rev 7992 : G1RootProcessor rev 7993 : Convert G1 to G1RootProcessor rev 7996 : imported patch trace-metadata-comment rev 7998 : imported patch thomas-comments rev 7999 : imported patch eriks-comments
1 /* 2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #if !defined(__clang_major__) && defined(__GNUC__) 26 // FIXME, formats have issues. Disable this macro definition, compile, and study warnings for more information. 27 #define ATTRIBUTE_PRINTF(x,y) 28 #endif 29 30 #include "precompiled.hpp" 31 #include "classfile/metadataOnStackMark.hpp" 32 #include "classfile/stringTable.hpp" 33 #include "code/codeCache.hpp" 34 #include "code/icBuffer.hpp" 35 #include "gc_implementation/g1/bufferingOopClosure.hpp" 36 #include "gc_implementation/g1/concurrentG1Refine.hpp" 37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp" 38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp" 39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp" 40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" 41 #include "gc_implementation/g1/g1CollectorPolicy.hpp" 42 #include "gc_implementation/g1/g1ErgoVerbose.hpp" 43 #include "gc_implementation/g1/g1EvacFailure.hpp" 44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp" 45 #include "gc_implementation/g1/g1Log.hpp" 46 #include "gc_implementation/g1/g1MarkSweep.hpp" 47 #include "gc_implementation/g1/g1OopClosures.inline.hpp" 48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp" 49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp" 50 #include "gc_implementation/g1/g1RemSet.inline.hpp" 51 #include "gc_implementation/g1/g1RootProcessor.hpp" 52 #include "gc_implementation/g1/g1StringDedup.hpp" 53 #include "gc_implementation/g1/g1YCTypes.hpp" 54 #include "gc_implementation/g1/heapRegion.inline.hpp" 55 #include "gc_implementation/g1/heapRegionRemSet.hpp" 56 #include "gc_implementation/g1/heapRegionSet.inline.hpp" 57 #include "gc_implementation/g1/vm_operations_g1.hpp" 58 #include "gc_implementation/shared/gcHeapSummary.hpp" 59 #include "gc_implementation/shared/gcTimer.hpp" 60 #include "gc_implementation/shared/gcTrace.hpp" 61 #include "gc_implementation/shared/gcTraceTime.hpp" 62 #include "gc_implementation/shared/isGCActiveMark.hpp" 63 #include "memory/allocation.hpp" 64 #include "memory/gcLocker.inline.hpp" 65 #include "memory/generationSpec.hpp" 66 #include "memory/iterator.hpp" 67 #include "memory/referenceProcessor.hpp" 68 #include "oops/oop.inline.hpp" 69 #include "oops/oop.pcgc.inline.hpp" 70 #include "runtime/atomic.inline.hpp" 71 #include "runtime/orderAccess.inline.hpp" 72 #include "runtime/vmThread.hpp" 73 #include "utilities/globalDefinitions.hpp" 74 75 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; 76 77 // turn it on so that the contents of the young list (scan-only / 78 // to-be-collected) are printed at "strategic" points before / during 79 // / after the collection --- this is useful for debugging 80 #define YOUNG_LIST_VERBOSE 0 81 // CURRENT STATUS 82 // This file is under construction. Search for "FIXME". 83 84 // INVARIANTS/NOTES 85 // 86 // All allocation activity covered by the G1CollectedHeap interface is 87 // serialized by acquiring the HeapLock. This happens in mem_allocate 88 // and allocate_new_tlab, which are the "entry" points to the 89 // allocation code from the rest of the JVM. (Note that this does not 90 // apply to TLAB allocation, which is not part of this interface: it 91 // is done by clients of this interface.) 92 93 // Local to this file. 94 95 class RefineCardTableEntryClosure: public CardTableEntryClosure { 96 bool _concurrent; 97 public: 98 RefineCardTableEntryClosure() : _concurrent(true) { } 99 100 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 101 bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false); 102 // This path is executed by the concurrent refine or mutator threads, 103 // concurrently, and so we do not care if card_ptr contains references 104 // that point into the collection set. 105 assert(!oops_into_cset, "should be"); 106 107 if (_concurrent && SuspendibleThreadSet::should_yield()) { 108 // Caller will actually yield. 109 return false; 110 } 111 // Otherwise, we finished successfully; return true. 112 return true; 113 } 114 115 void set_concurrent(bool b) { _concurrent = b; } 116 }; 117 118 119 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure { 120 private: 121 size_t _num_processed; 122 123 public: 124 RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { } 125 126 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 127 *card_ptr = CardTableModRefBS::dirty_card_val(); 128 _num_processed++; 129 return true; 130 } 131 132 size_t num_processed() const { return _num_processed; } 133 }; 134 135 YoungList::YoungList(G1CollectedHeap* g1h) : 136 _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0), 137 _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) { 138 guarantee(check_list_empty(false), "just making sure..."); 139 } 140 141 void YoungList::push_region(HeapRegion *hr) { 142 assert(!hr->is_young(), "should not already be young"); 143 assert(hr->get_next_young_region() == NULL, "cause it should!"); 144 145 hr->set_next_young_region(_head); 146 _head = hr; 147 148 _g1h->g1_policy()->set_region_eden(hr, (int) _length); 149 ++_length; 150 } 151 152 void YoungList::add_survivor_region(HeapRegion* hr) { 153 assert(hr->is_survivor(), "should be flagged as survivor region"); 154 assert(hr->get_next_young_region() == NULL, "cause it should!"); 155 156 hr->set_next_young_region(_survivor_head); 157 if (_survivor_head == NULL) { 158 _survivor_tail = hr; 159 } 160 _survivor_head = hr; 161 ++_survivor_length; 162 } 163 164 void YoungList::empty_list(HeapRegion* list) { 165 while (list != NULL) { 166 HeapRegion* next = list->get_next_young_region(); 167 list->set_next_young_region(NULL); 168 list->uninstall_surv_rate_group(); 169 // This is called before a Full GC and all the non-empty / 170 // non-humongous regions at the end of the Full GC will end up as 171 // old anyway. 172 list->set_old(); 173 list = next; 174 } 175 } 176 177 void YoungList::empty_list() { 178 assert(check_list_well_formed(), "young list should be well formed"); 179 180 empty_list(_head); 181 _head = NULL; 182 _length = 0; 183 184 empty_list(_survivor_head); 185 _survivor_head = NULL; 186 _survivor_tail = NULL; 187 _survivor_length = 0; 188 189 _last_sampled_rs_lengths = 0; 190 191 assert(check_list_empty(false), "just making sure..."); 192 } 193 194 bool YoungList::check_list_well_formed() { 195 bool ret = true; 196 197 uint length = 0; 198 HeapRegion* curr = _head; 199 HeapRegion* last = NULL; 200 while (curr != NULL) { 201 if (!curr->is_young()) { 202 gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" " 203 "incorrectly tagged (y: %d, surv: %d)", 204 curr->bottom(), curr->end(), 205 curr->is_young(), curr->is_survivor()); 206 ret = false; 207 } 208 ++length; 209 last = curr; 210 curr = curr->get_next_young_region(); 211 } 212 ret = ret && (length == _length); 213 214 if (!ret) { 215 gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!"); 216 gclog_or_tty->print_cr("### list has %u entries, _length is %u", 217 length, _length); 218 } 219 220 return ret; 221 } 222 223 bool YoungList::check_list_empty(bool check_sample) { 224 bool ret = true; 225 226 if (_length != 0) { 227 gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u", 228 _length); 229 ret = false; 230 } 231 if (check_sample && _last_sampled_rs_lengths != 0) { 232 gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths"); 233 ret = false; 234 } 235 if (_head != NULL) { 236 gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head"); 237 ret = false; 238 } 239 if (!ret) { 240 gclog_or_tty->print_cr("### YOUNG LIST does not seem empty"); 241 } 242 243 return ret; 244 } 245 246 void 247 YoungList::rs_length_sampling_init() { 248 _sampled_rs_lengths = 0; 249 _curr = _head; 250 } 251 252 bool 253 YoungList::rs_length_sampling_more() { 254 return _curr != NULL; 255 } 256 257 void 258 YoungList::rs_length_sampling_next() { 259 assert( _curr != NULL, "invariant" ); 260 size_t rs_length = _curr->rem_set()->occupied(); 261 262 _sampled_rs_lengths += rs_length; 263 264 // The current region may not yet have been added to the 265 // incremental collection set (it gets added when it is 266 // retired as the current allocation region). 267 if (_curr->in_collection_set()) { 268 // Update the collection set policy information for this region 269 _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length); 270 } 271 272 _curr = _curr->get_next_young_region(); 273 if (_curr == NULL) { 274 _last_sampled_rs_lengths = _sampled_rs_lengths; 275 // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths); 276 } 277 } 278 279 void 280 YoungList::reset_auxilary_lists() { 281 guarantee( is_empty(), "young list should be empty" ); 282 assert(check_list_well_formed(), "young list should be well formed"); 283 284 // Add survivor regions to SurvRateGroup. 285 _g1h->g1_policy()->note_start_adding_survivor_regions(); 286 _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */); 287 288 int young_index_in_cset = 0; 289 for (HeapRegion* curr = _survivor_head; 290 curr != NULL; 291 curr = curr->get_next_young_region()) { 292 _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset); 293 294 // The region is a non-empty survivor so let's add it to 295 // the incremental collection set for the next evacuation 296 // pause. 297 _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr); 298 young_index_in_cset += 1; 299 } 300 assert((uint) young_index_in_cset == _survivor_length, "post-condition"); 301 _g1h->g1_policy()->note_stop_adding_survivor_regions(); 302 303 _head = _survivor_head; 304 _length = _survivor_length; 305 if (_survivor_head != NULL) { 306 assert(_survivor_tail != NULL, "cause it shouldn't be"); 307 assert(_survivor_length > 0, "invariant"); 308 _survivor_tail->set_next_young_region(NULL); 309 } 310 311 // Don't clear the survivor list handles until the start of 312 // the next evacuation pause - we need it in order to re-tag 313 // the survivor regions from this evacuation pause as 'young' 314 // at the start of the next. 315 316 _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */); 317 318 assert(check_list_well_formed(), "young list should be well formed"); 319 } 320 321 void YoungList::print() { 322 HeapRegion* lists[] = {_head, _survivor_head}; 323 const char* names[] = {"YOUNG", "SURVIVOR"}; 324 325 for (uint list = 0; list < ARRAY_SIZE(lists); ++list) { 326 gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]); 327 HeapRegion *curr = lists[list]; 328 if (curr == NULL) 329 gclog_or_tty->print_cr(" empty"); 330 while (curr != NULL) { 331 gclog_or_tty->print_cr(" "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d", 332 HR_FORMAT_PARAMS(curr), 333 curr->prev_top_at_mark_start(), 334 curr->next_top_at_mark_start(), 335 curr->age_in_surv_rate_group_cond()); 336 curr = curr->get_next_young_region(); 337 } 338 } 339 340 gclog_or_tty->cr(); 341 } 342 343 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) { 344 HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions); 345 } 346 347 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) { 348 // The from card cache is not the memory that is actually committed. So we cannot 349 // take advantage of the zero_filled parameter. 350 reset_from_card_cache(start_idx, num_regions); 351 } 352 353 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr) 354 { 355 // Claim the right to put the region on the dirty cards region list 356 // by installing a self pointer. 357 HeapRegion* next = hr->get_next_dirty_cards_region(); 358 if (next == NULL) { 359 HeapRegion* res = (HeapRegion*) 360 Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(), 361 NULL); 362 if (res == NULL) { 363 HeapRegion* head; 364 do { 365 // Put the region to the dirty cards region list. 366 head = _dirty_cards_region_list; 367 next = (HeapRegion*) 368 Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head); 369 if (next == head) { 370 assert(hr->get_next_dirty_cards_region() == hr, 371 "hr->get_next_dirty_cards_region() != hr"); 372 if (next == NULL) { 373 // The last region in the list points to itself. 374 hr->set_next_dirty_cards_region(hr); 375 } else { 376 hr->set_next_dirty_cards_region(next); 377 } 378 } 379 } while (next != head); 380 } 381 } 382 } 383 384 HeapRegion* G1CollectedHeap::pop_dirty_cards_region() 385 { 386 HeapRegion* head; 387 HeapRegion* hr; 388 do { 389 head = _dirty_cards_region_list; 390 if (head == NULL) { 391 return NULL; 392 } 393 HeapRegion* new_head = head->get_next_dirty_cards_region(); 394 if (head == new_head) { 395 // The last region. 396 new_head = NULL; 397 } 398 hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list, 399 head); 400 } while (hr != head); 401 assert(hr != NULL, "invariant"); 402 hr->set_next_dirty_cards_region(NULL); 403 return hr; 404 } 405 406 #ifdef ASSERT 407 // A region is added to the collection set as it is retired 408 // so an address p can point to a region which will be in the 409 // collection set but has not yet been retired. This method 410 // therefore is only accurate during a GC pause after all 411 // regions have been retired. It is used for debugging 412 // to check if an nmethod has references to objects that can 413 // be move during a partial collection. Though it can be 414 // inaccurate, it is sufficient for G1 because the conservative 415 // implementation of is_scavengable() for G1 will indicate that 416 // all nmethods must be scanned during a partial collection. 417 bool G1CollectedHeap::is_in_partial_collection(const void* p) { 418 if (p == NULL) { 419 return false; 420 } 421 return heap_region_containing(p)->in_collection_set(); 422 } 423 #endif 424 425 // Returns true if the reference points to an object that 426 // can move in an incremental collection. 427 bool G1CollectedHeap::is_scavengable(const void* p) { 428 HeapRegion* hr = heap_region_containing(p); 429 return !hr->is_humongous(); 430 } 431 432 // Private class members. 433 434 G1CollectedHeap* G1CollectedHeap::_g1h; 435 436 // Private methods. 437 438 HeapRegion* 439 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) { 440 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 441 while (!_secondary_free_list.is_empty() || free_regions_coming()) { 442 if (!_secondary_free_list.is_empty()) { 443 if (G1ConcRegionFreeingVerbose) { 444 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 445 "secondary_free_list has %u entries", 446 _secondary_free_list.length()); 447 } 448 // It looks as if there are free regions available on the 449 // secondary_free_list. Let's move them to the free_list and try 450 // again to allocate from it. 451 append_secondary_free_list(); 452 453 assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not " 454 "empty we should have moved at least one entry to the free_list"); 455 HeapRegion* res = _hrm.allocate_free_region(is_old); 456 if (G1ConcRegionFreeingVerbose) { 457 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 458 "allocated "HR_FORMAT" from secondary_free_list", 459 HR_FORMAT_PARAMS(res)); 460 } 461 return res; 462 } 463 464 // Wait here until we get notified either when (a) there are no 465 // more free regions coming or (b) some regions have been moved on 466 // the secondary_free_list. 467 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 468 } 469 470 if (G1ConcRegionFreeingVerbose) { 471 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 472 "could not allocate from secondary_free_list"); 473 } 474 return NULL; 475 } 476 477 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) { 478 assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords, 479 "the only time we use this to allocate a humongous region is " 480 "when we are allocating a single humongous region"); 481 482 HeapRegion* res; 483 if (G1StressConcRegionFreeing) { 484 if (!_secondary_free_list.is_empty()) { 485 if (G1ConcRegionFreeingVerbose) { 486 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 487 "forced to look at the secondary_free_list"); 488 } 489 res = new_region_try_secondary_free_list(is_old); 490 if (res != NULL) { 491 return res; 492 } 493 } 494 } 495 496 res = _hrm.allocate_free_region(is_old); 497 498 if (res == NULL) { 499 if (G1ConcRegionFreeingVerbose) { 500 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 501 "res == NULL, trying the secondary_free_list"); 502 } 503 res = new_region_try_secondary_free_list(is_old); 504 } 505 if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { 506 // Currently, only attempts to allocate GC alloc regions set 507 // do_expand to true. So, we should only reach here during a 508 // safepoint. If this assumption changes we might have to 509 // reconsider the use of _expand_heap_after_alloc_failure. 510 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 511 512 ergo_verbose1(ErgoHeapSizing, 513 "attempt heap expansion", 514 ergo_format_reason("region allocation request failed") 515 ergo_format_byte("allocation request"), 516 word_size * HeapWordSize); 517 if (expand(word_size * HeapWordSize)) { 518 // Given that expand() succeeded in expanding the heap, and we 519 // always expand the heap by an amount aligned to the heap 520 // region size, the free list should in theory not be empty. 521 // In either case allocate_free_region() will check for NULL. 522 res = _hrm.allocate_free_region(is_old); 523 } else { 524 _expand_heap_after_alloc_failure = false; 525 } 526 } 527 return res; 528 } 529 530 HeapWord* 531 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first, 532 uint num_regions, 533 size_t word_size, 534 AllocationContext_t context) { 535 assert(first != G1_NO_HRM_INDEX, "pre-condition"); 536 assert(is_humongous(word_size), "word_size should be humongous"); 537 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 538 539 // Index of last region in the series + 1. 540 uint last = first + num_regions; 541 542 // We need to initialize the region(s) we just discovered. This is 543 // a bit tricky given that it can happen concurrently with 544 // refinement threads refining cards on these regions and 545 // potentially wanting to refine the BOT as they are scanning 546 // those cards (this can happen shortly after a cleanup; see CR 547 // 6991377). So we have to set up the region(s) carefully and in 548 // a specific order. 549 550 // The word size sum of all the regions we will allocate. 551 size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords; 552 assert(word_size <= word_size_sum, "sanity"); 553 554 // This will be the "starts humongous" region. 555 HeapRegion* first_hr = region_at(first); 556 // The header of the new object will be placed at the bottom of 557 // the first region. 558 HeapWord* new_obj = first_hr->bottom(); 559 // This will be the new end of the first region in the series that 560 // should also match the end of the last region in the series. 561 HeapWord* new_end = new_obj + word_size_sum; 562 // This will be the new top of the first region that will reflect 563 // this allocation. 564 HeapWord* new_top = new_obj + word_size; 565 566 // First, we need to zero the header of the space that we will be 567 // allocating. When we update top further down, some refinement 568 // threads might try to scan the region. By zeroing the header we 569 // ensure that any thread that will try to scan the region will 570 // come across the zero klass word and bail out. 571 // 572 // NOTE: It would not have been correct to have used 573 // CollectedHeap::fill_with_object() and make the space look like 574 // an int array. The thread that is doing the allocation will 575 // later update the object header to a potentially different array 576 // type and, for a very short period of time, the klass and length 577 // fields will be inconsistent. This could cause a refinement 578 // thread to calculate the object size incorrectly. 579 Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); 580 581 // We will set up the first region as "starts humongous". This 582 // will also update the BOT covering all the regions to reflect 583 // that there is a single object that starts at the bottom of the 584 // first region. 585 first_hr->set_starts_humongous(new_top, new_end); 586 first_hr->set_allocation_context(context); 587 // Then, if there are any, we will set up the "continues 588 // humongous" regions. 589 HeapRegion* hr = NULL; 590 for (uint i = first + 1; i < last; ++i) { 591 hr = region_at(i); 592 hr->set_continues_humongous(first_hr); 593 hr->set_allocation_context(context); 594 } 595 // If we have "continues humongous" regions (hr != NULL), then the 596 // end of the last one should match new_end. 597 assert(hr == NULL || hr->end() == new_end, "sanity"); 598 599 // Up to this point no concurrent thread would have been able to 600 // do any scanning on any region in this series. All the top 601 // fields still point to bottom, so the intersection between 602 // [bottom,top] and [card_start,card_end] will be empty. Before we 603 // update the top fields, we'll do a storestore to make sure that 604 // no thread sees the update to top before the zeroing of the 605 // object header and the BOT initialization. 606 OrderAccess::storestore(); 607 608 // Now that the BOT and the object header have been initialized, 609 // we can update top of the "starts humongous" region. 610 assert(first_hr->bottom() < new_top && new_top <= first_hr->end(), 611 "new_top should be in this region"); 612 first_hr->set_top(new_top); 613 if (_hr_printer.is_active()) { 614 HeapWord* bottom = first_hr->bottom(); 615 HeapWord* end = first_hr->orig_end(); 616 if ((first + 1) == last) { 617 // the series has a single humongous region 618 _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top); 619 } else { 620 // the series has more than one humongous regions 621 _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end); 622 } 623 } 624 625 // Now, we will update the top fields of the "continues humongous" 626 // regions. The reason we need to do this is that, otherwise, 627 // these regions would look empty and this will confuse parts of 628 // G1. For example, the code that looks for a consecutive number 629 // of empty regions will consider them empty and try to 630 // re-allocate them. We can extend is_empty() to also include 631 // !is_continues_humongous(), but it is easier to just update the top 632 // fields here. The way we set top for all regions (i.e., top == 633 // end for all regions but the last one, top == new_top for the 634 // last one) is actually used when we will free up the humongous 635 // region in free_humongous_region(). 636 hr = NULL; 637 for (uint i = first + 1; i < last; ++i) { 638 hr = region_at(i); 639 if ((i + 1) == last) { 640 // last continues humongous region 641 assert(hr->bottom() < new_top && new_top <= hr->end(), 642 "new_top should fall on this region"); 643 hr->set_top(new_top); 644 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top); 645 } else { 646 // not last one 647 assert(new_top > hr->end(), "new_top should be above this region"); 648 hr->set_top(hr->end()); 649 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end()); 650 } 651 } 652 // If we have continues humongous regions (hr != NULL), then the 653 // end of the last one should match new_end and its top should 654 // match new_top. 655 assert(hr == NULL || 656 (hr->end() == new_end && hr->top() == new_top), "sanity"); 657 check_bitmaps("Humongous Region Allocation", first_hr); 658 659 assert(first_hr->used() == word_size * HeapWordSize, "invariant"); 660 _allocator->increase_used(first_hr->used()); 661 _humongous_set.add(first_hr); 662 663 return new_obj; 664 } 665 666 // If could fit into free regions w/o expansion, try. 667 // Otherwise, if can expand, do so. 668 // Otherwise, if using ex regions might help, try with ex given back. 669 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) { 670 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 671 672 verify_region_sets_optional(); 673 674 uint first = G1_NO_HRM_INDEX; 675 uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords); 676 677 if (obj_regions == 1) { 678 // Only one region to allocate, try to use a fast path by directly allocating 679 // from the free lists. Do not try to expand here, we will potentially do that 680 // later. 681 HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */); 682 if (hr != NULL) { 683 first = hr->hrm_index(); 684 } 685 } else { 686 // We can't allocate humongous regions spanning more than one region while 687 // cleanupComplete() is running, since some of the regions we find to be 688 // empty might not yet be added to the free list. It is not straightforward 689 // to know in which list they are on so that we can remove them. We only 690 // need to do this if we need to allocate more than one region to satisfy the 691 // current humongous allocation request. If we are only allocating one region 692 // we use the one-region region allocation code (see above), that already 693 // potentially waits for regions from the secondary free list. 694 wait_while_free_regions_coming(); 695 append_secondary_free_list_if_not_empty_with_lock(); 696 697 // Policy: Try only empty regions (i.e. already committed first). Maybe we 698 // are lucky enough to find some. 699 first = _hrm.find_contiguous_only_empty(obj_regions); 700 if (first != G1_NO_HRM_INDEX) { 701 _hrm.allocate_free_regions_starting_at(first, obj_regions); 702 } 703 } 704 705 if (first == G1_NO_HRM_INDEX) { 706 // Policy: We could not find enough regions for the humongous object in the 707 // free list. Look through the heap to find a mix of free and uncommitted regions. 708 // If so, try expansion. 709 first = _hrm.find_contiguous_empty_or_unavailable(obj_regions); 710 if (first != G1_NO_HRM_INDEX) { 711 // We found something. Make sure these regions are committed, i.e. expand 712 // the heap. Alternatively we could do a defragmentation GC. 713 ergo_verbose1(ErgoHeapSizing, 714 "attempt heap expansion", 715 ergo_format_reason("humongous allocation request failed") 716 ergo_format_byte("allocation request"), 717 word_size * HeapWordSize); 718 719 _hrm.expand_at(first, obj_regions); 720 g1_policy()->record_new_heap_size(num_regions()); 721 722 #ifdef ASSERT 723 for (uint i = first; i < first + obj_regions; ++i) { 724 HeapRegion* hr = region_at(i); 725 assert(hr->is_free(), "sanity"); 726 assert(hr->is_empty(), "sanity"); 727 assert(is_on_master_free_list(hr), "sanity"); 728 } 729 #endif 730 _hrm.allocate_free_regions_starting_at(first, obj_regions); 731 } else { 732 // Policy: Potentially trigger a defragmentation GC. 733 } 734 } 735 736 HeapWord* result = NULL; 737 if (first != G1_NO_HRM_INDEX) { 738 result = humongous_obj_allocate_initialize_regions(first, obj_regions, 739 word_size, context); 740 assert(result != NULL, "it should always return a valid result"); 741 742 // A successful humongous object allocation changes the used space 743 // information of the old generation so we need to recalculate the 744 // sizes and update the jstat counters here. 745 g1mm()->update_sizes(); 746 } 747 748 verify_region_sets_optional(); 749 750 return result; 751 } 752 753 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) { 754 assert_heap_not_locked_and_not_at_safepoint(); 755 assert(!is_humongous(word_size), "we do not allow humongous TLABs"); 756 757 uint dummy_gc_count_before; 758 uint dummy_gclocker_retry_count = 0; 759 return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count); 760 } 761 762 HeapWord* 763 G1CollectedHeap::mem_allocate(size_t word_size, 764 bool* gc_overhead_limit_was_exceeded) { 765 assert_heap_not_locked_and_not_at_safepoint(); 766 767 // Loop until the allocation is satisfied, or unsatisfied after GC. 768 for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { 769 uint gc_count_before; 770 771 HeapWord* result = NULL; 772 if (!is_humongous(word_size)) { 773 result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count); 774 } else { 775 result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count); 776 } 777 if (result != NULL) { 778 return result; 779 } 780 781 // Create the garbage collection operation... 782 VM_G1CollectForAllocation op(gc_count_before, word_size); 783 op.set_allocation_context(AllocationContext::current()); 784 785 // ...and get the VM thread to execute it. 786 VMThread::execute(&op); 787 788 if (op.prologue_succeeded() && op.pause_succeeded()) { 789 // If the operation was successful we'll return the result even 790 // if it is NULL. If the allocation attempt failed immediately 791 // after a Full GC, it's unlikely we'll be able to allocate now. 792 HeapWord* result = op.result(); 793 if (result != NULL && !is_humongous(word_size)) { 794 // Allocations that take place on VM operations do not do any 795 // card dirtying and we have to do it here. We only have to do 796 // this for non-humongous allocations, though. 797 dirty_young_block(result, word_size); 798 } 799 return result; 800 } else { 801 if (gclocker_retry_count > GCLockerRetryAllocationCount) { 802 return NULL; 803 } 804 assert(op.result() == NULL, 805 "the result should be NULL if the VM op did not succeed"); 806 } 807 808 // Give a warning if we seem to be looping forever. 809 if ((QueuedAllocationWarningCount > 0) && 810 (try_count % QueuedAllocationWarningCount == 0)) { 811 warning("G1CollectedHeap::mem_allocate retries %d times", try_count); 812 } 813 } 814 815 ShouldNotReachHere(); 816 return NULL; 817 } 818 819 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size, 820 AllocationContext_t context, 821 uint* gc_count_before_ret, 822 uint* gclocker_retry_count_ret) { 823 // Make sure you read the note in attempt_allocation_humongous(). 824 825 assert_heap_not_locked_and_not_at_safepoint(); 826 assert(!is_humongous(word_size), "attempt_allocation_slow() should not " 827 "be called for humongous allocation requests"); 828 829 // We should only get here after the first-level allocation attempt 830 // (attempt_allocation()) failed to allocate. 831 832 // We will loop until a) we manage to successfully perform the 833 // allocation or b) we successfully schedule a collection which 834 // fails to perform the allocation. b) is the only case when we'll 835 // return NULL. 836 HeapWord* result = NULL; 837 for (int try_count = 1; /* we'll return */; try_count += 1) { 838 bool should_try_gc; 839 uint gc_count_before; 840 841 { 842 MutexLockerEx x(Heap_lock); 843 result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size, 844 false /* bot_updates */); 845 if (result != NULL) { 846 return result; 847 } 848 849 // If we reach here, attempt_allocation_locked() above failed to 850 // allocate a new region. So the mutator alloc region should be NULL. 851 assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here"); 852 853 if (GC_locker::is_active_and_needs_gc()) { 854 if (g1_policy()->can_expand_young_list()) { 855 // No need for an ergo verbose message here, 856 // can_expand_young_list() does this when it returns true. 857 result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size, 858 false /* bot_updates */); 859 if (result != NULL) { 860 return result; 861 } 862 } 863 should_try_gc = false; 864 } else { 865 // The GCLocker may not be active but the GCLocker initiated 866 // GC may not yet have been performed (GCLocker::needs_gc() 867 // returns true). In this case we do not try this GC and 868 // wait until the GCLocker initiated GC is performed, and 869 // then retry the allocation. 870 if (GC_locker::needs_gc()) { 871 should_try_gc = false; 872 } else { 873 // Read the GC count while still holding the Heap_lock. 874 gc_count_before = total_collections(); 875 should_try_gc = true; 876 } 877 } 878 } 879 880 if (should_try_gc) { 881 bool succeeded; 882 result = do_collection_pause(word_size, gc_count_before, &succeeded, 883 GCCause::_g1_inc_collection_pause); 884 if (result != NULL) { 885 assert(succeeded, "only way to get back a non-NULL result"); 886 return result; 887 } 888 889 if (succeeded) { 890 // If we get here we successfully scheduled a collection which 891 // failed to allocate. No point in trying to allocate 892 // further. We'll just return NULL. 893 MutexLockerEx x(Heap_lock); 894 *gc_count_before_ret = total_collections(); 895 return NULL; 896 } 897 } else { 898 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 899 MutexLockerEx x(Heap_lock); 900 *gc_count_before_ret = total_collections(); 901 return NULL; 902 } 903 // The GCLocker is either active or the GCLocker initiated 904 // GC has not yet been performed. Stall until it is and 905 // then retry the allocation. 906 GC_locker::stall_until_clear(); 907 (*gclocker_retry_count_ret) += 1; 908 } 909 910 // We can reach here if we were unsuccessful in scheduling a 911 // collection (because another thread beat us to it) or if we were 912 // stalled due to the GC locker. In either can we should retry the 913 // allocation attempt in case another thread successfully 914 // performed a collection and reclaimed enough space. We do the 915 // first attempt (without holding the Heap_lock) here and the 916 // follow-on attempt will be at the start of the next loop 917 // iteration (after taking the Heap_lock). 918 result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size, 919 false /* bot_updates */); 920 if (result != NULL) { 921 return result; 922 } 923 924 // Give a warning if we seem to be looping forever. 925 if ((QueuedAllocationWarningCount > 0) && 926 (try_count % QueuedAllocationWarningCount == 0)) { 927 warning("G1CollectedHeap::attempt_allocation_slow() " 928 "retries %d times", try_count); 929 } 930 } 931 932 ShouldNotReachHere(); 933 return NULL; 934 } 935 936 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size, 937 uint* gc_count_before_ret, 938 uint* gclocker_retry_count_ret) { 939 // The structure of this method has a lot of similarities to 940 // attempt_allocation_slow(). The reason these two were not merged 941 // into a single one is that such a method would require several "if 942 // allocation is not humongous do this, otherwise do that" 943 // conditional paths which would obscure its flow. In fact, an early 944 // version of this code did use a unified method which was harder to 945 // follow and, as a result, it had subtle bugs that were hard to 946 // track down. So keeping these two methods separate allows each to 947 // be more readable. It will be good to keep these two in sync as 948 // much as possible. 949 950 assert_heap_not_locked_and_not_at_safepoint(); 951 assert(is_humongous(word_size), "attempt_allocation_humongous() " 952 "should only be called for humongous allocations"); 953 954 // Humongous objects can exhaust the heap quickly, so we should check if we 955 // need to start a marking cycle at each humongous object allocation. We do 956 // the check before we do the actual allocation. The reason for doing it 957 // before the allocation is that we avoid having to keep track of the newly 958 // allocated memory while we do a GC. 959 if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation", 960 word_size)) { 961 collect(GCCause::_g1_humongous_allocation); 962 } 963 964 // We will loop until a) we manage to successfully perform the 965 // allocation or b) we successfully schedule a collection which 966 // fails to perform the allocation. b) is the only case when we'll 967 // return NULL. 968 HeapWord* result = NULL; 969 for (int try_count = 1; /* we'll return */; try_count += 1) { 970 bool should_try_gc; 971 uint gc_count_before; 972 973 { 974 MutexLockerEx x(Heap_lock); 975 976 // Given that humongous objects are not allocated in young 977 // regions, we'll first try to do the allocation without doing a 978 // collection hoping that there's enough space in the heap. 979 result = humongous_obj_allocate(word_size, AllocationContext::current()); 980 if (result != NULL) { 981 return result; 982 } 983 984 if (GC_locker::is_active_and_needs_gc()) { 985 should_try_gc = false; 986 } else { 987 // The GCLocker may not be active but the GCLocker initiated 988 // GC may not yet have been performed (GCLocker::needs_gc() 989 // returns true). In this case we do not try this GC and 990 // wait until the GCLocker initiated GC is performed, and 991 // then retry the allocation. 992 if (GC_locker::needs_gc()) { 993 should_try_gc = false; 994 } else { 995 // Read the GC count while still holding the Heap_lock. 996 gc_count_before = total_collections(); 997 should_try_gc = true; 998 } 999 } 1000 } 1001 1002 if (should_try_gc) { 1003 // If we failed to allocate the humongous object, we should try to 1004 // do a collection pause (if we're allowed) in case it reclaims 1005 // enough space for the allocation to succeed after the pause. 1006 1007 bool succeeded; 1008 result = do_collection_pause(word_size, gc_count_before, &succeeded, 1009 GCCause::_g1_humongous_allocation); 1010 if (result != NULL) { 1011 assert(succeeded, "only way to get back a non-NULL result"); 1012 return result; 1013 } 1014 1015 if (succeeded) { 1016 // If we get here we successfully scheduled a collection which 1017 // failed to allocate. No point in trying to allocate 1018 // further. We'll just return NULL. 1019 MutexLockerEx x(Heap_lock); 1020 *gc_count_before_ret = total_collections(); 1021 return NULL; 1022 } 1023 } else { 1024 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 1025 MutexLockerEx x(Heap_lock); 1026 *gc_count_before_ret = total_collections(); 1027 return NULL; 1028 } 1029 // The GCLocker is either active or the GCLocker initiated 1030 // GC has not yet been performed. Stall until it is and 1031 // then retry the allocation. 1032 GC_locker::stall_until_clear(); 1033 (*gclocker_retry_count_ret) += 1; 1034 } 1035 1036 // We can reach here if we were unsuccessful in scheduling a 1037 // collection (because another thread beat us to it) or if we were 1038 // stalled due to the GC locker. In either can we should retry the 1039 // allocation attempt in case another thread successfully 1040 // performed a collection and reclaimed enough space. Give a 1041 // warning if we seem to be looping forever. 1042 1043 if ((QueuedAllocationWarningCount > 0) && 1044 (try_count % QueuedAllocationWarningCount == 0)) { 1045 warning("G1CollectedHeap::attempt_allocation_humongous() " 1046 "retries %d times", try_count); 1047 } 1048 } 1049 1050 ShouldNotReachHere(); 1051 return NULL; 1052 } 1053 1054 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, 1055 AllocationContext_t context, 1056 bool expect_null_mutator_alloc_region) { 1057 assert_at_safepoint(true /* should_be_vm_thread */); 1058 assert(_allocator->mutator_alloc_region(context)->get() == NULL || 1059 !expect_null_mutator_alloc_region, 1060 "the current alloc region was unexpectedly found to be non-NULL"); 1061 1062 if (!is_humongous(word_size)) { 1063 return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size, 1064 false /* bot_updates */); 1065 } else { 1066 HeapWord* result = humongous_obj_allocate(word_size, context); 1067 if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) { 1068 g1_policy()->set_initiate_conc_mark_if_possible(); 1069 } 1070 return result; 1071 } 1072 1073 ShouldNotReachHere(); 1074 } 1075 1076 class PostMCRemSetClearClosure: public HeapRegionClosure { 1077 G1CollectedHeap* _g1h; 1078 ModRefBarrierSet* _mr_bs; 1079 public: 1080 PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) : 1081 _g1h(g1h), _mr_bs(mr_bs) {} 1082 1083 bool doHeapRegion(HeapRegion* r) { 1084 HeapRegionRemSet* hrrs = r->rem_set(); 1085 1086 if (r->is_continues_humongous()) { 1087 // We'll assert that the strong code root list and RSet is empty 1088 assert(hrrs->strong_code_roots_list_length() == 0, "sanity"); 1089 assert(hrrs->occupied() == 0, "RSet should be empty"); 1090 return false; 1091 } 1092 1093 _g1h->reset_gc_time_stamps(r); 1094 hrrs->clear(); 1095 // You might think here that we could clear just the cards 1096 // corresponding to the used region. But no: if we leave a dirty card 1097 // in a region we might allocate into, then it would prevent that card 1098 // from being enqueued, and cause it to be missed. 1099 // Re: the performance cost: we shouldn't be doing full GC anyway! 1100 _mr_bs->clear(MemRegion(r->bottom(), r->end())); 1101 1102 return false; 1103 } 1104 }; 1105 1106 void G1CollectedHeap::clear_rsets_post_compaction() { 1107 PostMCRemSetClearClosure rs_clear(this, g1_barrier_set()); 1108 heap_region_iterate(&rs_clear); 1109 } 1110 1111 class RebuildRSOutOfRegionClosure: public HeapRegionClosure { 1112 G1CollectedHeap* _g1h; 1113 UpdateRSOopClosure _cl; 1114 int _worker_i; 1115 public: 1116 RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) : 1117 _cl(g1->g1_rem_set(), worker_i), 1118 _worker_i(worker_i), 1119 _g1h(g1) 1120 { } 1121 1122 bool doHeapRegion(HeapRegion* r) { 1123 if (!r->is_continues_humongous()) { 1124 _cl.set_from(r); 1125 r->oop_iterate(&_cl); 1126 } 1127 return false; 1128 } 1129 }; 1130 1131 class ParRebuildRSTask: public AbstractGangTask { 1132 G1CollectedHeap* _g1; 1133 HeapRegionClaimer _hrclaimer; 1134 1135 public: 1136 ParRebuildRSTask(G1CollectedHeap* g1) : 1137 AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {} 1138 1139 void work(uint worker_id) { 1140 RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id); 1141 _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer); 1142 } 1143 }; 1144 1145 class PostCompactionPrinterClosure: public HeapRegionClosure { 1146 private: 1147 G1HRPrinter* _hr_printer; 1148 public: 1149 bool doHeapRegion(HeapRegion* hr) { 1150 assert(!hr->is_young(), "not expecting to find young regions"); 1151 if (hr->is_free()) { 1152 // We only generate output for non-empty regions. 1153 } else if (hr->is_starts_humongous()) { 1154 if (hr->region_num() == 1) { 1155 // single humongous region 1156 _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous); 1157 } else { 1158 _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous); 1159 } 1160 } else if (hr->is_continues_humongous()) { 1161 _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous); 1162 } else if (hr->is_old()) { 1163 _hr_printer->post_compaction(hr, G1HRPrinter::Old); 1164 } else { 1165 ShouldNotReachHere(); 1166 } 1167 return false; 1168 } 1169 1170 PostCompactionPrinterClosure(G1HRPrinter* hr_printer) 1171 : _hr_printer(hr_printer) { } 1172 }; 1173 1174 void G1CollectedHeap::print_hrm_post_compaction() { 1175 PostCompactionPrinterClosure cl(hr_printer()); 1176 heap_region_iterate(&cl); 1177 } 1178 1179 bool G1CollectedHeap::do_collection(bool explicit_gc, 1180 bool clear_all_soft_refs, 1181 size_t word_size) { 1182 assert_at_safepoint(true /* should_be_vm_thread */); 1183 1184 if (GC_locker::check_active_before_gc()) { 1185 return false; 1186 } 1187 1188 STWGCTimer* gc_timer = G1MarkSweep::gc_timer(); 1189 gc_timer->register_gc_start(); 1190 1191 SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer(); 1192 gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start()); 1193 1194 SvcGCMarker sgcm(SvcGCMarker::FULL); 1195 ResourceMark rm; 1196 1197 print_heap_before_gc(); 1198 trace_heap_before_gc(gc_tracer); 1199 1200 size_t metadata_prev_used = MetaspaceAux::used_bytes(); 1201 1202 verify_region_sets_optional(); 1203 1204 const bool do_clear_all_soft_refs = clear_all_soft_refs || 1205 collector_policy()->should_clear_all_soft_refs(); 1206 1207 ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy()); 1208 1209 { 1210 IsGCActiveMark x; 1211 1212 // Timing 1213 assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant"); 1214 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty); 1215 1216 { 1217 GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id()); 1218 TraceCollectorStats tcs(g1mm()->full_collection_counters()); 1219 TraceMemoryManagerStats tms(true /* fullGC */, gc_cause()); 1220 1221 g1_policy()->record_full_collection_start(); 1222 1223 // Note: When we have a more flexible GC logging framework that 1224 // allows us to add optional attributes to a GC log record we 1225 // could consider timing and reporting how long we wait in the 1226 // following two methods. 1227 wait_while_free_regions_coming(); 1228 // If we start the compaction before the CM threads finish 1229 // scanning the root regions we might trip them over as we'll 1230 // be moving objects / updating references. So let's wait until 1231 // they are done. By telling them to abort, they should complete 1232 // early. 1233 _cm->root_regions()->abort(); 1234 _cm->root_regions()->wait_until_scan_finished(); 1235 append_secondary_free_list_if_not_empty_with_lock(); 1236 1237 gc_prologue(true); 1238 increment_total_collections(true /* full gc */); 1239 increment_old_marking_cycles_started(); 1240 1241 assert(used() == recalculate_used(), "Should be equal"); 1242 1243 verify_before_gc(); 1244 1245 check_bitmaps("Full GC Start"); 1246 pre_full_gc_dump(gc_timer); 1247 1248 COMPILER2_PRESENT(DerivedPointerTable::clear()); 1249 1250 // Disable discovery and empty the discovered lists 1251 // for the CM ref processor. 1252 ref_processor_cm()->disable_discovery(); 1253 ref_processor_cm()->abandon_partial_discovery(); 1254 ref_processor_cm()->verify_no_references_recorded(); 1255 1256 // Abandon current iterations of concurrent marking and concurrent 1257 // refinement, if any are in progress. We have to do this before 1258 // wait_until_scan_finished() below. 1259 concurrent_mark()->abort(); 1260 1261 // Make sure we'll choose a new allocation region afterwards. 1262 _allocator->release_mutator_alloc_region(); 1263 _allocator->abandon_gc_alloc_regions(); 1264 g1_rem_set()->cleanupHRRS(); 1265 1266 // We should call this after we retire any currently active alloc 1267 // regions so that all the ALLOC / RETIRE events are generated 1268 // before the start GC event. 1269 _hr_printer.start_gc(true /* full */, (size_t) total_collections()); 1270 1271 // We may have added regions to the current incremental collection 1272 // set between the last GC or pause and now. We need to clear the 1273 // incremental collection set and then start rebuilding it afresh 1274 // after this full GC. 1275 abandon_collection_set(g1_policy()->inc_cset_head()); 1276 g1_policy()->clear_incremental_cset(); 1277 g1_policy()->stop_incremental_cset_building(); 1278 1279 tear_down_region_sets(false /* free_list_only */); 1280 g1_policy()->set_gcs_are_young(true); 1281 1282 // See the comments in g1CollectedHeap.hpp and 1283 // G1CollectedHeap::ref_processing_init() about 1284 // how reference processing currently works in G1. 1285 1286 // Temporarily make discovery by the STW ref processor single threaded (non-MT). 1287 ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false); 1288 1289 // Temporarily clear the STW ref processor's _is_alive_non_header field. 1290 ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL); 1291 1292 ref_processor_stw()->enable_discovery(); 1293 ref_processor_stw()->setup_policy(do_clear_all_soft_refs); 1294 1295 // Do collection work 1296 { 1297 HandleMark hm; // Discard invalid handles created during gc 1298 G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs); 1299 } 1300 1301 assert(num_free_regions() == 0, "we should not have added any free regions"); 1302 rebuild_region_sets(false /* free_list_only */); 1303 1304 // Enqueue any discovered reference objects that have 1305 // not been removed from the discovered lists. 1306 ref_processor_stw()->enqueue_discovered_references(); 1307 1308 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 1309 1310 MemoryService::track_memory_usage(); 1311 1312 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 1313 ref_processor_stw()->verify_no_references_recorded(); 1314 1315 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1316 ClassLoaderDataGraph::purge(); 1317 MetaspaceAux::verify_metrics(); 1318 1319 // Note: since we've just done a full GC, concurrent 1320 // marking is no longer active. Therefore we need not 1321 // re-enable reference discovery for the CM ref processor. 1322 // That will be done at the start of the next marking cycle. 1323 assert(!ref_processor_cm()->discovery_enabled(), "Postcondition"); 1324 ref_processor_cm()->verify_no_references_recorded(); 1325 1326 reset_gc_time_stamp(); 1327 // Since everything potentially moved, we will clear all remembered 1328 // sets, and clear all cards. Later we will rebuild remembered 1329 // sets. We will also reset the GC time stamps of the regions. 1330 clear_rsets_post_compaction(); 1331 check_gc_time_stamps(); 1332 1333 // Resize the heap if necessary. 1334 resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size); 1335 1336 if (_hr_printer.is_active()) { 1337 // We should do this after we potentially resize the heap so 1338 // that all the COMMIT / UNCOMMIT events are generated before 1339 // the end GC event. 1340 1341 print_hrm_post_compaction(); 1342 _hr_printer.end_gc(true /* full */, (size_t) total_collections()); 1343 } 1344 1345 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 1346 if (hot_card_cache->use_cache()) { 1347 hot_card_cache->reset_card_counts(); 1348 hot_card_cache->reset_hot_cache(); 1349 } 1350 1351 // Rebuild remembered sets of all regions. 1352 uint n_workers = 1353 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 1354 workers()->active_workers(), 1355 Threads::number_of_non_daemon_threads()); 1356 assert(UseDynamicNumberOfGCThreads || 1357 n_workers == workers()->total_workers(), 1358 "If not dynamic should be using all the workers"); 1359 workers()->set_active_workers(n_workers); 1360 // Set parallel threads in the heap (_n_par_threads) only 1361 // before a parallel phase and always reset it to 0 after 1362 // the phase so that the number of parallel threads does 1363 // no get carried forward to a serial phase where there 1364 // may be code that is "possibly_parallel". 1365 set_par_threads(n_workers); 1366 1367 ParRebuildRSTask rebuild_rs_task(this); 1368 assert(UseDynamicNumberOfGCThreads || 1369 workers()->active_workers() == workers()->total_workers(), 1370 "Unless dynamic should use total workers"); 1371 // Use the most recent number of active workers 1372 assert(workers()->active_workers() > 0, 1373 "Active workers not properly set"); 1374 set_par_threads(workers()->active_workers()); 1375 workers()->run_task(&rebuild_rs_task); 1376 set_par_threads(0); 1377 1378 // Rebuild the strong code root lists for each region 1379 rebuild_strong_code_roots(); 1380 1381 if (true) { // FIXME 1382 MetaspaceGC::compute_new_size(); 1383 } 1384 1385 #ifdef TRACESPINNING 1386 ParallelTaskTerminator::print_termination_counts(); 1387 #endif 1388 1389 // Discard all rset updates 1390 JavaThread::dirty_card_queue_set().abandon_logs(); 1391 assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty"); 1392 1393 _young_list->reset_sampled_info(); 1394 // At this point there should be no regions in the 1395 // entire heap tagged as young. 1396 assert(check_young_list_empty(true /* check_heap */), 1397 "young list should be empty at this point"); 1398 1399 // Update the number of full collections that have been completed. 1400 increment_old_marking_cycles_completed(false /* concurrent */); 1401 1402 _hrm.verify_optional(); 1403 verify_region_sets_optional(); 1404 1405 verify_after_gc(); 1406 1407 // Clear the previous marking bitmap, if needed for bitmap verification. 1408 // Note we cannot do this when we clear the next marking bitmap in 1409 // ConcurrentMark::abort() above since VerifyDuringGC verifies the 1410 // objects marked during a full GC against the previous bitmap. 1411 // But we need to clear it before calling check_bitmaps below since 1412 // the full GC has compacted objects and updated TAMS but not updated 1413 // the prev bitmap. 1414 if (G1VerifyBitmaps) { 1415 ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll(); 1416 } 1417 check_bitmaps("Full GC End"); 1418 1419 // Start a new incremental collection set for the next pause 1420 assert(g1_policy()->collection_set() == NULL, "must be"); 1421 g1_policy()->start_incremental_cset_building(); 1422 1423 clear_cset_fast_test(); 1424 1425 _allocator->init_mutator_alloc_region(); 1426 1427 g1_policy()->record_full_collection_end(); 1428 1429 if (G1Log::fine()) { 1430 g1_policy()->print_heap_transition(); 1431 } 1432 1433 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 1434 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 1435 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 1436 // before any GC notifications are raised. 1437 g1mm()->update_sizes(); 1438 1439 gc_epilogue(true); 1440 } 1441 1442 if (G1Log::finer()) { 1443 g1_policy()->print_detailed_heap_transition(true /* full */); 1444 } 1445 1446 print_heap_after_gc(); 1447 trace_heap_after_gc(gc_tracer); 1448 1449 post_full_gc_dump(gc_timer); 1450 1451 gc_timer->register_gc_end(); 1452 gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); 1453 } 1454 1455 return true; 1456 } 1457 1458 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { 1459 // do_collection() will return whether it succeeded in performing 1460 // the GC. Currently, there is no facility on the 1461 // do_full_collection() API to notify the caller than the collection 1462 // did not succeed (e.g., because it was locked out by the GC 1463 // locker). So, right now, we'll ignore the return value. 1464 bool dummy = do_collection(true, /* explicit_gc */ 1465 clear_all_soft_refs, 1466 0 /* word_size */); 1467 } 1468 1469 // This code is mostly copied from TenuredGeneration. 1470 void 1471 G1CollectedHeap:: 1472 resize_if_necessary_after_full_collection(size_t word_size) { 1473 // Include the current allocation, if any, and bytes that will be 1474 // pre-allocated to support collections, as "used". 1475 const size_t used_after_gc = used(); 1476 const size_t capacity_after_gc = capacity(); 1477 const size_t free_after_gc = capacity_after_gc - used_after_gc; 1478 1479 // This is enforced in arguments.cpp. 1480 assert(MinHeapFreeRatio <= MaxHeapFreeRatio, 1481 "otherwise the code below doesn't make sense"); 1482 1483 // We don't have floating point command-line arguments 1484 const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0; 1485 const double maximum_used_percentage = 1.0 - minimum_free_percentage; 1486 const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0; 1487 const double minimum_used_percentage = 1.0 - maximum_free_percentage; 1488 1489 const size_t min_heap_size = collector_policy()->min_heap_byte_size(); 1490 const size_t max_heap_size = collector_policy()->max_heap_byte_size(); 1491 1492 // We have to be careful here as these two calculations can overflow 1493 // 32-bit size_t's. 1494 double used_after_gc_d = (double) used_after_gc; 1495 double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage; 1496 double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage; 1497 1498 // Let's make sure that they are both under the max heap size, which 1499 // by default will make them fit into a size_t. 1500 double desired_capacity_upper_bound = (double) max_heap_size; 1501 minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d, 1502 desired_capacity_upper_bound); 1503 maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d, 1504 desired_capacity_upper_bound); 1505 1506 // We can now safely turn them into size_t's. 1507 size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d; 1508 size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d; 1509 1510 // This assert only makes sense here, before we adjust them 1511 // with respect to the min and max heap size. 1512 assert(minimum_desired_capacity <= maximum_desired_capacity, 1513 err_msg("minimum_desired_capacity = "SIZE_FORMAT", " 1514 "maximum_desired_capacity = "SIZE_FORMAT, 1515 minimum_desired_capacity, maximum_desired_capacity)); 1516 1517 // Should not be greater than the heap max size. No need to adjust 1518 // it with respect to the heap min size as it's a lower bound (i.e., 1519 // we'll try to make the capacity larger than it, not smaller). 1520 minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size); 1521 // Should not be less than the heap min size. No need to adjust it 1522 // with respect to the heap max size as it's an upper bound (i.e., 1523 // we'll try to make the capacity smaller than it, not greater). 1524 maximum_desired_capacity = MAX2(maximum_desired_capacity, min_heap_size); 1525 1526 if (capacity_after_gc < minimum_desired_capacity) { 1527 // Don't expand unless it's significant 1528 size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; 1529 ergo_verbose4(ErgoHeapSizing, 1530 "attempt heap expansion", 1531 ergo_format_reason("capacity lower than " 1532 "min desired capacity after Full GC") 1533 ergo_format_byte("capacity") 1534 ergo_format_byte("occupancy") 1535 ergo_format_byte_perc("min desired capacity"), 1536 capacity_after_gc, used_after_gc, 1537 minimum_desired_capacity, (double) MinHeapFreeRatio); 1538 expand(expand_bytes); 1539 1540 // No expansion, now see if we want to shrink 1541 } else if (capacity_after_gc > maximum_desired_capacity) { 1542 // Capacity too large, compute shrinking size 1543 size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity; 1544 ergo_verbose4(ErgoHeapSizing, 1545 "attempt heap shrinking", 1546 ergo_format_reason("capacity higher than " 1547 "max desired capacity after Full GC") 1548 ergo_format_byte("capacity") 1549 ergo_format_byte("occupancy") 1550 ergo_format_byte_perc("max desired capacity"), 1551 capacity_after_gc, used_after_gc, 1552 maximum_desired_capacity, (double) MaxHeapFreeRatio); 1553 shrink(shrink_bytes); 1554 } 1555 } 1556 1557 1558 HeapWord* 1559 G1CollectedHeap::satisfy_failed_allocation(size_t word_size, 1560 AllocationContext_t context, 1561 bool* succeeded) { 1562 assert_at_safepoint(true /* should_be_vm_thread */); 1563 1564 *succeeded = true; 1565 // Let's attempt the allocation first. 1566 HeapWord* result = 1567 attempt_allocation_at_safepoint(word_size, 1568 context, 1569 false /* expect_null_mutator_alloc_region */); 1570 if (result != NULL) { 1571 assert(*succeeded, "sanity"); 1572 return result; 1573 } 1574 1575 // In a G1 heap, we're supposed to keep allocation from failing by 1576 // incremental pauses. Therefore, at least for now, we'll favor 1577 // expansion over collection. (This might change in the future if we can 1578 // do something smarter than full collection to satisfy a failed alloc.) 1579 result = expand_and_allocate(word_size, context); 1580 if (result != NULL) { 1581 assert(*succeeded, "sanity"); 1582 return result; 1583 } 1584 1585 // Expansion didn't work, we'll try to do a Full GC. 1586 bool gc_succeeded = do_collection(false, /* explicit_gc */ 1587 false, /* clear_all_soft_refs */ 1588 word_size); 1589 if (!gc_succeeded) { 1590 *succeeded = false; 1591 return NULL; 1592 } 1593 1594 // Retry the allocation 1595 result = attempt_allocation_at_safepoint(word_size, 1596 context, 1597 true /* expect_null_mutator_alloc_region */); 1598 if (result != NULL) { 1599 assert(*succeeded, "sanity"); 1600 return result; 1601 } 1602 1603 // Then, try a Full GC that will collect all soft references. 1604 gc_succeeded = do_collection(false, /* explicit_gc */ 1605 true, /* clear_all_soft_refs */ 1606 word_size); 1607 if (!gc_succeeded) { 1608 *succeeded = false; 1609 return NULL; 1610 } 1611 1612 // Retry the allocation once more 1613 result = attempt_allocation_at_safepoint(word_size, 1614 context, 1615 true /* expect_null_mutator_alloc_region */); 1616 if (result != NULL) { 1617 assert(*succeeded, "sanity"); 1618 return result; 1619 } 1620 1621 assert(!collector_policy()->should_clear_all_soft_refs(), 1622 "Flag should have been handled and cleared prior to this point"); 1623 1624 // What else? We might try synchronous finalization later. If the total 1625 // space available is large enough for the allocation, then a more 1626 // complete compaction phase than we've tried so far might be 1627 // appropriate. 1628 assert(*succeeded, "sanity"); 1629 return NULL; 1630 } 1631 1632 // Attempting to expand the heap sufficiently 1633 // to support an allocation of the given "word_size". If 1634 // successful, perform the allocation and return the address of the 1635 // allocated block, or else "NULL". 1636 1637 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) { 1638 assert_at_safepoint(true /* should_be_vm_thread */); 1639 1640 verify_region_sets_optional(); 1641 1642 size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); 1643 ergo_verbose1(ErgoHeapSizing, 1644 "attempt heap expansion", 1645 ergo_format_reason("allocation request failed") 1646 ergo_format_byte("allocation request"), 1647 word_size * HeapWordSize); 1648 if (expand(expand_bytes)) { 1649 _hrm.verify_optional(); 1650 verify_region_sets_optional(); 1651 return attempt_allocation_at_safepoint(word_size, 1652 context, 1653 false /* expect_null_mutator_alloc_region */); 1654 } 1655 return NULL; 1656 } 1657 1658 bool G1CollectedHeap::expand(size_t expand_bytes) { 1659 size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); 1660 aligned_expand_bytes = align_size_up(aligned_expand_bytes, 1661 HeapRegion::GrainBytes); 1662 ergo_verbose2(ErgoHeapSizing, 1663 "expand the heap", 1664 ergo_format_byte("requested expansion amount") 1665 ergo_format_byte("attempted expansion amount"), 1666 expand_bytes, aligned_expand_bytes); 1667 1668 if (is_maximal_no_gc()) { 1669 ergo_verbose0(ErgoHeapSizing, 1670 "did not expand the heap", 1671 ergo_format_reason("heap already fully expanded")); 1672 return false; 1673 } 1674 1675 uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes); 1676 assert(regions_to_expand > 0, "Must expand by at least one region"); 1677 1678 uint expanded_by = _hrm.expand_by(regions_to_expand); 1679 1680 if (expanded_by > 0) { 1681 size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes; 1682 assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); 1683 g1_policy()->record_new_heap_size(num_regions()); 1684 } else { 1685 ergo_verbose0(ErgoHeapSizing, 1686 "did not expand the heap", 1687 ergo_format_reason("heap expansion operation failed")); 1688 // The expansion of the virtual storage space was unsuccessful. 1689 // Let's see if it was because we ran out of swap. 1690 if (G1ExitOnExpansionFailure && 1691 _hrm.available() >= regions_to_expand) { 1692 // We had head room... 1693 vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion"); 1694 } 1695 } 1696 return regions_to_expand > 0; 1697 } 1698 1699 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { 1700 size_t aligned_shrink_bytes = 1701 ReservedSpace::page_align_size_down(shrink_bytes); 1702 aligned_shrink_bytes = align_size_down(aligned_shrink_bytes, 1703 HeapRegion::GrainBytes); 1704 uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes); 1705 1706 uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove); 1707 size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes; 1708 1709 ergo_verbose3(ErgoHeapSizing, 1710 "shrink the heap", 1711 ergo_format_byte("requested shrinking amount") 1712 ergo_format_byte("aligned shrinking amount") 1713 ergo_format_byte("attempted shrinking amount"), 1714 shrink_bytes, aligned_shrink_bytes, shrunk_bytes); 1715 if (num_regions_removed > 0) { 1716 g1_policy()->record_new_heap_size(num_regions()); 1717 } else { 1718 ergo_verbose0(ErgoHeapSizing, 1719 "did not shrink the heap", 1720 ergo_format_reason("heap shrinking operation failed")); 1721 } 1722 } 1723 1724 void G1CollectedHeap::shrink(size_t shrink_bytes) { 1725 verify_region_sets_optional(); 1726 1727 // We should only reach here at the end of a Full GC which means we 1728 // should not not be holding to any GC alloc regions. The method 1729 // below will make sure of that and do any remaining clean up. 1730 _allocator->abandon_gc_alloc_regions(); 1731 1732 // Instead of tearing down / rebuilding the free lists here, we 1733 // could instead use the remove_all_pending() method on free_list to 1734 // remove only the ones that we need to remove. 1735 tear_down_region_sets(true /* free_list_only */); 1736 shrink_helper(shrink_bytes); 1737 rebuild_region_sets(true /* free_list_only */); 1738 1739 _hrm.verify_optional(); 1740 verify_region_sets_optional(); 1741 } 1742 1743 // Public methods. 1744 1745 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away 1746 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 1747 #endif // _MSC_VER 1748 1749 1750 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) : 1751 SharedHeap(policy_), 1752 _g1_policy(policy_), 1753 _dirty_card_queue_set(false), 1754 _into_cset_dirty_card_queue_set(false), 1755 _is_alive_closure_cm(this), 1756 _is_alive_closure_stw(this), 1757 _ref_processor_cm(NULL), 1758 _ref_processor_stw(NULL), 1759 _bot_shared(NULL), 1760 _evac_failure_scan_stack(NULL), 1761 _mark_in_progress(false), 1762 _cg1r(NULL), 1763 _g1mm(NULL), 1764 _refine_cte_cl(NULL), 1765 _full_collection(false), 1766 _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()), 1767 _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()), 1768 _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()), 1769 _humongous_is_live(), 1770 _has_humongous_reclaim_candidates(false), 1771 _free_regions_coming(false), 1772 _young_list(new YoungList(this)), 1773 _gc_time_stamp(0), 1774 _survivor_plab_stats(YoungPLABSize, PLABWeight), 1775 _old_plab_stats(OldPLABSize, PLABWeight), 1776 _expand_heap_after_alloc_failure(true), 1777 _surviving_young_words(NULL), 1778 _old_marking_cycles_started(0), 1779 _old_marking_cycles_completed(0), 1780 _concurrent_cycle_started(false), 1781 _heap_summary_sent(false), 1782 _in_cset_fast_test(), 1783 _dirty_cards_region_list(NULL), 1784 _worker_cset_start_region(NULL), 1785 _worker_cset_start_region_time_stamp(NULL), 1786 _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()), 1787 _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 1788 _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()), 1789 _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) { 1790 1791 _g1h = this; 1792 1793 _allocator = G1Allocator::create_allocator(_g1h); 1794 _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2; 1795 1796 int n_queues = MAX2((int)ParallelGCThreads, 1); 1797 _task_queues = new RefToScanQueueSet(n_queues); 1798 1799 uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets(); 1800 assert(n_rem_sets > 0, "Invariant."); 1801 1802 _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC); 1803 _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC); 1804 _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC); 1805 1806 for (int i = 0; i < n_queues; i++) { 1807 RefToScanQueue* q = new RefToScanQueue(); 1808 q->initialize(); 1809 _task_queues->register_queue(i, q); 1810 ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo(); 1811 } 1812 clear_cset_start_regions(); 1813 1814 // Initialize the G1EvacuationFailureALot counters and flags. 1815 NOT_PRODUCT(reset_evacuation_should_fail();) 1816 1817 guarantee(_task_queues != NULL, "task_queues allocation failure."); 1818 } 1819 1820 jint G1CollectedHeap::initialize() { 1821 CollectedHeap::pre_initialize(); 1822 os::enable_vtime(); 1823 1824 G1Log::init(); 1825 1826 // Necessary to satisfy locking discipline assertions. 1827 1828 MutexLocker x(Heap_lock); 1829 1830 // We have to initialize the printer before committing the heap, as 1831 // it will be used then. 1832 _hr_printer.set_active(G1PrintHeapRegions); 1833 1834 // While there are no constraints in the GC code that HeapWordSize 1835 // be any particular value, there are multiple other areas in the 1836 // system which believe this to be true (e.g. oop->object_size in some 1837 // cases incorrectly returns the size in wordSize units rather than 1838 // HeapWordSize). 1839 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); 1840 1841 size_t init_byte_size = collector_policy()->initial_heap_byte_size(); 1842 size_t max_byte_size = collector_policy()->max_heap_byte_size(); 1843 size_t heap_alignment = collector_policy()->heap_alignment(); 1844 1845 // Ensure that the sizes are properly aligned. 1846 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1847 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1848 Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap"); 1849 1850 _refine_cte_cl = new RefineCardTableEntryClosure(); 1851 1852 _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl); 1853 1854 // Reserve the maximum. 1855 1856 // When compressed oops are enabled, the preferred heap base 1857 // is calculated by subtracting the requested size from the 1858 // 32Gb boundary and using the result as the base address for 1859 // heap reservation. If the requested size is not aligned to 1860 // HeapRegion::GrainBytes (i.e. the alignment that is passed 1861 // into the ReservedHeapSpace constructor) then the actual 1862 // base of the reserved heap may end up differing from the 1863 // address that was requested (i.e. the preferred heap base). 1864 // If this happens then we could end up using a non-optimal 1865 // compressed oops mode. 1866 1867 ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, 1868 heap_alignment); 1869 1870 initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size())); 1871 1872 // Create the barrier set for the entire reserved region. 1873 G1SATBCardTableLoggingModRefBS* bs 1874 = new G1SATBCardTableLoggingModRefBS(reserved_region()); 1875 bs->initialize(); 1876 assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity"); 1877 set_barrier_set(bs); 1878 1879 // Also create a G1 rem set. 1880 _g1_rem_set = new G1RemSet(this, g1_barrier_set()); 1881 1882 // Carve out the G1 part of the heap. 1883 1884 ReservedSpace g1_rs = heap_rs.first_part(max_byte_size); 1885 G1RegionToSpaceMapper* heap_storage = 1886 G1RegionToSpaceMapper::create_mapper(g1_rs, 1887 UseLargePages ? os::large_page_size() : os::vm_page_size(), 1888 HeapRegion::GrainBytes, 1889 1, 1890 mtJavaHeap); 1891 heap_storage->set_mapping_changed_listener(&_listener); 1892 1893 // Reserve space for the block offset table. We do not support automatic uncommit 1894 // for the card table at this time. BOT only. 1895 ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize)); 1896 G1RegionToSpaceMapper* bot_storage = 1897 G1RegionToSpaceMapper::create_mapper(bot_rs, 1898 os::vm_page_size(), 1899 HeapRegion::GrainBytes, 1900 G1BlockOffsetSharedArray::N_bytes, 1901 mtGC); 1902 1903 ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize)); 1904 G1RegionToSpaceMapper* cardtable_storage = 1905 G1RegionToSpaceMapper::create_mapper(cardtable_rs, 1906 os::vm_page_size(), 1907 HeapRegion::GrainBytes, 1908 G1BlockOffsetSharedArray::N_bytes, 1909 mtGC); 1910 1911 // Reserve space for the card counts table. 1912 ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize)); 1913 G1RegionToSpaceMapper* card_counts_storage = 1914 G1RegionToSpaceMapper::create_mapper(card_counts_rs, 1915 os::vm_page_size(), 1916 HeapRegion::GrainBytes, 1917 G1BlockOffsetSharedArray::N_bytes, 1918 mtGC); 1919 1920 // Reserve space for prev and next bitmap. 1921 size_t bitmap_size = CMBitMap::compute_size(g1_rs.size()); 1922 1923 ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size)); 1924 G1RegionToSpaceMapper* prev_bitmap_storage = 1925 G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs, 1926 os::vm_page_size(), 1927 HeapRegion::GrainBytes, 1928 CMBitMap::mark_distance(), 1929 mtGC); 1930 1931 ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size)); 1932 G1RegionToSpaceMapper* next_bitmap_storage = 1933 G1RegionToSpaceMapper::create_mapper(next_bitmap_rs, 1934 os::vm_page_size(), 1935 HeapRegion::GrainBytes, 1936 CMBitMap::mark_distance(), 1937 mtGC); 1938 1939 _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage); 1940 g1_barrier_set()->initialize(cardtable_storage); 1941 // Do later initialization work for concurrent refinement. 1942 _cg1r->init(card_counts_storage); 1943 1944 // 6843694 - ensure that the maximum region index can fit 1945 // in the remembered set structures. 1946 const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; 1947 guarantee((max_regions() - 1) <= max_region_idx, "too many regions"); 1948 1949 size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; 1950 guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); 1951 guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, 1952 "too many cards per region"); 1953 1954 FreeRegionList::set_unrealistically_long_length(max_regions() + 1); 1955 1956 _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage); 1957 1958 _g1h = this; 1959 1960 _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes); 1961 _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes); 1962 1963 // Create the ConcurrentMark data structure and thread. 1964 // (Must do this late, so that "max_regions" is defined.) 1965 _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage); 1966 if (_cm == NULL || !_cm->completed_initialization()) { 1967 vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark"); 1968 return JNI_ENOMEM; 1969 } 1970 _cmThread = _cm->cmThread(); 1971 1972 // Initialize the from_card cache structure of HeapRegionRemSet. 1973 HeapRegionRemSet::init_heap(max_regions()); 1974 1975 // Now expand into the initial heap size. 1976 if (!expand(init_byte_size)) { 1977 vm_shutdown_during_initialization("Failed to allocate initial heap."); 1978 return JNI_ENOMEM; 1979 } 1980 1981 // Perform any initialization actions delegated to the policy. 1982 g1_policy()->init(); 1983 1984 JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon, 1985 SATB_Q_FL_lock, 1986 G1SATBProcessCompletedThreshold, 1987 Shared_SATB_Q_lock); 1988 1989 JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl, 1990 DirtyCardQ_CBL_mon, 1991 DirtyCardQ_FL_lock, 1992 concurrent_g1_refine()->yellow_zone(), 1993 concurrent_g1_refine()->red_zone(), 1994 Shared_DirtyCardQ_lock); 1995 1996 dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code 1997 DirtyCardQ_CBL_mon, 1998 DirtyCardQ_FL_lock, 1999 -1, // never trigger processing 2000 -1, // no limit on length 2001 Shared_DirtyCardQ_lock, 2002 &JavaThread::dirty_card_queue_set()); 2003 2004 // Initialize the card queue set used to hold cards containing 2005 // references into the collection set. 2006 _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code 2007 DirtyCardQ_CBL_mon, 2008 DirtyCardQ_FL_lock, 2009 -1, // never trigger processing 2010 -1, // no limit on length 2011 Shared_DirtyCardQ_lock, 2012 &JavaThread::dirty_card_queue_set()); 2013 2014 // Here we allocate the dummy HeapRegion that is required by the 2015 // G1AllocRegion class. 2016 HeapRegion* dummy_region = _hrm.get_dummy_region(); 2017 2018 // We'll re-use the same region whether the alloc region will 2019 // require BOT updates or not and, if it doesn't, then a non-young 2020 // region will complain that it cannot support allocations without 2021 // BOT updates. So we'll tag the dummy region as eden to avoid that. 2022 dummy_region->set_eden(); 2023 // Make sure it's full. 2024 dummy_region->set_top(dummy_region->end()); 2025 G1AllocRegion::setup(this, dummy_region); 2026 2027 _allocator->init_mutator_alloc_region(); 2028 2029 // Do create of the monitoring and management support so that 2030 // values in the heap have been properly initialized. 2031 _g1mm = new G1MonitoringSupport(this); 2032 2033 G1StringDedup::initialize(); 2034 2035 return JNI_OK; 2036 } 2037 2038 void G1CollectedHeap::stop() { 2039 // Stop all concurrent threads. We do this to make sure these threads 2040 // do not continue to execute and access resources (e.g. gclog_or_tty) 2041 // that are destroyed during shutdown. 2042 _cg1r->stop(); 2043 _cmThread->stop(); 2044 if (G1StringDedup::is_enabled()) { 2045 G1StringDedup::stop(); 2046 } 2047 } 2048 2049 void G1CollectedHeap::clear_humongous_is_live_table() { 2050 guarantee(G1EagerReclaimHumongousObjects, "Should only be called if true"); 2051 _humongous_is_live.clear(); 2052 } 2053 2054 size_t G1CollectedHeap::conservative_max_heap_alignment() { 2055 return HeapRegion::max_region_size(); 2056 } 2057 2058 void G1CollectedHeap::ref_processing_init() { 2059 // Reference processing in G1 currently works as follows: 2060 // 2061 // * There are two reference processor instances. One is 2062 // used to record and process discovered references 2063 // during concurrent marking; the other is used to 2064 // record and process references during STW pauses 2065 // (both full and incremental). 2066 // * Both ref processors need to 'span' the entire heap as 2067 // the regions in the collection set may be dotted around. 2068 // 2069 // * For the concurrent marking ref processor: 2070 // * Reference discovery is enabled at initial marking. 2071 // * Reference discovery is disabled and the discovered 2072 // references processed etc during remarking. 2073 // * Reference discovery is MT (see below). 2074 // * Reference discovery requires a barrier (see below). 2075 // * Reference processing may or may not be MT 2076 // (depending on the value of ParallelRefProcEnabled 2077 // and ParallelGCThreads). 2078 // * A full GC disables reference discovery by the CM 2079 // ref processor and abandons any entries on it's 2080 // discovered lists. 2081 // 2082 // * For the STW processor: 2083 // * Non MT discovery is enabled at the start of a full GC. 2084 // * Processing and enqueueing during a full GC is non-MT. 2085 // * During a full GC, references are processed after marking. 2086 // 2087 // * Discovery (may or may not be MT) is enabled at the start 2088 // of an incremental evacuation pause. 2089 // * References are processed near the end of a STW evacuation pause. 2090 // * For both types of GC: 2091 // * Discovery is atomic - i.e. not concurrent. 2092 // * Reference discovery will not need a barrier. 2093 2094 SharedHeap::ref_processing_init(); 2095 MemRegion mr = reserved_region(); 2096 2097 // Concurrent Mark ref processor 2098 _ref_processor_cm = 2099 new ReferenceProcessor(mr, // span 2100 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2101 // mt processing 2102 (int) ParallelGCThreads, 2103 // degree of mt processing 2104 (ParallelGCThreads > 1) || (ConcGCThreads > 1), 2105 // mt discovery 2106 (int) MAX2(ParallelGCThreads, ConcGCThreads), 2107 // degree of mt discovery 2108 false, 2109 // Reference discovery is not atomic 2110 &_is_alive_closure_cm); 2111 // is alive closure 2112 // (for efficiency/performance) 2113 2114 // STW ref processor 2115 _ref_processor_stw = 2116 new ReferenceProcessor(mr, // span 2117 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2118 // mt processing 2119 MAX2((int)ParallelGCThreads, 1), 2120 // degree of mt processing 2121 (ParallelGCThreads > 1), 2122 // mt discovery 2123 MAX2((int)ParallelGCThreads, 1), 2124 // degree of mt discovery 2125 true, 2126 // Reference discovery is atomic 2127 &_is_alive_closure_stw); 2128 // is alive closure 2129 // (for efficiency/performance) 2130 } 2131 2132 size_t G1CollectedHeap::capacity() const { 2133 return _hrm.length() * HeapRegion::GrainBytes; 2134 } 2135 2136 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) { 2137 assert(!hr->is_continues_humongous(), "pre-condition"); 2138 hr->reset_gc_time_stamp(); 2139 if (hr->is_starts_humongous()) { 2140 uint first_index = hr->hrm_index() + 1; 2141 uint last_index = hr->last_hc_index(); 2142 for (uint i = first_index; i < last_index; i += 1) { 2143 HeapRegion* chr = region_at(i); 2144 assert(chr->is_continues_humongous(), "sanity"); 2145 chr->reset_gc_time_stamp(); 2146 } 2147 } 2148 } 2149 2150 #ifndef PRODUCT 2151 class CheckGCTimeStampsHRClosure : public HeapRegionClosure { 2152 private: 2153 unsigned _gc_time_stamp; 2154 bool _failures; 2155 2156 public: 2157 CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) : 2158 _gc_time_stamp(gc_time_stamp), _failures(false) { } 2159 2160 virtual bool doHeapRegion(HeapRegion* hr) { 2161 unsigned region_gc_time_stamp = hr->get_gc_time_stamp(); 2162 if (_gc_time_stamp != region_gc_time_stamp) { 2163 gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, " 2164 "expected %d", HR_FORMAT_PARAMS(hr), 2165 region_gc_time_stamp, _gc_time_stamp); 2166 _failures = true; 2167 } 2168 return false; 2169 } 2170 2171 bool failures() { return _failures; } 2172 }; 2173 2174 void G1CollectedHeap::check_gc_time_stamps() { 2175 CheckGCTimeStampsHRClosure cl(_gc_time_stamp); 2176 heap_region_iterate(&cl); 2177 guarantee(!cl.failures(), "all GC time stamps should have been reset"); 2178 } 2179 #endif // PRODUCT 2180 2181 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, 2182 DirtyCardQueue* into_cset_dcq, 2183 bool concurrent, 2184 uint worker_i) { 2185 // Clean cards in the hot card cache 2186 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 2187 hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq); 2188 2189 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 2190 size_t n_completed_buffers = 0; 2191 while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) { 2192 n_completed_buffers++; 2193 } 2194 g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers); 2195 dcqs.clear_n_completed_buffers(); 2196 assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!"); 2197 } 2198 2199 2200 // Computes the sum of the storage used by the various regions. 2201 size_t G1CollectedHeap::used() const { 2202 return _allocator->used(); 2203 } 2204 2205 size_t G1CollectedHeap::used_unlocked() const { 2206 return _allocator->used_unlocked(); 2207 } 2208 2209 class SumUsedClosure: public HeapRegionClosure { 2210 size_t _used; 2211 public: 2212 SumUsedClosure() : _used(0) {} 2213 bool doHeapRegion(HeapRegion* r) { 2214 if (!r->is_continues_humongous()) { 2215 _used += r->used(); 2216 } 2217 return false; 2218 } 2219 size_t result() { return _used; } 2220 }; 2221 2222 size_t G1CollectedHeap::recalculate_used() const { 2223 double recalculate_used_start = os::elapsedTime(); 2224 2225 SumUsedClosure blk; 2226 heap_region_iterate(&blk); 2227 2228 g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0); 2229 return blk.result(); 2230 } 2231 2232 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { 2233 switch (cause) { 2234 case GCCause::_gc_locker: return GCLockerInvokesConcurrent; 2235 case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent; 2236 case GCCause::_g1_humongous_allocation: return true; 2237 case GCCause::_update_allocation_context_stats_inc: return true; 2238 case GCCause::_wb_conc_mark: return true; 2239 default: return false; 2240 } 2241 } 2242 2243 #ifndef PRODUCT 2244 void G1CollectedHeap::allocate_dummy_regions() { 2245 // Let's fill up most of the region 2246 size_t word_size = HeapRegion::GrainWords - 1024; 2247 // And as a result the region we'll allocate will be humongous. 2248 guarantee(is_humongous(word_size), "sanity"); 2249 2250 for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { 2251 // Let's use the existing mechanism for the allocation 2252 HeapWord* dummy_obj = humongous_obj_allocate(word_size, 2253 AllocationContext::system()); 2254 if (dummy_obj != NULL) { 2255 MemRegion mr(dummy_obj, word_size); 2256 CollectedHeap::fill_with_object(mr); 2257 } else { 2258 // If we can't allocate once, we probably cannot allocate 2259 // again. Let's get out of the loop. 2260 break; 2261 } 2262 } 2263 } 2264 #endif // !PRODUCT 2265 2266 void G1CollectedHeap::increment_old_marking_cycles_started() { 2267 assert(_old_marking_cycles_started == _old_marking_cycles_completed || 2268 _old_marking_cycles_started == _old_marking_cycles_completed + 1, 2269 err_msg("Wrong marking cycle count (started: %d, completed: %d)", 2270 _old_marking_cycles_started, _old_marking_cycles_completed)); 2271 2272 _old_marking_cycles_started++; 2273 } 2274 2275 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) { 2276 MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag); 2277 2278 // We assume that if concurrent == true, then the caller is a 2279 // concurrent thread that was joined the Suspendible Thread 2280 // Set. If there's ever a cheap way to check this, we should add an 2281 // assert here. 2282 2283 // Given that this method is called at the end of a Full GC or of a 2284 // concurrent cycle, and those can be nested (i.e., a Full GC can 2285 // interrupt a concurrent cycle), the number of full collections 2286 // completed should be either one (in the case where there was no 2287 // nesting) or two (when a Full GC interrupted a concurrent cycle) 2288 // behind the number of full collections started. 2289 2290 // This is the case for the inner caller, i.e. a Full GC. 2291 assert(concurrent || 2292 (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || 2293 (_old_marking_cycles_started == _old_marking_cycles_completed + 2), 2294 err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u " 2295 "is inconsistent with _old_marking_cycles_completed = %u", 2296 _old_marking_cycles_started, _old_marking_cycles_completed)); 2297 2298 // This is the case for the outer caller, i.e. the concurrent cycle. 2299 assert(!concurrent || 2300 (_old_marking_cycles_started == _old_marking_cycles_completed + 1), 2301 err_msg("for outer caller (concurrent cycle): " 2302 "_old_marking_cycles_started = %u " 2303 "is inconsistent with _old_marking_cycles_completed = %u", 2304 _old_marking_cycles_started, _old_marking_cycles_completed)); 2305 2306 _old_marking_cycles_completed += 1; 2307 2308 // We need to clear the "in_progress" flag in the CM thread before 2309 // we wake up any waiters (especially when ExplicitInvokesConcurrent 2310 // is set) so that if a waiter requests another System.gc() it doesn't 2311 // incorrectly see that a marking cycle is still in progress. 2312 if (concurrent) { 2313 _cmThread->clear_in_progress(); 2314 } 2315 2316 // This notify_all() will ensure that a thread that called 2317 // System.gc() with (with ExplicitGCInvokesConcurrent set or not) 2318 // and it's waiting for a full GC to finish will be woken up. It is 2319 // waiting in VM_G1IncCollectionPause::doit_epilogue(). 2320 FullGCCount_lock->notify_all(); 2321 } 2322 2323 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) { 2324 _concurrent_cycle_started = true; 2325 _gc_timer_cm->register_gc_start(start_time); 2326 2327 _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start()); 2328 trace_heap_before_gc(_gc_tracer_cm); 2329 } 2330 2331 void G1CollectedHeap::register_concurrent_cycle_end() { 2332 if (_concurrent_cycle_started) { 2333 if (_cm->has_aborted()) { 2334 _gc_tracer_cm->report_concurrent_mode_failure(); 2335 } 2336 2337 _gc_timer_cm->register_gc_end(); 2338 _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); 2339 2340 // Clear state variables to prepare for the next concurrent cycle. 2341 _concurrent_cycle_started = false; 2342 _heap_summary_sent = false; 2343 } 2344 } 2345 2346 void G1CollectedHeap::trace_heap_after_concurrent_cycle() { 2347 if (_concurrent_cycle_started) { 2348 // This function can be called when: 2349 // the cleanup pause is run 2350 // the concurrent cycle is aborted before the cleanup pause. 2351 // the concurrent cycle is aborted after the cleanup pause, 2352 // but before the concurrent cycle end has been registered. 2353 // Make sure that we only send the heap information once. 2354 if (!_heap_summary_sent) { 2355 trace_heap_after_gc(_gc_tracer_cm); 2356 _heap_summary_sent = true; 2357 } 2358 } 2359 } 2360 2361 G1YCType G1CollectedHeap::yc_type() { 2362 bool is_young = g1_policy()->gcs_are_young(); 2363 bool is_initial_mark = g1_policy()->during_initial_mark_pause(); 2364 bool is_during_mark = mark_in_progress(); 2365 2366 if (is_initial_mark) { 2367 return InitialMark; 2368 } else if (is_during_mark) { 2369 return DuringMark; 2370 } else if (is_young) { 2371 return Normal; 2372 } else { 2373 return Mixed; 2374 } 2375 } 2376 2377 void G1CollectedHeap::collect(GCCause::Cause cause) { 2378 assert_heap_not_locked(); 2379 2380 uint gc_count_before; 2381 uint old_marking_count_before; 2382 uint full_gc_count_before; 2383 bool retry_gc; 2384 2385 do { 2386 retry_gc = false; 2387 2388 { 2389 MutexLocker ml(Heap_lock); 2390 2391 // Read the GC count while holding the Heap_lock 2392 gc_count_before = total_collections(); 2393 full_gc_count_before = total_full_collections(); 2394 old_marking_count_before = _old_marking_cycles_started; 2395 } 2396 2397 if (should_do_concurrent_full_gc(cause)) { 2398 // Schedule an initial-mark evacuation pause that will start a 2399 // concurrent cycle. We're setting word_size to 0 which means that 2400 // we are not requesting a post-GC allocation. 2401 VM_G1IncCollectionPause op(gc_count_before, 2402 0, /* word_size */ 2403 true, /* should_initiate_conc_mark */ 2404 g1_policy()->max_pause_time_ms(), 2405 cause); 2406 op.set_allocation_context(AllocationContext::current()); 2407 2408 VMThread::execute(&op); 2409 if (!op.pause_succeeded()) { 2410 if (old_marking_count_before == _old_marking_cycles_started) { 2411 retry_gc = op.should_retry_gc(); 2412 } else { 2413 // A Full GC happened while we were trying to schedule the 2414 // initial-mark GC. No point in starting a new cycle given 2415 // that the whole heap was collected anyway. 2416 } 2417 2418 if (retry_gc) { 2419 if (GC_locker::is_active_and_needs_gc()) { 2420 GC_locker::stall_until_clear(); 2421 } 2422 } 2423 } 2424 } else { 2425 if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc 2426 DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { 2427 2428 // Schedule a standard evacuation pause. We're setting word_size 2429 // to 0 which means that we are not requesting a post-GC allocation. 2430 VM_G1IncCollectionPause op(gc_count_before, 2431 0, /* word_size */ 2432 false, /* should_initiate_conc_mark */ 2433 g1_policy()->max_pause_time_ms(), 2434 cause); 2435 VMThread::execute(&op); 2436 } else { 2437 // Schedule a Full GC. 2438 VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause); 2439 VMThread::execute(&op); 2440 } 2441 } 2442 } while (retry_gc); 2443 } 2444 2445 bool G1CollectedHeap::is_in(const void* p) const { 2446 if (_hrm.reserved().contains(p)) { 2447 // Given that we know that p is in the reserved space, 2448 // heap_region_containing_raw() should successfully 2449 // return the containing region. 2450 HeapRegion* hr = heap_region_containing_raw(p); 2451 return hr->is_in(p); 2452 } else { 2453 return false; 2454 } 2455 } 2456 2457 #ifdef ASSERT 2458 bool G1CollectedHeap::is_in_exact(const void* p) const { 2459 bool contains = reserved_region().contains(p); 2460 bool available = _hrm.is_available(addr_to_region((HeapWord*)p)); 2461 if (contains && available) { 2462 return true; 2463 } else { 2464 return false; 2465 } 2466 } 2467 #endif 2468 2469 // Iteration functions. 2470 2471 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion. 2472 2473 class IterateOopClosureRegionClosure: public HeapRegionClosure { 2474 ExtendedOopClosure* _cl; 2475 public: 2476 IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {} 2477 bool doHeapRegion(HeapRegion* r) { 2478 if (!r->is_continues_humongous()) { 2479 r->oop_iterate(_cl); 2480 } 2481 return false; 2482 } 2483 }; 2484 2485 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) { 2486 IterateOopClosureRegionClosure blk(cl); 2487 heap_region_iterate(&blk); 2488 } 2489 2490 // Iterates an ObjectClosure over all objects within a HeapRegion. 2491 2492 class IterateObjectClosureRegionClosure: public HeapRegionClosure { 2493 ObjectClosure* _cl; 2494 public: 2495 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} 2496 bool doHeapRegion(HeapRegion* r) { 2497 if (!r->is_continues_humongous()) { 2498 r->object_iterate(_cl); 2499 } 2500 return false; 2501 } 2502 }; 2503 2504 void G1CollectedHeap::object_iterate(ObjectClosure* cl) { 2505 IterateObjectClosureRegionClosure blk(cl); 2506 heap_region_iterate(&blk); 2507 } 2508 2509 // Calls a SpaceClosure on a HeapRegion. 2510 2511 class SpaceClosureRegionClosure: public HeapRegionClosure { 2512 SpaceClosure* _cl; 2513 public: 2514 SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {} 2515 bool doHeapRegion(HeapRegion* r) { 2516 _cl->do_space(r); 2517 return false; 2518 } 2519 }; 2520 2521 void G1CollectedHeap::space_iterate(SpaceClosure* cl) { 2522 SpaceClosureRegionClosure blk(cl); 2523 heap_region_iterate(&blk); 2524 } 2525 2526 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { 2527 _hrm.iterate(cl); 2528 } 2529 2530 void 2531 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl, 2532 uint worker_id, 2533 HeapRegionClaimer *hrclaimer, 2534 bool concurrent) const { 2535 _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent); 2536 } 2537 2538 // Clear the cached CSet starting regions and (more importantly) 2539 // the time stamps. Called when we reset the GC time stamp. 2540 void G1CollectedHeap::clear_cset_start_regions() { 2541 assert(_worker_cset_start_region != NULL, "sanity"); 2542 assert(_worker_cset_start_region_time_stamp != NULL, "sanity"); 2543 2544 int n_queues = MAX2((int)ParallelGCThreads, 1); 2545 for (int i = 0; i < n_queues; i++) { 2546 _worker_cset_start_region[i] = NULL; 2547 _worker_cset_start_region_time_stamp[i] = 0; 2548 } 2549 } 2550 2551 // Given the id of a worker, obtain or calculate a suitable 2552 // starting region for iterating over the current collection set. 2553 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) { 2554 assert(get_gc_time_stamp() > 0, "should have been updated by now"); 2555 2556 HeapRegion* result = NULL; 2557 unsigned gc_time_stamp = get_gc_time_stamp(); 2558 2559 if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) { 2560 // Cached starting region for current worker was set 2561 // during the current pause - so it's valid. 2562 // Note: the cached starting heap region may be NULL 2563 // (when the collection set is empty). 2564 result = _worker_cset_start_region[worker_i]; 2565 assert(result == NULL || result->in_collection_set(), "sanity"); 2566 return result; 2567 } 2568 2569 // The cached entry was not valid so let's calculate 2570 // a suitable starting heap region for this worker. 2571 2572 // We want the parallel threads to start their collection 2573 // set iteration at different collection set regions to 2574 // avoid contention. 2575 // If we have: 2576 // n collection set regions 2577 // p threads 2578 // Then thread t will start at region floor ((t * n) / p) 2579 2580 result = g1_policy()->collection_set(); 2581 uint cs_size = g1_policy()->cset_region_length(); 2582 uint active_workers = workers()->active_workers(); 2583 assert(UseDynamicNumberOfGCThreads || 2584 active_workers == workers()->total_workers(), 2585 "Unless dynamic should use total workers"); 2586 2587 uint end_ind = (cs_size * worker_i) / active_workers; 2588 uint start_ind = 0; 2589 2590 if (worker_i > 0 && 2591 _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) { 2592 // Previous workers starting region is valid 2593 // so let's iterate from there 2594 start_ind = (cs_size * (worker_i - 1)) / active_workers; 2595 result = _worker_cset_start_region[worker_i - 1]; 2596 } 2597 2598 for (uint i = start_ind; i < end_ind; i++) { 2599 result = result->next_in_collection_set(); 2600 } 2601 2602 // Note: the calculated starting heap region may be NULL 2603 // (when the collection set is empty). 2604 assert(result == NULL || result->in_collection_set(), "sanity"); 2605 assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp, 2606 "should be updated only once per pause"); 2607 _worker_cset_start_region[worker_i] = result; 2608 OrderAccess::storestore(); 2609 _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp; 2610 return result; 2611 } 2612 2613 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) { 2614 HeapRegion* r = g1_policy()->collection_set(); 2615 while (r != NULL) { 2616 HeapRegion* next = r->next_in_collection_set(); 2617 if (cl->doHeapRegion(r)) { 2618 cl->incomplete(); 2619 return; 2620 } 2621 r = next; 2622 } 2623 } 2624 2625 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r, 2626 HeapRegionClosure *cl) { 2627 if (r == NULL) { 2628 // The CSet is empty so there's nothing to do. 2629 return; 2630 } 2631 2632 assert(r->in_collection_set(), 2633 "Start region must be a member of the collection set."); 2634 HeapRegion* cur = r; 2635 while (cur != NULL) { 2636 HeapRegion* next = cur->next_in_collection_set(); 2637 if (cl->doHeapRegion(cur) && false) { 2638 cl->incomplete(); 2639 return; 2640 } 2641 cur = next; 2642 } 2643 cur = g1_policy()->collection_set(); 2644 while (cur != r) { 2645 HeapRegion* next = cur->next_in_collection_set(); 2646 if (cl->doHeapRegion(cur) && false) { 2647 cl->incomplete(); 2648 return; 2649 } 2650 cur = next; 2651 } 2652 } 2653 2654 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const { 2655 HeapRegion* result = _hrm.next_region_in_heap(from); 2656 while (result != NULL && result->is_humongous()) { 2657 result = _hrm.next_region_in_heap(result); 2658 } 2659 return result; 2660 } 2661 2662 Space* G1CollectedHeap::space_containing(const void* addr) const { 2663 return heap_region_containing(addr); 2664 } 2665 2666 HeapWord* G1CollectedHeap::block_start(const void* addr) const { 2667 Space* sp = space_containing(addr); 2668 return sp->block_start(addr); 2669 } 2670 2671 size_t G1CollectedHeap::block_size(const HeapWord* addr) const { 2672 Space* sp = space_containing(addr); 2673 return sp->block_size(addr); 2674 } 2675 2676 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { 2677 Space* sp = space_containing(addr); 2678 return sp->block_is_obj(addr); 2679 } 2680 2681 bool G1CollectedHeap::supports_tlab_allocation() const { 2682 return true; 2683 } 2684 2685 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { 2686 return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes; 2687 } 2688 2689 size_t G1CollectedHeap::tlab_used(Thread* ignored) const { 2690 return young_list()->eden_used_bytes(); 2691 } 2692 2693 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size 2694 // must be smaller than the humongous object limit. 2695 size_t G1CollectedHeap::max_tlab_size() const { 2696 return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment); 2697 } 2698 2699 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { 2700 // Return the remaining space in the cur alloc region, but not less than 2701 // the min TLAB size. 2702 2703 // Also, this value can be at most the humongous object threshold, 2704 // since we can't allow tlabs to grow big enough to accommodate 2705 // humongous objects. 2706 2707 HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get(); 2708 size_t max_tlab = max_tlab_size() * wordSize; 2709 if (hr == NULL) { 2710 return max_tlab; 2711 } else { 2712 return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab); 2713 } 2714 } 2715 2716 size_t G1CollectedHeap::max_capacity() const { 2717 return _hrm.reserved().byte_size(); 2718 } 2719 2720 jlong G1CollectedHeap::millis_since_last_gc() { 2721 // assert(false, "NYI"); 2722 return 0; 2723 } 2724 2725 void G1CollectedHeap::prepare_for_verify() { 2726 if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { 2727 ensure_parsability(false); 2728 } 2729 g1_rem_set()->prepare_for_verify(); 2730 } 2731 2732 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr, 2733 VerifyOption vo) { 2734 switch (vo) { 2735 case VerifyOption_G1UsePrevMarking: 2736 return hr->obj_allocated_since_prev_marking(obj); 2737 case VerifyOption_G1UseNextMarking: 2738 return hr->obj_allocated_since_next_marking(obj); 2739 case VerifyOption_G1UseMarkWord: 2740 return false; 2741 default: 2742 ShouldNotReachHere(); 2743 } 2744 return false; // keep some compilers happy 2745 } 2746 2747 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) { 2748 switch (vo) { 2749 case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start(); 2750 case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start(); 2751 case VerifyOption_G1UseMarkWord: return NULL; 2752 default: ShouldNotReachHere(); 2753 } 2754 return NULL; // keep some compilers happy 2755 } 2756 2757 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) { 2758 switch (vo) { 2759 case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj); 2760 case VerifyOption_G1UseNextMarking: return isMarkedNext(obj); 2761 case VerifyOption_G1UseMarkWord: return obj->is_gc_marked(); 2762 default: ShouldNotReachHere(); 2763 } 2764 return false; // keep some compilers happy 2765 } 2766 2767 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) { 2768 switch (vo) { 2769 case VerifyOption_G1UsePrevMarking: return "PTAMS"; 2770 case VerifyOption_G1UseNextMarking: return "NTAMS"; 2771 case VerifyOption_G1UseMarkWord: return "NONE"; 2772 default: ShouldNotReachHere(); 2773 } 2774 return NULL; // keep some compilers happy 2775 } 2776 2777 class VerifyRootsClosure: public OopClosure { 2778 private: 2779 G1CollectedHeap* _g1h; 2780 VerifyOption _vo; 2781 bool _failures; 2782 public: 2783 // _vo == UsePrevMarking -> use "prev" marking information, 2784 // _vo == UseNextMarking -> use "next" marking information, 2785 // _vo == UseMarkWord -> use mark word from object header. 2786 VerifyRootsClosure(VerifyOption vo) : 2787 _g1h(G1CollectedHeap::heap()), 2788 _vo(vo), 2789 _failures(false) { } 2790 2791 bool failures() { return _failures; } 2792 2793 template <class T> void do_oop_nv(T* p) { 2794 T heap_oop = oopDesc::load_heap_oop(p); 2795 if (!oopDesc::is_null(heap_oop)) { 2796 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 2797 if (_g1h->is_obj_dead_cond(obj, _vo)) { 2798 gclog_or_tty->print_cr("Root location "PTR_FORMAT" " 2799 "points to dead obj "PTR_FORMAT, p, (void*) obj); 2800 if (_vo == VerifyOption_G1UseMarkWord) { 2801 gclog_or_tty->print_cr(" Mark word: "PTR_FORMAT, (void*)(obj->mark())); 2802 } 2803 obj->print_on(gclog_or_tty); 2804 _failures = true; 2805 } 2806 } 2807 } 2808 2809 void do_oop(oop* p) { do_oop_nv(p); } 2810 void do_oop(narrowOop* p) { do_oop_nv(p); } 2811 }; 2812 2813 class G1VerifyCodeRootOopClosure: public OopClosure { 2814 G1CollectedHeap* _g1h; 2815 OopClosure* _root_cl; 2816 nmethod* _nm; 2817 VerifyOption _vo; 2818 bool _failures; 2819 2820 template <class T> void do_oop_work(T* p) { 2821 // First verify that this root is live 2822 _root_cl->do_oop(p); 2823 2824 if (!G1VerifyHeapRegionCodeRoots) { 2825 // We're not verifying the code roots attached to heap region. 2826 return; 2827 } 2828 2829 // Don't check the code roots during marking verification in a full GC 2830 if (_vo == VerifyOption_G1UseMarkWord) { 2831 return; 2832 } 2833 2834 // Now verify that the current nmethod (which contains p) is 2835 // in the code root list of the heap region containing the 2836 // object referenced by p. 2837 2838 T heap_oop = oopDesc::load_heap_oop(p); 2839 if (!oopDesc::is_null(heap_oop)) { 2840 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 2841 2842 // Now fetch the region containing the object 2843 HeapRegion* hr = _g1h->heap_region_containing(obj); 2844 HeapRegionRemSet* hrrs = hr->rem_set(); 2845 // Verify that the strong code root list for this region 2846 // contains the nmethod 2847 if (!hrrs->strong_code_roots_list_contains(_nm)) { 2848 gclog_or_tty->print_cr("Code root location "PTR_FORMAT" " 2849 "from nmethod "PTR_FORMAT" not in strong " 2850 "code roots for region ["PTR_FORMAT","PTR_FORMAT")", 2851 p, _nm, hr->bottom(), hr->end()); 2852 _failures = true; 2853 } 2854 } 2855 } 2856 2857 public: 2858 G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo): 2859 _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {} 2860 2861 void do_oop(oop* p) { do_oop_work(p); } 2862 void do_oop(narrowOop* p) { do_oop_work(p); } 2863 2864 void set_nmethod(nmethod* nm) { _nm = nm; } 2865 bool failures() { return _failures; } 2866 }; 2867 2868 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure { 2869 G1VerifyCodeRootOopClosure* _oop_cl; 2870 2871 public: 2872 G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl): 2873 _oop_cl(oop_cl) {} 2874 2875 void do_code_blob(CodeBlob* cb) { 2876 nmethod* nm = cb->as_nmethod_or_null(); 2877 if (nm != NULL) { 2878 _oop_cl->set_nmethod(nm); 2879 nm->oops_do(_oop_cl); 2880 } 2881 } 2882 }; 2883 2884 class YoungRefCounterClosure : public OopClosure { 2885 G1CollectedHeap* _g1h; 2886 int _count; 2887 public: 2888 YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {} 2889 void do_oop(oop* p) { if (_g1h->is_in_young(*p)) { _count++; } } 2890 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 2891 2892 int count() { return _count; } 2893 void reset_count() { _count = 0; }; 2894 }; 2895 2896 class VerifyKlassClosure: public KlassClosure { 2897 YoungRefCounterClosure _young_ref_counter_closure; 2898 OopClosure *_oop_closure; 2899 public: 2900 VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {} 2901 void do_klass(Klass* k) { 2902 k->oops_do(_oop_closure); 2903 2904 _young_ref_counter_closure.reset_count(); 2905 k->oops_do(&_young_ref_counter_closure); 2906 if (_young_ref_counter_closure.count() > 0) { 2907 guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k)); 2908 } 2909 } 2910 }; 2911 2912 class VerifyLivenessOopClosure: public OopClosure { 2913 G1CollectedHeap* _g1h; 2914 VerifyOption _vo; 2915 public: 2916 VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo): 2917 _g1h(g1h), _vo(vo) 2918 { } 2919 void do_oop(narrowOop *p) { do_oop_work(p); } 2920 void do_oop( oop *p) { do_oop_work(p); } 2921 2922 template <class T> void do_oop_work(T *p) { 2923 oop obj = oopDesc::load_decode_heap_oop(p); 2924 guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo), 2925 "Dead object referenced by a not dead object"); 2926 } 2927 }; 2928 2929 class VerifyObjsInRegionClosure: public ObjectClosure { 2930 private: 2931 G1CollectedHeap* _g1h; 2932 size_t _live_bytes; 2933 HeapRegion *_hr; 2934 VerifyOption _vo; 2935 public: 2936 // _vo == UsePrevMarking -> use "prev" marking information, 2937 // _vo == UseNextMarking -> use "next" marking information, 2938 // _vo == UseMarkWord -> use mark word from object header. 2939 VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo) 2940 : _live_bytes(0), _hr(hr), _vo(vo) { 2941 _g1h = G1CollectedHeap::heap(); 2942 } 2943 void do_object(oop o) { 2944 VerifyLivenessOopClosure isLive(_g1h, _vo); 2945 assert(o != NULL, "Huh?"); 2946 if (!_g1h->is_obj_dead_cond(o, _vo)) { 2947 // If the object is alive according to the mark word, 2948 // then verify that the marking information agrees. 2949 // Note we can't verify the contra-positive of the 2950 // above: if the object is dead (according to the mark 2951 // word), it may not be marked, or may have been marked 2952 // but has since became dead, or may have been allocated 2953 // since the last marking. 2954 if (_vo == VerifyOption_G1UseMarkWord) { 2955 guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch"); 2956 } 2957 2958 o->oop_iterate_no_header(&isLive); 2959 if (!_hr->obj_allocated_since_prev_marking(o)) { 2960 size_t obj_size = o->size(); // Make sure we don't overflow 2961 _live_bytes += (obj_size * HeapWordSize); 2962 } 2963 } 2964 } 2965 size_t live_bytes() { return _live_bytes; } 2966 }; 2967 2968 class PrintObjsInRegionClosure : public ObjectClosure { 2969 HeapRegion *_hr; 2970 G1CollectedHeap *_g1; 2971 public: 2972 PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) { 2973 _g1 = G1CollectedHeap::heap(); 2974 }; 2975 2976 void do_object(oop o) { 2977 if (o != NULL) { 2978 HeapWord *start = (HeapWord *) o; 2979 size_t word_sz = o->size(); 2980 gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT 2981 " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n", 2982 (void*) o, word_sz, 2983 _g1->isMarkedPrev(o), 2984 _g1->isMarkedNext(o), 2985 _hr->obj_allocated_since_prev_marking(o)); 2986 HeapWord *end = start + word_sz; 2987 HeapWord *cur; 2988 int *val; 2989 for (cur = start; cur < end; cur++) { 2990 val = (int *) cur; 2991 gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val); 2992 } 2993 } 2994 } 2995 }; 2996 2997 class VerifyRegionClosure: public HeapRegionClosure { 2998 private: 2999 bool _par; 3000 VerifyOption _vo; 3001 bool _failures; 3002 public: 3003 // _vo == UsePrevMarking -> use "prev" marking information, 3004 // _vo == UseNextMarking -> use "next" marking information, 3005 // _vo == UseMarkWord -> use mark word from object header. 3006 VerifyRegionClosure(bool par, VerifyOption vo) 3007 : _par(par), 3008 _vo(vo), 3009 _failures(false) {} 3010 3011 bool failures() { 3012 return _failures; 3013 } 3014 3015 bool doHeapRegion(HeapRegion* r) { 3016 if (!r->is_continues_humongous()) { 3017 bool failures = false; 3018 r->verify(_vo, &failures); 3019 if (failures) { 3020 _failures = true; 3021 } else { 3022 VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo); 3023 r->object_iterate(¬_dead_yet_cl); 3024 if (_vo != VerifyOption_G1UseNextMarking) { 3025 if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) { 3026 gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] " 3027 "max_live_bytes "SIZE_FORMAT" " 3028 "< calculated "SIZE_FORMAT, 3029 r->bottom(), r->end(), 3030 r->max_live_bytes(), 3031 not_dead_yet_cl.live_bytes()); 3032 _failures = true; 3033 } 3034 } else { 3035 // When vo == UseNextMarking we cannot currently do a sanity 3036 // check on the live bytes as the calculation has not been 3037 // finalized yet. 3038 } 3039 } 3040 } 3041 return false; // stop the region iteration if we hit a failure 3042 } 3043 }; 3044 3045 // This is the task used for parallel verification of the heap regions 3046 3047 class G1ParVerifyTask: public AbstractGangTask { 3048 private: 3049 G1CollectedHeap* _g1h; 3050 VerifyOption _vo; 3051 bool _failures; 3052 HeapRegionClaimer _hrclaimer; 3053 3054 public: 3055 // _vo == UsePrevMarking -> use "prev" marking information, 3056 // _vo == UseNextMarking -> use "next" marking information, 3057 // _vo == UseMarkWord -> use mark word from object header. 3058 G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) : 3059 AbstractGangTask("Parallel verify task"), 3060 _g1h(g1h), 3061 _vo(vo), 3062 _failures(false), 3063 _hrclaimer(g1h->workers()->active_workers()) {} 3064 3065 bool failures() { 3066 return _failures; 3067 } 3068 3069 void work(uint worker_id) { 3070 HandleMark hm; 3071 VerifyRegionClosure blk(true, _vo); 3072 _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer); 3073 if (blk.failures()) { 3074 _failures = true; 3075 } 3076 } 3077 }; 3078 3079 void G1CollectedHeap::verify(bool silent, VerifyOption vo) { 3080 if (SafepointSynchronize::is_at_safepoint()) { 3081 assert(Thread::current()->is_VM_thread(), 3082 "Expected to be executed serially by the VM thread at this point"); 3083 3084 if (!silent) { gclog_or_tty->print("Roots "); } 3085 VerifyRootsClosure rootsCl(vo); 3086 VerifyKlassClosure klassCl(this, &rootsCl); 3087 CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false); 3088 3089 // We apply the relevant closures to all the oops in the 3090 // system dictionary, class loader data graph, the string table 3091 // and the nmethods in the code cache. 3092 G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo); 3093 G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl); 3094 3095 { 3096 G1RootProcessor root_processor(this, false /* trace_metadata */); 3097 root_processor.process_all_roots(&rootsCl, 3098 &cldCl, 3099 &blobsCl); 3100 } 3101 3102 bool failures = rootsCl.failures() || codeRootsCl.failures(); 3103 3104 if (vo != VerifyOption_G1UseMarkWord) { 3105 // If we're verifying during a full GC then the region sets 3106 // will have been torn down at the start of the GC. Therefore 3107 // verifying the region sets will fail. So we only verify 3108 // the region sets when not in a full GC. 3109 if (!silent) { gclog_or_tty->print("HeapRegionSets "); } 3110 verify_region_sets(); 3111 } 3112 3113 if (!silent) { gclog_or_tty->print("HeapRegions "); } 3114 if (GCParallelVerificationEnabled && ParallelGCThreads > 1) { 3115 3116 G1ParVerifyTask task(this, vo); 3117 assert(UseDynamicNumberOfGCThreads || 3118 workers()->active_workers() == workers()->total_workers(), 3119 "If not dynamic should be using all the workers"); 3120 int n_workers = workers()->active_workers(); 3121 set_par_threads(n_workers); 3122 workers()->run_task(&task); 3123 set_par_threads(0); 3124 if (task.failures()) { 3125 failures = true; 3126 } 3127 3128 } else { 3129 VerifyRegionClosure blk(false, vo); 3130 heap_region_iterate(&blk); 3131 if (blk.failures()) { 3132 failures = true; 3133 } 3134 } 3135 3136 if (G1StringDedup::is_enabled()) { 3137 if (!silent) gclog_or_tty->print("StrDedup "); 3138 G1StringDedup::verify(); 3139 } 3140 3141 if (failures) { 3142 gclog_or_tty->print_cr("Heap:"); 3143 // It helps to have the per-region information in the output to 3144 // help us track down what went wrong. This is why we call 3145 // print_extended_on() instead of print_on(). 3146 print_extended_on(gclog_or_tty); 3147 gclog_or_tty->cr(); 3148 #ifndef PRODUCT 3149 if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) { 3150 concurrent_mark()->print_reachable("at-verification-failure", 3151 vo, false /* all */); 3152 } 3153 #endif 3154 gclog_or_tty->flush(); 3155 } 3156 guarantee(!failures, "there should not have been any failures"); 3157 } else { 3158 if (!silent) { 3159 gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet"); 3160 if (G1StringDedup::is_enabled()) { 3161 gclog_or_tty->print(", StrDedup"); 3162 } 3163 gclog_or_tty->print(") "); 3164 } 3165 } 3166 } 3167 3168 void G1CollectedHeap::verify(bool silent) { 3169 verify(silent, VerifyOption_G1UsePrevMarking); 3170 } 3171 3172 double G1CollectedHeap::verify(bool guard, const char* msg) { 3173 double verify_time_ms = 0.0; 3174 3175 if (guard && total_collections() >= VerifyGCStartAt) { 3176 double verify_start = os::elapsedTime(); 3177 HandleMark hm; // Discard invalid handles created during verification 3178 prepare_for_verify(); 3179 Universe::verify(VerifyOption_G1UsePrevMarking, msg); 3180 verify_time_ms = (os::elapsedTime() - verify_start) * 1000; 3181 } 3182 3183 return verify_time_ms; 3184 } 3185 3186 void G1CollectedHeap::verify_before_gc() { 3187 double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:"); 3188 g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms); 3189 } 3190 3191 void G1CollectedHeap::verify_after_gc() { 3192 double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:"); 3193 g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms); 3194 } 3195 3196 class PrintRegionClosure: public HeapRegionClosure { 3197 outputStream* _st; 3198 public: 3199 PrintRegionClosure(outputStream* st) : _st(st) {} 3200 bool doHeapRegion(HeapRegion* r) { 3201 r->print_on(_st); 3202 return false; 3203 } 3204 }; 3205 3206 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 3207 const HeapRegion* hr, 3208 const VerifyOption vo) const { 3209 switch (vo) { 3210 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr); 3211 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr); 3212 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked(); 3213 default: ShouldNotReachHere(); 3214 } 3215 return false; // keep some compilers happy 3216 } 3217 3218 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 3219 const VerifyOption vo) const { 3220 switch (vo) { 3221 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj); 3222 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj); 3223 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked(); 3224 default: ShouldNotReachHere(); 3225 } 3226 return false; // keep some compilers happy 3227 } 3228 3229 void G1CollectedHeap::print_on(outputStream* st) const { 3230 st->print(" %-20s", "garbage-first heap"); 3231 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", 3232 capacity()/K, used_unlocked()/K); 3233 st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")", 3234 _hrm.reserved().start(), 3235 _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords, 3236 _hrm.reserved().end()); 3237 st->cr(); 3238 st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); 3239 uint young_regions = _young_list->length(); 3240 st->print("%u young (" SIZE_FORMAT "K), ", young_regions, 3241 (size_t) young_regions * HeapRegion::GrainBytes / K); 3242 uint survivor_regions = g1_policy()->recorded_survivor_regions(); 3243 st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, 3244 (size_t) survivor_regions * HeapRegion::GrainBytes / K); 3245 st->cr(); 3246 MetaspaceAux::print_on(st); 3247 } 3248 3249 void G1CollectedHeap::print_extended_on(outputStream* st) const { 3250 print_on(st); 3251 3252 // Print the per-region information. 3253 st->cr(); 3254 st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), " 3255 "HS=humongous(starts), HC=humongous(continues), " 3256 "CS=collection set, F=free, TS=gc time stamp, " 3257 "PTAMS=previous top-at-mark-start, " 3258 "NTAMS=next top-at-mark-start)"); 3259 PrintRegionClosure blk(st); 3260 heap_region_iterate(&blk); 3261 } 3262 3263 void G1CollectedHeap::print_on_error(outputStream* st) const { 3264 this->CollectedHeap::print_on_error(st); 3265 3266 if (_cm != NULL) { 3267 st->cr(); 3268 _cm->print_on_error(st); 3269 } 3270 } 3271 3272 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const { 3273 workers()->print_worker_threads_on(st); 3274 _cmThread->print_on(st); 3275 st->cr(); 3276 _cm->print_worker_threads_on(st); 3277 _cg1r->print_worker_threads_on(st); 3278 if (G1StringDedup::is_enabled()) { 3279 G1StringDedup::print_worker_threads_on(st); 3280 } 3281 } 3282 3283 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { 3284 workers()->threads_do(tc); 3285 tc->do_thread(_cmThread); 3286 _cg1r->threads_do(tc); 3287 if (G1StringDedup::is_enabled()) { 3288 G1StringDedup::threads_do(tc); 3289 } 3290 } 3291 3292 void G1CollectedHeap::print_tracing_info() const { 3293 // We'll overload this to mean "trace GC pause statistics." 3294 if (TraceYoungGenTime || TraceOldGenTime) { 3295 // The "G1CollectorPolicy" is keeping track of these stats, so delegate 3296 // to that. 3297 g1_policy()->print_tracing_info(); 3298 } 3299 if (G1SummarizeRSetStats) { 3300 g1_rem_set()->print_summary_info(); 3301 } 3302 if (G1SummarizeConcMark) { 3303 concurrent_mark()->print_summary_info(); 3304 } 3305 g1_policy()->print_yg_surv_rate_info(); 3306 } 3307 3308 #ifndef PRODUCT 3309 // Helpful for debugging RSet issues. 3310 3311 class PrintRSetsClosure : public HeapRegionClosure { 3312 private: 3313 const char* _msg; 3314 size_t _occupied_sum; 3315 3316 public: 3317 bool doHeapRegion(HeapRegion* r) { 3318 HeapRegionRemSet* hrrs = r->rem_set(); 3319 size_t occupied = hrrs->occupied(); 3320 _occupied_sum += occupied; 3321 3322 gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT, 3323 HR_FORMAT_PARAMS(r)); 3324 if (occupied == 0) { 3325 gclog_or_tty->print_cr(" RSet is empty"); 3326 } else { 3327 hrrs->print(); 3328 } 3329 gclog_or_tty->print_cr("----------"); 3330 return false; 3331 } 3332 3333 PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) { 3334 gclog_or_tty->cr(); 3335 gclog_or_tty->print_cr("========================================"); 3336 gclog_or_tty->print_cr("%s", msg); 3337 gclog_or_tty->cr(); 3338 } 3339 3340 ~PrintRSetsClosure() { 3341 gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum); 3342 gclog_or_tty->print_cr("========================================"); 3343 gclog_or_tty->cr(); 3344 } 3345 }; 3346 3347 void G1CollectedHeap::print_cset_rsets() { 3348 PrintRSetsClosure cl("Printing CSet RSets"); 3349 collection_set_iterate(&cl); 3350 } 3351 3352 void G1CollectedHeap::print_all_rsets() { 3353 PrintRSetsClosure cl("Printing All RSets");; 3354 heap_region_iterate(&cl); 3355 } 3356 #endif // PRODUCT 3357 3358 G1CollectedHeap* G1CollectedHeap::heap() { 3359 assert(_sh->kind() == CollectedHeap::G1CollectedHeap, 3360 "not a garbage-first heap"); 3361 return _g1h; 3362 } 3363 3364 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) { 3365 // always_do_update_barrier = false; 3366 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); 3367 // Fill TLAB's and such 3368 accumulate_statistics_all_tlabs(); 3369 ensure_parsability(true); 3370 3371 if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) && 3372 (total_collections() % G1SummarizeRSetStatsPeriod == 0)) { 3373 g1_rem_set()->print_periodic_summary_info("Before GC RS summary"); 3374 } 3375 } 3376 3377 void G1CollectedHeap::gc_epilogue(bool full) { 3378 3379 if (G1SummarizeRSetStats && 3380 (G1SummarizeRSetStatsPeriod > 0) && 3381 // we are at the end of the GC. Total collections has already been increased. 3382 ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) { 3383 g1_rem_set()->print_periodic_summary_info("After GC RS summary"); 3384 } 3385 3386 // FIXME: what is this about? 3387 // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" 3388 // is set. 3389 COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(), 3390 "derived pointer present")); 3391 // always_do_update_barrier = true; 3392 3393 resize_all_tlabs(); 3394 allocation_context_stats().update(full); 3395 3396 // We have just completed a GC. Update the soft reference 3397 // policy with the new heap occupancy 3398 Universe::update_heap_info_at_gc(); 3399 } 3400 3401 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, 3402 uint gc_count_before, 3403 bool* succeeded, 3404 GCCause::Cause gc_cause) { 3405 assert_heap_not_locked_and_not_at_safepoint(); 3406 g1_policy()->record_stop_world_start(); 3407 VM_G1IncCollectionPause op(gc_count_before, 3408 word_size, 3409 false, /* should_initiate_conc_mark */ 3410 g1_policy()->max_pause_time_ms(), 3411 gc_cause); 3412 3413 op.set_allocation_context(AllocationContext::current()); 3414 VMThread::execute(&op); 3415 3416 HeapWord* result = op.result(); 3417 bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded(); 3418 assert(result == NULL || ret_succeeded, 3419 "the result should be NULL if the VM did not succeed"); 3420 *succeeded = ret_succeeded; 3421 3422 assert_heap_not_locked(); 3423 return result; 3424 } 3425 3426 void 3427 G1CollectedHeap::doConcurrentMark() { 3428 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 3429 if (!_cmThread->in_progress()) { 3430 _cmThread->set_started(); 3431 CGC_lock->notify(); 3432 } 3433 } 3434 3435 size_t G1CollectedHeap::pending_card_num() { 3436 size_t extra_cards = 0; 3437 JavaThread *curr = Threads::first(); 3438 while (curr != NULL) { 3439 DirtyCardQueue& dcq = curr->dirty_card_queue(); 3440 extra_cards += dcq.size(); 3441 curr = curr->next(); 3442 } 3443 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 3444 size_t buffer_size = dcqs.buffer_size(); 3445 size_t buffer_num = dcqs.completed_buffers_num(); 3446 3447 // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes 3448 // in bytes - not the number of 'entries'. We need to convert 3449 // into a number of cards. 3450 return (buffer_size * buffer_num + extra_cards) / oopSize; 3451 } 3452 3453 size_t G1CollectedHeap::cards_scanned() { 3454 return g1_rem_set()->cardsScanned(); 3455 } 3456 3457 bool G1CollectedHeap::humongous_region_is_always_live(uint index) { 3458 HeapRegion* region = region_at(index); 3459 assert(region->is_starts_humongous(), "Must start a humongous object"); 3460 return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty(); 3461 } 3462 3463 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure { 3464 private: 3465 size_t _total_humongous; 3466 size_t _candidate_humongous; 3467 3468 DirtyCardQueue _dcq; 3469 3470 bool humongous_region_is_candidate(uint index) { 3471 HeapRegion* region = G1CollectedHeap::heap()->region_at(index); 3472 assert(region->is_starts_humongous(), "Must start a humongous object"); 3473 HeapRegionRemSet* const rset = region->rem_set(); 3474 bool const allow_stale_refs = G1EagerReclaimHumongousObjectsWithStaleRefs; 3475 return !oop(region->bottom())->is_objArray() && 3476 ((allow_stale_refs && rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)) || 3477 (!allow_stale_refs && rset->is_empty())); 3478 } 3479 3480 public: 3481 RegisterHumongousWithInCSetFastTestClosure() 3482 : _total_humongous(0), 3483 _candidate_humongous(0), 3484 _dcq(&JavaThread::dirty_card_queue_set()) { 3485 } 3486 3487 virtual bool doHeapRegion(HeapRegion* r) { 3488 if (!r->is_starts_humongous()) { 3489 return false; 3490 } 3491 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 3492 3493 uint region_idx = r->hrm_index(); 3494 bool is_candidate = humongous_region_is_candidate(region_idx); 3495 // Is_candidate already filters out humongous object with large remembered sets. 3496 // If we have a humongous object with a few remembered sets, we simply flush these 3497 // remembered set entries into the DCQS. That will result in automatic 3498 // re-evaluation of their remembered set entries during the following evacuation 3499 // phase. 3500 if (is_candidate) { 3501 if (!r->rem_set()->is_empty()) { 3502 guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries), 3503 "Found a not-small remembered set here. This is inconsistent with previous assumptions."); 3504 G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set(); 3505 HeapRegionRemSetIterator hrrs(r->rem_set()); 3506 size_t card_index; 3507 while (hrrs.has_next(card_index)) { 3508 jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index); 3509 // The remembered set might contain references to already freed 3510 // regions. Filter out such entries to avoid failing card table 3511 // verification. 3512 if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) { 3513 if (*card_ptr != CardTableModRefBS::dirty_card_val()) { 3514 *card_ptr = CardTableModRefBS::dirty_card_val(); 3515 _dcq.enqueue(card_ptr); 3516 } 3517 } 3518 } 3519 r->rem_set()->clear_locked(); 3520 } 3521 assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty."); 3522 g1h->register_humongous_region_with_cset(region_idx); 3523 _candidate_humongous++; 3524 } 3525 _total_humongous++; 3526 3527 return false; 3528 } 3529 3530 size_t total_humongous() const { return _total_humongous; } 3531 size_t candidate_humongous() const { return _candidate_humongous; } 3532 3533 void flush_rem_set_entries() { _dcq.flush(); } 3534 }; 3535 3536 void G1CollectedHeap::register_humongous_regions_with_cset() { 3537 if (!G1EagerReclaimHumongousObjects) { 3538 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0); 3539 return; 3540 } 3541 double time = os::elapsed_counter(); 3542 3543 RegisterHumongousWithInCSetFastTestClosure cl; 3544 heap_region_iterate(&cl); 3545 3546 time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0; 3547 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time, 3548 cl.total_humongous(), 3549 cl.candidate_humongous()); 3550 _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0; 3551 3552 if (_has_humongous_reclaim_candidates || G1TraceEagerReclaimHumongousObjects) { 3553 clear_humongous_is_live_table(); 3554 } 3555 3556 // Finally flush all remembered set entries to re-check into the global DCQS. 3557 cl.flush_rem_set_entries(); 3558 } 3559 3560 void 3561 G1CollectedHeap::setup_surviving_young_words() { 3562 assert(_surviving_young_words == NULL, "pre-condition"); 3563 uint array_length = g1_policy()->young_cset_region_length(); 3564 _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC); 3565 if (_surviving_young_words == NULL) { 3566 vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR, 3567 "Not enough space for young surv words summary."); 3568 } 3569 memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t)); 3570 #ifdef ASSERT 3571 for (uint i = 0; i < array_length; ++i) { 3572 assert( _surviving_young_words[i] == 0, "memset above" ); 3573 } 3574 #endif // !ASSERT 3575 } 3576 3577 void 3578 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) { 3579 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 3580 uint array_length = g1_policy()->young_cset_region_length(); 3581 for (uint i = 0; i < array_length; ++i) { 3582 _surviving_young_words[i] += surv_young_words[i]; 3583 } 3584 } 3585 3586 void 3587 G1CollectedHeap::cleanup_surviving_young_words() { 3588 guarantee( _surviving_young_words != NULL, "pre-condition" ); 3589 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words); 3590 _surviving_young_words = NULL; 3591 } 3592 3593 #ifdef ASSERT 3594 class VerifyCSetClosure: public HeapRegionClosure { 3595 public: 3596 bool doHeapRegion(HeapRegion* hr) { 3597 // Here we check that the CSet region's RSet is ready for parallel 3598 // iteration. The fields that we'll verify are only manipulated 3599 // when the region is part of a CSet and is collected. Afterwards, 3600 // we reset these fields when we clear the region's RSet (when the 3601 // region is freed) so they are ready when the region is 3602 // re-allocated. The only exception to this is if there's an 3603 // evacuation failure and instead of freeing the region we leave 3604 // it in the heap. In that case, we reset these fields during 3605 // evacuation failure handling. 3606 guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification"); 3607 3608 // Here's a good place to add any other checks we'd like to 3609 // perform on CSet regions. 3610 return false; 3611 } 3612 }; 3613 #endif // ASSERT 3614 3615 #if TASKQUEUE_STATS 3616 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { 3617 st->print_raw_cr("GC Task Stats"); 3618 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr(); 3619 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr(); 3620 } 3621 3622 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const { 3623 print_taskqueue_stats_hdr(st); 3624 3625 TaskQueueStats totals; 3626 const int n = workers()->total_workers(); 3627 for (int i = 0; i < n; ++i) { 3628 st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr(); 3629 totals += task_queue(i)->stats; 3630 } 3631 st->print_raw("tot "); totals.print(st); st->cr(); 3632 3633 DEBUG_ONLY(totals.verify()); 3634 } 3635 3636 void G1CollectedHeap::reset_taskqueue_stats() { 3637 const int n = workers()->total_workers(); 3638 for (int i = 0; i < n; ++i) { 3639 task_queue(i)->stats.reset(); 3640 } 3641 } 3642 #endif // TASKQUEUE_STATS 3643 3644 void G1CollectedHeap::log_gc_header() { 3645 if (!G1Log::fine()) { 3646 return; 3647 } 3648 3649 gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id()); 3650 3651 GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause()) 3652 .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)") 3653 .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : ""); 3654 3655 gclog_or_tty->print("[%s", (const char*)gc_cause_str); 3656 } 3657 3658 void G1CollectedHeap::log_gc_footer(double pause_time_sec) { 3659 if (!G1Log::fine()) { 3660 return; 3661 } 3662 3663 if (G1Log::finer()) { 3664 if (evacuation_failed()) { 3665 gclog_or_tty->print(" (to-space exhausted)"); 3666 } 3667 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec); 3668 g1_policy()->phase_times()->note_gc_end(); 3669 g1_policy()->phase_times()->print(pause_time_sec); 3670 g1_policy()->print_detailed_heap_transition(); 3671 } else { 3672 if (evacuation_failed()) { 3673 gclog_or_tty->print("--"); 3674 } 3675 g1_policy()->print_heap_transition(); 3676 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec); 3677 } 3678 gclog_or_tty->flush(); 3679 } 3680 3681 bool 3682 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { 3683 assert_at_safepoint(true /* should_be_vm_thread */); 3684 guarantee(!is_gc_active(), "collection is not reentrant"); 3685 3686 if (GC_locker::check_active_before_gc()) { 3687 return false; 3688 } 3689 3690 _gc_timer_stw->register_gc_start(); 3691 3692 _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start()); 3693 3694 SvcGCMarker sgcm(SvcGCMarker::MINOR); 3695 ResourceMark rm; 3696 3697 print_heap_before_gc(); 3698 trace_heap_before_gc(_gc_tracer_stw); 3699 3700 verify_region_sets_optional(); 3701 verify_dirty_young_regions(); 3702 3703 // This call will decide whether this pause is an initial-mark 3704 // pause. If it is, during_initial_mark_pause() will return true 3705 // for the duration of this pause. 3706 g1_policy()->decide_on_conc_mark_initiation(); 3707 3708 // We do not allow initial-mark to be piggy-backed on a mixed GC. 3709 assert(!g1_policy()->during_initial_mark_pause() || 3710 g1_policy()->gcs_are_young(), "sanity"); 3711 3712 // We also do not allow mixed GCs during marking. 3713 assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity"); 3714 3715 // Record whether this pause is an initial mark. When the current 3716 // thread has completed its logging output and it's safe to signal 3717 // the CM thread, the flag's value in the policy has been reset. 3718 bool should_start_conc_mark = g1_policy()->during_initial_mark_pause(); 3719 3720 // Inner scope for scope based logging, timers, and stats collection 3721 { 3722 EvacuationInfo evacuation_info; 3723 3724 if (g1_policy()->during_initial_mark_pause()) { 3725 // We are about to start a marking cycle, so we increment the 3726 // full collection counter. 3727 increment_old_marking_cycles_started(); 3728 register_concurrent_cycle_start(_gc_timer_stw->gc_start()); 3729 } 3730 3731 _gc_tracer_stw->report_yc_type(yc_type()); 3732 3733 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty); 3734 3735 uint active_workers = workers()->active_workers(); 3736 double pause_start_sec = os::elapsedTime(); 3737 g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress()); 3738 log_gc_header(); 3739 3740 TraceCollectorStats tcs(g1mm()->incremental_collection_counters()); 3741 TraceMemoryManagerStats tms(false /* fullGC */, gc_cause()); 3742 3743 // If the secondary_free_list is not empty, append it to the 3744 // free_list. No need to wait for the cleanup operation to finish; 3745 // the region allocation code will check the secondary_free_list 3746 // and wait if necessary. If the G1StressConcRegionFreeing flag is 3747 // set, skip this step so that the region allocation code has to 3748 // get entries from the secondary_free_list. 3749 if (!G1StressConcRegionFreeing) { 3750 append_secondary_free_list_if_not_empty_with_lock(); 3751 } 3752 3753 assert(check_young_list_well_formed(), "young list should be well formed"); 3754 3755 // Don't dynamically change the number of GC threads this early. A value of 3756 // 0 is used to indicate serial work. When parallel work is done, 3757 // it will be set. 3758 3759 { // Call to jvmpi::post_class_unload_events must occur outside of active GC 3760 IsGCActiveMark x; 3761 3762 gc_prologue(false); 3763 increment_total_collections(false /* full gc */); 3764 increment_gc_time_stamp(); 3765 3766 verify_before_gc(); 3767 3768 check_bitmaps("GC Start"); 3769 3770 COMPILER2_PRESENT(DerivedPointerTable::clear()); 3771 3772 // Please see comment in g1CollectedHeap.hpp and 3773 // G1CollectedHeap::ref_processing_init() to see how 3774 // reference processing currently works in G1. 3775 3776 // Enable discovery in the STW reference processor 3777 ref_processor_stw()->enable_discovery(); 3778 3779 { 3780 // We want to temporarily turn off discovery by the 3781 // CM ref processor, if necessary, and turn it back on 3782 // on again later if we do. Using a scoped 3783 // NoRefDiscovery object will do this. 3784 NoRefDiscovery no_cm_discovery(ref_processor_cm()); 3785 3786 // Forget the current alloc region (we might even choose it to be part 3787 // of the collection set!). 3788 _allocator->release_mutator_alloc_region(); 3789 3790 // We should call this after we retire the mutator alloc 3791 // region(s) so that all the ALLOC / RETIRE events are generated 3792 // before the start GC event. 3793 _hr_printer.start_gc(false /* full */, (size_t) total_collections()); 3794 3795 // This timing is only used by the ergonomics to handle our pause target. 3796 // It is unclear why this should not include the full pause. We will 3797 // investigate this in CR 7178365. 3798 // 3799 // Preserving the old comment here if that helps the investigation: 3800 // 3801 // The elapsed time induced by the start time below deliberately elides 3802 // the possible verification above. 3803 double sample_start_time_sec = os::elapsedTime(); 3804 3805 #if YOUNG_LIST_VERBOSE 3806 gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:"); 3807 _young_list->print(); 3808 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 3809 #endif // YOUNG_LIST_VERBOSE 3810 3811 g1_policy()->record_collection_pause_start(sample_start_time_sec); 3812 3813 double scan_wait_start = os::elapsedTime(); 3814 // We have to wait until the CM threads finish scanning the 3815 // root regions as it's the only way to ensure that all the 3816 // objects on them have been correctly scanned before we start 3817 // moving them during the GC. 3818 bool waited = _cm->root_regions()->wait_until_scan_finished(); 3819 double wait_time_ms = 0.0; 3820 if (waited) { 3821 double scan_wait_end = os::elapsedTime(); 3822 wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0; 3823 } 3824 g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms); 3825 3826 #if YOUNG_LIST_VERBOSE 3827 gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:"); 3828 _young_list->print(); 3829 #endif // YOUNG_LIST_VERBOSE 3830 3831 if (g1_policy()->during_initial_mark_pause()) { 3832 concurrent_mark()->checkpointRootsInitialPre(); 3833 } 3834 3835 #if YOUNG_LIST_VERBOSE 3836 gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:"); 3837 _young_list->print(); 3838 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 3839 #endif // YOUNG_LIST_VERBOSE 3840 3841 g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info); 3842 3843 register_humongous_regions_with_cset(); 3844 3845 assert(check_cset_fast_test(), "Inconsistency in the InCSetState table."); 3846 3847 _cm->note_start_of_gc(); 3848 // We should not verify the per-thread SATB buffers given that 3849 // we have not filtered them yet (we'll do so during the 3850 // GC). We also call this after finalize_cset() to 3851 // ensure that the CSet has been finalized. 3852 _cm->verify_no_cset_oops(true /* verify_stacks */, 3853 true /* verify_enqueued_buffers */, 3854 false /* verify_thread_buffers */, 3855 true /* verify_fingers */); 3856 3857 if (_hr_printer.is_active()) { 3858 HeapRegion* hr = g1_policy()->collection_set(); 3859 while (hr != NULL) { 3860 _hr_printer.cset(hr); 3861 hr = hr->next_in_collection_set(); 3862 } 3863 } 3864 3865 #ifdef ASSERT 3866 VerifyCSetClosure cl; 3867 collection_set_iterate(&cl); 3868 #endif // ASSERT 3869 3870 setup_surviving_young_words(); 3871 3872 // Initialize the GC alloc regions. 3873 _allocator->init_gc_alloc_regions(evacuation_info); 3874 3875 // Actually do the work... 3876 evacuate_collection_set(evacuation_info); 3877 3878 // We do this to mainly verify the per-thread SATB buffers 3879 // (which have been filtered by now) since we didn't verify 3880 // them earlier. No point in re-checking the stacks / enqueued 3881 // buffers given that the CSet has not changed since last time 3882 // we checked. 3883 _cm->verify_no_cset_oops(false /* verify_stacks */, 3884 false /* verify_enqueued_buffers */, 3885 true /* verify_thread_buffers */, 3886 true /* verify_fingers */); 3887 3888 free_collection_set(g1_policy()->collection_set(), evacuation_info); 3889 3890 eagerly_reclaim_humongous_regions(); 3891 3892 g1_policy()->clear_collection_set(); 3893 3894 cleanup_surviving_young_words(); 3895 3896 // Start a new incremental collection set for the next pause. 3897 g1_policy()->start_incremental_cset_building(); 3898 3899 clear_cset_fast_test(); 3900 3901 _young_list->reset_sampled_info(); 3902 3903 // Don't check the whole heap at this point as the 3904 // GC alloc regions from this pause have been tagged 3905 // as survivors and moved on to the survivor list. 3906 // Survivor regions will fail the !is_young() check. 3907 assert(check_young_list_empty(false /* check_heap */), 3908 "young list should be empty"); 3909 3910 #if YOUNG_LIST_VERBOSE 3911 gclog_or_tty->print_cr("Before recording survivors.\nYoung List:"); 3912 _young_list->print(); 3913 #endif // YOUNG_LIST_VERBOSE 3914 3915 g1_policy()->record_survivor_regions(_young_list->survivor_length(), 3916 _young_list->first_survivor_region(), 3917 _young_list->last_survivor_region()); 3918 3919 _young_list->reset_auxilary_lists(); 3920 3921 if (evacuation_failed()) { 3922 _allocator->set_used(recalculate_used()); 3923 uint n_queues = MAX2((int)ParallelGCThreads, 1); 3924 for (uint i = 0; i < n_queues; i++) { 3925 if (_evacuation_failed_info_array[i].has_failed()) { 3926 _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]); 3927 } 3928 } 3929 } else { 3930 // The "used" of the the collection set have already been subtracted 3931 // when they were freed. Add in the bytes evacuated. 3932 _allocator->increase_used(g1_policy()->bytes_copied_during_gc()); 3933 } 3934 3935 if (g1_policy()->during_initial_mark_pause()) { 3936 // We have to do this before we notify the CM threads that 3937 // they can start working to make sure that all the 3938 // appropriate initialization is done on the CM object. 3939 concurrent_mark()->checkpointRootsInitialPost(); 3940 set_marking_started(); 3941 // Note that we don't actually trigger the CM thread at 3942 // this point. We do that later when we're sure that 3943 // the current thread has completed its logging output. 3944 } 3945 3946 allocate_dummy_regions(); 3947 3948 #if YOUNG_LIST_VERBOSE 3949 gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:"); 3950 _young_list->print(); 3951 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 3952 #endif // YOUNG_LIST_VERBOSE 3953 3954 _allocator->init_mutator_alloc_region(); 3955 3956 { 3957 size_t expand_bytes = g1_policy()->expansion_amount(); 3958 if (expand_bytes > 0) { 3959 size_t bytes_before = capacity(); 3960 // No need for an ergo verbose message here, 3961 // expansion_amount() does this when it returns a value > 0. 3962 if (!expand(expand_bytes)) { 3963 // We failed to expand the heap. Cannot do anything about it. 3964 } 3965 } 3966 } 3967 3968 // We redo the verification but now wrt to the new CSet which 3969 // has just got initialized after the previous CSet was freed. 3970 _cm->verify_no_cset_oops(true /* verify_stacks */, 3971 true /* verify_enqueued_buffers */, 3972 true /* verify_thread_buffers */, 3973 true /* verify_fingers */); 3974 _cm->note_end_of_gc(); 3975 3976 // This timing is only used by the ergonomics to handle our pause target. 3977 // It is unclear why this should not include the full pause. We will 3978 // investigate this in CR 7178365. 3979 double sample_end_time_sec = os::elapsedTime(); 3980 double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS; 3981 g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info); 3982 3983 MemoryService::track_memory_usage(); 3984 3985 // In prepare_for_verify() below we'll need to scan the deferred 3986 // update buffers to bring the RSets up-to-date if 3987 // G1HRRSFlushLogBuffersOnVerify has been set. While scanning 3988 // the update buffers we'll probably need to scan cards on the 3989 // regions we just allocated to (i.e., the GC alloc 3990 // regions). However, during the last GC we called 3991 // set_saved_mark() on all the GC alloc regions, so card 3992 // scanning might skip the [saved_mark_word()...top()] area of 3993 // those regions (i.e., the area we allocated objects into 3994 // during the last GC). But it shouldn't. Given that 3995 // saved_mark_word() is conditional on whether the GC time stamp 3996 // on the region is current or not, by incrementing the GC time 3997 // stamp here we invalidate all the GC time stamps on all the 3998 // regions and saved_mark_word() will simply return top() for 3999 // all the regions. This is a nicer way of ensuring this rather 4000 // than iterating over the regions and fixing them. In fact, the 4001 // GC time stamp increment here also ensures that 4002 // saved_mark_word() will return top() between pauses, i.e., 4003 // during concurrent refinement. So we don't need the 4004 // is_gc_active() check to decided which top to use when 4005 // scanning cards (see CR 7039627). 4006 increment_gc_time_stamp(); 4007 4008 verify_after_gc(); 4009 check_bitmaps("GC End"); 4010 4011 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 4012 ref_processor_stw()->verify_no_references_recorded(); 4013 4014 // CM reference discovery will be re-enabled if necessary. 4015 } 4016 4017 // We should do this after we potentially expand the heap so 4018 // that all the COMMIT events are generated before the end GC 4019 // event, and after we retire the GC alloc regions so that all 4020 // RETIRE events are generated before the end GC event. 4021 _hr_printer.end_gc(false /* full */, (size_t) total_collections()); 4022 4023 #ifdef TRACESPINNING 4024 ParallelTaskTerminator::print_termination_counts(); 4025 #endif 4026 4027 gc_epilogue(false); 4028 } 4029 4030 // Print the remainder of the GC log output. 4031 log_gc_footer(os::elapsedTime() - pause_start_sec); 4032 4033 // It is not yet to safe to tell the concurrent mark to 4034 // start as we have some optional output below. We don't want the 4035 // output from the concurrent mark thread interfering with this 4036 // logging output either. 4037 4038 _hrm.verify_optional(); 4039 verify_region_sets_optional(); 4040 4041 TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats()); 4042 TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); 4043 4044 print_heap_after_gc(); 4045 trace_heap_after_gc(_gc_tracer_stw); 4046 4047 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 4048 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 4049 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 4050 // before any GC notifications are raised. 4051 g1mm()->update_sizes(); 4052 4053 _gc_tracer_stw->report_evacuation_info(&evacuation_info); 4054 _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold()); 4055 _gc_timer_stw->register_gc_end(); 4056 _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions()); 4057 } 4058 // It should now be safe to tell the concurrent mark thread to start 4059 // without its logging output interfering with the logging output 4060 // that came from the pause. 4061 4062 if (should_start_conc_mark) { 4063 // CAUTION: after the doConcurrentMark() call below, 4064 // the concurrent marking thread(s) could be running 4065 // concurrently with us. Make sure that anything after 4066 // this point does not assume that we are the only GC thread 4067 // running. Note: of course, the actual marking work will 4068 // not start until the safepoint itself is released in 4069 // SuspendibleThreadSet::desynchronize(). 4070 doConcurrentMark(); 4071 } 4072 4073 return true; 4074 } 4075 4076 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) { 4077 _drain_in_progress = false; 4078 set_evac_failure_closure(cl); 4079 _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true); 4080 } 4081 4082 void G1CollectedHeap::finalize_for_evac_failure() { 4083 assert(_evac_failure_scan_stack != NULL && 4084 _evac_failure_scan_stack->length() == 0, 4085 "Postcondition"); 4086 assert(!_drain_in_progress, "Postcondition"); 4087 delete _evac_failure_scan_stack; 4088 _evac_failure_scan_stack = NULL; 4089 } 4090 4091 void G1CollectedHeap::remove_self_forwarding_pointers() { 4092 double remove_self_forwards_start = os::elapsedTime(); 4093 4094 set_par_threads(); 4095 G1ParRemoveSelfForwardPtrsTask rsfp_task(this); 4096 workers()->run_task(&rsfp_task); 4097 set_par_threads(0); 4098 4099 // Now restore saved marks, if any. 4100 assert(_objs_with_preserved_marks.size() == 4101 _preserved_marks_of_objs.size(), "Both or none."); 4102 while (!_objs_with_preserved_marks.is_empty()) { 4103 oop obj = _objs_with_preserved_marks.pop(); 4104 markOop m = _preserved_marks_of_objs.pop(); 4105 obj->set_mark(m); 4106 } 4107 _objs_with_preserved_marks.clear(true); 4108 _preserved_marks_of_objs.clear(true); 4109 4110 g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0); 4111 } 4112 4113 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) { 4114 _evac_failure_scan_stack->push(obj); 4115 } 4116 4117 void G1CollectedHeap::drain_evac_failure_scan_stack() { 4118 assert(_evac_failure_scan_stack != NULL, "precondition"); 4119 4120 while (_evac_failure_scan_stack->length() > 0) { 4121 oop obj = _evac_failure_scan_stack->pop(); 4122 _evac_failure_closure->set_region(heap_region_containing(obj)); 4123 obj->oop_iterate_backwards(_evac_failure_closure); 4124 } 4125 } 4126 4127 oop 4128 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, 4129 oop old) { 4130 assert(obj_in_cs(old), 4131 err_msg("obj: "PTR_FORMAT" should still be in the CSet", 4132 (HeapWord*) old)); 4133 markOop m = old->mark(); 4134 oop forward_ptr = old->forward_to_atomic(old); 4135 if (forward_ptr == NULL) { 4136 // Forward-to-self succeeded. 4137 assert(_par_scan_state != NULL, "par scan state"); 4138 OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure(); 4139 uint queue_num = _par_scan_state->queue_num(); 4140 4141 _evacuation_failed = true; 4142 _evacuation_failed_info_array[queue_num].register_copy_failure(old->size()); 4143 if (_evac_failure_closure != cl) { 4144 MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag); 4145 assert(!_drain_in_progress, 4146 "Should only be true while someone holds the lock."); 4147 // Set the global evac-failure closure to the current thread's. 4148 assert(_evac_failure_closure == NULL, "Or locking has failed."); 4149 set_evac_failure_closure(cl); 4150 // Now do the common part. 4151 handle_evacuation_failure_common(old, m); 4152 // Reset to NULL. 4153 set_evac_failure_closure(NULL); 4154 } else { 4155 // The lock is already held, and this is recursive. 4156 assert(_drain_in_progress, "This should only be the recursive case."); 4157 handle_evacuation_failure_common(old, m); 4158 } 4159 return old; 4160 } else { 4161 // Forward-to-self failed. Either someone else managed to allocate 4162 // space for this object (old != forward_ptr) or they beat us in 4163 // self-forwarding it (old == forward_ptr). 4164 assert(old == forward_ptr || !obj_in_cs(forward_ptr), 4165 err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" " 4166 "should not be in the CSet", 4167 (HeapWord*) old, (HeapWord*) forward_ptr)); 4168 return forward_ptr; 4169 } 4170 } 4171 4172 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) { 4173 preserve_mark_if_necessary(old, m); 4174 4175 HeapRegion* r = heap_region_containing(old); 4176 if (!r->evacuation_failed()) { 4177 r->set_evacuation_failed(true); 4178 _hr_printer.evac_failure(r); 4179 } 4180 4181 push_on_evac_failure_scan_stack(old); 4182 4183 if (!_drain_in_progress) { 4184 // prevent recursion in copy_to_survivor_space() 4185 _drain_in_progress = true; 4186 drain_evac_failure_scan_stack(); 4187 _drain_in_progress = false; 4188 } 4189 } 4190 4191 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) { 4192 assert(evacuation_failed(), "Oversaving!"); 4193 // We want to call the "for_promotion_failure" version only in the 4194 // case of a promotion failure. 4195 if (m->must_be_preserved_for_promotion_failure(obj)) { 4196 _objs_with_preserved_marks.push(obj); 4197 _preserved_marks_of_objs.push(m); 4198 } 4199 } 4200 4201 void G1ParCopyHelper::mark_object(oop obj) { 4202 assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet"); 4203 4204 // We know that the object is not moving so it's safe to read its size. 4205 _cm->grayRoot(obj, (size_t) obj->size(), _worker_id); 4206 } 4207 4208 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) { 4209 assert(from_obj->is_forwarded(), "from obj should be forwarded"); 4210 assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee"); 4211 assert(from_obj != to_obj, "should not be self-forwarded"); 4212 4213 assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet"); 4214 assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet"); 4215 4216 // The object might be in the process of being copied by another 4217 // worker so we cannot trust that its to-space image is 4218 // well-formed. So we have to read its size from its from-space 4219 // image which we know should not be changing. 4220 _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id); 4221 } 4222 4223 template <class T> 4224 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) { 4225 if (_g1->heap_region_containing_raw(new_obj)->is_young()) { 4226 _scanned_klass->record_modified_oops(); 4227 } 4228 } 4229 4230 template <G1Barrier barrier, G1Mark do_mark_object> 4231 template <class T> 4232 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) { 4233 T heap_oop = oopDesc::load_heap_oop(p); 4234 4235 if (oopDesc::is_null(heap_oop)) { 4236 return; 4237 } 4238 4239 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 4240 4241 assert(_worker_id == _par_scan_state->queue_num(), "sanity"); 4242 4243 const InCSetState state = _g1->in_cset_state(obj); 4244 if (state.is_in_cset()) { 4245 oop forwardee; 4246 markOop m = obj->mark(); 4247 if (m->is_marked()) { 4248 forwardee = (oop) m->decode_pointer(); 4249 } else { 4250 forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m); 4251 } 4252 assert(forwardee != NULL, "forwardee should not be NULL"); 4253 oopDesc::encode_store_heap_oop(p, forwardee); 4254 if (do_mark_object != G1MarkNone && forwardee != obj) { 4255 // If the object is self-forwarded we don't need to explicitly 4256 // mark it, the evacuation failure protocol will do so. 4257 mark_forwarded_object(obj, forwardee); 4258 } 4259 4260 if (barrier == G1BarrierKlass) { 4261 do_klass_barrier(p, forwardee); 4262 } 4263 } else { 4264 if (state.is_humongous()) { 4265 _g1->set_humongous_is_live(obj); 4266 } 4267 // The object is not in collection set. If we're a root scanning 4268 // closure during an initial mark pause then attempt to mark the object. 4269 if (do_mark_object == G1MarkFromRoot) { 4270 mark_object(obj); 4271 } 4272 } 4273 4274 if (barrier == G1BarrierEvac) { 4275 _par_scan_state->update_rs(_from, p, _worker_id); 4276 } 4277 } 4278 4279 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p); 4280 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p); 4281 4282 class G1ParEvacuateFollowersClosure : public VoidClosure { 4283 protected: 4284 G1CollectedHeap* _g1h; 4285 G1ParScanThreadState* _par_scan_state; 4286 RefToScanQueueSet* _queues; 4287 ParallelTaskTerminator* _terminator; 4288 4289 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 4290 RefToScanQueueSet* queues() { return _queues; } 4291 ParallelTaskTerminator* terminator() { return _terminator; } 4292 4293 public: 4294 G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h, 4295 G1ParScanThreadState* par_scan_state, 4296 RefToScanQueueSet* queues, 4297 ParallelTaskTerminator* terminator) 4298 : _g1h(g1h), _par_scan_state(par_scan_state), 4299 _queues(queues), _terminator(terminator) {} 4300 4301 void do_void(); 4302 4303 private: 4304 inline bool offer_termination(); 4305 }; 4306 4307 bool G1ParEvacuateFollowersClosure::offer_termination() { 4308 G1ParScanThreadState* const pss = par_scan_state(); 4309 pss->start_term_time(); 4310 const bool res = terminator()->offer_termination(); 4311 pss->end_term_time(); 4312 return res; 4313 } 4314 4315 void G1ParEvacuateFollowersClosure::do_void() { 4316 G1ParScanThreadState* const pss = par_scan_state(); 4317 pss->trim_queue(); 4318 do { 4319 pss->steal_and_trim_queue(queues()); 4320 } while (!offer_termination()); 4321 } 4322 4323 class G1KlassScanClosure : public KlassClosure { 4324 G1ParCopyHelper* _closure; 4325 bool _process_only_dirty; 4326 int _count; 4327 public: 4328 G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty) 4329 : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {} 4330 void do_klass(Klass* klass) { 4331 // If the klass has not been dirtied we know that there's 4332 // no references into the young gen and we can skip it. 4333 if (!_process_only_dirty || klass->has_modified_oops()) { 4334 // Clean the klass since we're going to scavenge all the metadata. 4335 klass->clear_modified_oops(); 4336 4337 // Tell the closure that this klass is the Klass to scavenge 4338 // and is the one to dirty if oops are left pointing into the young gen. 4339 _closure->set_scanned_klass(klass); 4340 4341 klass->oops_do(_closure); 4342 4343 _closure->set_scanned_klass(NULL); 4344 } 4345 _count++; 4346 } 4347 }; 4348 4349 class G1ParTask : public AbstractGangTask { 4350 protected: 4351 G1CollectedHeap* _g1h; 4352 RefToScanQueueSet *_queues; 4353 G1RootProcessor* _root_processor; 4354 ParallelTaskTerminator _terminator; 4355 uint _n_workers; 4356 4357 Mutex _stats_lock; 4358 Mutex* stats_lock() { return &_stats_lock; } 4359 4360 public: 4361 G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor) 4362 : AbstractGangTask("G1 collection"), 4363 _g1h(g1h), 4364 _queues(task_queues), 4365 _root_processor(root_processor), 4366 _terminator(0, _queues), 4367 _stats_lock(Mutex::leaf, "parallel G1 stats lock", true) 4368 {} 4369 4370 RefToScanQueueSet* queues() { return _queues; } 4371 4372 RefToScanQueue *work_queue(int i) { 4373 return queues()->queue(i); 4374 } 4375 4376 ParallelTaskTerminator* terminator() { return &_terminator; } 4377 4378 virtual void set_for_termination(int active_workers) { 4379 _root_processor->set_num_workers(active_workers); 4380 terminator()->reset_for_reuse(active_workers); 4381 _n_workers = active_workers; 4382 } 4383 4384 // Helps out with CLD processing. 4385 // 4386 // During InitialMark we need to: 4387 // 1) Scavenge all CLDs for the young GC. 4388 // 2) Mark all objects directly reachable from strong CLDs. 4389 template <G1Mark do_mark_object> 4390 class G1CLDClosure : public CLDClosure { 4391 G1ParCopyClosure<G1BarrierNone, do_mark_object>* _oop_closure; 4392 G1ParCopyClosure<G1BarrierKlass, do_mark_object> _oop_in_klass_closure; 4393 G1KlassScanClosure _klass_in_cld_closure; 4394 bool _claim; 4395 4396 public: 4397 G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure, 4398 bool only_young, bool claim) 4399 : _oop_closure(oop_closure), 4400 _oop_in_klass_closure(oop_closure->g1(), 4401 oop_closure->pss(), 4402 oop_closure->rp()), 4403 _klass_in_cld_closure(&_oop_in_klass_closure, only_young), 4404 _claim(claim) { 4405 4406 } 4407 4408 void do_cld(ClassLoaderData* cld) { 4409 cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim); 4410 } 4411 }; 4412 4413 void work(uint worker_id) { 4414 if (worker_id >= _n_workers) return; // no work needed this round 4415 4416 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime()); 4417 4418 { 4419 ResourceMark rm; 4420 HandleMark hm; 4421 4422 ReferenceProcessor* rp = _g1h->ref_processor_stw(); 4423 4424 G1ParScanThreadState pss(_g1h, worker_id, rp); 4425 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp); 4426 4427 pss.set_evac_failure_closure(&evac_failure_cl); 4428 4429 bool only_young = _g1h->g1_policy()->gcs_are_young(); 4430 4431 // Non-IM young GC. 4432 G1ParCopyClosure<G1BarrierNone, G1MarkNone> scan_only_root_cl(_g1h, &pss, rp); 4433 G1CLDClosure<G1MarkNone> scan_only_cld_cl(&scan_only_root_cl, 4434 only_young, // Only process dirty klasses. 4435 false); // No need to claim CLDs. 4436 // IM young GC. 4437 // Strong roots closures. 4438 G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot> scan_mark_root_cl(_g1h, &pss, rp); 4439 G1CLDClosure<G1MarkFromRoot> scan_mark_cld_cl(&scan_mark_root_cl, 4440 false, // Process all klasses. 4441 true); // Need to claim CLDs. 4442 // Weak roots closures. 4443 G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp); 4444 G1CLDClosure<G1MarkPromotedFromRoot> scan_mark_weak_cld_cl(&scan_mark_weak_root_cl, 4445 false, // Process all klasses. 4446 true); // Need to claim CLDs. 4447 4448 OopClosure* strong_root_cl; 4449 OopClosure* weak_root_cl; 4450 CLDClosure* strong_cld_cl; 4451 CLDClosure* weak_cld_cl; 4452 4453 if (_g1h->g1_policy()->during_initial_mark_pause()) { 4454 // We also need to mark copied objects. 4455 strong_root_cl = &scan_mark_root_cl; 4456 strong_cld_cl = &scan_mark_cld_cl; 4457 if (ClassUnloadingWithConcurrentMark) { 4458 weak_root_cl = &scan_mark_weak_root_cl; 4459 weak_cld_cl = &scan_mark_weak_cld_cl; 4460 } else { 4461 weak_root_cl = &scan_mark_root_cl; 4462 weak_cld_cl = &scan_mark_cld_cl; 4463 } 4464 } else { 4465 strong_root_cl = &scan_only_root_cl; 4466 weak_root_cl = &scan_only_root_cl; 4467 strong_cld_cl = &scan_only_cld_cl; 4468 weak_cld_cl = &scan_only_cld_cl; 4469 } 4470 4471 pss.start_strong_roots(); 4472 4473 _root_processor->evacuate_roots(strong_root_cl, 4474 weak_root_cl, 4475 strong_cld_cl, 4476 weak_cld_cl, 4477 worker_id); 4478 4479 G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss); 4480 _root_processor->scan_remembered_sets(&push_heap_rs_cl, 4481 weak_root_cl, 4482 worker_id); 4483 pss.end_strong_roots(); 4484 4485 { 4486 double start = os::elapsedTime(); 4487 G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator); 4488 evac.do_void(); 4489 double elapsed_sec = os::elapsedTime() - start; 4490 double term_sec = pss.term_time(); 4491 _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec); 4492 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec); 4493 _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts()); 4494 } 4495 _g1h->g1_policy()->record_thread_age_table(pss.age_table()); 4496 _g1h->update_surviving_young_words(pss.surviving_young_words()+1); 4497 4498 if (PrintTerminationStats) { 4499 MutexLocker x(stats_lock()); 4500 pss.print_termination_stats(worker_id); 4501 } 4502 4503 assert(pss.queue_is_empty(), "should be empty"); 4504 4505 // Close the inner scope so that the ResourceMark and HandleMark 4506 // destructors are executed here and are included as part of the 4507 // "GC Worker Time". 4508 } 4509 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime()); 4510 } 4511 }; 4512 4513 class G1StringSymbolTableUnlinkTask : public AbstractGangTask { 4514 private: 4515 BoolObjectClosure* _is_alive; 4516 int _initial_string_table_size; 4517 int _initial_symbol_table_size; 4518 4519 bool _process_strings; 4520 int _strings_processed; 4521 int _strings_removed; 4522 4523 bool _process_symbols; 4524 int _symbols_processed; 4525 int _symbols_removed; 4526 4527 public: 4528 G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) : 4529 AbstractGangTask("String/Symbol Unlinking"), 4530 _is_alive(is_alive), 4531 _process_strings(process_strings), _strings_processed(0), _strings_removed(0), 4532 _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) { 4533 4534 _initial_string_table_size = StringTable::the_table()->table_size(); 4535 _initial_symbol_table_size = SymbolTable::the_table()->table_size(); 4536 if (process_strings) { 4537 StringTable::clear_parallel_claimed_index(); 4538 } 4539 if (process_symbols) { 4540 SymbolTable::clear_parallel_claimed_index(); 4541 } 4542 } 4543 4544 ~G1StringSymbolTableUnlinkTask() { 4545 guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size, 4546 err_msg("claim value %d after unlink less than initial string table size %d", 4547 StringTable::parallel_claimed_index(), _initial_string_table_size)); 4548 guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size, 4549 err_msg("claim value %d after unlink less than initial symbol table size %d", 4550 SymbolTable::parallel_claimed_index(), _initial_symbol_table_size)); 4551 4552 if (G1TraceStringSymbolTableScrubbing) { 4553 gclog_or_tty->print_cr("Cleaned string and symbol table, " 4554 "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, " 4555 "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed", 4556 strings_processed(), strings_removed(), 4557 symbols_processed(), symbols_removed()); 4558 } 4559 } 4560 4561 void work(uint worker_id) { 4562 int strings_processed = 0; 4563 int strings_removed = 0; 4564 int symbols_processed = 0; 4565 int symbols_removed = 0; 4566 if (_process_strings) { 4567 StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed); 4568 Atomic::add(strings_processed, &_strings_processed); 4569 Atomic::add(strings_removed, &_strings_removed); 4570 } 4571 if (_process_symbols) { 4572 SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed); 4573 Atomic::add(symbols_processed, &_symbols_processed); 4574 Atomic::add(symbols_removed, &_symbols_removed); 4575 } 4576 } 4577 4578 size_t strings_processed() const { return (size_t)_strings_processed; } 4579 size_t strings_removed() const { return (size_t)_strings_removed; } 4580 4581 size_t symbols_processed() const { return (size_t)_symbols_processed; } 4582 size_t symbols_removed() const { return (size_t)_symbols_removed; } 4583 }; 4584 4585 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC { 4586 private: 4587 static Monitor* _lock; 4588 4589 BoolObjectClosure* const _is_alive; 4590 const bool _unloading_occurred; 4591 const uint _num_workers; 4592 4593 // Variables used to claim nmethods. 4594 nmethod* _first_nmethod; 4595 volatile nmethod* _claimed_nmethod; 4596 4597 // The list of nmethods that need to be processed by the second pass. 4598 volatile nmethod* _postponed_list; 4599 volatile uint _num_entered_barrier; 4600 4601 public: 4602 G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) : 4603 _is_alive(is_alive), 4604 _unloading_occurred(unloading_occurred), 4605 _num_workers(num_workers), 4606 _first_nmethod(NULL), 4607 _claimed_nmethod(NULL), 4608 _postponed_list(NULL), 4609 _num_entered_barrier(0) 4610 { 4611 nmethod::increase_unloading_clock(); 4612 // Get first alive nmethod 4613 NMethodIterator iter = NMethodIterator(); 4614 if(iter.next_alive()) { 4615 _first_nmethod = iter.method(); 4616 } 4617 _claimed_nmethod = (volatile nmethod*)_first_nmethod; 4618 } 4619 4620 ~G1CodeCacheUnloadingTask() { 4621 CodeCache::verify_clean_inline_caches(); 4622 4623 CodeCache::set_needs_cache_clean(false); 4624 guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be"); 4625 4626 CodeCache::verify_icholder_relocations(); 4627 } 4628 4629 private: 4630 void add_to_postponed_list(nmethod* nm) { 4631 nmethod* old; 4632 do { 4633 old = (nmethod*)_postponed_list; 4634 nm->set_unloading_next(old); 4635 } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old); 4636 } 4637 4638 void clean_nmethod(nmethod* nm) { 4639 bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred); 4640 4641 if (postponed) { 4642 // This nmethod referred to an nmethod that has not been cleaned/unloaded yet. 4643 add_to_postponed_list(nm); 4644 } 4645 4646 // Mark that this thread has been cleaned/unloaded. 4647 // After this call, it will be safe to ask if this nmethod was unloaded or not. 4648 nm->set_unloading_clock(nmethod::global_unloading_clock()); 4649 } 4650 4651 void clean_nmethod_postponed(nmethod* nm) { 4652 nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred); 4653 } 4654 4655 static const int MaxClaimNmethods = 16; 4656 4657 void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) { 4658 nmethod* first; 4659 NMethodIterator last; 4660 4661 do { 4662 *num_claimed_nmethods = 0; 4663 4664 first = (nmethod*)_claimed_nmethod; 4665 last = NMethodIterator(first); 4666 4667 if (first != NULL) { 4668 4669 for (int i = 0; i < MaxClaimNmethods; i++) { 4670 if (!last.next_alive()) { 4671 break; 4672 } 4673 claimed_nmethods[i] = last.method(); 4674 (*num_claimed_nmethods)++; 4675 } 4676 } 4677 4678 } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first); 4679 } 4680 4681 nmethod* claim_postponed_nmethod() { 4682 nmethod* claim; 4683 nmethod* next; 4684 4685 do { 4686 claim = (nmethod*)_postponed_list; 4687 if (claim == NULL) { 4688 return NULL; 4689 } 4690 4691 next = claim->unloading_next(); 4692 4693 } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim); 4694 4695 return claim; 4696 } 4697 4698 public: 4699 // Mark that we're done with the first pass of nmethod cleaning. 4700 void barrier_mark(uint worker_id) { 4701 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); 4702 _num_entered_barrier++; 4703 if (_num_entered_barrier == _num_workers) { 4704 ml.notify_all(); 4705 } 4706 } 4707 4708 // See if we have to wait for the other workers to 4709 // finish their first-pass nmethod cleaning work. 4710 void barrier_wait(uint worker_id) { 4711 if (_num_entered_barrier < _num_workers) { 4712 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); 4713 while (_num_entered_barrier < _num_workers) { 4714 ml.wait(Mutex::_no_safepoint_check_flag, 0, false); 4715 } 4716 } 4717 } 4718 4719 // Cleaning and unloading of nmethods. Some work has to be postponed 4720 // to the second pass, when we know which nmethods survive. 4721 void work_first_pass(uint worker_id) { 4722 // The first nmethods is claimed by the first worker. 4723 if (worker_id == 0 && _first_nmethod != NULL) { 4724 clean_nmethod(_first_nmethod); 4725 _first_nmethod = NULL; 4726 } 4727 4728 int num_claimed_nmethods; 4729 nmethod* claimed_nmethods[MaxClaimNmethods]; 4730 4731 while (true) { 4732 claim_nmethods(claimed_nmethods, &num_claimed_nmethods); 4733 4734 if (num_claimed_nmethods == 0) { 4735 break; 4736 } 4737 4738 for (int i = 0; i < num_claimed_nmethods; i++) { 4739 clean_nmethod(claimed_nmethods[i]); 4740 } 4741 } 4742 4743 // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark. 4744 // Need to retire the buffers now that this thread has stopped cleaning nmethods. 4745 MetadataOnStackMark::retire_buffer_for_thread(Thread::current()); 4746 } 4747 4748 void work_second_pass(uint worker_id) { 4749 nmethod* nm; 4750 // Take care of postponed nmethods. 4751 while ((nm = claim_postponed_nmethod()) != NULL) { 4752 clean_nmethod_postponed(nm); 4753 } 4754 } 4755 }; 4756 4757 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never); 4758 4759 class G1KlassCleaningTask : public StackObj { 4760 BoolObjectClosure* _is_alive; 4761 volatile jint _clean_klass_tree_claimed; 4762 ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator; 4763 4764 public: 4765 G1KlassCleaningTask(BoolObjectClosure* is_alive) : 4766 _is_alive(is_alive), 4767 _clean_klass_tree_claimed(0), 4768 _klass_iterator() { 4769 } 4770 4771 private: 4772 bool claim_clean_klass_tree_task() { 4773 if (_clean_klass_tree_claimed) { 4774 return false; 4775 } 4776 4777 return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0; 4778 } 4779 4780 InstanceKlass* claim_next_klass() { 4781 Klass* klass; 4782 do { 4783 klass =_klass_iterator.next_klass(); 4784 } while (klass != NULL && !klass->oop_is_instance()); 4785 4786 return (InstanceKlass*)klass; 4787 } 4788 4789 public: 4790 4791 void clean_klass(InstanceKlass* ik) { 4792 ik->clean_implementors_list(_is_alive); 4793 ik->clean_method_data(_is_alive); 4794 4795 // G1 specific cleanup work that has 4796 // been moved here to be done in parallel. 4797 ik->clean_dependent_nmethods(); 4798 if (JvmtiExport::has_redefined_a_class()) { 4799 InstanceKlass::purge_previous_versions(ik); 4800 } 4801 } 4802 4803 void work() { 4804 ResourceMark rm; 4805 4806 // One worker will clean the subklass/sibling klass tree. 4807 if (claim_clean_klass_tree_task()) { 4808 Klass::clean_subklass_tree(_is_alive); 4809 } 4810 4811 // All workers will help cleaning the classes, 4812 InstanceKlass* klass; 4813 while ((klass = claim_next_klass()) != NULL) { 4814 clean_klass(klass); 4815 } 4816 } 4817 }; 4818 4819 // To minimize the remark pause times, the tasks below are done in parallel. 4820 class G1ParallelCleaningTask : public AbstractGangTask { 4821 private: 4822 G1StringSymbolTableUnlinkTask _string_symbol_task; 4823 G1CodeCacheUnloadingTask _code_cache_task; 4824 G1KlassCleaningTask _klass_cleaning_task; 4825 4826 public: 4827 // The constructor is run in the VMThread. 4828 G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) : 4829 AbstractGangTask("Parallel Cleaning"), 4830 _string_symbol_task(is_alive, process_strings, process_symbols), 4831 _code_cache_task(num_workers, is_alive, unloading_occurred), 4832 _klass_cleaning_task(is_alive) { 4833 } 4834 4835 void pre_work_verification() { 4836 assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty"); 4837 } 4838 4839 void post_work_verification() { 4840 assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty"); 4841 } 4842 4843 // The parallel work done by all worker threads. 4844 void work(uint worker_id) { 4845 pre_work_verification(); 4846 4847 // Do first pass of code cache cleaning. 4848 _code_cache_task.work_first_pass(worker_id); 4849 4850 // Let the threads mark that the first pass is done. 4851 _code_cache_task.barrier_mark(worker_id); 4852 4853 // Clean the Strings and Symbols. 4854 _string_symbol_task.work(worker_id); 4855 4856 // Wait for all workers to finish the first code cache cleaning pass. 4857 _code_cache_task.barrier_wait(worker_id); 4858 4859 // Do the second code cache cleaning work, which realize on 4860 // the liveness information gathered during the first pass. 4861 _code_cache_task.work_second_pass(worker_id); 4862 4863 // Clean all klasses that were not unloaded. 4864 _klass_cleaning_task.work(); 4865 4866 post_work_verification(); 4867 } 4868 }; 4869 4870 4871 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive, 4872 bool process_strings, 4873 bool process_symbols, 4874 bool class_unloading_occurred) { 4875 uint n_workers = workers()->active_workers(); 4876 4877 G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, 4878 n_workers, class_unloading_occurred); 4879 set_par_threads(n_workers); 4880 workers()->run_task(&g1_unlink_task); 4881 set_par_threads(0); 4882 } 4883 4884 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive, 4885 bool process_strings, bool process_symbols) { 4886 { 4887 uint n_workers = _g1h->workers()->active_workers(); 4888 G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols); 4889 set_par_threads(n_workers); 4890 workers()->run_task(&g1_unlink_task); 4891 set_par_threads(0); 4892 } 4893 4894 if (G1StringDedup::is_enabled()) { 4895 G1StringDedup::unlink(is_alive); 4896 } 4897 } 4898 4899 class G1RedirtyLoggedCardsTask : public AbstractGangTask { 4900 private: 4901 DirtyCardQueueSet* _queue; 4902 public: 4903 G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { } 4904 4905 virtual void work(uint worker_id) { 4906 G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times(); 4907 G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id); 4908 4909 RedirtyLoggedCardTableEntryClosure cl; 4910 _queue->par_apply_closure_to_all_completed_buffers(&cl); 4911 4912 phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed()); 4913 } 4914 }; 4915 4916 void G1CollectedHeap::redirty_logged_cards() { 4917 double redirty_logged_cards_start = os::elapsedTime(); 4918 4919 uint n_workers = _g1h->workers()->active_workers(); 4920 4921 G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set()); 4922 dirty_card_queue_set().reset_for_par_iteration(); 4923 set_par_threads(n_workers); 4924 workers()->run_task(&redirty_task); 4925 set_par_threads(0); 4926 4927 DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set(); 4928 dcq.merge_bufferlists(&dirty_card_queue_set()); 4929 assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed"); 4930 4931 g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0); 4932 } 4933 4934 // Weak Reference Processing support 4935 4936 // An always "is_alive" closure that is used to preserve referents. 4937 // If the object is non-null then it's alive. Used in the preservation 4938 // of referent objects that are pointed to by reference objects 4939 // discovered by the CM ref processor. 4940 class G1AlwaysAliveClosure: public BoolObjectClosure { 4941 G1CollectedHeap* _g1; 4942 public: 4943 G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 4944 bool do_object_b(oop p) { 4945 if (p != NULL) { 4946 return true; 4947 } 4948 return false; 4949 } 4950 }; 4951 4952 bool G1STWIsAliveClosure::do_object_b(oop p) { 4953 // An object is reachable if it is outside the collection set, 4954 // or is inside and copied. 4955 return !_g1->obj_in_cs(p) || p->is_forwarded(); 4956 } 4957 4958 // Non Copying Keep Alive closure 4959 class G1KeepAliveClosure: public OopClosure { 4960 G1CollectedHeap* _g1; 4961 public: 4962 G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 4963 void do_oop(narrowOop* p) { guarantee(false, "Not needed"); } 4964 void do_oop(oop* p) { 4965 oop obj = *p; 4966 assert(obj != NULL, "the caller should have filtered out NULL values"); 4967 4968 const InCSetState cset_state = _g1->in_cset_state(obj); 4969 if (!cset_state.is_in_cset_or_humongous()) { 4970 return; 4971 } 4972 if (cset_state.is_in_cset()) { 4973 assert( obj->is_forwarded(), "invariant" ); 4974 *p = obj->forwardee(); 4975 } else { 4976 assert(!obj->is_forwarded(), "invariant" ); 4977 assert(cset_state.is_humongous(), 4978 err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value())); 4979 _g1->set_humongous_is_live(obj); 4980 } 4981 } 4982 }; 4983 4984 // Copying Keep Alive closure - can be called from both 4985 // serial and parallel code as long as different worker 4986 // threads utilize different G1ParScanThreadState instances 4987 // and different queues. 4988 4989 class G1CopyingKeepAliveClosure: public OopClosure { 4990 G1CollectedHeap* _g1h; 4991 OopClosure* _copy_non_heap_obj_cl; 4992 G1ParScanThreadState* _par_scan_state; 4993 4994 public: 4995 G1CopyingKeepAliveClosure(G1CollectedHeap* g1h, 4996 OopClosure* non_heap_obj_cl, 4997 G1ParScanThreadState* pss): 4998 _g1h(g1h), 4999 _copy_non_heap_obj_cl(non_heap_obj_cl), 5000 _par_scan_state(pss) 5001 {} 5002 5003 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 5004 virtual void do_oop( oop* p) { do_oop_work(p); } 5005 5006 template <class T> void do_oop_work(T* p) { 5007 oop obj = oopDesc::load_decode_heap_oop(p); 5008 5009 if (_g1h->is_in_cset_or_humongous(obj)) { 5010 // If the referent object has been forwarded (either copied 5011 // to a new location or to itself in the event of an 5012 // evacuation failure) then we need to update the reference 5013 // field and, if both reference and referent are in the G1 5014 // heap, update the RSet for the referent. 5015 // 5016 // If the referent has not been forwarded then we have to keep 5017 // it alive by policy. Therefore we have copy the referent. 5018 // 5019 // If the reference field is in the G1 heap then we can push 5020 // on the PSS queue. When the queue is drained (after each 5021 // phase of reference processing) the object and it's followers 5022 // will be copied, the reference field set to point to the 5023 // new location, and the RSet updated. Otherwise we need to 5024 // use the the non-heap or metadata closures directly to copy 5025 // the referent object and update the pointer, while avoiding 5026 // updating the RSet. 5027 5028 if (_g1h->is_in_g1_reserved(p)) { 5029 _par_scan_state->push_on_queue(p); 5030 } else { 5031 assert(!Metaspace::contains((const void*)p), 5032 err_msg("Unexpectedly found a pointer from metadata: " 5033 PTR_FORMAT, p)); 5034 _copy_non_heap_obj_cl->do_oop(p); 5035 } 5036 } 5037 } 5038 }; 5039 5040 // Serial drain queue closure. Called as the 'complete_gc' 5041 // closure for each discovered list in some of the 5042 // reference processing phases. 5043 5044 class G1STWDrainQueueClosure: public VoidClosure { 5045 protected: 5046 G1CollectedHeap* _g1h; 5047 G1ParScanThreadState* _par_scan_state; 5048 5049 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 5050 5051 public: 5052 G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : 5053 _g1h(g1h), 5054 _par_scan_state(pss) 5055 { } 5056 5057 void do_void() { 5058 G1ParScanThreadState* const pss = par_scan_state(); 5059 pss->trim_queue(); 5060 } 5061 }; 5062 5063 // Parallel Reference Processing closures 5064 5065 // Implementation of AbstractRefProcTaskExecutor for parallel reference 5066 // processing during G1 evacuation pauses. 5067 5068 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor { 5069 private: 5070 G1CollectedHeap* _g1h; 5071 RefToScanQueueSet* _queues; 5072 FlexibleWorkGang* _workers; 5073 int _active_workers; 5074 5075 public: 5076 G1STWRefProcTaskExecutor(G1CollectedHeap* g1h, 5077 FlexibleWorkGang* workers, 5078 RefToScanQueueSet *task_queues, 5079 int n_workers) : 5080 _g1h(g1h), 5081 _queues(task_queues), 5082 _workers(workers), 5083 _active_workers(n_workers) 5084 { 5085 assert(n_workers > 0, "shouldn't call this otherwise"); 5086 } 5087 5088 // Executes the given task using concurrent marking worker threads. 5089 virtual void execute(ProcessTask& task); 5090 virtual void execute(EnqueueTask& task); 5091 }; 5092 5093 // Gang task for possibly parallel reference processing 5094 5095 class G1STWRefProcTaskProxy: public AbstractGangTask { 5096 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 5097 ProcessTask& _proc_task; 5098 G1CollectedHeap* _g1h; 5099 RefToScanQueueSet *_task_queues; 5100 ParallelTaskTerminator* _terminator; 5101 5102 public: 5103 G1STWRefProcTaskProxy(ProcessTask& proc_task, 5104 G1CollectedHeap* g1h, 5105 RefToScanQueueSet *task_queues, 5106 ParallelTaskTerminator* terminator) : 5107 AbstractGangTask("Process reference objects in parallel"), 5108 _proc_task(proc_task), 5109 _g1h(g1h), 5110 _task_queues(task_queues), 5111 _terminator(terminator) 5112 {} 5113 5114 virtual void work(uint worker_id) { 5115 // The reference processing task executed by a single worker. 5116 ResourceMark rm; 5117 HandleMark hm; 5118 5119 G1STWIsAliveClosure is_alive(_g1h); 5120 5121 G1ParScanThreadState pss(_g1h, worker_id, NULL); 5122 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL); 5123 5124 pss.set_evac_failure_closure(&evac_failure_cl); 5125 5126 G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL); 5127 5128 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL); 5129 5130 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5131 5132 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5133 // We also need to mark copied objects. 5134 copy_non_heap_cl = ©_mark_non_heap_cl; 5135 } 5136 5137 // Keep alive closure. 5138 G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss); 5139 5140 // Complete GC closure 5141 G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator); 5142 5143 // Call the reference processing task's work routine. 5144 _proc_task.work(worker_id, is_alive, keep_alive, drain_queue); 5145 5146 // Note we cannot assert that the refs array is empty here as not all 5147 // of the processing tasks (specifically phase2 - pp2_work) execute 5148 // the complete_gc closure (which ordinarily would drain the queue) so 5149 // the queue may not be empty. 5150 } 5151 }; 5152 5153 // Driver routine for parallel reference processing. 5154 // Creates an instance of the ref processing gang 5155 // task and has the worker threads execute it. 5156 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) { 5157 assert(_workers != NULL, "Need parallel worker threads."); 5158 5159 ParallelTaskTerminator terminator(_active_workers, _queues); 5160 G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator); 5161 5162 _g1h->set_par_threads(_active_workers); 5163 _workers->run_task(&proc_task_proxy); 5164 _g1h->set_par_threads(0); 5165 } 5166 5167 // Gang task for parallel reference enqueueing. 5168 5169 class G1STWRefEnqueueTaskProxy: public AbstractGangTask { 5170 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 5171 EnqueueTask& _enq_task; 5172 5173 public: 5174 G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) : 5175 AbstractGangTask("Enqueue reference objects in parallel"), 5176 _enq_task(enq_task) 5177 { } 5178 5179 virtual void work(uint worker_id) { 5180 _enq_task.work(worker_id); 5181 } 5182 }; 5183 5184 // Driver routine for parallel reference enqueueing. 5185 // Creates an instance of the ref enqueueing gang 5186 // task and has the worker threads execute it. 5187 5188 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) { 5189 assert(_workers != NULL, "Need parallel worker threads."); 5190 5191 G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task); 5192 5193 _g1h->set_par_threads(_active_workers); 5194 _workers->run_task(&enq_task_proxy); 5195 _g1h->set_par_threads(0); 5196 } 5197 5198 // End of weak reference support closures 5199 5200 // Abstract task used to preserve (i.e. copy) any referent objects 5201 // that are in the collection set and are pointed to by reference 5202 // objects discovered by the CM ref processor. 5203 5204 class G1ParPreserveCMReferentsTask: public AbstractGangTask { 5205 protected: 5206 G1CollectedHeap* _g1h; 5207 RefToScanQueueSet *_queues; 5208 ParallelTaskTerminator _terminator; 5209 uint _n_workers; 5210 5211 public: 5212 G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) : 5213 AbstractGangTask("ParPreserveCMReferents"), 5214 _g1h(g1h), 5215 _queues(task_queues), 5216 _terminator(workers, _queues), 5217 _n_workers(workers) 5218 { } 5219 5220 void work(uint worker_id) { 5221 ResourceMark rm; 5222 HandleMark hm; 5223 5224 G1ParScanThreadState pss(_g1h, worker_id, NULL); 5225 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL); 5226 5227 pss.set_evac_failure_closure(&evac_failure_cl); 5228 5229 assert(pss.queue_is_empty(), "both queue and overflow should be empty"); 5230 5231 G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL); 5232 5233 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL); 5234 5235 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5236 5237 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5238 // We also need to mark copied objects. 5239 copy_non_heap_cl = ©_mark_non_heap_cl; 5240 } 5241 5242 // Is alive closure 5243 G1AlwaysAliveClosure always_alive(_g1h); 5244 5245 // Copying keep alive closure. Applied to referent objects that need 5246 // to be copied. 5247 G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss); 5248 5249 ReferenceProcessor* rp = _g1h->ref_processor_cm(); 5250 5251 uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q(); 5252 uint stride = MIN2(MAX2(_n_workers, 1U), limit); 5253 5254 // limit is set using max_num_q() - which was set using ParallelGCThreads. 5255 // So this must be true - but assert just in case someone decides to 5256 // change the worker ids. 5257 assert(0 <= worker_id && worker_id < limit, "sanity"); 5258 assert(!rp->discovery_is_atomic(), "check this code"); 5259 5260 // Select discovered lists [i, i+stride, i+2*stride,...,limit) 5261 for (uint idx = worker_id; idx < limit; idx += stride) { 5262 DiscoveredList& ref_list = rp->discovered_refs()[idx]; 5263 5264 DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive); 5265 while (iter.has_next()) { 5266 // Since discovery is not atomic for the CM ref processor, we 5267 // can see some null referent objects. 5268 iter.load_ptrs(DEBUG_ONLY(true)); 5269 oop ref = iter.obj(); 5270 5271 // This will filter nulls. 5272 if (iter.is_referent_alive()) { 5273 iter.make_referent_alive(); 5274 } 5275 iter.move_to_next(); 5276 } 5277 } 5278 5279 // Drain the queue - which may cause stealing 5280 G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator); 5281 drain_queue.do_void(); 5282 // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure 5283 assert(pss.queue_is_empty(), "should be"); 5284 } 5285 }; 5286 5287 // Weak Reference processing during an evacuation pause (part 1). 5288 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) { 5289 double ref_proc_start = os::elapsedTime(); 5290 5291 ReferenceProcessor* rp = _ref_processor_stw; 5292 assert(rp->discovery_enabled(), "should have been enabled"); 5293 5294 // Any reference objects, in the collection set, that were 'discovered' 5295 // by the CM ref processor should have already been copied (either by 5296 // applying the external root copy closure to the discovered lists, or 5297 // by following an RSet entry). 5298 // 5299 // But some of the referents, that are in the collection set, that these 5300 // reference objects point to may not have been copied: the STW ref 5301 // processor would have seen that the reference object had already 5302 // been 'discovered' and would have skipped discovering the reference, 5303 // but would not have treated the reference object as a regular oop. 5304 // As a result the copy closure would not have been applied to the 5305 // referent object. 5306 // 5307 // We need to explicitly copy these referent objects - the references 5308 // will be processed at the end of remarking. 5309 // 5310 // We also need to do this copying before we process the reference 5311 // objects discovered by the STW ref processor in case one of these 5312 // referents points to another object which is also referenced by an 5313 // object discovered by the STW ref processor. 5314 5315 assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers"); 5316 5317 set_par_threads(no_of_gc_workers); 5318 G1ParPreserveCMReferentsTask keep_cm_referents(this, 5319 no_of_gc_workers, 5320 _task_queues); 5321 5322 workers()->run_task(&keep_cm_referents); 5323 5324 set_par_threads(0); 5325 5326 // Closure to test whether a referent is alive. 5327 G1STWIsAliveClosure is_alive(this); 5328 5329 // Even when parallel reference processing is enabled, the processing 5330 // of JNI refs is serial and performed serially by the current thread 5331 // rather than by a worker. The following PSS will be used for processing 5332 // JNI refs. 5333 5334 // Use only a single queue for this PSS. 5335 G1ParScanThreadState pss(this, 0, NULL); 5336 5337 // We do not embed a reference processor in the copying/scanning 5338 // closures while we're actually processing the discovered 5339 // reference objects. 5340 G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL); 5341 5342 pss.set_evac_failure_closure(&evac_failure_cl); 5343 5344 assert(pss.queue_is_empty(), "pre-condition"); 5345 5346 G1ParScanExtRootClosure only_copy_non_heap_cl(this, &pss, NULL); 5347 5348 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL); 5349 5350 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5351 5352 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5353 // We also need to mark copied objects. 5354 copy_non_heap_cl = ©_mark_non_heap_cl; 5355 } 5356 5357 // Keep alive closure. 5358 G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss); 5359 5360 // Serial Complete GC closure 5361 G1STWDrainQueueClosure drain_queue(this, &pss); 5362 5363 // Setup the soft refs policy... 5364 rp->setup_policy(false); 5365 5366 ReferenceProcessorStats stats; 5367 if (!rp->processing_is_mt()) { 5368 // Serial reference processing... 5369 stats = rp->process_discovered_references(&is_alive, 5370 &keep_alive, 5371 &drain_queue, 5372 NULL, 5373 _gc_timer_stw, 5374 _gc_tracer_stw->gc_id()); 5375 } else { 5376 // Parallel reference processing 5377 assert(rp->num_q() == no_of_gc_workers, "sanity"); 5378 assert(no_of_gc_workers <= rp->max_num_q(), "sanity"); 5379 5380 G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers); 5381 stats = rp->process_discovered_references(&is_alive, 5382 &keep_alive, 5383 &drain_queue, 5384 &par_task_executor, 5385 _gc_timer_stw, 5386 _gc_tracer_stw->gc_id()); 5387 } 5388 5389 _gc_tracer_stw->report_gc_reference_stats(stats); 5390 5391 // We have completed copying any necessary live referent objects. 5392 assert(pss.queue_is_empty(), "both queue and overflow should be empty"); 5393 5394 double ref_proc_time = os::elapsedTime() - ref_proc_start; 5395 g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 5396 } 5397 5398 // Weak Reference processing during an evacuation pause (part 2). 5399 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) { 5400 double ref_enq_start = os::elapsedTime(); 5401 5402 ReferenceProcessor* rp = _ref_processor_stw; 5403 assert(!rp->discovery_enabled(), "should have been disabled as part of processing"); 5404 5405 // Now enqueue any remaining on the discovered lists on to 5406 // the pending list. 5407 if (!rp->processing_is_mt()) { 5408 // Serial reference processing... 5409 rp->enqueue_discovered_references(); 5410 } else { 5411 // Parallel reference enqueueing 5412 5413 assert(no_of_gc_workers == workers()->active_workers(), 5414 "Need to reset active workers"); 5415 assert(rp->num_q() == no_of_gc_workers, "sanity"); 5416 assert(no_of_gc_workers <= rp->max_num_q(), "sanity"); 5417 5418 G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers); 5419 rp->enqueue_discovered_references(&par_task_executor); 5420 } 5421 5422 rp->verify_no_references_recorded(); 5423 assert(!rp->discovery_enabled(), "should have been disabled"); 5424 5425 // FIXME 5426 // CM's reference processing also cleans up the string and symbol tables. 5427 // Should we do that here also? We could, but it is a serial operation 5428 // and could significantly increase the pause time. 5429 5430 double ref_enq_time = os::elapsedTime() - ref_enq_start; 5431 g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0); 5432 } 5433 5434 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) { 5435 _expand_heap_after_alloc_failure = true; 5436 _evacuation_failed = false; 5437 5438 // Should G1EvacuationFailureALot be in effect for this GC? 5439 NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();) 5440 5441 g1_rem_set()->prepare_for_oops_into_collection_set_do(); 5442 5443 // Disable the hot card cache. 5444 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 5445 hot_card_cache->reset_hot_cache_claimed_index(); 5446 hot_card_cache->set_use_cache(false); 5447 5448 uint n_workers; 5449 n_workers = 5450 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 5451 workers()->active_workers(), 5452 Threads::number_of_non_daemon_threads()); 5453 assert(UseDynamicNumberOfGCThreads || 5454 n_workers == workers()->total_workers(), 5455 "If not dynamic should be using all the workers"); 5456 workers()->set_active_workers(n_workers); 5457 set_par_threads(n_workers); 5458 5459 5460 init_for_evac_failure(NULL); 5461 5462 assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty"); 5463 double start_par_time_sec = os::elapsedTime(); 5464 double end_par_time_sec; 5465 5466 { 5467 const bool during_im = g1_policy()->during_initial_mark_pause(); 5468 const bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark; 5469 5470 G1RootProcessor root_processor(this, trace_metadata); 5471 G1ParTask g1_par_task(this, _task_queues, &root_processor); 5472 // InitialMark needs claim bits to keep track of the marked-through CLDs. 5473 if (during_im) { 5474 ClassLoaderDataGraph::clear_claimed_marks(); 5475 } 5476 5477 // The individual threads will set their evac-failure closures. 5478 if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr(); 5479 // These tasks use ShareHeap::_process_strong_tasks 5480 assert(UseDynamicNumberOfGCThreads || 5481 workers()->active_workers() == workers()->total_workers(), 5482 "If not dynamic should be using all the workers"); 5483 workers()->run_task(&g1_par_task); 5484 end_par_time_sec = os::elapsedTime(); 5485 5486 // Closing the inner scope will execute the destructor 5487 // for the G1RootProcessor object. We record the current 5488 // elapsed time before closing the scope so that time 5489 // taken for the destructor is NOT included in the 5490 // reported parallel time. 5491 } 5492 5493 G1GCPhaseTimes* phase_times = g1_policy()->phase_times(); 5494 5495 double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0; 5496 phase_times->record_par_time(par_time_ms); 5497 5498 double code_root_fixup_time_ms = 5499 (os::elapsedTime() - end_par_time_sec) * 1000.0; 5500 phase_times->record_code_root_fixup_time(code_root_fixup_time_ms); 5501 5502 set_par_threads(0); 5503 5504 // Process any discovered reference objects - we have 5505 // to do this _before_ we retire the GC alloc regions 5506 // as we may have to copy some 'reachable' referent 5507 // objects (and their reachable sub-graphs) that were 5508 // not copied during the pause. 5509 process_discovered_references(n_workers); 5510 5511 if (G1StringDedup::is_enabled()) { 5512 double fixup_start = os::elapsedTime(); 5513 5514 G1STWIsAliveClosure is_alive(this); 5515 G1KeepAliveClosure keep_alive(this); 5516 G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times); 5517 5518 double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0; 5519 phase_times->record_string_dedup_fixup_time(fixup_time_ms); 5520 } 5521 5522 _allocator->release_gc_alloc_regions(n_workers, evacuation_info); 5523 g1_rem_set()->cleanup_after_oops_into_collection_set_do(); 5524 5525 // Reset and re-enable the hot card cache. 5526 // Note the counts for the cards in the regions in the 5527 // collection set are reset when the collection set is freed. 5528 hot_card_cache->reset_hot_cache(); 5529 hot_card_cache->set_use_cache(true); 5530 5531 purge_code_root_memory(); 5532 5533 finalize_for_evac_failure(); 5534 5535 if (evacuation_failed()) { 5536 remove_self_forwarding_pointers(); 5537 5538 // Reset the G1EvacuationFailureALot counters and flags 5539 // Note: the values are reset only when an actual 5540 // evacuation failure occurs. 5541 NOT_PRODUCT(reset_evacuation_should_fail();) 5542 } 5543 5544 // Enqueue any remaining references remaining on the STW 5545 // reference processor's discovered lists. We need to do 5546 // this after the card table is cleaned (and verified) as 5547 // the act of enqueueing entries on to the pending list 5548 // will log these updates (and dirty their associated 5549 // cards). We need these updates logged to update any 5550 // RSets. 5551 enqueue_discovered_references(n_workers); 5552 5553 redirty_logged_cards(); 5554 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 5555 } 5556 5557 void G1CollectedHeap::free_region(HeapRegion* hr, 5558 FreeRegionList* free_list, 5559 bool par, 5560 bool locked) { 5561 assert(!hr->is_free(), "the region should not be free"); 5562 assert(!hr->is_empty(), "the region should not be empty"); 5563 assert(_hrm.is_available(hr->hrm_index()), "region should be committed"); 5564 assert(free_list != NULL, "pre-condition"); 5565 5566 if (G1VerifyBitmaps) { 5567 MemRegion mr(hr->bottom(), hr->end()); 5568 concurrent_mark()->clearRangePrevBitmap(mr); 5569 } 5570 5571 // Clear the card counts for this region. 5572 // Note: we only need to do this if the region is not young 5573 // (since we don't refine cards in young regions). 5574 if (!hr->is_young()) { 5575 _cg1r->hot_card_cache()->reset_card_counts(hr); 5576 } 5577 hr->hr_clear(par, true /* clear_space */, locked /* locked */); 5578 free_list->add_ordered(hr); 5579 } 5580 5581 void G1CollectedHeap::free_humongous_region(HeapRegion* hr, 5582 FreeRegionList* free_list, 5583 bool par) { 5584 assert(hr->is_starts_humongous(), "this is only for starts humongous regions"); 5585 assert(free_list != NULL, "pre-condition"); 5586 5587 size_t hr_capacity = hr->capacity(); 5588 // We need to read this before we make the region non-humongous, 5589 // otherwise the information will be gone. 5590 uint last_index = hr->last_hc_index(); 5591 hr->clear_humongous(); 5592 free_region(hr, free_list, par); 5593 5594 uint i = hr->hrm_index() + 1; 5595 while (i < last_index) { 5596 HeapRegion* curr_hr = region_at(i); 5597 assert(curr_hr->is_continues_humongous(), "invariant"); 5598 curr_hr->clear_humongous(); 5599 free_region(curr_hr, free_list, par); 5600 i += 1; 5601 } 5602 } 5603 5604 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, 5605 const HeapRegionSetCount& humongous_regions_removed) { 5606 if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) { 5607 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 5608 _old_set.bulk_remove(old_regions_removed); 5609 _humongous_set.bulk_remove(humongous_regions_removed); 5610 } 5611 5612 } 5613 5614 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) { 5615 assert(list != NULL, "list can't be null"); 5616 if (!list->is_empty()) { 5617 MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); 5618 _hrm.insert_list_into_free_list(list); 5619 } 5620 } 5621 5622 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) { 5623 _allocator->decrease_used(bytes); 5624 } 5625 5626 class G1ParCleanupCTTask : public AbstractGangTask { 5627 G1SATBCardTableModRefBS* _ct_bs; 5628 G1CollectedHeap* _g1h; 5629 HeapRegion* volatile _su_head; 5630 public: 5631 G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs, 5632 G1CollectedHeap* g1h) : 5633 AbstractGangTask("G1 Par Cleanup CT Task"), 5634 _ct_bs(ct_bs), _g1h(g1h) { } 5635 5636 void work(uint worker_id) { 5637 HeapRegion* r; 5638 while (r = _g1h->pop_dirty_cards_region()) { 5639 clear_cards(r); 5640 } 5641 } 5642 5643 void clear_cards(HeapRegion* r) { 5644 // Cards of the survivors should have already been dirtied. 5645 if (!r->is_survivor()) { 5646 _ct_bs->clear(MemRegion(r->bottom(), r->end())); 5647 } 5648 } 5649 }; 5650 5651 #ifndef PRODUCT 5652 class G1VerifyCardTableCleanup: public HeapRegionClosure { 5653 G1CollectedHeap* _g1h; 5654 G1SATBCardTableModRefBS* _ct_bs; 5655 public: 5656 G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs) 5657 : _g1h(g1h), _ct_bs(ct_bs) { } 5658 virtual bool doHeapRegion(HeapRegion* r) { 5659 if (r->is_survivor()) { 5660 _g1h->verify_dirty_region(r); 5661 } else { 5662 _g1h->verify_not_dirty_region(r); 5663 } 5664 return false; 5665 } 5666 }; 5667 5668 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) { 5669 // All of the region should be clean. 5670 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 5671 MemRegion mr(hr->bottom(), hr->end()); 5672 ct_bs->verify_not_dirty_region(mr); 5673 } 5674 5675 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) { 5676 // We cannot guarantee that [bottom(),end()] is dirty. Threads 5677 // dirty allocated blocks as they allocate them. The thread that 5678 // retires each region and replaces it with a new one will do a 5679 // maximal allocation to fill in [pre_dummy_top(),end()] but will 5680 // not dirty that area (one less thing to have to do while holding 5681 // a lock). So we can only verify that [bottom(),pre_dummy_top()] 5682 // is dirty. 5683 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 5684 MemRegion mr(hr->bottom(), hr->pre_dummy_top()); 5685 if (hr->is_young()) { 5686 ct_bs->verify_g1_young_region(mr); 5687 } else { 5688 ct_bs->verify_dirty_region(mr); 5689 } 5690 } 5691 5692 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) { 5693 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 5694 for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) { 5695 verify_dirty_region(hr); 5696 } 5697 } 5698 5699 void G1CollectedHeap::verify_dirty_young_regions() { 5700 verify_dirty_young_list(_young_list->first_region()); 5701 } 5702 5703 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap, 5704 HeapWord* tams, HeapWord* end) { 5705 guarantee(tams <= end, 5706 err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end)); 5707 HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end); 5708 if (result < end) { 5709 gclog_or_tty->cr(); 5710 gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT, 5711 bitmap_name, result); 5712 gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT, 5713 bitmap_name, tams, end); 5714 return false; 5715 } 5716 return true; 5717 } 5718 5719 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) { 5720 CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap(); 5721 CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap(); 5722 5723 HeapWord* bottom = hr->bottom(); 5724 HeapWord* ptams = hr->prev_top_at_mark_start(); 5725 HeapWord* ntams = hr->next_top_at_mark_start(); 5726 HeapWord* end = hr->end(); 5727 5728 bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end); 5729 5730 bool res_n = true; 5731 // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window 5732 // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap 5733 // if we happen to be in that state. 5734 if (mark_in_progress() || !_cmThread->in_progress()) { 5735 res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end); 5736 } 5737 if (!res_p || !res_n) { 5738 gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT, 5739 HR_FORMAT_PARAMS(hr)); 5740 gclog_or_tty->print_cr("#### Caller: %s", caller); 5741 return false; 5742 } 5743 return true; 5744 } 5745 5746 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) { 5747 if (!G1VerifyBitmaps) return; 5748 5749 guarantee(verify_bitmaps(caller, hr), "bitmap verification"); 5750 } 5751 5752 class G1VerifyBitmapClosure : public HeapRegionClosure { 5753 private: 5754 const char* _caller; 5755 G1CollectedHeap* _g1h; 5756 bool _failures; 5757 5758 public: 5759 G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) : 5760 _caller(caller), _g1h(g1h), _failures(false) { } 5761 5762 bool failures() { return _failures; } 5763 5764 virtual bool doHeapRegion(HeapRegion* hr) { 5765 if (hr->is_continues_humongous()) return false; 5766 5767 bool result = _g1h->verify_bitmaps(_caller, hr); 5768 if (!result) { 5769 _failures = true; 5770 } 5771 return false; 5772 } 5773 }; 5774 5775 void G1CollectedHeap::check_bitmaps(const char* caller) { 5776 if (!G1VerifyBitmaps) return; 5777 5778 G1VerifyBitmapClosure cl(caller, this); 5779 heap_region_iterate(&cl); 5780 guarantee(!cl.failures(), "bitmap verification"); 5781 } 5782 5783 class G1CheckCSetFastTableClosure : public HeapRegionClosure { 5784 private: 5785 bool _failures; 5786 public: 5787 G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { } 5788 5789 virtual bool doHeapRegion(HeapRegion* hr) { 5790 uint i = hr->hrm_index(); 5791 InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i); 5792 if (hr->is_humongous()) { 5793 if (hr->in_collection_set()) { 5794 gclog_or_tty->print_cr("\n## humongous region %u in CSet", i); 5795 _failures = true; 5796 return true; 5797 } 5798 if (cset_state.is_in_cset()) { 5799 gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i); 5800 _failures = true; 5801 return true; 5802 } 5803 if (hr->is_continues_humongous() && cset_state.is_humongous()) { 5804 gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i); 5805 _failures = true; 5806 return true; 5807 } 5808 } else { 5809 if (cset_state.is_humongous()) { 5810 gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i); 5811 _failures = true; 5812 return true; 5813 } 5814 if (hr->in_collection_set() != cset_state.is_in_cset()) { 5815 gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u", 5816 hr->in_collection_set(), cset_state.value(), i); 5817 _failures = true; 5818 return true; 5819 } 5820 if (cset_state.is_in_cset()) { 5821 if (hr->is_young() != (cset_state.is_young())) { 5822 gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u", 5823 hr->is_young(), cset_state.value(), i); 5824 _failures = true; 5825 return true; 5826 } 5827 if (hr->is_old() != (cset_state.is_old())) { 5828 gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u", 5829 hr->is_old(), cset_state.value(), i); 5830 _failures = true; 5831 return true; 5832 } 5833 } 5834 } 5835 return false; 5836 } 5837 5838 bool failures() const { return _failures; } 5839 }; 5840 5841 bool G1CollectedHeap::check_cset_fast_test() { 5842 G1CheckCSetFastTableClosure cl; 5843 _hrm.iterate(&cl); 5844 return !cl.failures(); 5845 } 5846 #endif // PRODUCT 5847 5848 void G1CollectedHeap::cleanUpCardTable() { 5849 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 5850 double start = os::elapsedTime(); 5851 5852 { 5853 // Iterate over the dirty cards region list. 5854 G1ParCleanupCTTask cleanup_task(ct_bs, this); 5855 5856 set_par_threads(); 5857 workers()->run_task(&cleanup_task); 5858 set_par_threads(0); 5859 #ifndef PRODUCT 5860 if (G1VerifyCTCleanup || VerifyAfterGC) { 5861 G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs); 5862 heap_region_iterate(&cleanup_verifier); 5863 } 5864 #endif 5865 } 5866 5867 double elapsed = os::elapsedTime() - start; 5868 g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0); 5869 } 5870 5871 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) { 5872 size_t pre_used = 0; 5873 FreeRegionList local_free_list("Local List for CSet Freeing"); 5874 5875 double young_time_ms = 0.0; 5876 double non_young_time_ms = 0.0; 5877 5878 // Since the collection set is a superset of the the young list, 5879 // all we need to do to clear the young list is clear its 5880 // head and length, and unlink any young regions in the code below 5881 _young_list->clear(); 5882 5883 G1CollectorPolicy* policy = g1_policy(); 5884 5885 double start_sec = os::elapsedTime(); 5886 bool non_young = true; 5887 5888 HeapRegion* cur = cs_head; 5889 int age_bound = -1; 5890 size_t rs_lengths = 0; 5891 5892 while (cur != NULL) { 5893 assert(!is_on_master_free_list(cur), "sanity"); 5894 if (non_young) { 5895 if (cur->is_young()) { 5896 double end_sec = os::elapsedTime(); 5897 double elapsed_ms = (end_sec - start_sec) * 1000.0; 5898 non_young_time_ms += elapsed_ms; 5899 5900 start_sec = os::elapsedTime(); 5901 non_young = false; 5902 } 5903 } else { 5904 if (!cur->is_young()) { 5905 double end_sec = os::elapsedTime(); 5906 double elapsed_ms = (end_sec - start_sec) * 1000.0; 5907 young_time_ms += elapsed_ms; 5908 5909 start_sec = os::elapsedTime(); 5910 non_young = true; 5911 } 5912 } 5913 5914 rs_lengths += cur->rem_set()->occupied_locked(); 5915 5916 HeapRegion* next = cur->next_in_collection_set(); 5917 assert(cur->in_collection_set(), "bad CS"); 5918 cur->set_next_in_collection_set(NULL); 5919 clear_in_cset(cur); 5920 5921 if (cur->is_young()) { 5922 int index = cur->young_index_in_cset(); 5923 assert(index != -1, "invariant"); 5924 assert((uint) index < policy->young_cset_region_length(), "invariant"); 5925 size_t words_survived = _surviving_young_words[index]; 5926 cur->record_surv_words_in_group(words_survived); 5927 5928 // At this point the we have 'popped' cur from the collection set 5929 // (linked via next_in_collection_set()) but it is still in the 5930 // young list (linked via next_young_region()). Clear the 5931 // _next_young_region field. 5932 cur->set_next_young_region(NULL); 5933 } else { 5934 int index = cur->young_index_in_cset(); 5935 assert(index == -1, "invariant"); 5936 } 5937 5938 assert( (cur->is_young() && cur->young_index_in_cset() > -1) || 5939 (!cur->is_young() && cur->young_index_in_cset() == -1), 5940 "invariant" ); 5941 5942 if (!cur->evacuation_failed()) { 5943 MemRegion used_mr = cur->used_region(); 5944 5945 // And the region is empty. 5946 assert(!used_mr.is_empty(), "Should not have empty regions in a CS."); 5947 pre_used += cur->used(); 5948 free_region(cur, &local_free_list, false /* par */, true /* locked */); 5949 } else { 5950 cur->uninstall_surv_rate_group(); 5951 if (cur->is_young()) { 5952 cur->set_young_index_in_cset(-1); 5953 } 5954 cur->set_evacuation_failed(false); 5955 // The region is now considered to be old. 5956 cur->set_old(); 5957 _old_set.add(cur); 5958 evacuation_info.increment_collectionset_used_after(cur->used()); 5959 } 5960 cur = next; 5961 } 5962 5963 evacuation_info.set_regions_freed(local_free_list.length()); 5964 policy->record_max_rs_lengths(rs_lengths); 5965 policy->cset_regions_freed(); 5966 5967 double end_sec = os::elapsedTime(); 5968 double elapsed_ms = (end_sec - start_sec) * 1000.0; 5969 5970 if (non_young) { 5971 non_young_time_ms += elapsed_ms; 5972 } else { 5973 young_time_ms += elapsed_ms; 5974 } 5975 5976 prepend_to_freelist(&local_free_list); 5977 decrement_summary_bytes(pre_used); 5978 policy->phase_times()->record_young_free_cset_time_ms(young_time_ms); 5979 policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms); 5980 } 5981 5982 class G1FreeHumongousRegionClosure : public HeapRegionClosure { 5983 private: 5984 FreeRegionList* _free_region_list; 5985 HeapRegionSet* _proxy_set; 5986 HeapRegionSetCount _humongous_regions_removed; 5987 size_t _freed_bytes; 5988 public: 5989 5990 G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) : 5991 _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) { 5992 } 5993 5994 virtual bool doHeapRegion(HeapRegion* r) { 5995 if (!r->is_starts_humongous()) { 5996 return false; 5997 } 5998 5999 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 6000 6001 oop obj = (oop)r->bottom(); 6002 CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap(); 6003 6004 // The following checks whether the humongous object is live are sufficient. 6005 // The main additional check (in addition to having a reference from the roots 6006 // or the young gen) is whether the humongous object has a remembered set entry. 6007 // 6008 // A humongous object cannot be live if there is no remembered set for it 6009 // because: 6010 // - there can be no references from within humongous starts regions referencing 6011 // the object because we never allocate other objects into them. 6012 // (I.e. there are no intra-region references that may be missed by the 6013 // remembered set) 6014 // - as soon there is a remembered set entry to the humongous starts region 6015 // (i.e. it has "escaped" to an old object) this remembered set entry will stay 6016 // until the end of a concurrent mark. 6017 // 6018 // It is not required to check whether the object has been found dead by marking 6019 // or not, in fact it would prevent reclamation within a concurrent cycle, as 6020 // all objects allocated during that time are considered live. 6021 // SATB marking is even more conservative than the remembered set. 6022 // So if at this point in the collection there is no remembered set entry, 6023 // nobody has a reference to it. 6024 // At the start of collection we flush all refinement logs, and remembered sets 6025 // are completely up-to-date wrt to references to the humongous object. 6026 // 6027 // Other implementation considerations: 6028 // - never consider object arrays at this time because they would pose 6029 // considerable effort for cleaning up the the remembered sets. This is 6030 // required because stale remembered sets might reference locations that 6031 // are currently allocated into. 6032 uint region_idx = r->hrm_index(); 6033 if (g1h->humongous_is_live(region_idx) || 6034 g1h->humongous_region_is_always_live(region_idx)) { 6035 6036 if (G1TraceEagerReclaimHumongousObjects) { 6037 gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d", 6038 region_idx, 6039 obj->size()*HeapWordSize, 6040 r->bottom(), 6041 r->region_num(), 6042 r->rem_set()->occupied(), 6043 r->rem_set()->strong_code_roots_list_length(), 6044 next_bitmap->isMarked(r->bottom()), 6045 g1h->humongous_is_live(region_idx), 6046 obj->is_objArray() 6047 ); 6048 } 6049 6050 return false; 6051 } 6052 6053 guarantee(!obj->is_objArray(), 6054 err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.", 6055 r->bottom())); 6056 6057 if (G1TraceEagerReclaimHumongousObjects) { 6058 gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d", 6059 region_idx, 6060 obj->size()*HeapWordSize, 6061 r->bottom(), 6062 r->region_num(), 6063 r->rem_set()->occupied(), 6064 r->rem_set()->strong_code_roots_list_length(), 6065 next_bitmap->isMarked(r->bottom()), 6066 g1h->humongous_is_live(region_idx), 6067 obj->is_objArray() 6068 ); 6069 } 6070 // Need to clear mark bit of the humongous object if already set. 6071 if (next_bitmap->isMarked(r->bottom())) { 6072 next_bitmap->clear(r->bottom()); 6073 } 6074 _freed_bytes += r->used(); 6075 r->set_containing_set(NULL); 6076 _humongous_regions_removed.increment(1u, r->capacity()); 6077 g1h->free_humongous_region(r, _free_region_list, false); 6078 6079 return false; 6080 } 6081 6082 HeapRegionSetCount& humongous_free_count() { 6083 return _humongous_regions_removed; 6084 } 6085 6086 size_t bytes_freed() const { 6087 return _freed_bytes; 6088 } 6089 6090 size_t humongous_reclaimed() const { 6091 return _humongous_regions_removed.length(); 6092 } 6093 }; 6094 6095 void G1CollectedHeap::eagerly_reclaim_humongous_regions() { 6096 assert_at_safepoint(true); 6097 6098 if (!G1EagerReclaimHumongousObjects || 6099 (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) { 6100 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0); 6101 return; 6102 } 6103 6104 double start_time = os::elapsedTime(); 6105 6106 FreeRegionList local_cleanup_list("Local Humongous Cleanup List"); 6107 6108 G1FreeHumongousRegionClosure cl(&local_cleanup_list); 6109 heap_region_iterate(&cl); 6110 6111 HeapRegionSetCount empty_set; 6112 remove_from_old_sets(empty_set, cl.humongous_free_count()); 6113 6114 G1HRPrinter* hr_printer = _g1h->hr_printer(); 6115 if (hr_printer->is_active()) { 6116 FreeRegionListIterator iter(&local_cleanup_list); 6117 while (iter.more_available()) { 6118 HeapRegion* hr = iter.get_next(); 6119 hr_printer->cleanup(hr); 6120 } 6121 } 6122 6123 prepend_to_freelist(&local_cleanup_list); 6124 decrement_summary_bytes(cl.bytes_freed()); 6125 6126 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0, 6127 cl.humongous_reclaimed()); 6128 } 6129 6130 // This routine is similar to the above but does not record 6131 // any policy statistics or update free lists; we are abandoning 6132 // the current incremental collection set in preparation of a 6133 // full collection. After the full GC we will start to build up 6134 // the incremental collection set again. 6135 // This is only called when we're doing a full collection 6136 // and is immediately followed by the tearing down of the young list. 6137 6138 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) { 6139 HeapRegion* cur = cs_head; 6140 6141 while (cur != NULL) { 6142 HeapRegion* next = cur->next_in_collection_set(); 6143 assert(cur->in_collection_set(), "bad CS"); 6144 cur->set_next_in_collection_set(NULL); 6145 clear_in_cset(cur); 6146 cur->set_young_index_in_cset(-1); 6147 cur = next; 6148 } 6149 } 6150 6151 void G1CollectedHeap::set_free_regions_coming() { 6152 if (G1ConcRegionFreeingVerbose) { 6153 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : " 6154 "setting free regions coming"); 6155 } 6156 6157 assert(!free_regions_coming(), "pre-condition"); 6158 _free_regions_coming = true; 6159 } 6160 6161 void G1CollectedHeap::reset_free_regions_coming() { 6162 assert(free_regions_coming(), "pre-condition"); 6163 6164 { 6165 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6166 _free_regions_coming = false; 6167 SecondaryFreeList_lock->notify_all(); 6168 } 6169 6170 if (G1ConcRegionFreeingVerbose) { 6171 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : " 6172 "reset free regions coming"); 6173 } 6174 } 6175 6176 void G1CollectedHeap::wait_while_free_regions_coming() { 6177 // Most of the time we won't have to wait, so let's do a quick test 6178 // first before we take the lock. 6179 if (!free_regions_coming()) { 6180 return; 6181 } 6182 6183 if (G1ConcRegionFreeingVerbose) { 6184 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : " 6185 "waiting for free regions"); 6186 } 6187 6188 { 6189 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6190 while (free_regions_coming()) { 6191 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 6192 } 6193 } 6194 6195 if (G1ConcRegionFreeingVerbose) { 6196 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : " 6197 "done waiting for free regions"); 6198 } 6199 } 6200 6201 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { 6202 assert(heap_lock_held_for_gc(), 6203 "the heap lock should already be held by or for this thread"); 6204 _young_list->push_region(hr); 6205 } 6206 6207 class NoYoungRegionsClosure: public HeapRegionClosure { 6208 private: 6209 bool _success; 6210 public: 6211 NoYoungRegionsClosure() : _success(true) { } 6212 bool doHeapRegion(HeapRegion* r) { 6213 if (r->is_young()) { 6214 gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young", 6215 r->bottom(), r->end()); 6216 _success = false; 6217 } 6218 return false; 6219 } 6220 bool success() { return _success; } 6221 }; 6222 6223 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) { 6224 bool ret = _young_list->check_list_empty(check_sample); 6225 6226 if (check_heap) { 6227 NoYoungRegionsClosure closure; 6228 heap_region_iterate(&closure); 6229 ret = ret && closure.success(); 6230 } 6231 6232 return ret; 6233 } 6234 6235 class TearDownRegionSetsClosure : public HeapRegionClosure { 6236 private: 6237 HeapRegionSet *_old_set; 6238 6239 public: 6240 TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { } 6241 6242 bool doHeapRegion(HeapRegion* r) { 6243 if (r->is_old()) { 6244 _old_set->remove(r); 6245 } else { 6246 // We ignore free regions, we'll empty the free list afterwards. 6247 // We ignore young regions, we'll empty the young list afterwards. 6248 // We ignore humongous regions, we're not tearing down the 6249 // humongous regions set. 6250 assert(r->is_free() || r->is_young() || r->is_humongous(), 6251 "it cannot be another type"); 6252 } 6253 return false; 6254 } 6255 6256 ~TearDownRegionSetsClosure() { 6257 assert(_old_set->is_empty(), "post-condition"); 6258 } 6259 }; 6260 6261 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) { 6262 assert_at_safepoint(true /* should_be_vm_thread */); 6263 6264 if (!free_list_only) { 6265 TearDownRegionSetsClosure cl(&_old_set); 6266 heap_region_iterate(&cl); 6267 6268 // Note that emptying the _young_list is postponed and instead done as 6269 // the first step when rebuilding the regions sets again. The reason for 6270 // this is that during a full GC string deduplication needs to know if 6271 // a collected region was young or old when the full GC was initiated. 6272 } 6273 _hrm.remove_all_free_regions(); 6274 } 6275 6276 class RebuildRegionSetsClosure : public HeapRegionClosure { 6277 private: 6278 bool _free_list_only; 6279 HeapRegionSet* _old_set; 6280 HeapRegionManager* _hrm; 6281 size_t _total_used; 6282 6283 public: 6284 RebuildRegionSetsClosure(bool free_list_only, 6285 HeapRegionSet* old_set, HeapRegionManager* hrm) : 6286 _free_list_only(free_list_only), 6287 _old_set(old_set), _hrm(hrm), _total_used(0) { 6288 assert(_hrm->num_free_regions() == 0, "pre-condition"); 6289 if (!free_list_only) { 6290 assert(_old_set->is_empty(), "pre-condition"); 6291 } 6292 } 6293 6294 bool doHeapRegion(HeapRegion* r) { 6295 if (r->is_continues_humongous()) { 6296 return false; 6297 } 6298 6299 if (r->is_empty()) { 6300 // Add free regions to the free list 6301 r->set_free(); 6302 r->set_allocation_context(AllocationContext::system()); 6303 _hrm->insert_into_free_list(r); 6304 } else if (!_free_list_only) { 6305 assert(!r->is_young(), "we should not come across young regions"); 6306 6307 if (r->is_humongous()) { 6308 // We ignore humongous regions, we left the humongous set unchanged 6309 } else { 6310 // Objects that were compacted would have ended up on regions 6311 // that were previously old or free. 6312 assert(r->is_free() || r->is_old(), "invariant"); 6313 // We now consider them old, so register as such. 6314 r->set_old(); 6315 _old_set->add(r); 6316 } 6317 _total_used += r->used(); 6318 } 6319 6320 return false; 6321 } 6322 6323 size_t total_used() { 6324 return _total_used; 6325 } 6326 }; 6327 6328 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { 6329 assert_at_safepoint(true /* should_be_vm_thread */); 6330 6331 if (!free_list_only) { 6332 _young_list->empty_list(); 6333 } 6334 6335 RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm); 6336 heap_region_iterate(&cl); 6337 6338 if (!free_list_only) { 6339 _allocator->set_used(cl.total_used()); 6340 } 6341 assert(_allocator->used_unlocked() == recalculate_used(), 6342 err_msg("inconsistent _allocator->used_unlocked(), " 6343 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT, 6344 _allocator->used_unlocked(), recalculate_used())); 6345 } 6346 6347 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) { 6348 _refine_cte_cl->set_concurrent(concurrent); 6349 } 6350 6351 bool G1CollectedHeap::is_in_closed_subset(const void* p) const { 6352 HeapRegion* hr = heap_region_containing(p); 6353 return hr->is_in(p); 6354 } 6355 6356 // Methods for the mutator alloc region 6357 6358 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, 6359 bool force) { 6360 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6361 assert(!force || g1_policy()->can_expand_young_list(), 6362 "if force is true we should be able to expand the young list"); 6363 bool young_list_full = g1_policy()->is_young_list_full(); 6364 if (force || !young_list_full) { 6365 HeapRegion* new_alloc_region = new_region(word_size, 6366 false /* is_old */, 6367 false /* do_expand */); 6368 if (new_alloc_region != NULL) { 6369 set_region_short_lived_locked(new_alloc_region); 6370 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full); 6371 check_bitmaps("Mutator Region Allocation", new_alloc_region); 6372 return new_alloc_region; 6373 } 6374 } 6375 return NULL; 6376 } 6377 6378 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, 6379 size_t allocated_bytes) { 6380 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6381 assert(alloc_region->is_eden(), "all mutator alloc regions should be eden"); 6382 6383 g1_policy()->add_region_to_incremental_cset_lhs(alloc_region); 6384 _allocator->increase_used(allocated_bytes); 6385 _hr_printer.retire(alloc_region); 6386 // We update the eden sizes here, when the region is retired, 6387 // instead of when it's allocated, since this is the point that its 6388 // used space has been recored in _summary_bytes_used. 6389 g1mm()->update_eden_size(); 6390 } 6391 6392 void G1CollectedHeap::set_par_threads() { 6393 // Don't change the number of workers. Use the value previously set 6394 // in the workgroup. 6395 uint n_workers = workers()->active_workers(); 6396 assert(UseDynamicNumberOfGCThreads || 6397 n_workers == workers()->total_workers(), 6398 "Otherwise should be using the total number of workers"); 6399 if (n_workers == 0) { 6400 assert(false, "Should have been set in prior evacuation pause."); 6401 n_workers = ParallelGCThreads; 6402 workers()->set_active_workers(n_workers); 6403 } 6404 set_par_threads(n_workers); 6405 } 6406 6407 // Methods for the GC alloc regions 6408 6409 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, 6410 uint count, 6411 InCSetState dest) { 6412 assert(FreeList_lock->owned_by_self(), "pre-condition"); 6413 6414 if (count < g1_policy()->max_regions(dest)) { 6415 const bool is_survivor = (dest.is_young()); 6416 HeapRegion* new_alloc_region = new_region(word_size, 6417 !is_survivor, 6418 true /* do_expand */); 6419 if (new_alloc_region != NULL) { 6420 // We really only need to do this for old regions given that we 6421 // should never scan survivors. But it doesn't hurt to do it 6422 // for survivors too. 6423 new_alloc_region->record_timestamp(); 6424 if (is_survivor) { 6425 new_alloc_region->set_survivor(); 6426 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor); 6427 check_bitmaps("Survivor Region Allocation", new_alloc_region); 6428 } else { 6429 new_alloc_region->set_old(); 6430 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old); 6431 check_bitmaps("Old Region Allocation", new_alloc_region); 6432 } 6433 bool during_im = g1_policy()->during_initial_mark_pause(); 6434 new_alloc_region->note_start_of_copying(during_im); 6435 return new_alloc_region; 6436 } 6437 } 6438 return NULL; 6439 } 6440 6441 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, 6442 size_t allocated_bytes, 6443 InCSetState dest) { 6444 bool during_im = g1_policy()->during_initial_mark_pause(); 6445 alloc_region->note_end_of_copying(during_im); 6446 g1_policy()->record_bytes_copied_during_gc(allocated_bytes); 6447 if (dest.is_young()) { 6448 young_list()->add_survivor_region(alloc_region); 6449 } else { 6450 _old_set.add(alloc_region); 6451 } 6452 _hr_printer.retire(alloc_region); 6453 } 6454 6455 // Heap region set verification 6456 6457 class VerifyRegionListsClosure : public HeapRegionClosure { 6458 private: 6459 HeapRegionSet* _old_set; 6460 HeapRegionSet* _humongous_set; 6461 HeapRegionManager* _hrm; 6462 6463 public: 6464 HeapRegionSetCount _old_count; 6465 HeapRegionSetCount _humongous_count; 6466 HeapRegionSetCount _free_count; 6467 6468 VerifyRegionListsClosure(HeapRegionSet* old_set, 6469 HeapRegionSet* humongous_set, 6470 HeapRegionManager* hrm) : 6471 _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm), 6472 _old_count(), _humongous_count(), _free_count(){ } 6473 6474 bool doHeapRegion(HeapRegion* hr) { 6475 if (hr->is_continues_humongous()) { 6476 return false; 6477 } 6478 6479 if (hr->is_young()) { 6480 // TODO 6481 } else if (hr->is_starts_humongous()) { 6482 assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index())); 6483 _humongous_count.increment(1u, hr->capacity()); 6484 } else if (hr->is_empty()) { 6485 assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index())); 6486 _free_count.increment(1u, hr->capacity()); 6487 } else if (hr->is_old()) { 6488 assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index())); 6489 _old_count.increment(1u, hr->capacity()); 6490 } else { 6491 ShouldNotReachHere(); 6492 } 6493 return false; 6494 } 6495 6496 void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) { 6497 guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length())); 6498 guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT, 6499 old_set->total_capacity_bytes(), _old_count.capacity())); 6500 6501 guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length())); 6502 guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT, 6503 humongous_set->total_capacity_bytes(), _humongous_count.capacity())); 6504 6505 guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length())); 6506 guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT, 6507 free_list->total_capacity_bytes(), _free_count.capacity())); 6508 } 6509 }; 6510 6511 void G1CollectedHeap::verify_region_sets() { 6512 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6513 6514 // First, check the explicit lists. 6515 _hrm.verify(); 6516 { 6517 // Given that a concurrent operation might be adding regions to 6518 // the secondary free list we have to take the lock before 6519 // verifying it. 6520 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6521 _secondary_free_list.verify_list(); 6522 } 6523 6524 // If a concurrent region freeing operation is in progress it will 6525 // be difficult to correctly attributed any free regions we come 6526 // across to the correct free list given that they might belong to 6527 // one of several (free_list, secondary_free_list, any local lists, 6528 // etc.). So, if that's the case we will skip the rest of the 6529 // verification operation. Alternatively, waiting for the concurrent 6530 // operation to complete will have a non-trivial effect on the GC's 6531 // operation (no concurrent operation will last longer than the 6532 // interval between two calls to verification) and it might hide 6533 // any issues that we would like to catch during testing. 6534 if (free_regions_coming()) { 6535 return; 6536 } 6537 6538 // Make sure we append the secondary_free_list on the free_list so 6539 // that all free regions we will come across can be safely 6540 // attributed to the free_list. 6541 append_secondary_free_list_if_not_empty_with_lock(); 6542 6543 // Finally, make sure that the region accounting in the lists is 6544 // consistent with what we see in the heap. 6545 6546 VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm); 6547 heap_region_iterate(&cl); 6548 cl.verify_counts(&_old_set, &_humongous_set, &_hrm); 6549 } 6550 6551 // Optimized nmethod scanning 6552 6553 class RegisterNMethodOopClosure: public OopClosure { 6554 G1CollectedHeap* _g1h; 6555 nmethod* _nm; 6556 6557 template <class T> void do_oop_work(T* p) { 6558 T heap_oop = oopDesc::load_heap_oop(p); 6559 if (!oopDesc::is_null(heap_oop)) { 6560 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 6561 HeapRegion* hr = _g1h->heap_region_containing(obj); 6562 assert(!hr->is_continues_humongous(), 6563 err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT 6564 " starting at "HR_FORMAT, 6565 _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()))); 6566 6567 // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries. 6568 hr->add_strong_code_root_locked(_nm); 6569 } 6570 } 6571 6572 public: 6573 RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 6574 _g1h(g1h), _nm(nm) {} 6575 6576 void do_oop(oop* p) { do_oop_work(p); } 6577 void do_oop(narrowOop* p) { do_oop_work(p); } 6578 }; 6579 6580 class UnregisterNMethodOopClosure: public OopClosure { 6581 G1CollectedHeap* _g1h; 6582 nmethod* _nm; 6583 6584 template <class T> void do_oop_work(T* p) { 6585 T heap_oop = oopDesc::load_heap_oop(p); 6586 if (!oopDesc::is_null(heap_oop)) { 6587 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 6588 HeapRegion* hr = _g1h->heap_region_containing(obj); 6589 assert(!hr->is_continues_humongous(), 6590 err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT 6591 " starting at "HR_FORMAT, 6592 _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()))); 6593 6594 hr->remove_strong_code_root(_nm); 6595 } 6596 } 6597 6598 public: 6599 UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 6600 _g1h(g1h), _nm(nm) {} 6601 6602 void do_oop(oop* p) { do_oop_work(p); } 6603 void do_oop(narrowOop* p) { do_oop_work(p); } 6604 }; 6605 6606 void G1CollectedHeap::register_nmethod(nmethod* nm) { 6607 CollectedHeap::register_nmethod(nm); 6608 6609 guarantee(nm != NULL, "sanity"); 6610 RegisterNMethodOopClosure reg_cl(this, nm); 6611 nm->oops_do(®_cl); 6612 } 6613 6614 void G1CollectedHeap::unregister_nmethod(nmethod* nm) { 6615 CollectedHeap::unregister_nmethod(nm); 6616 6617 guarantee(nm != NULL, "sanity"); 6618 UnregisterNMethodOopClosure reg_cl(this, nm); 6619 nm->oops_do(®_cl, true); 6620 } 6621 6622 void G1CollectedHeap::purge_code_root_memory() { 6623 double purge_start = os::elapsedTime(); 6624 G1CodeRootSet::purge(); 6625 double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0; 6626 g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms); 6627 } 6628 6629 class RebuildStrongCodeRootClosure: public CodeBlobClosure { 6630 G1CollectedHeap* _g1h; 6631 6632 public: 6633 RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) : 6634 _g1h(g1h) {} 6635 6636 void do_code_blob(CodeBlob* cb) { 6637 nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL; 6638 if (nm == NULL) { 6639 return; 6640 } 6641 6642 if (ScavengeRootsInCode) { 6643 _g1h->register_nmethod(nm); 6644 } 6645 } 6646 }; 6647 6648 void G1CollectedHeap::rebuild_strong_code_roots() { 6649 RebuildStrongCodeRootClosure blob_cl(this); 6650 CodeCache::blobs_do(&blob_cl); 6651 } --- EOF ---