1 /* 2 * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_FrameMap.hpp" 28 #include "c1/c1_Instruction.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_LIRGenerator.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArray.hpp" 34 #include "ci/ciObjArrayKlass.hpp" 35 #include "ci/ciTypeArrayKlass.hpp" 36 #include "runtime/sharedRuntime.hpp" 37 #include "runtime/stubRoutines.hpp" 38 #include "vmreg_x86.inline.hpp" 39 40 #ifdef ASSERT 41 #define __ gen()->lir(__FILE__, __LINE__)-> 42 #else 43 #define __ gen()->lir()-> 44 #endif 45 46 // Item will be loaded into a byte register; Intel only 47 void LIRItem::load_byte_item() { 48 load_item(); 49 LIR_Opr res = result(); 50 51 if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) { 52 // make sure that it is a byte register 53 assert(!value()->type()->is_float() && !value()->type()->is_double(), 54 "can't load floats in byte register"); 55 LIR_Opr reg = _gen->rlock_byte(T_BYTE); 56 __ move(res, reg); 57 58 _result = reg; 59 } 60 } 61 62 63 void LIRItem::load_nonconstant() { 64 LIR_Opr r = value()->operand(); 65 if (r->is_constant()) { 66 _result = r; 67 } else { 68 load_item(); 69 } 70 } 71 72 //-------------------------------------------------------------- 73 // LIRGenerator 74 //-------------------------------------------------------------- 75 76 77 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; } 78 LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::rdx_opr; } 79 LIR_Opr LIRGenerator::divInOpr() { return FrameMap::rax_opr; } 80 LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::rax_opr; } 81 LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::rdx_opr; } 82 LIR_Opr LIRGenerator::shiftCountOpr() { return FrameMap::rcx_opr; } 83 LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); } 84 LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::rax_opr; } 85 LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; } 86 87 88 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) { 89 LIR_Opr opr; 90 switch (type->tag()) { 91 case intTag: opr = FrameMap::rax_opr; break; 92 case objectTag: opr = FrameMap::rax_oop_opr; break; 93 case longTag: opr = FrameMap::long0_opr; break; 94 case floatTag: opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr : FrameMap::fpu0_float_opr; break; 95 case doubleTag: opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr; break; 96 97 case addressTag: 98 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; 99 } 100 101 assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch"); 102 return opr; 103 } 104 105 106 LIR_Opr LIRGenerator::rlock_byte(BasicType type) { 107 LIR_Opr reg = new_register(T_INT); 108 set_vreg_flag(reg, LIRGenerator::byte_reg); 109 return reg; 110 } 111 112 113 //--------- loading items into registers -------------------------------- 114 115 116 // i486 instructions can inline constants 117 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const { 118 if (type == T_SHORT || type == T_CHAR) { 119 // there is no immediate move of word values in asembler_i486.?pp 120 return false; 121 } 122 Constant* c = v->as_Constant(); 123 if (c && c->state_before() == NULL) { 124 // constants of any type can be stored directly, except for 125 // unloaded object constants. 126 return true; 127 } 128 return false; 129 } 130 131 132 bool LIRGenerator::can_inline_as_constant(Value v) const { 133 if (v->type()->tag() == longTag) return false; 134 return v->type()->tag() != objectTag || 135 (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object()); 136 } 137 138 139 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { 140 if (c->type() == T_LONG) return false; 141 return c->type() != T_OBJECT || c->as_jobject() == NULL; 142 } 143 144 145 LIR_Opr LIRGenerator::safepoint_poll_register() { 146 NOT_AMD64( if (SafepointMechanism::uses_thread_local_poll()) { return new_register(T_ADDRESS); } ) 147 return LIR_OprFact::illegalOpr; 148 } 149 150 151 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index, 152 int shift, int disp, BasicType type) { 153 assert(base->is_register(), "must be"); 154 if (index->is_constant()) { 155 return new LIR_Address(base, 156 ((intx)(index->as_constant_ptr()->as_jint()) << shift) + disp, 157 type); 158 } else { 159 return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type); 160 } 161 } 162 163 164 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, 165 BasicType type, bool needs_card_mark) { 166 int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type); 167 168 LIR_Address* addr; 169 if (index_opr->is_constant()) { 170 int elem_size = type2aelembytes(type); 171 addr = new LIR_Address(array_opr, 172 offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type); 173 } else { 174 #ifdef _LP64 175 if (index_opr->type() == T_INT) { 176 LIR_Opr tmp = new_register(T_LONG); 177 __ convert(Bytecodes::_i2l, index_opr, tmp); 178 index_opr = tmp; 179 } 180 #endif // _LP64 181 addr = new LIR_Address(array_opr, 182 index_opr, 183 LIR_Address::scale(type), 184 offset_in_bytes, type); 185 } 186 if (needs_card_mark) { 187 // This store will need a precise card mark, so go ahead and 188 // compute the full adddres instead of computing once for the 189 // store and again for the card mark. 190 LIR_Opr tmp = new_pointer_register(); 191 __ leal(LIR_OprFact::address(addr), tmp); 192 return new LIR_Address(tmp, type); 193 } else { 194 return addr; 195 } 196 } 197 198 199 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) { 200 LIR_Opr r = NULL; 201 if (type == T_LONG) { 202 r = LIR_OprFact::longConst(x); 203 } else if (type == T_INT) { 204 r = LIR_OprFact::intConst(x); 205 } else { 206 ShouldNotReachHere(); 207 } 208 return r; 209 } 210 211 void LIRGenerator::increment_counter(address counter, BasicType type, int step) { 212 LIR_Opr pointer = new_pointer_register(); 213 __ move(LIR_OprFact::intptrConst(counter), pointer); 214 LIR_Address* addr = new LIR_Address(pointer, type); 215 increment_counter(addr, step); 216 } 217 218 219 void LIRGenerator::increment_counter(LIR_Address* addr, int step) { 220 __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr); 221 } 222 223 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { 224 __ cmp_mem_int(condition, base, disp, c, info); 225 } 226 227 228 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) { 229 __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info); 230 } 231 232 233 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) { 234 __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info); 235 } 236 237 238 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) { 239 if (tmp->is_valid() && c > 0 && c < max_jint) { 240 if (is_power_of_2(c + 1)) { 241 __ move(left, tmp); 242 __ shift_left(left, log2_intptr(c + 1), left); 243 __ sub(left, tmp, result); 244 return true; 245 } else if (is_power_of_2(c - 1)) { 246 __ move(left, tmp); 247 __ shift_left(left, log2_intptr(c - 1), left); 248 __ add(left, tmp, result); 249 return true; 250 } 251 } 252 return false; 253 } 254 255 256 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) { 257 BasicType type = item->type(); 258 __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type)); 259 } 260 261 //---------------------------------------------------------------------- 262 // visitor functions 263 //---------------------------------------------------------------------- 264 265 266 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 267 assert(x->is_pinned(),""); 268 bool needs_range_check = x->compute_needs_range_check(); 269 bool use_length = x->length() != NULL; 270 bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT; 271 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL || 272 !get_jobject_constant(x->value())->is_null_object() || 273 x->should_profile()); 274 275 LIRItem array(x->array(), this); 276 LIRItem index(x->index(), this); 277 LIRItem value(x->value(), this); 278 LIRItem length(this); 279 280 array.load_item(); 281 index.load_nonconstant(); 282 283 if (use_length && needs_range_check) { 284 length.set_instruction(x->length()); 285 length.load_item(); 286 287 } 288 if (needs_store_check || x->check_boolean()) { 289 value.load_item(); 290 } else { 291 value.load_for_store(x->elt_type()); 292 } 293 294 set_no_result(x); 295 296 // the CodeEmitInfo must be duplicated for each different 297 // LIR-instruction because spilling can occur anywhere between two 298 // instructions and so the debug information must be different 299 CodeEmitInfo* range_check_info = state_for(x); 300 CodeEmitInfo* null_check_info = NULL; 301 if (x->needs_null_check()) { 302 null_check_info = new CodeEmitInfo(range_check_info); 303 } 304 305 // emit array address setup early so it schedules better 306 LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store); 307 308 if (GenerateRangeChecks && needs_range_check) { 309 if (use_length) { 310 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 311 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result())); 312 } else { 313 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 314 // range_check also does the null check 315 null_check_info = NULL; 316 } 317 } 318 319 if (GenerateArrayStoreCheck && needs_store_check) { 320 LIR_Opr tmp1 = new_register(objectType); 321 LIR_Opr tmp2 = new_register(objectType); 322 LIR_Opr tmp3 = new_register(objectType); 323 324 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 325 __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci()); 326 } 327 328 if (obj_store) { 329 // Needs GC write barriers. 330 pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */, 331 true /* do_load */, false /* patch */, NULL); 332 __ move(value.result(), array_addr, null_check_info); 333 // Seems to be a precise 334 post_barrier(LIR_OprFact::address(array_addr), value.result()); 335 } else { 336 LIR_Opr result = maybe_mask_boolean(x, array.result(), value.result(), null_check_info); 337 __ move(result, array_addr, null_check_info); 338 } 339 } 340 341 342 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) { 343 assert(x->is_pinned(),""); 344 LIRItem obj(x->obj(), this); 345 obj.load_item(); 346 347 set_no_result(x); 348 349 // "lock" stores the address of the monitor stack slot, so this is not an oop 350 LIR_Opr lock = new_register(T_INT); 351 // Need a scratch register for biased locking on x86 352 LIR_Opr scratch = LIR_OprFact::illegalOpr; 353 if (UseBiasedLocking) { 354 scratch = new_register(T_INT); 355 } 356 357 CodeEmitInfo* info_for_exception = NULL; 358 if (x->needs_null_check()) { 359 info_for_exception = state_for(x); 360 } 361 // this CodeEmitInfo must not have the xhandlers because here the 362 // object is already locked (xhandlers expect object to be unlocked) 363 CodeEmitInfo* info = state_for(x, x->state(), true); 364 monitor_enter(obj.result(), lock, syncTempOpr(), scratch, 365 x->monitor_no(), info_for_exception, info); 366 } 367 368 369 void LIRGenerator::do_MonitorExit(MonitorExit* x) { 370 assert(x->is_pinned(),""); 371 372 LIRItem obj(x->obj(), this); 373 obj.dont_load_item(); 374 375 LIR_Opr lock = new_register(T_INT); 376 LIR_Opr obj_temp = new_register(T_INT); 377 set_no_result(x); 378 monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no()); 379 } 380 381 382 // _ineg, _lneg, _fneg, _dneg 383 void LIRGenerator::do_NegateOp(NegateOp* x) { 384 LIRItem value(x->x(), this); 385 value.set_destroys_register(); 386 value.load_item(); 387 LIR_Opr reg = rlock(x); 388 __ negate(value.result(), reg); 389 390 set_result(x, round_item(reg)); 391 } 392 393 394 // for _fadd, _fmul, _fsub, _fdiv, _frem 395 // _dadd, _dmul, _dsub, _ddiv, _drem 396 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) { 397 LIRItem left(x->x(), this); 398 LIRItem right(x->y(), this); 399 LIRItem* left_arg = &left; 400 LIRItem* right_arg = &right; 401 assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands"); 402 bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem); 403 if (left.is_register() || x->x()->type()->is_constant() || must_load_both) { 404 left.load_item(); 405 } else { 406 left.dont_load_item(); 407 } 408 409 // do not load right operand if it is a constant. only 0 and 1 are 410 // loaded because there are special instructions for loading them 411 // without memory access (not needed for SSE2 instructions) 412 bool must_load_right = false; 413 if (right.is_constant()) { 414 LIR_Const* c = right.result()->as_constant_ptr(); 415 assert(c != NULL, "invalid constant"); 416 assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type"); 417 418 if (c->type() == T_FLOAT) { 419 must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float()); 420 } else { 421 must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double()); 422 } 423 } 424 425 if (must_load_both) { 426 // frem and drem destroy also right operand, so move it to a new register 427 right.set_destroys_register(); 428 right.load_item(); 429 } else if (right.is_register() || must_load_right) { 430 right.load_item(); 431 } else { 432 right.dont_load_item(); 433 } 434 LIR_Opr reg = rlock(x); 435 LIR_Opr tmp = LIR_OprFact::illegalOpr; 436 if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) { 437 tmp = new_register(T_DOUBLE); 438 } 439 440 if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) { 441 // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots 442 LIR_Opr fpu0, fpu1; 443 if (x->op() == Bytecodes::_frem) { 444 fpu0 = LIR_OprFact::single_fpu(0); 445 fpu1 = LIR_OprFact::single_fpu(1); 446 } else { 447 fpu0 = LIR_OprFact::double_fpu(0); 448 fpu1 = LIR_OprFact::double_fpu(1); 449 } 450 __ move(right.result(), fpu1); // order of left and right operand is important! 451 __ move(left.result(), fpu0); 452 __ rem (fpu0, fpu1, fpu0); 453 __ move(fpu0, reg); 454 455 } else { 456 arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp); 457 } 458 459 set_result(x, round_item(reg)); 460 } 461 462 463 // for _ladd, _lmul, _lsub, _ldiv, _lrem 464 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) { 465 if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) { 466 // long division is implemented as a direct call into the runtime 467 LIRItem left(x->x(), this); 468 LIRItem right(x->y(), this); 469 470 // the check for division by zero destroys the right operand 471 right.set_destroys_register(); 472 473 BasicTypeList signature(2); 474 signature.append(T_LONG); 475 signature.append(T_LONG); 476 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 477 478 // check for division by zero (destroys registers of right operand!) 479 CodeEmitInfo* info = state_for(x); 480 481 const LIR_Opr result_reg = result_register_for(x->type()); 482 left.load_item_force(cc->at(1)); 483 right.load_item(); 484 485 __ move(right.result(), cc->at(0)); 486 487 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0)); 488 __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info)); 489 490 address entry = NULL; 491 switch (x->op()) { 492 case Bytecodes::_lrem: 493 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem); 494 break; // check if dividend is 0 is done elsewhere 495 case Bytecodes::_ldiv: 496 entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv); 497 break; // check if dividend is 0 is done elsewhere 498 case Bytecodes::_lmul: 499 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul); 500 break; 501 default: 502 ShouldNotReachHere(); 503 } 504 505 LIR_Opr result = rlock_result(x); 506 __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args()); 507 __ move(result_reg, result); 508 } else if (x->op() == Bytecodes::_lmul) { 509 // missing test if instr is commutative and if we should swap 510 LIRItem left(x->x(), this); 511 LIRItem right(x->y(), this); 512 513 // right register is destroyed by the long mul, so it must be 514 // copied to a new register. 515 right.set_destroys_register(); 516 517 left.load_item(); 518 right.load_item(); 519 520 LIR_Opr reg = FrameMap::long0_opr; 521 arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL); 522 LIR_Opr result = rlock_result(x); 523 __ move(reg, result); 524 } else { 525 // missing test if instr is commutative and if we should swap 526 LIRItem left(x->x(), this); 527 LIRItem right(x->y(), this); 528 529 left.load_item(); 530 // don't load constants to save register 531 right.load_nonconstant(); 532 rlock_result(x); 533 arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL); 534 } 535 } 536 537 538 539 // for: _iadd, _imul, _isub, _idiv, _irem 540 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) { 541 if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) { 542 // The requirements for division and modulo 543 // input : rax,: dividend min_int 544 // reg: divisor (may not be rax,/rdx) -1 545 // 546 // output: rax,: quotient (= rax, idiv reg) min_int 547 // rdx: remainder (= rax, irem reg) 0 548 549 // rax, and rdx will be destroyed 550 551 // Note: does this invalidate the spec ??? 552 LIRItem right(x->y(), this); 553 LIRItem left(x->x() , this); // visit left second, so that the is_register test is valid 554 555 // call state_for before load_item_force because state_for may 556 // force the evaluation of other instructions that are needed for 557 // correct debug info. Otherwise the live range of the fix 558 // register might be too long. 559 CodeEmitInfo* info = state_for(x); 560 561 left.load_item_force(divInOpr()); 562 563 right.load_item(); 564 565 LIR_Opr result = rlock_result(x); 566 LIR_Opr result_reg; 567 if (x->op() == Bytecodes::_idiv) { 568 result_reg = divOutOpr(); 569 } else { 570 result_reg = remOutOpr(); 571 } 572 573 if (!ImplicitDiv0Checks) { 574 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0)); 575 __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info)); 576 } 577 LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation 578 if (x->op() == Bytecodes::_irem) { 579 __ irem(left.result(), right.result(), result_reg, tmp, info); 580 } else if (x->op() == Bytecodes::_idiv) { 581 __ idiv(left.result(), right.result(), result_reg, tmp, info); 582 } else { 583 ShouldNotReachHere(); 584 } 585 586 __ move(result_reg, result); 587 } else { 588 // missing test if instr is commutative and if we should swap 589 LIRItem left(x->x(), this); 590 LIRItem right(x->y(), this); 591 LIRItem* left_arg = &left; 592 LIRItem* right_arg = &right; 593 if (x->is_commutative() && left.is_stack() && right.is_register()) { 594 // swap them if left is real stack (or cached) and right is real register(not cached) 595 left_arg = &right; 596 right_arg = &left; 597 } 598 599 left_arg->load_item(); 600 601 // do not need to load right, as we can handle stack and constants 602 if (x->op() == Bytecodes::_imul ) { 603 // check if we can use shift instead 604 bool use_constant = false; 605 bool use_tmp = false; 606 if (right_arg->is_constant()) { 607 jint iconst = right_arg->get_jint_constant(); 608 if (iconst > 0 && iconst < max_jint) { 609 if (is_power_of_2(iconst)) { 610 use_constant = true; 611 } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) { 612 use_constant = true; 613 use_tmp = true; 614 } 615 } 616 } 617 if (use_constant) { 618 right_arg->dont_load_item(); 619 } else { 620 right_arg->load_item(); 621 } 622 LIR_Opr tmp = LIR_OprFact::illegalOpr; 623 if (use_tmp) { 624 tmp = new_register(T_INT); 625 } 626 rlock_result(x); 627 628 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp); 629 } else { 630 right_arg->dont_load_item(); 631 rlock_result(x); 632 LIR_Opr tmp = LIR_OprFact::illegalOpr; 633 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp); 634 } 635 } 636 } 637 638 639 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) { 640 // when an operand with use count 1 is the left operand, then it is 641 // likely that no move for 2-operand-LIR-form is necessary 642 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { 643 x->swap_operands(); 644 } 645 646 ValueTag tag = x->type()->tag(); 647 assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters"); 648 switch (tag) { 649 case floatTag: 650 case doubleTag: do_ArithmeticOp_FPU(x); return; 651 case longTag: do_ArithmeticOp_Long(x); return; 652 case intTag: do_ArithmeticOp_Int(x); return; 653 default: ShouldNotReachHere(); return; 654 } 655 } 656 657 658 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr 659 void LIRGenerator::do_ShiftOp(ShiftOp* x) { 660 // count must always be in rcx 661 LIRItem value(x->x(), this); 662 LIRItem count(x->y(), this); 663 664 ValueTag elemType = x->type()->tag(); 665 bool must_load_count = !count.is_constant() || elemType == longTag; 666 if (must_load_count) { 667 // count for long must be in register 668 count.load_item_force(shiftCountOpr()); 669 } else { 670 count.dont_load_item(); 671 } 672 value.load_item(); 673 LIR_Opr reg = rlock_result(x); 674 675 shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr); 676 } 677 678 679 // _iand, _land, _ior, _lor, _ixor, _lxor 680 void LIRGenerator::do_LogicOp(LogicOp* x) { 681 // when an operand with use count 1 is the left operand, then it is 682 // likely that no move for 2-operand-LIR-form is necessary 683 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { 684 x->swap_operands(); 685 } 686 687 LIRItem left(x->x(), this); 688 LIRItem right(x->y(), this); 689 690 left.load_item(); 691 right.load_nonconstant(); 692 LIR_Opr reg = rlock_result(x); 693 694 logic_op(x->op(), reg, left.result(), right.result()); 695 } 696 697 698 699 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg 700 void LIRGenerator::do_CompareOp(CompareOp* x) { 701 LIRItem left(x->x(), this); 702 LIRItem right(x->y(), this); 703 ValueTag tag = x->x()->type()->tag(); 704 if (tag == longTag) { 705 left.set_destroys_register(); 706 } 707 left.load_item(); 708 right.load_item(); 709 LIR_Opr reg = rlock_result(x); 710 711 if (x->x()->type()->is_float_kind()) { 712 Bytecodes::Code code = x->op(); 713 __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl)); 714 } else if (x->x()->type()->tag() == longTag) { 715 __ lcmp2int(left.result(), right.result(), reg); 716 } else { 717 Unimplemented(); 718 } 719 } 720 721 722 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 723 assert(x->number_of_arguments() == 4, "wrong type"); 724 LIRItem obj (x->argument_at(0), this); // object 725 LIRItem offset(x->argument_at(1), this); // offset of field 726 LIRItem cmp (x->argument_at(2), this); // value to compare with field 727 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 728 729 assert(obj.type()->tag() == objectTag, "invalid type"); 730 731 // In 64bit the type can be long, sparc doesn't have this assert 732 // assert(offset.type()->tag() == intTag, "invalid type"); 733 734 assert(cmp.type()->tag() == type->tag(), "invalid type"); 735 assert(val.type()->tag() == type->tag(), "invalid type"); 736 737 // get address of field 738 obj.load_item(); 739 offset.load_nonconstant(); 740 741 LIR_Opr addr = new_pointer_register(); 742 LIR_Address* a; 743 if(offset.result()->is_constant()) { 744 #ifdef _LP64 745 jlong c = offset.result()->as_jlong(); 746 if ((jlong)((jint)c) == c) { 747 a = new LIR_Address(obj.result(), 748 (jint)c, 749 as_BasicType(type)); 750 } else { 751 LIR_Opr tmp = new_register(T_LONG); 752 __ move(offset.result(), tmp); 753 a = new LIR_Address(obj.result(), 754 tmp, 755 as_BasicType(type)); 756 } 757 #else 758 a = new LIR_Address(obj.result(), 759 offset.result()->as_jint(), 760 as_BasicType(type)); 761 #endif 762 } else { 763 a = new LIR_Address(obj.result(), 764 offset.result(), 765 0, 766 as_BasicType(type)); 767 } 768 __ leal(LIR_OprFact::address(a), addr); 769 770 if (type == objectType) { // Write-barrier needed for Object fields. 771 // Do the pre-write barrier, if any. 772 pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */, 773 true /* do_load */, false /* patch */, NULL); 774 } 775 776 if (type == objectType) { 777 cmp.load_item_force(FrameMap::rax_oop_opr); 778 val.load_item(); 779 } else if (type == intType) { 780 cmp.load_item_force(FrameMap::rax_opr); 781 val.load_item(); 782 } else if (type == longType) { 783 cmp.load_item_force(FrameMap::long0_opr); 784 val.load_item_force(FrameMap::long1_opr); 785 } else { 786 ShouldNotReachHere(); 787 } 788 789 LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience 790 if (type == objectType) 791 __ cas_obj(addr, cmp.result(), val.result(), ill, ill); 792 else if (type == intType) 793 __ cas_int(addr, cmp.result(), val.result(), ill, ill); 794 else if (type == longType) 795 __ cas_long(addr, cmp.result(), val.result(), ill, ill); 796 else { 797 ShouldNotReachHere(); 798 } 799 800 // generate conditional move of boolean result 801 LIR_Opr result = rlock_result(x); 802 __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), 803 result, as_BasicType(type)); 804 if (type == objectType) { // Write-barrier needed for Object fields. 805 // Seems to be precise 806 post_barrier(addr, val.result()); 807 } 808 } 809 810 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) { 811 assert(x->number_of_arguments() == 3, "wrong type"); 812 assert(UseFMA, "Needs FMA instructions support."); 813 LIRItem value(x->argument_at(0), this); 814 LIRItem value1(x->argument_at(1), this); 815 LIRItem value2(x->argument_at(2), this); 816 817 value2.set_destroys_register(); 818 819 value.load_item(); 820 value1.load_item(); 821 value2.load_item(); 822 823 LIR_Opr calc_input = value.result(); 824 LIR_Opr calc_input1 = value1.result(); 825 LIR_Opr calc_input2 = value2.result(); 826 LIR_Opr calc_result = rlock_result(x); 827 828 switch (x->id()) { 829 case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break; 830 case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break; 831 default: ShouldNotReachHere(); 832 } 833 834 } 835 836 837 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) { 838 assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type"); 839 840 if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog || 841 x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos || 842 x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan || 843 x->id() == vmIntrinsics::_dlog10) { 844 do_LibmIntrinsic(x); 845 return; 846 } 847 848 LIRItem value(x->argument_at(0), this); 849 850 bool use_fpu = false; 851 if (UseSSE < 2) { 852 value.set_destroys_register(); 853 } 854 value.load_item(); 855 856 LIR_Opr calc_input = value.result(); 857 LIR_Opr calc_result = rlock_result(x); 858 859 switch(x->id()) { 860 case vmIntrinsics::_dabs: __ abs (calc_input, calc_result, LIR_OprFact::illegalOpr); break; 861 case vmIntrinsics::_dsqrt: __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break; 862 default: ShouldNotReachHere(); 863 } 864 865 if (use_fpu) { 866 __ move(calc_result, x->operand()); 867 } 868 } 869 870 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) { 871 LIRItem value(x->argument_at(0), this); 872 value.set_destroys_register(); 873 874 LIR_Opr calc_result = rlock_result(x); 875 LIR_Opr result_reg = result_register_for(x->type()); 876 877 CallingConvention* cc = NULL; 878 879 if (x->id() == vmIntrinsics::_dpow) { 880 LIRItem value1(x->argument_at(1), this); 881 882 value1.set_destroys_register(); 883 884 BasicTypeList signature(2); 885 signature.append(T_DOUBLE); 886 signature.append(T_DOUBLE); 887 cc = frame_map()->c_calling_convention(&signature); 888 value.load_item_force(cc->at(0)); 889 value1.load_item_force(cc->at(1)); 890 } else { 891 BasicTypeList signature(1); 892 signature.append(T_DOUBLE); 893 cc = frame_map()->c_calling_convention(&signature); 894 value.load_item_force(cc->at(0)); 895 } 896 897 #ifndef _LP64 898 LIR_Opr tmp = FrameMap::fpu0_double_opr; 899 result_reg = tmp; 900 switch(x->id()) { 901 case vmIntrinsics::_dexp: 902 if (StubRoutines::dexp() != NULL) { 903 __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args()); 904 } else { 905 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args()); 906 } 907 break; 908 case vmIntrinsics::_dlog: 909 if (StubRoutines::dlog() != NULL) { 910 __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args()); 911 } else { 912 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args()); 913 } 914 break; 915 case vmIntrinsics::_dlog10: 916 if (StubRoutines::dlog10() != NULL) { 917 __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args()); 918 } else { 919 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args()); 920 } 921 break; 922 case vmIntrinsics::_dpow: 923 if (StubRoutines::dpow() != NULL) { 924 __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args()); 925 } else { 926 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args()); 927 } 928 break; 929 case vmIntrinsics::_dsin: 930 if (VM_Version::supports_sse2() && StubRoutines::dsin() != NULL) { 931 __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args()); 932 } else { 933 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args()); 934 } 935 break; 936 case vmIntrinsics::_dcos: 937 if (VM_Version::supports_sse2() && StubRoutines::dcos() != NULL) { 938 __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args()); 939 } else { 940 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args()); 941 } 942 break; 943 case vmIntrinsics::_dtan: 944 if (StubRoutines::dtan() != NULL) { 945 __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args()); 946 } else { 947 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args()); 948 } 949 break; 950 default: ShouldNotReachHere(); 951 } 952 #else 953 switch (x->id()) { 954 case vmIntrinsics::_dexp: 955 if (StubRoutines::dexp() != NULL) { 956 __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args()); 957 } else { 958 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args()); 959 } 960 break; 961 case vmIntrinsics::_dlog: 962 if (StubRoutines::dlog() != NULL) { 963 __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args()); 964 } else { 965 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args()); 966 } 967 break; 968 case vmIntrinsics::_dlog10: 969 if (StubRoutines::dlog10() != NULL) { 970 __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args()); 971 } else { 972 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args()); 973 } 974 break; 975 case vmIntrinsics::_dpow: 976 if (StubRoutines::dpow() != NULL) { 977 __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args()); 978 } else { 979 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args()); 980 } 981 break; 982 case vmIntrinsics::_dsin: 983 if (StubRoutines::dsin() != NULL) { 984 __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args()); 985 } else { 986 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args()); 987 } 988 break; 989 case vmIntrinsics::_dcos: 990 if (StubRoutines::dcos() != NULL) { 991 __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args()); 992 } else { 993 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args()); 994 } 995 break; 996 case vmIntrinsics::_dtan: 997 if (StubRoutines::dtan() != NULL) { 998 __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args()); 999 } else { 1000 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args()); 1001 } 1002 break; 1003 default: ShouldNotReachHere(); 1004 } 1005 #endif // _LP64 1006 __ move(result_reg, calc_result); 1007 } 1008 1009 void LIRGenerator::do_ArrayCopy(Intrinsic* x) { 1010 assert(x->number_of_arguments() == 5, "wrong type"); 1011 1012 // Make all state_for calls early since they can emit code 1013 CodeEmitInfo* info = state_for(x, x->state()); 1014 1015 LIRItem src(x->argument_at(0), this); 1016 LIRItem src_pos(x->argument_at(1), this); 1017 LIRItem dst(x->argument_at(2), this); 1018 LIRItem dst_pos(x->argument_at(3), this); 1019 LIRItem length(x->argument_at(4), this); 1020 1021 // operands for arraycopy must use fixed registers, otherwise 1022 // LinearScan will fail allocation (because arraycopy always needs a 1023 // call) 1024 1025 #ifndef _LP64 1026 src.load_item_force (FrameMap::rcx_oop_opr); 1027 src_pos.load_item_force (FrameMap::rdx_opr); 1028 dst.load_item_force (FrameMap::rax_oop_opr); 1029 dst_pos.load_item_force (FrameMap::rbx_opr); 1030 length.load_item_force (FrameMap::rdi_opr); 1031 LIR_Opr tmp = (FrameMap::rsi_opr); 1032 #else 1033 1034 // The java calling convention will give us enough registers 1035 // so that on the stub side the args will be perfect already. 1036 // On the other slow/special case side we call C and the arg 1037 // positions are not similar enough to pick one as the best. 1038 // Also because the java calling convention is a "shifted" version 1039 // of the C convention we can process the java args trivially into C 1040 // args without worry of overwriting during the xfer 1041 1042 src.load_item_force (FrameMap::as_oop_opr(j_rarg0)); 1043 src_pos.load_item_force (FrameMap::as_opr(j_rarg1)); 1044 dst.load_item_force (FrameMap::as_oop_opr(j_rarg2)); 1045 dst_pos.load_item_force (FrameMap::as_opr(j_rarg3)); 1046 length.load_item_force (FrameMap::as_opr(j_rarg4)); 1047 1048 LIR_Opr tmp = FrameMap::as_opr(j_rarg5); 1049 #endif // LP64 1050 1051 set_no_result(x); 1052 1053 int flags; 1054 ciArrayKlass* expected_type; 1055 arraycopy_helper(x, &flags, &expected_type); 1056 1057 __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint 1058 } 1059 1060 void LIRGenerator::do_update_CRC32(Intrinsic* x) { 1061 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 1062 // Make all state_for calls early since they can emit code 1063 LIR_Opr result = rlock_result(x); 1064 int flags = 0; 1065 switch (x->id()) { 1066 case vmIntrinsics::_updateCRC32: { 1067 LIRItem crc(x->argument_at(0), this); 1068 LIRItem val(x->argument_at(1), this); 1069 // val is destroyed by update_crc32 1070 val.set_destroys_register(); 1071 crc.load_item(); 1072 val.load_item(); 1073 __ update_crc32(crc.result(), val.result(), result); 1074 break; 1075 } 1076 case vmIntrinsics::_updateBytesCRC32: 1077 case vmIntrinsics::_updateByteBufferCRC32: { 1078 bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32); 1079 1080 LIRItem crc(x->argument_at(0), this); 1081 LIRItem buf(x->argument_at(1), this); 1082 LIRItem off(x->argument_at(2), this); 1083 LIRItem len(x->argument_at(3), this); 1084 buf.load_item(); 1085 off.load_nonconstant(); 1086 1087 LIR_Opr index = off.result(); 1088 int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; 1089 if(off.result()->is_constant()) { 1090 index = LIR_OprFact::illegalOpr; 1091 offset += off.result()->as_jint(); 1092 } 1093 LIR_Opr base_op = buf.result(); 1094 1095 #ifndef _LP64 1096 if (!is_updateBytes) { // long b raw address 1097 base_op = new_register(T_INT); 1098 __ convert(Bytecodes::_l2i, buf.result(), base_op); 1099 } 1100 #else 1101 if (index->is_valid()) { 1102 LIR_Opr tmp = new_register(T_LONG); 1103 __ convert(Bytecodes::_i2l, index, tmp); 1104 index = tmp; 1105 } 1106 #endif 1107 1108 LIR_Address* a = new LIR_Address(base_op, 1109 index, 1110 offset, 1111 T_BYTE); 1112 BasicTypeList signature(3); 1113 signature.append(T_INT); 1114 signature.append(T_ADDRESS); 1115 signature.append(T_INT); 1116 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 1117 const LIR_Opr result_reg = result_register_for(x->type()); 1118 1119 LIR_Opr addr = new_pointer_register(); 1120 __ leal(LIR_OprFact::address(a), addr); 1121 1122 crc.load_item_force(cc->at(0)); 1123 __ move(addr, cc->at(1)); 1124 len.load_item_force(cc->at(2)); 1125 1126 __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args()); 1127 __ move(result_reg, result); 1128 1129 break; 1130 } 1131 default: { 1132 ShouldNotReachHere(); 1133 } 1134 } 1135 } 1136 1137 void LIRGenerator::do_update_CRC32C(Intrinsic* x) { 1138 Unimplemented(); 1139 } 1140 1141 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) { 1142 assert(UseVectorizedMismatchIntrinsic, "need AVX instruction support"); 1143 1144 // Make all state_for calls early since they can emit code 1145 LIR_Opr result = rlock_result(x); 1146 1147 LIRItem a(x->argument_at(0), this); // Object 1148 LIRItem aOffset(x->argument_at(1), this); // long 1149 LIRItem b(x->argument_at(2), this); // Object 1150 LIRItem bOffset(x->argument_at(3), this); // long 1151 LIRItem length(x->argument_at(4), this); // int 1152 LIRItem log2ArrayIndexScale(x->argument_at(5), this); // int 1153 1154 a.load_item(); 1155 aOffset.load_nonconstant(); 1156 b.load_item(); 1157 bOffset.load_nonconstant(); 1158 1159 long constant_aOffset = 0; 1160 LIR_Opr result_aOffset = aOffset.result(); 1161 if (result_aOffset->is_constant()) { 1162 constant_aOffset = result_aOffset->as_jlong(); 1163 result_aOffset = LIR_OprFact::illegalOpr; 1164 } 1165 LIR_Opr result_a = a.result(); 1166 1167 long constant_bOffset = 0; 1168 LIR_Opr result_bOffset = bOffset.result(); 1169 if (result_bOffset->is_constant()) { 1170 constant_bOffset = result_bOffset->as_jlong(); 1171 result_bOffset = LIR_OprFact::illegalOpr; 1172 } 1173 LIR_Opr result_b = b.result(); 1174 1175 #ifndef _LP64 1176 result_a = new_register(T_INT); 1177 __ convert(Bytecodes::_l2i, a.result(), result_a); 1178 result_b = new_register(T_INT); 1179 __ convert(Bytecodes::_l2i, b.result(), result_b); 1180 #endif 1181 1182 1183 LIR_Address* addr_a = new LIR_Address(result_a, 1184 result_aOffset, 1185 constant_aOffset, 1186 T_BYTE); 1187 1188 LIR_Address* addr_b = new LIR_Address(result_b, 1189 result_bOffset, 1190 constant_bOffset, 1191 T_BYTE); 1192 1193 BasicTypeList signature(4); 1194 signature.append(T_ADDRESS); 1195 signature.append(T_ADDRESS); 1196 signature.append(T_INT); 1197 signature.append(T_INT); 1198 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 1199 const LIR_Opr result_reg = result_register_for(x->type()); 1200 1201 LIR_Opr ptr_addr_a = new_pointer_register(); 1202 __ leal(LIR_OprFact::address(addr_a), ptr_addr_a); 1203 1204 LIR_Opr ptr_addr_b = new_pointer_register(); 1205 __ leal(LIR_OprFact::address(addr_b), ptr_addr_b); 1206 1207 __ move(ptr_addr_a, cc->at(0)); 1208 __ move(ptr_addr_b, cc->at(1)); 1209 length.load_item_force(cc->at(2)); 1210 log2ArrayIndexScale.load_item_force(cc->at(3)); 1211 1212 __ call_runtime_leaf(StubRoutines::vectorizedMismatch(), getThreadTemp(), result_reg, cc->args()); 1213 __ move(result_reg, result); 1214 } 1215 1216 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f 1217 // _i2b, _i2c, _i2s 1218 LIR_Opr fixed_register_for(BasicType type) { 1219 switch (type) { 1220 case T_FLOAT: return FrameMap::fpu0_float_opr; 1221 case T_DOUBLE: return FrameMap::fpu0_double_opr; 1222 case T_INT: return FrameMap::rax_opr; 1223 case T_LONG: return FrameMap::long0_opr; 1224 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; 1225 } 1226 } 1227 1228 void LIRGenerator::do_Convert(Convert* x) { 1229 // flags that vary for the different operations and different SSE-settings 1230 bool fixed_input = false, fixed_result = false, round_result = false, needs_stub = false; 1231 1232 switch (x->op()) { 1233 case Bytecodes::_i2l: // fall through 1234 case Bytecodes::_l2i: // fall through 1235 case Bytecodes::_i2b: // fall through 1236 case Bytecodes::_i2c: // fall through 1237 case Bytecodes::_i2s: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break; 1238 1239 case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false; round_result = false; needs_stub = false; break; 1240 case Bytecodes::_d2f: fixed_input = false; fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break; 1241 case Bytecodes::_i2f: fixed_input = false; fixed_result = false; round_result = UseSSE < 1; needs_stub = false; break; 1242 case Bytecodes::_i2d: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break; 1243 case Bytecodes::_f2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break; 1244 case Bytecodes::_d2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break; 1245 case Bytecodes::_l2f: fixed_input = false; fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break; 1246 case Bytecodes::_l2d: fixed_input = false; fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break; 1247 case Bytecodes::_f2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break; 1248 case Bytecodes::_d2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break; 1249 default: ShouldNotReachHere(); 1250 } 1251 1252 LIRItem value(x->value(), this); 1253 value.load_item(); 1254 LIR_Opr input = value.result(); 1255 LIR_Opr result = rlock(x); 1256 1257 // arguments of lir_convert 1258 LIR_Opr conv_input = input; 1259 LIR_Opr conv_result = result; 1260 ConversionStub* stub = NULL; 1261 1262 if (fixed_input) { 1263 conv_input = fixed_register_for(input->type()); 1264 __ move(input, conv_input); 1265 } 1266 1267 assert(fixed_result == false || round_result == false, "cannot set both"); 1268 if (fixed_result) { 1269 conv_result = fixed_register_for(result->type()); 1270 } else if (round_result) { 1271 result = new_register(result->type()); 1272 set_vreg_flag(result, must_start_in_memory); 1273 } 1274 1275 if (needs_stub) { 1276 stub = new ConversionStub(x->op(), conv_input, conv_result); 1277 } 1278 1279 __ convert(x->op(), conv_input, conv_result, stub); 1280 1281 if (result != conv_result) { 1282 __ move(conv_result, result); 1283 } 1284 1285 assert(result->is_virtual(), "result must be virtual register"); 1286 set_result(x, result); 1287 } 1288 1289 1290 void LIRGenerator::do_NewInstance(NewInstance* x) { 1291 print_if_not_loaded(x); 1292 1293 CodeEmitInfo* info = state_for(x, x->state()); 1294 LIR_Opr reg = result_register_for(x->type()); 1295 new_instance(reg, x->klass(), x->is_unresolved(), 1296 FrameMap::rcx_oop_opr, 1297 FrameMap::rdi_oop_opr, 1298 FrameMap::rsi_oop_opr, 1299 LIR_OprFact::illegalOpr, 1300 FrameMap::rdx_metadata_opr, info); 1301 LIR_Opr result = rlock_result(x); 1302 __ move(reg, result); 1303 } 1304 1305 1306 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) { 1307 CodeEmitInfo* info = state_for(x, x->state()); 1308 1309 LIRItem length(x->length(), this); 1310 length.load_item_force(FrameMap::rbx_opr); 1311 1312 LIR_Opr reg = result_register_for(x->type()); 1313 LIR_Opr tmp1 = FrameMap::rcx_oop_opr; 1314 LIR_Opr tmp2 = FrameMap::rsi_oop_opr; 1315 LIR_Opr tmp3 = FrameMap::rdi_oop_opr; 1316 LIR_Opr tmp4 = reg; 1317 LIR_Opr klass_reg = FrameMap::rdx_metadata_opr; 1318 LIR_Opr len = length.result(); 1319 BasicType elem_type = x->elt_type(); 1320 1321 __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg); 1322 1323 CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info); 1324 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path); 1325 1326 LIR_Opr result = rlock_result(x); 1327 __ move(reg, result); 1328 } 1329 1330 1331 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) { 1332 LIRItem length(x->length(), this); 1333 // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction 1334 // and therefore provide the state before the parameters have been consumed 1335 CodeEmitInfo* patching_info = NULL; 1336 if (!x->klass()->is_loaded() || PatchALot) { 1337 patching_info = state_for(x, x->state_before()); 1338 } 1339 1340 CodeEmitInfo* info = state_for(x, x->state()); 1341 1342 const LIR_Opr reg = result_register_for(x->type()); 1343 LIR_Opr tmp1 = FrameMap::rcx_oop_opr; 1344 LIR_Opr tmp2 = FrameMap::rsi_oop_opr; 1345 LIR_Opr tmp3 = FrameMap::rdi_oop_opr; 1346 LIR_Opr tmp4 = reg; 1347 LIR_Opr klass_reg = FrameMap::rdx_metadata_opr; 1348 1349 length.load_item_force(FrameMap::rbx_opr); 1350 LIR_Opr len = length.result(); 1351 1352 CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info); 1353 ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass()); 1354 if (obj == ciEnv::unloaded_ciobjarrayklass()) { 1355 BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error"); 1356 } 1357 klass2reg_with_patching(klass_reg, obj, patching_info); 1358 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path); 1359 1360 LIR_Opr result = rlock_result(x); 1361 __ move(reg, result); 1362 } 1363 1364 1365 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) { 1366 Values* dims = x->dims(); 1367 int i = dims->length(); 1368 LIRItemList* items = new LIRItemList(i, i, NULL); 1369 while (i-- > 0) { 1370 LIRItem* size = new LIRItem(dims->at(i), this); 1371 items->at_put(i, size); 1372 } 1373 1374 // Evaluate state_for early since it may emit code. 1375 CodeEmitInfo* patching_info = NULL; 1376 if (!x->klass()->is_loaded() || PatchALot) { 1377 patching_info = state_for(x, x->state_before()); 1378 1379 // Cannot re-use same xhandlers for multiple CodeEmitInfos, so 1380 // clone all handlers (NOTE: Usually this is handled transparently 1381 // by the CodeEmitInfo cloning logic in CodeStub constructors but 1382 // is done explicitly here because a stub isn't being used). 1383 x->set_exception_handlers(new XHandlers(x->exception_handlers())); 1384 } 1385 CodeEmitInfo* info = state_for(x, x->state()); 1386 1387 i = dims->length(); 1388 while (i-- > 0) { 1389 LIRItem* size = items->at(i); 1390 size->load_nonconstant(); 1391 1392 store_stack_parameter(size->result(), in_ByteSize(i*4)); 1393 } 1394 1395 LIR_Opr klass_reg = FrameMap::rax_metadata_opr; 1396 klass2reg_with_patching(klass_reg, x->klass(), patching_info); 1397 1398 LIR_Opr rank = FrameMap::rbx_opr; 1399 __ move(LIR_OprFact::intConst(x->rank()), rank); 1400 LIR_Opr varargs = FrameMap::rcx_opr; 1401 __ move(FrameMap::rsp_opr, varargs); 1402 LIR_OprList* args = new LIR_OprList(3); 1403 args->append(klass_reg); 1404 args->append(rank); 1405 args->append(varargs); 1406 LIR_Opr reg = result_register_for(x->type()); 1407 __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id), 1408 LIR_OprFact::illegalOpr, 1409 reg, args, info); 1410 1411 LIR_Opr result = rlock_result(x); 1412 __ move(reg, result); 1413 } 1414 1415 1416 void LIRGenerator::do_BlockBegin(BlockBegin* x) { 1417 // nothing to do for now 1418 } 1419 1420 1421 void LIRGenerator::do_CheckCast(CheckCast* x) { 1422 LIRItem obj(x->obj(), this); 1423 1424 CodeEmitInfo* patching_info = NULL; 1425 if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) { 1426 // must do this before locking the destination register as an oop register, 1427 // and before the obj is loaded (the latter is for deoptimization) 1428 patching_info = state_for(x, x->state_before()); 1429 } 1430 obj.load_item(); 1431 1432 // info for exceptions 1433 CodeEmitInfo* info_for_exception = 1434 (x->needs_exception_state() ? state_for(x) : 1435 state_for(x, x->state_before(), true /*ignore_xhandler*/)); 1436 1437 CodeStub* stub; 1438 if (x->is_incompatible_class_change_check()) { 1439 assert(patching_info == NULL, "can't patch this"); 1440 stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception); 1441 } else if (x->is_invokespecial_receiver_check()) { 1442 assert(patching_info == NULL, "can't patch this"); 1443 stub = new DeoptimizeStub(info_for_exception, Deoptimization::Reason_class_check, Deoptimization::Action_none); 1444 } else { 1445 stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception); 1446 } 1447 LIR_Opr reg = rlock_result(x); 1448 LIR_Opr tmp3 = LIR_OprFact::illegalOpr; 1449 if (!x->klass()->is_loaded() || UseCompressedClassPointers) { 1450 tmp3 = new_register(objectType); 1451 } 1452 __ checkcast(reg, obj.result(), x->klass(), 1453 new_register(objectType), new_register(objectType), tmp3, 1454 x->direct_compare(), info_for_exception, patching_info, stub, 1455 x->profiled_method(), x->profiled_bci()); 1456 } 1457 1458 1459 void LIRGenerator::do_InstanceOf(InstanceOf* x) { 1460 LIRItem obj(x->obj(), this); 1461 1462 // result and test object may not be in same register 1463 LIR_Opr reg = rlock_result(x); 1464 CodeEmitInfo* patching_info = NULL; 1465 if ((!x->klass()->is_loaded() || PatchALot)) { 1466 // must do this before locking the destination register as an oop register 1467 patching_info = state_for(x, x->state_before()); 1468 } 1469 obj.load_item(); 1470 LIR_Opr tmp3 = LIR_OprFact::illegalOpr; 1471 if (!x->klass()->is_loaded() || UseCompressedClassPointers) { 1472 tmp3 = new_register(objectType); 1473 } 1474 __ instanceof(reg, obj.result(), x->klass(), 1475 new_register(objectType), new_register(objectType), tmp3, 1476 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci()); 1477 } 1478 1479 1480 void LIRGenerator::do_If(If* x) { 1481 assert(x->number_of_sux() == 2, "inconsistency"); 1482 ValueTag tag = x->x()->type()->tag(); 1483 bool is_safepoint = x->is_safepoint(); 1484 1485 If::Condition cond = x->cond(); 1486 1487 LIRItem xitem(x->x(), this); 1488 LIRItem yitem(x->y(), this); 1489 LIRItem* xin = &xitem; 1490 LIRItem* yin = &yitem; 1491 1492 if (tag == longTag) { 1493 // for longs, only conditions "eql", "neq", "lss", "geq" are valid; 1494 // mirror for other conditions 1495 if (cond == If::gtr || cond == If::leq) { 1496 cond = Instruction::mirror(cond); 1497 xin = &yitem; 1498 yin = &xitem; 1499 } 1500 xin->set_destroys_register(); 1501 } 1502 xin->load_item(); 1503 if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) { 1504 // inline long zero 1505 yin->dont_load_item(); 1506 } else if (tag == longTag || tag == floatTag || tag == doubleTag) { 1507 // longs cannot handle constants at right side 1508 yin->load_item(); 1509 } else { 1510 yin->dont_load_item(); 1511 } 1512 1513 // add safepoint before generating condition code so it can be recomputed 1514 if (x->is_safepoint()) { 1515 // increment backedge counter if needed 1516 increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci()); 1517 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 1518 } 1519 set_no_result(x); 1520 1521 LIR_Opr left = xin->result(); 1522 LIR_Opr right = yin->result(); 1523 __ cmp(lir_cond(cond), left, right); 1524 // Generate branch profiling. Profiling code doesn't kill flags. 1525 profile_branch(x, cond); 1526 move_to_phi(x->state()); 1527 if (x->x()->type()->is_float_kind()) { 1528 __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux()); 1529 } else { 1530 __ branch(lir_cond(cond), right->type(), x->tsux()); 1531 } 1532 assert(x->default_sux() == x->fsux(), "wrong destination above"); 1533 __ jump(x->default_sux()); 1534 } 1535 1536 1537 LIR_Opr LIRGenerator::getThreadPointer() { 1538 #ifdef _LP64 1539 return FrameMap::as_pointer_opr(r15_thread); 1540 #else 1541 LIR_Opr result = new_register(T_INT); 1542 __ get_thread(result); 1543 return result; 1544 #endif // 1545 } 1546 1547 void LIRGenerator::trace_block_entry(BlockBegin* block) { 1548 store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0)); 1549 LIR_OprList* args = new LIR_OprList(); 1550 address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry); 1551 __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args); 1552 } 1553 1554 1555 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address, 1556 CodeEmitInfo* info) { 1557 if (address->type() == T_LONG) { 1558 address = new LIR_Address(address->base(), 1559 address->index(), address->scale(), 1560 address->disp(), T_DOUBLE); 1561 // Transfer the value atomically by using FP moves. This means 1562 // the value has to be moved between CPU and FPU registers. It 1563 // always has to be moved through spill slot since there's no 1564 // quick way to pack the value into an SSE register. 1565 LIR_Opr temp_double = new_register(T_DOUBLE); 1566 LIR_Opr spill = new_register(T_LONG); 1567 set_vreg_flag(spill, must_start_in_memory); 1568 __ move(value, spill); 1569 __ volatile_move(spill, temp_double, T_LONG); 1570 __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info); 1571 } else { 1572 __ store(value, address, info); 1573 } 1574 } 1575 1576 1577 1578 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result, 1579 CodeEmitInfo* info) { 1580 if (address->type() == T_LONG) { 1581 address = new LIR_Address(address->base(), 1582 address->index(), address->scale(), 1583 address->disp(), T_DOUBLE); 1584 // Transfer the value atomically by using FP moves. This means 1585 // the value has to be moved between CPU and FPU registers. In 1586 // SSE0 and SSE1 mode it has to be moved through spill slot but in 1587 // SSE2+ mode it can be moved directly. 1588 LIR_Opr temp_double = new_register(T_DOUBLE); 1589 __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info); 1590 __ volatile_move(temp_double, result, T_LONG); 1591 if (UseSSE < 2) { 1592 // no spill slot needed in SSE2 mode because xmm->cpu register move is possible 1593 set_vreg_flag(result, must_start_in_memory); 1594 } 1595 } else { 1596 __ load(address, result, info); 1597 } 1598 } 1599 1600 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset, 1601 BasicType type, bool is_volatile) { 1602 if (is_volatile && type == T_LONG) { 1603 LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE); 1604 LIR_Opr tmp = new_register(T_DOUBLE); 1605 __ load(addr, tmp); 1606 LIR_Opr spill = new_register(T_LONG); 1607 set_vreg_flag(spill, must_start_in_memory); 1608 __ move(tmp, spill); 1609 __ move(spill, dst); 1610 } else { 1611 LIR_Address* addr = new LIR_Address(src, offset, type); 1612 __ load(addr, dst); 1613 } 1614 } 1615 1616 1617 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data, 1618 BasicType type, bool is_volatile) { 1619 if (is_volatile && type == T_LONG) { 1620 LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE); 1621 LIR_Opr tmp = new_register(T_DOUBLE); 1622 LIR_Opr spill = new_register(T_DOUBLE); 1623 set_vreg_flag(spill, must_start_in_memory); 1624 __ move(data, spill); 1625 __ move(spill, tmp); 1626 __ move(tmp, addr); 1627 } else { 1628 LIR_Address* addr = new LIR_Address(src, offset, type); 1629 bool is_obj = (type == T_ARRAY || type == T_OBJECT); 1630 if (is_obj) { 1631 // Do the pre-write barrier, if any. 1632 pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */, 1633 true /* do_load */, false /* patch */, NULL); 1634 __ move(data, addr); 1635 assert(src->is_register(), "must be register"); 1636 // Seems to be a precise address 1637 post_barrier(LIR_OprFact::address(addr), data); 1638 } else { 1639 __ move(data, addr); 1640 } 1641 } 1642 } 1643 1644 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) { 1645 BasicType type = x->basic_type(); 1646 LIRItem src(x->object(), this); 1647 LIRItem off(x->offset(), this); 1648 LIRItem value(x->value(), this); 1649 1650 src.load_item(); 1651 value.load_item(); 1652 off.load_nonconstant(); 1653 1654 LIR_Opr dst = rlock_result(x, type); 1655 LIR_Opr data = value.result(); 1656 bool is_obj = (type == T_ARRAY || type == T_OBJECT); 1657 LIR_Opr offset = off.result(); 1658 1659 assert (type == T_INT || (!x->is_add() && is_obj) LP64_ONLY( || type == T_LONG ), "unexpected type"); 1660 LIR_Address* addr; 1661 if (offset->is_constant()) { 1662 #ifdef _LP64 1663 jlong c = offset->as_jlong(); 1664 if ((jlong)((jint)c) == c) { 1665 addr = new LIR_Address(src.result(), (jint)c, type); 1666 } else { 1667 LIR_Opr tmp = new_register(T_LONG); 1668 __ move(offset, tmp); 1669 addr = new LIR_Address(src.result(), tmp, type); 1670 } 1671 #else 1672 addr = new LIR_Address(src.result(), offset->as_jint(), type); 1673 #endif 1674 } else { 1675 addr = new LIR_Address(src.result(), offset, type); 1676 } 1677 1678 // Because we want a 2-arg form of xchg and xadd 1679 __ move(data, dst); 1680 1681 if (x->is_add()) { 1682 __ xadd(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr); 1683 } else { 1684 if (is_obj) { 1685 // Do the pre-write barrier, if any. 1686 pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */, 1687 true /* do_load */, false /* patch */, NULL); 1688 } 1689 __ xchg(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr); 1690 if (is_obj) { 1691 // Seems to be a precise address 1692 post_barrier(LIR_OprFact::address(addr), data); 1693 } 1694 } 1695 }