rev 55858 : 8228649: [PPC64] SA reads wrong slots from interpreter frames Summary: Make frame layout consistent between dbg and product build and implement offsets accordingly. Reviewed-by: goetz, gromero
1 /* 2 * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2012, 2018 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_ppc.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "prims/jvmtiThreadState.hpp" 34 #include "runtime/frame.inline.hpp" 35 #include "runtime/safepointMechanism.hpp" 36 #include "runtime/sharedRuntime.hpp" 37 38 // Implementation of InterpreterMacroAssembler. 39 40 // This file specializes the assembler with interpreter-specific macros. 41 42 #ifdef PRODUCT 43 #define BLOCK_COMMENT(str) // nothing 44 #else 45 #define BLOCK_COMMENT(str) block_comment(str) 46 #endif 47 48 void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) { 49 address exception_entry = Interpreter::throw_NullPointerException_entry(); 50 MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry); 51 } 52 53 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) { 54 assert(entry, "Entry must have been generated by now"); 55 if (is_within_range_of_b(entry, pc())) { 56 b(entry); 57 } else { 58 load_const_optimized(Rscratch, entry, R0); 59 mtctr(Rscratch); 60 bctr(); 61 } 62 } 63 64 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) { 65 Register bytecode = R12_scratch2; 66 if (bcp_incr != 0) { 67 lbzu(bytecode, bcp_incr, R14_bcp); 68 } else { 69 lbz(bytecode, 0, R14_bcp); 70 } 71 72 dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state), generate_poll); 73 } 74 75 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 76 // Load current bytecode. 77 Register bytecode = R12_scratch2; 78 lbz(bytecode, 0, R14_bcp); 79 dispatch_Lbyte_code(state, bytecode, table); 80 } 81 82 // Dispatch code executed in the prolog of a bytecode which does not do it's 83 // own dispatch. The dispatch address is computed and placed in R24_dispatch_addr. 84 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) { 85 Register bytecode = R12_scratch2; 86 lbz(bytecode, bcp_incr, R14_bcp); 87 88 load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state)); 89 90 sldi(bytecode, bytecode, LogBytesPerWord); 91 ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode); 92 } 93 94 // Dispatch code executed in the epilog of a bytecode which does not do it's 95 // own dispatch. The dispatch address in R24_dispatch_addr is used for the 96 // dispatch. 97 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) { 98 if (bcp_incr) { addi(R14_bcp, R14_bcp, bcp_incr); } 99 mtctr(R24_dispatch_addr); 100 bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable); 101 } 102 103 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) { 104 assert(scratch_reg != R0, "can't use R0 as scratch_reg here"); 105 if (JvmtiExport::can_pop_frame()) { 106 Label L; 107 108 // Check the "pending popframe condition" flag in the current thread. 109 lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); 110 111 // Initiate popframe handling only if it is not already being 112 // processed. If the flag has the popframe_processing bit set, it 113 // means that this code is called *during* popframe handling - we 114 // don't want to reenter. 115 andi_(R0, scratch_reg, JavaThread::popframe_pending_bit); 116 beq(CCR0, L); 117 118 andi_(R0, scratch_reg, JavaThread::popframe_processing_bit); 119 bne(CCR0, L); 120 121 // Call the Interpreter::remove_activation_preserving_args_entry() 122 // func to get the address of the same-named entrypoint in the 123 // generated interpreter code. 124 #if defined(ABI_ELFv2) 125 call_c(CAST_FROM_FN_PTR(address, 126 Interpreter::remove_activation_preserving_args_entry), 127 relocInfo::none); 128 #else 129 call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, 130 Interpreter::remove_activation_preserving_args_entry), 131 relocInfo::none); 132 #endif 133 134 // Jump to Interpreter::_remove_activation_preserving_args_entry. 135 mtctr(R3_RET); 136 bctr(); 137 138 align(32, 12); 139 bind(L); 140 } 141 } 142 143 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) { 144 const Register Rthr_state_addr = scratch_reg; 145 if (JvmtiExport::can_force_early_return()) { 146 Label Lno_early_ret; 147 ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); 148 cmpdi(CCR0, Rthr_state_addr, 0); 149 beq(CCR0, Lno_early_ret); 150 151 lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr); 152 cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending); 153 bne(CCR0, Lno_early_ret); 154 155 // Jump to Interpreter::_earlyret_entry. 156 lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr); 157 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry)); 158 mtlr(R3_RET); 159 blr(); 160 161 align(32, 12); 162 bind(Lno_early_ret); 163 } 164 } 165 166 void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) { 167 const Register RjvmtiState = Rscratch1; 168 const Register Rscratch2 = R0; 169 170 ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); 171 li(Rscratch2, 0); 172 173 switch (state) { 174 case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState); 175 std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState); 176 break; 177 case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 178 break; 179 case btos: // fall through 180 case ztos: // fall through 181 case ctos: // fall through 182 case stos: // fall through 183 case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 184 break; 185 case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 186 break; 187 case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 188 break; 189 case vtos: break; 190 default : ShouldNotReachHere(); 191 } 192 193 // Clean up tos value in the jvmti thread state. 194 std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 195 // Set tos state field to illegal value. 196 li(Rscratch2, ilgl); 197 stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState); 198 } 199 200 // Common code to dispatch and dispatch_only. 201 // Dispatch value in Lbyte_code and increment Lbcp. 202 203 void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) { 204 address table_base = (address)Interpreter::dispatch_table((TosState)0); 205 intptr_t table_offs = (intptr_t)table - (intptr_t)table_base; 206 if (is_simm16(table_offs)) { 207 addi(dst, R25_templateTableBase, (int)table_offs); 208 } else { 209 load_const_optimized(dst, table, R0); 210 } 211 } 212 213 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode, 214 address* table, bool generate_poll) { 215 assert_different_registers(bytecode, R11_scratch1); 216 217 // Calc dispatch table address. 218 load_dispatch_table(R11_scratch1, table); 219 220 if (SafepointMechanism::uses_thread_local_poll() && generate_poll) { 221 address *sfpt_tbl = Interpreter::safept_table(state); 222 if (table != sfpt_tbl) { 223 Label dispatch; 224 ld(R0, in_bytes(Thread::polling_page_offset()), R16_thread); 225 // Armed page has poll_bit set, if poll bit is cleared just continue. 226 andi_(R0, R0, SafepointMechanism::poll_bit()); 227 beq(CCR0, dispatch); 228 load_dispatch_table(R11_scratch1, sfpt_tbl); 229 align(32, 16); 230 bind(dispatch); 231 } 232 } 233 234 sldi(R12_scratch2, bytecode, LogBytesPerWord); 235 ldx(R11_scratch1, R11_scratch1, R12_scratch2); 236 237 // Jump off! 238 mtctr(R11_scratch1); 239 bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable); 240 } 241 242 void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) { 243 sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize); 244 ldx(Rrecv_dst, Rrecv_dst, R15_esp); 245 } 246 247 // helpers for expression stack 248 249 void InterpreterMacroAssembler::pop_i(Register r) { 250 lwzu(r, Interpreter::stackElementSize, R15_esp); 251 } 252 253 void InterpreterMacroAssembler::pop_ptr(Register r) { 254 ldu(r, Interpreter::stackElementSize, R15_esp); 255 } 256 257 void InterpreterMacroAssembler::pop_l(Register r) { 258 ld(r, Interpreter::stackElementSize, R15_esp); 259 addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize); 260 } 261 262 void InterpreterMacroAssembler::pop_f(FloatRegister f) { 263 lfsu(f, Interpreter::stackElementSize, R15_esp); 264 } 265 266 void InterpreterMacroAssembler::pop_d(FloatRegister f) { 267 lfd(f, Interpreter::stackElementSize, R15_esp); 268 addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize); 269 } 270 271 void InterpreterMacroAssembler::push_i(Register r) { 272 stw(r, 0, R15_esp); 273 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 274 } 275 276 void InterpreterMacroAssembler::push_ptr(Register r) { 277 std(r, 0, R15_esp); 278 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 279 } 280 281 void InterpreterMacroAssembler::push_l(Register r) { 282 // Clear unused slot. 283 load_const_optimized(R0, 0L); 284 std(R0, 0, R15_esp); 285 std(r, - Interpreter::stackElementSize, R15_esp); 286 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 287 } 288 289 void InterpreterMacroAssembler::push_f(FloatRegister f) { 290 stfs(f, 0, R15_esp); 291 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 292 } 293 294 void InterpreterMacroAssembler::push_d(FloatRegister f) { 295 stfd(f, - Interpreter::stackElementSize, R15_esp); 296 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 297 } 298 299 void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) { 300 std(first, 0, R15_esp); 301 std(second, -Interpreter::stackElementSize, R15_esp); 302 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 303 } 304 305 void InterpreterMacroAssembler::move_l_to_d(Register l, FloatRegister d) { 306 if (VM_Version::has_mtfprd()) { 307 mtfprd(d, l); 308 } else { 309 std(l, 0, R15_esp); 310 lfd(d, 0, R15_esp); 311 } 312 } 313 314 void InterpreterMacroAssembler::move_d_to_l(FloatRegister d, Register l) { 315 if (VM_Version::has_mtfprd()) { 316 mffprd(l, d); 317 } else { 318 stfd(d, 0, R15_esp); 319 ld(l, 0, R15_esp); 320 } 321 } 322 323 void InterpreterMacroAssembler::push(TosState state) { 324 switch (state) { 325 case atos: push_ptr(); break; 326 case btos: 327 case ztos: 328 case ctos: 329 case stos: 330 case itos: push_i(); break; 331 case ltos: push_l(); break; 332 case ftos: push_f(); break; 333 case dtos: push_d(); break; 334 case vtos: /* nothing to do */ break; 335 default : ShouldNotReachHere(); 336 } 337 } 338 339 void InterpreterMacroAssembler::pop(TosState state) { 340 switch (state) { 341 case atos: pop_ptr(); break; 342 case btos: 343 case ztos: 344 case ctos: 345 case stos: 346 case itos: pop_i(); break; 347 case ltos: pop_l(); break; 348 case ftos: pop_f(); break; 349 case dtos: pop_d(); break; 350 case vtos: /* nothing to do */ break; 351 default : ShouldNotReachHere(); 352 } 353 verify_oop(R17_tos, state); 354 } 355 356 void InterpreterMacroAssembler::empty_expression_stack() { 357 addi(R15_esp, R26_monitor, - Interpreter::stackElementSize); 358 } 359 360 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int bcp_offset, 361 Register Rdst, 362 signedOrNot is_signed) { 363 #if defined(VM_LITTLE_ENDIAN) 364 if (bcp_offset) { 365 load_const_optimized(Rdst, bcp_offset); 366 lhbrx(Rdst, R14_bcp, Rdst); 367 } else { 368 lhbrx(Rdst, R14_bcp); 369 } 370 if (is_signed == Signed) { 371 extsh(Rdst, Rdst); 372 } 373 #else 374 // Read Java big endian format. 375 if (is_signed == Signed) { 376 lha(Rdst, bcp_offset, R14_bcp); 377 } else { 378 lhz(Rdst, bcp_offset, R14_bcp); 379 } 380 #endif 381 } 382 383 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int bcp_offset, 384 Register Rdst, 385 signedOrNot is_signed) { 386 #if defined(VM_LITTLE_ENDIAN) 387 if (bcp_offset) { 388 load_const_optimized(Rdst, bcp_offset); 389 lwbrx(Rdst, R14_bcp, Rdst); 390 } else { 391 lwbrx(Rdst, R14_bcp); 392 } 393 if (is_signed == Signed) { 394 extsw(Rdst, Rdst); 395 } 396 #else 397 // Read Java big endian format. 398 if (bcp_offset & 3) { // Offset unaligned? 399 load_const_optimized(Rdst, bcp_offset); 400 if (is_signed == Signed) { 401 lwax(Rdst, R14_bcp, Rdst); 402 } else { 403 lwzx(Rdst, R14_bcp, Rdst); 404 } 405 } else { 406 if (is_signed == Signed) { 407 lwa(Rdst, bcp_offset, R14_bcp); 408 } else { 409 lwz(Rdst, bcp_offset, R14_bcp); 410 } 411 } 412 #endif 413 } 414 415 416 // Load the constant pool cache index from the bytecode stream. 417 // 418 // Kills / writes: 419 // - Rdst, Rscratch 420 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset, 421 size_t index_size) { 422 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 423 // Cache index is always in the native format, courtesy of Rewriter. 424 if (index_size == sizeof(u2)) { 425 lhz(Rdst, bcp_offset, R14_bcp); 426 } else if (index_size == sizeof(u4)) { 427 if (bcp_offset & 3) { 428 load_const_optimized(Rdst, bcp_offset); 429 lwax(Rdst, R14_bcp, Rdst); 430 } else { 431 lwa(Rdst, bcp_offset, R14_bcp); 432 } 433 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 434 nand(Rdst, Rdst, Rdst); // convert to plain index 435 } else if (index_size == sizeof(u1)) { 436 lbz(Rdst, bcp_offset, R14_bcp); 437 } else { 438 ShouldNotReachHere(); 439 } 440 // Rdst now contains cp cache index. 441 } 442 443 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, int bcp_offset, 444 size_t index_size) { 445 get_cache_index_at_bcp(cache, bcp_offset, index_size); 446 sldi(cache, cache, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord)); 447 add(cache, R27_constPoolCache, cache); 448 } 449 450 // Load 4-byte signed or unsigned integer in Java format (that is, big-endian format) 451 // from (Rsrc)+offset. 452 void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset, 453 signedOrNot is_signed) { 454 #if defined(VM_LITTLE_ENDIAN) 455 if (offset) { 456 load_const_optimized(Rdst, offset); 457 lwbrx(Rdst, Rdst, Rsrc); 458 } else { 459 lwbrx(Rdst, Rsrc); 460 } 461 if (is_signed == Signed) { 462 extsw(Rdst, Rdst); 463 } 464 #else 465 if (is_signed == Signed) { 466 lwa(Rdst, offset, Rsrc); 467 } else { 468 lwz(Rdst, offset, Rsrc); 469 } 470 #endif 471 } 472 473 // Load object from cpool->resolved_references(index). 474 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index, Label *L_handle_null) { 475 assert_different_registers(result, index); 476 get_constant_pool(result); 477 478 // Convert from field index to resolved_references() index and from 479 // word index to byte offset. Since this is a java object, it can be compressed. 480 Register tmp = index; // reuse 481 sldi(tmp, index, LogBytesPerHeapOop); 482 // Load pointer for resolved_references[] objArray. 483 ld(result, ConstantPool::cache_offset_in_bytes(), result); 484 ld(result, ConstantPoolCache::resolved_references_offset_in_bytes(), result); 485 resolve_oop_handle(result); 486 #ifdef ASSERT 487 Label index_ok; 488 lwa(R0, arrayOopDesc::length_offset_in_bytes(), result); 489 sldi(R0, R0, LogBytesPerHeapOop); 490 cmpd(CCR0, tmp, R0); 491 blt(CCR0, index_ok); 492 stop("resolved reference index out of bounds", 0x09256); 493 bind(index_ok); 494 #endif 495 // Add in the index. 496 add(result, tmp, result); 497 load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, tmp, R0, false, 0, L_handle_null); 498 } 499 500 // load cpool->resolved_klass_at(index) 501 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register Rcpool, Register Roffset, Register Rklass) { 502 // int value = *(Rcpool->int_at_addr(which)); 503 // int resolved_klass_index = extract_low_short_from_int(value); 504 add(Roffset, Rcpool, Roffset); 505 #if defined(VM_LITTLE_ENDIAN) 506 lhz(Roffset, sizeof(ConstantPool), Roffset); // Roffset = resolved_klass_index 507 #else 508 lhz(Roffset, sizeof(ConstantPool) + 2, Roffset); // Roffset = resolved_klass_index 509 #endif 510 511 ld(Rklass, ConstantPool::resolved_klasses_offset_in_bytes(), Rcpool); // Rklass = Rcpool->_resolved_klasses 512 513 sldi(Roffset, Roffset, LogBytesPerWord); 514 addi(Roffset, Roffset, Array<Klass*>::base_offset_in_bytes()); 515 isync(); // Order load of instance Klass wrt. tags. 516 ldx(Rklass, Rklass, Roffset); 517 } 518 519 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 520 Register cache, 521 Register method) { 522 const int method_offset = in_bytes( 523 ConstantPoolCache::base_offset() + 524 ((byte_no == TemplateTable::f2_byte) 525 ? ConstantPoolCacheEntry::f2_offset() 526 : ConstantPoolCacheEntry::f1_offset())); 527 528 ld(method, method_offset, cache); // get f1 Method* 529 } 530 531 // Generate a subtype check: branch to ok_is_subtype if sub_klass is 532 // a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2. 533 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1, 534 Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) { 535 // Profile the not-null value's klass. 536 profile_typecheck(Rsub_klass, Rtmp1, Rtmp2); 537 check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype); 538 profile_typecheck_failed(Rtmp1, Rtmp2); 539 } 540 541 // Separate these two to allow for delay slot in middle. 542 // These are used to do a test and full jump to exception-throwing code. 543 544 // Check that index is in range for array, then shift index by index_shift, 545 // and put arrayOop + shifted_index into res. 546 // Note: res is still shy of address by array offset into object. 547 548 void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex, 549 int index_shift, Register Rtmp, Register Rres) { 550 // Check that index is in range for array, then shift index by index_shift, 551 // and put arrayOop + shifted_index into res. 552 // Note: res is still shy of address by array offset into object. 553 // Kills: 554 // - Rindex 555 // Writes: 556 // - Rres: Address that corresponds to the array index if check was successful. 557 verify_oop(Rarray); 558 const Register Rlength = R0; 559 const Register RsxtIndex = Rtmp; 560 Label LisNull, LnotOOR; 561 562 // Array nullcheck 563 if (!ImplicitNullChecks) { 564 cmpdi(CCR0, Rarray, 0); 565 beq(CCR0, LisNull); 566 } else { 567 null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex); 568 } 569 570 // Rindex might contain garbage in upper bits (remember that we don't sign extend 571 // during integer arithmetic operations). So kill them and put value into same register 572 // where ArrayIndexOutOfBounds would expect the index in. 573 rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit 574 575 // Index check 576 lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray); 577 cmplw(CCR0, Rindex, Rlength); 578 sldi(RsxtIndex, RsxtIndex, index_shift); 579 blt(CCR0, LnotOOR); 580 // Index should be in R17_tos, array should be in R4_ARG2. 581 mr_if_needed(R17_tos, Rindex); 582 mr_if_needed(R4_ARG2, Rarray); 583 load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 584 mtctr(Rtmp); 585 bctr(); 586 587 if (!ImplicitNullChecks) { 588 bind(LisNull); 589 load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry); 590 mtctr(Rtmp); 591 bctr(); 592 } 593 594 align(32, 16); 595 bind(LnotOOR); 596 597 // Calc address 598 add(Rres, RsxtIndex, Rarray); 599 } 600 601 void InterpreterMacroAssembler::index_check(Register array, Register index, 602 int index_shift, Register tmp, Register res) { 603 // pop array 604 pop_ptr(array); 605 606 // check array 607 index_check_without_pop(array, index, index_shift, tmp, res); 608 } 609 610 void InterpreterMacroAssembler::get_const(Register Rdst) { 611 ld(Rdst, in_bytes(Method::const_offset()), R19_method); 612 } 613 614 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) { 615 get_const(Rdst); 616 ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst); 617 } 618 619 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) { 620 get_constant_pool(Rdst); 621 ld(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst); 622 } 623 624 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) { 625 get_constant_pool(Rcpool); 626 ld(Rtags, ConstantPool::tags_offset_in_bytes(), Rcpool); 627 } 628 629 // Unlock if synchronized method. 630 // 631 // Unlock the receiver if this is a synchronized method. 632 // Unlock any Java monitors from synchronized blocks. 633 // 634 // If there are locked Java monitors 635 // If throw_monitor_exception 636 // throws IllegalMonitorStateException 637 // Else if install_monitor_exception 638 // installs IllegalMonitorStateException 639 // Else 640 // no error processing 641 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state, 642 bool throw_monitor_exception, 643 bool install_monitor_exception) { 644 Label Lunlocked, Lno_unlock; 645 { 646 Register Rdo_not_unlock_flag = R11_scratch1; 647 Register Raccess_flags = R12_scratch2; 648 649 // Check if synchronized method or unlocking prevented by 650 // JavaThread::do_not_unlock_if_synchronized flag. 651 lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); 652 lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method); 653 li(R0, 0); 654 stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag 655 656 push(state); 657 658 // Skip if we don't have to unlock. 659 rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0. 660 beq(CCR0, Lunlocked); 661 662 cmpwi(CCR0, Rdo_not_unlock_flag, 0); 663 bne(CCR0, Lno_unlock); 664 } 665 666 // Unlock 667 { 668 Register Rmonitor_base = R11_scratch1; 669 670 Label Lunlock; 671 // If it's still locked, everything is ok, unlock it. 672 ld(Rmonitor_base, 0, R1_SP); 673 addi(Rmonitor_base, Rmonitor_base, 674 -(frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base 675 676 ld(R0, BasicObjectLock::obj_offset_in_bytes(), Rmonitor_base); 677 cmpdi(CCR0, R0, 0); 678 bne(CCR0, Lunlock); 679 680 // If it's already unlocked, throw exception. 681 if (throw_monitor_exception) { 682 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 683 should_not_reach_here(); 684 } else { 685 if (install_monitor_exception) { 686 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 687 b(Lunlocked); 688 } 689 } 690 691 bind(Lunlock); 692 unlock_object(Rmonitor_base); 693 } 694 695 // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not. 696 bind(Lunlocked); 697 { 698 Label Lexception, Lrestart; 699 Register Rcurrent_obj_addr = R11_scratch1; 700 const int delta = frame::interpreter_frame_monitor_size_in_bytes(); 701 assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords"); 702 703 bind(Lrestart); 704 // Set up search loop: Calc num of iterations. 705 { 706 Register Riterations = R12_scratch2; 707 Register Rmonitor_base = Rcurrent_obj_addr; 708 ld(Rmonitor_base, 0, R1_SP); 709 addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size); // Monitor base 710 711 subf_(Riterations, R26_monitor, Rmonitor_base); 712 ble(CCR0, Lno_unlock); 713 714 addi(Rcurrent_obj_addr, Rmonitor_base, 715 BasicObjectLock::obj_offset_in_bytes() - frame::interpreter_frame_monitor_size_in_bytes()); 716 // Check if any monitor is on stack, bail out if not 717 srdi(Riterations, Riterations, exact_log2(delta)); 718 mtctr(Riterations); 719 } 720 721 // The search loop: Look for locked monitors. 722 { 723 const Register Rcurrent_obj = R0; 724 Label Lloop; 725 726 ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 727 addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta); 728 bind(Lloop); 729 730 // Check if current entry is used. 731 cmpdi(CCR0, Rcurrent_obj, 0); 732 bne(CCR0, Lexception); 733 // Preload next iteration's compare value. 734 ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 735 addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta); 736 bdnz(Lloop); 737 } 738 // Fell through: Everything's unlocked => finish. 739 b(Lno_unlock); 740 741 // An object is still locked => need to throw exception. 742 bind(Lexception); 743 if (throw_monitor_exception) { 744 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 745 should_not_reach_here(); 746 } else { 747 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception. 748 // Unlock does not block, so don't have to worry about the frame. 749 Register Rmonitor_addr = R11_scratch1; 750 addi(Rmonitor_addr, Rcurrent_obj_addr, -BasicObjectLock::obj_offset_in_bytes() + delta); 751 unlock_object(Rmonitor_addr); 752 if (install_monitor_exception) { 753 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 754 } 755 b(Lrestart); 756 } 757 } 758 759 align(32, 12); 760 bind(Lno_unlock); 761 pop(state); 762 } 763 764 // Support function for remove_activation & Co. 765 void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc, 766 Register Rscratch1, Register Rscratch2) { 767 // Pop interpreter frame. 768 ld(Rscratch1, 0, R1_SP); // *SP 769 ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp 770 ld(Rscratch2, 0, Rscratch1); // **SP 771 #ifdef ASSERT 772 { 773 Label Lok; 774 ld(R0, _ijava_state_neg(ijava_reserved), Rscratch1); 775 cmpdi(CCR0, R0, 0x5afe); 776 beq(CCR0, Lok); 777 stop("frame corrupted (remove activation)", 0x5afe); 778 bind(Lok); 779 } 780 #endif 781 if (return_pc!=noreg) { 782 ld(return_pc, _abi(lr), Rscratch1); // LR 783 } 784 785 // Merge top frames. 786 subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP 787 stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP 788 } 789 790 void InterpreterMacroAssembler::narrow(Register result) { 791 Register ret_type = R11_scratch1; 792 ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method); 793 lbz(ret_type, in_bytes(ConstMethod::result_type_offset()), R11_scratch1); 794 795 Label notBool, notByte, notChar, done; 796 797 // common case first 798 cmpwi(CCR0, ret_type, T_INT); 799 beq(CCR0, done); 800 801 cmpwi(CCR0, ret_type, T_BOOLEAN); 802 bne(CCR0, notBool); 803 andi(result, result, 0x1); 804 b(done); 805 806 bind(notBool); 807 cmpwi(CCR0, ret_type, T_BYTE); 808 bne(CCR0, notByte); 809 extsb(result, result); 810 b(done); 811 812 bind(notByte); 813 cmpwi(CCR0, ret_type, T_CHAR); 814 bne(CCR0, notChar); 815 andi(result, result, 0xffff); 816 b(done); 817 818 bind(notChar); 819 // cmpwi(CCR0, ret_type, T_SHORT); // all that's left 820 // bne(CCR0, done); 821 extsh(result, result); 822 823 // Nothing to do for T_INT 824 bind(done); 825 } 826 827 // Remove activation. 828 // 829 // Unlock the receiver if this is a synchronized method. 830 // Unlock any Java monitors from synchronized blocks. 831 // Remove the activation from the stack. 832 // 833 // If there are locked Java monitors 834 // If throw_monitor_exception 835 // throws IllegalMonitorStateException 836 // Else if install_monitor_exception 837 // installs IllegalMonitorStateException 838 // Else 839 // no error processing 840 void InterpreterMacroAssembler::remove_activation(TosState state, 841 bool throw_monitor_exception, 842 bool install_monitor_exception) { 843 BLOCK_COMMENT("remove_activation {"); 844 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception); 845 846 // Save result (push state before jvmti call and pop it afterwards) and notify jvmti. 847 notify_method_exit(false, state, NotifyJVMTI, true); 848 849 BLOCK_COMMENT("reserved_stack_check:"); 850 if (StackReservedPages > 0) { 851 // Test if reserved zone needs to be enabled. 852 Label no_reserved_zone_enabling; 853 854 // Compare frame pointers. There is no good stack pointer, as with stack 855 // frame compression we can get different SPs when we do calls. A subsequent 856 // call could have a smaller SP, so that this compare succeeds for an 857 // inner call of the method annotated with ReservedStack. 858 ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread); 859 ld_ptr(R11_scratch1, _abi(callers_sp), R1_SP); // Load frame pointer. 860 cmpld(CCR0, R11_scratch1, R0); 861 blt_predict_taken(CCR0, no_reserved_zone_enabling); 862 863 // Enable reserved zone again, throw stack overflow exception. 864 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread); 865 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError)); 866 867 should_not_reach_here(); 868 869 bind(no_reserved_zone_enabling); 870 } 871 872 verify_oop(R17_tos, state); 873 verify_thread(); 874 875 merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2); 876 mtlr(R0); 877 BLOCK_COMMENT("} remove_activation"); 878 } 879 880 // Lock object 881 // 882 // Registers alive 883 // monitor - Address of the BasicObjectLock to be used for locking, 884 // which must be initialized with the object to lock. 885 // object - Address of the object to be locked. 886 // 887 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) { 888 if (UseHeavyMonitors) { 889 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 890 monitor, /*check_for_exceptions=*/true); 891 } else { 892 // template code: 893 // 894 // markOop displaced_header = obj->mark().set_unlocked(); 895 // monitor->lock()->set_displaced_header(displaced_header); 896 // if (Atomic::cmpxchg(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) { 897 // // We stored the monitor address into the object's mark word. 898 // } else if (THREAD->is_lock_owned((address)displaced_header)) 899 // // Simple recursive case. 900 // monitor->lock()->set_displaced_header(NULL); 901 // } else { 902 // // Slow path. 903 // InterpreterRuntime::monitorenter(THREAD, monitor); 904 // } 905 906 const Register displaced_header = R7_ARG5; 907 const Register object_mark_addr = R8_ARG6; 908 const Register current_header = R9_ARG7; 909 const Register tmp = R10_ARG8; 910 911 Label done; 912 Label cas_failed, slow_case; 913 914 assert_different_registers(displaced_header, object_mark_addr, current_header, tmp); 915 916 // markOop displaced_header = obj->mark().set_unlocked(); 917 918 // Load markOop from object into displaced_header. 919 ld(displaced_header, oopDesc::mark_offset_in_bytes(), object); 920 921 if (UseBiasedLocking) { 922 biased_locking_enter(CCR0, object, displaced_header, tmp, current_header, done, &slow_case); 923 } 924 925 // Set displaced_header to be (markOop of object | UNLOCK_VALUE). 926 ori(displaced_header, displaced_header, markOopDesc::unlocked_value); 927 928 // monitor->lock()->set_displaced_header(displaced_header); 929 930 // Initialize the box (Must happen before we update the object mark!). 931 std(displaced_header, BasicObjectLock::lock_offset_in_bytes() + 932 BasicLock::displaced_header_offset_in_bytes(), monitor); 933 934 // if (Atomic::cmpxchg(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) { 935 936 // Store stack address of the BasicObjectLock (this is monitor) into object. 937 addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes()); 938 939 // Must fence, otherwise, preceding store(s) may float below cmpxchg. 940 // CmpxchgX sets CCR0 to cmpX(current, displaced). 941 cmpxchgd(/*flag=*/CCR0, 942 /*current_value=*/current_header, 943 /*compare_value=*/displaced_header, /*exchange_value=*/monitor, 944 /*where=*/object_mark_addr, 945 MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq, 946 MacroAssembler::cmpxchgx_hint_acquire_lock(), 947 noreg, 948 &cas_failed, 949 /*check without membar and ldarx first*/true); 950 951 // If the compare-and-exchange succeeded, then we found an unlocked 952 // object and we have now locked it. 953 b(done); 954 bind(cas_failed); 955 956 // } else if (THREAD->is_lock_owned((address)displaced_header)) 957 // // Simple recursive case. 958 // monitor->lock()->set_displaced_header(NULL); 959 960 // We did not see an unlocked object so try the fast recursive case. 961 962 // Check if owner is self by comparing the value in the markOop of object 963 // (current_header) with the stack pointer. 964 sub(current_header, current_header, R1_SP); 965 966 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); 967 load_const_optimized(tmp, ~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place); 968 969 and_(R0/*==0?*/, current_header, tmp); 970 // If condition is true we are done and hence we can store 0 in the displaced 971 // header indicating it is a recursive lock. 972 bne(CCR0, slow_case); 973 std(R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() + 974 BasicLock::displaced_header_offset_in_bytes(), monitor); 975 b(done); 976 977 // } else { 978 // // Slow path. 979 // InterpreterRuntime::monitorenter(THREAD, monitor); 980 981 // None of the above fast optimizations worked so we have to get into the 982 // slow case of monitor enter. 983 bind(slow_case); 984 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 985 monitor, /*check_for_exceptions=*/true); 986 // } 987 align(32, 12); 988 bind(done); 989 } 990 } 991 992 // Unlocks an object. Used in monitorexit bytecode and remove_activation. 993 // 994 // Registers alive 995 // monitor - Address of the BasicObjectLock to be used for locking, 996 // which must be initialized with the object to lock. 997 // 998 // Throw IllegalMonitorException if object is not locked by current thread. 999 void InterpreterMacroAssembler::unlock_object(Register monitor, bool check_for_exceptions) { 1000 if (UseHeavyMonitors) { 1001 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), 1002 monitor, check_for_exceptions); 1003 } else { 1004 1005 // template code: 1006 // 1007 // if ((displaced_header = monitor->displaced_header()) == NULL) { 1008 // // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL. 1009 // monitor->set_obj(NULL); 1010 // } else if (Atomic::cmpxchg(displaced_header, obj->mark_addr(), monitor) == monitor) { 1011 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1012 // monitor->set_obj(NULL); 1013 // } else { 1014 // // Slow path. 1015 // InterpreterRuntime::monitorexit(THREAD, monitor); 1016 // } 1017 1018 const Register object = R7_ARG5; 1019 const Register displaced_header = R8_ARG6; 1020 const Register object_mark_addr = R9_ARG7; 1021 const Register current_header = R10_ARG8; 1022 1023 Label free_slot; 1024 Label slow_case; 1025 1026 assert_different_registers(object, displaced_header, object_mark_addr, current_header); 1027 1028 if (UseBiasedLocking) { 1029 // The object address from the monitor is in object. 1030 ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); 1031 assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0"); 1032 biased_locking_exit(CCR0, object, displaced_header, free_slot); 1033 } 1034 1035 // Test first if we are in the fast recursive case. 1036 ld(displaced_header, BasicObjectLock::lock_offset_in_bytes() + 1037 BasicLock::displaced_header_offset_in_bytes(), monitor); 1038 1039 // If the displaced header is zero, we have a recursive unlock. 1040 cmpdi(CCR0, displaced_header, 0); 1041 beq(CCR0, free_slot); // recursive unlock 1042 1043 // } else if (Atomic::cmpxchg(displaced_header, obj->mark_addr(), monitor) == monitor) { 1044 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1045 // monitor->set_obj(NULL); 1046 1047 // If we still have a lightweight lock, unlock the object and be done. 1048 1049 // The object address from the monitor is in object. 1050 if (!UseBiasedLocking) { ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); } 1051 addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes()); 1052 1053 // We have the displaced header in displaced_header. If the lock is still 1054 // lightweight, it will contain the monitor address and we'll store the 1055 // displaced header back into the object's mark word. 1056 // CmpxchgX sets CCR0 to cmpX(current, monitor). 1057 cmpxchgd(/*flag=*/CCR0, 1058 /*current_value=*/current_header, 1059 /*compare_value=*/monitor, /*exchange_value=*/displaced_header, 1060 /*where=*/object_mark_addr, 1061 MacroAssembler::MemBarRel, 1062 MacroAssembler::cmpxchgx_hint_release_lock(), 1063 noreg, 1064 &slow_case); 1065 b(free_slot); 1066 1067 // } else { 1068 // // Slow path. 1069 // InterpreterRuntime::monitorexit(THREAD, monitor); 1070 1071 // The lock has been converted into a heavy lock and hence 1072 // we need to get into the slow case. 1073 bind(slow_case); 1074 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), 1075 monitor, check_for_exceptions); 1076 // } 1077 1078 Label done; 1079 b(done); // Monitor register may be overwritten! Runtime has already freed the slot. 1080 1081 // Exchange worked, do monitor->set_obj(NULL); 1082 align(32, 12); 1083 bind(free_slot); 1084 li(R0, 0); 1085 std(R0, BasicObjectLock::obj_offset_in_bytes(), monitor); 1086 bind(done); 1087 } 1088 } 1089 1090 // Load compiled (i2c) or interpreter entry when calling from interpreted and 1091 // do the call. Centralized so that all interpreter calls will do the same actions. 1092 // If jvmti single stepping is on for a thread we must not call compiled code. 1093 // 1094 // Input: 1095 // - Rtarget_method: method to call 1096 // - Rret_addr: return address 1097 // - 2 scratch regs 1098 // 1099 void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr, 1100 Register Rscratch1, Register Rscratch2) { 1101 assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr); 1102 // Assume we want to go compiled if available. 1103 const Register Rtarget_addr = Rscratch1; 1104 const Register Rinterp_only = Rscratch2; 1105 1106 ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method); 1107 1108 if (JvmtiExport::can_post_interpreter_events()) { 1109 lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 1110 1111 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 1112 // compiled code in threads for which the event is enabled. Check here for 1113 // interp_only_mode if these events CAN be enabled. 1114 Label done; 1115 verify_thread(); 1116 cmpwi(CCR0, Rinterp_only, 0); 1117 beq(CCR0, done); 1118 ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method); 1119 align(32, 12); 1120 bind(done); 1121 } 1122 1123 #ifdef ASSERT 1124 { 1125 Label Lok; 1126 cmpdi(CCR0, Rtarget_addr, 0); 1127 bne(CCR0, Lok); 1128 stop("null entry point"); 1129 bind(Lok); 1130 } 1131 #endif // ASSERT 1132 1133 mr(R21_sender_SP, R1_SP); 1134 1135 // Calc a precise SP for the call. The SP value we calculated in 1136 // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space 1137 // if esp is not max. Also, the i2c adapter extends the stack space without restoring 1138 // our pre-calced value, so repeating calls via i2c would result in stack overflow. 1139 // Since esp already points to an empty slot, we just have to sub 1 additional slot 1140 // to meet the abi scratch requirements. 1141 // The max_stack pointer will get restored by means of the GR_Lmax_stack local in 1142 // the return entry of the interpreter. 1143 addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::abi_reg_args_size); 1144 clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address 1145 resize_frame_absolute(Rscratch2, Rscratch2, R0); 1146 1147 mr_if_needed(R19_method, Rtarget_method); 1148 mtctr(Rtarget_addr); 1149 mtlr(Rret_addr); 1150 1151 save_interpreter_state(Rscratch2); 1152 #ifdef ASSERT 1153 ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp 1154 cmpd(CCR0, R21_sender_SP, Rscratch1); 1155 asm_assert_eq("top_frame_sp incorrect", 0x951); 1156 #endif 1157 1158 bctr(); 1159 } 1160 1161 // Set the method data pointer for the current bcp. 1162 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1163 assert(ProfileInterpreter, "must be profiling interpreter"); 1164 Label get_continue; 1165 ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method); 1166 test_method_data_pointer(get_continue); 1167 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp); 1168 1169 addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset())); 1170 add(R28_mdx, R28_mdx, R3_RET); 1171 bind(get_continue); 1172 } 1173 1174 // Test ImethodDataPtr. If it is null, continue at the specified label. 1175 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) { 1176 assert(ProfileInterpreter, "must be profiling interpreter"); 1177 cmpdi(CCR0, R28_mdx, 0); 1178 beq(CCR0, zero_continue); 1179 } 1180 1181 void InterpreterMacroAssembler::verify_method_data_pointer() { 1182 assert(ProfileInterpreter, "must be profiling interpreter"); 1183 #ifdef ASSERT 1184 Label verify_continue; 1185 test_method_data_pointer(verify_continue); 1186 1187 // If the mdp is valid, it will point to a DataLayout header which is 1188 // consistent with the bcp. The converse is highly probable also. 1189 lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx); 1190 ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method); 1191 addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset())); 1192 add(R11_scratch1, R12_scratch2, R12_scratch2); 1193 cmpd(CCR0, R11_scratch1, R14_bcp); 1194 beq(CCR0, verify_continue); 1195 1196 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx); 1197 1198 bind(verify_continue); 1199 #endif 1200 } 1201 1202 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count, 1203 Register method_counters, 1204 Register Rscratch, 1205 Label &profile_continue) { 1206 assert(ProfileInterpreter, "must be profiling interpreter"); 1207 // Control will flow to "profile_continue" if the counter is less than the 1208 // limit or if we call profile_method(). 1209 Label done; 1210 1211 // If no method data exists, and the counter is high enough, make one. 1212 lwz(Rscratch, in_bytes(MethodCounters::interpreter_profile_limit_offset()), method_counters); 1213 1214 cmpdi(CCR0, R28_mdx, 0); 1215 // Test to see if we should create a method data oop. 1216 cmpd(CCR1, Rscratch, invocation_count); 1217 bne(CCR0, done); 1218 bge(CCR1, profile_continue); 1219 1220 // Build it now. 1221 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 1222 set_method_data_pointer_for_bcp(); 1223 b(profile_continue); 1224 1225 align(32, 12); 1226 bind(done); 1227 } 1228 1229 void InterpreterMacroAssembler::test_backedge_count_for_osr(Register backedge_count, Register method_counters, 1230 Register target_bcp, Register disp, Register Rtmp) { 1231 assert_different_registers(backedge_count, target_bcp, disp, Rtmp, R4_ARG2); 1232 assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr"); 1233 1234 Label did_not_overflow; 1235 Label overflow_with_error; 1236 1237 lwz(Rtmp, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()), method_counters); 1238 cmpw(CCR0, backedge_count, Rtmp); 1239 1240 blt(CCR0, did_not_overflow); 1241 1242 // When ProfileInterpreter is on, the backedge_count comes from the 1243 // methodDataOop, which value does not get reset on the call to 1244 // frequency_counter_overflow(). To avoid excessive calls to the overflow 1245 // routine while the method is being compiled, add a second test to make sure 1246 // the overflow function is called only once every overflow_frequency. 1247 if (ProfileInterpreter) { 1248 const int overflow_frequency = 1024; 1249 andi_(Rtmp, backedge_count, overflow_frequency-1); 1250 bne(CCR0, did_not_overflow); 1251 } 1252 1253 // Overflow in loop, pass branch bytecode. 1254 subf(R4_ARG2, disp, target_bcp); // Compute branch bytecode (previous bcp). 1255 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true); 1256 1257 // Was an OSR adapter generated? 1258 cmpdi(CCR0, R3_RET, 0); 1259 beq(CCR0, overflow_with_error); 1260 1261 // Has the nmethod been invalidated already? 1262 lbz(Rtmp, nmethod::state_offset(), R3_RET); 1263 cmpwi(CCR0, Rtmp, nmethod::in_use); 1264 bne(CCR0, overflow_with_error); 1265 1266 // Migrate the interpreter frame off of the stack. 1267 // We can use all registers because we will not return to interpreter from this point. 1268 1269 // Save nmethod. 1270 const Register osr_nmethod = R31; 1271 mr(osr_nmethod, R3_RET); 1272 set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1); 1273 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread); 1274 reset_last_Java_frame(); 1275 // OSR buffer is in ARG1 1276 1277 // Remove the interpreter frame. 1278 merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2); 1279 1280 // Jump to the osr code. 1281 ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod); 1282 mtlr(R0); 1283 mtctr(R11_scratch1); 1284 bctr(); 1285 1286 align(32, 12); 1287 bind(overflow_with_error); 1288 bind(did_not_overflow); 1289 } 1290 1291 // Store a value at some constant offset from the method data pointer. 1292 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) { 1293 assert(ProfileInterpreter, "must be profiling interpreter"); 1294 1295 std(value, constant, R28_mdx); 1296 } 1297 1298 // Increment the value at some constant offset from the method data pointer. 1299 void InterpreterMacroAssembler::increment_mdp_data_at(int constant, 1300 Register counter_addr, 1301 Register Rbumped_count, 1302 bool decrement) { 1303 // Locate the counter at a fixed offset from the mdp: 1304 addi(counter_addr, R28_mdx, constant); 1305 increment_mdp_data_at(counter_addr, Rbumped_count, decrement); 1306 } 1307 1308 // Increment the value at some non-fixed (reg + constant) offset from 1309 // the method data pointer. 1310 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg, 1311 int constant, 1312 Register scratch, 1313 Register Rbumped_count, 1314 bool decrement) { 1315 // Add the constant to reg to get the offset. 1316 add(scratch, R28_mdx, reg); 1317 // Then calculate the counter address. 1318 addi(scratch, scratch, constant); 1319 increment_mdp_data_at(scratch, Rbumped_count, decrement); 1320 } 1321 1322 void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr, 1323 Register Rbumped_count, 1324 bool decrement) { 1325 assert(ProfileInterpreter, "must be profiling interpreter"); 1326 1327 // Load the counter. 1328 ld(Rbumped_count, 0, counter_addr); 1329 1330 if (decrement) { 1331 // Decrement the register. Set condition codes. 1332 addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment); 1333 // Store the decremented counter, if it is still negative. 1334 std(Rbumped_count, 0, counter_addr); 1335 // Note: add/sub overflow check are not ported, since 64 bit 1336 // calculation should never overflow. 1337 } else { 1338 // Increment the register. Set carry flag. 1339 addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment); 1340 // Store the incremented counter. 1341 std(Rbumped_count, 0, counter_addr); 1342 } 1343 } 1344 1345 // Set a flag value at the current method data pointer position. 1346 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant, 1347 Register scratch) { 1348 assert(ProfileInterpreter, "must be profiling interpreter"); 1349 // Load the data header. 1350 lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx); 1351 // Set the flag. 1352 ori(scratch, scratch, flag_constant); 1353 // Store the modified header. 1354 stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx); 1355 } 1356 1357 // Test the location at some offset from the method data pointer. 1358 // If it is not equal to value, branch to the not_equal_continue Label. 1359 void InterpreterMacroAssembler::test_mdp_data_at(int offset, 1360 Register value, 1361 Label& not_equal_continue, 1362 Register test_out) { 1363 assert(ProfileInterpreter, "must be profiling interpreter"); 1364 1365 ld(test_out, offset, R28_mdx); 1366 cmpd(CCR0, value, test_out); 1367 bne(CCR0, not_equal_continue); 1368 } 1369 1370 // Update the method data pointer by the displacement located at some fixed 1371 // offset from the method data pointer. 1372 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp, 1373 Register scratch) { 1374 assert(ProfileInterpreter, "must be profiling interpreter"); 1375 1376 ld(scratch, offset_of_disp, R28_mdx); 1377 add(R28_mdx, scratch, R28_mdx); 1378 } 1379 1380 // Update the method data pointer by the displacement located at the 1381 // offset (reg + offset_of_disp). 1382 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg, 1383 int offset_of_disp, 1384 Register scratch) { 1385 assert(ProfileInterpreter, "must be profiling interpreter"); 1386 1387 add(scratch, reg, R28_mdx); 1388 ld(scratch, offset_of_disp, scratch); 1389 add(R28_mdx, scratch, R28_mdx); 1390 } 1391 1392 // Update the method data pointer by a simple constant displacement. 1393 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) { 1394 assert(ProfileInterpreter, "must be profiling interpreter"); 1395 addi(R28_mdx, R28_mdx, constant); 1396 } 1397 1398 // Update the method data pointer for a _ret bytecode whose target 1399 // was not among our cached targets. 1400 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state, 1401 Register return_bci) { 1402 assert(ProfileInterpreter, "must be profiling interpreter"); 1403 1404 push(state); 1405 assert(return_bci->is_nonvolatile(), "need to protect return_bci"); 1406 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci); 1407 pop(state); 1408 } 1409 1410 // Increments the backedge counter. 1411 // Returns backedge counter + invocation counter in Rdst. 1412 void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst, 1413 const Register Rtmp1, Register Rscratch) { 1414 assert(UseCompiler, "incrementing must be useful"); 1415 assert_different_registers(Rdst, Rtmp1); 1416 const Register invocation_counter = Rtmp1; 1417 const Register counter = Rdst; 1418 // TODO: PPC port: assert(4 == InvocationCounter::sz_counter(), "unexpected field size."); 1419 1420 // Load backedge counter. 1421 lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) + 1422 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1423 // Load invocation counter. 1424 lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) + 1425 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1426 1427 // Add the delta to the backedge counter. 1428 addi(counter, counter, InvocationCounter::count_increment); 1429 1430 // Mask the invocation counter. 1431 andi(invocation_counter, invocation_counter, InvocationCounter::count_mask_value); 1432 1433 // Store new counter value. 1434 stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) + 1435 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1436 // Return invocation counter + backedge counter. 1437 add(counter, counter, invocation_counter); 1438 } 1439 1440 // Count a taken branch in the bytecodes. 1441 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) { 1442 if (ProfileInterpreter) { 1443 Label profile_continue; 1444 1445 // If no method data exists, go to profile_continue. 1446 test_method_data_pointer(profile_continue); 1447 1448 // We are taking a branch. Increment the taken count. 1449 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count); 1450 1451 // The method data pointer needs to be updated to reflect the new target. 1452 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch); 1453 bind (profile_continue); 1454 } 1455 } 1456 1457 // Count a not-taken branch in the bytecodes. 1458 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) { 1459 if (ProfileInterpreter) { 1460 Label profile_continue; 1461 1462 // If no method data exists, go to profile_continue. 1463 test_method_data_pointer(profile_continue); 1464 1465 // We are taking a branch. Increment the not taken count. 1466 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2); 1467 1468 // The method data pointer needs to be updated to correspond to the 1469 // next bytecode. 1470 update_mdp_by_constant(in_bytes(BranchData::branch_data_size())); 1471 bind (profile_continue); 1472 } 1473 } 1474 1475 // Count a non-virtual call in the bytecodes. 1476 void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) { 1477 if (ProfileInterpreter) { 1478 Label profile_continue; 1479 1480 // If no method data exists, go to profile_continue. 1481 test_method_data_pointer(profile_continue); 1482 1483 // We are making a call. Increment the count. 1484 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1485 1486 // The method data pointer needs to be updated to reflect the new target. 1487 update_mdp_by_constant(in_bytes(CounterData::counter_data_size())); 1488 bind (profile_continue); 1489 } 1490 } 1491 1492 // Count a final call in the bytecodes. 1493 void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) { 1494 if (ProfileInterpreter) { 1495 Label profile_continue; 1496 1497 // If no method data exists, go to profile_continue. 1498 test_method_data_pointer(profile_continue); 1499 1500 // We are making a call. Increment the count. 1501 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1502 1503 // The method data pointer needs to be updated to reflect the new target. 1504 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size())); 1505 bind (profile_continue); 1506 } 1507 } 1508 1509 // Count a virtual call in the bytecodes. 1510 void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver, 1511 Register Rscratch1, 1512 Register Rscratch2, 1513 bool receiver_can_be_null) { 1514 if (!ProfileInterpreter) { return; } 1515 Label profile_continue; 1516 1517 // If no method data exists, go to profile_continue. 1518 test_method_data_pointer(profile_continue); 1519 1520 Label skip_receiver_profile; 1521 if (receiver_can_be_null) { 1522 Label not_null; 1523 cmpdi(CCR0, Rreceiver, 0); 1524 bne(CCR0, not_null); 1525 // We are making a call. Increment the count for null receiver. 1526 increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2); 1527 b(skip_receiver_profile); 1528 bind(not_null); 1529 } 1530 1531 // Record the receiver type. 1532 record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2, true); 1533 bind(skip_receiver_profile); 1534 1535 // The method data pointer needs to be updated to reflect the new target. 1536 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size())); 1537 bind (profile_continue); 1538 } 1539 1540 void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) { 1541 if (ProfileInterpreter) { 1542 Label profile_continue; 1543 1544 // If no method data exists, go to profile_continue. 1545 test_method_data_pointer(profile_continue); 1546 1547 int mdp_delta = in_bytes(BitData::bit_data_size()); 1548 if (TypeProfileCasts) { 1549 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1550 1551 // Record the object type. 1552 record_klass_in_profile(Rklass, Rscratch1, Rscratch2, false); 1553 } 1554 1555 // The method data pointer needs to be updated. 1556 update_mdp_by_constant(mdp_delta); 1557 1558 bind (profile_continue); 1559 } 1560 } 1561 1562 void InterpreterMacroAssembler::profile_typecheck_failed(Register Rscratch1, Register Rscratch2) { 1563 if (ProfileInterpreter && TypeProfileCasts) { 1564 Label profile_continue; 1565 1566 // If no method data exists, go to profile_continue. 1567 test_method_data_pointer(profile_continue); 1568 1569 int count_offset = in_bytes(CounterData::count_offset()); 1570 // Back up the address, since we have already bumped the mdp. 1571 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1572 1573 // *Decrement* the counter. We expect to see zero or small negatives. 1574 increment_mdp_data_at(count_offset, Rscratch1, Rscratch2, true); 1575 1576 bind (profile_continue); 1577 } 1578 } 1579 1580 // Count a ret in the bytecodes. 1581 void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci, 1582 Register scratch1, Register scratch2) { 1583 if (ProfileInterpreter) { 1584 Label profile_continue; 1585 uint row; 1586 1587 // If no method data exists, go to profile_continue. 1588 test_method_data_pointer(profile_continue); 1589 1590 // Update the total ret count. 1591 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 ); 1592 1593 for (row = 0; row < RetData::row_limit(); row++) { 1594 Label next_test; 1595 1596 // See if return_bci is equal to bci[n]: 1597 test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1); 1598 1599 // return_bci is equal to bci[n]. Increment the count. 1600 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2); 1601 1602 // The method data pointer needs to be updated to reflect the new target. 1603 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1); 1604 b(profile_continue); 1605 bind(next_test); 1606 } 1607 1608 update_mdp_for_ret(state, return_bci); 1609 1610 bind (profile_continue); 1611 } 1612 } 1613 1614 // Count the default case of a switch construct. 1615 void InterpreterMacroAssembler::profile_switch_default(Register scratch1, Register scratch2) { 1616 if (ProfileInterpreter) { 1617 Label profile_continue; 1618 1619 // If no method data exists, go to profile_continue. 1620 test_method_data_pointer(profile_continue); 1621 1622 // Update the default case count 1623 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()), 1624 scratch1, scratch2); 1625 1626 // The method data pointer needs to be updated. 1627 update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()), 1628 scratch1); 1629 1630 bind (profile_continue); 1631 } 1632 } 1633 1634 // Count the index'th case of a switch construct. 1635 void InterpreterMacroAssembler::profile_switch_case(Register index, 1636 Register scratch1, 1637 Register scratch2, 1638 Register scratch3) { 1639 if (ProfileInterpreter) { 1640 assert_different_registers(index, scratch1, scratch2, scratch3); 1641 Label profile_continue; 1642 1643 // If no method data exists, go to profile_continue. 1644 test_method_data_pointer(profile_continue); 1645 1646 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes(). 1647 li(scratch3, in_bytes(MultiBranchData::case_array_offset())); 1648 1649 assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works"); 1650 sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size()))); 1651 add(scratch1, scratch1, scratch3); 1652 1653 // Update the case count. 1654 increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3); 1655 1656 // The method data pointer needs to be updated. 1657 update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2); 1658 1659 bind (profile_continue); 1660 } 1661 } 1662 1663 void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) { 1664 if (ProfileInterpreter) { 1665 assert_different_registers(Rscratch1, Rscratch2); 1666 Label profile_continue; 1667 1668 // If no method data exists, go to profile_continue. 1669 test_method_data_pointer(profile_continue); 1670 1671 set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1); 1672 1673 // The method data pointer needs to be updated. 1674 int mdp_delta = in_bytes(BitData::bit_data_size()); 1675 if (TypeProfileCasts) { 1676 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1677 } 1678 update_mdp_by_constant(mdp_delta); 1679 1680 bind (profile_continue); 1681 } 1682 } 1683 1684 void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver, 1685 Register Rscratch1, Register Rscratch2, 1686 bool is_virtual_call) { 1687 assert(ProfileInterpreter, "must be profiling"); 1688 assert_different_registers(Rreceiver, Rscratch1, Rscratch2); 1689 1690 Label done; 1691 record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done, is_virtual_call); 1692 bind (done); 1693 } 1694 1695 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1696 Register receiver, Register scratch1, Register scratch2, 1697 int start_row, Label& done, bool is_virtual_call) { 1698 if (TypeProfileWidth == 0) { 1699 if (is_virtual_call) { 1700 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1701 } 1702 return; 1703 } 1704 1705 int last_row = VirtualCallData::row_limit() - 1; 1706 assert(start_row <= last_row, "must be work left to do"); 1707 // Test this row for both the receiver and for null. 1708 // Take any of three different outcomes: 1709 // 1. found receiver => increment count and goto done 1710 // 2. found null => keep looking for case 1, maybe allocate this cell 1711 // 3. found something else => keep looking for cases 1 and 2 1712 // Case 3 is handled by a recursive call. 1713 for (int row = start_row; row <= last_row; row++) { 1714 Label next_test; 1715 bool test_for_null_also = (row == start_row); 1716 1717 // See if the receiver is receiver[n]. 1718 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); 1719 test_mdp_data_at(recvr_offset, receiver, next_test, scratch1); 1720 // delayed()->tst(scratch); 1721 1722 // The receiver is receiver[n]. Increment count[n]. 1723 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); 1724 increment_mdp_data_at(count_offset, scratch1, scratch2); 1725 b(done); 1726 bind(next_test); 1727 1728 if (test_for_null_also) { 1729 Label found_null; 1730 // Failed the equality check on receiver[n]... Test for null. 1731 if (start_row == last_row) { 1732 // The only thing left to do is handle the null case. 1733 if (is_virtual_call) { 1734 // Scratch1 contains test_out from test_mdp_data_at. 1735 cmpdi(CCR0, scratch1, 0); 1736 beq(CCR0, found_null); 1737 // Receiver did not match any saved receiver and there is no empty row for it. 1738 // Increment total counter to indicate polymorphic case. 1739 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1740 b(done); 1741 bind(found_null); 1742 } else { 1743 cmpdi(CCR0, scratch1, 0); 1744 bne(CCR0, done); 1745 } 1746 break; 1747 } 1748 // Since null is rare, make it be the branch-taken case. 1749 cmpdi(CCR0, scratch1, 0); 1750 beq(CCR0, found_null); 1751 1752 // Put all the "Case 3" tests here. 1753 record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done, is_virtual_call); 1754 1755 // Found a null. Keep searching for a matching receiver, 1756 // but remember that this is an empty (unused) slot. 1757 bind(found_null); 1758 } 1759 } 1760 1761 // In the fall-through case, we found no matching receiver, but we 1762 // observed the receiver[start_row] is NULL. 1763 1764 // Fill in the receiver field and increment the count. 1765 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); 1766 set_mdp_data_at(recvr_offset, receiver); 1767 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); 1768 li(scratch1, DataLayout::counter_increment); 1769 set_mdp_data_at(count_offset, scratch1); 1770 if (start_row > 0) { 1771 b(done); 1772 } 1773 } 1774 1775 // Argument and return type profilig. 1776 // kills: tmp, tmp2, R0, CR0, CR1 1777 void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base, 1778 RegisterOrConstant mdo_addr_offs, 1779 Register tmp, Register tmp2) { 1780 Label do_nothing, do_update; 1781 1782 // tmp2 = obj is allowed 1783 assert_different_registers(obj, mdo_addr_base, tmp, R0); 1784 assert_different_registers(tmp2, mdo_addr_base, tmp, R0); 1785 const Register klass = tmp2; 1786 1787 verify_oop(obj); 1788 1789 ld(tmp, mdo_addr_offs, mdo_addr_base); 1790 1791 // Set null_seen if obj is 0. 1792 cmpdi(CCR0, obj, 0); 1793 ori(R0, tmp, TypeEntries::null_seen); 1794 beq(CCR0, do_update); 1795 1796 load_klass(klass, obj); 1797 1798 clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); 1799 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); 1800 cmpd(CCR1, R0, klass); 1801 // Klass seen before, nothing to do (regardless of unknown bit). 1802 //beq(CCR1, do_nothing); 1803 1804 andi_(R0, klass, TypeEntries::type_unknown); 1805 // Already unknown. Nothing to do anymore. 1806 //bne(CCR0, do_nothing); 1807 crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne 1808 beq(CCR0, do_nothing); 1809 1810 clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); 1811 orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 1812 beq(CCR0, do_update); // First time here. Set profile type. 1813 1814 // Different than before. Cannot keep accurate profile. 1815 ori(R0, tmp, TypeEntries::type_unknown); 1816 1817 bind(do_update); 1818 // update profile 1819 std(R0, mdo_addr_offs, mdo_addr_base); 1820 1821 align(32, 12); 1822 bind(do_nothing); 1823 } 1824 1825 void InterpreterMacroAssembler::profile_arguments_type(Register callee, 1826 Register tmp1, Register tmp2, 1827 bool is_virtual) { 1828 if (!ProfileInterpreter) { 1829 return; 1830 } 1831 1832 assert_different_registers(callee, tmp1, tmp2, R28_mdx); 1833 1834 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1835 Label profile_continue; 1836 1837 test_method_data_pointer(profile_continue); 1838 1839 int off_to_start = is_virtual ? 1840 in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1841 1842 lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx); 1843 cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 1844 bne(CCR0, profile_continue); 1845 1846 if (MethodData::profile_arguments()) { 1847 Label done; 1848 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1849 add(R28_mdx, off_to_args, R28_mdx); 1850 1851 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1852 if (i > 0 || MethodData::profile_return()) { 1853 // If return value type is profiled we may have no argument to profile. 1854 ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx); 1855 cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count()); 1856 addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count()); 1857 blt(CCR0, done); 1858 } 1859 ld(tmp1, in_bytes(Method::const_offset()), callee); 1860 lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1); 1861 // Stack offset o (zero based) from the start of the argument 1862 // list, for n arguments translates into offset n - o - 1 from 1863 // the end of the argument list. But there's an extra slot at 1864 // the top of the stack. So the offset is n - o from Lesp. 1865 ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx); 1866 subf(tmp1, tmp2, tmp1); 1867 1868 sldi(tmp1, tmp1, Interpreter::logStackElementSize); 1869 ldx(tmp1, tmp1, R15_esp); 1870 1871 profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1); 1872 1873 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1874 addi(R28_mdx, R28_mdx, to_add); 1875 off_to_args += to_add; 1876 } 1877 1878 if (MethodData::profile_return()) { 1879 ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx); 1880 addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1881 } 1882 1883 bind(done); 1884 1885 if (MethodData::profile_return()) { 1886 // We're right after the type profile for the last 1887 // argument. tmp1 is the number of cells left in the 1888 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1889 // if there's a return to profile. 1890 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), 1891 "can't move past ret type"); 1892 sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size)); 1893 add(R28_mdx, tmp1, R28_mdx); 1894 } 1895 } else { 1896 assert(MethodData::profile_return(), "either profile call args or call ret"); 1897 update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size())); 1898 } 1899 1900 // Mdp points right after the end of the 1901 // CallTypeData/VirtualCallTypeData, right after the cells for the 1902 // return value type if there's one. 1903 align(32, 12); 1904 bind(profile_continue); 1905 } 1906 } 1907 1908 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) { 1909 assert_different_registers(ret, tmp1, tmp2); 1910 if (ProfileInterpreter && MethodData::profile_return()) { 1911 Label profile_continue; 1912 1913 test_method_data_pointer(profile_continue); 1914 1915 if (MethodData::profile_return_jsr292_only()) { 1916 // If we don't profile all invoke bytecodes we must make sure 1917 // it's a bytecode we indeed profile. We can't go back to the 1918 // begining of the ProfileData we intend to update to check its 1919 // type because we're right after it and we don't known its 1920 // length. 1921 lbz(tmp1, 0, R14_bcp); 1922 lbz(tmp2, Method::intrinsic_id_offset_in_bytes(), R19_method); 1923 cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic); 1924 cmpwi(CCR1, tmp1, Bytecodes::_invokehandle); 1925 cror(CCR0, Assembler::equal, CCR1, Assembler::equal); 1926 cmpwi(CCR1, tmp2, vmIntrinsics::_compiledLambdaForm); 1927 cror(CCR0, Assembler::equal, CCR1, Assembler::equal); 1928 bne(CCR0, profile_continue); 1929 } 1930 1931 profile_obj_type(ret, R28_mdx, -in_bytes(ReturnTypeEntry::size()), tmp1, tmp2); 1932 1933 align(32, 12); 1934 bind(profile_continue); 1935 } 1936 } 1937 1938 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, 1939 Register tmp3, Register tmp4) { 1940 if (ProfileInterpreter && MethodData::profile_parameters()) { 1941 Label profile_continue, done; 1942 1943 test_method_data_pointer(profile_continue); 1944 1945 // Load the offset of the area within the MDO used for 1946 // parameters. If it's negative we're not profiling any parameters. 1947 lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx); 1948 cmpwi(CCR0, tmp1, 0); 1949 blt(CCR0, profile_continue); 1950 1951 // Compute a pointer to the area for parameters from the offset 1952 // and move the pointer to the slot for the last 1953 // parameters. Collect profiling from last parameter down. 1954 // mdo start + parameters offset + array length - 1 1955 1956 // Pointer to the parameter area in the MDO. 1957 const Register mdp = tmp1; 1958 add(mdp, tmp1, R28_mdx); 1959 1960 // Offset of the current profile entry to update. 1961 const Register entry_offset = tmp2; 1962 // entry_offset = array len in number of cells 1963 ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp); 1964 1965 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1966 assert(off_base % DataLayout::cell_size == 0, "should be a number of cells"); 1967 1968 // entry_offset (number of cells) = array len - size of 1 entry + offset of the stack slot field 1969 addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size)); 1970 // entry_offset in bytes 1971 sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size)); 1972 1973 Label loop; 1974 align(32, 12); 1975 bind(loop); 1976 1977 // Load offset on the stack from the slot for this parameter. 1978 ld(tmp3, entry_offset, mdp); 1979 sldi(tmp3, tmp3, Interpreter::logStackElementSize); 1980 neg(tmp3, tmp3); 1981 // Read the parameter from the local area. 1982 ldx(tmp3, tmp3, R18_locals); 1983 1984 // Make entry_offset now point to the type field for this parameter. 1985 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1986 assert(type_base > off_base, "unexpected"); 1987 addi(entry_offset, entry_offset, type_base - off_base); 1988 1989 // Profile the parameter. 1990 profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3); 1991 1992 // Go to next parameter. 1993 int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base); 1994 cmpdi(CCR0, entry_offset, off_base + delta); 1995 addi(entry_offset, entry_offset, -delta); 1996 bge(CCR0, loop); 1997 1998 align(32, 12); 1999 bind(profile_continue); 2000 } 2001 } 2002 2003 // Add a InterpMonitorElem to stack (see frame_sparc.hpp). 2004 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) { 2005 2006 // Very-local scratch registers. 2007 const Register esp = Rtemp1; 2008 const Register slot = Rtemp2; 2009 2010 // Extracted monitor_size. 2011 int monitor_size = frame::interpreter_frame_monitor_size_in_bytes(); 2012 assert(Assembler::is_aligned((unsigned int)monitor_size, 2013 (unsigned int)frame::alignment_in_bytes), 2014 "size of a monitor must respect alignment of SP"); 2015 2016 resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor 2017 std(R1_SP, _ijava_state_neg(top_frame_sp), esp); // esp contains fp 2018 2019 // Shuffle expression stack down. Recall that stack_base points 2020 // just above the new expression stack bottom. Old_tos and new_tos 2021 // are used to scan thru the old and new expression stacks. 2022 if (!stack_is_empty) { 2023 Label copy_slot, copy_slot_finished; 2024 const Register n_slots = slot; 2025 2026 addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack). 2027 subf(n_slots, esp, R26_monitor); 2028 srdi_(n_slots, n_slots, LogBytesPerWord); // Compute number of slots to copy. 2029 assert(LogBytesPerWord == 3, "conflicts assembler instructions"); 2030 beq(CCR0, copy_slot_finished); // Nothing to copy. 2031 2032 mtctr(n_slots); 2033 2034 // loop 2035 bind(copy_slot); 2036 ld(slot, 0, esp); // Move expression stack down. 2037 std(slot, -monitor_size, esp); // distance = monitor_size 2038 addi(esp, esp, BytesPerWord); 2039 bdnz(copy_slot); 2040 2041 bind(copy_slot_finished); 2042 } 2043 2044 addi(R15_esp, R15_esp, -monitor_size); 2045 addi(R26_monitor, R26_monitor, -monitor_size); 2046 2047 // Restart interpreter 2048 } 2049 2050 // ============================================================================ 2051 // Java locals access 2052 2053 // Load a local variable at index in Rindex into register Rdst_value. 2054 // Also puts address of local into Rdst_address as a service. 2055 // Kills: 2056 // - Rdst_value 2057 // - Rdst_address 2058 void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) { 2059 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2060 subf(Rdst_address, Rdst_address, R18_locals); 2061 lwz(Rdst_value, 0, Rdst_address); 2062 } 2063 2064 // Load a local variable at index in Rindex into register Rdst_value. 2065 // Also puts address of local into Rdst_address as a service. 2066 // Kills: 2067 // - Rdst_value 2068 // - Rdst_address 2069 void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) { 2070 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2071 subf(Rdst_address, Rdst_address, R18_locals); 2072 ld(Rdst_value, -8, Rdst_address); 2073 } 2074 2075 // Load a local variable at index in Rindex into register Rdst_value. 2076 // Also puts address of local into Rdst_address as a service. 2077 // Input: 2078 // - Rindex: slot nr of local variable 2079 // Kills: 2080 // - Rdst_value 2081 // - Rdst_address 2082 void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value, 2083 Register Rdst_address, 2084 Register Rindex) { 2085 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2086 subf(Rdst_address, Rdst_address, R18_locals); 2087 ld(Rdst_value, 0, Rdst_address); 2088 } 2089 2090 // Load a local variable at index in Rindex into register Rdst_value. 2091 // Also puts address of local into Rdst_address as a service. 2092 // Kills: 2093 // - Rdst_value 2094 // - Rdst_address 2095 void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value, 2096 Register Rdst_address, 2097 Register Rindex) { 2098 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2099 subf(Rdst_address, Rdst_address, R18_locals); 2100 lfs(Rdst_value, 0, Rdst_address); 2101 } 2102 2103 // Load a local variable at index in Rindex into register Rdst_value. 2104 // Also puts address of local into Rdst_address as a service. 2105 // Kills: 2106 // - Rdst_value 2107 // - Rdst_address 2108 void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value, 2109 Register Rdst_address, 2110 Register Rindex) { 2111 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2112 subf(Rdst_address, Rdst_address, R18_locals); 2113 lfd(Rdst_value, -8, Rdst_address); 2114 } 2115 2116 // Store an int value at local variable slot Rindex. 2117 // Kills: 2118 // - Rindex 2119 void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) { 2120 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2121 subf(Rindex, Rindex, R18_locals); 2122 stw(Rvalue, 0, Rindex); 2123 } 2124 2125 // Store a long value at local variable slot Rindex. 2126 // Kills: 2127 // - Rindex 2128 void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) { 2129 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2130 subf(Rindex, Rindex, R18_locals); 2131 std(Rvalue, -8, Rindex); 2132 } 2133 2134 // Store an oop value at local variable slot Rindex. 2135 // Kills: 2136 // - Rindex 2137 void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) { 2138 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2139 subf(Rindex, Rindex, R18_locals); 2140 std(Rvalue, 0, Rindex); 2141 } 2142 2143 // Store an int value at local variable slot Rindex. 2144 // Kills: 2145 // - Rindex 2146 void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) { 2147 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2148 subf(Rindex, Rindex, R18_locals); 2149 stfs(Rvalue, 0, Rindex); 2150 } 2151 2152 // Store an int value at local variable slot Rindex. 2153 // Kills: 2154 // - Rindex 2155 void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) { 2156 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2157 subf(Rindex, Rindex, R18_locals); 2158 stfd(Rvalue, -8, Rindex); 2159 } 2160 2161 // Read pending exception from thread and jump to interpreter. 2162 // Throw exception entry if one if pending. Fall through otherwise. 2163 void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) { 2164 assert_different_registers(Rscratch1, Rscratch2, R3); 2165 Register Rexception = Rscratch1; 2166 Register Rtmp = Rscratch2; 2167 Label Ldone; 2168 // Get pending exception oop. 2169 ld(Rexception, thread_(pending_exception)); 2170 cmpdi(CCR0, Rexception, 0); 2171 beq(CCR0, Ldone); 2172 li(Rtmp, 0); 2173 mr_if_needed(R3, Rexception); 2174 std(Rtmp, thread_(pending_exception)); // Clear exception in thread 2175 if (Interpreter::rethrow_exception_entry() != NULL) { 2176 // Already got entry address. 2177 load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry()); 2178 } else { 2179 // Dynamically load entry address. 2180 int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true); 2181 ld(Rtmp, simm16_rest, Rtmp); 2182 } 2183 mtctr(Rtmp); 2184 save_interpreter_state(Rtmp); 2185 bctr(); 2186 2187 align(32, 12); 2188 bind(Ldone); 2189 } 2190 2191 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) { 2192 save_interpreter_state(R11_scratch1); 2193 2194 MacroAssembler::call_VM(oop_result, entry_point, false); 2195 2196 restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true); 2197 2198 check_and_handle_popframe(R11_scratch1); 2199 check_and_handle_earlyret(R11_scratch1); 2200 // Now check exceptions manually. 2201 if (check_exceptions) { 2202 check_and_forward_exception(R11_scratch1, R12_scratch2); 2203 } 2204 } 2205 2206 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2207 Register arg_1, bool check_exceptions) { 2208 // ARG1 is reserved for the thread. 2209 mr_if_needed(R4_ARG2, arg_1); 2210 call_VM(oop_result, entry_point, check_exceptions); 2211 } 2212 2213 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2214 Register arg_1, Register arg_2, 2215 bool check_exceptions) { 2216 // ARG1 is reserved for the thread. 2217 mr_if_needed(R4_ARG2, arg_1); 2218 assert(arg_2 != R4_ARG2, "smashed argument"); 2219 mr_if_needed(R5_ARG3, arg_2); 2220 call_VM(oop_result, entry_point, check_exceptions); 2221 } 2222 2223 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2224 Register arg_1, Register arg_2, Register arg_3, 2225 bool check_exceptions) { 2226 // ARG1 is reserved for the thread. 2227 mr_if_needed(R4_ARG2, arg_1); 2228 assert(arg_2 != R4_ARG2, "smashed argument"); 2229 mr_if_needed(R5_ARG3, arg_2); 2230 assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument"); 2231 mr_if_needed(R6_ARG4, arg_3); 2232 call_VM(oop_result, entry_point, check_exceptions); 2233 } 2234 2235 void InterpreterMacroAssembler::save_interpreter_state(Register scratch) { 2236 ld(scratch, 0, R1_SP); 2237 std(R15_esp, _ijava_state_neg(esp), scratch); 2238 std(R14_bcp, _ijava_state_neg(bcp), scratch); 2239 std(R26_monitor, _ijava_state_neg(monitors), scratch); 2240 if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); } 2241 // Other entries should be unchanged. 2242 } 2243 2244 void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only) { 2245 ld(scratch, 0, R1_SP); 2246 ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception). 2247 if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code. 2248 if (!bcp_and_mdx_only) { 2249 // Following ones are Metadata. 2250 ld(R19_method, _ijava_state_neg(method), scratch); 2251 ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch); 2252 // Following ones are stack addresses and don't require reload. 2253 ld(R15_esp, _ijava_state_neg(esp), scratch); 2254 ld(R18_locals, _ijava_state_neg(locals), scratch); 2255 ld(R26_monitor, _ijava_state_neg(monitors), scratch); 2256 } 2257 #ifdef ASSERT 2258 { 2259 Label Lok; 2260 subf(R0, R1_SP, scratch); 2261 cmpdi(CCR0, R0, frame::abi_reg_args_size + frame::ijava_state_size); 2262 bge(CCR0, Lok); 2263 stop("frame too small (restore istate)", 0x5432); 2264 bind(Lok); 2265 } 2266 { 2267 Label Lok; 2268 ld(R0, _ijava_state_neg(ijava_reserved), scratch); 2269 cmpdi(CCR0, R0, 0x5afe); 2270 beq(CCR0, Lok); 2271 stop("frame corrupted (restore istate)", 0x5afe); 2272 bind(Lok); 2273 } 2274 #endif 2275 } 2276 2277 void InterpreterMacroAssembler::get_method_counters(Register method, 2278 Register Rcounters, 2279 Label& skip) { 2280 BLOCK_COMMENT("Load and ev. allocate counter object {"); 2281 Label has_counters; 2282 ld(Rcounters, in_bytes(Method::method_counters_offset()), method); 2283 cmpdi(CCR0, Rcounters, 0); 2284 bne(CCR0, has_counters); 2285 call_VM(noreg, CAST_FROM_FN_PTR(address, 2286 InterpreterRuntime::build_method_counters), method, false); 2287 ld(Rcounters, in_bytes(Method::method_counters_offset()), method); 2288 cmpdi(CCR0, Rcounters, 0); 2289 beq(CCR0, skip); // No MethodCounters, OutOfMemory. 2290 BLOCK_COMMENT("} Load and ev. allocate counter object"); 2291 2292 bind(has_counters); 2293 } 2294 2295 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, 2296 Register iv_be_count, 2297 Register Rtmp_r0) { 2298 assert(UseCompiler || LogTouchedMethods, "incrementing must be useful"); 2299 Register invocation_count = iv_be_count; 2300 Register backedge_count = Rtmp_r0; 2301 int delta = InvocationCounter::count_increment; 2302 2303 // Load each counter in a register. 2304 // ld(inv_counter, Rtmp); 2305 // ld(be_counter, Rtmp2); 2306 int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + 2307 InvocationCounter::counter_offset()); 2308 int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + 2309 InvocationCounter::counter_offset()); 2310 2311 BLOCK_COMMENT("Increment profiling counters {"); 2312 2313 // Load the backedge counter. 2314 lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int 2315 // Mask the backedge counter. 2316 andi(backedge_count, backedge_count, InvocationCounter::count_mask_value); 2317 2318 // Load the invocation counter. 2319 lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int 2320 // Add the delta to the invocation counter and store the result. 2321 addi(invocation_count, invocation_count, delta); 2322 // Store value. 2323 stw(invocation_count, inv_counter_offset, Rcounters); 2324 2325 // Add invocation counter + backedge counter. 2326 add(iv_be_count, backedge_count, invocation_count); 2327 2328 // Note that this macro must leave the backedge_count + invocation_count in 2329 // register iv_be_count! 2330 BLOCK_COMMENT("} Increment profiling counters"); 2331 } 2332 2333 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { 2334 if (state == atos) { MacroAssembler::verify_oop(reg); } 2335 } 2336 2337 // Local helper function for the verify_oop_or_return_address macro. 2338 static bool verify_return_address(Method* m, int bci) { 2339 #ifndef PRODUCT 2340 address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci; 2341 // Assume it is a valid return address if it is inside m and is preceded by a jsr. 2342 if (!m->contains(pc)) return false; 2343 address jsr_pc; 2344 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr); 2345 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true; 2346 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w); 2347 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true; 2348 #endif // PRODUCT 2349 return false; 2350 } 2351 2352 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { 2353 if (VerifyFPU) { 2354 unimplemented("verfiyFPU"); 2355 } 2356 } 2357 2358 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) { 2359 if (!VerifyOops) return; 2360 2361 // The VM documentation for the astore[_wide] bytecode allows 2362 // the TOS to be not only an oop but also a return address. 2363 Label test; 2364 Label skip; 2365 // See if it is an address (in the current method): 2366 2367 const int log2_bytecode_size_limit = 16; 2368 srdi_(Rtmp, reg, log2_bytecode_size_limit); 2369 bne(CCR0, test); 2370 2371 address fd = CAST_FROM_FN_PTR(address, verify_return_address); 2372 const int nbytes_save = MacroAssembler::num_volatile_regs * 8; 2373 save_volatile_gprs(R1_SP, -nbytes_save); // except R0 2374 save_LR_CR(Rtmp); // Save in old frame. 2375 push_frame_reg_args(nbytes_save, Rtmp); 2376 2377 load_const_optimized(Rtmp, fd, R0); 2378 mr_if_needed(R4_ARG2, reg); 2379 mr(R3_ARG1, R19_method); 2380 call_c(Rtmp); // call C 2381 2382 pop_frame(); 2383 restore_LR_CR(Rtmp); 2384 restore_volatile_gprs(R1_SP, -nbytes_save); // except R0 2385 b(skip); 2386 2387 // Perform a more elaborate out-of-line call. 2388 // Not an address; verify it: 2389 bind(test); 2390 verify_oop(reg); 2391 bind(skip); 2392 } 2393 2394 // Inline assembly for: 2395 // 2396 // if (thread is in interp_only_mode) { 2397 // InterpreterRuntime::post_method_entry(); 2398 // } 2399 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) || 2400 // *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2) ) { 2401 // SharedRuntime::jvmpi_method_entry(method, receiver); 2402 // } 2403 void InterpreterMacroAssembler::notify_method_entry() { 2404 // JVMTI 2405 // Whenever JVMTI puts a thread in interp_only_mode, method 2406 // entry/exit events are sent for that thread to track stack 2407 // depth. If it is possible to enter interp_only_mode we add 2408 // the code to check if the event should be sent. 2409 if (JvmtiExport::can_post_interpreter_events()) { 2410 Label jvmti_post_done; 2411 2412 lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 2413 cmpwi(CCR0, R0, 0); 2414 beq(CCR0, jvmti_post_done); 2415 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry), 2416 /*check_exceptions=*/true); 2417 2418 bind(jvmti_post_done); 2419 } 2420 } 2421 2422 // Inline assembly for: 2423 // 2424 // if (thread is in interp_only_mode) { 2425 // // save result 2426 // InterpreterRuntime::post_method_exit(); 2427 // // restore result 2428 // } 2429 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) { 2430 // // save result 2431 // SharedRuntime::jvmpi_method_exit(); 2432 // // restore result 2433 // } 2434 // 2435 // Native methods have their result stored in d_tmp and l_tmp. 2436 // Java methods have their result stored in the expression stack. 2437 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state, 2438 NotifyMethodExitMode mode, bool check_exceptions) { 2439 // JVMTI 2440 // Whenever JVMTI puts a thread in interp_only_mode, method 2441 // entry/exit events are sent for that thread to track stack 2442 // depth. If it is possible to enter interp_only_mode we add 2443 // the code to check if the event should be sent. 2444 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2445 Label jvmti_post_done; 2446 2447 lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 2448 cmpwi(CCR0, R0, 0); 2449 beq(CCR0, jvmti_post_done); 2450 if (!is_native_method) { push(state); } // Expose tos to GC. 2451 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit), 2452 /*check_exceptions=*/check_exceptions); 2453 if (!is_native_method) { pop(state); } 2454 2455 align(32, 12); 2456 bind(jvmti_post_done); 2457 } 2458 2459 // Dtrace support not implemented. 2460 } --- EOF ---