strictly needed.
1911           if (_collectorState == Resizing) {
1912             compute_new_size();
1913             save_heap_summary();
1914             _collectorState = Resetting;
1915           } else {
1916             assert(_collectorState == Idling, "The state should only change"
1917                    " because the foreground collector has finished the collection");
1918           }
1919         }
1920         break;
1921       }
1922       case Resetting:
1923         // CMS heap resizing has been completed
1924         reset_concurrent();
1925         assert(_collectorState == Idling, "Collector state should "
1926           "have changed");
1927 
1928         MetaspaceGC::set_should_concurrent_collect(false);
1929 
1930         stats().record_cms_end();
1931         // Don't move the concurrent_phases_end() and compute_new_size()
1932         // calls to here because a preempted background collection
1933         // has it's state set to "Resetting".
1934         break;
1935       case Idling:
1936       default:
1937         ShouldNotReachHere();
1938         break;
1939     }
1940     if (TraceCMSState) {
1941       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1942         p2i(Thread::current()), _collectorState);
1943     }
1944     assert(_foregroundGCShouldWait, "block post-condition");
1945   }
1946 
1947   // Should this be in gc_epilogue?
1948   collector_policy()->counters()->update_counters();
1949 
1950   {
1951     // Clear _foregroundGCShouldWait and, in the event that the
1952     // foreground collector is waiting, notify it, before
1953     // returning.
1954     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1955     _foregroundGCShouldWait = false;
1956     if (_foregroundGCIsActive) {
1957       CGC_lock->notify();
1958     }
1959     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1960            "Possible deadlock");
1961   }
1962   if (TraceCMSState) {
1963     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1964       " exiting collection CMS state %d",
1965       p2i(Thread::current()), _collectorState);
1966   }
1967   if (PrintGC && Verbose) {
1968     _cmsGen->print_heap_change(prev_used);
1969   }
1970 }
1971 
1972 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1973   _cms_start_registered = true;
1974   _gc_timer_cm->register_gc_start();
1975   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1976 }
1977 
1978 void CMSCollector::register_gc_end() {
1979   if (_cms_start_registered) {
1980     report_heap_summary(GCWhen::AfterGC);
1981 
1982     _gc_timer_cm->register_gc_end();
1983     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1984     _cms_start_registered = false;
1985   }
1986 }
1987 
1988 void CMSCollector::save_heap_summary() {
1989   GenCollectedHeap* gch = GenCollectedHeap::heap();
1990   _last_heap_summary = gch->create_heap_summary();
1991   _last_metaspace_summary = gch->create_metaspace_summary();
1992 }
1993 
1994 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1995   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1996   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1997 }
1998 
1999 bool CMSCollector::waitForForegroundGC() {
2000   bool res = false;
2001   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2002          "CMS thread should have CMS token");
2003   // Block the foreground collector until the
2004   // background collectors decides whether to
2005   // yield.
2006   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2007   _foregroundGCShouldWait = true;
2008   if (_foregroundGCIsActive) {
2009     // The background collector yields to the
2010     // foreground collector and returns a value
2011     // indicating that it has yielded.  The foreground
2012     // collector can proceed.
2013     res = true;
2014     _foregroundGCShouldWait = false;
2015     ConcurrentMarkSweepThread::clear_CMS_flag(
2016       ConcurrentMarkSweepThread::CMS_cms_has_token);
2017     ConcurrentMarkSweepThread::set_CMS_flag(
2018       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2019     // Get a possibly blocked foreground thread going
2020     CGC_lock->notify();
2021     if (TraceCMSState) {
2022       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2023         p2i(Thread::current()), _collectorState);
2024     }
2025     while (_foregroundGCIsActive) {
2026       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2027     }
2028     ConcurrentMarkSweepThread::set_CMS_flag(
2029       ConcurrentMarkSweepThread::CMS_cms_has_token);
2030     ConcurrentMarkSweepThread::clear_CMS_flag(
2031       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2032   }
2033   if (TraceCMSState) {
2034     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2035       p2i(Thread::current()), _collectorState);
2036   }
2037   return res;
2038 }
2039 
2040 // Because of the need to lock the free lists and other structures in
2041 // the collector, common to all the generations that the collector is
2042 // collecting, we need the gc_prologues of individual CMS generations
2043 // delegate to their collector. It may have been simpler had the
2044 // current infrastructure allowed one to call a prologue on a
2045 // collector. In the absence of that we have the generation's
2046 // prologue delegate to the collector, which delegates back
2047 // some "local" work to a worker method in the individual generations
2048 // that it's responsible for collecting, while itself doing any
2049 // work common to all generations it's responsible for. A similar
2050 // comment applies to the  gc_epilogue()'s.
2051 // The role of the variable _between_prologue_and_epilogue is to
2052 // enforce the invocation protocol.
2053 void CMSCollector::gc_prologue(bool full) {
2054   // Call gc_prologue_work() for the CMSGen
2055   // we are responsible for.
2056 
2057   // The following locking discipline assumes that we are only called
2058   // when the world is stopped.
2059   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2060 
2061   // The CMSCollector prologue must call the gc_prologues for the
2062   // "generations" that it's responsible
2063   // for.
2064 
2065   assert(   Thread::current()->is_VM_thread()
2066          || (   CMSScavengeBeforeRemark
2067              && Thread::current()->is_ConcurrentGC_thread()),
2068          "Incorrect thread type for prologue execution");
2069 
2070   if (_between_prologue_and_epilogue) {
2071     // We have already been invoked; this is a gc_prologue delegation
2072     // from yet another CMS generation that we are responsible for, just
2073     // ignore it since all relevant work has already been done.
2074     return;
2075   }
2076 
2077   // set a bit saying prologue has been called; cleared in epilogue
2078   _between_prologue_and_epilogue = true;
2079   // Claim locks for common data structures, then call gc_prologue_work()
2080   // for each CMSGen.
2081 
2082   getFreelistLocks();   // gets free list locks on constituent spaces
2083   bitMapLock()->lock_without_safepoint_check();
2084 
2085   // Should call gc_prologue_work() for all cms gens we are responsible for
2086   bool duringMarking =    _collectorState >= Marking
2087                          && _collectorState < Sweeping;
2088 
2089   // The young collections clear the modified oops state, which tells if
2090   // there are any modified oops in the class. The remark phase also needs
2091   // that information. Tell the young collection to save the union of all
2092   // modified klasses.
2093   if (duringMarking) {
2094     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2095   }
2096 
2097   bool registerClosure = duringMarking;
2098 
2099   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2100 
2101   if (!full) {
2102     stats().record_gc0_begin();
2103   }
2104 }
2105 
2106 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2107 
2108   _capacity_at_prologue = capacity();
2109   _used_at_prologue = used();
2110 
2111   // Delegate to CMScollector which knows how to coordinate between
2112   // this and any other CMS generations that it is responsible for
2113   // collecting.
2114   collector()->gc_prologue(full);
2115 }
2116 
2117 // This is a "private" interface for use by this generation's CMSCollector.
2118 // Not to be called directly by any other entity (for instance,
2119 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2120 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2121   bool registerClosure, ModUnionClosure* modUnionClosure) {
2122   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2123   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2124     "Should be NULL");
2125   if (registerClosure) {
2126     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2127   }
2128   cmsSpace()->gc_prologue();
2129   // Clear stat counters
2130   NOT_PRODUCT(
2131     assert(_numObjectsPromoted == 0, "check");
2132     assert(_numWordsPromoted   == 0, "check");
2133     if (Verbose && PrintGC) {
2134       gclog_or_tty->print("Allocated " SIZE_FORMAT " objects, "
2135                           SIZE_FORMAT " bytes concurrently",
2136       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2137     }
2138     _numObjectsAllocated = 0;
2139     _numWordsAllocated   = 0;
2140   )
2141 }
2142 
2143 void CMSCollector::gc_epilogue(bool full) {
2144   // The following locking discipline assumes that we are only called
2145   // when the world is stopped.
2146   assert(SafepointSynchronize::is_at_safepoint(),
2147          "world is stopped assumption");
2148 
2149   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2150   // if linear allocation blocks need to be appropriately marked to allow the
2151   // the blocks to be parsable. We also check here whether we need to nudge the
2152   // CMS collector thread to start a new cycle (if it's not already active).
2153   assert(   Thread::current()->is_VM_thread()
2154          || (   CMSScavengeBeforeRemark
2155              && Thread::current()->is_ConcurrentGC_thread()),
2156          "Incorrect thread type for epilogue execution");
2157 
2158   if (!_between_prologue_and_epilogue) {
2159     // We have already been invoked; this is a gc_epilogue delegation
2160     // from yet another CMS generation that we are responsible for, just
2161     // ignore it since all relevant work has already been done.
2162     return;
2163   }
2164   assert(haveFreelistLocks(), "must have freelist locks");
2165   assert_lock_strong(bitMapLock());
2166 
2167   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2168 
2169   _cmsGen->gc_epilogue_work(full);
2170 
2171   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2172     // in case sampling was not already enabled, enable it
2173     _start_sampling = true;
2174   }
2175   // reset _eden_chunk_array so sampling starts afresh
2176   _eden_chunk_index = 0;
2177 
2178   size_t cms_used   = _cmsGen->cmsSpace()->used();
2179 
2180   // update performance counters - this uses a special version of
2181   // update_counters() that allows the utilization to be passed as a
2182   // parameter, avoiding multiple calls to used().
2183   //
2184   _cmsGen->update_counters(cms_used);
2185 
2186   bitMapLock()->unlock();
2187   releaseFreelistLocks();
2188 
2189   if (!CleanChunkPoolAsync) {
2190     Chunk::clean_chunk_pool();
2191   }
2192 
2193   set_did_compact(false);
2194   _between_prologue_and_epilogue = false;  // ready for next cycle
2195 }
2196 
2197 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2198   collector()->gc_epilogue(full);
2199 
2200   // Also reset promotion tracking in par gc thread states.
2201   for (uint i = 0; i < ParallelGCThreads; i++) {
2202     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2203   }
2204 }
2205 
2206 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2207   assert(!incremental_collection_failed(), "Should have been cleared");
2208   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2209   cmsSpace()->gc_epilogue();
2210     // Print stat counters
2211   NOT_PRODUCT(
2212     assert(_numObjectsAllocated == 0, "check");
2213     assert(_numWordsAllocated == 0, "check");
2214     if (Verbose && PrintGC) {
2215       gclog_or_tty->print("Promoted " SIZE_FORMAT " objects, "
2216                           SIZE_FORMAT " bytes",
2217                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2218     }
2219     _numObjectsPromoted = 0;
2220     _numWordsPromoted   = 0;
2221   )
2222 
2223   if (PrintGC && Verbose) {
2224     // Call down the chain in contiguous_available needs the freelistLock
2225     // so print this out before releasing the freeListLock.
2226     gclog_or_tty->print(" Contiguous available " SIZE_FORMAT " bytes ",
2227                         contiguous_available());
2228   }
2229 }
2230 
2231 #ifndef PRODUCT
2232 bool CMSCollector::have_cms_token() {
2233   Thread* thr = Thread::current();
2234   if (thr->is_VM_thread()) {
2235     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2236   } else if (thr->is_ConcurrentGC_thread()) {
2237     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2238   } else if (thr->is_GC_task_thread()) {
2239     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2240            ParGCRareEvent_lock->owned_by_self();
2241   }
2242   return false;
2243 }
2244 #endif
2245 
2246 // Check reachability of the given heap address in CMS generation,
2247 // treating all other generations as roots.
2248 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2249   // We could "guarantee" below, rather than assert, but I'll
2250   // leave these as "asserts" so that an adventurous debugger
2251   // could try this in the product build provided some subset of
2252   // the conditions were met, provided they were interested in the
2253   // results and knew that the computation below wouldn't interfere
2254   // with other concurrent computations mutating the structures
2255   // being read or written.
2256   assert(SafepointSynchronize::is_at_safepoint(),
2257          "Else mutations in object graph will make answer suspect");
2258   assert(have_cms_token(), "Should hold cms token");
2259   assert(haveFreelistLocks(), "must hold free list locks");
2260   assert_lock_strong(bitMapLock());
2261 
2262   // Clear the marking bit map array before starting, but, just
2263   // for kicks, first report if the given address is already marked
2264   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2265                 _markBitMap.isMarked(addr) ? "" : " not");
2266 
2267   if (verify_after_remark()) {
2268     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2269     bool result = verification_mark_bm()->isMarked(addr);
2270     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2271                            result ? "IS" : "is NOT");
2272     return result;
2273   } else {
2274     gclog_or_tty->print_cr("Could not compute result");
2275     return false;
2276   }
2277 }
2278 
2279 
2280 void
2281 CMSCollector::print_on_error(outputStream* st) {
2282   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2283   if (collector != NULL) {
2284     CMSBitMap* bitmap = &collector->_markBitMap;
2285     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2286     bitmap->print_on_error(st, " Bits: ");
2287 
2288     st->cr();
2289 
2290     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2291     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2292     mut_bitmap->print_on_error(st, " Bits: ");
2293   }
2294 }
2295 
2296 ////////////////////////////////////////////////////////
2297 // CMS Verification Support
2298 ////////////////////////////////////////////////////////
2299 // Following the remark phase, the following invariant
2300 // should hold -- each object in the CMS heap which is
2301 // marked in markBitMap() should be marked in the verification_mark_bm().
2302 
2303 class VerifyMarkedClosure: public BitMapClosure {
2304   CMSBitMap* _marks;
2305   bool       _failed;
2306 
2307  public:
2308   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2309 
2310   bool do_bit(size_t offset) {
2311     HeapWord* addr = _marks->offsetToHeapWord(offset);
2312     if (!_marks->isMarked(addr)) {
2313       oop(addr)->print_on(gclog_or_tty);
2314       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2315       _failed = true;
2316     }
2317     return true;
2318   }
2319 
2320   bool failed() { return _failed; }
2321 };
2322 
2323 bool CMSCollector::verify_after_remark(bool silent) {
2324   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2325   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2326   static bool init = false;
2327 
2328   assert(SafepointSynchronize::is_at_safepoint(),
2329          "Else mutations in object graph will make answer suspect");
2330   assert(have_cms_token(),
2331          "Else there may be mutual interference in use of "
2332          " verification data structures");
2333   assert(_collectorState > Marking && _collectorState <= Sweeping,
2334          "Else marking info checked here may be obsolete");
2335   assert(haveFreelistLocks(), "must hold free list locks");
2336   assert_lock_strong(bitMapLock());
2337 
2338 
2339   // Allocate marking bit map if not already allocated
2340   if (!init) { // first time
2341     if (!verification_mark_bm()->allocate(_span)) {
2342       return false;
2343     }
2344     init = true;
2345   }
2346 
2347   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2348 
2349   // Turn off refs discovery -- so we will be tracing through refs.
2350   // This is as intended, because by this time
2351   // GC must already have cleared any refs that need to be cleared,
2352   // and traced those that need to be marked; moreover,
2353   // the marking done here is not going to interfere in any
2354   // way with the marking information used by GC.
2355   NoRefDiscovery no_discovery(ref_processor());
2356 
2357 #if defined(COMPILER2) || INCLUDE_JVMCI
2358   DerivedPointerTableDeactivate dpt_deact;
2359 #endif
2360 
2361   // Clear any marks from a previous round
2362   verification_mark_bm()->clear_all();
2363   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2364   verify_work_stacks_empty();
2365 
2366   GenCollectedHeap* gch = GenCollectedHeap::heap();
2367   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2368   // Update the saved marks which may affect the root scans.
2369   gch->save_marks();
2370 
2371   if (CMSRemarkVerifyVariant == 1) {
2372     // In this first variant of verification, we complete
2373     // all marking, then check if the new marks-vector is
2374     // a subset of the CMS marks-vector.
2375     verify_after_remark_work_1();
2376   } else if (CMSRemarkVerifyVariant == 2) {
2377     // In this second variant of verification, we flag an error
2378     // (i.e. an object reachable in the new marks-vector not reachable
2379     // in the CMS marks-vector) immediately, also indicating the
2380     // identify of an object (A) that references the unmarked object (B) --
2381     // presumably, a mutation to A failed to be picked up by preclean/remark?
2382     verify_after_remark_work_2();
2383   } else {
2384     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2385             CMSRemarkVerifyVariant);
2386   }
2387   if (!silent) gclog_or_tty->print(" done] ");
2388   return true;
2389 }
2390 
2391 void CMSCollector::verify_after_remark_work_1() {
2392   ResourceMark rm;
2393   HandleMark  hm;
2394   GenCollectedHeap* gch = GenCollectedHeap::heap();
2395 
2396   // Get a clear set of claim bits for the roots processing to work with.
2397   ClassLoaderDataGraph::clear_claimed_marks();
2398 
2399   // Mark from roots one level into CMS
2400   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2401   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2402 
2403   {
2404     StrongRootsScope srs(1);
2405 
2406     gch->gen_process_roots(&srs,
2407                            GenCollectedHeap::OldGen,
2408                            true,   // young gen as roots
2409                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2410                            should_unload_classes(),
2411                            &notOlder,
2412                            NULL,
2413                            NULL);
2414   }
2415 
2416   // Now mark from the roots
2417   MarkFromRootsClosure markFromRootsClosure(this, _span,
2418     verification_mark_bm(), verification_mark_stack(),
2419     false /* don't yield */, true /* verifying */);
2420   assert(_restart_addr == NULL, "Expected pre-condition");
2421   verification_mark_bm()->iterate(&markFromRootsClosure);
2422   while (_restart_addr != NULL) {
2423     // Deal with stack overflow: by restarting at the indicated
2424     // address.
2425     HeapWord* ra = _restart_addr;
2426     markFromRootsClosure.reset(ra);
2427     _restart_addr = NULL;
2428     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2429   }
2430   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2431   verify_work_stacks_empty();
2432 
2433   // Marking completed -- now verify that each bit marked in
2434   // verification_mark_bm() is also marked in markBitMap(); flag all
2435   // errors by printing corresponding objects.
2436   VerifyMarkedClosure vcl(markBitMap());
2437   verification_mark_bm()->iterate(&vcl);
2438   if (vcl.failed()) {
2439     gclog_or_tty->print("Verification failed");
2440     gch->print_on(gclog_or_tty);
2441     fatal("CMS: failed marking verification after remark");
2442   }
2443 }
2444 
2445 class VerifyKlassOopsKlassClosure : public KlassClosure {
2446   class VerifyKlassOopsClosure : public OopClosure {
2447     CMSBitMap* _bitmap;
2448    public:
2449     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2450     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2451     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2452   } _oop_closure;
2453  public:
2454   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2455   void do_klass(Klass* k) {
2456     k->oops_do(&_oop_closure);
2457   }
2458 };
2459 
2460 void CMSCollector::verify_after_remark_work_2() {
2461   ResourceMark rm;
2462   HandleMark  hm;
2463   GenCollectedHeap* gch = GenCollectedHeap::heap();
2464 
2465   // Get a clear set of claim bits for the roots processing to work with.
2466   ClassLoaderDataGraph::clear_claimed_marks();
2467 
2468   // Mark from roots one level into CMS
2469   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2470                                      markBitMap());
2471   CLDToOopClosure cld_closure(&notOlder, true);
2472 
2473   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2474 
2475   {
2476     StrongRootsScope srs(1);
2477 
2478     gch->gen_process_roots(&srs,
2479                            GenCollectedHeap::OldGen,
2480                            true,   // young gen as roots
2481                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2482                            should_unload_classes(),
2483                            &notOlder,
2484                            NULL,
2485                            &cld_closure);
2486   }
2487 
2488   // Now mark from the roots
2489   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2490     verification_mark_bm(), markBitMap(), verification_mark_stack());
2491   assert(_restart_addr == NULL, "Expected pre-condition");
2492   verification_mark_bm()->iterate(&markFromRootsClosure);
2493   while (_restart_addr != NULL) {
2494     // Deal with stack overflow: by restarting at the indicated
2495     // address.
2496     HeapWord* ra = _restart_addr;
2497     markFromRootsClosure.reset(ra);
2498     _restart_addr = NULL;
2499     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2500   }
2501   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2502   verify_work_stacks_empty();
2503 
2504   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2505   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2506 
2507   // Marking completed -- now verify that each bit marked in
2508   // verification_mark_bm() is also marked in markBitMap(); flag all
2509   // errors by printing corresponding objects.
2510   VerifyMarkedClosure vcl(markBitMap());
2511   verification_mark_bm()->iterate(&vcl);
2512   assert(!vcl.failed(), "Else verification above should not have succeeded");
2513 }
2514 
2515 void ConcurrentMarkSweepGeneration::save_marks() {
2516   // delegate to CMS space
2517   cmsSpace()->save_marks();
2518   for (uint i = 0; i < ParallelGCThreads; i++) {
2519     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2520   }
2521 }
2522 
2523 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2524   return cmsSpace()->no_allocs_since_save_marks();
2525 }
2526 
2527 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2528                                                                 \
2529 void ConcurrentMarkSweepGeneration::                            \
2530 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2531   cl->set_generation(this);                                     \
2532   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2533   cl->reset_generation();                                       \
2534   save_marks();                                                 \
2535 }
2536 
2537 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2538 
2539 void
2540 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2541   if (freelistLock()->owned_by_self()) {
2542     Generation::oop_iterate(cl);
2543   } else {
2544     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2545     Generation::oop_iterate(cl);
2546   }
2547 }
2548 
2549 void
2550 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2551   if (freelistLock()->owned_by_self()) {
2552     Generation::object_iterate(cl);
2553   } else {
2554     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2555     Generation::object_iterate(cl);
2556   }
2557 }
2558 
2559 void
2560 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2561   if (freelistLock()->owned_by_self()) {
2562     Generation::safe_object_iterate(cl);
2563   } else {
2564     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2565     Generation::safe_object_iterate(cl);
2566   }
2567 }
2568 
2569 void
2570 ConcurrentMarkSweepGeneration::post_compact() {
2571 }
2572 
2573 void
2574 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2575   // Fix the linear allocation blocks to look like free blocks.
2576 
2577   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2578   // are not called when the heap is verified during universe initialization and
2579   // at vm shutdown.
2580   if (freelistLock()->owned_by_self()) {
2581     cmsSpace()->prepare_for_verify();
2582   } else {
2583     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2584     cmsSpace()->prepare_for_verify();
2585   }
2586 }
2587 
2588 void
2589 ConcurrentMarkSweepGeneration::verify() {
2590   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2591   // are not called when the heap is verified during universe initialization and
2592   // at vm shutdown.
2593   if (freelistLock()->owned_by_self()) {
2594     cmsSpace()->verify();
2595   } else {
2596     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2597     cmsSpace()->verify();
2598   }
2599 }
2600 
2601 void CMSCollector::verify() {
2602   _cmsGen->verify();
2603 }
2604 
2605 #ifndef PRODUCT
2606 bool CMSCollector::overflow_list_is_empty() const {
2607   assert(_num_par_pushes >= 0, "Inconsistency");
2608   if (_overflow_list == NULL) {
2609     assert(_num_par_pushes == 0, "Inconsistency");
2610   }
2611   return _overflow_list == NULL;
2612 }
2613 
2614 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2615 // merely consolidate assertion checks that appear to occur together frequently.
2616 void CMSCollector::verify_work_stacks_empty() const {
2617   assert(_markStack.isEmpty(), "Marking stack should be empty");
2618   assert(overflow_list_is_empty(), "Overflow list should be empty");
2619 }
2620 
2621 void CMSCollector::verify_overflow_empty() const {
2622   assert(overflow_list_is_empty(), "Overflow list should be empty");
2623   assert(no_preserved_marks(), "No preserved marks");
2624 }
2625 #endif // PRODUCT
2626 
2627 // Decide if we want to enable class unloading as part of the
2628 // ensuing concurrent GC cycle. We will collect and
2629 // unload classes if it's the case that:
2630 // (1) an explicit gc request has been made and the flag
2631 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2632 // (2) (a) class unloading is enabled at the command line, and
2633 //     (b) old gen is getting really full
2634 // NOTE: Provided there is no change in the state of the heap between
2635 // calls to this method, it should have idempotent results. Moreover,
2636 // its results should be monotonically increasing (i.e. going from 0 to 1,
2637 // but not 1 to 0) between successive calls between which the heap was
2638 // not collected. For the implementation below, it must thus rely on
2639 // the property that concurrent_cycles_since_last_unload()
2640 // will not decrease unless a collection cycle happened and that
2641 // _cmsGen->is_too_full() are
2642 // themselves also monotonic in that sense. See check_monotonicity()
2643 // below.
2644 void CMSCollector::update_should_unload_classes() {
2645   _should_unload_classes = false;
2646   // Condition 1 above
2647   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2648     _should_unload_classes = true;
2649   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2650     // Disjuncts 2.b.(i,ii,iii) above
2651     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2652                               CMSClassUnloadingMaxInterval)
2653                            || _cmsGen->is_too_full();
2654   }
2655 }
2656 
2657 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2658   bool res = should_concurrent_collect();
2659   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2660   return res;
2661 }
2662 
2663 void CMSCollector::setup_cms_unloading_and_verification_state() {
2664   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2665                              || VerifyBeforeExit;
2666   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2667 
2668   // We set the proper root for this CMS cycle here.
2669   if (should_unload_classes()) {   // Should unload classes this cycle
2670     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2671     set_verifying(should_verify);    // Set verification state for this cycle
2672     return;                            // Nothing else needs to be done at this time
2673   }
2674 
2675   // Not unloading classes this cycle
2676   assert(!should_unload_classes(), "Inconsistency!");
2677 
2678   // If we are not unloading classes then add SO_AllCodeCache to root
2679   // scanning options.
2680   add_root_scanning_option(rso);
2681 
2682   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2683     set_verifying(true);
2684   } else if (verifying() && !should_verify) {
2685     // We were verifying, but some verification flags got disabled.
2686     set_verifying(false);
2687     // Exclude symbols, strings and code cache elements from root scanning to
2688     // reduce IM and RM pauses.
2689     remove_root_scanning_option(rso);
2690   }
2691 }
2692 
2693 
2694 #ifndef PRODUCT
2695 HeapWord* CMSCollector::block_start(const void* p) const {
2696   const HeapWord* addr = (HeapWord*)p;
2697   if (_span.contains(p)) {
2698     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2699       return _cmsGen->cmsSpace()->block_start(p);
2700     }
2701   }
2702   return NULL;
2703 }
2704 #endif
2705 
2706 HeapWord*
2707 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2708                                                    bool   tlab,
2709                                                    bool   parallel) {
2710   CMSSynchronousYieldRequest yr;
2711   assert(!tlab, "Can't deal with TLAB allocation");
2712   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2713   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2714   if (GCExpandToAllocateDelayMillis > 0) {
2715     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2716   }
2717   return have_lock_and_allocate(word_size, tlab);
2718 }
2719 
2720 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2721     size_t bytes,
2722     size_t expand_bytes,
2723     CMSExpansionCause::Cause cause)
2724 {
2725 
2726   bool success = expand(bytes, expand_bytes);
2727 
2728   // remember why we expanded; this information is used
2729   // by shouldConcurrentCollect() when making decisions on whether to start
2730   // a new CMS cycle.
2731   if (success) {
2732     set_expansion_cause(cause);
2733     if (PrintGCDetails && Verbose) {
2734       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2735         CMSExpansionCause::to_string(cause));
2736     }
2737   }
2738 }
2739 
2740 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2741   HeapWord* res = NULL;
2742   MutexLocker x(ParGCRareEvent_lock);
2743   while (true) {
2744     // Expansion by some other thread might make alloc OK now:
2745     res = ps->lab.alloc(word_sz);
2746     if (res != NULL) return res;
2747     // If there's not enough expansion space available, give up.
2748     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2749       return NULL;
2750     }
2751     // Otherwise, we try expansion.
2752     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2753     // Now go around the loop and try alloc again;
2754     // A competing par_promote might beat us to the expansion space,
2755     // so we may go around the loop again if promotion fails again.
2756     if (GCExpandToAllocateDelayMillis > 0) {
2757       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2758     }
2759   }
2760 }
2761 
2762 
2763 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2764   PromotionInfo* promo) {
2765   MutexLocker x(ParGCRareEvent_lock);
2766   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2767   while (true) {
2768     // Expansion by some other thread might make alloc OK now:
2769     if (promo->ensure_spooling_space()) {
2770       assert(promo->has_spooling_space(),
2771              "Post-condition of successful ensure_spooling_space()");
2772       return true;
2773     }
2774     // If there's not enough expansion space available, give up.
2775     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2776       return false;
2777     }
2778     // Otherwise, we try expansion.
2779     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2780     // Now go around the loop and try alloc again;
2781     // A competing allocation might beat us to the expansion space,
2782     // so we may go around the loop again if allocation fails again.
2783     if (GCExpandToAllocateDelayMillis > 0) {
2784       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2785     }
2786   }
2787 }
2788 
2789 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2790   // Only shrink if a compaction was done so that all the free space
2791   // in the generation is in a contiguous block at the end.
2792   if (did_compact()) {
2793     CardGeneration::shrink(bytes);
2794   }
2795 }
2796 
2797 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2798   assert_locked_or_safepoint(Heap_lock);
2799 }
2800 
2801 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2802   assert_locked_or_safepoint(Heap_lock);
2803   assert_lock_strong(freelistLock());
2804   if (PrintGCDetails && Verbose) {
2805     warning("Shrinking of CMS not yet implemented");
2806   }
2807   return;
2808 }
2809 
2810 
2811 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2812 // phases.
2813 class CMSPhaseAccounting: public StackObj {
2814  public:
2815   CMSPhaseAccounting(CMSCollector *collector,
2816                      const char *phase,
2817                      bool print_cr = true);
2818   ~CMSPhaseAccounting();
2819 
2820  private:
2821   CMSCollector *_collector;
2822   const char *_phase;
2823   elapsedTimer _wallclock;
2824   bool _print_cr;
2825 
2826  public:
2827   // Not MT-safe; so do not pass around these StackObj's
2828   // where they may be accessed by other threads.
2829   jlong wallclock_millis() {
2830     assert(_wallclock.is_active(), "Wall clock should not stop");
2831     _wallclock.stop();  // to record time
2832     jlong ret = _wallclock.milliseconds();
2833     _wallclock.start(); // restart
2834     return ret;
2835   }
2836 };
2837 
2838 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2839                                        const char *phase,
2840                                        bool print_cr) :
2841   _collector(collector), _phase(phase), _print_cr(print_cr) {
2842 
2843   if (PrintCMSStatistics != 0) {
2844     _collector->resetYields();
2845   }
2846   if (PrintGCDetails) {
2847     gclog_or_tty->gclog_stamp();
2848     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2849       _collector->cmsGen()->short_name(), _phase);
2850   }
2851   _collector->resetTimer();
2852   _wallclock.start();
2853   _collector->startTimer();
2854 }
2855 
2856 CMSPhaseAccounting::~CMSPhaseAccounting() {
2857   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2858   _collector->stopTimer();
2859   _wallclock.stop();
2860   if (PrintGCDetails) {
2861     gclog_or_tty->gclog_stamp();
2862     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2863                  _collector->cmsGen()->short_name(),
2864                  _phase, _collector->timerValue(), _wallclock.seconds());
2865     if (_print_cr) {
2866       gclog_or_tty->cr();
2867     }
2868     if (PrintCMSStatistics != 0) {
2869       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2870                     _collector->yields());
2871     }
2872   }
2873 }
2874 
2875 // CMS work
2876 
2877 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2878 class CMSParMarkTask : public AbstractGangTask {
2879  protected:
2880   CMSCollector*     _collector;
2881   uint              _n_workers;
2882   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2883       AbstractGangTask(name),
2884       _collector(collector),
2885       _n_workers(n_workers) {}
2886   // Work method in support of parallel rescan ... of young gen spaces
2887   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2888                              ContiguousSpace* space,
2889                              HeapWord** chunk_array, size_t chunk_top);
2890   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2891 };
2892 
2893 // Parallel initial mark task
2894 class CMSParInitialMarkTask: public CMSParMarkTask {
2895   StrongRootsScope* _strong_roots_scope;
2896  public:
2897   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2898       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2899       _strong_roots_scope(strong_roots_scope) {}
2900   void work(uint worker_id);
2901 };
2902 
2903 // Checkpoint the roots into this generation from outside
2904 // this generation. [Note this initial checkpoint need only
2905 // be approximate -- we'll do a catch up phase subsequently.]
2906 void CMSCollector::checkpointRootsInitial() {
2907   assert(_collectorState == InitialMarking, "Wrong collector state");
2908   check_correct_thread_executing();
2909   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2910 
2911   save_heap_summary();
2912   report_heap_summary(GCWhen::BeforeGC);
2913 
2914   ReferenceProcessor* rp = ref_processor();
2915   assert(_restart_addr == NULL, "Control point invariant");
2916   {
2917     // acquire locks for subsequent manipulations
2918     MutexLockerEx x(bitMapLock(),
2919                     Mutex::_no_safepoint_check_flag);
2920     checkpointRootsInitialWork();
2921     // enable ("weak") refs discovery
2922     rp->enable_discovery();
2923     _collectorState = Marking;
2924   }
2925 }
2926 
2927 void CMSCollector::checkpointRootsInitialWork() {
2928   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2929   assert(_collectorState == InitialMarking, "just checking");
2930 
2931   // Already have locks.
2932   assert_lock_strong(bitMapLock());
2933   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2934 
2935   // Setup the verification and class unloading state for this
2936   // CMS collection cycle.
2937   setup_cms_unloading_and_verification_state();
2938 
2939   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2940     PrintGCDetails && Verbose, true, _gc_timer_cm);)
2941 
2942   // Reset all the PLAB chunk arrays if necessary.
2943   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2944     reset_survivor_plab_arrays();
2945   }
2946 
2947   ResourceMark rm;
2948   HandleMark  hm;
2949 
2950   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2951   GenCollectedHeap* gch = GenCollectedHeap::heap();
2952 
2953   verify_work_stacks_empty();
2954   verify_overflow_empty();
2955 
2956   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2957   // Update the saved marks which may affect the root scans.
2958   gch->save_marks();
2959 
2960   // weak reference processing has not started yet.
2961   ref_processor()->set_enqueuing_is_done(false);
2962 
2963   // Need to remember all newly created CLDs,
2964   // so that we can guarantee that the remark finds them.
2965   ClassLoaderDataGraph::remember_new_clds(true);
2966 
2967   // Whenever a CLD is found, it will be claimed before proceeding to mark
2968   // the klasses. The claimed marks need to be cleared before marking starts.
2969   ClassLoaderDataGraph::clear_claimed_marks();
2970 
2971   if (CMSPrintEdenSurvivorChunks) {
2972     print_eden_and_survivor_chunk_arrays();
2973   }
2974 
2975   {
2976 #if defined(COMPILER2) || INCLUDE_JVMCI
2977     DerivedPointerTableDeactivate dpt_deact;
2978 #endif
2979     if (CMSParallelInitialMarkEnabled) {
2980       // The parallel version.
2981       WorkGang* workers = gch->workers();
2982       assert(workers != NULL, "Need parallel worker threads.");
2983       uint n_workers = workers->active_workers();
2984 
2985       StrongRootsScope srs(n_workers);
2986 
2987       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2988       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2989       if (n_workers > 1) {
2990         workers->run_task(&tsk);
2991       } else {
2992         tsk.work(0);
2993       }
2994     } else {
2995       // The serial version.
2996       CLDToOopClosure cld_closure(&notOlder, true);
2997       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2998 
2999       StrongRootsScope srs(1);
3000 
3001       gch->gen_process_roots(&srs,
3002                              GenCollectedHeap::OldGen,
3003                              true,   // young gen as roots
3004                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3005                              should_unload_classes(),
3006                              &notOlder,
3007                              NULL,
3008                              &cld_closure);
3009     }
3010   }
3011 
3012   // Clear mod-union table; it will be dirtied in the prologue of
3013   // CMS generation per each young generation collection.
3014 
3015   assert(_modUnionTable.isAllClear(),
3016        "Was cleared in most recent final checkpoint phase"
3017        " or no bits are set in the gc_prologue before the start of the next "
3018        "subsequent marking phase.");
3019 
3020   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3021 
3022   // Save the end of the used_region of the constituent generations
3023   // to be used to limit the extent of sweep in each generation.
3024   save_sweep_limits();
3025   verify_overflow_empty();
3026 }
3027 
3028 bool CMSCollector::markFromRoots() {
3029   // we might be tempted to assert that:
3030   // assert(!SafepointSynchronize::is_at_safepoint(),
3031   //        "inconsistent argument?");
3032   // However that wouldn't be right, because it's possible that
3033   // a safepoint is indeed in progress as a young generation
3034   // stop-the-world GC happens even as we mark in this generation.
3035   assert(_collectorState == Marking, "inconsistent state?");
3036   check_correct_thread_executing();
3037   verify_overflow_empty();
3038 
3039   // Weak ref discovery note: We may be discovering weak
3040   // refs in this generation concurrent (but interleaved) with
3041   // weak ref discovery by the young generation collector.
3042 
3043   CMSTokenSyncWithLocks ts(true, bitMapLock());
3044   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3045   CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3046   bool res = markFromRootsWork();
3047   if (res) {
3048     _collectorState = Precleaning;
3049   } else { // We failed and a foreground collection wants to take over
3050     assert(_foregroundGCIsActive, "internal state inconsistency");
3051     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3052     if (PrintGCDetails) {
3053       gclog_or_tty->print_cr("bailing out to foreground collection");
3054     }
3055   }
3056   verify_overflow_empty();
3057   return res;
3058 }
3059 
3060 bool CMSCollector::markFromRootsWork() {
3061   // iterate over marked bits in bit map, doing a full scan and mark
3062   // from these roots using the following algorithm:
3063   // . if oop is to the right of the current scan pointer,
3064   //   mark corresponding bit (we'll process it later)
3065   // . else (oop is to left of current scan pointer)
3066   //   push oop on marking stack
3067   // . drain the marking stack
3068 
3069   // Note that when we do a marking step we need to hold the
3070   // bit map lock -- recall that direct allocation (by mutators)
3071   // and promotion (by the young generation collector) is also
3072   // marking the bit map. [the so-called allocate live policy.]
3073   // Because the implementation of bit map marking is not
3074   // robust wrt simultaneous marking of bits in the same word,
3075   // we need to make sure that there is no such interference
3076   // between concurrent such updates.
3077 
3078   // already have locks
3079   assert_lock_strong(bitMapLock());
3080 
3081   verify_work_stacks_empty();
3082   verify_overflow_empty();
3083   bool result = false;
3084   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3085     result = do_marking_mt();
3086   } else {
3087     result = do_marking_st();
3088   }
3089   return result;
3090 }
3091 
3092 // Forward decl
3093 class CMSConcMarkingTask;
3094 
3095 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3096   CMSCollector*       _collector;
3097   CMSConcMarkingTask* _task;
3098  public:
3099   virtual void yield();
3100 
3101   // "n_threads" is the number of threads to be terminated.
3102   // "queue_set" is a set of work queues of other threads.
3103   // "collector" is the CMS collector associated with this task terminator.
3104   // "yield" indicates whether we need the gang as a whole to yield.
3105   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3106     ParallelTaskTerminator(n_threads, queue_set),
3107     _collector(collector) { }
3108 
3109   void set_task(CMSConcMarkingTask* task) {
3110     _task = task;
3111   }
3112 };
3113 
3114 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3115   CMSConcMarkingTask* _task;
3116  public:
3117   bool should_exit_termination();
3118   void set_task(CMSConcMarkingTask* task) {
3119     _task = task;
3120   }
3121 };
3122 
3123 // MT Concurrent Marking Task
3124 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3125   CMSCollector* _collector;
3126   uint          _n_workers;       // requested/desired # workers
3127   bool          _result;
3128   CompactibleFreeListSpace*  _cms_space;
3129   char          _pad_front[64];   // padding to ...
3130   HeapWord*     _global_finger;   // ... avoid sharing cache line
3131   char          _pad_back[64];
3132   HeapWord*     _restart_addr;
3133 
3134   //  Exposed here for yielding support
3135   Mutex* const _bit_map_lock;
3136 
3137   // The per thread work queues, available here for stealing
3138   OopTaskQueueSet*  _task_queues;
3139 
3140   // Termination (and yielding) support
3141   CMSConcMarkingTerminator _term;
3142   CMSConcMarkingTerminatorTerminator _term_term;
3143 
3144  public:
3145   CMSConcMarkingTask(CMSCollector* collector,
3146                  CompactibleFreeListSpace* cms_space,
3147                  YieldingFlexibleWorkGang* workers,
3148                  OopTaskQueueSet* task_queues):
3149     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3150     _collector(collector),
3151     _cms_space(cms_space),
3152     _n_workers(0), _result(true),
3153     _task_queues(task_queues),
3154     _term(_n_workers, task_queues, _collector),
3155     _bit_map_lock(collector->bitMapLock())
3156   {
3157     _requested_size = _n_workers;
3158     _term.set_task(this);
3159     _term_term.set_task(this);
3160     _restart_addr = _global_finger = _cms_space->bottom();
3161   }
3162 
3163 
3164   OopTaskQueueSet* task_queues()  { return _task_queues; }
3165 
3166   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3167 
3168   HeapWord** global_finger_addr() { return &_global_finger; }
3169 
3170   CMSConcMarkingTerminator* terminator() { return &_term; }
3171 
3172   virtual void set_for_termination(uint active_workers) {
3173     terminator()->reset_for_reuse(active_workers);
3174   }
3175 
3176   void work(uint worker_id);
3177   bool should_yield() {
3178     return    ConcurrentMarkSweepThread::should_yield()
3179            && !_collector->foregroundGCIsActive();
3180   }
3181 
3182   virtual void coordinator_yield();  // stuff done by coordinator
3183   bool result() { return _result; }
3184 
3185   void reset(HeapWord* ra) {
3186     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3187     _restart_addr = _global_finger = ra;
3188     _term.reset_for_reuse();
3189   }
3190 
3191   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3192                                            OopTaskQueue* work_q);
3193 
3194  private:
3195   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3196   void do_work_steal(int i);
3197   void bump_global_finger(HeapWord* f);
3198 };
3199 
3200 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3201   assert(_task != NULL, "Error");
3202   return _task->yielding();
3203   // Note that we do not need the disjunct || _task->should_yield() above
3204   // because we want terminating threads to yield only if the task
3205   // is already in the midst of yielding, which happens only after at least one
3206   // thread has yielded.
3207 }
3208 
3209 void CMSConcMarkingTerminator::yield() {
3210   if (_task->should_yield()) {
3211     _task->yield();
3212   } else {
3213     ParallelTaskTerminator::yield();
3214   }
3215 }
3216 
3217 ////////////////////////////////////////////////////////////////
3218 // Concurrent Marking Algorithm Sketch
3219 ////////////////////////////////////////////////////////////////
3220 // Until all tasks exhausted (both spaces):
3221 // -- claim next available chunk
3222 // -- bump global finger via CAS
3223 // -- find first object that starts in this chunk
3224 //    and start scanning bitmap from that position
3225 // -- scan marked objects for oops
3226 // -- CAS-mark target, and if successful:
3227 //    . if target oop is above global finger (volatile read)
3228 //      nothing to do
3229 //    . if target oop is in chunk and above local finger
3230 //        then nothing to do
3231 //    . else push on work-queue
3232 // -- Deal with possible overflow issues:
3233 //    . local work-queue overflow causes stuff to be pushed on
3234 //      global (common) overflow queue
3235 //    . always first empty local work queue
3236 //    . then get a batch of oops from global work queue if any
3237 //    . then do work stealing
3238 // -- When all tasks claimed (both spaces)
3239 //    and local work queue empty,
3240 //    then in a loop do:
3241 //    . check global overflow stack; steal a batch of oops and trace
3242 //    . try to steal from other threads oif GOS is empty
3243 //    . if neither is available, offer termination
3244 // -- Terminate and return result
3245 //
3246 void CMSConcMarkingTask::work(uint worker_id) {
3247   elapsedTimer _timer;
3248   ResourceMark rm;
3249   HandleMark hm;
3250 
3251   DEBUG_ONLY(_collector->verify_overflow_empty();)
3252 
3253   // Before we begin work, our work queue should be empty
3254   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3255   // Scan the bitmap covering _cms_space, tracing through grey objects.
3256   _timer.start();
3257   do_scan_and_mark(worker_id, _cms_space);
3258   _timer.stop();
3259   if (PrintCMSStatistics != 0) {
3260     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3261       worker_id, _timer.seconds());
3262       // XXX: need xxx/xxx type of notation, two timers
3263   }
3264 
3265   // ... do work stealing
3266   _timer.reset();
3267   _timer.start();
3268   do_work_steal(worker_id);
3269   _timer.stop();
3270   if (PrintCMSStatistics != 0) {
3271     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3272       worker_id, _timer.seconds());
3273       // XXX: need xxx/xxx type of notation, two timers
3274   }
3275   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3276   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3277   // Note that under the current task protocol, the
3278   // following assertion is true even of the spaces
3279   // expanded since the completion of the concurrent
3280   // marking. XXX This will likely change under a strict
3281   // ABORT semantics.
3282   // After perm removal the comparison was changed to
3283   // greater than or equal to from strictly greater than.
3284   // Before perm removal the highest address sweep would
3285   // have been at the end of perm gen but now is at the
3286   // end of the tenured gen.
3287   assert(_global_finger >=  _cms_space->end(),
3288          "All tasks have been completed");
3289   DEBUG_ONLY(_collector->verify_overflow_empty();)
3290 }
3291 
3292 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3293   HeapWord* read = _global_finger;
3294   HeapWord* cur  = read;
3295   while (f > read) {
3296     cur = read;
3297     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3298     if (cur == read) {
3299       // our cas succeeded
3300       assert(_global_finger >= f, "protocol consistency");
3301       break;
3302     }
3303   }
3304 }
3305 
3306 // This is really inefficient, and should be redone by
3307 // using (not yet available) block-read and -write interfaces to the
3308 // stack and the work_queue. XXX FIX ME !!!
3309 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3310                                                       OopTaskQueue* work_q) {
3311   // Fast lock-free check
3312   if (ovflw_stk->length() == 0) {
3313     return false;
3314   }
3315   assert(work_q->size() == 0, "Shouldn't steal");
3316   MutexLockerEx ml(ovflw_stk->par_lock(),
3317                    Mutex::_no_safepoint_check_flag);
3318   // Grab up to 1/4 the size of the work queue
3319   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3320                     (size_t)ParGCDesiredObjsFromOverflowList);
3321   num = MIN2(num, ovflw_stk->length());
3322   for (int i = (int) num; i > 0; i--) {
3323     oop cur = ovflw_stk->pop();
3324     assert(cur != NULL, "Counted wrong?");
3325     work_q->push(cur);
3326   }
3327   return num > 0;
3328 }
3329 
3330 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3331   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3332   int n_tasks = pst->n_tasks();
3333   // We allow that there may be no tasks to do here because
3334   // we are restarting after a stack overflow.
3335   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3336   uint nth_task = 0;
3337 
3338   HeapWord* aligned_start = sp->bottom();
3339   if (sp->used_region().contains(_restart_addr)) {
3340     // Align down to a card boundary for the start of 0th task
3341     // for this space.
3342     aligned_start =
3343       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3344                                  CardTableModRefBS::card_size);
3345   }
3346 
3347   size_t chunk_size = sp->marking_task_size();
3348   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3349     // Having claimed the nth task in this space,
3350     // compute the chunk that it corresponds to:
3351     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3352                                aligned_start + (nth_task+1)*chunk_size);
3353     // Try and bump the global finger via a CAS;
3354     // note that we need to do the global finger bump
3355     // _before_ taking the intersection below, because
3356     // the task corresponding to that region will be
3357     // deemed done even if the used_region() expands
3358     // because of allocation -- as it almost certainly will
3359     // during start-up while the threads yield in the
3360     // closure below.
3361     HeapWord* finger = span.end();
3362     bump_global_finger(finger);   // atomically
3363     // There are null tasks here corresponding to chunks
3364     // beyond the "top" address of the space.
3365     span = span.intersection(sp->used_region());
3366     if (!span.is_empty()) {  // Non-null task
3367       HeapWord* prev_obj;
3368       assert(!span.contains(_restart_addr) || nth_task == 0,
3369              "Inconsistency");
3370       if (nth_task == 0) {
3371         // For the 0th task, we'll not need to compute a block_start.
3372         if (span.contains(_restart_addr)) {
3373           // In the case of a restart because of stack overflow,
3374           // we might additionally skip a chunk prefix.
3375           prev_obj = _restart_addr;
3376         } else {
3377           prev_obj = span.start();
3378         }
3379       } else {
3380         // We want to skip the first object because
3381         // the protocol is to scan any object in its entirety
3382         // that _starts_ in this span; a fortiori, any
3383         // object starting in an earlier span is scanned
3384         // as part of an earlier claimed task.
3385         // Below we use the "careful" version of block_start
3386         // so we do not try to navigate uninitialized objects.
3387         prev_obj = sp->block_start_careful(span.start());
3388         // Below we use a variant of block_size that uses the
3389         // Printezis bits to avoid waiting for allocated
3390         // objects to become initialized/parsable.
3391         while (prev_obj < span.start()) {
3392           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3393           if (sz > 0) {
3394             prev_obj += sz;
3395           } else {
3396             // In this case we may end up doing a bit of redundant
3397             // scanning, but that appears unavoidable, short of
3398             // locking the free list locks; see bug 6324141.
3399             break;
3400           }
3401         }
3402       }
3403       if (prev_obj < span.end()) {
3404         MemRegion my_span = MemRegion(prev_obj, span.end());
3405         // Do the marking work within a non-empty span --
3406         // the last argument to the constructor indicates whether the
3407         // iteration should be incremental with periodic yields.
3408         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3409                                     &_collector->_markBitMap,
3410                                     work_queue(i),
3411                                     &_collector->_markStack);
3412         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3413       } // else nothing to do for this task
3414     }   // else nothing to do for this task
3415   }
3416   // We'd be tempted to assert here that since there are no
3417   // more tasks left to claim in this space, the global_finger
3418   // must exceed space->top() and a fortiori space->end(). However,
3419   // that would not quite be correct because the bumping of
3420   // global_finger occurs strictly after the claiming of a task,
3421   // so by the time we reach here the global finger may not yet
3422   // have been bumped up by the thread that claimed the last
3423   // task.
3424   pst->all_tasks_completed();
3425 }
3426 
3427 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3428  private:
3429   CMSCollector* _collector;
3430   CMSConcMarkingTask* _task;
3431   MemRegion     _span;
3432   CMSBitMap*    _bit_map;
3433   CMSMarkStack* _overflow_stack;
3434   OopTaskQueue* _work_queue;
3435  protected:
3436   DO_OOP_WORK_DEFN
3437  public:
3438   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3439                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3440     MetadataAwareOopClosure(collector->ref_processor()),
3441     _collector(collector),
3442     _task(task),
3443     _span(collector->_span),
3444     _work_queue(work_queue),
3445     _bit_map(bit_map),
3446     _overflow_stack(overflow_stack)
3447   { }
3448   virtual void do_oop(oop* p);
3449   virtual void do_oop(narrowOop* p);
3450 
3451   void trim_queue(size_t max);
3452   void handle_stack_overflow(HeapWord* lost);
3453   void do_yield_check() {
3454     if (_task->should_yield()) {
3455       _task->yield();
3456     }
3457   }
3458 };
3459 
3460 // Grey object scanning during work stealing phase --
3461 // the salient assumption here is that any references
3462 // that are in these stolen objects being scanned must
3463 // already have been initialized (else they would not have
3464 // been published), so we do not need to check for
3465 // uninitialized objects before pushing here.
3466 void Par_ConcMarkingClosure::do_oop(oop obj) {
3467   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3468   HeapWord* addr = (HeapWord*)obj;
3469   // Check if oop points into the CMS generation
3470   // and is not marked
3471   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3472     // a white object ...
3473     // If we manage to "claim" the object, by being the
3474     // first thread to mark it, then we push it on our
3475     // marking stack
3476     if (_bit_map->par_mark(addr)) {     // ... now grey
3477       // push on work queue (grey set)
3478       bool simulate_overflow = false;
3479       NOT_PRODUCT(
3480         if (CMSMarkStackOverflowALot &&
3481             _collector->simulate_overflow()) {
3482           // simulate a stack overflow
3483           simulate_overflow = true;
3484         }
3485       )
3486       if (simulate_overflow ||
3487           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3488         // stack overflow
3489         if (PrintCMSStatistics != 0) {
3490           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3491                                  SIZE_FORMAT, _overflow_stack->capacity());
3492         }
3493         // We cannot assert that the overflow stack is full because
3494         // it may have been emptied since.
3495         assert(simulate_overflow ||
3496                _work_queue->size() == _work_queue->max_elems(),
3497               "Else push should have succeeded");
3498         handle_stack_overflow(addr);
3499       }
3500     } // Else, some other thread got there first
3501     do_yield_check();
3502   }
3503 }
3504 
3505 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3506 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3507 
3508 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3509   while (_work_queue->size() > max) {
3510     oop new_oop;
3511     if (_work_queue->pop_local(new_oop)) {
3512       assert(new_oop->is_oop(), "Should be an oop");
3513       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3514       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3515       new_oop->oop_iterate(this);  // do_oop() above
3516       do_yield_check();
3517     }
3518   }
3519 }
3520 
3521 // Upon stack overflow, we discard (part of) the stack,
3522 // remembering the least address amongst those discarded
3523 // in CMSCollector's _restart_address.
3524 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3525   // We need to do this under a mutex to prevent other
3526   // workers from interfering with the work done below.
3527   MutexLockerEx ml(_overflow_stack->par_lock(),
3528                    Mutex::_no_safepoint_check_flag);
3529   // Remember the least grey address discarded
3530   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3531   _collector->lower_restart_addr(ra);
3532   _overflow_stack->reset();  // discard stack contents
3533   _overflow_stack->expand(); // expand the stack if possible
3534 }
3535 
3536 
3537 void CMSConcMarkingTask::do_work_steal(int i) {
3538   OopTaskQueue* work_q = work_queue(i);
3539   oop obj_to_scan;
3540   CMSBitMap* bm = &(_collector->_markBitMap);
3541   CMSMarkStack* ovflw = &(_collector->_markStack);
3542   int* seed = _collector->hash_seed(i);
3543   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3544   while (true) {
3545     cl.trim_queue(0);
3546     assert(work_q->size() == 0, "Should have been emptied above");
3547     if (get_work_from_overflow_stack(ovflw, work_q)) {
3548       // Can't assert below because the work obtained from the
3549       // overflow stack may already have been stolen from us.
3550       // assert(work_q->size() > 0, "Work from overflow stack");
3551       continue;
3552     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3553       assert(obj_to_scan->is_oop(), "Should be an oop");
3554       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3555       obj_to_scan->oop_iterate(&cl);
3556     } else if (terminator()->offer_termination(&_term_term)) {
3557       assert(work_q->size() == 0, "Impossible!");
3558       break;
3559     } else if (yielding() || should_yield()) {
3560       yield();
3561     }
3562   }
3563 }
3564 
3565 // This is run by the CMS (coordinator) thread.
3566 void CMSConcMarkingTask::coordinator_yield() {
3567   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3568          "CMS thread should hold CMS token");
3569   // First give up the locks, then yield, then re-lock
3570   // We should probably use a constructor/destructor idiom to
3571   // do this unlock/lock or modify the MutexUnlocker class to
3572   // serve our purpose. XXX
3573   assert_lock_strong(_bit_map_lock);
3574   _bit_map_lock->unlock();
3575   ConcurrentMarkSweepThread::desynchronize(true);
3576   _collector->stopTimer();
3577   if (PrintCMSStatistics != 0) {
3578     _collector->incrementYields();
3579   }
3580 
3581   // It is possible for whichever thread initiated the yield request
3582   // not to get a chance to wake up and take the bitmap lock between
3583   // this thread releasing it and reacquiring it. So, while the
3584   // should_yield() flag is on, let's sleep for a bit to give the
3585   // other thread a chance to wake up. The limit imposed on the number
3586   // of iterations is defensive, to avoid any unforseen circumstances
3587   // putting us into an infinite loop. Since it's always been this
3588   // (coordinator_yield()) method that was observed to cause the
3589   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3590   // which is by default non-zero. For the other seven methods that
3591   // also perform the yield operation, as are using a different
3592   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3593   // can enable the sleeping for those methods too, if necessary.
3594   // See 6442774.
3595   //
3596   // We really need to reconsider the synchronization between the GC
3597   // thread and the yield-requesting threads in the future and we
3598   // should really use wait/notify, which is the recommended
3599   // way of doing this type of interaction. Additionally, we should
3600   // consolidate the eight methods that do the yield operation and they
3601   // are almost identical into one for better maintainability and
3602   // readability. See 6445193.
3603   //
3604   // Tony 2006.06.29
3605   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3606                    ConcurrentMarkSweepThread::should_yield() &&
3607                    !CMSCollector::foregroundGCIsActive(); ++i) {
3608     os::sleep(Thread::current(), 1, false);
3609   }
3610 
3611   ConcurrentMarkSweepThread::synchronize(true);
3612   _bit_map_lock->lock_without_safepoint_check();
3613   _collector->startTimer();
3614 }
3615 
3616 bool CMSCollector::do_marking_mt() {
3617   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3618   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3619                                                                   conc_workers()->active_workers(),
3620                                                                   Threads::number_of_non_daemon_threads());
3621   conc_workers()->set_active_workers(num_workers);
3622 
3623   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3624 
3625   CMSConcMarkingTask tsk(this,
3626                          cms_space,
3627                          conc_workers(),
3628                          task_queues());
3629 
3630   // Since the actual number of workers we get may be different
3631   // from the number we requested above, do we need to do anything different
3632   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3633   // class?? XXX
3634   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3635 
3636   // Refs discovery is already non-atomic.
3637   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3638   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3639   conc_workers()->start_task(&tsk);
3640   while (tsk.yielded()) {
3641     tsk.coordinator_yield();
3642     conc_workers()->continue_task(&tsk);
3643   }
3644   // If the task was aborted, _restart_addr will be non-NULL
3645   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3646   while (_restart_addr != NULL) {
3647     // XXX For now we do not make use of ABORTED state and have not
3648     // yet implemented the right abort semantics (even in the original
3649     // single-threaded CMS case). That needs some more investigation
3650     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3651     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3652     // If _restart_addr is non-NULL, a marking stack overflow
3653     // occurred; we need to do a fresh marking iteration from the
3654     // indicated restart address.
3655     if (_foregroundGCIsActive) {
3656       // We may be running into repeated stack overflows, having
3657       // reached the limit of the stack size, while making very
3658       // slow forward progress. It may be best to bail out and
3659       // let the foreground collector do its job.
3660       // Clear _restart_addr, so that foreground GC
3661       // works from scratch. This avoids the headache of
3662       // a "rescan" which would otherwise be needed because
3663       // of the dirty mod union table & card table.
3664       _restart_addr = NULL;
3665       return false;
3666     }
3667     // Adjust the task to restart from _restart_addr
3668     tsk.reset(_restart_addr);
3669     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3670                   _restart_addr);
3671     _restart_addr = NULL;
3672     // Get the workers going again
3673     conc_workers()->start_task(&tsk);
3674     while (tsk.yielded()) {
3675       tsk.coordinator_yield();
3676       conc_workers()->continue_task(&tsk);
3677     }
3678   }
3679   assert(tsk.completed(), "Inconsistency");
3680   assert(tsk.result() == true, "Inconsistency");
3681   return true;
3682 }
3683 
3684 bool CMSCollector::do_marking_st() {
3685   ResourceMark rm;
3686   HandleMark   hm;
3687 
3688   // Temporarily make refs discovery single threaded (non-MT)
3689   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3690   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3691     &_markStack, CMSYield);
3692   // the last argument to iterate indicates whether the iteration
3693   // should be incremental with periodic yields.
3694   _markBitMap.iterate(&markFromRootsClosure);
3695   // If _restart_addr is non-NULL, a marking stack overflow
3696   // occurred; we need to do a fresh iteration from the
3697   // indicated restart address.
3698   while (_restart_addr != NULL) {
3699     if (_foregroundGCIsActive) {
3700       // We may be running into repeated stack overflows, having
3701       // reached the limit of the stack size, while making very
3702       // slow forward progress. It may be best to bail out and
3703       // let the foreground collector do its job.
3704       // Clear _restart_addr, so that foreground GC
3705       // works from scratch. This avoids the headache of
3706       // a "rescan" which would otherwise be needed because
3707       // of the dirty mod union table & card table.
3708       _restart_addr = NULL;
3709       return false;  // indicating failure to complete marking
3710     }
3711     // Deal with stack overflow:
3712     // we restart marking from _restart_addr
3713     HeapWord* ra = _restart_addr;
3714     markFromRootsClosure.reset(ra);
3715     _restart_addr = NULL;
3716     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3717   }
3718   return true;
3719 }
3720 
3721 void CMSCollector::preclean() {
3722   check_correct_thread_executing();
3723   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3724   verify_work_stacks_empty();
3725   verify_overflow_empty();
3726   _abort_preclean = false;
3727   if (CMSPrecleaningEnabled) {
3728     if (!CMSEdenChunksRecordAlways) {
3729       _eden_chunk_index = 0;
3730     }
3731     size_t used = get_eden_used();
3732     size_t capacity = get_eden_capacity();
3733     // Don't start sampling unless we will get sufficiently
3734     // many samples.
3735     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3736                 * CMSScheduleRemarkEdenPenetration)) {
3737       _start_sampling = true;
3738     } else {
3739       _start_sampling = false;
3740     }
3741     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3742     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
3743     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3744   }
3745   CMSTokenSync x(true); // is cms thread
3746   if (CMSPrecleaningEnabled) {
3747     sample_eden();
3748     _collectorState = AbortablePreclean;
3749   } else {
3750     _collectorState = FinalMarking;
3751   }
3752   verify_work_stacks_empty();
3753   verify_overflow_empty();
3754 }
3755 
3756 // Try and schedule the remark such that young gen
3757 // occupancy is CMSScheduleRemarkEdenPenetration %.
3758 void CMSCollector::abortable_preclean() {
3759   check_correct_thread_executing();
3760   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3761   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3762 
3763   // If Eden's current occupancy is below this threshold,
3764   // immediately schedule the remark; else preclean
3765   // past the next scavenge in an effort to
3766   // schedule the pause as described above. By choosing
3767   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3768   // we will never do an actual abortable preclean cycle.
3769   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3770     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3771     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
3772     // We need more smarts in the abortable preclean
3773     // loop below to deal with cases where allocation
3774     // in young gen is very very slow, and our precleaning
3775     // is running a losing race against a horde of
3776     // mutators intent on flooding us with CMS updates
3777     // (dirty cards).
3778     // One, admittedly dumb, strategy is to give up
3779     // after a certain number of abortable precleaning loops
3780     // or after a certain maximum time. We want to make
3781     // this smarter in the next iteration.
3782     // XXX FIX ME!!! YSR
3783     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3784     while (!(should_abort_preclean() ||
3785              ConcurrentMarkSweepThread::should_terminate())) {
3786       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3787       cumworkdone += workdone;
3788       loops++;
3789       // Voluntarily terminate abortable preclean phase if we have
3790       // been at it for too long.
3791       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3792           loops >= CMSMaxAbortablePrecleanLoops) {
3793         if (PrintGCDetails) {
3794           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3795         }
3796         break;
3797       }
3798       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3799         if (PrintGCDetails) {
3800           gclog_or_tty->print(" CMS: abort preclean due to time ");
3801         }
3802         break;
3803       }
3804       // If we are doing little work each iteration, we should
3805       // take a short break.
3806       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3807         // Sleep for some time, waiting for work to accumulate
3808         stopTimer();
3809         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3810         startTimer();
3811         waited++;
3812       }
3813     }
3814     if (PrintCMSStatistics > 0) {
3815       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3816                           loops, waited, cumworkdone);
3817     }
3818   }
3819   CMSTokenSync x(true); // is cms thread
3820   if (_collectorState != Idling) {
3821     assert(_collectorState == AbortablePreclean,
3822            "Spontaneous state transition?");
3823     _collectorState = FinalMarking;
3824   } // Else, a foreground collection completed this CMS cycle.
3825   return;
3826 }
3827 
3828 // Respond to an Eden sampling opportunity
3829 void CMSCollector::sample_eden() {
3830   // Make sure a young gc cannot sneak in between our
3831   // reading and recording of a sample.
3832   assert(Thread::current()->is_ConcurrentGC_thread(),
3833          "Only the cms thread may collect Eden samples");
3834   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3835          "Should collect samples while holding CMS token");
3836   if (!_start_sampling) {
3837     return;
3838   }
3839   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3840   // is populated by the young generation.
3841   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3842     if (_eden_chunk_index < _eden_chunk_capacity) {
3843       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3844       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3845              "Unexpected state of Eden");
3846       // We'd like to check that what we just sampled is an oop-start address;
3847       // however, we cannot do that here since the object may not yet have been
3848       // initialized. So we'll instead do the check when we _use_ this sample
3849       // later.
3850       if (_eden_chunk_index == 0 ||
3851           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3852                          _eden_chunk_array[_eden_chunk_index-1])
3853            >= CMSSamplingGrain)) {
3854         _eden_chunk_index++;  // commit sample
3855       }
3856     }
3857   }
3858   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3859     size_t used = get_eden_used();
3860     size_t capacity = get_eden_capacity();
3861     assert(used <= capacity, "Unexpected state of Eden");
3862     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3863       _abort_preclean = true;
3864     }
3865   }
3866 }
3867 
3868 
3869 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3870   assert(_collectorState == Precleaning ||
3871          _collectorState == AbortablePreclean, "incorrect state");
3872   ResourceMark rm;
3873   HandleMark   hm;
3874 
3875   // Precleaning is currently not MT but the reference processor
3876   // may be set for MT.  Disable it temporarily here.
3877   ReferenceProcessor* rp = ref_processor();
3878   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3879 
3880   // Do one pass of scrubbing the discovered reference lists
3881   // to remove any reference objects with strongly-reachable
3882   // referents.
3883   if (clean_refs) {
3884     CMSPrecleanRefsYieldClosure yield_cl(this);
3885     assert(rp->span().equals(_span), "Spans should be equal");
3886     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3887                                    &_markStack, true /* preclean */);
3888     CMSDrainMarkingStackClosure complete_trace(this,
3889                                    _span, &_markBitMap, &_markStack,
3890                                    &keep_alive, true /* preclean */);
3891 
3892     // We don't want this step to interfere with a young
3893     // collection because we don't want to take CPU
3894     // or memory bandwidth away from the young GC threads
3895     // (which may be as many as there are CPUs).
3896     // Note that we don't need to protect ourselves from
3897     // interference with mutators because they can't
3898     // manipulate the discovered reference lists nor affect
3899     // the computed reachability of the referents, the
3900     // only properties manipulated by the precleaning
3901     // of these reference lists.
3902     stopTimer();
3903     CMSTokenSyncWithLocks x(true /* is cms thread */,
3904                             bitMapLock());
3905     startTimer();
3906     sample_eden();
3907 
3908     // The following will yield to allow foreground
3909     // collection to proceed promptly. XXX YSR:
3910     // The code in this method may need further
3911     // tweaking for better performance and some restructuring
3912     // for cleaner interfaces.
3913     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3914     rp->preclean_discovered_references(
3915           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3916           gc_timer);
3917   }
3918 
3919   if (clean_survivor) {  // preclean the active survivor space(s)
3920     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3921                              &_markBitMap, &_modUnionTable,
3922                              &_markStack, true /* precleaning phase */);
3923     stopTimer();
3924     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3925                              bitMapLock());
3926     startTimer();
3927     unsigned int before_count =
3928       GenCollectedHeap::heap()->total_collections();
3929     SurvivorSpacePrecleanClosure
3930       sss_cl(this, _span, &_markBitMap, &_markStack,
3931              &pam_cl, before_count, CMSYield);
3932     _young_gen->from()->object_iterate_careful(&sss_cl);
3933     _young_gen->to()->object_iterate_careful(&sss_cl);
3934   }
3935   MarkRefsIntoAndScanClosure
3936     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3937              &_markStack, this, CMSYield,
3938              true /* precleaning phase */);
3939   // CAUTION: The following closure has persistent state that may need to
3940   // be reset upon a decrease in the sequence of addresses it
3941   // processes.
3942   ScanMarkedObjectsAgainCarefullyClosure
3943     smoac_cl(this, _span,
3944       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3945 
3946   // Preclean dirty cards in ModUnionTable and CardTable using
3947   // appropriate convergence criterion;
3948   // repeat CMSPrecleanIter times unless we find that
3949   // we are losing.
3950   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3951   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3952          "Bad convergence multiplier");
3953   assert(CMSPrecleanThreshold >= 100,
3954          "Unreasonably low CMSPrecleanThreshold");
3955 
3956   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3957   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3958        numIter < CMSPrecleanIter;
3959        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3960     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3961     if (Verbose && PrintGCDetails) {
3962       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3963     }
3964     // Either there are very few dirty cards, so re-mark
3965     // pause will be small anyway, or our pre-cleaning isn't
3966     // that much faster than the rate at which cards are being
3967     // dirtied, so we might as well stop and re-mark since
3968     // precleaning won't improve our re-mark time by much.
3969     if (curNumCards <= CMSPrecleanThreshold ||
3970         (numIter > 0 &&
3971          (curNumCards * CMSPrecleanDenominator >
3972          lastNumCards * CMSPrecleanNumerator))) {
3973       numIter++;
3974       cumNumCards += curNumCards;
3975       break;
3976     }
3977   }
3978 
3979   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3980 
3981   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3982   cumNumCards += curNumCards;
3983   if (PrintGCDetails && PrintCMSStatistics != 0) {
3984     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3985                   curNumCards, cumNumCards, numIter);
3986   }
3987   return cumNumCards;   // as a measure of useful work done
3988 }
3989 
3990 // PRECLEANING NOTES:
3991 // Precleaning involves:
3992 // . reading the bits of the modUnionTable and clearing the set bits.
3993 // . For the cards corresponding to the set bits, we scan the
3994 //   objects on those cards. This means we need the free_list_lock
3995 //   so that we can safely iterate over the CMS space when scanning
3996 //   for oops.
3997 // . When we scan the objects, we'll be both reading and setting
3998 //   marks in the marking bit map, so we'll need the marking bit map.
3999 // . For protecting _collector_state transitions, we take the CGC_lock.
4000 //   Note that any races in the reading of of card table entries by the
4001 //   CMS thread on the one hand and the clearing of those entries by the
4002 //   VM thread or the setting of those entries by the mutator threads on the
4003 //   other are quite benign. However, for efficiency it makes sense to keep
4004 //   the VM thread from racing with the CMS thread while the latter is
4005 //   dirty card info to the modUnionTable. We therefore also use the
4006 //   CGC_lock to protect the reading of the card table and the mod union
4007 //   table by the CM thread.
4008 // . We run concurrently with mutator updates, so scanning
4009 //   needs to be done carefully  -- we should not try to scan
4010 //   potentially uninitialized objects.
4011 //
4012 // Locking strategy: While holding the CGC_lock, we scan over and
4013 // reset a maximal dirty range of the mod union / card tables, then lock
4014 // the free_list_lock and bitmap lock to do a full marking, then
4015 // release these locks; and repeat the cycle. This allows for a
4016 // certain amount of fairness in the sharing of these locks between
4017 // the CMS collector on the one hand, and the VM thread and the
4018 // mutators on the other.
4019 
4020 // NOTE: preclean_mod_union_table() and preclean_card_table()
4021 // further below are largely identical; if you need to modify
4022 // one of these methods, please check the other method too.
4023 
4024 size_t CMSCollector::preclean_mod_union_table(
4025   ConcurrentMarkSweepGeneration* old_gen,
4026   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4027   verify_work_stacks_empty();
4028   verify_overflow_empty();
4029 
4030   // strategy: starting with the first card, accumulate contiguous
4031   // ranges of dirty cards; clear these cards, then scan the region
4032   // covered by these cards.
4033 
4034   // Since all of the MUT is committed ahead, we can just use
4035   // that, in case the generations expand while we are precleaning.
4036   // It might also be fine to just use the committed part of the
4037   // generation, but we might potentially miss cards when the
4038   // generation is rapidly expanding while we are in the midst
4039   // of precleaning.
4040   HeapWord* startAddr = old_gen->reserved().start();
4041   HeapWord* endAddr   = old_gen->reserved().end();
4042 
4043   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4044 
4045   size_t numDirtyCards, cumNumDirtyCards;
4046   HeapWord *nextAddr, *lastAddr;
4047   for (cumNumDirtyCards = numDirtyCards = 0,
4048        nextAddr = lastAddr = startAddr;
4049        nextAddr < endAddr;
4050        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4051 
4052     ResourceMark rm;
4053     HandleMark   hm;
4054 
4055     MemRegion dirtyRegion;
4056     {
4057       stopTimer();
4058       // Potential yield point
4059       CMSTokenSync ts(true);
4060       startTimer();
4061       sample_eden();
4062       // Get dirty region starting at nextOffset (inclusive),
4063       // simultaneously clearing it.
4064       dirtyRegion =
4065         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4066       assert(dirtyRegion.start() >= nextAddr,
4067              "returned region inconsistent?");
4068     }
4069     // Remember where the next search should begin.
4070     // The returned region (if non-empty) is a right open interval,
4071     // so lastOffset is obtained from the right end of that
4072     // interval.
4073     lastAddr = dirtyRegion.end();
4074     // Should do something more transparent and less hacky XXX
4075     numDirtyCards =
4076       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4077 
4078     // We'll scan the cards in the dirty region (with periodic
4079     // yields for foreground GC as needed).
4080     if (!dirtyRegion.is_empty()) {
4081       assert(numDirtyCards > 0, "consistency check");
4082       HeapWord* stop_point = NULL;
4083       stopTimer();
4084       // Potential yield point
4085       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
4086                                bitMapLock());
4087       startTimer();
4088       {
4089         verify_work_stacks_empty();
4090         verify_overflow_empty();
4091         sample_eden();
4092         stop_point =
4093           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4094       }
4095       if (stop_point != NULL) {
4096         // The careful iteration stopped early either because it found an
4097         // uninitialized object, or because we were in the midst of an
4098         // "abortable preclean", which should now be aborted. Redirty
4099         // the bits corresponding to the partially-scanned or unscanned
4100         // cards. We'll either restart at the next block boundary or
4101         // abort the preclean.
4102         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4103                "Should only be AbortablePreclean.");
4104         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4105         if (should_abort_preclean()) {
4106           break; // out of preclean loop
4107         } else {
4108           // Compute the next address at which preclean should pick up;
4109           // might need bitMapLock in order to read P-bits.
4110           lastAddr = next_card_start_after_block(stop_point);
4111         }
4112       }
4113     } else {
4114       assert(lastAddr == endAddr, "consistency check");
4115       assert(numDirtyCards == 0, "consistency check");
4116       break;
4117     }
4118   }
4119   verify_work_stacks_empty();
4120   verify_overflow_empty();
4121   return cumNumDirtyCards;
4122 }
4123 
4124 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4125 // below are largely identical; if you need to modify
4126 // one of these methods, please check the other method too.
4127 
4128 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4129   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4130   // strategy: it's similar to precleamModUnionTable above, in that
4131   // we accumulate contiguous ranges of dirty cards, mark these cards
4132   // precleaned, then scan the region covered by these cards.
4133   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4134   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4135 
4136   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4137 
4138   size_t numDirtyCards, cumNumDirtyCards;
4139   HeapWord *lastAddr, *nextAddr;
4140 
4141   for (cumNumDirtyCards = numDirtyCards = 0,
4142        nextAddr = lastAddr = startAddr;
4143        nextAddr < endAddr;
4144        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4145 
4146     ResourceMark rm;
4147     HandleMark   hm;
4148 
4149     MemRegion dirtyRegion;
4150     {
4151       // See comments in "Precleaning notes" above on why we
4152       // do this locking. XXX Could the locking overheads be
4153       // too high when dirty cards are sparse? [I don't think so.]
4154       stopTimer();
4155       CMSTokenSync x(true); // is cms thread
4156       startTimer();
4157       sample_eden();
4158       // Get and clear dirty region from card table
4159       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4160                                     MemRegion(nextAddr, endAddr),
4161                                     true,
4162                                     CardTableModRefBS::precleaned_card_val());
4163 
4164       assert(dirtyRegion.start() >= nextAddr,
4165              "returned region inconsistent?");
4166     }
4167     lastAddr = dirtyRegion.end();
4168     numDirtyCards =
4169       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4170 
4171     if (!dirtyRegion.is_empty()) {
4172       stopTimer();
4173       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4174       startTimer();
4175       sample_eden();
4176       verify_work_stacks_empty();
4177       verify_overflow_empty();
4178       HeapWord* stop_point =
4179         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4180       if (stop_point != NULL) {
4181         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4182                "Should only be AbortablePreclean.");
4183         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4184         if (should_abort_preclean()) {
4185           break; // out of preclean loop
4186         } else {
4187           // Compute the next address at which preclean should pick up.
4188           lastAddr = next_card_start_after_block(stop_point);
4189         }
4190       }
4191     } else {
4192       break;
4193     }
4194   }
4195   verify_work_stacks_empty();
4196   verify_overflow_empty();
4197   return cumNumDirtyCards;
4198 }
4199 
4200 class PrecleanKlassClosure : public KlassClosure {
4201   KlassToOopClosure _cm_klass_closure;
4202  public:
4203   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4204   void do_klass(Klass* k) {
4205     if (k->has_accumulated_modified_oops()) {
4206       k->clear_accumulated_modified_oops();
4207 
4208       _cm_klass_closure.do_klass(k);
4209     }
4210   }
4211 };
4212 
4213 // The freelist lock is needed to prevent asserts, is it really needed?
4214 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4215 
4216   cl->set_freelistLock(freelistLock);
4217 
4218   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4219 
4220   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4221   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4222   PrecleanKlassClosure preclean_klass_closure(cl);
4223   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4224 
4225   verify_work_stacks_empty();
4226   verify_overflow_empty();
4227 }
4228 
4229 void CMSCollector::checkpointRootsFinal() {
4230   assert(_collectorState == FinalMarking, "incorrect state transition?");
4231   check_correct_thread_executing();
4232   // world is stopped at this checkpoint
4233   assert(SafepointSynchronize::is_at_safepoint(),
4234          "world should be stopped");
4235   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4236 
4237   verify_work_stacks_empty();
4238   verify_overflow_empty();
4239 
4240   if (PrintGCDetails) {
4241     gclog_or_tty->print("[YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)]",
4242                         _young_gen->used() / K,
4243                         _young_gen->capacity() / K);
4244   }
4245   {
4246     if (CMSScavengeBeforeRemark) {
4247       GenCollectedHeap* gch = GenCollectedHeap::heap();
4248       // Temporarily set flag to false, GCH->do_collection will
4249       // expect it to be false and set to true
4250       FlagSetting fl(gch->_is_gc_active, false);
4251       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4252         PrintGCDetails && Verbose, true, _gc_timer_cm);)
4253       gch->do_collection(true,                      // full (i.e. force, see below)
4254                          false,                     // !clear_all_soft_refs
4255                          0,                         // size
4256                          false,                     // is_tlab
4257                          GenCollectedHeap::YoungGen // type
4258         );
4259     }
4260     FreelistLocker x(this);
4261     MutexLockerEx y(bitMapLock(),
4262                     Mutex::_no_safepoint_check_flag);
4263     checkpointRootsFinalWork();
4264   }
4265   verify_work_stacks_empty();
4266   verify_overflow_empty();
4267 }
4268 
4269 void CMSCollector::checkpointRootsFinalWork() {
4270   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
4271 
4272   assert(haveFreelistLocks(), "must have free list locks");
4273   assert_lock_strong(bitMapLock());
4274 
4275   ResourceMark rm;
4276   HandleMark   hm;
4277 
4278   GenCollectedHeap* gch = GenCollectedHeap::heap();
4279 
4280   if (should_unload_classes()) {
4281     CodeCache::gc_prologue();
4282   }
4283   assert(haveFreelistLocks(), "must have free list locks");
4284   assert_lock_strong(bitMapLock());
4285 
4286   // We might assume that we need not fill TLAB's when
4287   // CMSScavengeBeforeRemark is set, because we may have just done
4288   // a scavenge which would have filled all TLAB's -- and besides
4289   // Eden would be empty. This however may not always be the case --
4290   // for instance although we asked for a scavenge, it may not have
4291   // happened because of a JNI critical section. We probably need
4292   // a policy for deciding whether we can in that case wait until
4293   // the critical section releases and then do the remark following
4294   // the scavenge, and skip it here. In the absence of that policy,
4295   // or of an indication of whether the scavenge did indeed occur,
4296   // we cannot rely on TLAB's having been filled and must do
4297   // so here just in case a scavenge did not happen.
4298   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4299   // Update the saved marks which may affect the root scans.
4300   gch->save_marks();
4301 
4302   if (CMSPrintEdenSurvivorChunks) {
4303     print_eden_and_survivor_chunk_arrays();
4304   }
4305 
4306   {
4307 #if defined(COMPILER2) || INCLUDE_JVMCI
4308     DerivedPointerTableDeactivate dpt_deact;
4309 #endif
4310 
4311     // Note on the role of the mod union table:
4312     // Since the marker in "markFromRoots" marks concurrently with
4313     // mutators, it is possible for some reachable objects not to have been
4314     // scanned. For instance, an only reference to an object A was
4315     // placed in object B after the marker scanned B. Unless B is rescanned,
4316     // A would be collected. Such updates to references in marked objects
4317     // are detected via the mod union table which is the set of all cards
4318     // dirtied since the first checkpoint in this GC cycle and prior to
4319     // the most recent young generation GC, minus those cleaned up by the
4320     // concurrent precleaning.
4321     if (CMSParallelRemarkEnabled) {
4322       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
4323       do_remark_parallel();
4324     } else {
4325       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false, _gc_timer_cm);
4326       do_remark_non_parallel();
4327     }
4328   }
4329   verify_work_stacks_empty();
4330   verify_overflow_empty();
4331 
4332   {
4333     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
4334     refProcessingWork();
4335   }
4336   verify_work_stacks_empty();
4337   verify_overflow_empty();
4338 
4339   if (should_unload_classes()) {
4340     CodeCache::gc_epilogue();
4341   }
4342   JvmtiExport::gc_epilogue();
4343 
4344   // If we encountered any (marking stack / work queue) overflow
4345   // events during the current CMS cycle, take appropriate
4346   // remedial measures, where possible, so as to try and avoid
4347   // recurrence of that condition.
4348   assert(_markStack.isEmpty(), "No grey objects");
4349   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4350                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4351   if (ser_ovflw > 0) {
4352     if (PrintCMSStatistics != 0) {
4353       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4354         "(pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT
4355         ", kac_preclean=" SIZE_FORMAT ")",
4356         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4357         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4358     }
4359     _markStack.expand();
4360     _ser_pmc_remark_ovflw = 0;
4361     _ser_pmc_preclean_ovflw = 0;
4362     _ser_kac_preclean_ovflw = 0;
4363     _ser_kac_ovflw = 0;
4364   }
4365   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4366     if (PrintCMSStatistics != 0) {
4367       gclog_or_tty->print_cr("Work queue overflow (benign) "
4368         "(pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4369         _par_pmc_remark_ovflw, _par_kac_ovflw);
4370     }
4371     _par_pmc_remark_ovflw = 0;
4372     _par_kac_ovflw = 0;
4373   }
4374   if (PrintCMSStatistics != 0) {
4375      if (_markStack._hit_limit > 0) {
4376        gclog_or_tty->print_cr(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4377                               _markStack._hit_limit);
4378      }
4379      if (_markStack._failed_double > 0) {
4380        gclog_or_tty->print_cr(" (benign) Failed stack doubling (" SIZE_FORMAT "),"
4381                               " current capacity " SIZE_FORMAT,
4382                               _markStack._failed_double,
4383                               _markStack.capacity());
4384      }
4385   }
4386   _markStack._hit_limit = 0;
4387   _markStack._failed_double = 0;
4388 
4389   if ((VerifyAfterGC || VerifyDuringGC) &&
4390       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4391     verify_after_remark();
4392   }
4393 
4394   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4395 
4396   // Change under the freelistLocks.
4397   _collectorState = Sweeping;
4398   // Call isAllClear() under bitMapLock
4399   assert(_modUnionTable.isAllClear(),
4400       "Should be clear by end of the final marking");
4401   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4402       "Should be clear by end of the final marking");
4403 }
4404 
4405 void CMSParInitialMarkTask::work(uint worker_id) {
4406   elapsedTimer _timer;
4407   ResourceMark rm;
4408   HandleMark   hm;
4409 
4410   // ---------- scan from roots --------------
4411   _timer.start();
4412   GenCollectedHeap* gch = GenCollectedHeap::heap();
4413   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4414 
4415   // ---------- young gen roots --------------
4416   {
4417     work_on_young_gen_roots(worker_id, &par_mri_cl);
4418     _timer.stop();
4419     if (PrintCMSStatistics != 0) {
4420       gclog_or_tty->print_cr(
4421         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4422         worker_id, _timer.seconds());
4423     }
4424   }
4425 
4426   // ---------- remaining roots --------------
4427   _timer.reset();
4428   _timer.start();
4429 
4430   CLDToOopClosure cld_closure(&par_mri_cl, true);
4431 
4432   gch->gen_process_roots(_strong_roots_scope,
4433                          GenCollectedHeap::OldGen,
4434                          false,     // yg was scanned above
4435                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4436                          _collector->should_unload_classes(),
4437                          &par_mri_cl,
4438                          NULL,
4439                          &cld_closure);
4440   assert(_collector->should_unload_classes()
4441          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4442          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4443   _timer.stop();
4444   if (PrintCMSStatistics != 0) {
4445     gclog_or_tty->print_cr(
4446       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4447       worker_id, _timer.seconds());
4448   }
4449 }
4450 
4451 // Parallel remark task
4452 class CMSParRemarkTask: public CMSParMarkTask {
4453   CompactibleFreeListSpace* _cms_space;
4454 
4455   // The per-thread work queues, available here for stealing.
4456   OopTaskQueueSet*       _task_queues;
4457   ParallelTaskTerminator _term;
4458   StrongRootsScope*      _strong_roots_scope;
4459 
4460  public:
4461   // A value of 0 passed to n_workers will cause the number of
4462   // workers to be taken from the active workers in the work gang.
4463   CMSParRemarkTask(CMSCollector* collector,
4464                    CompactibleFreeListSpace* cms_space,
4465                    uint n_workers, WorkGang* workers,
4466                    OopTaskQueueSet* task_queues,
4467                    StrongRootsScope* strong_roots_scope):
4468     CMSParMarkTask("Rescan roots and grey objects in parallel",
4469                    collector, n_workers),
4470     _cms_space(cms_space),
4471     _task_queues(task_queues),
4472     _term(n_workers, task_queues),
4473     _strong_roots_scope(strong_roots_scope) { }
4474 
4475   OopTaskQueueSet* task_queues() { return _task_queues; }
4476 
4477   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4478 
4479   ParallelTaskTerminator* terminator() { return &_term; }
4480   uint n_workers() { return _n_workers; }
4481 
4482   void work(uint worker_id);
4483 
4484  private:
4485   // ... of  dirty cards in old space
4486   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4487                                   Par_MarkRefsIntoAndScanClosure* cl);
4488 
4489   // ... work stealing for the above
4490   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4491 };
4492 
4493 class RemarkKlassClosure : public KlassClosure {
4494   KlassToOopClosure _cm_klass_closure;
4495  public:
4496   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4497   void do_klass(Klass* k) {
4498     // Check if we have modified any oops in the Klass during the concurrent marking.
4499     if (k->has_accumulated_modified_oops()) {
4500       k->clear_accumulated_modified_oops();
4501 
4502       // We could have transfered the current modified marks to the accumulated marks,
4503       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4504     } else if (k->has_modified_oops()) {
4505       // Don't clear anything, this info is needed by the next young collection.
4506     } else {
4507       // No modified oops in the Klass.
4508       return;
4509     }
4510 
4511     // The klass has modified fields, need to scan the klass.
4512     _cm_klass_closure.do_klass(k);
4513   }
4514 };
4515 
4516 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4517   ParNewGeneration* young_gen = _collector->_young_gen;
4518   ContiguousSpace* eden_space = young_gen->eden();
4519   ContiguousSpace* from_space = young_gen->from();
4520   ContiguousSpace* to_space   = young_gen->to();
4521 
4522   HeapWord** eca = _collector->_eden_chunk_array;
4523   size_t     ect = _collector->_eden_chunk_index;
4524   HeapWord** sca = _collector->_survivor_chunk_array;
4525   size_t     sct = _collector->_survivor_chunk_index;
4526 
4527   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4528   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4529 
4530   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4531   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4532   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4533 }
4534 
4535 // work_queue(i) is passed to the closure
4536 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4537 // also is passed to do_dirty_card_rescan_tasks() and to
4538 // do_work_steal() to select the i-th task_queue.
4539 
4540 void CMSParRemarkTask::work(uint worker_id) {
4541   elapsedTimer _timer;
4542   ResourceMark rm;
4543   HandleMark   hm;
4544 
4545   // ---------- rescan from roots --------------
4546   _timer.start();
4547   GenCollectedHeap* gch = GenCollectedHeap::heap();
4548   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4549     _collector->_span, _collector->ref_processor(),
4550     &(_collector->_markBitMap),
4551     work_queue(worker_id));
4552 
4553   // Rescan young gen roots first since these are likely
4554   // coarsely partitioned and may, on that account, constitute
4555   // the critical path; thus, it's best to start off that
4556   // work first.
4557   // ---------- young gen roots --------------
4558   {
4559     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4560     _timer.stop();
4561     if (PrintCMSStatistics != 0) {
4562       gclog_or_tty->print_cr(
4563         "Finished young gen rescan work in %dth thread: %3.3f sec",
4564         worker_id, _timer.seconds());
4565     }
4566   }
4567 
4568   // ---------- remaining roots --------------
4569   _timer.reset();
4570   _timer.start();
4571   gch->gen_process_roots(_strong_roots_scope,
4572                          GenCollectedHeap::OldGen,
4573                          false,     // yg was scanned above
4574                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4575                          _collector->should_unload_classes(),
4576                          &par_mrias_cl,
4577                          NULL,
4578                          NULL);     // The dirty klasses will be handled below
4579 
4580   assert(_collector->should_unload_classes()
4581          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4582          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4583   _timer.stop();
4584   if (PrintCMSStatistics != 0) {
4585     gclog_or_tty->print_cr(
4586       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4587       worker_id, _timer.seconds());
4588   }
4589 
4590   // ---------- unhandled CLD scanning ----------
4591   if (worker_id == 0) { // Single threaded at the moment.
4592     _timer.reset();
4593     _timer.start();
4594 
4595     // Scan all new class loader data objects and new dependencies that were
4596     // introduced during concurrent marking.
4597     ResourceMark rm;
4598     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4599     for (int i = 0; i < array->length(); i++) {
4600       par_mrias_cl.do_cld_nv(array->at(i));
4601     }
4602 
4603     // We don't need to keep track of new CLDs anymore.
4604     ClassLoaderDataGraph::remember_new_clds(false);
4605 
4606     _timer.stop();
4607     if (PrintCMSStatistics != 0) {
4608       gclog_or_tty->print_cr(
4609           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4610           worker_id, _timer.seconds());
4611     }
4612   }
4613 
4614   // ---------- dirty klass scanning ----------
4615   if (worker_id == 0) { // Single threaded at the moment.
4616     _timer.reset();
4617     _timer.start();
4618 
4619     // Scan all classes that was dirtied during the concurrent marking phase.
4620     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4621     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4622 
4623     _timer.stop();
4624     if (PrintCMSStatistics != 0) {
4625       gclog_or_tty->print_cr(
4626           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4627           worker_id, _timer.seconds());
4628     }
4629   }
4630 
4631   // We might have added oops to ClassLoaderData::_handles during the
4632   // concurrent marking phase. These oops point to newly allocated objects
4633   // that are guaranteed to be kept alive. Either by the direct allocation
4634   // code, or when the young collector processes the roots. Hence,
4635   // we don't have to revisit the _handles block during the remark phase.
4636 
4637   // ---------- rescan dirty cards ------------
4638   _timer.reset();
4639   _timer.start();
4640 
4641   // Do the rescan tasks for each of the two spaces
4642   // (cms_space) in turn.
4643   // "worker_id" is passed to select the task_queue for "worker_id"
4644   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4645   _timer.stop();
4646   if (PrintCMSStatistics != 0) {
4647     gclog_or_tty->print_cr(
4648       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4649       worker_id, _timer.seconds());
4650   }
4651 
4652   // ---------- steal work from other threads ...
4653   // ---------- ... and drain overflow list.
4654   _timer.reset();
4655   _timer.start();
4656   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4657   _timer.stop();
4658   if (PrintCMSStatistics != 0) {
4659     gclog_or_tty->print_cr(
4660       "Finished work stealing in %dth thread: %3.3f sec",
4661       worker_id, _timer.seconds());
4662   }
4663 }
4664 
4665 // Note that parameter "i" is not used.
4666 void
4667 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4668   OopsInGenClosure* cl, ContiguousSpace* space,
4669   HeapWord** chunk_array, size_t chunk_top) {
4670   // Until all tasks completed:
4671   // . claim an unclaimed task
4672   // . compute region boundaries corresponding to task claimed
4673   //   using chunk_array
4674   // . par_oop_iterate(cl) over that region
4675 
4676   ResourceMark rm;
4677   HandleMark   hm;
4678 
4679   SequentialSubTasksDone* pst = space->par_seq_tasks();
4680 
4681   uint nth_task = 0;
4682   uint n_tasks  = pst->n_tasks();
4683 
4684   if (n_tasks > 0) {
4685     assert(pst->valid(), "Uninitialized use?");
4686     HeapWord *start, *end;
4687     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4688       // We claimed task # nth_task; compute its boundaries.
4689       if (chunk_top == 0) {  // no samples were taken
4690         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4691         start = space->bottom();
4692         end   = space->top();
4693       } else if (nth_task == 0) {
4694         start = space->bottom();
4695         end   = chunk_array[nth_task];
4696       } else if (nth_task < (uint)chunk_top) {
4697         assert(nth_task >= 1, "Control point invariant");
4698         start = chunk_array[nth_task - 1];
4699         end   = chunk_array[nth_task];
4700       } else {
4701         assert(nth_task == (uint)chunk_top, "Control point invariant");
4702         start = chunk_array[chunk_top - 1];
4703         end   = space->top();
4704       }
4705       MemRegion mr(start, end);
4706       // Verify that mr is in space
4707       assert(mr.is_empty() || space->used_region().contains(mr),
4708              "Should be in space");
4709       // Verify that "start" is an object boundary
4710       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4711              "Should be an oop");
4712       space->par_oop_iterate(mr, cl);
4713     }
4714     pst->all_tasks_completed();
4715   }
4716 }
4717 
4718 void
4719 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4720   CompactibleFreeListSpace* sp, int i,
4721   Par_MarkRefsIntoAndScanClosure* cl) {
4722   // Until all tasks completed:
4723   // . claim an unclaimed task
4724   // . compute region boundaries corresponding to task claimed
4725   // . transfer dirty bits ct->mut for that region
4726   // . apply rescanclosure to dirty mut bits for that region
4727 
4728   ResourceMark rm;
4729   HandleMark   hm;
4730 
4731   OopTaskQueue* work_q = work_queue(i);
4732   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4733   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4734   // CAUTION: This closure has state that persists across calls to
4735   // the work method dirty_range_iterate_clear() in that it has
4736   // embedded in it a (subtype of) UpwardsObjectClosure. The
4737   // use of that state in the embedded UpwardsObjectClosure instance
4738   // assumes that the cards are always iterated (even if in parallel
4739   // by several threads) in monotonically increasing order per each
4740   // thread. This is true of the implementation below which picks
4741   // card ranges (chunks) in monotonically increasing order globally
4742   // and, a-fortiori, in monotonically increasing order per thread
4743   // (the latter order being a subsequence of the former).
4744   // If the work code below is ever reorganized into a more chaotic
4745   // work-partitioning form than the current "sequential tasks"
4746   // paradigm, the use of that persistent state will have to be
4747   // revisited and modified appropriately. See also related
4748   // bug 4756801 work on which should examine this code to make
4749   // sure that the changes there do not run counter to the
4750   // assumptions made here and necessary for correctness and
4751   // efficiency. Note also that this code might yield inefficient
4752   // behavior in the case of very large objects that span one or
4753   // more work chunks. Such objects would potentially be scanned
4754   // several times redundantly. Work on 4756801 should try and
4755   // address that performance anomaly if at all possible. XXX
4756   MemRegion  full_span  = _collector->_span;
4757   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4758   MarkFromDirtyCardsClosure
4759     greyRescanClosure(_collector, full_span, // entire span of interest
4760                       sp, bm, work_q, cl);
4761 
4762   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4763   assert(pst->valid(), "Uninitialized use?");
4764   uint nth_task = 0;
4765   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4766   MemRegion span = sp->used_region();
4767   HeapWord* start_addr = span.start();
4768   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4769                                            alignment);
4770   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4771   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4772          start_addr, "Check alignment");
4773   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4774          chunk_size, "Check alignment");
4775 
4776   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4777     // Having claimed the nth_task, compute corresponding mem-region,
4778     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4779     // The alignment restriction ensures that we do not need any
4780     // synchronization with other gang-workers while setting or
4781     // clearing bits in thus chunk of the MUT.
4782     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4783                                     start_addr + (nth_task+1)*chunk_size);
4784     // The last chunk's end might be way beyond end of the
4785     // used region. In that case pull back appropriately.
4786     if (this_span.end() > end_addr) {
4787       this_span.set_end(end_addr);
4788       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4789     }
4790     // Iterate over the dirty cards covering this chunk, marking them
4791     // precleaned, and setting the corresponding bits in the mod union
4792     // table. Since we have been careful to partition at Card and MUT-word
4793     // boundaries no synchronization is needed between parallel threads.
4794     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4795                                                  &modUnionClosure);
4796 
4797     // Having transferred these marks into the modUnionTable,
4798     // rescan the marked objects on the dirty cards in the modUnionTable.
4799     // Even if this is at a synchronous collection, the initial marking
4800     // may have been done during an asynchronous collection so there
4801     // may be dirty bits in the mod-union table.
4802     _collector->_modUnionTable.dirty_range_iterate_clear(
4803                   this_span, &greyRescanClosure);
4804     _collector->_modUnionTable.verifyNoOneBitsInRange(
4805                                  this_span.start(),
4806                                  this_span.end());
4807   }
4808   pst->all_tasks_completed();  // declare that i am done
4809 }
4810 
4811 // . see if we can share work_queues with ParNew? XXX
4812 void
4813 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4814                                 int* seed) {
4815   OopTaskQueue* work_q = work_queue(i);
4816   NOT_PRODUCT(int num_steals = 0;)
4817   oop obj_to_scan;
4818   CMSBitMap* bm = &(_collector->_markBitMap);
4819 
4820   while (true) {
4821     // Completely finish any left over work from (an) earlier round(s)
4822     cl->trim_queue(0);
4823     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4824                                          (size_t)ParGCDesiredObjsFromOverflowList);
4825     // Now check if there's any work in the overflow list
4826     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4827     // only affects the number of attempts made to get work from the
4828     // overflow list and does not affect the number of workers.  Just
4829     // pass ParallelGCThreads so this behavior is unchanged.
4830     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4831                                                 work_q,
4832                                                 ParallelGCThreads)) {
4833       // found something in global overflow list;
4834       // not yet ready to go stealing work from others.
4835       // We'd like to assert(work_q->size() != 0, ...)
4836       // because we just took work from the overflow list,
4837       // but of course we can't since all of that could have
4838       // been already stolen from us.
4839       // "He giveth and He taketh away."
4840       continue;
4841     }
4842     // Verify that we have no work before we resort to stealing
4843     assert(work_q->size() == 0, "Have work, shouldn't steal");
4844     // Try to steal from other queues that have work
4845     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4846       NOT_PRODUCT(num_steals++;)
4847       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4848       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4849       // Do scanning work
4850       obj_to_scan->oop_iterate(cl);
4851       // Loop around, finish this work, and try to steal some more
4852     } else if (terminator()->offer_termination()) {
4853         break;  // nirvana from the infinite cycle
4854     }
4855   }
4856   NOT_PRODUCT(
4857     if (PrintCMSStatistics != 0) {
4858       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4859     }
4860   )
4861   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4862          "Else our work is not yet done");
4863 }
4864 
4865 // Record object boundaries in _eden_chunk_array by sampling the eden
4866 // top in the slow-path eden object allocation code path and record
4867 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4868 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4869 // sampling in sample_eden() that activates during the part of the
4870 // preclean phase.
4871 void CMSCollector::sample_eden_chunk() {
4872   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4873     if (_eden_chunk_lock->try_lock()) {
4874       // Record a sample. This is the critical section. The contents
4875       // of the _eden_chunk_array have to be non-decreasing in the
4876       // address order.
4877       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4878       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4879              "Unexpected state of Eden");
4880       if (_eden_chunk_index == 0 ||
4881           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4882            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4883                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4884         _eden_chunk_index++;  // commit sample
4885       }
4886       _eden_chunk_lock->unlock();
4887     }
4888   }
4889 }
4890 
4891 // Return a thread-local PLAB recording array, as appropriate.
4892 void* CMSCollector::get_data_recorder(int thr_num) {
4893   if (_survivor_plab_array != NULL &&
4894       (CMSPLABRecordAlways ||
4895        (_collectorState > Marking && _collectorState < FinalMarking))) {
4896     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4897     ChunkArray* ca = &_survivor_plab_array[thr_num];
4898     ca->reset();   // clear it so that fresh data is recorded
4899     return (void*) ca;
4900   } else {
4901     return NULL;
4902   }
4903 }
4904 
4905 // Reset all the thread-local PLAB recording arrays
4906 void CMSCollector::reset_survivor_plab_arrays() {
4907   for (uint i = 0; i < ParallelGCThreads; i++) {
4908     _survivor_plab_array[i].reset();
4909   }
4910 }
4911 
4912 // Merge the per-thread plab arrays into the global survivor chunk
4913 // array which will provide the partitioning of the survivor space
4914 // for CMS initial scan and rescan.
4915 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4916                                               int no_of_gc_threads) {
4917   assert(_survivor_plab_array  != NULL, "Error");
4918   assert(_survivor_chunk_array != NULL, "Error");
4919   assert(_collectorState == FinalMarking ||
4920          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4921   for (int j = 0; j < no_of_gc_threads; j++) {
4922     _cursor[j] = 0;
4923   }
4924   HeapWord* top = surv->top();
4925   size_t i;
4926   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4927     HeapWord* min_val = top;          // Higher than any PLAB address
4928     uint      min_tid = 0;            // position of min_val this round
4929     for (int j = 0; j < no_of_gc_threads; j++) {
4930       ChunkArray* cur_sca = &_survivor_plab_array[j];
4931       if (_cursor[j] == cur_sca->end()) {
4932         continue;
4933       }
4934       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4935       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4936       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4937       if (cur_val < min_val) {
4938         min_tid = j;
4939         min_val = cur_val;
4940       } else {
4941         assert(cur_val < top, "All recorded addresses should be less");
4942       }
4943     }
4944     // At this point min_val and min_tid are respectively
4945     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4946     // and the thread (j) that witnesses that address.
4947     // We record this address in the _survivor_chunk_array[i]
4948     // and increment _cursor[min_tid] prior to the next round i.
4949     if (min_val == top) {
4950       break;
4951     }
4952     _survivor_chunk_array[i] = min_val;
4953     _cursor[min_tid]++;
4954   }
4955   // We are all done; record the size of the _survivor_chunk_array
4956   _survivor_chunk_index = i; // exclusive: [0, i)
4957   if (PrintCMSStatistics > 0) {
4958     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4959   }
4960   // Verify that we used up all the recorded entries
4961   #ifdef ASSERT
4962     size_t total = 0;
4963     for (int j = 0; j < no_of_gc_threads; j++) {
4964       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4965       total += _cursor[j];
4966     }
4967     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4968     // Check that the merged array is in sorted order
4969     if (total > 0) {
4970       for (size_t i = 0; i < total - 1; i++) {
4971         if (PrintCMSStatistics > 0) {
4972           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4973                               i, p2i(_survivor_chunk_array[i]));
4974         }
4975         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4976                "Not sorted");
4977       }
4978     }
4979   #endif // ASSERT
4980 }
4981 
4982 // Set up the space's par_seq_tasks structure for work claiming
4983 // for parallel initial scan and rescan of young gen.
4984 // See ParRescanTask where this is currently used.
4985 void
4986 CMSCollector::
4987 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4988   assert(n_threads > 0, "Unexpected n_threads argument");
4989 
4990   // Eden space
4991   if (!_young_gen->eden()->is_empty()) {
4992     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4993     assert(!pst->valid(), "Clobbering existing data?");
4994     // Each valid entry in [0, _eden_chunk_index) represents a task.
4995     size_t n_tasks = _eden_chunk_index + 1;
4996     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4997     // Sets the condition for completion of the subtask (how many threads
4998     // need to finish in order to be done).
4999     pst->set_n_threads(n_threads);
5000     pst->set_n_tasks((int)n_tasks);
5001   }
5002 
5003   // Merge the survivor plab arrays into _survivor_chunk_array
5004   if (_survivor_plab_array != NULL) {
5005     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5006   } else {
5007     assert(_survivor_chunk_index == 0, "Error");
5008   }
5009 
5010   // To space
5011   {
5012     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5013     assert(!pst->valid(), "Clobbering existing data?");
5014     // Sets the condition for completion of the subtask (how many threads
5015     // need to finish in order to be done).
5016     pst->set_n_threads(n_threads);
5017     pst->set_n_tasks(1);
5018     assert(pst->valid(), "Error");
5019   }
5020 
5021   // From space
5022   {
5023     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5024     assert(!pst->valid(), "Clobbering existing data?");
5025     size_t n_tasks = _survivor_chunk_index + 1;
5026     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5027     // Sets the condition for completion of the subtask (how many threads
5028     // need to finish in order to be done).
5029     pst->set_n_threads(n_threads);
5030     pst->set_n_tasks((int)n_tasks);
5031     assert(pst->valid(), "Error");
5032   }
5033 }
5034 
5035 // Parallel version of remark
5036 void CMSCollector::do_remark_parallel() {
5037   GenCollectedHeap* gch = GenCollectedHeap::heap();
5038   WorkGang* workers = gch->workers();
5039   assert(workers != NULL, "Need parallel worker threads.");
5040   // Choose to use the number of GC workers most recently set
5041   // into "active_workers".
5042   uint n_workers = workers->active_workers();
5043 
5044   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5045 
5046   StrongRootsScope srs(n_workers);
5047 
5048   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
5049 
5050   // We won't be iterating over the cards in the card table updating
5051   // the younger_gen cards, so we shouldn't call the following else
5052   // the verification code as well as subsequent younger_refs_iterate
5053   // code would get confused. XXX
5054   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5055 
5056   // The young gen rescan work will not be done as part of
5057   // process_roots (which currently doesn't know how to
5058   // parallelize such a scan), but rather will be broken up into
5059   // a set of parallel tasks (via the sampling that the [abortable]
5060   // preclean phase did of eden, plus the [two] tasks of
5061   // scanning the [two] survivor spaces. Further fine-grain
5062   // parallelization of the scanning of the survivor spaces
5063   // themselves, and of precleaning of the young gen itself
5064   // is deferred to the future.
5065   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5066 
5067   // The dirty card rescan work is broken up into a "sequence"
5068   // of parallel tasks (per constituent space) that are dynamically
5069   // claimed by the parallel threads.
5070   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5071 
5072   // It turns out that even when we're using 1 thread, doing the work in a
5073   // separate thread causes wide variance in run times.  We can't help this
5074   // in the multi-threaded case, but we special-case n=1 here to get
5075   // repeatable measurements of the 1-thread overhead of the parallel code.
5076   if (n_workers > 1) {
5077     // Make refs discovery MT-safe, if it isn't already: it may not
5078     // necessarily be so, since it's possible that we are doing
5079     // ST marking.
5080     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5081     workers->run_task(&tsk);
5082   } else {
5083     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5084     tsk.work(0);
5085   }
5086 
5087   // restore, single-threaded for now, any preserved marks
5088   // as a result of work_q overflow
5089   restore_preserved_marks_if_any();
5090 }
5091 
5092 // Non-parallel version of remark
5093 void CMSCollector::do_remark_non_parallel() {
5094   ResourceMark rm;
5095   HandleMark   hm;
5096   GenCollectedHeap* gch = GenCollectedHeap::heap();
5097   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5098 
5099   MarkRefsIntoAndScanClosure
5100     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5101              &_markStack, this,
5102              false /* should_yield */, false /* not precleaning */);
5103   MarkFromDirtyCardsClosure
5104     markFromDirtyCardsClosure(this, _span,
5105                               NULL,  // space is set further below
5106                               &_markBitMap, &_markStack, &mrias_cl);
5107   {
5108     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
5109     // Iterate over the dirty cards, setting the corresponding bits in the
5110     // mod union table.
5111     {
5112       ModUnionClosure modUnionClosure(&_modUnionTable);
5113       _ct->ct_bs()->dirty_card_iterate(
5114                       _cmsGen->used_region(),
5115                       &modUnionClosure);
5116     }
5117     // Having transferred these marks into the modUnionTable, we just need
5118     // to rescan the marked objects on the dirty cards in the modUnionTable.
5119     // The initial marking may have been done during an asynchronous
5120     // collection so there may be dirty bits in the mod-union table.
5121     const int alignment =
5122       CardTableModRefBS::card_size * BitsPerWord;
5123     {
5124       // ... First handle dirty cards in CMS gen
5125       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5126       MemRegion ur = _cmsGen->used_region();
5127       HeapWord* lb = ur.start();
5128       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5129       MemRegion cms_span(lb, ub);
5130       _modUnionTable.dirty_range_iterate_clear(cms_span,
5131                                                &markFromDirtyCardsClosure);
5132       verify_work_stacks_empty();
5133       if (PrintCMSStatistics != 0) {
5134         gclog_or_tty->print(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ",
5135           markFromDirtyCardsClosure.num_dirty_cards());
5136       }
5137     }
5138   }
5139   if (VerifyDuringGC &&
5140       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5141     HandleMark hm;  // Discard invalid handles created during verification
5142     Universe::verify();
5143   }
5144   {
5145     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
5146 
5147     verify_work_stacks_empty();
5148 
5149     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5150     StrongRootsScope srs(1);
5151 
5152     gch->gen_process_roots(&srs,
5153                            GenCollectedHeap::OldGen,
5154                            true,  // young gen as roots
5155                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5156                            should_unload_classes(),
5157                            &mrias_cl,
5158                            NULL,
5159                            NULL); // The dirty klasses will be handled below
5160 
5161     assert(should_unload_classes()
5162            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5163            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5164   }
5165 
5166   {
5167     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm);
5168 
5169     verify_work_stacks_empty();
5170 
5171     // Scan all class loader data objects that might have been introduced
5172     // during concurrent marking.
5173     ResourceMark rm;
5174     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5175     for (int i = 0; i < array->length(); i++) {
5176       mrias_cl.do_cld_nv(array->at(i));
5177     }
5178 
5179     // We don't need to keep track of new CLDs anymore.
5180     ClassLoaderDataGraph::remember_new_clds(false);
5181 
5182     verify_work_stacks_empty();
5183   }
5184 
5185   {
5186     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm);
5187 
5188     verify_work_stacks_empty();
5189 
5190     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5191     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5192 
5193     verify_work_stacks_empty();
5194   }
5195 
5196   // We might have added oops to ClassLoaderData::_handles during the
5197   // concurrent marking phase. These oops point to newly allocated objects
5198   // that are guaranteed to be kept alive. Either by the direct allocation
5199   // code, or when the young collector processes the roots. Hence,
5200   // we don't have to revisit the _handles block during the remark phase.
5201 
5202   verify_work_stacks_empty();
5203   // Restore evacuated mark words, if any, used for overflow list links
5204   restore_preserved_marks_if_any();
5205 
5206   verify_overflow_empty();
5207 }
5208 
5209 ////////////////////////////////////////////////////////
5210 // Parallel Reference Processing Task Proxy Class
5211 ////////////////////////////////////////////////////////
5212 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5213   OopTaskQueueSet*       _queues;
5214   ParallelTaskTerminator _terminator;
5215  public:
5216   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5217     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5218   ParallelTaskTerminator* terminator() { return &_terminator; }
5219   OopTaskQueueSet* queues() { return _queues; }
5220 };
5221 
5222 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5223   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5224   CMSCollector*          _collector;
5225   CMSBitMap*             _mark_bit_map;
5226   const MemRegion        _span;
5227   ProcessTask&           _task;
5228 
5229 public:
5230   CMSRefProcTaskProxy(ProcessTask&     task,
5231                       CMSCollector*    collector,
5232                       const MemRegion& span,
5233                       CMSBitMap*       mark_bit_map,
5234                       AbstractWorkGang* workers,
5235                       OopTaskQueueSet* task_queues):
5236     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5237       task_queues,
5238       workers->active_workers()),
5239     _task(task),
5240     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5241   {
5242     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5243            "Inconsistency in _span");
5244   }
5245 
5246   OopTaskQueueSet* task_queues() { return queues(); }
5247 
5248   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5249 
5250   void do_work_steal(int i,
5251                      CMSParDrainMarkingStackClosure* drain,
5252                      CMSParKeepAliveClosure* keep_alive,
5253                      int* seed);
5254 
5255   virtual void work(uint worker_id);
5256 };
5257 
5258 void CMSRefProcTaskProxy::work(uint worker_id) {
5259   ResourceMark rm;
5260   HandleMark hm;
5261   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5262   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5263                                         _mark_bit_map,
5264                                         work_queue(worker_id));
5265   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5266                                                  _mark_bit_map,
5267                                                  work_queue(worker_id));
5268   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5269   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5270   if (_task.marks_oops_alive()) {
5271     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5272                   _collector->hash_seed(worker_id));
5273   }
5274   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5275   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5276 }
5277 
5278 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5279   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5280   EnqueueTask& _task;
5281 
5282 public:
5283   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5284     : AbstractGangTask("Enqueue reference objects in parallel"),
5285       _task(task)
5286   { }
5287 
5288   virtual void work(uint worker_id)
5289   {
5290     _task.work(worker_id);
5291   }
5292 };
5293 
5294 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5295   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5296    _span(span),
5297    _bit_map(bit_map),
5298    _work_queue(work_queue),
5299    _mark_and_push(collector, span, bit_map, work_queue),
5300    _low_water_mark(MIN2((work_queue->max_elems()/4),
5301                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5302 { }
5303 
5304 // . see if we can share work_queues with ParNew? XXX
5305 void CMSRefProcTaskProxy::do_work_steal(int i,
5306   CMSParDrainMarkingStackClosure* drain,
5307   CMSParKeepAliveClosure* keep_alive,
5308   int* seed) {
5309   OopTaskQueue* work_q = work_queue(i);
5310   NOT_PRODUCT(int num_steals = 0;)
5311   oop obj_to_scan;
5312 
5313   while (true) {
5314     // Completely finish any left over work from (an) earlier round(s)
5315     drain->trim_queue(0);
5316     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5317                                          (size_t)ParGCDesiredObjsFromOverflowList);
5318     // Now check if there's any work in the overflow list
5319     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5320     // only affects the number of attempts made to get work from the
5321     // overflow list and does not affect the number of workers.  Just
5322     // pass ParallelGCThreads so this behavior is unchanged.
5323     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5324                                                 work_q,
5325                                                 ParallelGCThreads)) {
5326       // Found something in global overflow list;
5327       // not yet ready to go stealing work from others.
5328       // We'd like to assert(work_q->size() != 0, ...)
5329       // because we just took work from the overflow list,
5330       // but of course we can't, since all of that might have
5331       // been already stolen from us.
5332       continue;
5333     }
5334     // Verify that we have no work before we resort to stealing
5335     assert(work_q->size() == 0, "Have work, shouldn't steal");
5336     // Try to steal from other queues that have work
5337     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5338       NOT_PRODUCT(num_steals++;)
5339       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5340       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5341       // Do scanning work
5342       obj_to_scan->oop_iterate(keep_alive);
5343       // Loop around, finish this work, and try to steal some more
5344     } else if (terminator()->offer_termination()) {
5345       break;  // nirvana from the infinite cycle
5346     }
5347   }
5348   NOT_PRODUCT(
5349     if (PrintCMSStatistics != 0) {
5350       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5351     }
5352   )
5353 }
5354 
5355 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5356 {
5357   GenCollectedHeap* gch = GenCollectedHeap::heap();
5358   WorkGang* workers = gch->workers();
5359   assert(workers != NULL, "Need parallel worker threads.");
5360   CMSRefProcTaskProxy rp_task(task, &_collector,
5361                               _collector.ref_processor()->span(),
5362                               _collector.markBitMap(),
5363                               workers, _collector.task_queues());
5364   workers->run_task(&rp_task);
5365 }
5366 
5367 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5368 {
5369 
5370   GenCollectedHeap* gch = GenCollectedHeap::heap();
5371   WorkGang* workers = gch->workers();
5372   assert(workers != NULL, "Need parallel worker threads.");
5373   CMSRefEnqueueTaskProxy enq_task(task);
5374   workers->run_task(&enq_task);
5375 }
5376 
5377 void CMSCollector::refProcessingWork() {
5378   ResourceMark rm;
5379   HandleMark   hm;
5380 
5381   ReferenceProcessor* rp = ref_processor();
5382   assert(rp->span().equals(_span), "Spans should be equal");
5383   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5384   // Process weak references.
5385   rp->setup_policy(false);
5386   verify_work_stacks_empty();
5387 
5388   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5389                                           &_markStack, false /* !preclean */);
5390   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5391                                 _span, &_markBitMap, &_markStack,
5392                                 &cmsKeepAliveClosure, false /* !preclean */);
5393   {
5394     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
5395 
5396     ReferenceProcessorStats stats;
5397     if (rp->processing_is_mt()) {
5398       // Set the degree of MT here.  If the discovery is done MT, there
5399       // may have been a different number of threads doing the discovery
5400       // and a different number of discovered lists may have Ref objects.
5401       // That is OK as long as the Reference lists are balanced (see
5402       // balance_all_queues() and balance_queues()).
5403       GenCollectedHeap* gch = GenCollectedHeap::heap();
5404       uint active_workers = ParallelGCThreads;
5405       WorkGang* workers = gch->workers();
5406       if (workers != NULL) {
5407         active_workers = workers->active_workers();
5408         // The expectation is that active_workers will have already
5409         // been set to a reasonable value.  If it has not been set,
5410         // investigate.
5411         assert(active_workers > 0, "Should have been set during scavenge");
5412       }
5413       rp->set_active_mt_degree(active_workers);
5414       CMSRefProcTaskExecutor task_executor(*this);
5415       stats = rp->process_discovered_references(&_is_alive_closure,
5416                                         &cmsKeepAliveClosure,
5417                                         &cmsDrainMarkingStackClosure,
5418                                         &task_executor,
5419                                         _gc_timer_cm);
5420     } else {
5421       stats = rp->process_discovered_references(&_is_alive_closure,
5422                                         &cmsKeepAliveClosure,
5423                                         &cmsDrainMarkingStackClosure,
5424                                         NULL,
5425                                         _gc_timer_cm);
5426     }
5427     _gc_tracer_cm->report_gc_reference_stats(stats);
5428 
5429   }
5430 
5431   // This is the point where the entire marking should have completed.
5432   verify_work_stacks_empty();
5433 
5434   if (should_unload_classes()) {
5435     {
5436       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
5437 
5438       // Unload classes and purge the SystemDictionary.
5439       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5440 
5441       // Unload nmethods.
5442       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5443 
5444       // Prune dead klasses from subklass/sibling/implementor lists.
5445       Klass::clean_weak_klass_links(&_is_alive_closure);
5446     }
5447 
5448     {
5449       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
5450       // Clean up unreferenced symbols in symbol table.
5451       SymbolTable::unlink();
5452     }
5453 
5454     {
5455       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
5456       // Delete entries for dead interned strings.
5457       StringTable::unlink(&_is_alive_closure);
5458     }
5459   }
5460 
5461 
5462   // Restore any preserved marks as a result of mark stack or
5463   // work queue overflow
5464   restore_preserved_marks_if_any();  // done single-threaded for now
5465 
5466   rp->set_enqueuing_is_done(true);
5467   if (rp->processing_is_mt()) {
5468     rp->balance_all_queues();
5469     CMSRefProcTaskExecutor task_executor(*this);
5470     rp->enqueue_discovered_references(&task_executor);
5471   } else {
5472     rp->enqueue_discovered_references(NULL);
5473   }
5474   rp->verify_no_references_recorded();
5475   assert(!rp->discovery_enabled(), "should have been disabled");
5476 }
5477 
5478 #ifndef PRODUCT
5479 void CMSCollector::check_correct_thread_executing() {
5480   Thread* t = Thread::current();
5481   // Only the VM thread or the CMS thread should be here.
5482   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5483          "Unexpected thread type");
5484   // If this is the vm thread, the foreground process
5485   // should not be waiting.  Note that _foregroundGCIsActive is
5486   // true while the foreground collector is waiting.
5487   if (_foregroundGCShouldWait) {
5488     // We cannot be the VM thread
5489     assert(t->is_ConcurrentGC_thread(),
5490            "Should be CMS thread");
5491   } else {
5492     // We can be the CMS thread only if we are in a stop-world
5493     // phase of CMS collection.
5494     if (t->is_ConcurrentGC_thread()) {
5495       assert(_collectorState == InitialMarking ||
5496              _collectorState == FinalMarking,
5497              "Should be a stop-world phase");
5498       // The CMS thread should be holding the CMS_token.
5499       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5500              "Potential interference with concurrently "
5501              "executing VM thread");
5502     }
5503   }
5504 }
5505 #endif
5506 
5507 void CMSCollector::sweep() {
5508   assert(_collectorState == Sweeping, "just checking");
5509   check_correct_thread_executing();
5510   verify_work_stacks_empty();
5511   verify_overflow_empty();
5512   increment_sweep_count();
5513   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5514 
5515   _inter_sweep_timer.stop();
5516   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5517 
5518   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5519   _intra_sweep_timer.reset();
5520   _intra_sweep_timer.start();
5521   {
5522     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5523     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
5524     // First sweep the old gen
5525     {
5526       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5527                                bitMapLock());
5528       sweepWork(_cmsGen);
5529     }
5530 
5531     // Update Universe::_heap_*_at_gc figures.
5532     // We need all the free list locks to make the abstract state
5533     // transition from Sweeping to Resetting. See detailed note
5534     // further below.
5535     {
5536       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5537       // Update heap occupancy information which is used as
5538       // input to soft ref clearing policy at the next gc.
5539       Universe::update_heap_info_at_gc();
5540       _collectorState = Resizing;
5541     }
5542   }
5543   verify_work_stacks_empty();
5544   verify_overflow_empty();
5545 
5546   if (should_unload_classes()) {
5547     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5548     // requires that the virtual spaces are stable and not deleted.
5549     ClassLoaderDataGraph::set_should_purge(true);
5550   }
5551 
5552   _intra_sweep_timer.stop();
5553   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5554 
5555   _inter_sweep_timer.reset();
5556   _inter_sweep_timer.start();
5557 
5558   // We need to use a monotonically non-decreasing time in ms
5559   // or we will see time-warp warnings and os::javaTimeMillis()
5560   // does not guarantee monotonicity.
5561   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5562   update_time_of_last_gc(now);
5563 
5564   // NOTE on abstract state transitions:
5565   // Mutators allocate-live and/or mark the mod-union table dirty
5566   // based on the state of the collection.  The former is done in
5567   // the interval [Marking, Sweeping] and the latter in the interval
5568   // [Marking, Sweeping).  Thus the transitions into the Marking state
5569   // and out of the Sweeping state must be synchronously visible
5570   // globally to the mutators.
5571   // The transition into the Marking state happens with the world
5572   // stopped so the mutators will globally see it.  Sweeping is
5573   // done asynchronously by the background collector so the transition
5574   // from the Sweeping state to the Resizing state must be done
5575   // under the freelistLock (as is the check for whether to
5576   // allocate-live and whether to dirty the mod-union table).
5577   assert(_collectorState == Resizing, "Change of collector state to"
5578     " Resizing must be done under the freelistLocks (plural)");
5579 
5580   // Now that sweeping has been completed, we clear
5581   // the incremental_collection_failed flag,
5582   // thus inviting a younger gen collection to promote into
5583   // this generation. If such a promotion may still fail,
5584   // the flag will be set again when a young collection is
5585   // attempted.
5586   GenCollectedHeap* gch = GenCollectedHeap::heap();
5587   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5588   gch->update_full_collections_completed(_collection_count_start);
5589 }
5590 
5591 // FIX ME!!! Looks like this belongs in CFLSpace, with
5592 // CMSGen merely delegating to it.
5593 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5594   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5595   HeapWord*  minAddr        = _cmsSpace->bottom();
5596   HeapWord*  largestAddr    =
5597     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5598   if (largestAddr == NULL) {
5599     // The dictionary appears to be empty.  In this case
5600     // try to coalesce at the end of the heap.
5601     largestAddr = _cmsSpace->end();
5602   }
5603   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5604   size_t nearLargestOffset =
5605     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5606   if (PrintFLSStatistics != 0) {
5607     gclog_or_tty->print_cr(
5608       "CMS: Large Block: " PTR_FORMAT ";"
5609       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5610       p2i(largestAddr),
5611       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5612   }
5613   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5614 }
5615 
5616 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5617   return addr >= _cmsSpace->nearLargestChunk();
5618 }
5619 
5620 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5621   return _cmsSpace->find_chunk_at_end();
5622 }
5623 
5624 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5625                                                     bool full) {
5626   // If the young generation has been collected, gather any statistics
5627   // that are of interest at this point.
5628   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5629   if (!full && current_is_young) {
5630     // Gather statistics on the young generation collection.
5631     collector()->stats().record_gc0_end(used());
5632   }
5633 }
5634 
5635 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5636   // We iterate over the space(s) underlying this generation,
5637   // checking the mark bit map to see if the bits corresponding
5638   // to specific blocks are marked or not. Blocks that are
5639   // marked are live and are not swept up. All remaining blocks
5640   // are swept up, with coalescing on-the-fly as we sweep up
5641   // contiguous free and/or garbage blocks:
5642   // We need to ensure that the sweeper synchronizes with allocators
5643   // and stop-the-world collectors. In particular, the following
5644   // locks are used:
5645   // . CMS token: if this is held, a stop the world collection cannot occur
5646   // . freelistLock: if this is held no allocation can occur from this
5647   //                 generation by another thread
5648   // . bitMapLock: if this is held, no other thread can access or update
5649   //
5650 
5651   // Note that we need to hold the freelistLock if we use
5652   // block iterate below; else the iterator might go awry if
5653   // a mutator (or promotion) causes block contents to change
5654   // (for instance if the allocator divvies up a block).
5655   // If we hold the free list lock, for all practical purposes
5656   // young generation GC's can't occur (they'll usually need to
5657   // promote), so we might as well prevent all young generation
5658   // GC's while we do a sweeping step. For the same reason, we might
5659   // as well take the bit map lock for the entire duration
5660 
5661   // check that we hold the requisite locks
5662   assert(have_cms_token(), "Should hold cms token");
5663   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5664   assert_lock_strong(old_gen->freelistLock());
5665   assert_lock_strong(bitMapLock());
5666 
5667   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5668   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5669   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5670                                           _inter_sweep_estimate.padded_average(),
5671                                           _intra_sweep_estimate.padded_average());
5672   old_gen->setNearLargestChunk();
5673 
5674   {
5675     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5676     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5677     // We need to free-up/coalesce garbage/blocks from a
5678     // co-terminal free run. This is done in the SweepClosure
5679     // destructor; so, do not remove this scope, else the
5680     // end-of-sweep-census below will be off by a little bit.
5681   }
5682   old_gen->cmsSpace()->sweep_completed();
5683   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5684   if (should_unload_classes()) {                // unloaded classes this cycle,
5685     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5686   } else {                                      // did not unload classes,
5687     _concurrent_cycles_since_last_unload++;     // ... increment count
5688   }
5689 }
5690 
5691 // Reset CMS data structures (for now just the marking bit map)
5692 // preparatory for the next cycle.
5693 void CMSCollector::reset_concurrent() {
5694   CMSTokenSyncWithLocks ts(true, bitMapLock());
5695 
5696   // If the state is not "Resetting", the foreground  thread
5697   // has done a collection and the resetting.
5698   if (_collectorState != Resetting) {
5699     assert(_collectorState == Idling, "The state should only change"
5700       " because the foreground collector has finished the collection");
5701     return;
5702   }
5703 
5704   // Clear the mark bitmap (no grey objects to start with)
5705   // for the next cycle.
5706   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5707   CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
5708 
5709   HeapWord* curAddr = _markBitMap.startWord();
5710   while (curAddr < _markBitMap.endWord()) {
5711     size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5712     MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5713     _markBitMap.clear_large_range(chunk);
5714     if (ConcurrentMarkSweepThread::should_yield() &&
5715         !foregroundGCIsActive() &&
5716         CMSYield) {
5717       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5718              "CMS thread should hold CMS token");
5719       assert_lock_strong(bitMapLock());
5720       bitMapLock()->unlock();
5721       ConcurrentMarkSweepThread::desynchronize(true);
5722       stopTimer();
5723       if (PrintCMSStatistics != 0) {
5724         incrementYields();
5725       }
5726 
5727       // See the comment in coordinator_yield()
5728       for (unsigned i = 0; i < CMSYieldSleepCount &&
5729                        ConcurrentMarkSweepThread::should_yield() &&
5730                        !CMSCollector::foregroundGCIsActive(); ++i) {
5731         os::sleep(Thread::current(), 1, false);
5732       }
5733 
5734       ConcurrentMarkSweepThread::synchronize(true);
5735       bitMapLock()->lock_without_safepoint_check();
5736       startTimer();
5737     }
5738     curAddr = chunk.end();
5739   }
5740   // A successful mostly concurrent collection has been done.
5741   // Because only the full (i.e., concurrent mode failure) collections
5742   // are being measured for gc overhead limits, clean the "near" flag
5743   // and count.
5744   size_policy()->reset_gc_overhead_limit_count();
5745   _collectorState = Idling;
5746 
5747   register_gc_end();
5748 }
5749 
5750 // Same as above but for STW paths
5751 void CMSCollector::reset_stw() {
5752   // already have the lock
5753   assert(_collectorState == Resetting, "just checking");
5754   assert_lock_strong(bitMapLock());
5755   GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5756   _markBitMap.clear_all();
5757   _collectorState = Idling;
5758   register_gc_end();
5759 }
5760 
5761 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5762   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5763   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
5764   TraceCollectorStats tcs(counters());
5765 
5766   switch (op) {
5767     case CMS_op_checkpointRootsInitial: {
5768       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5769       checkpointRootsInitial();
5770       if (PrintGC) {
5771         _cmsGen->printOccupancy("initial-mark");
5772       }
5773       break;
5774     }
5775     case CMS_op_checkpointRootsFinal: {
5776       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5777       checkpointRootsFinal();
5778       if (PrintGC) {
5779         _cmsGen->printOccupancy("remark");
5780       }
5781       break;
5782     }
5783     default:
5784       fatal("No such CMS_op");
5785   }
5786 }
5787 
5788 #ifndef PRODUCT
5789 size_t const CMSCollector::skip_header_HeapWords() {
5790   return FreeChunk::header_size();
5791 }
5792 
5793 // Try and collect here conditions that should hold when
5794 // CMS thread is exiting. The idea is that the foreground GC
5795 // thread should not be blocked if it wants to terminate
5796 // the CMS thread and yet continue to run the VM for a while
5797 // after that.
5798 void CMSCollector::verify_ok_to_terminate() const {
5799   assert(Thread::current()->is_ConcurrentGC_thread(),
5800          "should be called by CMS thread");
5801   assert(!_foregroundGCShouldWait, "should be false");
5802   // We could check here that all the various low-level locks
5803   // are not held by the CMS thread, but that is overkill; see
5804   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5805   // is checked.
5806 }
5807 #endif
5808 
5809 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5810    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5811           "missing Printezis mark?");
5812   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5813   size_t size = pointer_delta(nextOneAddr + 1, addr);
5814   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5815          "alignment problem");
5816   assert(size >= 3, "Necessary for Printezis marks to work");
5817   return size;
5818 }
5819 
5820 // A variant of the above (block_size_using_printezis_bits()) except
5821 // that we return 0 if the P-bits are not yet set.
5822 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5823   if (_markBitMap.isMarked(addr + 1)) {
5824     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5825     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5826     size_t size = pointer_delta(nextOneAddr + 1, addr);
5827     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5828            "alignment problem");
5829     assert(size >= 3, "Necessary for Printezis marks to work");
5830     return size;
5831   }
5832   return 0;
5833 }
5834 
5835 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5836   size_t sz = 0;
5837   oop p = (oop)addr;
5838   if (p->klass_or_null() != NULL) {
5839     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5840   } else {
5841     sz = block_size_using_printezis_bits(addr);
5842   }
5843   assert(sz > 0, "size must be nonzero");
5844   HeapWord* next_block = addr + sz;
5845   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5846                                              CardTableModRefBS::card_size);
5847   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5848          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5849          "must be different cards");
5850   return next_card;
5851 }
5852 
5853 
5854 // CMS Bit Map Wrapper /////////////////////////////////////////
5855 
5856 // Construct a CMS bit map infrastructure, but don't create the
5857 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5858 // further below.
5859 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5860   _bm(),
5861   _shifter(shifter),
5862   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5863                                     Monitor::_safepoint_check_sometimes) : NULL)
5864 {
5865   _bmStartWord = 0;
5866   _bmWordSize  = 0;
5867 }
5868 
5869 bool CMSBitMap::allocate(MemRegion mr) {
5870   _bmStartWord = mr.start();
5871   _bmWordSize  = mr.word_size();
5872   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5873                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5874   if (!brs.is_reserved()) {
5875     warning("CMS bit map allocation failure");
5876     return false;
5877   }
5878   // For now we'll just commit all of the bit map up front.
5879   // Later on we'll try to be more parsimonious with swap.
5880   if (!_virtual_space.initialize(brs, brs.size())) {
5881     warning("CMS bit map backing store failure");
5882     return false;
5883   }
5884   assert(_virtual_space.committed_size() == brs.size(),
5885          "didn't reserve backing store for all of CMS bit map?");
5886   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5887   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5888          _bmWordSize, "inconsistency in bit map sizing");
5889   _bm.set_size(_bmWordSize >> _shifter);
5890 
5891   // bm.clear(); // can we rely on getting zero'd memory? verify below
5892   assert(isAllClear(),
5893          "Expected zero'd memory from ReservedSpace constructor");
5894   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5895          "consistency check");
5896   return true;
5897 }
5898 
5899 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5900   HeapWord *next_addr, *end_addr, *last_addr;
5901   assert_locked();
5902   assert(covers(mr), "out-of-range error");
5903   // XXX assert that start and end are appropriately aligned
5904   for (next_addr = mr.start(), end_addr = mr.end();
5905        next_addr < end_addr; next_addr = last_addr) {
5906     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5907     last_addr = dirty_region.end();
5908     if (!dirty_region.is_empty()) {
5909       cl->do_MemRegion(dirty_region);
5910     } else {
5911       assert(last_addr == end_addr, "program logic");
5912       return;
5913     }
5914   }
5915 }
5916 
5917 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5918   _bm.print_on_error(st, prefix);
5919 }
5920 
5921 #ifndef PRODUCT
5922 void CMSBitMap::assert_locked() const {
5923   CMSLockVerifier::assert_locked(lock());
5924 }
5925 
5926 bool CMSBitMap::covers(MemRegion mr) const {
5927   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5928   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5929          "size inconsistency");
5930   return (mr.start() >= _bmStartWord) &&
5931          (mr.end()   <= endWord());
5932 }
5933 
5934 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5935     return (start >= _bmStartWord && (start + size) <= endWord());
5936 }
5937 
5938 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5939   // verify that there are no 1 bits in the interval [left, right)
5940   FalseBitMapClosure falseBitMapClosure;
5941   iterate(&falseBitMapClosure, left, right);
5942 }
5943 
5944 void CMSBitMap::region_invariant(MemRegion mr)
5945 {
5946   assert_locked();
5947   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5948   assert(!mr.is_empty(), "unexpected empty region");
5949   assert(covers(mr), "mr should be covered by bit map");
5950   // convert address range into offset range
5951   size_t start_ofs = heapWordToOffset(mr.start());
5952   // Make sure that end() is appropriately aligned
5953   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5954                         (1 << (_shifter+LogHeapWordSize))),
5955          "Misaligned mr.end()");
5956   size_t end_ofs   = heapWordToOffset(mr.end());
5957   assert(end_ofs > start_ofs, "Should mark at least one bit");
5958 }
5959 
5960 #endif
5961 
5962 bool CMSMarkStack::allocate(size_t size) {
5963   // allocate a stack of the requisite depth
5964   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5965                    size * sizeof(oop)));
5966   if (!rs.is_reserved()) {
5967     warning("CMSMarkStack allocation failure");
5968     return false;
5969   }
5970   if (!_virtual_space.initialize(rs, rs.size())) {
5971     warning("CMSMarkStack backing store failure");
5972     return false;
5973   }
5974   assert(_virtual_space.committed_size() == rs.size(),
5975          "didn't reserve backing store for all of CMS stack?");
5976   _base = (oop*)(_virtual_space.low());
5977   _index = 0;
5978   _capacity = size;
5979   NOT_PRODUCT(_max_depth = 0);
5980   return true;
5981 }
5982 
5983 // XXX FIX ME !!! In the MT case we come in here holding a
5984 // leaf lock. For printing we need to take a further lock
5985 // which has lower rank. We need to recalibrate the two
5986 // lock-ranks involved in order to be able to print the
5987 // messages below. (Or defer the printing to the caller.
5988 // For now we take the expedient path of just disabling the
5989 // messages for the problematic case.)
5990 void CMSMarkStack::expand() {
5991   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5992   if (_capacity == MarkStackSizeMax) {
5993     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
5994       // We print a warning message only once per CMS cycle.
5995       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
5996     }
5997     return;
5998   }
5999   // Double capacity if possible
6000   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6001   // Do not give up existing stack until we have managed to
6002   // get the double capacity that we desired.
6003   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6004                    new_capacity * sizeof(oop)));
6005   if (rs.is_reserved()) {
6006     // Release the backing store associated with old stack
6007     _virtual_space.release();
6008     // Reinitialize virtual space for new stack
6009     if (!_virtual_space.initialize(rs, rs.size())) {
6010       fatal("Not enough swap for expanded marking stack");
6011     }
6012     _base = (oop*)(_virtual_space.low());
6013     _index = 0;
6014     _capacity = new_capacity;
6015   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6016     // Failed to double capacity, continue;
6017     // we print a detail message only once per CMS cycle.
6018     gclog_or_tty->print(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to "
6019             SIZE_FORMAT "K",
6020             _capacity / K, new_capacity / K);
6021   }
6022 }
6023 
6024 
6025 // Closures
6026 // XXX: there seems to be a lot of code  duplication here;
6027 // should refactor and consolidate common code.
6028 
6029 // This closure is used to mark refs into the CMS generation in
6030 // the CMS bit map. Called at the first checkpoint. This closure
6031 // assumes that we do not need to re-mark dirty cards; if the CMS
6032 // generation on which this is used is not an oldest
6033 // generation then this will lose younger_gen cards!
6034 
6035 MarkRefsIntoClosure::MarkRefsIntoClosure(
6036   MemRegion span, CMSBitMap* bitMap):
6037     _span(span),
6038     _bitMap(bitMap)
6039 {
6040   assert(ref_processor() == NULL, "deliberately left NULL");
6041   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6042 }
6043 
6044 void MarkRefsIntoClosure::do_oop(oop obj) {
6045   // if p points into _span, then mark corresponding bit in _markBitMap
6046   assert(obj->is_oop(), "expected an oop");
6047   HeapWord* addr = (HeapWord*)obj;
6048   if (_span.contains(addr)) {
6049     // this should be made more efficient
6050     _bitMap->mark(addr);
6051   }
6052 }
6053 
6054 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6055 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6056 
6057 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6058   MemRegion span, CMSBitMap* bitMap):
6059     _span(span),
6060     _bitMap(bitMap)
6061 {
6062   assert(ref_processor() == NULL, "deliberately left NULL");
6063   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6064 }
6065 
6066 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6067   // if p points into _span, then mark corresponding bit in _markBitMap
6068   assert(obj->is_oop(), "expected an oop");
6069   HeapWord* addr = (HeapWord*)obj;
6070   if (_span.contains(addr)) {
6071     // this should be made more efficient
6072     _bitMap->par_mark(addr);
6073   }
6074 }
6075 
6076 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6077 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6078 
6079 // A variant of the above, used for CMS marking verification.
6080 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6081   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6082     _span(span),
6083     _verification_bm(verification_bm),
6084     _cms_bm(cms_bm)
6085 {
6086   assert(ref_processor() == NULL, "deliberately left NULL");
6087   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6088 }
6089 
6090 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6091   // if p points into _span, then mark corresponding bit in _markBitMap
6092   assert(obj->is_oop(), "expected an oop");
6093   HeapWord* addr = (HeapWord*)obj;
6094   if (_span.contains(addr)) {
6095     _verification_bm->mark(addr);
6096     if (!_cms_bm->isMarked(addr)) {
6097       oop(addr)->print();
6098       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6099       fatal("... aborting");
6100     }
6101   }
6102 }
6103 
6104 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6105 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6106 
6107 //////////////////////////////////////////////////
6108 // MarkRefsIntoAndScanClosure
6109 //////////////////////////////////////////////////
6110 
6111 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6112                                                        ReferenceProcessor* rp,
6113                                                        CMSBitMap* bit_map,
6114                                                        CMSBitMap* mod_union_table,
6115                                                        CMSMarkStack*  mark_stack,
6116                                                        CMSCollector* collector,
6117                                                        bool should_yield,
6118                                                        bool concurrent_precleaning):
6119   _collector(collector),
6120   _span(span),
6121   _bit_map(bit_map),
6122   _mark_stack(mark_stack),
6123   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6124                       mark_stack, concurrent_precleaning),
6125   _yield(should_yield),
6126   _concurrent_precleaning(concurrent_precleaning),
6127   _freelistLock(NULL)
6128 {
6129   // FIXME: Should initialize in base class constructor.
6130   assert(rp != NULL, "ref_processor shouldn't be NULL");
6131   set_ref_processor_internal(rp);
6132 }
6133 
6134 // This closure is used to mark refs into the CMS generation at the
6135 // second (final) checkpoint, and to scan and transitively follow
6136 // the unmarked oops. It is also used during the concurrent precleaning
6137 // phase while scanning objects on dirty cards in the CMS generation.
6138 // The marks are made in the marking bit map and the marking stack is
6139 // used for keeping the (newly) grey objects during the scan.
6140 // The parallel version (Par_...) appears further below.
6141 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6142   if (obj != NULL) {
6143     assert(obj->is_oop(), "expected an oop");
6144     HeapWord* addr = (HeapWord*)obj;
6145     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6146     assert(_collector->overflow_list_is_empty(),
6147            "overflow list should be empty");
6148     if (_span.contains(addr) &&
6149         !_bit_map->isMarked(addr)) {
6150       // mark bit map (object is now grey)
6151       _bit_map->mark(addr);
6152       // push on marking stack (stack should be empty), and drain the
6153       // stack by applying this closure to the oops in the oops popped
6154       // from the stack (i.e. blacken the grey objects)
6155       bool res = _mark_stack->push(obj);
6156       assert(res, "Should have space to push on empty stack");
6157       do {
6158         oop new_oop = _mark_stack->pop();
6159         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6160         assert(_bit_map->isMarked((HeapWord*)new_oop),
6161                "only grey objects on this stack");
6162         // iterate over the oops in this oop, marking and pushing
6163         // the ones in CMS heap (i.e. in _span).
6164         new_oop->oop_iterate(&_pushAndMarkClosure);
6165         // check if it's time to yield
6166         do_yield_check();
6167       } while (!_mark_stack->isEmpty() ||
6168                (!_concurrent_precleaning && take_from_overflow_list()));
6169         // if marking stack is empty, and we are not doing this
6170         // during precleaning, then check the overflow list
6171     }
6172     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6173     assert(_collector->overflow_list_is_empty(),
6174            "overflow list was drained above");
6175 
6176     assert(_collector->no_preserved_marks(),
6177            "All preserved marks should have been restored above");
6178   }
6179 }
6180 
6181 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6182 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6183 
6184 void MarkRefsIntoAndScanClosure::do_yield_work() {
6185   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6186          "CMS thread should hold CMS token");
6187   assert_lock_strong(_freelistLock);
6188   assert_lock_strong(_bit_map->lock());
6189   // relinquish the free_list_lock and bitMaplock()
6190   _bit_map->lock()->unlock();
6191   _freelistLock->unlock();
6192   ConcurrentMarkSweepThread::desynchronize(true);
6193   _collector->stopTimer();
6194   if (PrintCMSStatistics != 0) {
6195     _collector->incrementYields();
6196   }
6197 
6198   // See the comment in coordinator_yield()
6199   for (unsigned i = 0;
6200        i < CMSYieldSleepCount &&
6201        ConcurrentMarkSweepThread::should_yield() &&
6202        !CMSCollector::foregroundGCIsActive();
6203        ++i) {
6204     os::sleep(Thread::current(), 1, false);
6205   }
6206 
6207   ConcurrentMarkSweepThread::synchronize(true);
6208   _freelistLock->lock_without_safepoint_check();
6209   _bit_map->lock()->lock_without_safepoint_check();
6210   _collector->startTimer();
6211 }
6212 
6213 ///////////////////////////////////////////////////////////
6214 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6215 //                                 MarkRefsIntoAndScanClosure
6216 ///////////////////////////////////////////////////////////
6217 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6218   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6219   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6220   _span(span),
6221   _bit_map(bit_map),
6222   _work_queue(work_queue),
6223   _low_water_mark(MIN2((work_queue->max_elems()/4),
6224                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6225   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6226 {
6227   // FIXME: Should initialize in base class constructor.
6228   assert(rp != NULL, "ref_processor shouldn't be NULL");
6229   set_ref_processor_internal(rp);
6230 }
6231 
6232 // This closure is used to mark refs into the CMS generation at the
6233 // second (final) checkpoint, and to scan and transitively follow
6234 // the unmarked oops. The marks are made in the marking bit map and
6235 // the work_queue is used for keeping the (newly) grey objects during
6236 // the scan phase whence they are also available for stealing by parallel
6237 // threads. Since the marking bit map is shared, updates are
6238 // synchronized (via CAS).
6239 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6240   if (obj != NULL) {
6241     // Ignore mark word because this could be an already marked oop
6242     // that may be chained at the end of the overflow list.
6243     assert(obj->is_oop(true), "expected an oop");
6244     HeapWord* addr = (HeapWord*)obj;
6245     if (_span.contains(addr) &&
6246         !_bit_map->isMarked(addr)) {
6247       // mark bit map (object will become grey):
6248       // It is possible for several threads to be
6249       // trying to "claim" this object concurrently;
6250       // the unique thread that succeeds in marking the
6251       // object first will do the subsequent push on
6252       // to the work queue (or overflow list).
6253       if (_bit_map->par_mark(addr)) {
6254         // push on work_queue (which may not be empty), and trim the
6255         // queue to an appropriate length by applying this closure to
6256         // the oops in the oops popped from the stack (i.e. blacken the
6257         // grey objects)
6258         bool res = _work_queue->push(obj);
6259         assert(res, "Low water mark should be less than capacity?");
6260         trim_queue(_low_water_mark);
6261       } // Else, another thread claimed the object
6262     }
6263   }
6264 }
6265 
6266 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6267 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6268 
6269 // This closure is used to rescan the marked objects on the dirty cards
6270 // in the mod union table and the card table proper.
6271 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6272   oop p, MemRegion mr) {
6273 
6274   size_t size = 0;
6275   HeapWord* addr = (HeapWord*)p;
6276   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6277   assert(_span.contains(addr), "we are scanning the CMS generation");
6278   // check if it's time to yield
6279   if (do_yield_check()) {
6280     // We yielded for some foreground stop-world work,
6281     // and we have been asked to abort this ongoing preclean cycle.
6282     return 0;
6283   }
6284   if (_bitMap->isMarked(addr)) {
6285     // it's marked; is it potentially uninitialized?
6286     if (p->klass_or_null() != NULL) {
6287         // an initialized object; ignore mark word in verification below
6288         // since we are running concurrent with mutators
6289         assert(p->is_oop(true), "should be an oop");
6290         if (p->is_objArray()) {
6291           // objArrays are precisely marked; restrict scanning
6292           // to dirty cards only.
6293           size = CompactibleFreeListSpace::adjustObjectSize(
6294                    p->oop_iterate_size(_scanningClosure, mr));
6295         } else {
6296           // A non-array may have been imprecisely marked; we need
6297           // to scan object in its entirety.
6298           size = CompactibleFreeListSpace::adjustObjectSize(
6299                    p->oop_iterate_size(_scanningClosure));
6300         }
6301         #ifdef ASSERT
6302           size_t direct_size =
6303             CompactibleFreeListSpace::adjustObjectSize(p->size());
6304           assert(size == direct_size, "Inconsistency in size");
6305           assert(size >= 3, "Necessary for Printezis marks to work");
6306           if (!_bitMap->isMarked(addr+1)) {
6307             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6308           } else {
6309             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6310             assert(_bitMap->isMarked(addr+size-1),
6311                    "inconsistent Printezis mark");
6312           }
6313         #endif // ASSERT
6314     } else {
6315       // An uninitialized object.
6316       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6317       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6318       size = pointer_delta(nextOneAddr + 1, addr);
6319       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6320              "alignment problem");
6321       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6322       // will dirty the card when the klass pointer is installed in the
6323       // object (signaling the completion of initialization).
6324     }
6325   } else {
6326     // Either a not yet marked object or an uninitialized object
6327     if (p->klass_or_null() == NULL) {
6328       // An uninitialized object, skip to the next card, since
6329       // we may not be able to read its P-bits yet.
6330       assert(size == 0, "Initial value");
6331     } else {
6332       // An object not (yet) reached by marking: we merely need to
6333       // compute its size so as to go look at the next block.
6334       assert(p->is_oop(true), "should be an oop");
6335       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6336     }
6337   }
6338   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6339   return size;
6340 }
6341 
6342 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6343   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6344          "CMS thread should hold CMS token");
6345   assert_lock_strong(_freelistLock);
6346   assert_lock_strong(_bitMap->lock());
6347   // relinquish the free_list_lock and bitMaplock()
6348   _bitMap->lock()->unlock();
6349   _freelistLock->unlock();
6350   ConcurrentMarkSweepThread::desynchronize(true);
6351   _collector->stopTimer();
6352   if (PrintCMSStatistics != 0) {
6353     _collector->incrementYields();
6354   }
6355 
6356   // See the comment in coordinator_yield()
6357   for (unsigned i = 0; i < CMSYieldSleepCount &&
6358                    ConcurrentMarkSweepThread::should_yield() &&
6359                    !CMSCollector::foregroundGCIsActive(); ++i) {
6360     os::sleep(Thread::current(), 1, false);
6361   }
6362 
6363   ConcurrentMarkSweepThread::synchronize(true);
6364   _freelistLock->lock_without_safepoint_check();
6365   _bitMap->lock()->lock_without_safepoint_check();
6366   _collector->startTimer();
6367 }
6368 
6369 
6370 //////////////////////////////////////////////////////////////////
6371 // SurvivorSpacePrecleanClosure
6372 //////////////////////////////////////////////////////////////////
6373 // This (single-threaded) closure is used to preclean the oops in
6374 // the survivor spaces.
6375 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6376 
6377   HeapWord* addr = (HeapWord*)p;
6378   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6379   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6380   assert(p->klass_or_null() != NULL, "object should be initialized");
6381   // an initialized object; ignore mark word in verification below
6382   // since we are running concurrent with mutators
6383   assert(p->is_oop(true), "should be an oop");
6384   // Note that we do not yield while we iterate over
6385   // the interior oops of p, pushing the relevant ones
6386   // on our marking stack.
6387   size_t size = p->oop_iterate_size(_scanning_closure);
6388   do_yield_check();
6389   // Observe that below, we do not abandon the preclean
6390   // phase as soon as we should; rather we empty the
6391   // marking stack before returning. This is to satisfy
6392   // some existing assertions. In general, it may be a
6393   // good idea to abort immediately and complete the marking
6394   // from the grey objects at a later time.
6395   while (!_mark_stack->isEmpty()) {
6396     oop new_oop = _mark_stack->pop();
6397     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6398     assert(_bit_map->isMarked((HeapWord*)new_oop),
6399            "only grey objects on this stack");
6400     // iterate over the oops in this oop, marking and pushing
6401     // the ones in CMS heap (i.e. in _span).
6402     new_oop->oop_iterate(_scanning_closure);
6403     // check if it's time to yield
6404     do_yield_check();
6405   }
6406   unsigned int after_count =
6407     GenCollectedHeap::heap()->total_collections();
6408   bool abort = (_before_count != after_count) ||
6409                _collector->should_abort_preclean();
6410   return abort ? 0 : size;
6411 }
6412 
6413 void SurvivorSpacePrecleanClosure::do_yield_work() {
6414   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6415          "CMS thread should hold CMS token");
6416   assert_lock_strong(_bit_map->lock());
6417   // Relinquish the bit map lock
6418   _bit_map->lock()->unlock();
6419   ConcurrentMarkSweepThread::desynchronize(true);
6420   _collector->stopTimer();
6421   if (PrintCMSStatistics != 0) {
6422     _collector->incrementYields();
6423   }
6424 
6425   // See the comment in coordinator_yield()
6426   for (unsigned i = 0; i < CMSYieldSleepCount &&
6427                        ConcurrentMarkSweepThread::should_yield() &&
6428                        !CMSCollector::foregroundGCIsActive(); ++i) {
6429     os::sleep(Thread::current(), 1, false);
6430   }
6431 
6432   ConcurrentMarkSweepThread::synchronize(true);
6433   _bit_map->lock()->lock_without_safepoint_check();
6434   _collector->startTimer();
6435 }
6436 
6437 // This closure is used to rescan the marked objects on the dirty cards
6438 // in the mod union table and the card table proper. In the parallel
6439 // case, although the bitMap is shared, we do a single read so the
6440 // isMarked() query is "safe".
6441 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6442   // Ignore mark word because we are running concurrent with mutators
6443   assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6444   HeapWord* addr = (HeapWord*)p;
6445   assert(_span.contains(addr), "we are scanning the CMS generation");
6446   bool is_obj_array = false;
6447   #ifdef ASSERT
6448     if (!_parallel) {
6449       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6450       assert(_collector->overflow_list_is_empty(),
6451              "overflow list should be empty");
6452 
6453     }
6454   #endif // ASSERT
6455   if (_bit_map->isMarked(addr)) {
6456     // Obj arrays are precisely marked, non-arrays are not;
6457     // so we scan objArrays precisely and non-arrays in their
6458     // entirety.
6459     if (p->is_objArray()) {
6460       is_obj_array = true;
6461       if (_parallel) {
6462         p->oop_iterate(_par_scan_closure, mr);
6463       } else {
6464         p->oop_iterate(_scan_closure, mr);
6465       }
6466     } else {
6467       if (_parallel) {
6468         p->oop_iterate(_par_scan_closure);
6469       } else {
6470         p->oop_iterate(_scan_closure);
6471       }
6472     }
6473   }
6474   #ifdef ASSERT
6475     if (!_parallel) {
6476       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6477       assert(_collector->overflow_list_is_empty(),
6478              "overflow list should be empty");
6479 
6480     }
6481   #endif // ASSERT
6482   return is_obj_array;
6483 }
6484 
6485 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6486                         MemRegion span,
6487                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6488                         bool should_yield, bool verifying):
6489   _collector(collector),
6490   _span(span),
6491   _bitMap(bitMap),
6492   _mut(&collector->_modUnionTable),
6493   _markStack(markStack),
6494   _yield(should_yield),
6495   _skipBits(0)
6496 {
6497   assert(_markStack->isEmpty(), "stack should be empty");
6498   _finger = _bitMap->startWord();
6499   _threshold = _finger;
6500   assert(_collector->_restart_addr == NULL, "Sanity check");
6501   assert(_span.contains(_finger), "Out of bounds _finger?");
6502   DEBUG_ONLY(_verifying = verifying;)
6503 }
6504 
6505 void MarkFromRootsClosure::reset(HeapWord* addr) {
6506   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6507   assert(_span.contains(addr), "Out of bounds _finger?");
6508   _finger = addr;
6509   _threshold = (HeapWord*)round_to(
6510                  (intptr_t)_finger, CardTableModRefBS::card_size);
6511 }
6512 
6513 // Should revisit to see if this should be restructured for
6514 // greater efficiency.
6515 bool MarkFromRootsClosure::do_bit(size_t offset) {
6516   if (_skipBits > 0) {
6517     _skipBits--;
6518     return true;
6519   }
6520   // convert offset into a HeapWord*
6521   HeapWord* addr = _bitMap->startWord() + offset;
6522   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6523          "address out of range");
6524   assert(_bitMap->isMarked(addr), "tautology");
6525   if (_bitMap->isMarked(addr+1)) {
6526     // this is an allocated but not yet initialized object
6527     assert(_skipBits == 0, "tautology");
6528     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6529     oop p = oop(addr);
6530     if (p->klass_or_null() == NULL) {
6531       DEBUG_ONLY(if (!_verifying) {)
6532         // We re-dirty the cards on which this object lies and increase
6533         // the _threshold so that we'll come back to scan this object
6534         // during the preclean or remark phase. (CMSCleanOnEnter)
6535         if (CMSCleanOnEnter) {
6536           size_t sz = _collector->block_size_using_printezis_bits(addr);
6537           HeapWord* end_card_addr   = (HeapWord*)round_to(
6538                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6539           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6540           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6541           // Bump _threshold to end_card_addr; note that
6542           // _threshold cannot possibly exceed end_card_addr, anyhow.
6543           // This prevents future clearing of the card as the scan proceeds
6544           // to the right.
6545           assert(_threshold <= end_card_addr,
6546                  "Because we are just scanning into this object");
6547           if (_threshold < end_card_addr) {
6548             _threshold = end_card_addr;
6549           }
6550           if (p->klass_or_null() != NULL) {
6551             // Redirty the range of cards...
6552             _mut->mark_range(redirty_range);
6553           } // ...else the setting of klass will dirty the card anyway.
6554         }
6555       DEBUG_ONLY(})
6556       return true;
6557     }
6558   }
6559   scanOopsInOop(addr);
6560   return true;
6561 }
6562 
6563 // We take a break if we've been at this for a while,
6564 // so as to avoid monopolizing the locks involved.
6565 void MarkFromRootsClosure::do_yield_work() {
6566   // First give up the locks, then yield, then re-lock
6567   // We should probably use a constructor/destructor idiom to
6568   // do this unlock/lock or modify the MutexUnlocker class to
6569   // serve our purpose. XXX
6570   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6571          "CMS thread should hold CMS token");
6572   assert_lock_strong(_bitMap->lock());
6573   _bitMap->lock()->unlock();
6574   ConcurrentMarkSweepThread::desynchronize(true);
6575   _collector->stopTimer();
6576   if (PrintCMSStatistics != 0) {
6577     _collector->incrementYields();
6578   }
6579 
6580   // See the comment in coordinator_yield()
6581   for (unsigned i = 0; i < CMSYieldSleepCount &&
6582                        ConcurrentMarkSweepThread::should_yield() &&
6583                        !CMSCollector::foregroundGCIsActive(); ++i) {
6584     os::sleep(Thread::current(), 1, false);
6585   }
6586 
6587   ConcurrentMarkSweepThread::synchronize(true);
6588   _bitMap->lock()->lock_without_safepoint_check();
6589   _collector->startTimer();
6590 }
6591 
6592 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6593   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6594   assert(_markStack->isEmpty(),
6595          "should drain stack to limit stack usage");
6596   // convert ptr to an oop preparatory to scanning
6597   oop obj = oop(ptr);
6598   // Ignore mark word in verification below, since we
6599   // may be running concurrent with mutators.
6600   assert(obj->is_oop(true), "should be an oop");
6601   assert(_finger <= ptr, "_finger runneth ahead");
6602   // advance the finger to right end of this object
6603   _finger = ptr + obj->size();
6604   assert(_finger > ptr, "we just incremented it above");
6605   // On large heaps, it may take us some time to get through
6606   // the marking phase. During
6607   // this time it's possible that a lot of mutations have
6608   // accumulated in the card table and the mod union table --
6609   // these mutation records are redundant until we have
6610   // actually traced into the corresponding card.
6611   // Here, we check whether advancing the finger would make
6612   // us cross into a new card, and if so clear corresponding
6613   // cards in the MUT (preclean them in the card-table in the
6614   // future).
6615 
6616   DEBUG_ONLY(if (!_verifying) {)
6617     // The clean-on-enter optimization is disabled by default,
6618     // until we fix 6178663.
6619     if (CMSCleanOnEnter && (_finger > _threshold)) {
6620       // [_threshold, _finger) represents the interval
6621       // of cards to be cleared  in MUT (or precleaned in card table).
6622       // The set of cards to be cleared is all those that overlap
6623       // with the interval [_threshold, _finger); note that
6624       // _threshold is always kept card-aligned but _finger isn't
6625       // always card-aligned.
6626       HeapWord* old_threshold = _threshold;
6627       assert(old_threshold == (HeapWord*)round_to(
6628               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6629              "_threshold should always be card-aligned");
6630       _threshold = (HeapWord*)round_to(
6631                      (intptr_t)_finger, CardTableModRefBS::card_size);
6632       MemRegion mr(old_threshold, _threshold);
6633       assert(!mr.is_empty(), "Control point invariant");
6634       assert(_span.contains(mr), "Should clear within span");
6635       _mut->clear_range(mr);
6636     }
6637   DEBUG_ONLY(})
6638   // Note: the finger doesn't advance while we drain
6639   // the stack below.
6640   PushOrMarkClosure pushOrMarkClosure(_collector,
6641                                       _span, _bitMap, _markStack,
6642                                       _finger, this);
6643   bool res = _markStack->push(obj);
6644   assert(res, "Empty non-zero size stack should have space for single push");
6645   while (!_markStack->isEmpty()) {
6646     oop new_oop = _markStack->pop();
6647     // Skip verifying header mark word below because we are
6648     // running concurrent with mutators.
6649     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6650     // now scan this oop's oops
6651     new_oop->oop_iterate(&pushOrMarkClosure);
6652     do_yield_check();
6653   }
6654   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6655 }
6656 
6657 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6658                        CMSCollector* collector, MemRegion span,
6659                        CMSBitMap* bit_map,
6660                        OopTaskQueue* work_queue,
6661                        CMSMarkStack*  overflow_stack):
6662   _collector(collector),
6663   _whole_span(collector->_span),
6664   _span(span),
6665   _bit_map(bit_map),
6666   _mut(&collector->_modUnionTable),
6667   _work_queue(work_queue),
6668   _overflow_stack(overflow_stack),
6669   _skip_bits(0),
6670   _task(task)
6671 {
6672   assert(_work_queue->size() == 0, "work_queue should be empty");
6673   _finger = span.start();
6674   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6675   assert(_span.contains(_finger), "Out of bounds _finger?");
6676 }
6677 
6678 // Should revisit to see if this should be restructured for
6679 // greater efficiency.
6680 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6681   if (_skip_bits > 0) {
6682     _skip_bits--;
6683     return true;
6684   }
6685   // convert offset into a HeapWord*
6686   HeapWord* addr = _bit_map->startWord() + offset;
6687   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6688          "address out of range");
6689   assert(_bit_map->isMarked(addr), "tautology");
6690   if (_bit_map->isMarked(addr+1)) {
6691     // this is an allocated object that might not yet be initialized
6692     assert(_skip_bits == 0, "tautology");
6693     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6694     oop p = oop(addr);
6695     if (p->klass_or_null() == NULL) {
6696       // in the case of Clean-on-Enter optimization, redirty card
6697       // and avoid clearing card by increasing  the threshold.
6698       return true;
6699     }
6700   }
6701   scan_oops_in_oop(addr);
6702   return true;
6703 }
6704 
6705 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6706   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6707   // Should we assert that our work queue is empty or
6708   // below some drain limit?
6709   assert(_work_queue->size() == 0,
6710          "should drain stack to limit stack usage");
6711   // convert ptr to an oop preparatory to scanning
6712   oop obj = oop(ptr);
6713   // Ignore mark word in verification below, since we
6714   // may be running concurrent with mutators.
6715   assert(obj->is_oop(true), "should be an oop");
6716   assert(_finger <= ptr, "_finger runneth ahead");
6717   // advance the finger to right end of this object
6718   _finger = ptr + obj->size();
6719   assert(_finger > ptr, "we just incremented it above");
6720   // On large heaps, it may take us some time to get through
6721   // the marking phase. During
6722   // this time it's possible that a lot of mutations have
6723   // accumulated in the card table and the mod union table --
6724   // these mutation records are redundant until we have
6725   // actually traced into the corresponding card.
6726   // Here, we check whether advancing the finger would make
6727   // us cross into a new card, and if so clear corresponding
6728   // cards in the MUT (preclean them in the card-table in the
6729   // future).
6730 
6731   // The clean-on-enter optimization is disabled by default,
6732   // until we fix 6178663.
6733   if (CMSCleanOnEnter && (_finger > _threshold)) {
6734     // [_threshold, _finger) represents the interval
6735     // of cards to be cleared  in MUT (or precleaned in card table).
6736     // The set of cards to be cleared is all those that overlap
6737     // with the interval [_threshold, _finger); note that
6738     // _threshold is always kept card-aligned but _finger isn't
6739     // always card-aligned.
6740     HeapWord* old_threshold = _threshold;
6741     assert(old_threshold == (HeapWord*)round_to(
6742             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6743            "_threshold should always be card-aligned");
6744     _threshold = (HeapWord*)round_to(
6745                    (intptr_t)_finger, CardTableModRefBS::card_size);
6746     MemRegion mr(old_threshold, _threshold);
6747     assert(!mr.is_empty(), "Control point invariant");
6748     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6749     _mut->clear_range(mr);
6750   }
6751 
6752   // Note: the local finger doesn't advance while we drain
6753   // the stack below, but the global finger sure can and will.
6754   HeapWord** gfa = _task->global_finger_addr();
6755   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6756                                       _span, _bit_map,
6757                                       _work_queue,
6758                                       _overflow_stack,
6759                                       _finger,
6760                                       gfa, this);
6761   bool res = _work_queue->push(obj);   // overflow could occur here
6762   assert(res, "Will hold once we use workqueues");
6763   while (true) {
6764     oop new_oop;
6765     if (!_work_queue->pop_local(new_oop)) {
6766       // We emptied our work_queue; check if there's stuff that can
6767       // be gotten from the overflow stack.
6768       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6769             _overflow_stack, _work_queue)) {
6770         do_yield_check();
6771         continue;
6772       } else {  // done
6773         break;
6774       }
6775     }
6776     // Skip verifying header mark word below because we are
6777     // running concurrent with mutators.
6778     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6779     // now scan this oop's oops
6780     new_oop->oop_iterate(&pushOrMarkClosure);
6781     do_yield_check();
6782   }
6783   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6784 }
6785 
6786 // Yield in response to a request from VM Thread or
6787 // from mutators.
6788 void Par_MarkFromRootsClosure::do_yield_work() {
6789   assert(_task != NULL, "sanity");
6790   _task->yield();
6791 }
6792 
6793 // A variant of the above used for verifying CMS marking work.
6794 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6795                         MemRegion span,
6796                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6797                         CMSMarkStack*  mark_stack):
6798   _collector(collector),
6799   _span(span),
6800   _verification_bm(verification_bm),
6801   _cms_bm(cms_bm),
6802   _mark_stack(mark_stack),
6803   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6804                       mark_stack)
6805 {
6806   assert(_mark_stack->isEmpty(), "stack should be empty");
6807   _finger = _verification_bm->startWord();
6808   assert(_collector->_restart_addr == NULL, "Sanity check");
6809   assert(_span.contains(_finger), "Out of bounds _finger?");
6810 }
6811 
6812 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6813   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6814   assert(_span.contains(addr), "Out of bounds _finger?");
6815   _finger = addr;
6816 }
6817 
6818 // Should revisit to see if this should be restructured for
6819 // greater efficiency.
6820 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6821   // convert offset into a HeapWord*
6822   HeapWord* addr = _verification_bm->startWord() + offset;
6823   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6824          "address out of range");
6825   assert(_verification_bm->isMarked(addr), "tautology");
6826   assert(_cms_bm->isMarked(addr), "tautology");
6827 
6828   assert(_mark_stack->isEmpty(),
6829          "should drain stack to limit stack usage");
6830   // convert addr to an oop preparatory to scanning
6831   oop obj = oop(addr);
6832   assert(obj->is_oop(), "should be an oop");
6833   assert(_finger <= addr, "_finger runneth ahead");
6834   // advance the finger to right end of this object
6835   _finger = addr + obj->size();
6836   assert(_finger > addr, "we just incremented it above");
6837   // Note: the finger doesn't advance while we drain
6838   // the stack below.
6839   bool res = _mark_stack->push(obj);
6840   assert(res, "Empty non-zero size stack should have space for single push");
6841   while (!_mark_stack->isEmpty()) {
6842     oop new_oop = _mark_stack->pop();
6843     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6844     // now scan this oop's oops
6845     new_oop->oop_iterate(&_pam_verify_closure);
6846   }
6847   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6848   return true;
6849 }
6850 
6851 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6852   CMSCollector* collector, MemRegion span,
6853   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6854   CMSMarkStack*  mark_stack):
6855   MetadataAwareOopClosure(collector->ref_processor()),
6856   _collector(collector),
6857   _span(span),
6858   _verification_bm(verification_bm),
6859   _cms_bm(cms_bm),
6860   _mark_stack(mark_stack)
6861 { }
6862 
6863 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6864 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6865 
6866 // Upon stack overflow, we discard (part of) the stack,
6867 // remembering the least address amongst those discarded
6868 // in CMSCollector's _restart_address.
6869 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6870   // Remember the least grey address discarded
6871   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6872   _collector->lower_restart_addr(ra);
6873   _mark_stack->reset();  // discard stack contents
6874   _mark_stack->expand(); // expand the stack if possible
6875 }
6876 
6877 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6878   assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6879   HeapWord* addr = (HeapWord*)obj;
6880   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6881     // Oop lies in _span and isn't yet grey or black
6882     _verification_bm->mark(addr);            // now grey
6883     if (!_cms_bm->isMarked(addr)) {
6884       oop(addr)->print();
6885       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6886                              p2i(addr));
6887       fatal("... aborting");
6888     }
6889 
6890     if (!_mark_stack->push(obj)) { // stack overflow
6891       if (PrintCMSStatistics != 0) {
6892         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6893                                SIZE_FORMAT, _mark_stack->capacity());
6894       }
6895       assert(_mark_stack->isFull(), "Else push should have succeeded");
6896       handle_stack_overflow(addr);
6897     }
6898     // anything including and to the right of _finger
6899     // will be scanned as we iterate over the remainder of the
6900     // bit map
6901   }
6902 }
6903 
6904 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6905                      MemRegion span,
6906                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6907                      HeapWord* finger, MarkFromRootsClosure* parent) :
6908   MetadataAwareOopClosure(collector->ref_processor()),
6909   _collector(collector),
6910   _span(span),
6911   _bitMap(bitMap),
6912   _markStack(markStack),
6913   _finger(finger),
6914   _parent(parent)
6915 { }
6916 
6917 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6918                      MemRegion span,
6919                      CMSBitMap* bit_map,
6920                      OopTaskQueue* work_queue,
6921                      CMSMarkStack*  overflow_stack,
6922                      HeapWord* finger,
6923                      HeapWord** global_finger_addr,
6924                      Par_MarkFromRootsClosure* parent) :
6925   MetadataAwareOopClosure(collector->ref_processor()),
6926   _collector(collector),
6927   _whole_span(collector->_span),
6928   _span(span),
6929   _bit_map(bit_map),
6930   _work_queue(work_queue),
6931   _overflow_stack(overflow_stack),
6932   _finger(finger),
6933   _global_finger_addr(global_finger_addr),
6934   _parent(parent)
6935 { }
6936 
6937 // Assumes thread-safe access by callers, who are
6938 // responsible for mutual exclusion.
6939 void CMSCollector::lower_restart_addr(HeapWord* low) {
6940   assert(_span.contains(low), "Out of bounds addr");
6941   if (_restart_addr == NULL) {
6942     _restart_addr = low;
6943   } else {
6944     _restart_addr = MIN2(_restart_addr, low);
6945   }
6946 }
6947 
6948 // Upon stack overflow, we discard (part of) the stack,
6949 // remembering the least address amongst those discarded
6950 // in CMSCollector's _restart_address.
6951 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6952   // Remember the least grey address discarded
6953   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6954   _collector->lower_restart_addr(ra);
6955   _markStack->reset();  // discard stack contents
6956   _markStack->expand(); // expand the stack if possible
6957 }
6958 
6959 // Upon stack overflow, we discard (part of) the stack,
6960 // remembering the least address amongst those discarded
6961 // in CMSCollector's _restart_address.
6962 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6963   // We need to do this under a mutex to prevent other
6964   // workers from interfering with the work done below.
6965   MutexLockerEx ml(_overflow_stack->par_lock(),
6966                    Mutex::_no_safepoint_check_flag);
6967   // Remember the least grey address discarded
6968   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6969   _collector->lower_restart_addr(ra);
6970   _overflow_stack->reset();  // discard stack contents
6971   _overflow_stack->expand(); // expand the stack if possible
6972 }
6973 
6974 void PushOrMarkClosure::do_oop(oop obj) {
6975   // Ignore mark word because we are running concurrent with mutators.
6976   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6977   HeapWord* addr = (HeapWord*)obj;
6978   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6979     // Oop lies in _span and isn't yet grey or black
6980     _bitMap->mark(addr);            // now grey
6981     if (addr < _finger) {
6982       // the bit map iteration has already either passed, or
6983       // sampled, this bit in the bit map; we'll need to
6984       // use the marking stack to scan this oop's oops.
6985       bool simulate_overflow = false;
6986       NOT_PRODUCT(
6987         if (CMSMarkStackOverflowALot &&
6988             _collector->simulate_overflow()) {
6989           // simulate a stack overflow
6990           simulate_overflow = true;
6991         }
6992       )
6993       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6994         if (PrintCMSStatistics != 0) {
6995           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6996                                  SIZE_FORMAT, _markStack->capacity());
6997         }
6998         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6999         handle_stack_overflow(addr);
7000       }
7001     }
7002     // anything including and to the right of _finger
7003     // will be scanned as we iterate over the remainder of the
7004     // bit map
7005     do_yield_check();
7006   }
7007 }
7008 
7009 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7010 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7011 
7012 void Par_PushOrMarkClosure::do_oop(oop obj) {
7013   // Ignore mark word because we are running concurrent with mutators.
7014   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
7015   HeapWord* addr = (HeapWord*)obj;
7016   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7017     // Oop lies in _span and isn't yet grey or black
7018     // We read the global_finger (volatile read) strictly after marking oop
7019     bool res = _bit_map->par_mark(addr);    // now grey
7020     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7021     // Should we push this marked oop on our stack?
7022     // -- if someone else marked it, nothing to do
7023     // -- if target oop is above global finger nothing to do
7024     // -- if target oop is in chunk and above local finger
7025     //      then nothing to do
7026     // -- else push on work queue
7027     if (   !res       // someone else marked it, they will deal with it
7028         || (addr >= *gfa)  // will be scanned in a later task
7029         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7030       return;
7031     }
7032     // the bit map iteration has already either passed, or
7033     // sampled, this bit in the bit map; we'll need to
7034     // use the marking stack to scan this oop's oops.
7035     bool simulate_overflow = false;
7036     NOT_PRODUCT(
7037       if (CMSMarkStackOverflowALot &&
7038           _collector->simulate_overflow()) {
7039         // simulate a stack overflow
7040         simulate_overflow = true;
7041       }
7042     )
7043     if (simulate_overflow ||
7044         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7045       // stack overflow
7046       if (PrintCMSStatistics != 0) {
7047         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7048                                SIZE_FORMAT, _overflow_stack->capacity());
7049       }
7050       // We cannot assert that the overflow stack is full because
7051       // it may have been emptied since.
7052       assert(simulate_overflow ||
7053              _work_queue->size() == _work_queue->max_elems(),
7054             "Else push should have succeeded");
7055       handle_stack_overflow(addr);
7056     }
7057     do_yield_check();
7058   }
7059 }
7060 
7061 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7062 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7063 
7064 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7065                                        MemRegion span,
7066                                        ReferenceProcessor* rp,
7067                                        CMSBitMap* bit_map,
7068                                        CMSBitMap* mod_union_table,
7069                                        CMSMarkStack*  mark_stack,
7070                                        bool           concurrent_precleaning):
7071   MetadataAwareOopClosure(rp),
7072   _collector(collector),
7073   _span(span),
7074   _bit_map(bit_map),
7075   _mod_union_table(mod_union_table),
7076   _mark_stack(mark_stack),
7077   _concurrent_precleaning(concurrent_precleaning)
7078 {
7079   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
7080 }
7081 
7082 // Grey object rescan during pre-cleaning and second checkpoint phases --
7083 // the non-parallel version (the parallel version appears further below.)
7084 void PushAndMarkClosure::do_oop(oop obj) {
7085   // Ignore mark word verification. If during concurrent precleaning,
7086   // the object monitor may be locked. If during the checkpoint
7087   // phases, the object may already have been reached by a  different
7088   // path and may be at the end of the global overflow list (so
7089   // the mark word may be NULL).
7090   assert(obj->is_oop_or_null(true /* ignore mark word */),
7091          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
7092   HeapWord* addr = (HeapWord*)obj;
7093   // Check if oop points into the CMS generation
7094   // and is not marked
7095   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7096     // a white object ...
7097     _bit_map->mark(addr);         // ... now grey
7098     // push on the marking stack (grey set)
7099     bool simulate_overflow = false;
7100     NOT_PRODUCT(
7101       if (CMSMarkStackOverflowALot &&
7102           _collector->simulate_overflow()) {
7103         // simulate a stack overflow
7104         simulate_overflow = true;
7105       }
7106     )
7107     if (simulate_overflow || !_mark_stack->push(obj)) {
7108       if (_concurrent_precleaning) {
7109          // During precleaning we can just dirty the appropriate card(s)
7110          // in the mod union table, thus ensuring that the object remains
7111          // in the grey set  and continue. In the case of object arrays
7112          // we need to dirty all of the cards that the object spans,
7113          // since the rescan of object arrays will be limited to the
7114          // dirty cards.
7115          // Note that no one can be interfering with us in this action
7116          // of dirtying the mod union table, so no locking or atomics
7117          // are required.
7118          if (obj->is_objArray()) {
7119            size_t sz = obj->size();
7120            HeapWord* end_card_addr = (HeapWord*)round_to(
7121                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7122            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7123            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7124            _mod_union_table->mark_range(redirty_range);
7125          } else {
7126            _mod_union_table->mark(addr);
7127          }
7128          _collector->_ser_pmc_preclean_ovflw++;
7129       } else {
7130          // During the remark phase, we need to remember this oop
7131          // in the overflow list.
7132          _collector->push_on_overflow_list(obj);
7133          _collector->_ser_pmc_remark_ovflw++;
7134       }
7135     }
7136   }
7137 }
7138 
7139 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7140                                                MemRegion span,
7141                                                ReferenceProcessor* rp,
7142                                                CMSBitMap* bit_map,
7143                                                OopTaskQueue* work_queue):
7144   MetadataAwareOopClosure(rp),
7145   _collector(collector),
7146   _span(span),
7147   _bit_map(bit_map),
7148   _work_queue(work_queue)
7149 {
7150   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
7151 }
7152 
7153 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7154 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7155 
7156 // Grey object rescan during second checkpoint phase --
7157 // the parallel version.
7158 void Par_PushAndMarkClosure::do_oop(oop obj) {
7159   // In the assert below, we ignore the mark word because
7160   // this oop may point to an already visited object that is
7161   // on the overflow stack (in which case the mark word has
7162   // been hijacked for chaining into the overflow stack --
7163   // if this is the last object in the overflow stack then
7164   // its mark word will be NULL). Because this object may
7165   // have been subsequently popped off the global overflow
7166   // stack, and the mark word possibly restored to the prototypical
7167   // value, by the time we get to examined this failing assert in
7168   // the debugger, is_oop_or_null(false) may subsequently start
7169   // to hold.
7170   assert(obj->is_oop_or_null(true),
7171          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
7172   HeapWord* addr = (HeapWord*)obj;
7173   // Check if oop points into the CMS generation
7174   // and is not marked
7175   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7176     // a white object ...
7177     // If we manage to "claim" the object, by being the
7178     // first thread to mark it, then we push it on our
7179     // marking stack
7180     if (_bit_map->par_mark(addr)) {     // ... now grey
7181       // push on work queue (grey set)
7182       bool simulate_overflow = false;
7183       NOT_PRODUCT(
7184         if (CMSMarkStackOverflowALot &&
7185             _collector->par_simulate_overflow()) {
7186           // simulate a stack overflow
7187           simulate_overflow = true;
7188         }
7189       )
7190       if (simulate_overflow || !_work_queue->push(obj)) {
7191         _collector->par_push_on_overflow_list(obj);
7192         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7193       }
7194     } // Else, some other thread got there first
7195   }
7196 }
7197 
7198 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7199 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7200 
7201 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7202   Mutex* bml = _collector->bitMapLock();
7203   assert_lock_strong(bml);
7204   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7205          "CMS thread should hold CMS token");
7206 
7207   bml->unlock();
7208   ConcurrentMarkSweepThread::desynchronize(true);
7209 
7210   _collector->stopTimer();
7211   if (PrintCMSStatistics != 0) {
7212     _collector->incrementYields();
7213   }
7214 
7215   // See the comment in coordinator_yield()
7216   for (unsigned i = 0; i < CMSYieldSleepCount &&
7217                        ConcurrentMarkSweepThread::should_yield() &&
7218                        !CMSCollector::foregroundGCIsActive(); ++i) {
7219     os::sleep(Thread::current(), 1, false);
7220   }
7221 
7222   ConcurrentMarkSweepThread::synchronize(true);
7223   bml->lock();
7224 
7225   _collector->startTimer();
7226 }
7227 
7228 bool CMSPrecleanRefsYieldClosure::should_return() {
7229   if (ConcurrentMarkSweepThread::should_yield()) {
7230     do_yield_work();
7231   }
7232   return _collector->foregroundGCIsActive();
7233 }
7234 
7235 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7236   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7237          "mr should be aligned to start at a card boundary");
7238   // We'd like to assert:
7239   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7240   //        "mr should be a range of cards");
7241   // However, that would be too strong in one case -- the last
7242   // partition ends at _unallocated_block which, in general, can be
7243   // an arbitrary boundary, not necessarily card aligned.
7244   if (PrintCMSStatistics != 0) {
7245     _num_dirty_cards +=
7246          mr.word_size()/CardTableModRefBS::card_size_in_words;
7247   }
7248   _space->object_iterate_mem(mr, &_scan_cl);
7249 }
7250 
7251 SweepClosure::SweepClosure(CMSCollector* collector,
7252                            ConcurrentMarkSweepGeneration* g,
7253                            CMSBitMap* bitMap, bool should_yield) :
7254   _collector(collector),
7255   _g(g),
7256   _sp(g->cmsSpace()),
7257   _limit(_sp->sweep_limit()),
7258   _freelistLock(_sp->freelistLock()),
7259   _bitMap(bitMap),
7260   _yield(should_yield),
7261   _inFreeRange(false),           // No free range at beginning of sweep
7262   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7263   _lastFreeRangeCoalesced(false),
7264   _freeFinger(g->used_region().start())
7265 {
7266   NOT_PRODUCT(
7267     _numObjectsFreed = 0;
7268     _numWordsFreed   = 0;
7269     _numObjectsLive = 0;
7270     _numWordsLive = 0;
7271     _numObjectsAlreadyFree = 0;
7272     _numWordsAlreadyFree = 0;
7273     _last_fc = NULL;
7274 
7275     _sp->initializeIndexedFreeListArrayReturnedBytes();
7276     _sp->dictionary()->initialize_dict_returned_bytes();
7277   )
7278   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7279          "sweep _limit out of bounds");
7280   if (CMSTraceSweeper) {
7281     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7282                         p2i(_limit));
7283   }
7284 }
7285 
7286 void SweepClosure::print_on(outputStream* st) const {
7287   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7288                 p2i(_sp->bottom()), p2i(_sp->end()));
7289   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7290   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7291   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7292   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7293                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7294 }
7295 
7296 #ifndef PRODUCT
7297 // Assertion checking only:  no useful work in product mode --
7298 // however, if any of the flags below become product flags,
7299 // you may need to review this code to see if it needs to be
7300 // enabled in product mode.
7301 SweepClosure::~SweepClosure() {
7302   assert_lock_strong(_freelistLock);
7303   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7304          "sweep _limit out of bounds");
7305   if (inFreeRange()) {
7306     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7307     print();
7308     ShouldNotReachHere();
7309   }
7310   if (Verbose && PrintGC) {
7311     gclog_or_tty->print("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7312                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7313     gclog_or_tty->print_cr("\nLive " SIZE_FORMAT " objects,  "
7314                            SIZE_FORMAT " bytes  "
7315       "Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7316       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7317       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7318     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7319                         * sizeof(HeapWord);
7320     gclog_or_tty->print_cr("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7321 
7322     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7323       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7324       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7325       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7326       gclog_or_tty->print("Returned " SIZE_FORMAT " bytes", returned_bytes);
7327       gclog_or_tty->print("   Indexed List Returned " SIZE_FORMAT " bytes",
7328         indexListReturnedBytes);
7329       gclog_or_tty->print_cr("        Dictionary Returned " SIZE_FORMAT " bytes",
7330         dict_returned_bytes);
7331     }
7332   }
7333   if (CMSTraceSweeper) {
7334     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7335                            p2i(_limit));
7336   }
7337 }
7338 #endif  // PRODUCT
7339 
7340 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7341     bool freeRangeInFreeLists) {
7342   if (CMSTraceSweeper) {
7343     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7344                p2i(freeFinger), freeRangeInFreeLists);
7345   }
7346   assert(!inFreeRange(), "Trampling existing free range");
7347   set_inFreeRange(true);
7348   set_lastFreeRangeCoalesced(false);
7349 
7350   set_freeFinger(freeFinger);
7351   set_freeRangeInFreeLists(freeRangeInFreeLists);
7352   if (CMSTestInFreeList) {
7353     if (freeRangeInFreeLists) {
7354       FreeChunk* fc = (FreeChunk*) freeFinger;
7355       assert(fc->is_free(), "A chunk on the free list should be free.");
7356       assert(fc->size() > 0, "Free range should have a size");
7357       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7358     }
7359   }
7360 }
7361 
7362 // Note that the sweeper runs concurrently with mutators. Thus,
7363 // it is possible for direct allocation in this generation to happen
7364 // in the middle of the sweep. Note that the sweeper also coalesces
7365 // contiguous free blocks. Thus, unless the sweeper and the allocator
7366 // synchronize appropriately freshly allocated blocks may get swept up.
7367 // This is accomplished by the sweeper locking the free lists while
7368 // it is sweeping. Thus blocks that are determined to be free are
7369 // indeed free. There is however one additional complication:
7370 // blocks that have been allocated since the final checkpoint and
7371 // mark, will not have been marked and so would be treated as
7372 // unreachable and swept up. To prevent this, the allocator marks
7373 // the bit map when allocating during the sweep phase. This leads,
7374 // however, to a further complication -- objects may have been allocated
7375 // but not yet initialized -- in the sense that the header isn't yet
7376 // installed. The sweeper can not then determine the size of the block
7377 // in order to skip over it. To deal with this case, we use a technique
7378 // (due to Printezis) to encode such uninitialized block sizes in the
7379 // bit map. Since the bit map uses a bit per every HeapWord, but the
7380 // CMS generation has a minimum object size of 3 HeapWords, it follows
7381 // that "normal marks" won't be adjacent in the bit map (there will
7382 // always be at least two 0 bits between successive 1 bits). We make use
7383 // of these "unused" bits to represent uninitialized blocks -- the bit
7384 // corresponding to the start of the uninitialized object and the next
7385 // bit are both set. Finally, a 1 bit marks the end of the object that
7386 // started with the two consecutive 1 bits to indicate its potentially
7387 // uninitialized state.
7388 
7389 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7390   FreeChunk* fc = (FreeChunk*)addr;
7391   size_t res;
7392 
7393   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7394   // than "addr == _limit" because although _limit was a block boundary when
7395   // we started the sweep, it may no longer be one because heap expansion
7396   // may have caused us to coalesce the block ending at the address _limit
7397   // with a newly expanded chunk (this happens when _limit was set to the
7398   // previous _end of the space), so we may have stepped past _limit:
7399   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7400   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7401     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7402            "sweep _limit out of bounds");
7403     assert(addr < _sp->end(), "addr out of bounds");
7404     // Flush any free range we might be holding as a single
7405     // coalesced chunk to the appropriate free list.
7406     if (inFreeRange()) {
7407       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7408              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7409       flush_cur_free_chunk(freeFinger(),
7410                            pointer_delta(addr, freeFinger()));
7411       if (CMSTraceSweeper) {
7412         gclog_or_tty->print("Sweep: last chunk: ");
7413         gclog_or_tty->print("put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") "
7414                    "[coalesced:%d]\n",
7415                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7416                    lastFreeRangeCoalesced() ? 1 : 0);
7417       }
7418     }
7419 
7420     // help the iterator loop finish
7421     return pointer_delta(_sp->end(), addr);
7422   }
7423 
7424   assert(addr < _limit, "sweep invariant");
7425   // check if we should yield
7426   do_yield_check(addr);
7427   if (fc->is_free()) {
7428     // Chunk that is already free
7429     res = fc->size();
7430     do_already_free_chunk(fc);
7431     debug_only(_sp->verifyFreeLists());
7432     // If we flush the chunk at hand in lookahead_and_flush()
7433     // and it's coalesced with a preceding chunk, then the
7434     // process of "mangling" the payload of the coalesced block
7435     // will cause erasure of the size information from the
7436     // (erstwhile) header of all the coalesced blocks but the
7437     // first, so the first disjunct in the assert will not hold
7438     // in that specific case (in which case the second disjunct
7439     // will hold).
7440     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7441            "Otherwise the size info doesn't change at this step");
7442     NOT_PRODUCT(
7443       _numObjectsAlreadyFree++;
7444       _numWordsAlreadyFree += res;
7445     )
7446     NOT_PRODUCT(_last_fc = fc;)
7447   } else if (!_bitMap->isMarked(addr)) {
7448     // Chunk is fresh garbage
7449     res = do_garbage_chunk(fc);
7450     debug_only(_sp->verifyFreeLists());
7451     NOT_PRODUCT(
7452       _numObjectsFreed++;
7453       _numWordsFreed += res;
7454     )
7455   } else {
7456     // Chunk that is alive.
7457     res = do_live_chunk(fc);
7458     debug_only(_sp->verifyFreeLists());
7459     NOT_PRODUCT(
7460         _numObjectsLive++;
7461         _numWordsLive += res;
7462     )
7463   }
7464   return res;
7465 }
7466 
7467 // For the smart allocation, record following
7468 //  split deaths - a free chunk is removed from its free list because
7469 //      it is being split into two or more chunks.
7470 //  split birth - a free chunk is being added to its free list because
7471 //      a larger free chunk has been split and resulted in this free chunk.
7472 //  coal death - a free chunk is being removed from its free list because
7473 //      it is being coalesced into a large free chunk.
7474 //  coal birth - a free chunk is being added to its free list because
7475 //      it was created when two or more free chunks where coalesced into
7476 //      this free chunk.
7477 //
7478 // These statistics are used to determine the desired number of free
7479 // chunks of a given size.  The desired number is chosen to be relative
7480 // to the end of a CMS sweep.  The desired number at the end of a sweep
7481 // is the
7482 //      count-at-end-of-previous-sweep (an amount that was enough)
7483 //              - count-at-beginning-of-current-sweep  (the excess)
7484 //              + split-births  (gains in this size during interval)
7485 //              - split-deaths  (demands on this size during interval)
7486 // where the interval is from the end of one sweep to the end of the
7487 // next.
7488 //
7489 // When sweeping the sweeper maintains an accumulated chunk which is
7490 // the chunk that is made up of chunks that have been coalesced.  That
7491 // will be termed the left-hand chunk.  A new chunk of garbage that
7492 // is being considered for coalescing will be referred to as the
7493 // right-hand chunk.
7494 //
7495 // When making a decision on whether to coalesce a right-hand chunk with
7496 // the current left-hand chunk, the current count vs. the desired count
7497 // of the left-hand chunk is considered.  Also if the right-hand chunk
7498 // is near the large chunk at the end of the heap (see
7499 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7500 // left-hand chunk is coalesced.
7501 //
7502 // When making a decision about whether to split a chunk, the desired count
7503 // vs. the current count of the candidate to be split is also considered.
7504 // If the candidate is underpopulated (currently fewer chunks than desired)
7505 // a chunk of an overpopulated (currently more chunks than desired) size may
7506 // be chosen.  The "hint" associated with a free list, if non-null, points
7507 // to a free list which may be overpopulated.
7508 //
7509 
7510 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7511   const size_t size = fc->size();
7512   // Chunks that cannot be coalesced are not in the
7513   // free lists.
7514   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7515     assert(_sp->verify_chunk_in_free_list(fc),
7516            "free chunk should be in free lists");
7517   }
7518   // a chunk that is already free, should not have been
7519   // marked in the bit map
7520   HeapWord* const addr = (HeapWord*) fc;
7521   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7522   // Verify that the bit map has no bits marked between
7523   // addr and purported end of this block.
7524   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7525 
7526   // Some chunks cannot be coalesced under any circumstances.
7527   // See the definition of cantCoalesce().
7528   if (!fc->cantCoalesce()) {
7529     // This chunk can potentially be coalesced.
7530     // All the work is done in
7531     do_post_free_or_garbage_chunk(fc, size);
7532     // Note that if the chunk is not coalescable (the else arm
7533     // below), we unconditionally flush, without needing to do
7534     // a "lookahead," as we do below.
7535     if (inFreeRange()) lookahead_and_flush(fc, size);
7536   } else {
7537     // Code path common to both original and adaptive free lists.
7538 
7539     // cant coalesce with previous block; this should be treated
7540     // as the end of a free run if any
7541     if (inFreeRange()) {
7542       // we kicked some butt; time to pick up the garbage
7543       assert(freeFinger() < addr, "freeFinger points too high");
7544       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7545     }
7546     // else, nothing to do, just continue
7547   }
7548 }
7549 
7550 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7551   // This is a chunk of garbage.  It is not in any free list.
7552   // Add it to a free list or let it possibly be coalesced into
7553   // a larger chunk.
7554   HeapWord* const addr = (HeapWord*) fc;
7555   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7556 
7557   // Verify that the bit map has no bits marked between
7558   // addr and purported end of just dead object.
7559   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7560   do_post_free_or_garbage_chunk(fc, size);
7561 
7562   assert(_limit >= addr + size,
7563          "A freshly garbage chunk can't possibly straddle over _limit");
7564   if (inFreeRange()) lookahead_and_flush(fc, size);
7565   return size;
7566 }
7567 
7568 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7569   HeapWord* addr = (HeapWord*) fc;
7570   // The sweeper has just found a live object. Return any accumulated
7571   // left hand chunk to the free lists.
7572   if (inFreeRange()) {
7573     assert(freeFinger() < addr, "freeFinger points too high");
7574     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7575   }
7576 
7577   // This object is live: we'd normally expect this to be
7578   // an oop, and like to assert the following:
7579   // assert(oop(addr)->is_oop(), "live block should be an oop");
7580   // However, as we commented above, this may be an object whose
7581   // header hasn't yet been initialized.
7582   size_t size;
7583   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7584   if (_bitMap->isMarked(addr + 1)) {
7585     // Determine the size from the bit map, rather than trying to
7586     // compute it from the object header.
7587     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7588     size = pointer_delta(nextOneAddr + 1, addr);
7589     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7590            "alignment problem");
7591 
7592 #ifdef ASSERT
7593       if (oop(addr)->klass_or_null() != NULL) {
7594         // Ignore mark word because we are running concurrent with mutators
7595         assert(oop(addr)->is_oop(true), "live block should be an oop");
7596         assert(size ==
7597                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7598                "P-mark and computed size do not agree");
7599       }
7600 #endif
7601 
7602   } else {
7603     // This should be an initialized object that's alive.
7604     assert(oop(addr)->klass_or_null() != NULL,
7605            "Should be an initialized object");
7606     // Ignore mark word because we are running concurrent with mutators
7607     assert(oop(addr)->is_oop(true), "live block should be an oop");
7608     // Verify that the bit map has no bits marked between
7609     // addr and purported end of this block.
7610     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7611     assert(size >= 3, "Necessary for Printezis marks to work");
7612     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7613     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7614   }
7615   return size;
7616 }
7617 
7618 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7619                                                  size_t chunkSize) {
7620   // do_post_free_or_garbage_chunk() should only be called in the case
7621   // of the adaptive free list allocator.
7622   const bool fcInFreeLists = fc->is_free();
7623   assert((HeapWord*)fc <= _limit, "sweep invariant");
7624   if (CMSTestInFreeList && fcInFreeLists) {
7625     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7626   }
7627 
7628   if (CMSTraceSweeper) {
7629     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7630   }
7631 
7632   HeapWord* const fc_addr = (HeapWord*) fc;
7633 
7634   bool coalesce = false;
7635   const size_t left  = pointer_delta(fc_addr, freeFinger());
7636   const size_t right = chunkSize;
7637   switch (FLSCoalescePolicy) {
7638     // numeric value forms a coalition aggressiveness metric
7639     case 0:  { // never coalesce
7640       coalesce = false;
7641       break;
7642     }
7643     case 1: { // coalesce if left & right chunks on overpopulated lists
7644       coalesce = _sp->coalOverPopulated(left) &&
7645                  _sp->coalOverPopulated(right);
7646       break;
7647     }
7648     case 2: { // coalesce if left chunk on overpopulated list (default)
7649       coalesce = _sp->coalOverPopulated(left);
7650       break;
7651     }
7652     case 3: { // coalesce if left OR right chunk on overpopulated list
7653       coalesce = _sp->coalOverPopulated(left) ||
7654                  _sp->coalOverPopulated(right);
7655       break;
7656     }
7657     case 4: { // always coalesce
7658       coalesce = true;
7659       break;
7660     }
7661     default:
7662      ShouldNotReachHere();
7663   }
7664 
7665   // Should the current free range be coalesced?
7666   // If the chunk is in a free range and either we decided to coalesce above
7667   // or the chunk is near the large block at the end of the heap
7668   // (isNearLargestChunk() returns true), then coalesce this chunk.
7669   const bool doCoalesce = inFreeRange()
7670                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7671   if (doCoalesce) {
7672     // Coalesce the current free range on the left with the new
7673     // chunk on the right.  If either is on a free list,
7674     // it must be removed from the list and stashed in the closure.
7675     if (freeRangeInFreeLists()) {
7676       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7677       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7678              "Size of free range is inconsistent with chunk size.");
7679       if (CMSTestInFreeList) {
7680         assert(_sp->verify_chunk_in_free_list(ffc),
7681                "Chunk is not in free lists");
7682       }
7683       _sp->coalDeath(ffc->size());
7684       _sp->removeFreeChunkFromFreeLists(ffc);
7685       set_freeRangeInFreeLists(false);
7686     }
7687     if (fcInFreeLists) {
7688       _sp->coalDeath(chunkSize);
7689       assert(fc->size() == chunkSize,
7690         "The chunk has the wrong size or is not in the free lists");
7691       _sp->removeFreeChunkFromFreeLists(fc);
7692     }
7693     set_lastFreeRangeCoalesced(true);
7694     print_free_block_coalesced(fc);
7695   } else {  // not in a free range and/or should not coalesce
7696     // Return the current free range and start a new one.
7697     if (inFreeRange()) {
7698       // In a free range but cannot coalesce with the right hand chunk.
7699       // Put the current free range into the free lists.
7700       flush_cur_free_chunk(freeFinger(),
7701                            pointer_delta(fc_addr, freeFinger()));
7702     }
7703     // Set up for new free range.  Pass along whether the right hand
7704     // chunk is in the free lists.
7705     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7706   }
7707 }
7708 
7709 // Lookahead flush:
7710 // If we are tracking a free range, and this is the last chunk that
7711 // we'll look at because its end crosses past _limit, we'll preemptively
7712 // flush it along with any free range we may be holding on to. Note that
7713 // this can be the case only for an already free or freshly garbage
7714 // chunk. If this block is an object, it can never straddle
7715 // over _limit. The "straddling" occurs when _limit is set at
7716 // the previous end of the space when this cycle started, and
7717 // a subsequent heap expansion caused the previously co-terminal
7718 // free block to be coalesced with the newly expanded portion,
7719 // thus rendering _limit a non-block-boundary making it dangerous
7720 // for the sweeper to step over and examine.
7721 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7722   assert(inFreeRange(), "Should only be called if currently in a free range.");
7723   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7724   assert(_sp->used_region().contains(eob - 1),
7725          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7726          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7727          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7728          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7729   if (eob >= _limit) {
7730     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7731     if (CMSTraceSweeper) {
7732       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7733                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7734                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7735                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7736     }
7737     // Return the storage we are tracking back into the free lists.
7738     if (CMSTraceSweeper) {
7739       gclog_or_tty->print_cr("Flushing ... ");
7740     }
7741     assert(freeFinger() < eob, "Error");
7742     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7743   }
7744 }
7745 
7746 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7747   assert(inFreeRange(), "Should only be called if currently in a free range.");
7748   assert(size > 0,
7749     "A zero sized chunk cannot be added to the free lists.");
7750   if (!freeRangeInFreeLists()) {
7751     if (CMSTestInFreeList) {
7752       FreeChunk* fc = (FreeChunk*) chunk;
7753       fc->set_size(size);
7754       assert(!_sp->verify_chunk_in_free_list(fc),
7755              "chunk should not be in free lists yet");
7756     }
7757     if (CMSTraceSweeper) {
7758       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7759                     p2i(chunk), size);
7760     }
7761     // A new free range is going to be starting.  The current
7762     // free range has not been added to the free lists yet or
7763     // was removed so add it back.
7764     // If the current free range was coalesced, then the death
7765     // of the free range was recorded.  Record a birth now.
7766     if (lastFreeRangeCoalesced()) {
7767       _sp->coalBirth(size);
7768     }
7769     _sp->addChunkAndRepairOffsetTable(chunk, size,
7770             lastFreeRangeCoalesced());
7771   } else if (CMSTraceSweeper) {
7772     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7773   }
7774   set_inFreeRange(false);
7775   set_freeRangeInFreeLists(false);
7776 }
7777 
7778 // We take a break if we've been at this for a while,
7779 // so as to avoid monopolizing the locks involved.
7780 void SweepClosure::do_yield_work(HeapWord* addr) {
7781   // Return current free chunk being used for coalescing (if any)
7782   // to the appropriate freelist.  After yielding, the next
7783   // free block encountered will start a coalescing range of
7784   // free blocks.  If the next free block is adjacent to the
7785   // chunk just flushed, they will need to wait for the next
7786   // sweep to be coalesced.
7787   if (inFreeRange()) {
7788     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7789   }
7790 
7791   // First give up the locks, then yield, then re-lock.
7792   // We should probably use a constructor/destructor idiom to
7793   // do this unlock/lock or modify the MutexUnlocker class to
7794   // serve our purpose. XXX
7795   assert_lock_strong(_bitMap->lock());
7796   assert_lock_strong(_freelistLock);
7797   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7798          "CMS thread should hold CMS token");
7799   _bitMap->lock()->unlock();
7800   _freelistLock->unlock();
7801   ConcurrentMarkSweepThread::desynchronize(true);
7802   _collector->stopTimer();
7803   if (PrintCMSStatistics != 0) {
7804     _collector->incrementYields();
7805   }
7806 
7807   // See the comment in coordinator_yield()
7808   for (unsigned i = 0; i < CMSYieldSleepCount &&
7809                        ConcurrentMarkSweepThread::should_yield() &&
7810                        !CMSCollector::foregroundGCIsActive(); ++i) {
7811     os::sleep(Thread::current(), 1, false);
7812   }
7813 
7814   ConcurrentMarkSweepThread::synchronize(true);
7815   _freelistLock->lock();
7816   _bitMap->lock()->lock_without_safepoint_check();
7817   _collector->startTimer();
7818 }
7819 
7820 #ifndef PRODUCT
7821 // This is actually very useful in a product build if it can
7822 // be called from the debugger.  Compile it into the product
7823 // as needed.
7824 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7825   return debug_cms_space->verify_chunk_in_free_list(fc);
7826 }
7827 #endif
7828 
7829 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7830   if (CMSTraceSweeper) {
7831     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7832                            p2i(fc), fc->size());
7833   }
7834 }
7835 
7836 // CMSIsAliveClosure
7837 bool CMSIsAliveClosure::do_object_b(oop obj) {
7838   HeapWord* addr = (HeapWord*)obj;
7839   return addr != NULL &&
7840          (!_span.contains(addr) || _bit_map->isMarked(addr));
7841 }
7842 
7843 
7844 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7845                       MemRegion span,
7846                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7847                       bool cpc):
7848   _collector(collector),
7849   _span(span),
7850   _bit_map(bit_map),
7851   _mark_stack(mark_stack),
7852   _concurrent_precleaning(cpc) {
7853   assert(!_span.is_empty(), "Empty span could spell trouble");
7854 }
7855 
7856 
7857 // CMSKeepAliveClosure: the serial version
7858 void CMSKeepAliveClosure::do_oop(oop obj) {
7859   HeapWord* addr = (HeapWord*)obj;
7860   if (_span.contains(addr) &&
7861       !_bit_map->isMarked(addr)) {
7862     _bit_map->mark(addr);
7863     bool simulate_overflow = false;
7864     NOT_PRODUCT(
7865       if (CMSMarkStackOverflowALot &&
7866           _collector->simulate_overflow()) {
7867         // simulate a stack overflow
7868         simulate_overflow = true;
7869       }
7870     )
7871     if (simulate_overflow || !_mark_stack->push(obj)) {
7872       if (_concurrent_precleaning) {
7873         // We dirty the overflown object and let the remark
7874         // phase deal with it.
7875         assert(_collector->overflow_list_is_empty(), "Error");
7876         // In the case of object arrays, we need to dirty all of
7877         // the cards that the object spans. No locking or atomics
7878         // are needed since no one else can be mutating the mod union
7879         // table.
7880         if (obj->is_objArray()) {
7881           size_t sz = obj->size();
7882           HeapWord* end_card_addr =
7883             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7884           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7885           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7886           _collector->_modUnionTable.mark_range(redirty_range);
7887         } else {
7888           _collector->_modUnionTable.mark(addr);
7889         }
7890         _collector->_ser_kac_preclean_ovflw++;
7891       } else {
7892         _collector->push_on_overflow_list(obj);
7893         _collector->_ser_kac_ovflw++;
7894       }
7895     }
7896   }
7897 }
7898 
7899 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7900 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7901 
7902 // CMSParKeepAliveClosure: a parallel version of the above.
7903 // The work queues are private to each closure (thread),
7904 // but (may be) available for stealing by other threads.
7905 void CMSParKeepAliveClosure::do_oop(oop obj) {
7906   HeapWord* addr = (HeapWord*)obj;
7907   if (_span.contains(addr) &&
7908       !_bit_map->isMarked(addr)) {
7909     // In general, during recursive tracing, several threads
7910     // may be concurrently getting here; the first one to
7911     // "tag" it, claims it.
7912     if (_bit_map->par_mark(addr)) {
7913       bool res = _work_queue->push(obj);
7914       assert(res, "Low water mark should be much less than capacity");
7915       // Do a recursive trim in the hope that this will keep
7916       // stack usage lower, but leave some oops for potential stealers
7917       trim_queue(_low_water_mark);
7918     } // Else, another thread got there first
7919   }
7920 }
7921 
7922 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7923 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7924 
7925 void CMSParKeepAliveClosure::trim_queue(uint max) {
7926   while (_work_queue->size() > max) {
7927     oop new_oop;
7928     if (_work_queue->pop_local(new_oop)) {
7929       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7930       assert(_bit_map->isMarked((HeapWord*)new_oop),
7931              "no white objects on this stack!");
7932       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7933       // iterate over the oops in this oop, marking and pushing
7934       // the ones in CMS heap (i.e. in _span).
7935       new_oop->oop_iterate(&_mark_and_push);
7936     }
7937   }
7938 }
7939 
7940 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7941                                 CMSCollector* collector,
7942                                 MemRegion span, CMSBitMap* bit_map,
7943                                 OopTaskQueue* work_queue):
7944   _collector(collector),
7945   _span(span),
7946   _bit_map(bit_map),
7947   _work_queue(work_queue) { }
7948 
7949 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7950   HeapWord* addr = (HeapWord*)obj;
7951   if (_span.contains(addr) &&
7952       !_bit_map->isMarked(addr)) {
7953     if (_bit_map->par_mark(addr)) {
7954       bool simulate_overflow = false;
7955       NOT_PRODUCT(
7956         if (CMSMarkStackOverflowALot &&
7957             _collector->par_simulate_overflow()) {
7958           // simulate a stack overflow
7959           simulate_overflow = true;
7960         }
7961       )
7962       if (simulate_overflow || !_work_queue->push(obj)) {
7963         _collector->par_push_on_overflow_list(obj);
7964         _collector->_par_kac_ovflw++;
7965       }
7966     } // Else another thread got there already
7967   }
7968 }
7969 
7970 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7971 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7972 
7973 //////////////////////////////////////////////////////////////////
7974 //  CMSExpansionCause                /////////////////////////////
7975 //////////////////////////////////////////////////////////////////
7976 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7977   switch (cause) {
7978     case _no_expansion:
7979       return "No expansion";
7980     case _satisfy_free_ratio:
7981       return "Free ratio";
7982     case _satisfy_promotion:
7983       return "Satisfy promotion";
7984     case _satisfy_allocation:
7985       return "allocation";
7986     case _allocate_par_lab:
7987       return "Par LAB";
7988     case _allocate_par_spooling_space:
7989       return "Par Spooling Space";
7990     case _adaptive_size_policy:
7991       return "Ergonomics";
7992     default:
7993       return "unknown";
7994   }
7995 }
7996 
7997 void CMSDrainMarkingStackClosure::do_void() {
7998   // the max number to take from overflow list at a time
7999   const size_t num = _mark_stack->capacity()/4;
8000   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8001          "Overflow list should be NULL during concurrent phases");
8002   while (!_mark_stack->isEmpty() ||
8003          // if stack is empty, check the overflow list
8004          _collector->take_from_overflow_list(num, _mark_stack)) {
8005     oop obj = _mark_stack->pop();
8006     HeapWord* addr = (HeapWord*)obj;
8007     assert(_span.contains(addr), "Should be within span");
8008     assert(_bit_map->isMarked(addr), "Should be marked");
8009     assert(obj->is_oop(), "Should be an oop");
8010     obj->oop_iterate(_keep_alive);
8011   }
8012 }
8013 
8014 void CMSParDrainMarkingStackClosure::do_void() {
8015   // drain queue
8016   trim_queue(0);
8017 }
8018 
8019 // Trim our work_queue so its length is below max at return
8020 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8021   while (_work_queue->size() > max) {
8022     oop new_oop;
8023     if (_work_queue->pop_local(new_oop)) {
8024       assert(new_oop->is_oop(), "Expected an oop");
8025       assert(_bit_map->isMarked((HeapWord*)new_oop),
8026              "no white objects on this stack!");
8027       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8028       // iterate over the oops in this oop, marking and pushing
8029       // the ones in CMS heap (i.e. in _span).
8030       new_oop->oop_iterate(&_mark_and_push);
8031     }
8032   }
8033 }
8034 
8035 ////////////////////////////////////////////////////////////////////
8036 // Support for Marking Stack Overflow list handling and related code
8037 ////////////////////////////////////////////////////////////////////
8038 // Much of the following code is similar in shape and spirit to the
8039 // code used in ParNewGC. We should try and share that code
8040 // as much as possible in the future.
8041 
8042 #ifndef PRODUCT
8043 // Debugging support for CMSStackOverflowALot
8044 
8045 // It's OK to call this multi-threaded;  the worst thing
8046 // that can happen is that we'll get a bunch of closely
8047 // spaced simulated overflows, but that's OK, in fact
8048 // probably good as it would exercise the overflow code
8049 // under contention.
8050 bool CMSCollector::simulate_overflow() {
8051   if (_overflow_counter-- <= 0) { // just being defensive
8052     _overflow_counter = CMSMarkStackOverflowInterval;
8053     return true;
8054   } else {
8055     return false;
8056   }
8057 }
8058 
8059 bool CMSCollector::par_simulate_overflow() {
8060   return simulate_overflow();
8061 }
8062 #endif
8063 
8064 // Single-threaded
8065 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8066   assert(stack->isEmpty(), "Expected precondition");
8067   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8068   size_t i = num;
8069   oop  cur = _overflow_list;
8070   const markOop proto = markOopDesc::prototype();
8071   NOT_PRODUCT(ssize_t n = 0;)
8072   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8073     next = oop(cur->mark());
8074     cur->set_mark(proto);   // until proven otherwise
8075     assert(cur->is_oop(), "Should be an oop");
8076     bool res = stack->push(cur);
8077     assert(res, "Bit off more than can chew?");
8078     NOT_PRODUCT(n++;)
8079   }
8080   _overflow_list = cur;
8081 #ifndef PRODUCT
8082   assert(_num_par_pushes >= n, "Too many pops?");
8083   _num_par_pushes -=n;
8084 #endif
8085   return !stack->isEmpty();
8086 }
8087 
8088 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8089 // (MT-safe) Get a prefix of at most "num" from the list.
8090 // The overflow list is chained through the mark word of
8091 // each object in the list. We fetch the entire list,
8092 // break off a prefix of the right size and return the
8093 // remainder. If other threads try to take objects from
8094 // the overflow list at that time, they will wait for
8095 // some time to see if data becomes available. If (and
8096 // only if) another thread places one or more object(s)
8097 // on the global list before we have returned the suffix
8098 // to the global list, we will walk down our local list
8099 // to find its end and append the global list to
8100 // our suffix before returning it. This suffix walk can
8101 // prove to be expensive (quadratic in the amount of traffic)
8102 // when there are many objects in the overflow list and
8103 // there is much producer-consumer contention on the list.
8104 // *NOTE*: The overflow list manipulation code here and
8105 // in ParNewGeneration:: are very similar in shape,
8106 // except that in the ParNew case we use the old (from/eden)
8107 // copy of the object to thread the list via its klass word.
8108 // Because of the common code, if you make any changes in
8109 // the code below, please check the ParNew version to see if
8110 // similar changes might be needed.
8111 // CR 6797058 has been filed to consolidate the common code.
8112 bool CMSCollector::par_take_from_overflow_list(size_t num,
8113                                                OopTaskQueue* work_q,
8114                                                int no_of_gc_threads) {
8115   assert(work_q->size() == 0, "First empty local work queue");
8116   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8117   if (_overflow_list == NULL) {
8118     return false;
8119   }
8120   // Grab the entire list; we'll put back a suffix
8121   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8122   Thread* tid = Thread::current();
8123   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8124   // set to ParallelGCThreads.
8125   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8126   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8127   // If the list is busy, we spin for a short while,
8128   // sleeping between attempts to get the list.
8129   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8130     os::sleep(tid, sleep_time_millis, false);
8131     if (_overflow_list == NULL) {
8132       // Nothing left to take
8133       return false;
8134     } else if (_overflow_list != BUSY) {
8135       // Try and grab the prefix
8136       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8137     }
8138   }
8139   // If the list was found to be empty, or we spun long
8140   // enough, we give up and return empty-handed. If we leave
8141   // the list in the BUSY state below, it must be the case that
8142   // some other thread holds the overflow list and will set it
8143   // to a non-BUSY state in the future.
8144   if (prefix == NULL || prefix == BUSY) {
8145      // Nothing to take or waited long enough
8146      if (prefix == NULL) {
8147        // Write back the NULL in case we overwrote it with BUSY above
8148        // and it is still the same value.
8149        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8150      }
8151      return false;
8152   }
8153   assert(prefix != NULL && prefix != BUSY, "Error");
8154   size_t i = num;
8155   oop cur = prefix;
8156   // Walk down the first "num" objects, unless we reach the end.
8157   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8158   if (cur->mark() == NULL) {
8159     // We have "num" or fewer elements in the list, so there
8160     // is nothing to return to the global list.
8161     // Write back the NULL in lieu of the BUSY we wrote
8162     // above, if it is still the same value.
8163     if (_overflow_list == BUSY) {
8164       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8165     }
8166   } else {
8167     // Chop off the suffix and return it to the global list.
8168     assert(cur->mark() != BUSY, "Error");
8169     oop suffix_head = cur->mark(); // suffix will be put back on global list
8170     cur->set_mark(NULL);           // break off suffix
8171     // It's possible that the list is still in the empty(busy) state
8172     // we left it in a short while ago; in that case we may be
8173     // able to place back the suffix without incurring the cost
8174     // of a walk down the list.
8175     oop observed_overflow_list = _overflow_list;
8176     oop cur_overflow_list = observed_overflow_list;
8177     bool attached = false;
8178     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8179       observed_overflow_list =
8180         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8181       if (cur_overflow_list == observed_overflow_list) {
8182         attached = true;
8183         break;
8184       } else cur_overflow_list = observed_overflow_list;
8185     }
8186     if (!attached) {
8187       // Too bad, someone else sneaked in (at least) an element; we'll need
8188       // to do a splice. Find tail of suffix so we can prepend suffix to global
8189       // list.
8190       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8191       oop suffix_tail = cur;
8192       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8193              "Tautology");
8194       observed_overflow_list = _overflow_list;
8195       do {
8196         cur_overflow_list = observed_overflow_list;
8197         if (cur_overflow_list != BUSY) {
8198           // Do the splice ...
8199           suffix_tail->set_mark(markOop(cur_overflow_list));
8200         } else { // cur_overflow_list == BUSY
8201           suffix_tail->set_mark(NULL);
8202         }
8203         // ... and try to place spliced list back on overflow_list ...
8204         observed_overflow_list =
8205           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8206       } while (cur_overflow_list != observed_overflow_list);
8207       // ... until we have succeeded in doing so.
8208     }
8209   }
8210 
8211   // Push the prefix elements on work_q
8212   assert(prefix != NULL, "control point invariant");
8213   const markOop proto = markOopDesc::prototype();
8214   oop next;
8215   NOT_PRODUCT(ssize_t n = 0;)
8216   for (cur = prefix; cur != NULL; cur = next) {
8217     next = oop(cur->mark());
8218     cur->set_mark(proto);   // until proven otherwise
8219     assert(cur->is_oop(), "Should be an oop");
8220     bool res = work_q->push(cur);
8221     assert(res, "Bit off more than we can chew?");
8222     NOT_PRODUCT(n++;)
8223   }
8224 #ifndef PRODUCT
8225   assert(_num_par_pushes >= n, "Too many pops?");
8226   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8227 #endif
8228   return true;
8229 }
8230 
8231 // Single-threaded
8232 void CMSCollector::push_on_overflow_list(oop p) {
8233   NOT_PRODUCT(_num_par_pushes++;)
8234   assert(p->is_oop(), "Not an oop");
8235   preserve_mark_if_necessary(p);
8236   p->set_mark((markOop)_overflow_list);
8237   _overflow_list = p;
8238 }
8239 
8240 // Multi-threaded; use CAS to prepend to overflow list
8241 void CMSCollector::par_push_on_overflow_list(oop p) {
8242   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8243   assert(p->is_oop(), "Not an oop");
8244   par_preserve_mark_if_necessary(p);
8245   oop observed_overflow_list = _overflow_list;
8246   oop cur_overflow_list;
8247   do {
8248     cur_overflow_list = observed_overflow_list;
8249     if (cur_overflow_list != BUSY) {
8250       p->set_mark(markOop(cur_overflow_list));
8251     } else {
8252       p->set_mark(NULL);
8253     }
8254     observed_overflow_list =
8255       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8256   } while (cur_overflow_list != observed_overflow_list);
8257 }
8258 #undef BUSY
8259 
8260 // Single threaded
8261 // General Note on GrowableArray: pushes may silently fail
8262 // because we are (temporarily) out of C-heap for expanding
8263 // the stack. The problem is quite ubiquitous and affects
8264 // a lot of code in the JVM. The prudent thing for GrowableArray
8265 // to do (for now) is to exit with an error. However, that may
8266 // be too draconian in some cases because the caller may be
8267 // able to recover without much harm. For such cases, we
8268 // should probably introduce a "soft_push" method which returns
8269 // an indication of success or failure with the assumption that
8270 // the caller may be able to recover from a failure; code in
8271 // the VM can then be changed, incrementally, to deal with such
8272 // failures where possible, thus, incrementally hardening the VM
8273 // in such low resource situations.
8274 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8275   _preserved_oop_stack.push(p);
8276   _preserved_mark_stack.push(m);
8277   assert(m == p->mark(), "Mark word changed");
8278   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8279          "bijection");
8280 }
8281 
8282 // Single threaded
8283 void CMSCollector::preserve_mark_if_necessary(oop p) {
8284   markOop m = p->mark();
8285   if (m->must_be_preserved(p)) {
8286     preserve_mark_work(p, m);
8287   }
8288 }
8289 
8290 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8291   markOop m = p->mark();
8292   if (m->must_be_preserved(p)) {
8293     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8294     // Even though we read the mark word without holding
8295     // the lock, we are assured that it will not change
8296     // because we "own" this oop, so no other thread can
8297     // be trying to push it on the overflow list; see
8298     // the assertion in preserve_mark_work() that checks
8299     // that m == p->mark().
8300     preserve_mark_work(p, m);
8301   }
8302 }
8303 
8304 // We should be able to do this multi-threaded,
8305 // a chunk of stack being a task (this is
8306 // correct because each oop only ever appears
8307 // once in the overflow list. However, it's
8308 // not very easy to completely overlap this with
8309 // other operations, so will generally not be done
8310 // until all work's been completed. Because we
8311 // expect the preserved oop stack (set) to be small,
8312 // it's probably fine to do this single-threaded.
8313 // We can explore cleverer concurrent/overlapped/parallel
8314 // processing of preserved marks if we feel the
8315 // need for this in the future. Stack overflow should
8316 // be so rare in practice and, when it happens, its
8317 // effect on performance so great that this will
8318 // likely just be in the noise anyway.
8319 void CMSCollector::restore_preserved_marks_if_any() {
8320   assert(SafepointSynchronize::is_at_safepoint(),
8321          "world should be stopped");
8322   assert(Thread::current()->is_ConcurrentGC_thread() ||
8323          Thread::current()->is_VM_thread(),
8324          "should be single-threaded");
8325   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8326          "bijection");
8327 
8328   while (!_preserved_oop_stack.is_empty()) {
8329     oop p = _preserved_oop_stack.pop();
8330     assert(p->is_oop(), "Should be an oop");
8331     assert(_span.contains(p), "oop should be in _span");
8332     assert(p->mark() == markOopDesc::prototype(),
8333            "Set when taken from overflow list");
8334     markOop m = _preserved_mark_stack.pop();
8335     p->set_mark(m);
8336   }
8337   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8338          "stacks were cleared above");
8339 }
8340 
8341 #ifndef PRODUCT
8342 bool CMSCollector::no_preserved_marks() const {
8343   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8344 }
8345 #endif
8346 
8347 // Transfer some number of overflown objects to usual marking
8348 // stack. Return true if some objects were transferred.
8349 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8350   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8351                     (size_t)ParGCDesiredObjsFromOverflowList);
8352 
8353   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8354   assert(_collector->overflow_list_is_empty() || res,
8355          "If list is not empty, we should have taken something");
8356   assert(!res || !_mark_stack->isEmpty(),
8357          "If we took something, it should now be on our stack");
8358   return res;
8359 }
8360 
8361 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8362   size_t res = _sp->block_size_no_stall(addr, _collector);
8363   if (_sp->block_is_obj(addr)) {
8364     if (_live_bit_map->isMarked(addr)) {
8365       // It can't have been dead in a previous cycle
8366       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8367     } else {
8368       _dead_bit_map->mark(addr);      // mark the dead object
8369     }
8370   }
8371   // Could be 0, if the block size could not be computed without stalling.
8372   return res;
8373 }
8374 
8375 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8376 
8377   switch (phase) {
8378     case CMSCollector::InitialMarking:
8379       initialize(true  /* fullGC */ ,
8380                  cause /* cause of the GC */,
8381                  true  /* recordGCBeginTime */,
8382                  true  /* recordPreGCUsage */,
8383                  false /* recordPeakUsage */,
8384                  false /* recordPostGCusage */,
8385                  true  /* recordAccumulatedGCTime */,
8386                  false /* recordGCEndTime */,
8387                  false /* countCollection */  );
8388       break;
8389 
8390     case CMSCollector::FinalMarking:
8391       initialize(true  /* fullGC */ ,
8392                  cause /* cause of the GC */,
8393                  false /* recordGCBeginTime */,
8394                  false /* recordPreGCUsage */,
8395                  false /* recordPeakUsage */,
8396                  false /* recordPostGCusage */,
8397                  true  /* recordAccumulatedGCTime */,
8398                  false /* recordGCEndTime */,
8399                  false /* countCollection */  );
8400       break;
8401 
8402     case CMSCollector::Sweeping:
8403       initialize(true  /* fullGC */ ,
8404                  cause /* cause of the GC */,
8405                  false /* recordGCBeginTime */,
8406                  false /* recordPreGCUsage */,
8407                  true  /* recordPeakUsage */,
8408                  true  /* recordPostGCusage */,
8409                  false /* recordAccumulatedGCTime */,
8410                  true  /* recordGCEndTime */,
8411                  true  /* countCollection */  );
8412       break;
8413 
8414     default:
8415       ShouldNotReachHere();
8416   }
8417 }