1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/method.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/idealGraphPrinter.hpp"
  34 #include "opto/locknode.hpp"
  35 #include "opto/memnode.hpp"
  36 #include "opto/opaquenode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "utilities/copy.hpp"
  45 
  46 // Static array so we can figure out which bytecodes stop us from compiling
  47 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  48 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  49 
  50 #ifndef PRODUCT
  51 int nodes_created              = 0;
  52 int methods_parsed             = 0;
  53 int methods_seen               = 0;
  54 int blocks_parsed              = 0;
  55 int blocks_seen                = 0;
  56 
  57 int explicit_null_checks_inserted = 0;
  58 int explicit_null_checks_elided   = 0;
  59 int all_null_checks_found         = 0;
  60 int implicit_null_checks          = 0;
  61 
  62 bool Parse::BytecodeParseHistogram::_initialized = false;
  63 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  64 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  65 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  66 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  67 
  68 //------------------------------print_statistics-------------------------------
  69 void Parse::print_statistics() {
  70   tty->print_cr("--- Compiler Statistics ---");
  71   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
  72   tty->print("  Nodes created: %d", nodes_created);
  73   tty->cr();
  74   if (methods_seen != methods_parsed) {
  75     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  76   }
  77   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
  78 
  79   if (explicit_null_checks_inserted) {
  80     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,",
  81                   explicit_null_checks_inserted, explicit_null_checks_elided,
  82                   (100*explicit_null_checks_elided)/explicit_null_checks_inserted,
  83                   all_null_checks_found);
  84   }
  85   if (all_null_checks_found) {
  86     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
  87                   (100*implicit_null_checks)/all_null_checks_found);
  88   }
  89   if (SharedRuntime::_implicit_null_throws) {
  90     tty->print_cr("%d implicit null exceptions at runtime",
  91                   SharedRuntime::_implicit_null_throws);
  92   }
  93 
  94   if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
  95     BytecodeParseHistogram::print();
  96   }
  97 }
  98 #endif
  99 
 100 //------------------------------ON STACK REPLACEMENT---------------------------
 101 
 102 // Construct a node which can be used to get incoming state for
 103 // on stack replacement.
 104 Node *Parse::fetch_interpreter_state(int index,
 105                                      BasicType bt,
 106                                      Node *local_addrs,
 107                                      Node *local_addrs_base) {
 108   Node *mem = memory(Compile::AliasIdxRaw);
 109   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 110   Node *ctl = control();
 111 
 112   // Very similar to LoadNode::make, except we handle un-aligned longs and
 113   // doubles on Sparc.  Intel can handle them just fine directly.
 114   Node *l = NULL;
 115   switch (bt) {                // Signature is flattened
 116   case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 117   case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 118   case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 119   case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 120   case T_LONG:
 121   case T_DOUBLE: {
 122     // Since arguments are in reverse order, the argument address 'adr'
 123     // refers to the back half of the long/double.  Recompute adr.
 124     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 125     if (Matcher::misaligned_doubles_ok) {
 126       l = (bt == T_DOUBLE)
 127         ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
 128         : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
 129     } else {
 130       l = (bt == T_DOUBLE)
 131         ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 132         : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 133     }
 134     break;
 135   }
 136   default: ShouldNotReachHere();
 137   }
 138   return _gvn.transform(l);
 139 }
 140 
 141 // Helper routine to prevent the interpreter from handing
 142 // unexpected typestate to an OSR method.
 143 // The Node l is a value newly dug out of the interpreter frame.
 144 // The type is the type predicted by ciTypeFlow.  Note that it is
 145 // not a general type, but can only come from Type::get_typeflow_type.
 146 // The safepoint is a map which will feed an uncommon trap.
 147 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 148                                     SafePointNode* &bad_type_exit) {
 149 
 150   const TypeOopPtr* tp = type->isa_oopptr();
 151 
 152   // TypeFlow may assert null-ness if a type appears unloaded.
 153   if (type == TypePtr::NULL_PTR ||
 154       (tp != NULL && !tp->klass()->is_loaded())) {
 155     // Value must be null, not a real oop.
 156     Node* chk = _gvn.transform( new CmpPNode(l, null()) );
 157     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 158     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 159     set_control(_gvn.transform( new IfTrueNode(iff) ));
 160     Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
 161     bad_type_exit->control()->add_req(bad_type);
 162     l = null();
 163   }
 164 
 165   // Typeflow can also cut off paths from the CFG, based on
 166   // types which appear unloaded, or call sites which appear unlinked.
 167   // When paths are cut off, values at later merge points can rise
 168   // toward more specific classes.  Make sure these specific classes
 169   // are still in effect.
 170   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
 171     // TypeFlow asserted a specific object type.  Value must have that type.
 172     Node* bad_type_ctrl = NULL;
 173     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
 174     bad_type_exit->control()->add_req(bad_type_ctrl);
 175   }
 176 
 177   BasicType bt_l = _gvn.type(l)->basic_type();
 178   BasicType bt_t = type->basic_type();
 179   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 180   return l;
 181 }
 182 
 183 // Helper routine which sets up elements of the initial parser map when
 184 // performing a parse for on stack replacement.  Add values into map.
 185 // The only parameter contains the address of a interpreter arguments.
 186 void Parse::load_interpreter_state(Node* osr_buf) {
 187   int index;
 188   int max_locals = jvms()->loc_size();
 189   int max_stack  = jvms()->stk_size();
 190 
 191 
 192   // Mismatch between method and jvms can occur since map briefly held
 193   // an OSR entry state (which takes up one RawPtr word).
 194   assert(max_locals == method()->max_locals(), "sanity");
 195   assert(max_stack  >= method()->max_stack(),  "sanity");
 196   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 197   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 198 
 199   // Find the start block.
 200   Block* osr_block = start_block();
 201   assert(osr_block->start() == osr_bci(), "sanity");
 202 
 203   // Set initial BCI.
 204   set_parse_bci(osr_block->start());
 205 
 206   // Set initial stack depth.
 207   set_sp(osr_block->start_sp());
 208 
 209   // Check bailouts.  We currently do not perform on stack replacement
 210   // of loops in catch blocks or loops which branch with a non-empty stack.
 211   if (sp() != 0) {
 212     C->record_method_not_compilable("OSR starts with non-empty stack");
 213     return;
 214   }
 215   // Do not OSR inside finally clauses:
 216   if (osr_block->has_trap_at(osr_block->start())) {
 217     C->record_method_not_compilable("OSR starts with an immediate trap");
 218     return;
 219   }
 220 
 221   // Commute monitors from interpreter frame to compiler frame.
 222   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 223   int mcnt = osr_block->flow()->monitor_count();
 224   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 225   for (index = 0; index < mcnt; index++) {
 226     // Make a BoxLockNode for the monitor.
 227     Node *box = _gvn.transform(new BoxLockNode(next_monitor()));
 228 
 229 
 230     // Displaced headers and locked objects are interleaved in the
 231     // temp OSR buffer.  We only copy the locked objects out here.
 232     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 233     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 234     // Try and copy the displaced header to the BoxNode
 235     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 236 
 237 
 238     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 239 
 240     // Build a bogus FastLockNode (no code will be generated) and push the
 241     // monitor into our debug info.
 242     const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
 243     map()->push_monitor(flock);
 244 
 245     // If the lock is our method synchronization lock, tuck it away in
 246     // _sync_lock for return and rethrow exit paths.
 247     if (index == 0 && method()->is_synchronized()) {
 248       _synch_lock = flock;
 249     }
 250   }
 251 
 252   // Use the raw liveness computation to make sure that unexpected
 253   // values don't propagate into the OSR frame.
 254   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 255   if (!live_locals.is_valid()) {
 256     // Degenerate or breakpointed method.
 257     C->record_method_not_compilable("OSR in empty or breakpointed method");
 258     return;
 259   }
 260 
 261   // Extract the needed locals from the interpreter frame.
 262   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 263 
 264   // find all the locals that the interpreter thinks contain live oops
 265   const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 266   for (index = 0; index < max_locals; index++) {
 267 
 268     if (!live_locals.at(index)) {
 269       continue;
 270     }
 271 
 272     const Type *type = osr_block->local_type_at(index);
 273 
 274     if (type->isa_oopptr() != NULL) {
 275 
 276       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 277       // else we might load a stale oop if the MethodLiveness disagrees with the
 278       // result of the interpreter. If the interpreter says it is dead we agree
 279       // by making the value go to top.
 280       //
 281 
 282       if (!live_oops.at(index)) {
 283         if (C->log() != NULL) {
 284           C->log()->elem("OSR_mismatch local_index='%d'",index);
 285         }
 286         set_local(index, null());
 287         // and ignore it for the loads
 288         continue;
 289       }
 290     }
 291 
 292     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 293     if (type == Type::TOP || type == Type::HALF) {
 294       continue;
 295     }
 296     // If the type falls to bottom, then this must be a local that
 297     // is mixing ints and oops or some such.  Forcing it to top
 298     // makes it go dead.
 299     if (type == Type::BOTTOM) {
 300       continue;
 301     }
 302     // Construct code to access the appropriate local.
 303     BasicType bt = type->basic_type();
 304     if (type == TypePtr::NULL_PTR) {
 305       // Ptr types are mixed together with T_ADDRESS but NULL is
 306       // really for T_OBJECT types so correct it.
 307       bt = T_OBJECT;
 308     }
 309     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 310     set_local(index, value);
 311   }
 312 
 313   // Extract the needed stack entries from the interpreter frame.
 314   for (index = 0; index < sp(); index++) {
 315     const Type *type = osr_block->stack_type_at(index);
 316     if (type != Type::TOP) {
 317       // Currently the compiler bails out when attempting to on stack replace
 318       // at a bci with a non-empty stack.  We should not reach here.
 319       ShouldNotReachHere();
 320     }
 321   }
 322 
 323   // End the OSR migration
 324   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 325                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 326                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 327                     osr_buf);
 328 
 329   // Now that the interpreter state is loaded, make sure it will match
 330   // at execution time what the compiler is expecting now:
 331   SafePointNode* bad_type_exit = clone_map();
 332   bad_type_exit->set_control(new RegionNode(1));
 333 
 334   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 335   for (index = 0; index < max_locals; index++) {
 336     if (stopped())  break;
 337     Node* l = local(index);
 338     if (l->is_top())  continue;  // nothing here
 339     const Type *type = osr_block->local_type_at(index);
 340     if (type->isa_oopptr() != NULL) {
 341       if (!live_oops.at(index)) {
 342         // skip type check for dead oops
 343         continue;
 344       }
 345     }
 346     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 347       // In our current system it's illegal for jsr addresses to be
 348       // live into an OSR entry point because the compiler performs
 349       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 350       // case and aborts the compile if addresses are live into an OSR
 351       // entry point.  Because of that we can assume that any address
 352       // locals at the OSR entry point are dead.  Method liveness
 353       // isn't precise enought to figure out that they are dead in all
 354       // cases so simply skip checking address locals all
 355       // together. Any type check is guaranteed to fail since the
 356       // interpreter type is the result of a load which might have any
 357       // value and the expected type is a constant.
 358       continue;
 359     }
 360     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 361   }
 362 
 363   for (index = 0; index < sp(); index++) {
 364     if (stopped())  break;
 365     Node* l = stack(index);
 366     if (l->is_top())  continue;  // nothing here
 367     const Type *type = osr_block->stack_type_at(index);
 368     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 369   }
 370 
 371   if (bad_type_exit->control()->req() > 1) {
 372     // Build an uncommon trap here, if any inputs can be unexpected.
 373     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 374     record_for_igvn(bad_type_exit->control());
 375     SafePointNode* types_are_good = map();
 376     set_map(bad_type_exit);
 377     // The unexpected type happens because a new edge is active
 378     // in the CFG, which typeflow had previously ignored.
 379     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 380     // This x will be typed as Integer if notReached is not yet linked.
 381     // It could also happen due to a problem in ciTypeFlow analysis.
 382     uncommon_trap(Deoptimization::Reason_constraint,
 383                   Deoptimization::Action_reinterpret);
 384     set_map(types_are_good);
 385   }
 386 }
 387 
 388 //------------------------------Parse------------------------------------------
 389 // Main parser constructor.
 390 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
 391   : _exits(caller)
 392 {
 393   // Init some variables
 394   _caller = caller;
 395   _method = parse_method;
 396   _expected_uses = expected_uses;
 397   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 398   _wrote_final = false;
 399   _wrote_volatile = false;
 400   _wrote_stable = false;
 401   _wrote_fields = false;
 402   _alloc_with_final = NULL;
 403   _entry_bci = InvocationEntryBci;
 404   _tf = NULL;
 405   _block = NULL;
 406   _first_return = true;
 407   _replaced_nodes_for_exceptions = false;
 408   _new_idx = C->unique();
 409   debug_only(_block_count = -1);
 410   debug_only(_blocks = (Block*)-1);
 411 #ifndef PRODUCT
 412   if (PrintCompilation || PrintOpto) {
 413     // Make sure I have an inline tree, so I can print messages about it.
 414     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 415     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
 416   }
 417   _max_switch_depth = 0;
 418   _est_switch_depth = 0;
 419 #endif
 420 
 421   if (parse_method->has_reserved_stack_access()) {
 422     C->set_has_reserved_stack_access(true);
 423   }
 424 
 425   _tf = TypeFunc::make(method());
 426   _iter.reset_to_method(method());
 427   _flow = method()->get_flow_analysis();
 428   if (_flow->failing()) {
 429     C->record_method_not_compilable(_flow->failure_reason());
 430   }
 431 
 432 #ifndef PRODUCT
 433   if (_flow->has_irreducible_entry()) {
 434     C->set_parsed_irreducible_loop(true);
 435   }
 436 #endif
 437 
 438   if (_expected_uses <= 0) {
 439     _prof_factor = 1;
 440   } else {
 441     float prof_total = parse_method->interpreter_invocation_count();
 442     if (prof_total <= _expected_uses) {
 443       _prof_factor = 1;
 444     } else {
 445       _prof_factor = _expected_uses / prof_total;
 446     }
 447   }
 448 
 449   CompileLog* log = C->log();
 450   if (log != NULL) {
 451     log->begin_head("parse method='%d' uses='%f'",
 452                     log->identify(parse_method), expected_uses);
 453     if (depth() == 1 && C->is_osr_compilation()) {
 454       log->print(" osr_bci='%d'", C->entry_bci());
 455     }
 456     log->stamp();
 457     log->end_head();
 458   }
 459 
 460   // Accumulate deoptimization counts.
 461   // (The range_check and store_check counts are checked elsewhere.)
 462   ciMethodData* md = method()->method_data();
 463   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 464     uint md_count = md->trap_count(reason);
 465     if (md_count != 0) {
 466       if (md_count == md->trap_count_limit())
 467         md_count += md->overflow_trap_count();
 468       uint total_count = C->trap_count(reason);
 469       uint old_count   = total_count;
 470       total_count += md_count;
 471       // Saturate the add if it overflows.
 472       if (total_count < old_count || total_count < md_count)
 473         total_count = (uint)-1;
 474       C->set_trap_count(reason, total_count);
 475       if (log != NULL)
 476         log->elem("observe trap='%s' count='%d' total='%d'",
 477                   Deoptimization::trap_reason_name(reason),
 478                   md_count, total_count);
 479     }
 480   }
 481   // Accumulate total sum of decompilations, also.
 482   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 483 
 484   _count_invocations = C->do_count_invocations();
 485   _method_data_update = C->do_method_data_update();
 486 
 487   if (log != NULL && method()->has_exception_handlers()) {
 488     log->elem("observe that='has_exception_handlers'");
 489   }
 490 
 491   assert(InlineTree::check_can_parse(method()) == NULL, "Can not parse this method, cutout earlier");
 492   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 493 
 494   // Always register dependence if JVMTI is enabled, because
 495   // either breakpoint setting or hotswapping of methods may
 496   // cause deoptimization.
 497   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 498     C->dependencies()->assert_evol_method(method());
 499   }
 500 
 501   NOT_PRODUCT(methods_seen++);
 502 
 503   // Do some special top-level things.
 504   if (depth() == 1 && C->is_osr_compilation()) {
 505     _entry_bci = C->entry_bci();
 506     _flow = method()->get_osr_flow_analysis(osr_bci());
 507     if (_flow->failing()) {
 508       C->record_method_not_compilable(_flow->failure_reason());
 509 #ifndef PRODUCT
 510       if (PrintOpto && (Verbose || WizardMode)) {
 511         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 512         if (Verbose) {
 513           method()->print();
 514           method()->print_codes();
 515           _flow->print();
 516         }
 517       }
 518 #endif
 519     }
 520     _tf = C->tf();     // the OSR entry type is different
 521   }
 522 
 523 #ifdef ASSERT
 524   if (depth() == 1) {
 525     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 526   } else {
 527     assert(!this->is_osr_parse(), "no recursive OSR");
 528   }
 529 #endif
 530 
 531 #ifndef PRODUCT
 532   methods_parsed++;
 533   // add method size here to guarantee that inlined methods are added too
 534   if (CITime)
 535     _total_bytes_compiled += method()->code_size();
 536 
 537   show_parse_info();
 538 #endif
 539 
 540   if (failing()) {
 541     if (log)  log->done("parse");
 542     return;
 543   }
 544 
 545   gvn().set_type(root(), root()->bottom_type());
 546   gvn().transform(top());
 547 
 548   // Import the results of the ciTypeFlow.
 549   init_blocks();
 550 
 551   // Merge point for all normal exits
 552   build_exits();
 553 
 554   // Setup the initial JVM state map.
 555   SafePointNode* entry_map = create_entry_map();
 556 
 557   // Check for bailouts during map initialization
 558   if (failing() || entry_map == NULL) {
 559     if (log)  log->done("parse");
 560     return;
 561   }
 562 
 563   Node_Notes* caller_nn = C->default_node_notes();
 564   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 565   if (DebugInlinedCalls || depth() == 1) {
 566     C->set_default_node_notes(make_node_notes(caller_nn));
 567   }
 568 
 569   if (is_osr_parse()) {
 570     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 571     entry_map->set_req(TypeFunc::Parms+0, top());
 572     set_map(entry_map);
 573     load_interpreter_state(osr_buf);
 574   } else {
 575     set_map(entry_map);
 576     do_method_entry();
 577     if (depth() == 1 && C->age_code()) {
 578       decrement_age();
 579     }
 580   }
 581 
 582   if (depth() == 1 && !failing()) {
 583     if (C->clinit_barrier_on_entry()) {
 584       // Add check to deoptimize the nmethod once the holder class is fully initialized
 585       clinit_deopt();
 586     }
 587 
 588     // Add check to deoptimize the nmethod if RTM state was changed
 589     rtm_deopt();
 590   }
 591 
 592   // Check for bailouts during method entry or RTM state check setup.
 593   if (failing()) {
 594     if (log)  log->done("parse");
 595     C->set_default_node_notes(caller_nn);
 596     return;
 597   }
 598 
 599   entry_map = map();  // capture any changes performed by method setup code
 600   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 601 
 602   // We begin parsing as if we have just encountered a jump to the
 603   // method entry.
 604   Block* entry_block = start_block();
 605   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 606   set_map_clone(entry_map);
 607   merge_common(entry_block, entry_block->next_path_num());
 608 
 609 #ifndef PRODUCT
 610   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 611   set_parse_histogram( parse_histogram_obj );
 612 #endif
 613 
 614   // Parse all the basic blocks.
 615   do_all_blocks();
 616 
 617   C->set_default_node_notes(caller_nn);
 618 
 619   // Check for bailouts during conversion to graph
 620   if (failing()) {
 621     if (log)  log->done("parse");
 622     return;
 623   }
 624 
 625   // Fix up all exiting control flow.
 626   set_map(entry_map);
 627   do_exits();
 628 
 629   if (log)  log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'",
 630                       C->unique(), C->live_nodes(), C->node_arena()->used());
 631 }
 632 
 633 //---------------------------do_all_blocks-------------------------------------
 634 void Parse::do_all_blocks() {
 635   bool has_irreducible = flow()->has_irreducible_entry();
 636 
 637   // Walk over all blocks in Reverse Post-Order.
 638   while (true) {
 639     bool progress = false;
 640     for (int rpo = 0; rpo < block_count(); rpo++) {
 641       Block* block = rpo_at(rpo);
 642 
 643       if (block->is_parsed()) continue;
 644 
 645       if (!block->is_merged()) {
 646         // Dead block, no state reaches this block
 647         continue;
 648       }
 649 
 650       // Prepare to parse this block.
 651       load_state_from(block);
 652 
 653       if (stopped()) {
 654         // Block is dead.
 655         continue;
 656       }
 657 
 658       NOT_PRODUCT(blocks_parsed++);
 659 
 660       progress = true;
 661       if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) {
 662         // Not all preds have been parsed.  We must build phis everywhere.
 663         // (Note that dead locals do not get phis built, ever.)
 664         ensure_phis_everywhere();
 665 
 666         if (block->is_SEL_head()) {
 667           // Add predicate to single entry (not irreducible) loop head.
 668           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
 669           // Predicates may have been added after a dominating if
 670           if (!block->has_predicates()) {
 671             // Need correct bci for predicate.
 672             // It is fine to set it here since do_one_block() will set it anyway.
 673             set_parse_bci(block->start());
 674             add_predicate();
 675           }
 676           // Add new region for back branches.
 677           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
 678           RegionNode *r = new RegionNode(edges+1);
 679           _gvn.set_type(r, Type::CONTROL);
 680           record_for_igvn(r);
 681           r->init_req(edges, control());
 682           set_control(r);
 683           // Add new phis.
 684           ensure_phis_everywhere();
 685         }
 686 
 687         // Leave behind an undisturbed copy of the map, for future merges.
 688         set_map(clone_map());
 689       }
 690 
 691       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 692         // In the absence of irreducible loops, the Region and Phis
 693         // associated with a merge that doesn't involve a backedge can
 694         // be simplified now since the RPO parsing order guarantees
 695         // that any path which was supposed to reach here has already
 696         // been parsed or must be dead.
 697         Node* c = control();
 698         Node* result = _gvn.transform_no_reclaim(control());
 699         if (c != result && TraceOptoParse) {
 700           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 701         }
 702         if (result != top()) {
 703           record_for_igvn(result);
 704         }
 705       }
 706 
 707       // Parse the block.
 708       do_one_block();
 709 
 710       // Check for bailouts.
 711       if (failing())  return;
 712     }
 713 
 714     // with irreducible loops multiple passes might be necessary to parse everything
 715     if (!has_irreducible || !progress) {
 716       break;
 717     }
 718   }
 719 
 720 #ifndef PRODUCT
 721   blocks_seen += block_count();
 722 
 723   // Make sure there are no half-processed blocks remaining.
 724   // Every remaining unprocessed block is dead and may be ignored now.
 725   for (int rpo = 0; rpo < block_count(); rpo++) {
 726     Block* block = rpo_at(rpo);
 727     if (!block->is_parsed()) {
 728       if (TraceOptoParse) {
 729         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 730       }
 731       assert(!block->is_merged(), "no half-processed blocks");
 732     }
 733   }
 734 #endif
 735 }
 736 
 737 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) {
 738   switch (bt) {
 739   case T_BYTE:
 740     v = gvn->transform(new LShiftINode(v, gvn->intcon(24)));
 741     v = gvn->transform(new RShiftINode(v, gvn->intcon(24)));
 742     break;
 743   case T_SHORT:
 744     v = gvn->transform(new LShiftINode(v, gvn->intcon(16)));
 745     v = gvn->transform(new RShiftINode(v, gvn->intcon(16)));
 746     break;
 747   case T_CHAR:
 748     v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF)));
 749     break;
 750   case T_BOOLEAN:
 751     v = gvn->transform(new AndINode(v, gvn->intcon(0x1)));
 752     break;
 753   default:
 754     break;
 755   }
 756   return v;
 757 }
 758 
 759 //-------------------------------build_exits----------------------------------
 760 // Build normal and exceptional exit merge points.
 761 void Parse::build_exits() {
 762   // make a clone of caller to prevent sharing of side-effects
 763   _exits.set_map(_exits.clone_map());
 764   _exits.clean_stack(_exits.sp());
 765   _exits.sync_jvms();
 766 
 767   RegionNode* region = new RegionNode(1);
 768   record_for_igvn(region);
 769   gvn().set_type_bottom(region);
 770   _exits.set_control(region);
 771 
 772   // Note:  iophi and memphi are not transformed until do_exits.
 773   Node* iophi  = new PhiNode(region, Type::ABIO);
 774   Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 775   gvn().set_type_bottom(iophi);
 776   gvn().set_type_bottom(memphi);
 777   _exits.set_i_o(iophi);
 778   _exits.set_all_memory(memphi);
 779 
 780   // Add a return value to the exit state.  (Do not push it yet.)
 781   if (tf()->range()->cnt() > TypeFunc::Parms) {
 782     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 783     if (ret_type->isa_int()) {
 784       BasicType ret_bt = method()->return_type()->basic_type();
 785       if (ret_bt == T_BOOLEAN ||
 786           ret_bt == T_CHAR ||
 787           ret_bt == T_BYTE ||
 788           ret_bt == T_SHORT) {
 789         ret_type = TypeInt::INT;
 790       }
 791     }
 792 
 793     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 794     // becomes loaded during the subsequent parsing, the loaded and unloaded
 795     // types will not join when we transform and push in do_exits().
 796     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 797     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
 798       ret_type = TypeOopPtr::BOTTOM;
 799     }
 800     int         ret_size = type2size[ret_type->basic_type()];
 801     Node*       ret_phi  = new PhiNode(region, ret_type);
 802     gvn().set_type_bottom(ret_phi);
 803     _exits.ensure_stack(ret_size);
 804     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 805     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 806     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 807     // Note:  ret_phi is not yet pushed, until do_exits.
 808   }
 809 }
 810 
 811 
 812 //----------------------------build_start_state-------------------------------
 813 // Construct a state which contains only the incoming arguments from an
 814 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
 815 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 816   int        arg_size = tf->domain()->cnt();
 817   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 818   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 819   SafePointNode* map  = new SafePointNode(max_size, NULL);
 820   record_for_igvn(map);
 821   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 822   Node_Notes* old_nn = default_node_notes();
 823   if (old_nn != NULL && has_method()) {
 824     Node_Notes* entry_nn = old_nn->clone(this);
 825     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 826     entry_jvms->set_offsets(0);
 827     entry_jvms->set_bci(entry_bci());
 828     entry_nn->set_jvms(entry_jvms);
 829     set_default_node_notes(entry_nn);
 830   }
 831   uint i;
 832   for (i = 0; i < (uint)arg_size; i++) {
 833     Node* parm = initial_gvn()->transform(new ParmNode(start, i));
 834     map->init_req(i, parm);
 835     // Record all these guys for later GVN.
 836     record_for_igvn(parm);
 837   }
 838   for (; i < map->req(); i++) {
 839     map->init_req(i, top());
 840   }
 841   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 842   set_default_node_notes(old_nn);
 843   map->set_jvms(jvms);
 844   jvms->set_map(map);
 845   return jvms;
 846 }
 847 
 848 //-----------------------------make_node_notes---------------------------------
 849 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 850   if (caller_nn == NULL)  return NULL;
 851   Node_Notes* nn = caller_nn->clone(C);
 852   JVMState* caller_jvms = nn->jvms();
 853   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 854   jvms->set_offsets(0);
 855   jvms->set_bci(_entry_bci);
 856   nn->set_jvms(jvms);
 857   return nn;
 858 }
 859 
 860 
 861 //--------------------------return_values--------------------------------------
 862 void Compile::return_values(JVMState* jvms) {
 863   GraphKit kit(jvms);
 864   Node* ret = new ReturnNode(TypeFunc::Parms,
 865                              kit.control(),
 866                              kit.i_o(),
 867                              kit.reset_memory(),
 868                              kit.frameptr(),
 869                              kit.returnadr());
 870   // Add zero or 1 return values
 871   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 872   if (ret_size > 0) {
 873     kit.inc_sp(-ret_size);  // pop the return value(s)
 874     kit.sync_jvms();
 875     ret->add_req(kit.argument(0));
 876     // Note:  The second dummy edge is not needed by a ReturnNode.
 877   }
 878   // bind it to root
 879   root()->add_req(ret);
 880   record_for_igvn(ret);
 881   initial_gvn()->transform_no_reclaim(ret);
 882 }
 883 
 884 //------------------------rethrow_exceptions-----------------------------------
 885 // Bind all exception states in the list into a single RethrowNode.
 886 void Compile::rethrow_exceptions(JVMState* jvms) {
 887   GraphKit kit(jvms);
 888   if (!kit.has_exceptions())  return;  // nothing to generate
 889   // Load my combined exception state into the kit, with all phis transformed:
 890   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 891   Node* ex_oop = kit.use_exception_state(ex_map);
 892   RethrowNode* exit = new RethrowNode(kit.control(),
 893                                       kit.i_o(), kit.reset_memory(),
 894                                       kit.frameptr(), kit.returnadr(),
 895                                       // like a return but with exception input
 896                                       ex_oop);
 897   // bind to root
 898   root()->add_req(exit);
 899   record_for_igvn(exit);
 900   initial_gvn()->transform_no_reclaim(exit);
 901 }
 902 
 903 //---------------------------do_exceptions-------------------------------------
 904 // Process exceptions arising from the current bytecode.
 905 // Send caught exceptions to the proper handler within this method.
 906 // Unhandled exceptions feed into _exit.
 907 void Parse::do_exceptions() {
 908   if (!has_exceptions())  return;
 909 
 910   if (failing()) {
 911     // Pop them all off and throw them away.
 912     while (pop_exception_state() != NULL) ;
 913     return;
 914   }
 915 
 916   PreserveJVMState pjvms(this, false);
 917 
 918   SafePointNode* ex_map;
 919   while ((ex_map = pop_exception_state()) != NULL) {
 920     if (!method()->has_exception_handlers()) {
 921       // Common case:  Transfer control outward.
 922       // Doing it this early allows the exceptions to common up
 923       // even between adjacent method calls.
 924       throw_to_exit(ex_map);
 925     } else {
 926       // Have to look at the exception first.
 927       assert(stopped(), "catch_inline_exceptions trashes the map");
 928       catch_inline_exceptions(ex_map);
 929       stop_and_kill_map();      // we used up this exception state; kill it
 930     }
 931   }
 932 
 933   // We now return to our regularly scheduled program:
 934 }
 935 
 936 //---------------------------throw_to_exit-------------------------------------
 937 // Merge the given map into an exception exit from this method.
 938 // The exception exit will handle any unlocking of receiver.
 939 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 940 void Parse::throw_to_exit(SafePointNode* ex_map) {
 941   // Pop the JVMS to (a copy of) the caller.
 942   GraphKit caller;
 943   caller.set_map_clone(_caller->map());
 944   caller.set_bci(_caller->bci());
 945   caller.set_sp(_caller->sp());
 946   // Copy out the standard machine state:
 947   for (uint i = 0; i < TypeFunc::Parms; i++) {
 948     caller.map()->set_req(i, ex_map->in(i));
 949   }
 950   if (ex_map->has_replaced_nodes()) {
 951     _replaced_nodes_for_exceptions = true;
 952   }
 953   caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
 954   // ...and the exception:
 955   Node*          ex_oop        = saved_ex_oop(ex_map);
 956   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 957   // Finally, collect the new exception state in my exits:
 958   _exits.add_exception_state(caller_ex_map);
 959 }
 960 
 961 //------------------------------do_exits---------------------------------------
 962 void Parse::do_exits() {
 963   set_parse_bci(InvocationEntryBci);
 964 
 965   // Now peephole on the return bits
 966   Node* region = _exits.control();
 967   _exits.set_control(gvn().transform(region));
 968 
 969   Node* iophi = _exits.i_o();
 970   _exits.set_i_o(gvn().transform(iophi));
 971 
 972   // Figure out if we need to emit the trailing barrier. The barrier is only
 973   // needed in the constructors, and only in three cases:
 974   //
 975   // 1. The constructor wrote a final. The effects of all initializations
 976   //    must be committed to memory before any code after the constructor
 977   //    publishes the reference to the newly constructed object. Rather
 978   //    than wait for the publication, we simply block the writes here.
 979   //    Rather than put a barrier on only those writes which are required
 980   //    to complete, we force all writes to complete.
 981   //
 982   // 2. On PPC64, also add MemBarRelease for constructors which write
 983   //    volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu
 984   //    is set on PPC64, no sync instruction is issued after volatile
 985   //    stores. We want to guarantee the same behavior as on platforms
 986   //    with total store order, although this is not required by the Java
 987   //    memory model. So as with finals, we add a barrier here.
 988   //
 989   // 3. Experimental VM option is used to force the barrier if any field
 990   //    was written out in the constructor.
 991   //
 992   // "All bets are off" unless the first publication occurs after a
 993   // normal return from the constructor.  We do not attempt to detect
 994   // such unusual early publications.  But no barrier is needed on
 995   // exceptional returns, since they cannot publish normally.
 996   //
 997   if (method()->is_initializer() &&
 998         (wrote_final() ||
 999            PPC64_ONLY(wrote_volatile() ||)
1000            (AlwaysSafeConstructors && wrote_fields()))) {
1001     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
1002 
1003     // If Memory barrier is created for final fields write
1004     // and allocation node does not escape the initialize method,
1005     // then barrier introduced by allocation node can be removed.
1006     if (DoEscapeAnalysis && alloc_with_final()) {
1007       AllocateNode *alloc = AllocateNode::Ideal_allocation(alloc_with_final(), &_gvn);
1008       alloc->compute_MemBar_redundancy(method());
1009     }
1010     if (PrintOpto && (Verbose || WizardMode)) {
1011       method()->print_name();
1012       tty->print_cr(" writes finals and needs a memory barrier");
1013     }
1014   }
1015 
1016   // Any method can write a @Stable field; insert memory barriers
1017   // after those also. Can't bind predecessor allocation node (if any)
1018   // with barrier because allocation doesn't always dominate
1019   // MemBarRelease.
1020   if (wrote_stable()) {
1021     _exits.insert_mem_bar(Op_MemBarRelease);
1022     if (PrintOpto && (Verbose || WizardMode)) {
1023       method()->print_name();
1024       tty->print_cr(" writes @Stable and needs a memory barrier");
1025     }
1026   }
1027 
1028   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1029     // transform each slice of the original memphi:
1030     mms.set_memory(_gvn.transform(mms.memory()));
1031   }
1032   // Clean up input MergeMems created by transforming the slices
1033   _gvn.transform(_exits.merged_memory());
1034 
1035   if (tf()->range()->cnt() > TypeFunc::Parms) {
1036     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
1037     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
1038     if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1039       // If the type we set for the ret_phi in build_exits() is too optimistic and
1040       // the ret_phi is top now, there's an extremely small chance that it may be due to class
1041       // loading.  It could also be due to an error, so mark this method as not compilable because
1042       // otherwise this could lead to an infinite compile loop.
1043       // In any case, this code path is rarely (and never in my testing) reached.
1044       C->record_method_not_compilable("Can't determine return type.");
1045       return;
1046     }
1047     if (ret_type->isa_int()) {
1048       BasicType ret_bt = method()->return_type()->basic_type();
1049       ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1050     }
1051     _exits.push_node(ret_type->basic_type(), ret_phi);
1052   }
1053 
1054   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
1055 
1056   // Unlock along the exceptional paths.
1057   // This is done late so that we can common up equivalent exceptions
1058   // (e.g., null checks) arising from multiple points within this method.
1059   // See GraphKit::add_exception_state, which performs the commoning.
1060   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
1061 
1062   // record exit from a method if compiled while Dtrace is turned on.
1063   if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
1064     // First move the exception list out of _exits:
1065     GraphKit kit(_exits.transfer_exceptions_into_jvms());
1066     SafePointNode* normal_map = kit.map();  // keep this guy safe
1067     // Now re-collect the exceptions into _exits:
1068     SafePointNode* ex_map;
1069     while ((ex_map = kit.pop_exception_state()) != NULL) {
1070       Node* ex_oop = kit.use_exception_state(ex_map);
1071       // Force the exiting JVM state to have this method at InvocationEntryBci.
1072       // The exiting JVM state is otherwise a copy of the calling JVMS.
1073       JVMState* caller = kit.jvms();
1074       JVMState* ex_jvms = caller->clone_shallow(C);
1075       ex_jvms->set_map(kit.clone_map());
1076       ex_jvms->map()->set_jvms(ex_jvms);
1077       ex_jvms->set_bci(   InvocationEntryBci);
1078       kit.set_jvms(ex_jvms);
1079       if (do_synch) {
1080         // Add on the synchronized-method box/object combo
1081         kit.map()->push_monitor(_synch_lock);
1082         // Unlock!
1083         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1084       }
1085       if (C->env()->dtrace_method_probes()) {
1086         kit.make_dtrace_method_exit(method());
1087       }
1088       if (_replaced_nodes_for_exceptions) {
1089         kit.map()->apply_replaced_nodes(_new_idx);
1090       }
1091       // Done with exception-path processing.
1092       ex_map = kit.make_exception_state(ex_oop);
1093       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1094       // Pop the last vestige of this method:
1095       ex_map->set_jvms(caller->clone_shallow(C));
1096       ex_map->jvms()->set_map(ex_map);
1097       _exits.push_exception_state(ex_map);
1098     }
1099     assert(_exits.map() == normal_map, "keep the same return state");
1100   }
1101 
1102   {
1103     // Capture very early exceptions (receiver null checks) from caller JVMS
1104     GraphKit caller(_caller);
1105     SafePointNode* ex_map;
1106     while ((ex_map = caller.pop_exception_state()) != NULL) {
1107       _exits.add_exception_state(ex_map);
1108     }
1109   }
1110   _exits.map()->apply_replaced_nodes(_new_idx);
1111 }
1112 
1113 //-----------------------------create_entry_map-------------------------------
1114 // Initialize our parser map to contain the types at method entry.
1115 // For OSR, the map contains a single RawPtr parameter.
1116 // Initial monitor locking for sync. methods is performed by do_method_entry.
1117 SafePointNode* Parse::create_entry_map() {
1118   // Check for really stupid bail-out cases.
1119   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1120   if (len >= 32760) {
1121     C->record_method_not_compilable("too many local variables");
1122     return NULL;
1123   }
1124 
1125   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1126   _caller->map()->delete_replaced_nodes();
1127 
1128   // If this is an inlined method, we may have to do a receiver null check.
1129   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1130     GraphKit kit(_caller);
1131     kit.null_check_receiver_before_call(method());
1132     _caller = kit.transfer_exceptions_into_jvms();
1133     if (kit.stopped()) {
1134       _exits.add_exception_states_from(_caller);
1135       _exits.set_jvms(_caller);
1136       return NULL;
1137     }
1138   }
1139 
1140   assert(method() != NULL, "parser must have a method");
1141 
1142   // Create an initial safepoint to hold JVM state during parsing
1143   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1144   set_map(new SafePointNode(len, jvms));
1145   jvms->set_map(map());
1146   record_for_igvn(map());
1147   assert(jvms->endoff() == len, "correct jvms sizing");
1148 
1149   SafePointNode* inmap = _caller->map();
1150   assert(inmap != NULL, "must have inmap");
1151   // In case of null check on receiver above
1152   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1153 
1154   uint i;
1155 
1156   // Pass thru the predefined input parameters.
1157   for (i = 0; i < TypeFunc::Parms; i++) {
1158     map()->init_req(i, inmap->in(i));
1159   }
1160 
1161   if (depth() == 1) {
1162     assert(map()->memory()->Opcode() == Op_Parm, "");
1163     // Insert the memory aliasing node
1164     set_all_memory(reset_memory());
1165   }
1166   assert(merged_memory(), "");
1167 
1168   // Now add the locals which are initially bound to arguments:
1169   uint arg_size = tf()->domain()->cnt();
1170   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1171   for (i = TypeFunc::Parms; i < arg_size; i++) {
1172     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1173   }
1174 
1175   // Clear out the rest of the map (locals and stack)
1176   for (i = arg_size; i < len; i++) {
1177     map()->init_req(i, top());
1178   }
1179 
1180   SafePointNode* entry_map = stop();
1181   return entry_map;
1182 }
1183 
1184 //-----------------------------do_method_entry--------------------------------
1185 // Emit any code needed in the pseudo-block before BCI zero.
1186 // The main thing to do is lock the receiver of a synchronized method.
1187 void Parse::do_method_entry() {
1188   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1189   set_sp(0);                         // Java Stack Pointer
1190 
1191   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1192 
1193   if (C->env()->dtrace_method_probes()) {
1194     make_dtrace_method_entry(method());
1195   }
1196 
1197   // If the method is synchronized, we need to construct a lock node, attach
1198   // it to the Start node, and pin it there.
1199   if (method()->is_synchronized()) {
1200     // Insert a FastLockNode right after the Start which takes as arguments
1201     // the current thread pointer, the "this" pointer & the address of the
1202     // stack slot pair used for the lock.  The "this" pointer is a projection
1203     // off the start node, but the locking spot has to be constructed by
1204     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1205     // becomes the second argument to the FastLockNode call.  The
1206     // FastLockNode becomes the new control parent to pin it to the start.
1207 
1208     // Setup Object Pointer
1209     Node *lock_obj = NULL;
1210     if(method()->is_static()) {
1211       ciInstance* mirror = _method->holder()->java_mirror();
1212       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1213       lock_obj = makecon(t_lock);
1214     } else {                  // Else pass the "this" pointer,
1215       lock_obj = local(0);    // which is Parm0 from StartNode
1216     }
1217     // Clear out dead values from the debug info.
1218     kill_dead_locals();
1219     // Build the FastLockNode
1220     _synch_lock = shared_lock(lock_obj);
1221   }
1222 
1223   // Feed profiling data for parameters to the type system so it can
1224   // propagate it as speculative types
1225   record_profiled_parameters_for_speculation();
1226 
1227   if (depth() == 1) {
1228     increment_and_test_invocation_counter(Tier2CompileThreshold);
1229   }
1230 }
1231 
1232 //------------------------------init_blocks------------------------------------
1233 // Initialize our parser map to contain the types/monitors at method entry.
1234 void Parse::init_blocks() {
1235   // Create the blocks.
1236   _block_count = flow()->block_count();
1237   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1238 
1239   // Initialize the structs.
1240   for (int rpo = 0; rpo < block_count(); rpo++) {
1241     Block* block = rpo_at(rpo);
1242     new(block) Block(this, rpo);
1243   }
1244 
1245   // Collect predecessor and successor information.
1246   for (int rpo = 0; rpo < block_count(); rpo++) {
1247     Block* block = rpo_at(rpo);
1248     block->init_graph(this);
1249   }
1250 }
1251 
1252 //-------------------------------init_node-------------------------------------
1253 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() {
1254   _flow = outer->flow()->rpo_at(rpo);
1255   _pred_count = 0;
1256   _preds_parsed = 0;
1257   _count = 0;
1258   _is_parsed = false;
1259   _is_handler = false;
1260   _has_merged_backedge = false;
1261   _start_map = NULL;
1262   _has_predicates = false;
1263   _num_successors = 0;
1264   _all_successors = 0;
1265   _successors = NULL;
1266   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1267   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1268   assert(_live_locals.size() == 0, "sanity");
1269 
1270   // entry point has additional predecessor
1271   if (flow()->is_start())  _pred_count++;
1272   assert(flow()->is_start() == (this == outer->start_block()), "");
1273 }
1274 
1275 //-------------------------------init_graph------------------------------------
1276 void Parse::Block::init_graph(Parse* outer) {
1277   // Create the successor list for this parser block.
1278   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1279   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1280   int ns = tfs->length();
1281   int ne = tfe->length();
1282   _num_successors = ns;
1283   _all_successors = ns+ne;
1284   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1285   int p = 0;
1286   for (int i = 0; i < ns+ne; i++) {
1287     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1288     Block* block2 = outer->rpo_at(tf2->rpo());
1289     _successors[i] = block2;
1290 
1291     // Accumulate pred info for the other block, too.
1292     if (i < ns) {
1293       block2->_pred_count++;
1294     } else {
1295       block2->_is_handler = true;
1296     }
1297 
1298     #ifdef ASSERT
1299     // A block's successors must be distinguishable by BCI.
1300     // That is, no bytecode is allowed to branch to two different
1301     // clones of the same code location.
1302     for (int j = 0; j < i; j++) {
1303       Block* block1 = _successors[j];
1304       if (block1 == block2)  continue;  // duplicates are OK
1305       assert(block1->start() != block2->start(), "successors have unique bcis");
1306     }
1307     #endif
1308   }
1309 
1310   // Note: We never call next_path_num along exception paths, so they
1311   // never get processed as "ready".  Also, the input phis of exception
1312   // handlers get specially processed, so that
1313 }
1314 
1315 //---------------------------successor_for_bci---------------------------------
1316 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1317   for (int i = 0; i < all_successors(); i++) {
1318     Block* block2 = successor_at(i);
1319     if (block2->start() == bci)  return block2;
1320   }
1321   // We can actually reach here if ciTypeFlow traps out a block
1322   // due to an unloaded class, and concurrently with compilation the
1323   // class is then loaded, so that a later phase of the parser is
1324   // able to see more of the bytecode CFG.  Or, the flow pass and
1325   // the parser can have a minor difference of opinion about executability
1326   // of bytecodes.  For example, "obj.field = null" is executable even
1327   // if the field's type is an unloaded class; the flow pass used to
1328   // make a trap for such code.
1329   return NULL;
1330 }
1331 
1332 
1333 //-----------------------------stack_type_at-----------------------------------
1334 const Type* Parse::Block::stack_type_at(int i) const {
1335   return get_type(flow()->stack_type_at(i));
1336 }
1337 
1338 
1339 //-----------------------------local_type_at-----------------------------------
1340 const Type* Parse::Block::local_type_at(int i) const {
1341   // Make dead locals fall to bottom.
1342   if (_live_locals.size() == 0) {
1343     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1344     // This bitmap can be zero length if we saw a breakpoint.
1345     // In such cases, pretend they are all live.
1346     ((Block*)this)->_live_locals = live_locals;
1347   }
1348   if (_live_locals.size() > 0 && !_live_locals.at(i))
1349     return Type::BOTTOM;
1350 
1351   return get_type(flow()->local_type_at(i));
1352 }
1353 
1354 
1355 #ifndef PRODUCT
1356 
1357 //----------------------------name_for_bc--------------------------------------
1358 // helper method for BytecodeParseHistogram
1359 static const char* name_for_bc(int i) {
1360   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1361 }
1362 
1363 //----------------------------BytecodeParseHistogram------------------------------------
1364 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1365   _parser   = p;
1366   _compiler = c;
1367   if( ! _initialized ) { _initialized = true; reset(); }
1368 }
1369 
1370 //----------------------------current_count------------------------------------
1371 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1372   switch( bph_type ) {
1373   case BPH_transforms: { return _parser->gvn().made_progress(); }
1374   case BPH_values:     { return _parser->gvn().made_new_values(); }
1375   default: { ShouldNotReachHere(); return 0; }
1376   }
1377 }
1378 
1379 //----------------------------initialized--------------------------------------
1380 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1381 
1382 //----------------------------reset--------------------------------------------
1383 void Parse::BytecodeParseHistogram::reset() {
1384   int i = Bytecodes::number_of_codes;
1385   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1386 }
1387 
1388 //----------------------------set_initial_state--------------------------------
1389 // Record info when starting to parse one bytecode
1390 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1391   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1392     _initial_bytecode    = bc;
1393     _initial_node_count  = _compiler->unique();
1394     _initial_transforms  = current_count(BPH_transforms);
1395     _initial_values      = current_count(BPH_values);
1396   }
1397 }
1398 
1399 //----------------------------record_change--------------------------------
1400 // Record results of parsing one bytecode
1401 void Parse::BytecodeParseHistogram::record_change() {
1402   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1403     ++_bytecodes_parsed[_initial_bytecode];
1404     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1405     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1406     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1407   }
1408 }
1409 
1410 
1411 //----------------------------print--------------------------------------------
1412 void Parse::BytecodeParseHistogram::print(float cutoff) {
1413   ResourceMark rm;
1414   // print profile
1415   int total  = 0;
1416   int i      = 0;
1417   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1418   int abs_sum = 0;
1419   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1420   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1421   if( total == 0 ) { return; }
1422   tty->cr();
1423   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1424   tty->print_cr("relative:  percentage contribution to compiled nodes");
1425   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1426   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1427   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1428   tty->print_cr("values  :  Average number of node values improved per bytecode");
1429   tty->print_cr("name    :  Bytecode name");
1430   tty->cr();
1431   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1432   tty->print_cr("----------------------------------------------------------------------");
1433   while (--i > 0) {
1434     int       abs = _bytecodes_parsed[i];
1435     float     rel = abs * 100.0F / total;
1436     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1437     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1438     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1439     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1440     if (cutoff <= rel) {
1441       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1442       abs_sum += abs;
1443     }
1444   }
1445   tty->print_cr("----------------------------------------------------------------------");
1446   float rel_sum = abs_sum * 100.0F / total;
1447   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1448   tty->print_cr("----------------------------------------------------------------------");
1449   tty->cr();
1450 }
1451 #endif
1452 
1453 //----------------------------load_state_from----------------------------------
1454 // Load block/map/sp.  But not do not touch iter/bci.
1455 void Parse::load_state_from(Block* block) {
1456   set_block(block);
1457   // load the block's JVM state:
1458   set_map(block->start_map());
1459   set_sp( block->start_sp());
1460 }
1461 
1462 
1463 //-----------------------------record_state------------------------------------
1464 void Parse::Block::record_state(Parse* p) {
1465   assert(!is_merged(), "can only record state once, on 1st inflow");
1466   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1467   set_start_map(p->stop());
1468 }
1469 
1470 
1471 //------------------------------do_one_block-----------------------------------
1472 void Parse::do_one_block() {
1473   if (TraceOptoParse) {
1474     Block *b = block();
1475     int ns = b->num_successors();
1476     int nt = b->all_successors();
1477 
1478     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1479                   block()->rpo(), block()->start(), block()->limit());
1480     for (int i = 0; i < nt; i++) {
1481       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1482     }
1483     if (b->is_loop_head()) tty->print("  lphd");
1484     tty->cr();
1485   }
1486 
1487   assert(block()->is_merged(), "must be merged before being parsed");
1488   block()->mark_parsed();
1489 
1490   // Set iterator to start of block.
1491   iter().reset_to_bci(block()->start());
1492 
1493   CompileLog* log = C->log();
1494 
1495   // Parse bytecodes
1496   while (!stopped() && !failing()) {
1497     iter().next();
1498 
1499     // Learn the current bci from the iterator:
1500     set_parse_bci(iter().cur_bci());
1501 
1502     if (bci() == block()->limit()) {
1503       // Do not walk into the next block until directed by do_all_blocks.
1504       merge(bci());
1505       break;
1506     }
1507     assert(bci() < block()->limit(), "bci still in block");
1508 
1509     if (log != NULL) {
1510       // Output an optional context marker, to help place actions
1511       // that occur during parsing of this BC.  If there is no log
1512       // output until the next context string, this context string
1513       // will be silently ignored.
1514       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1515     }
1516 
1517     if (block()->has_trap_at(bci())) {
1518       // We must respect the flow pass's traps, because it will refuse
1519       // to produce successors for trapping blocks.
1520       int trap_index = block()->flow()->trap_index();
1521       assert(trap_index != 0, "trap index must be valid");
1522       uncommon_trap(trap_index);
1523       break;
1524     }
1525 
1526     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1527 
1528 #ifdef ASSERT
1529     int pre_bc_sp = sp();
1530     int inputs, depth;
1531     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1532     assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs);
1533 #endif //ASSERT
1534 
1535     do_one_bytecode();
1536 
1537     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1538            "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth);
1539 
1540     do_exceptions();
1541 
1542     NOT_PRODUCT( parse_histogram()->record_change(); );
1543 
1544     if (log != NULL)
1545       log->clear_context();  // skip marker if nothing was printed
1546 
1547     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1548     // successor which is typically made ready by visiting this bytecode.
1549     // If the successor has several predecessors, then it is a merge
1550     // point, starts a new basic block, and is handled like other basic blocks.
1551   }
1552 }
1553 
1554 
1555 //------------------------------merge------------------------------------------
1556 void Parse::set_parse_bci(int bci) {
1557   set_bci(bci);
1558   Node_Notes* nn = C->default_node_notes();
1559   if (nn == NULL)  return;
1560 
1561   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1562   if (!DebugInlinedCalls && depth() > 1) {
1563     return;
1564   }
1565 
1566   // Update the JVMS annotation, if present.
1567   JVMState* jvms = nn->jvms();
1568   if (jvms != NULL && jvms->bci() != bci) {
1569     // Update the JVMS.
1570     jvms = jvms->clone_shallow(C);
1571     jvms->set_bci(bci);
1572     nn->set_jvms(jvms);
1573   }
1574 }
1575 
1576 //------------------------------merge------------------------------------------
1577 // Merge the current mapping into the basic block starting at bci
1578 void Parse::merge(int target_bci) {
1579   Block* target = successor_for_bci(target_bci);
1580   if (target == NULL) { handle_missing_successor(target_bci); return; }
1581   assert(!target->is_ready(), "our arrival must be expected");
1582   int pnum = target->next_path_num();
1583   merge_common(target, pnum);
1584 }
1585 
1586 //-------------------------merge_new_path--------------------------------------
1587 // Merge the current mapping into the basic block, using a new path
1588 void Parse::merge_new_path(int target_bci) {
1589   Block* target = successor_for_bci(target_bci);
1590   if (target == NULL) { handle_missing_successor(target_bci); return; }
1591   assert(!target->is_ready(), "new path into frozen graph");
1592   int pnum = target->add_new_path();
1593   merge_common(target, pnum);
1594 }
1595 
1596 //-------------------------merge_exception-------------------------------------
1597 // Merge the current mapping into the basic block starting at bci
1598 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1599 void Parse::merge_exception(int target_bci) {
1600   assert(sp() == 1, "must have only the throw exception on the stack");
1601   Block* target = successor_for_bci(target_bci);
1602   if (target == NULL) { handle_missing_successor(target_bci); return; }
1603   assert(target->is_handler(), "exceptions are handled by special blocks");
1604   int pnum = target->add_new_path();
1605   merge_common(target, pnum);
1606 }
1607 
1608 //--------------------handle_missing_successor---------------------------------
1609 void Parse::handle_missing_successor(int target_bci) {
1610 #ifndef PRODUCT
1611   Block* b = block();
1612   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1613   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1614 #endif
1615   ShouldNotReachHere();
1616 }
1617 
1618 //--------------------------merge_common---------------------------------------
1619 void Parse::merge_common(Parse::Block* target, int pnum) {
1620   if (TraceOptoParse) {
1621     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1622   }
1623 
1624   // Zap extra stack slots to top
1625   assert(sp() == target->start_sp(), "");
1626   clean_stack(sp());
1627 
1628   if (!target->is_merged()) {   // No prior mapping at this bci
1629     if (TraceOptoParse) { tty->print(" with empty state");  }
1630 
1631     // If this path is dead, do not bother capturing it as a merge.
1632     // It is "as if" we had 1 fewer predecessors from the beginning.
1633     if (stopped()) {
1634       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1635       return;
1636     }
1637 
1638     // Make a region if we know there are multiple or unpredictable inputs.
1639     // (Also, if this is a plain fall-through, we might see another region,
1640     // which must not be allowed into this block's map.)
1641     if (pnum > PhiNode::Input         // Known multiple inputs.
1642         || target->is_handler()       // These have unpredictable inputs.
1643         || target->is_loop_head()     // Known multiple inputs
1644         || control()->is_Region()) {  // We must hide this guy.
1645 
1646       int current_bci = bci();
1647       set_parse_bci(target->start()); // Set target bci
1648       if (target->is_SEL_head()) {
1649         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1650         if (target->start() == 0) {
1651           // Add loop predicate for the special case when
1652           // there are backbranches to the method entry.
1653           add_predicate();
1654         }
1655       }
1656       // Add a Region to start the new basic block.  Phis will be added
1657       // later lazily.
1658       int edges = target->pred_count();
1659       if (edges < pnum)  edges = pnum;  // might be a new path!
1660       RegionNode *r = new RegionNode(edges+1);
1661       gvn().set_type(r, Type::CONTROL);
1662       record_for_igvn(r);
1663       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1664       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1665       r->init_req(pnum, control());
1666       set_control(r);
1667       set_parse_bci(current_bci); // Restore bci
1668     }
1669 
1670     // Convert the existing Parser mapping into a mapping at this bci.
1671     store_state_to(target);
1672     assert(target->is_merged(), "do not come here twice");
1673 
1674   } else {                      // Prior mapping at this bci
1675     if (TraceOptoParse) {  tty->print(" with previous state"); }
1676 #ifdef ASSERT
1677     if (target->is_SEL_head()) {
1678       target->mark_merged_backedge(block());
1679     }
1680 #endif
1681     // We must not manufacture more phis if the target is already parsed.
1682     bool nophi = target->is_parsed();
1683 
1684     SafePointNode* newin = map();// Hang on to incoming mapping
1685     Block* save_block = block(); // Hang on to incoming block;
1686     load_state_from(target);    // Get prior mapping
1687 
1688     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1689     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1690     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1691     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1692 
1693     // Iterate over my current mapping and the old mapping.
1694     // Where different, insert Phi functions.
1695     // Use any existing Phi functions.
1696     assert(control()->is_Region(), "must be merging to a region");
1697     RegionNode* r = control()->as_Region();
1698 
1699     // Compute where to merge into
1700     // Merge incoming control path
1701     r->init_req(pnum, newin->control());
1702 
1703     if (pnum == 1) {            // Last merge for this Region?
1704       if (!block()->flow()->is_irreducible_entry()) {
1705         Node* result = _gvn.transform_no_reclaim(r);
1706         if (r != result && TraceOptoParse) {
1707           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1708         }
1709       }
1710       record_for_igvn(r);
1711     }
1712 
1713     // Update all the non-control inputs to map:
1714     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1715     bool check_elide_phi = target->is_SEL_backedge(save_block);
1716     for (uint j = 1; j < newin->req(); j++) {
1717       Node* m = map()->in(j);   // Current state of target.
1718       Node* n = newin->in(j);   // Incoming change to target state.
1719       PhiNode* phi;
1720       if (m->is_Phi() && m->as_Phi()->region() == r)
1721         phi = m->as_Phi();
1722       else
1723         phi = NULL;
1724       if (m != n) {             // Different; must merge
1725         switch (j) {
1726         // Frame pointer and Return Address never changes
1727         case TypeFunc::FramePtr:// Drop m, use the original value
1728         case TypeFunc::ReturnAdr:
1729           break;
1730         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1731           assert(phi == NULL, "the merge contains phis, not vice versa");
1732           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1733           continue;
1734         default:                // All normal stuff
1735           if (phi == NULL) {
1736             const JVMState* jvms = map()->jvms();
1737             if (EliminateNestedLocks &&
1738                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1739               // BoxLock nodes are not commoning.
1740               // Use old BoxLock node as merged box.
1741               assert(newin->jvms()->is_monitor_box(j), "sanity");
1742               // This assert also tests that nodes are BoxLock.
1743               assert(BoxLockNode::same_slot(n, m), "sanity");
1744               C->gvn_replace_by(n, m);
1745             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1746               phi = ensure_phi(j, nophi);
1747             }
1748           }
1749           break;
1750         }
1751       }
1752       // At this point, n might be top if:
1753       //  - there is no phi (because TypeFlow detected a conflict), or
1754       //  - the corresponding control edges is top (a dead incoming path)
1755       // It is a bug if we create a phi which sees a garbage value on a live path.
1756 
1757       if (phi != NULL) {
1758         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1759         assert(phi->region() == r, "");
1760         phi->set_req(pnum, n);  // Then add 'n' to the merge
1761         if (pnum == PhiNode::Input) {
1762           // Last merge for this Phi.
1763           // So far, Phis have had a reasonable type from ciTypeFlow.
1764           // Now _gvn will join that with the meet of current inputs.
1765           // BOTTOM is never permissible here, 'cause pessimistically
1766           // Phis of pointers cannot lose the basic pointer type.
1767           debug_only(const Type* bt1 = phi->bottom_type());
1768           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1769           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1770           debug_only(const Type* bt2 = phi->bottom_type());
1771           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1772           record_for_igvn(phi);
1773         }
1774       }
1775     } // End of for all values to be merged
1776 
1777     if (pnum == PhiNode::Input &&
1778         !r->in(0)) {         // The occasional useless Region
1779       assert(control() == r, "");
1780       set_control(r->nonnull_req());
1781     }
1782 
1783     map()->merge_replaced_nodes_with(newin);
1784 
1785     // newin has been subsumed into the lazy merge, and is now dead.
1786     set_block(save_block);
1787 
1788     stop();                     // done with this guy, for now
1789   }
1790 
1791   if (TraceOptoParse) {
1792     tty->print_cr(" on path %d", pnum);
1793   }
1794 
1795   // Done with this parser state.
1796   assert(stopped(), "");
1797 }
1798 
1799 
1800 //--------------------------merge_memory_edges---------------------------------
1801 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1802   // (nophi means we must not create phis, because we already parsed here)
1803   assert(n != NULL, "");
1804   // Merge the inputs to the MergeMems
1805   MergeMemNode* m = merged_memory();
1806 
1807   assert(control()->is_Region(), "must be merging to a region");
1808   RegionNode* r = control()->as_Region();
1809 
1810   PhiNode* base = NULL;
1811   MergeMemNode* remerge = NULL;
1812   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1813     Node *p = mms.force_memory();
1814     Node *q = mms.memory2();
1815     if (mms.is_empty() && nophi) {
1816       // Trouble:  No new splits allowed after a loop body is parsed.
1817       // Instead, wire the new split into a MergeMem on the backedge.
1818       // The optimizer will sort it out, slicing the phi.
1819       if (remerge == NULL) {
1820         guarantee(base != NULL, "");
1821         assert(base->in(0) != NULL, "should not be xformed away");
1822         remerge = MergeMemNode::make(base->in(pnum));
1823         gvn().set_type(remerge, Type::MEMORY);
1824         base->set_req(pnum, remerge);
1825       }
1826       remerge->set_memory_at(mms.alias_idx(), q);
1827       continue;
1828     }
1829     assert(!q->is_MergeMem(), "");
1830     PhiNode* phi;
1831     if (p != q) {
1832       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1833     } else {
1834       if (p->is_Phi() && p->as_Phi()->region() == r)
1835         phi = p->as_Phi();
1836       else
1837         phi = NULL;
1838     }
1839     // Insert q into local phi
1840     if (phi != NULL) {
1841       assert(phi->region() == r, "");
1842       p = phi;
1843       phi->set_req(pnum, q);
1844       if (mms.at_base_memory()) {
1845         base = phi;  // delay transforming it
1846       } else if (pnum == 1) {
1847         record_for_igvn(phi);
1848         p = _gvn.transform_no_reclaim(phi);
1849       }
1850       mms.set_memory(p);// store back through the iterator
1851     }
1852   }
1853   // Transform base last, in case we must fiddle with remerging.
1854   if (base != NULL && pnum == 1) {
1855     record_for_igvn(base);
1856     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1857   }
1858 }
1859 
1860 
1861 //------------------------ensure_phis_everywhere-------------------------------
1862 void Parse::ensure_phis_everywhere() {
1863   ensure_phi(TypeFunc::I_O);
1864 
1865   // Ensure a phi on all currently known memories.
1866   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1867     ensure_memory_phi(mms.alias_idx());
1868     debug_only(mms.set_memory());  // keep the iterator happy
1869   }
1870 
1871   // Note:  This is our only chance to create phis for memory slices.
1872   // If we miss a slice that crops up later, it will have to be
1873   // merged into the base-memory phi that we are building here.
1874   // Later, the optimizer will comb out the knot, and build separate
1875   // phi-loops for each memory slice that matters.
1876 
1877   // Monitors must nest nicely and not get confused amongst themselves.
1878   // Phi-ify everything up to the monitors, though.
1879   uint monoff = map()->jvms()->monoff();
1880   uint nof_monitors = map()->jvms()->nof_monitors();
1881 
1882   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1883   bool check_elide_phi = block()->is_SEL_head();
1884   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1885     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1886       ensure_phi(i);
1887     }
1888   }
1889 
1890   // Even monitors need Phis, though they are well-structured.
1891   // This is true for OSR methods, and also for the rare cases where
1892   // a monitor object is the subject of a replace_in_map operation.
1893   // See bugs 4426707 and 5043395.
1894   for (uint m = 0; m < nof_monitors; m++) {
1895     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1896   }
1897 }
1898 
1899 
1900 //-----------------------------add_new_path------------------------------------
1901 // Add a previously unaccounted predecessor to this block.
1902 int Parse::Block::add_new_path() {
1903   // If there is no map, return the lowest unused path number.
1904   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1905 
1906   SafePointNode* map = start_map();
1907   if (!map->control()->is_Region())
1908     return pred_count()+1;  // there may be a region some day
1909   RegionNode* r = map->control()->as_Region();
1910 
1911   // Add new path to the region.
1912   uint pnum = r->req();
1913   r->add_req(NULL);
1914 
1915   for (uint i = 1; i < map->req(); i++) {
1916     Node* n = map->in(i);
1917     if (i == TypeFunc::Memory) {
1918       // Ensure a phi on all currently known memories.
1919       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1920         Node* phi = mms.memory();
1921         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1922           assert(phi->req() == pnum, "must be same size as region");
1923           phi->add_req(NULL);
1924         }
1925       }
1926     } else {
1927       if (n->is_Phi() && n->as_Phi()->region() == r) {
1928         assert(n->req() == pnum, "must be same size as region");
1929         n->add_req(NULL);
1930       }
1931     }
1932   }
1933 
1934   return pnum;
1935 }
1936 
1937 //------------------------------ensure_phi-------------------------------------
1938 // Turn the idx'th entry of the current map into a Phi
1939 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1940   SafePointNode* map = this->map();
1941   Node* region = map->control();
1942   assert(region->is_Region(), "");
1943 
1944   Node* o = map->in(idx);
1945   assert(o != NULL, "");
1946 
1947   if (o == top())  return NULL; // TOP always merges into TOP
1948 
1949   if (o->is_Phi() && o->as_Phi()->region() == region) {
1950     return o->as_Phi();
1951   }
1952 
1953   // Now use a Phi here for merging
1954   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1955   const JVMState* jvms = map->jvms();
1956   const Type* t = NULL;
1957   if (jvms->is_loc(idx)) {
1958     t = block()->local_type_at(idx - jvms->locoff());
1959   } else if (jvms->is_stk(idx)) {
1960     t = block()->stack_type_at(idx - jvms->stkoff());
1961   } else if (jvms->is_mon(idx)) {
1962     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1963     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1964   } else if ((uint)idx < TypeFunc::Parms) {
1965     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1966   } else {
1967     assert(false, "no type information for this phi");
1968   }
1969 
1970   // If the type falls to bottom, then this must be a local that
1971   // is mixing ints and oops or some such.  Forcing it to top
1972   // makes it go dead.
1973   if (t == Type::BOTTOM) {
1974     map->set_req(idx, top());
1975     return NULL;
1976   }
1977 
1978   // Do not create phis for top either.
1979   // A top on a non-null control flow must be an unused even after the.phi.
1980   if (t == Type::TOP || t == Type::HALF) {
1981     map->set_req(idx, top());
1982     return NULL;
1983   }
1984 
1985   PhiNode* phi = PhiNode::make(region, o, t);
1986   gvn().set_type(phi, t);
1987   if (C->do_escape_analysis()) record_for_igvn(phi);
1988   map->set_req(idx, phi);
1989   return phi;
1990 }
1991 
1992 //--------------------------ensure_memory_phi----------------------------------
1993 // Turn the idx'th slice of the current memory into a Phi
1994 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1995   MergeMemNode* mem = merged_memory();
1996   Node* region = control();
1997   assert(region->is_Region(), "");
1998 
1999   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2000   assert(o != NULL && o != top(), "");
2001 
2002   PhiNode* phi;
2003   if (o->is_Phi() && o->as_Phi()->region() == region) {
2004     phi = o->as_Phi();
2005     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2006       // clone the shared base memory phi to make a new memory split
2007       assert(!nocreate, "Cannot build a phi for a block already parsed.");
2008       const Type* t = phi->bottom_type();
2009       const TypePtr* adr_type = C->get_adr_type(idx);
2010       phi = phi->slice_memory(adr_type);
2011       gvn().set_type(phi, t);
2012     }
2013     return phi;
2014   }
2015 
2016   // Now use a Phi here for merging
2017   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2018   const Type* t = o->bottom_type();
2019   const TypePtr* adr_type = C->get_adr_type(idx);
2020   phi = PhiNode::make(region, o, t, adr_type);
2021   gvn().set_type(phi, t);
2022   if (idx == Compile::AliasIdxBot)
2023     mem->set_base_memory(phi);
2024   else
2025     mem->set_memory_at(idx, phi);
2026   return phi;
2027 }
2028 
2029 //------------------------------call_register_finalizer-----------------------
2030 // Check the klass of the receiver and call register_finalizer if the
2031 // class need finalization.
2032 void Parse::call_register_finalizer() {
2033   Node* receiver = local(0);
2034   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
2035          "must have non-null instance type");
2036 
2037   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
2038   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
2039     // The type isn't known exactly so see if CHA tells us anything.
2040     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2041     if (!Dependencies::has_finalizable_subclass(ik)) {
2042       // No finalizable subclasses so skip the dynamic check.
2043       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
2044       return;
2045     }
2046   }
2047 
2048   // Insert a dynamic test for whether the instance needs
2049   // finalization.  In general this will fold up since the concrete
2050   // class is often visible so the access flags are constant.
2051   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
2052   Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
2053 
2054   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
2055   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
2056 
2057   Node* mask  = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
2058   Node* check = _gvn.transform(new CmpINode(mask, intcon(0)));
2059   Node* test  = _gvn.transform(new BoolNode(check, BoolTest::ne));
2060 
2061   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
2062 
2063   RegionNode* result_rgn = new RegionNode(3);
2064   record_for_igvn(result_rgn);
2065 
2066   Node *skip_register = _gvn.transform(new IfFalseNode(iff));
2067   result_rgn->init_req(1, skip_register);
2068 
2069   Node *needs_register = _gvn.transform(new IfTrueNode(iff));
2070   set_control(needs_register);
2071   if (stopped()) {
2072     // There is no slow path.
2073     result_rgn->init_req(2, top());
2074   } else {
2075     Node *call = make_runtime_call(RC_NO_LEAF,
2076                                    OptoRuntime::register_finalizer_Type(),
2077                                    OptoRuntime::register_finalizer_Java(),
2078                                    NULL, TypePtr::BOTTOM,
2079                                    receiver);
2080     make_slow_call_ex(call, env()->Throwable_klass(), true);
2081 
2082     Node* fast_io  = call->in(TypeFunc::I_O);
2083     Node* fast_mem = call->in(TypeFunc::Memory);
2084     // These two phis are pre-filled with copies of of the fast IO and Memory
2085     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2086     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2087 
2088     result_rgn->init_req(2, control());
2089     io_phi    ->init_req(2, i_o());
2090     mem_phi   ->init_req(2, reset_memory());
2091 
2092     set_all_memory( _gvn.transform(mem_phi) );
2093     set_i_o(        _gvn.transform(io_phi) );
2094   }
2095 
2096   set_control( _gvn.transform(result_rgn) );
2097 }
2098 
2099 // Add check to deoptimize once holder klass is fully initialized.
2100 void Parse::clinit_deopt() {
2101   assert(C->has_method(), "only for normal compilations");
2102   assert(depth() == 1, "only for main compiled method");
2103   assert(is_normal_parse(), "no barrier needed on osr entry");
2104   assert(!method()->holder()->is_not_initialized(), "initialization should have been started");
2105 
2106   set_parse_bci(0);
2107 
2108   Node* holder = makecon(TypeKlassPtr::make(method()->holder()));
2109   guard_klass_being_initialized(holder);
2110 }
2111 
2112 // Add check to deoptimize if RTM state is not ProfileRTM
2113 void Parse::rtm_deopt() {
2114 #if INCLUDE_RTM_OPT
2115   if (C->profile_rtm()) {
2116     assert(C->has_method(), "only for normal compilations");
2117     assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
2118     assert(depth() == 1, "generate check only for main compiled method");
2119 
2120     // Set starting bci for uncommon trap.
2121     set_parse_bci(is_osr_parse() ? osr_bci() : 0);
2122 
2123     // Load the rtm_state from the MethodData.
2124     const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data());
2125     Node* mdo = makecon(adr_type);
2126     int offset = MethodData::rtm_state_offset_in_bytes();
2127     Node* adr_node = basic_plus_adr(mdo, mdo, offset);
2128     Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2129 
2130     // Separate Load from Cmp by Opaque.
2131     // In expand_macro_nodes() it will be replaced either
2132     // with this load when there are locks in the code
2133     // or with ProfileRTM (cmp->in(2)) otherwise so that
2134     // the check will fold.
2135     Node* profile_state = makecon(TypeInt::make(ProfileRTM));
2136     Node* opq   = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
2137     Node* chk   = _gvn.transform( new CmpINode(opq, profile_state) );
2138     Node* tst   = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
2139     // Branch to failure if state was changed
2140     { BuildCutout unless(this, tst, PROB_ALWAYS);
2141       uncommon_trap(Deoptimization::Reason_rtm_state_change,
2142                     Deoptimization::Action_make_not_entrant);
2143     }
2144   }
2145 #endif
2146 }
2147 
2148 void Parse::decrement_age() {
2149   MethodCounters* mc = method()->ensure_method_counters();
2150   if (mc == NULL) {
2151     C->record_failure("Must have MCs");
2152     return;
2153   }
2154   assert(!is_osr_parse(), "Not doing this for OSRs");
2155 
2156   // Set starting bci for uncommon trap.
2157   set_parse_bci(0);
2158 
2159   const TypePtr* adr_type = TypeRawPtr::make((address)mc);
2160   Node* mc_adr = makecon(adr_type);
2161   Node* cnt_adr = basic_plus_adr(mc_adr, mc_adr, in_bytes(MethodCounters::nmethod_age_offset()));
2162   Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2163   Node* decr = _gvn.transform(new SubINode(cnt, makecon(TypeInt::ONE)));
2164   store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered);
2165   Node *chk   = _gvn.transform(new CmpINode(decr, makecon(TypeInt::ZERO)));
2166   Node* tst   = _gvn.transform(new BoolNode(chk, BoolTest::gt));
2167   { BuildCutout unless(this, tst, PROB_ALWAYS);
2168     uncommon_trap(Deoptimization::Reason_tenured,
2169                   Deoptimization::Action_make_not_entrant);
2170   }
2171 }
2172 
2173 //------------------------------return_current---------------------------------
2174 // Append current _map to _exit_return
2175 void Parse::return_current(Node* value) {
2176   if (RegisterFinalizersAtInit &&
2177       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2178     call_register_finalizer();
2179   }
2180 
2181   // Do not set_parse_bci, so that return goo is credited to the return insn.
2182   set_bci(InvocationEntryBci);
2183   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2184     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2185   }
2186   if (C->env()->dtrace_method_probes()) {
2187     make_dtrace_method_exit(method());
2188   }
2189   SafePointNode* exit_return = _exits.map();
2190   exit_return->in( TypeFunc::Control  )->add_req( control() );
2191   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2192   Node *mem = exit_return->in( TypeFunc::Memory   );
2193   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2194     if (mms.is_empty()) {
2195       // get a copy of the base memory, and patch just this one input
2196       const TypePtr* adr_type = mms.adr_type(C);
2197       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2198       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2199       gvn().set_type_bottom(phi);
2200       phi->del_req(phi->req()-1);  // prepare to re-patch
2201       mms.set_memory(phi);
2202     }
2203     mms.memory()->add_req(mms.memory2());
2204   }
2205 
2206   // frame pointer is always same, already captured
2207   if (value != NULL) {
2208     // If returning oops to an interface-return, there is a silent free
2209     // cast from oop to interface allowed by the Verifier.  Make it explicit
2210     // here.
2211     Node* phi = _exits.argument(0);
2212     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2213     if (tr && tr->klass()->is_loaded() &&
2214         tr->klass()->is_interface()) {
2215       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2216       if (tp && tp->klass()->is_loaded() &&
2217           !tp->klass()->is_interface()) {
2218         // sharpen the type eagerly; this eases certain assert checking
2219         if (tp->higher_equal(TypeInstPtr::NOTNULL))
2220           tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2221         value = _gvn.transform(new CheckCastPPNode(0, value, tr));
2222       }
2223     } else {
2224       // Also handle returns of oop-arrays to an arrays-of-interface return
2225       const TypeInstPtr* phi_tip;
2226       const TypeInstPtr* val_tip;
2227       Type::get_arrays_base_elements(phi->bottom_type(), value->bottom_type(), &phi_tip, &val_tip);
2228       if (phi_tip != NULL && phi_tip->is_loaded() && phi_tip->klass()->is_interface() &&
2229           val_tip != NULL && val_tip->is_loaded() && !val_tip->klass()->is_interface()) {
2230         value = _gvn.transform(new CheckCastPPNode(0, value, phi->bottom_type()));
2231       }
2232     }
2233     phi->add_req(value);
2234   }
2235 
2236   if (_first_return) {
2237     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2238     _first_return = false;
2239   } else {
2240     _exits.map()->merge_replaced_nodes_with(map());
2241   }
2242 
2243   stop_and_kill_map();          // This CFG path dies here
2244 }
2245 
2246 
2247 //------------------------------add_safepoint----------------------------------
2248 void Parse::add_safepoint() {
2249   // See if we can avoid this safepoint.  No need for a SafePoint immediately
2250   // after a Call (except Leaf Call) or another SafePoint.
2251   Node *proj = control();
2252   bool add_poll_param = SafePointNode::needs_polling_address_input();
2253   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2254   if( proj->is_Proj() ) {
2255     Node *n0 = proj->in(0);
2256     if( n0->is_Catch() ) {
2257       n0 = n0->in(0)->in(0);
2258       assert( n0->is_Call(), "expect a call here" );
2259     }
2260     if( n0->is_Call() ) {
2261       if( n0->as_Call()->guaranteed_safepoint() )
2262         return;
2263     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2264       return;
2265     }
2266   }
2267 
2268   // Clear out dead values from the debug info.
2269   kill_dead_locals();
2270 
2271   // Clone the JVM State
2272   SafePointNode *sfpnt = new SafePointNode(parms, NULL);
2273 
2274   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2275   // SafePoint we need our GC state to be safe; i.e. we need all our current
2276   // write barriers (card marks) to not float down after the SafePoint so we
2277   // must read raw memory.  Likewise we need all oop stores to match the card
2278   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2279   // state on a deopt).
2280 
2281   // We do not need to WRITE the memory state after a SafePoint.  The control
2282   // edge will keep card-marks and oop-stores from floating up from below a
2283   // SafePoint and our true dependency added here will keep them from floating
2284   // down below a SafePoint.
2285 
2286   // Clone the current memory state
2287   Node* mem = MergeMemNode::make(map()->memory());
2288 
2289   mem = _gvn.transform(mem);
2290 
2291   // Pass control through the safepoint
2292   sfpnt->init_req(TypeFunc::Control  , control());
2293   // Fix edges normally used by a call
2294   sfpnt->init_req(TypeFunc::I_O      , top() );
2295   sfpnt->init_req(TypeFunc::Memory   , mem   );
2296   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2297   sfpnt->init_req(TypeFunc::FramePtr , top() );
2298 
2299   // Create a node for the polling address
2300   if( add_poll_param ) {
2301     Node *polladr;
2302     if (SafepointMechanism::uses_thread_local_poll()) {
2303       Node *thread = _gvn.transform(new ThreadLocalNode());
2304       Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(Thread::polling_page_offset())));
2305       polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
2306     } else {
2307       polladr = ConPNode::make((address)os::get_polling_page());
2308     }
2309     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2310   }
2311 
2312   // Fix up the JVM State edges
2313   add_safepoint_edges(sfpnt);
2314   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2315   set_control(transformed_sfpnt);
2316 
2317   // Provide an edge from root to safepoint.  This makes the safepoint
2318   // appear useful until the parse has completed.
2319   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2320     assert(C->root() != NULL, "Expect parse is still valid");
2321     C->root()->add_prec(transformed_sfpnt);
2322   }
2323 }
2324 
2325 #ifndef PRODUCT
2326 //------------------------show_parse_info--------------------------------------
2327 void Parse::show_parse_info() {
2328   InlineTree* ilt = NULL;
2329   if (C->ilt() != NULL) {
2330     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2331     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2332   }
2333   if (PrintCompilation && Verbose) {
2334     if (depth() == 1) {
2335       if( ilt->count_inlines() ) {
2336         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2337                      ilt->count_inline_bcs());
2338         tty->cr();
2339       }
2340     } else {
2341       if (method()->is_synchronized())         tty->print("s");
2342       if (method()->has_exception_handlers())  tty->print("!");
2343       // Check this is not the final compiled version
2344       if (C->trap_can_recompile()) {
2345         tty->print("-");
2346       } else {
2347         tty->print(" ");
2348       }
2349       method()->print_short_name();
2350       if (is_osr_parse()) {
2351         tty->print(" @ %d", osr_bci());
2352       }
2353       tty->print(" (%d bytes)",method()->code_size());
2354       if (ilt->count_inlines()) {
2355         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2356                    ilt->count_inline_bcs());
2357       }
2358       tty->cr();
2359     }
2360   }
2361   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2362     // Print that we succeeded; suppress this message on the first osr parse.
2363 
2364     if (method()->is_synchronized())         tty->print("s");
2365     if (method()->has_exception_handlers())  tty->print("!");
2366     // Check this is not the final compiled version
2367     if (C->trap_can_recompile() && depth() == 1) {
2368       tty->print("-");
2369     } else {
2370       tty->print(" ");
2371     }
2372     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2373     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2374     method()->print_short_name();
2375     if (is_osr_parse()) {
2376       tty->print(" @ %d", osr_bci());
2377     }
2378     if (ilt->caller_bci() != -1) {
2379       tty->print(" @ %d", ilt->caller_bci());
2380     }
2381     tty->print(" (%d bytes)",method()->code_size());
2382     if (ilt->count_inlines()) {
2383       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2384                  ilt->count_inline_bcs());
2385     }
2386     tty->cr();
2387   }
2388 }
2389 
2390 
2391 //------------------------------dump-------------------------------------------
2392 // Dump information associated with the bytecodes of current _method
2393 void Parse::dump() {
2394   if( method() != NULL ) {
2395     // Iterate over bytecodes
2396     ciBytecodeStream iter(method());
2397     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2398       dump_bci( iter.cur_bci() );
2399       tty->cr();
2400     }
2401   }
2402 }
2403 
2404 // Dump information associated with a byte code index, 'bci'
2405 void Parse::dump_bci(int bci) {
2406   // Output info on merge-points, cloning, and within _jsr..._ret
2407   // NYI
2408   tty->print(" bci:%d", bci);
2409 }
2410 
2411 #endif