1 /*
   2  * Copyright (c) 2008, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.constant.ClassDesc;
  29 import java.lang.constant.Constable;
  30 import java.lang.constant.MethodTypeDesc;
  31 import java.lang.ref.Reference;
  32 import java.lang.ref.ReferenceQueue;
  33 import java.lang.ref.WeakReference;
  34 import java.util.Arrays;
  35 import java.util.Collections;
  36 import java.util.List;
  37 import java.util.NoSuchElementException;
  38 import java.util.Objects;
  39 import java.util.Optional;
  40 import java.util.StringJoiner;
  41 import java.util.concurrent.ConcurrentHashMap;
  42 import java.util.concurrent.ConcurrentMap;
  43 import java.util.stream.Stream;
  44 
  45 import jdk.internal.vm.annotation.Stable;
  46 import sun.invoke.util.BytecodeDescriptor;
  47 import sun.invoke.util.VerifyType;
  48 import sun.invoke.util.Wrapper;
  49 import sun.security.util.SecurityConstants;
  50 
  51 import static java.lang.invoke.MethodHandleStatics.UNSAFE;
  52 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  53 import static java.lang.invoke.MethodType.fromDescriptor;
  54 
  55 /**
  56  * A method type represents the arguments and return type accepted and
  57  * returned by a method handle, or the arguments and return type passed
  58  * and expected  by a method handle caller.  Method types must be properly
  59  * matched between a method handle and all its callers,
  60  * and the JVM's operations enforce this matching at, specifically
  61  * during calls to {@link MethodHandle#invokeExact MethodHandle.invokeExact}
  62  * and {@link MethodHandle#invoke MethodHandle.invoke}, and during execution
  63  * of {@code invokedynamic} instructions.
  64  * <p>
  65  * The structure is a return type accompanied by any number of parameter types.
  66  * The types (primitive, {@code void}, and reference) are represented by {@link Class} objects.
  67  * (For ease of exposition, we treat {@code void} as if it were a type.
  68  * In fact, it denotes the absence of a return type.)
  69  * <p>
  70  * All instances of {@code MethodType} are immutable.
  71  * Two instances are completely interchangeable if they compare equal.
  72  * Equality depends on pairwise correspondence of the return and parameter types and on nothing else.
  73  * <p>
  74  * This type can be created only by factory methods.
  75  * All factory methods may cache values, though caching is not guaranteed.
  76  * Some factory methods are static, while others are virtual methods which
  77  * modify precursor method types, e.g., by changing a selected parameter.
  78  * <p>
  79  * Factory methods which operate on groups of parameter types
  80  * are systematically presented in two versions, so that both Java arrays and
  81  * Java lists can be used to work with groups of parameter types.
  82  * The query methods {@code parameterArray} and {@code parameterList}
  83  * also provide a choice between arrays and lists.
  84  * <p>
  85  * {@code MethodType} objects are sometimes derived from bytecode instructions
  86  * such as {@code invokedynamic}, specifically from the type descriptor strings associated
  87  * with the instructions in a class file's constant pool.
  88  * <p>
  89  * Like classes and strings, method types can also be represented directly
  90  * in a class file's constant pool as constants.
  91  * A method type may be loaded by an {@code ldc} instruction which refers
  92  * to a suitable {@code CONSTANT_MethodType} constant pool entry.
  93  * The entry refers to a {@code CONSTANT_Utf8} spelling for the descriptor string.
  94  * (For full details on method type constants, see sections {@jvms
  95  * 4.4.8} and {@jvms 5.4.3.5} of the Java Virtual Machine
  96  * Specification.)
  97  * <p>
  98  * When the JVM materializes a {@code MethodType} from a descriptor string,
  99  * all classes named in the descriptor must be accessible, and will be loaded.
 100  * (But the classes need not be initialized, as is the case with a {@code CONSTANT_Class}.)
 101  * This loading may occur at any time before the {@code MethodType} object is first derived.
 102  *
 103  * @author John Rose, JSR 292 EG
 104  * @since 1.7
 105  */
 106 public final
 107 class MethodType
 108         implements Constable,
 109                    TypeDescriptor.OfMethod<Class<?>, MethodType>,
 110                    java.io.Serializable {
 111     @java.io.Serial
 112     private static final long serialVersionUID = 292L;  // {rtype, {ptype...}}
 113 
 114     // The rtype and ptypes fields define the structural identity of the method type:
 115     private final @Stable Class<?>   rtype;
 116     private final @Stable Class<?>[] ptypes;
 117 
 118     // The remaining fields are caches of various sorts:
 119     private @Stable MethodTypeForm form; // erased form, plus cached data about primitives
 120     private @Stable MethodType wrapAlt;  // alternative wrapped/unwrapped version
 121     private @Stable Invokers invokers;   // cache of handy higher-order adapters
 122     private @Stable String methodDescriptor;  // cache for toMethodDescriptorString
 123 
 124     /**
 125      * Constructor that performs no copying or validation.
 126      * Should only be called from the factory method makeImpl
 127      */
 128     private MethodType(Class<?> rtype, Class<?>[] ptypes) {
 129         this.rtype = rtype;
 130         this.ptypes = ptypes;
 131     }
 132 
 133     /*trusted*/ MethodTypeForm form() { return form; }
 134     /*trusted*/ Class<?> rtype() { return rtype; }
 135     /*trusted*/ Class<?>[] ptypes() { return ptypes; }
 136 
 137     void setForm(MethodTypeForm f) { form = f; }
 138 
 139     /** This number, mandated by the JVM spec as 255,
 140      *  is the maximum number of <em>slots</em>
 141      *  that any Java method can receive in its argument list.
 142      *  It limits both JVM signatures and method type objects.
 143      *  The longest possible invocation will look like
 144      *  {@code staticMethod(arg1, arg2, ..., arg255)} or
 145      *  {@code x.virtualMethod(arg1, arg2, ..., arg254)}.
 146      */
 147     /*non-public*/
 148     static final int MAX_JVM_ARITY = 255;  // this is mandated by the JVM spec.
 149 
 150     /** This number is the maximum arity of a method handle, 254.
 151      *  It is derived from the absolute JVM-imposed arity by subtracting one,
 152      *  which is the slot occupied by the method handle itself at the
 153      *  beginning of the argument list used to invoke the method handle.
 154      *  The longest possible invocation will look like
 155      *  {@code mh.invoke(arg1, arg2, ..., arg254)}.
 156      */
 157     // Issue:  Should we allow MH.invokeWithArguments to go to the full 255?
 158     /*non-public*/
 159     static final int MAX_MH_ARITY = MAX_JVM_ARITY-1;  // deduct one for mh receiver
 160 
 161     /** This number is the maximum arity of a method handle invoker, 253.
 162      *  It is derived from the absolute JVM-imposed arity by subtracting two,
 163      *  which are the slots occupied by invoke method handle, and the
 164      *  target method handle, which are both at the beginning of the argument
 165      *  list used to invoke the target method handle.
 166      *  The longest possible invocation will look like
 167      *  {@code invokermh.invoke(targetmh, arg1, arg2, ..., arg253)}.
 168      */
 169     /*non-public*/
 170     static final int MAX_MH_INVOKER_ARITY = MAX_MH_ARITY-1;  // deduct one more for invoker
 171 
 172     private static void checkRtype(Class<?> rtype) {
 173         Objects.requireNonNull(rtype);
 174     }
 175     private static void checkPtype(Class<?> ptype) {
 176         Objects.requireNonNull(ptype);
 177         if (ptype == void.class)
 178             throw newIllegalArgumentException("parameter type cannot be void");
 179     }
 180     /** Return number of extra slots (count of long/double args). */
 181     private static int checkPtypes(Class<?>[] ptypes) {
 182         int slots = 0;
 183         for (Class<?> ptype : ptypes) {
 184             checkPtype(ptype);
 185             if (ptype == double.class || ptype == long.class) {
 186                 slots++;
 187             }
 188         }
 189         checkSlotCount(ptypes.length + slots);
 190         return slots;
 191     }
 192 
 193     static {
 194         // MAX_JVM_ARITY must be power of 2 minus 1 for following code trick to work:
 195         assert((MAX_JVM_ARITY & (MAX_JVM_ARITY+1)) == 0);
 196     }
 197     static void checkSlotCount(int count) {
 198         if ((count & MAX_JVM_ARITY) != count)
 199             throw newIllegalArgumentException("bad parameter count "+count);
 200     }
 201     private static IndexOutOfBoundsException newIndexOutOfBoundsException(Object num) {
 202         if (num instanceof Integer)  num = "bad index: "+num;
 203         return new IndexOutOfBoundsException(num.toString());
 204     }
 205 
 206     static final ConcurrentWeakInternSet<MethodType> internTable = new ConcurrentWeakInternSet<>();
 207 
 208     static final Class<?>[] NO_PTYPES = {};
 209 
 210     /**
 211      * Finds or creates an instance of the given method type.
 212      * @param rtype  the return type
 213      * @param ptypes the parameter types
 214      * @return a method type with the given components
 215      * @throws NullPointerException if {@code rtype} or {@code ptypes} or any element of {@code ptypes} is null
 216      * @throws IllegalArgumentException if any element of {@code ptypes} is {@code void.class}
 217      */
 218     public static MethodType methodType(Class<?> rtype, Class<?>[] ptypes) {
 219         return makeImpl(rtype, ptypes, false);
 220     }
 221 
 222     /**
 223      * Finds or creates a method type with the given components.
 224      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 225      * @param rtype  the return type
 226      * @param ptypes the parameter types
 227      * @return a method type with the given components
 228      * @throws NullPointerException if {@code rtype} or {@code ptypes} or any element of {@code ptypes} is null
 229      * @throws IllegalArgumentException if any element of {@code ptypes} is {@code void.class}
 230      */
 231     public static MethodType methodType(Class<?> rtype, List<Class<?>> ptypes) {
 232         boolean notrust = false;  // random List impl. could return evil ptypes array
 233         return makeImpl(rtype, listToArray(ptypes), notrust);
 234     }
 235 
 236     private static Class<?>[] listToArray(List<Class<?>> ptypes) {
 237         // sanity check the size before the toArray call, since size might be huge
 238         checkSlotCount(ptypes.size());
 239         return ptypes.toArray(NO_PTYPES);
 240     }
 241 
 242     /**
 243      * Finds or creates a method type with the given components.
 244      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 245      * The leading parameter type is prepended to the remaining array.
 246      * @param rtype  the return type
 247      * @param ptype0 the first parameter type
 248      * @param ptypes the remaining parameter types
 249      * @return a method type with the given components
 250      * @throws NullPointerException if {@code rtype} or {@code ptype0} or {@code ptypes} or any element of {@code ptypes} is null
 251      * @throws IllegalArgumentException if {@code ptype0} or {@code ptypes} or any element of {@code ptypes} is {@code void.class}
 252      */
 253     public static MethodType methodType(Class<?> rtype, Class<?> ptype0, Class<?>... ptypes) {
 254         Class<?>[] ptypes1 = new Class<?>[1+ptypes.length];
 255         ptypes1[0] = ptype0;
 256         System.arraycopy(ptypes, 0, ptypes1, 1, ptypes.length);
 257         return makeImpl(rtype, ptypes1, true);
 258     }
 259 
 260     /**
 261      * Finds or creates a method type with the given components.
 262      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 263      * The resulting method has no parameter types.
 264      * @param rtype  the return type
 265      * @return a method type with the given return value
 266      * @throws NullPointerException if {@code rtype} is null
 267      */
 268     public static MethodType methodType(Class<?> rtype) {
 269         return makeImpl(rtype, NO_PTYPES, true);
 270     }
 271 
 272     /**
 273      * Finds or creates a method type with the given components.
 274      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 275      * The resulting method has the single given parameter type.
 276      * @param rtype  the return type
 277      * @param ptype0 the parameter type
 278      * @return a method type with the given return value and parameter type
 279      * @throws NullPointerException if {@code rtype} or {@code ptype0} is null
 280      * @throws IllegalArgumentException if {@code ptype0} is {@code void.class}
 281      */
 282     public static MethodType methodType(Class<?> rtype, Class<?> ptype0) {
 283         return makeImpl(rtype, new Class<?>[]{ ptype0 }, true);
 284     }
 285 
 286     /**
 287      * Finds or creates a method type with the given components.
 288      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 289      * The resulting method has the same parameter types as {@code ptypes},
 290      * and the specified return type.
 291      * @param rtype  the return type
 292      * @param ptypes the method type which supplies the parameter types
 293      * @return a method type with the given components
 294      * @throws NullPointerException if {@code rtype} or {@code ptypes} is null
 295      */
 296     public static MethodType methodType(Class<?> rtype, MethodType ptypes) {
 297         return makeImpl(rtype, ptypes.ptypes, true);
 298     }
 299 
 300     /**
 301      * Sole factory method to find or create an interned method type.
 302      * @param rtype desired return type
 303      * @param ptypes desired parameter types
 304      * @param trusted whether the ptypes can be used without cloning
 305      * @return the unique method type of the desired structure
 306      */
 307     /*trusted*/
 308     static MethodType makeImpl(Class<?> rtype, Class<?>[] ptypes, boolean trusted) {
 309         if (ptypes.length == 0) {
 310             ptypes = NO_PTYPES; trusted = true;
 311         }
 312         MethodType primordialMT = new MethodType(rtype, ptypes);
 313         MethodType mt = internTable.get(primordialMT);
 314         if (mt != null)
 315             return mt;
 316 
 317         // promote the object to the Real Thing, and reprobe
 318         MethodType.checkRtype(rtype);
 319         if (trusted) {
 320             MethodType.checkPtypes(ptypes);
 321             mt = primordialMT;
 322         } else {
 323             // Make defensive copy then validate
 324             ptypes = Arrays.copyOf(ptypes, ptypes.length);
 325             MethodType.checkPtypes(ptypes);
 326             mt = new MethodType(rtype, ptypes);
 327         }
 328         mt.form = MethodTypeForm.findForm(mt);
 329         return internTable.add(mt);
 330     }
 331     private static final @Stable MethodType[] objectOnlyTypes = new MethodType[20];
 332 
 333     /**
 334      * Finds or creates a method type whose components are {@code Object} with an optional trailing {@code Object[]} array.
 335      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 336      * All parameters and the return type will be {@code Object},
 337      * except the final array parameter if any, which will be {@code Object[]}.
 338      * @param objectArgCount number of parameters (excluding the final array parameter if any)
 339      * @param finalArray whether there will be a trailing array parameter, of type {@code Object[]}
 340      * @return a generally applicable method type, for all calls of the given fixed argument count and a collected array of further arguments
 341      * @throws IllegalArgumentException if {@code objectArgCount} is negative or greater than 255 (or 254, if {@code finalArray} is true)
 342      * @see #genericMethodType(int)
 343      */
 344     public static MethodType genericMethodType(int objectArgCount, boolean finalArray) {
 345         MethodType mt;
 346         checkSlotCount(objectArgCount);
 347         int ivarargs = (!finalArray ? 0 : 1);
 348         int ootIndex = objectArgCount*2 + ivarargs;
 349         if (ootIndex < objectOnlyTypes.length) {
 350             mt = objectOnlyTypes[ootIndex];
 351             if (mt != null)  return mt;
 352         }
 353         Class<?>[] ptypes = new Class<?>[objectArgCount + ivarargs];
 354         Arrays.fill(ptypes, Object.class);
 355         if (ivarargs != 0)  ptypes[objectArgCount] = Object[].class;
 356         mt = makeImpl(Object.class, ptypes, true);
 357         if (ootIndex < objectOnlyTypes.length) {
 358             objectOnlyTypes[ootIndex] = mt;     // cache it here also!
 359         }
 360         return mt;
 361     }
 362 
 363     /**
 364      * Finds or creates a method type whose components are all {@code Object}.
 365      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 366      * All parameters and the return type will be Object.
 367      * @param objectArgCount number of parameters
 368      * @return a generally applicable method type, for all calls of the given argument count
 369      * @throws IllegalArgumentException if {@code objectArgCount} is negative or greater than 255
 370      * @see #genericMethodType(int, boolean)
 371      */
 372     public static MethodType genericMethodType(int objectArgCount) {
 373         return genericMethodType(objectArgCount, false);
 374     }
 375 
 376     /**
 377      * Finds or creates a method type with a single different parameter type.
 378      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 379      * @param num    the index (zero-based) of the parameter type to change
 380      * @param nptype a new parameter type to replace the old one with
 381      * @return the same type, except with the selected parameter changed
 382      * @throws IndexOutOfBoundsException if {@code num} is not a valid index into {@code parameterArray()}
 383      * @throws IllegalArgumentException if {@code nptype} is {@code void.class}
 384      * @throws NullPointerException if {@code nptype} is null
 385      */
 386     public MethodType changeParameterType(int num, Class<?> nptype) {
 387         if (parameterType(num) == nptype)  return this;
 388         checkPtype(nptype);
 389         Class<?>[] nptypes = ptypes.clone();
 390         nptypes[num] = nptype;
 391         return makeImpl(rtype, nptypes, true);
 392     }
 393 
 394     /**
 395      * Finds or creates a method type with additional parameter types.
 396      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 397      * @param num    the position (zero-based) of the inserted parameter type(s)
 398      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
 399      * @return the same type, except with the selected parameter(s) inserted
 400      * @throws IndexOutOfBoundsException if {@code num} is negative or greater than {@code parameterCount()}
 401      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
 402      *                                  or if the resulting method type would have more than 255 parameter slots
 403      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
 404      */
 405     public MethodType insertParameterTypes(int num, Class<?>... ptypesToInsert) {
 406         int len = ptypes.length;
 407         if (num < 0 || num > len)
 408             throw newIndexOutOfBoundsException(num);
 409         int ins = checkPtypes(ptypesToInsert);
 410         checkSlotCount(parameterSlotCount() + ptypesToInsert.length + ins);
 411         int ilen = ptypesToInsert.length;
 412         if (ilen == 0)  return this;
 413         Class<?>[] nptypes = new Class<?>[len + ilen];
 414         if (num > 0) {
 415             System.arraycopy(ptypes, 0, nptypes, 0, num);
 416         }
 417         System.arraycopy(ptypesToInsert, 0, nptypes, num, ilen);
 418         if (num < len) {
 419             System.arraycopy(ptypes, num, nptypes, num+ilen, len-num);
 420         }
 421         return makeImpl(rtype, nptypes, true);
 422     }
 423 
 424     /**
 425      * Finds or creates a method type with additional parameter types.
 426      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 427      * @param ptypesToInsert zero or more new parameter types to insert after the end of the parameter list
 428      * @return the same type, except with the selected parameter(s) appended
 429      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
 430      *                                  or if the resulting method type would have more than 255 parameter slots
 431      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
 432      */
 433     public MethodType appendParameterTypes(Class<?>... ptypesToInsert) {
 434         return insertParameterTypes(parameterCount(), ptypesToInsert);
 435     }
 436 
 437     /**
 438      * Finds or creates a method type with additional parameter types.
 439      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 440      * @param num    the position (zero-based) of the inserted parameter type(s)
 441      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
 442      * @return the same type, except with the selected parameter(s) inserted
 443      * @throws IndexOutOfBoundsException if {@code num} is negative or greater than {@code parameterCount()}
 444      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
 445      *                                  or if the resulting method type would have more than 255 parameter slots
 446      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
 447      */
 448     public MethodType insertParameterTypes(int num, List<Class<?>> ptypesToInsert) {
 449         return insertParameterTypes(num, listToArray(ptypesToInsert));
 450     }
 451 
 452     /**
 453      * Finds or creates a method type with additional parameter types.
 454      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 455      * @param ptypesToInsert zero or more new parameter types to insert after the end of the parameter list
 456      * @return the same type, except with the selected parameter(s) appended
 457      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
 458      *                                  or if the resulting method type would have more than 255 parameter slots
 459      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
 460      */
 461     public MethodType appendParameterTypes(List<Class<?>> ptypesToInsert) {
 462         return insertParameterTypes(parameterCount(), ptypesToInsert);
 463     }
 464 
 465     /**
 466      * Finds or creates a method type with modified parameter types.
 467      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 468      * @param start  the position (zero-based) of the first replaced parameter type(s)
 469      * @param end    the position (zero-based) after the last replaced parameter type(s)
 470      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
 471      * @return the same type, except with the selected parameter(s) replaced
 472      * @throws IndexOutOfBoundsException if {@code start} is negative or greater than {@code parameterCount()}
 473      *                                  or if {@code end} is negative or greater than {@code parameterCount()}
 474      *                                  or if {@code start} is greater than {@code end}
 475      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
 476      *                                  or if the resulting method type would have more than 255 parameter slots
 477      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
 478      */
 479     /*non-public*/
 480     MethodType replaceParameterTypes(int start, int end, Class<?>... ptypesToInsert) {
 481         if (start == end)
 482             return insertParameterTypes(start, ptypesToInsert);
 483         int len = ptypes.length;
 484         if (!(0 <= start && start <= end && end <= len))
 485             throw newIndexOutOfBoundsException("start="+start+" end="+end);
 486         int ilen = ptypesToInsert.length;
 487         if (ilen == 0)
 488             return dropParameterTypes(start, end);
 489         return dropParameterTypes(start, end).insertParameterTypes(start, ptypesToInsert);
 490     }
 491 
 492     /** Replace the last arrayLength parameter types with the component type of arrayType.
 493      * @param arrayType any array type
 494      * @param pos position at which to spread
 495      * @param arrayLength the number of parameter types to change
 496      * @return the resulting type
 497      */
 498     /*non-public*/
 499     MethodType asSpreaderType(Class<?> arrayType, int pos, int arrayLength) {
 500         assert(parameterCount() >= arrayLength);
 501         int spreadPos = pos;
 502         if (arrayLength == 0)  return this;  // nothing to change
 503         if (arrayType == Object[].class) {
 504             if (isGeneric())  return this;  // nothing to change
 505             if (spreadPos == 0) {
 506                 // no leading arguments to preserve; go generic
 507                 MethodType res = genericMethodType(arrayLength);
 508                 if (rtype != Object.class) {
 509                     res = res.changeReturnType(rtype);
 510                 }
 511                 return res;
 512             }
 513         }
 514         Class<?> elemType = arrayType.getComponentType();
 515         assert(elemType != null);
 516         for (int i = spreadPos; i < spreadPos + arrayLength; i++) {
 517             if (ptypes[i] != elemType) {
 518                 Class<?>[] fixedPtypes = ptypes.clone();
 519                 Arrays.fill(fixedPtypes, i, spreadPos + arrayLength, elemType);
 520                 return methodType(rtype, fixedPtypes);
 521             }
 522         }
 523         return this;  // arguments check out; no change
 524     }
 525 
 526     /** Return the leading parameter type, which must exist and be a reference.
 527      *  @return the leading parameter type, after error checks
 528      */
 529     /*non-public*/
 530     Class<?> leadingReferenceParameter() {
 531         Class<?> ptype;
 532         if (ptypes.length == 0 ||
 533             (ptype = ptypes[0]).isPrimitive())
 534             throw newIllegalArgumentException("no leading reference parameter");
 535         return ptype;
 536     }
 537 
 538     /** Delete the last parameter type and replace it with arrayLength copies of the component type of arrayType.
 539      * @param arrayType any array type
 540      * @param pos position at which to insert parameters
 541      * @param arrayLength the number of parameter types to insert
 542      * @return the resulting type
 543      */
 544     /*non-public*/
 545     MethodType asCollectorType(Class<?> arrayType, int pos, int arrayLength) {
 546         assert(parameterCount() >= 1);
 547         assert(pos < ptypes.length);
 548         assert(ptypes[pos].isAssignableFrom(arrayType));
 549         MethodType res;
 550         if (arrayType == Object[].class) {
 551             res = genericMethodType(arrayLength);
 552             if (rtype != Object.class) {
 553                 res = res.changeReturnType(rtype);
 554             }
 555         } else {
 556             Class<?> elemType = arrayType.getComponentType();
 557             assert(elemType != null);
 558             res = methodType(rtype, Collections.nCopies(arrayLength, elemType));
 559         }
 560         if (ptypes.length == 1) {
 561             return res;
 562         } else {
 563             // insert after (if need be), then before
 564             if (pos < ptypes.length - 1) {
 565                 res = res.insertParameterTypes(arrayLength, Arrays.copyOfRange(ptypes, pos + 1, ptypes.length));
 566             }
 567             return res.insertParameterTypes(0, Arrays.copyOf(ptypes, pos));
 568         }
 569     }
 570 
 571     /**
 572      * Finds or creates a method type with some parameter types omitted.
 573      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 574      * @param start  the index (zero-based) of the first parameter type to remove
 575      * @param end    the index (greater than {@code start}) of the first parameter type after not to remove
 576      * @return the same type, except with the selected parameter(s) removed
 577      * @throws IndexOutOfBoundsException if {@code start} is negative or greater than {@code parameterCount()}
 578      *                                  or if {@code end} is negative or greater than {@code parameterCount()}
 579      *                                  or if {@code start} is greater than {@code end}
 580      */
 581     public MethodType dropParameterTypes(int start, int end) {
 582         int len = ptypes.length;
 583         if (!(0 <= start && start <= end && end <= len))
 584             throw newIndexOutOfBoundsException("start="+start+" end="+end);
 585         if (start == end)  return this;
 586         Class<?>[] nptypes;
 587         if (start == 0) {
 588             if (end == len) {
 589                 // drop all parameters
 590                 nptypes = NO_PTYPES;
 591             } else {
 592                 // drop initial parameter(s)
 593                 nptypes = Arrays.copyOfRange(ptypes, end, len);
 594             }
 595         } else {
 596             if (end == len) {
 597                 // drop trailing parameter(s)
 598                 nptypes = Arrays.copyOfRange(ptypes, 0, start);
 599             } else {
 600                 int tail = len - end;
 601                 nptypes = Arrays.copyOfRange(ptypes, 0, start + tail);
 602                 System.arraycopy(ptypes, end, nptypes, start, tail);
 603             }
 604         }
 605         return makeImpl(rtype, nptypes, true);
 606     }
 607 
 608     /**
 609      * Finds or creates a method type with a different return type.
 610      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 611      * @param nrtype a return parameter type to replace the old one with
 612      * @return the same type, except with the return type change
 613      * @throws NullPointerException if {@code nrtype} is null
 614      */
 615     public MethodType changeReturnType(Class<?> nrtype) {
 616         if (returnType() == nrtype)  return this;
 617         return makeImpl(nrtype, ptypes, true);
 618     }
 619 
 620     /**
 621      * Reports if this type contains a primitive argument or return value.
 622      * The return type {@code void} counts as a primitive.
 623      * @return true if any of the types are primitives
 624      */
 625     public boolean hasPrimitives() {
 626         return form.hasPrimitives();
 627     }
 628 
 629     /**
 630      * Reports if this type contains a wrapper argument or return value.
 631      * Wrappers are types which box primitive values, such as {@link Integer}.
 632      * The reference type {@code java.lang.Void} counts as a wrapper,
 633      * if it occurs as a return type.
 634      * @return true if any of the types are wrappers
 635      */
 636     public boolean hasWrappers() {
 637         return unwrap() != this;
 638     }
 639 
 640     /**
 641      * Erases all reference types to {@code Object}.
 642      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 643      * All primitive types (including {@code void}) will remain unchanged.
 644      * @return a version of the original type with all reference types replaced
 645      */
 646     public MethodType erase() {
 647         return form.erasedType();
 648     }
 649 
 650     /**
 651      * Erases all reference types to {@code Object}, and all subword types to {@code int}.
 652      * This is the reduced type polymorphism used by private methods
 653      * such as {@link MethodHandle#invokeBasic invokeBasic}.
 654      * @return a version of the original type with all reference and subword types replaced
 655      */
 656     /*non-public*/
 657     MethodType basicType() {
 658         return form.basicType();
 659     }
 660 
 661     private static final @Stable Class<?>[] METHOD_HANDLE_ARRAY
 662             = new Class<?>[] { MethodHandle.class };
 663 
 664     /**
 665      * @return a version of the original type with MethodHandle prepended as the first argument
 666      */
 667     /*non-public*/
 668     MethodType invokerType() {
 669         return insertParameterTypes(0, METHOD_HANDLE_ARRAY);
 670     }
 671 
 672     /**
 673      * Converts all types, both reference and primitive, to {@code Object}.
 674      * Convenience method for {@link #genericMethodType(int) genericMethodType}.
 675      * The expression {@code type.wrap().erase()} produces the same value
 676      * as {@code type.generic()}.
 677      * @return a version of the original type with all types replaced
 678      */
 679     public MethodType generic() {
 680         return genericMethodType(parameterCount());
 681     }
 682 
 683     /*non-public*/
 684     boolean isGeneric() {
 685         return this == erase() && !hasPrimitives();
 686     }
 687 
 688     /**
 689      * Converts all primitive types to their corresponding wrapper types.
 690      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 691      * All reference types (including wrapper types) will remain unchanged.
 692      * A {@code void} return type is changed to the type {@code java.lang.Void}.
 693      * The expression {@code type.wrap().erase()} produces the same value
 694      * as {@code type.generic()}.
 695      * @return a version of the original type with all primitive types replaced
 696      */
 697     public MethodType wrap() {
 698         return hasPrimitives() ? wrapWithPrims(this) : this;
 699     }
 700 
 701     /**
 702      * Converts all wrapper types to their corresponding primitive types.
 703      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 704      * All primitive types (including {@code void}) will remain unchanged.
 705      * A return type of {@code java.lang.Void} is changed to {@code void}.
 706      * @return a version of the original type with all wrapper types replaced
 707      */
 708     public MethodType unwrap() {
 709         MethodType noprims = !hasPrimitives() ? this : wrapWithPrims(this);
 710         return unwrapWithNoPrims(noprims);
 711     }
 712 
 713     private static MethodType wrapWithPrims(MethodType pt) {
 714         assert(pt.hasPrimitives());
 715         MethodType wt = pt.wrapAlt;
 716         if (wt == null) {
 717             // fill in lazily
 718             wt = MethodTypeForm.canonicalize(pt, MethodTypeForm.WRAP, MethodTypeForm.WRAP);
 719             assert(wt != null);
 720             pt.wrapAlt = wt;
 721         }
 722         return wt;
 723     }
 724 
 725     private static MethodType unwrapWithNoPrims(MethodType wt) {
 726         assert(!wt.hasPrimitives());
 727         MethodType uwt = wt.wrapAlt;
 728         if (uwt == null) {
 729             // fill in lazily
 730             uwt = MethodTypeForm.canonicalize(wt, MethodTypeForm.UNWRAP, MethodTypeForm.UNWRAP);
 731             if (uwt == null)
 732                 uwt = wt;    // type has no wrappers or prims at all
 733             wt.wrapAlt = uwt;
 734         }
 735         return uwt;
 736     }
 737 
 738     /**
 739      * Returns the parameter type at the specified index, within this method type.
 740      * @param num the index (zero-based) of the desired parameter type
 741      * @return the selected parameter type
 742      * @throws IndexOutOfBoundsException if {@code num} is not a valid index into {@code parameterArray()}
 743      */
 744     public Class<?> parameterType(int num) {
 745         return ptypes[num];
 746     }
 747     /**
 748      * Returns the number of parameter types in this method type.
 749      * @return the number of parameter types
 750      */
 751     public int parameterCount() {
 752         return ptypes.length;
 753     }
 754     /**
 755      * Returns the return type of this method type.
 756      * @return the return type
 757      */
 758     public Class<?> returnType() {
 759         return rtype;
 760     }
 761 
 762     /**
 763      * Presents the parameter types as a list (a convenience method).
 764      * The list will be immutable.
 765      * @return the parameter types (as an immutable list)
 766      */
 767     public List<Class<?>> parameterList() {
 768         return Collections.unmodifiableList(Arrays.asList(ptypes.clone()));
 769     }
 770 
 771     /**
 772      * Returns the last parameter type of this method type.
 773      * If this type has no parameters, the sentinel value
 774      * {@code void.class} is returned instead.
 775      * @apiNote
 776      * <p>
 777      * The sentinel value is chosen so that reflective queries can be
 778      * made directly against the result value.
 779      * The sentinel value cannot be confused with a real parameter,
 780      * since {@code void} is never acceptable as a parameter type.
 781      * For variable arity invocation modes, the expression
 782      * {@link Class#getComponentType lastParameterType().getComponentType()}
 783      * is useful to query the type of the "varargs" parameter.
 784      * @return the last parameter type if any, else {@code void.class}
 785      * @since 10
 786      */
 787     public Class<?> lastParameterType() {
 788         int len = ptypes.length;
 789         return len == 0 ? void.class : ptypes[len-1];
 790     }
 791 
 792     /**
 793      * Presents the parameter types as an array (a convenience method).
 794      * Changes to the array will not result in changes to the type.
 795      * @return the parameter types (as a fresh copy if necessary)
 796      */
 797     public Class<?>[] parameterArray() {
 798         return ptypes.clone();
 799     }
 800 
 801     /**
 802      * Compares the specified object with this type for equality.
 803      * That is, it returns {@code true} if and only if the specified object
 804      * is also a method type with exactly the same parameters and return type.
 805      * @param x object to compare
 806      * @see Object#equals(Object)
 807      */
 808     // This implementation may also return true if x is a WeakEntry containing
 809     // a method type that is equal to this. This is an internal implementation
 810     // detail to allow for faster method type lookups.
 811     // See ConcurrentWeakInternSet.WeakEntry#equals(Object)
 812     @Override
 813     public boolean equals(Object x) {
 814         if (this == x) {
 815             return true;
 816         }
 817         if (x instanceof MethodType) {
 818             return equals((MethodType)x);
 819         }
 820         if (x instanceof ConcurrentWeakInternSet.WeakEntry) {
 821             Object o = ((ConcurrentWeakInternSet.WeakEntry)x).get();
 822             if (o instanceof MethodType) {
 823                 return equals((MethodType)o);
 824             }
 825         }
 826         return false;
 827     }
 828 
 829     private boolean equals(MethodType that) {
 830         return this.rtype == that.rtype
 831             && Arrays.equals(this.ptypes, that.ptypes);
 832     }
 833 
 834     /**
 835      * Returns the hash code value for this method type.
 836      * It is defined to be the same as the hashcode of a List
 837      * whose elements are the return type followed by the
 838      * parameter types.
 839      * @return the hash code value for this method type
 840      * @see Object#hashCode()
 841      * @see #equals(Object)
 842      * @see List#hashCode()
 843      */
 844     @Override
 845     public int hashCode() {
 846         int hashCode = 31 + rtype.hashCode();
 847         for (Class<?> ptype : ptypes)
 848             hashCode = 31 * hashCode + ptype.hashCode();
 849         return hashCode;
 850     }
 851 
 852     /**
 853      * Returns a string representation of the method type,
 854      * of the form {@code "(PT0,PT1...)RT"}.
 855      * The string representation of a method type is a
 856      * parenthesis enclosed, comma separated list of type names,
 857      * followed immediately by the return type.
 858      * <p>
 859      * Each type is represented by its
 860      * {@link java.lang.Class#getSimpleName simple name}.
 861      */
 862     @Override
 863     public String toString() {
 864         StringJoiner sj = new StringJoiner(",", "(",
 865                 ")" + rtype.getSimpleName());
 866         for (int i = 0; i < ptypes.length; i++) {
 867             sj.add(ptypes[i].getSimpleName());
 868         }
 869         return sj.toString();
 870     }
 871 
 872     /** True if my parameter list is effectively identical to the given full list,
 873      *  after skipping the given number of my own initial parameters.
 874      *  In other words, after disregarding {@code skipPos} parameters,
 875      *  my remaining parameter list is no longer than the {@code fullList}, and
 876      *  is equal to the same-length initial sublist of {@code fullList}.
 877      */
 878     /*non-public*/
 879     boolean effectivelyIdenticalParameters(int skipPos, List<Class<?>> fullList) {
 880         int myLen = ptypes.length, fullLen = fullList.size();
 881         if (skipPos > myLen || myLen - skipPos > fullLen)
 882             return false;
 883         List<Class<?>> myList = Arrays.asList(ptypes);
 884         if (skipPos != 0) {
 885             myList = myList.subList(skipPos, myLen);
 886             myLen -= skipPos;
 887         }
 888         if (fullLen == myLen)
 889             return myList.equals(fullList);
 890         else
 891             return myList.equals(fullList.subList(0, myLen));
 892     }
 893 
 894     /** True if the old return type can always be viewed (w/o casting) under new return type,
 895      *  and the new parameters can be viewed (w/o casting) under the old parameter types.
 896      */
 897     /*non-public*/
 898     boolean isViewableAs(MethodType newType, boolean keepInterfaces) {
 899         if (!VerifyType.isNullConversion(returnType(), newType.returnType(), keepInterfaces))
 900             return false;
 901         if (form == newType.form && form.erasedType == this)
 902             return true;  // my reference parameters are all Object
 903         if (ptypes == newType.ptypes)
 904             return true;
 905         int argc = parameterCount();
 906         if (argc != newType.parameterCount())
 907             return false;
 908         for (int i = 0; i < argc; i++) {
 909             if (!VerifyType.isNullConversion(newType.parameterType(i), parameterType(i), keepInterfaces))
 910                 return false;
 911         }
 912         return true;
 913     }
 914     /*non-public*/
 915     boolean isConvertibleTo(MethodType newType) {
 916         MethodTypeForm oldForm = this.form();
 917         MethodTypeForm newForm = newType.form();
 918         if (oldForm == newForm)
 919             // same parameter count, same primitive/object mix
 920             return true;
 921         if (!canConvert(returnType(), newType.returnType()))
 922             return false;
 923         Class<?>[] srcTypes = newType.ptypes;
 924         Class<?>[] dstTypes = ptypes;
 925         if (srcTypes == dstTypes)
 926             return true;
 927         int argc;
 928         if ((argc = srcTypes.length) != dstTypes.length)
 929             return false;
 930         if (argc <= 1) {
 931             if (argc == 1 && !canConvert(srcTypes[0], dstTypes[0]))
 932                 return false;
 933             return true;
 934         }
 935         if ((!oldForm.hasPrimitives() && oldForm.erasedType == this) ||
 936             (!newForm.hasPrimitives() && newForm.erasedType == newType)) {
 937             // Somewhat complicated test to avoid a loop of 2 or more trips.
 938             // If either type has only Object parameters, we know we can convert.
 939             assert(canConvertParameters(srcTypes, dstTypes));
 940             return true;
 941         }
 942         return canConvertParameters(srcTypes, dstTypes);
 943     }
 944 
 945     /** Returns true if MHs.explicitCastArguments produces the same result as MH.asType.
 946      *  If the type conversion is impossible for either, the result should be false.
 947      */
 948     /*non-public*/
 949     boolean explicitCastEquivalentToAsType(MethodType newType) {
 950         if (this == newType)  return true;
 951         if (!explicitCastEquivalentToAsType(rtype, newType.rtype)) {
 952             return false;
 953         }
 954         Class<?>[] srcTypes = newType.ptypes;
 955         Class<?>[] dstTypes = ptypes;
 956         if (dstTypes == srcTypes) {
 957             return true;
 958         }
 959         assert(dstTypes.length == srcTypes.length);
 960         for (int i = 0; i < dstTypes.length; i++) {
 961             if (!explicitCastEquivalentToAsType(srcTypes[i], dstTypes[i])) {
 962                 return false;
 963             }
 964         }
 965         return true;
 966     }
 967 
 968     /** Reports true if the src can be converted to the dst, by both asType and MHs.eCE,
 969      *  and with the same effect.
 970      *  MHs.eCA has the following "upgrades" to MH.asType:
 971      *  1. interfaces are unchecked (that is, treated as if aliased to Object)
 972      *     Therefore, {@code Object->CharSequence} is possible in both cases but has different semantics
 973      *  2. the full matrix of primitive-to-primitive conversions is supported
 974      *     Narrowing like {@code long->byte} and basic-typing like {@code boolean->int}
 975      *     are not supported by asType, but anything supported by asType is equivalent
 976      *     with MHs.eCE.
 977      *  3a. unboxing conversions can be followed by the full matrix of primitive conversions
 978      *  3b. unboxing of null is permitted (creates a zero primitive value)
 979      * Other than interfaces, reference-to-reference conversions are the same.
 980      * Boxing primitives to references is the same for both operators.
 981      */
 982     private static boolean explicitCastEquivalentToAsType(Class<?> src, Class<?> dst) {
 983         if (src == dst || dst == Object.class || dst == void.class)  return true;
 984         if (src.isPrimitive()) {
 985             // Could be a prim/prim conversion, where casting is a strict superset.
 986             // Or a boxing conversion, which is always to an exact wrapper class.
 987             return canConvert(src, dst);
 988         } else if (dst.isPrimitive()) {
 989             // Unboxing behavior is different between MHs.eCA & MH.asType (see 3b).
 990             return false;
 991         } else {
 992             // R->R always works, but we have to avoid a check-cast to an interface.
 993             return !dst.isInterface() || dst.isAssignableFrom(src);
 994         }
 995     }
 996 
 997     private boolean canConvertParameters(Class<?>[] srcTypes, Class<?>[] dstTypes) {
 998         for (int i = 0; i < srcTypes.length; i++) {
 999             if (!canConvert(srcTypes[i], dstTypes[i])) {
1000                 return false;
1001             }
1002         }
1003         return true;
1004     }
1005 
1006     /*non-public*/
1007     static boolean canConvert(Class<?> src, Class<?> dst) {
1008         // short-circuit a few cases:
1009         if (src == dst || src == Object.class || dst == Object.class)  return true;
1010         // the remainder of this logic is documented in MethodHandle.asType
1011         if (src.isPrimitive()) {
1012             // can force void to an explicit null, a la reflect.Method.invoke
1013             // can also force void to a primitive zero, by analogy
1014             if (src == void.class)  return true;  //or !dst.isPrimitive()?
1015             Wrapper sw = Wrapper.forPrimitiveType(src);
1016             if (dst.isPrimitive()) {
1017                 // P->P must widen
1018                 return Wrapper.forPrimitiveType(dst).isConvertibleFrom(sw);
1019             } else {
1020                 // P->R must box and widen
1021                 return dst.isAssignableFrom(sw.wrapperType());
1022             }
1023         } else if (dst.isPrimitive()) {
1024             // any value can be dropped
1025             if (dst == void.class)  return true;
1026             Wrapper dw = Wrapper.forPrimitiveType(dst);
1027             // R->P must be able to unbox (from a dynamically chosen type) and widen
1028             // For example:
1029             //   Byte/Number/Comparable/Object -> dw:Byte -> byte.
1030             //   Character/Comparable/Object -> dw:Character -> char
1031             //   Boolean/Comparable/Object -> dw:Boolean -> boolean
1032             // This means that dw must be cast-compatible with src.
1033             if (src.isAssignableFrom(dw.wrapperType())) {
1034                 return true;
1035             }
1036             // The above does not work if the source reference is strongly typed
1037             // to a wrapper whose primitive must be widened.  For example:
1038             //   Byte -> unbox:byte -> short/int/long/float/double
1039             //   Character -> unbox:char -> int/long/float/double
1040             if (Wrapper.isWrapperType(src) &&
1041                 dw.isConvertibleFrom(Wrapper.forWrapperType(src))) {
1042                 // can unbox from src and then widen to dst
1043                 return true;
1044             }
1045             // We have already covered cases which arise due to runtime unboxing
1046             // of a reference type which covers several wrapper types:
1047             //   Object -> cast:Integer -> unbox:int -> long/float/double
1048             //   Serializable -> cast:Byte -> unbox:byte -> byte/short/int/long/float/double
1049             // An marginal case is Number -> dw:Character -> char, which would be OK if there were a
1050             // subclass of Number which wraps a value that can convert to char.
1051             // Since there is none, we don't need an extra check here to cover char or boolean.
1052             return false;
1053         } else {
1054             // R->R always works, since null is always valid dynamically
1055             return true;
1056         }
1057     }
1058 
1059     /// Queries which have to do with the bytecode architecture
1060 
1061     /** Reports the number of JVM stack slots required to invoke a method
1062      * of this type.  Note that (for historical reasons) the JVM requires
1063      * a second stack slot to pass long and double arguments.
1064      * So this method returns {@link #parameterCount() parameterCount} plus the
1065      * number of long and double parameters (if any).
1066      * <p>
1067      * This method is included for the benefit of applications that must
1068      * generate bytecodes that process method handles and invokedynamic.
1069      * @return the number of JVM stack slots for this type's parameters
1070      */
1071     /*non-public*/
1072     int parameterSlotCount() {
1073         return form.parameterSlotCount();
1074     }
1075 
1076     /*non-public*/
1077     Invokers invokers() {
1078         Invokers inv = invokers;
1079         if (inv != null)  return inv;
1080         invokers = inv = new Invokers(this);
1081         return inv;
1082     }
1083 
1084     /**
1085      * Finds or creates an instance of a method type, given the spelling of its bytecode descriptor.
1086      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
1087      * Any class or interface name embedded in the descriptor string will be
1088      * resolved by the given loader (or if it is null, on the system class loader).
1089      * <p>
1090      * Note that it is possible to encounter method types which cannot be
1091      * constructed by this method, because their component types are
1092      * not all reachable from a common class loader.
1093      * <p>
1094      * This method is included for the benefit of applications that must
1095      * generate bytecodes that process method handles and {@code invokedynamic}.
1096      * @param descriptor a bytecode-level type descriptor string "(T...)T"
1097      * @param loader the class loader in which to look up the types
1098      * @return a method type matching the bytecode-level type descriptor
1099      * @throws NullPointerException if the string is null
1100      * @throws IllegalArgumentException if the string is not well-formed
1101      * @throws TypeNotPresentException if a named type cannot be found
1102      * @throws SecurityException if the security manager is present and
1103      *         {@code loader} is {@code null} and the caller does not have the
1104      *         {@link RuntimePermission}{@code ("getClassLoader")}
1105      */
1106     public static MethodType fromMethodDescriptorString(String descriptor, ClassLoader loader)
1107         throws IllegalArgumentException, TypeNotPresentException
1108     {
1109         if (loader == null) {
1110             SecurityManager sm = System.getSecurityManager();
1111             if (sm != null) {
1112                 sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
1113             }
1114         }
1115         return fromDescriptor(descriptor,
1116                               (loader == null) ? ClassLoader.getSystemClassLoader() : loader);
1117     }
1118 
1119     /**
1120      * Same as {@link #fromMethodDescriptorString(String, ClassLoader)}, but
1121      * {@code null} ClassLoader means the bootstrap loader is used here.
1122      * <p>
1123      * IMPORTANT: This method is preferable for JDK internal use as it more
1124      * correctly interprets {@code null} ClassLoader than
1125      * {@link #fromMethodDescriptorString(String, ClassLoader)}.
1126      * Use of this method also avoids early initialization issues when system
1127      * ClassLoader is not initialized yet.
1128      */
1129     static MethodType fromDescriptor(String descriptor, ClassLoader loader)
1130         throws IllegalArgumentException, TypeNotPresentException
1131     {
1132         if (!descriptor.startsWith("(") ||  // also generates NPE if needed
1133             descriptor.indexOf(')') < 0 ||
1134             descriptor.indexOf('.') >= 0)
1135             throw newIllegalArgumentException("not a method descriptor: "+descriptor);
1136         List<Class<?>> types = BytecodeDescriptor.parseMethod(descriptor, loader);
1137         Class<?> rtype = types.remove(types.size() - 1);
1138         Class<?>[] ptypes = listToArray(types);
1139         return makeImpl(rtype, ptypes, true);
1140     }
1141 
1142     /**
1143      * Returns a descriptor string for the method type.  This method
1144      * is equivalent to calling {@link #descriptorString() MethodType::descriptorString}.
1145      *
1146      * <p>
1147      * Note that this is not a strict inverse of {@link #fromMethodDescriptorString fromMethodDescriptorString}.
1148      * Two distinct classes which share a common name but have different class loaders
1149      * will appear identical when viewed within descriptor strings.
1150      * <p>
1151      * This method is included for the benefit of applications that must
1152      * generate bytecodes that process method handles and {@code invokedynamic}.
1153      * {@link #fromMethodDescriptorString(java.lang.String, java.lang.ClassLoader) fromMethodDescriptorString},
1154      * because the latter requires a suitable class loader argument.
1155      * @return the descriptor string for this method type
1156      * @jvms 4.3.3 Method Descriptors
1157      */
1158     public String toMethodDescriptorString() {
1159         String desc = methodDescriptor;
1160         if (desc == null) {
1161             desc = BytecodeDescriptor.unparseMethod(this.rtype, this.ptypes);
1162             methodDescriptor = desc;
1163         }
1164         return desc;
1165     }
1166 
1167     /**
1168      * Returns a descriptor string for this method type.
1169      *
1170      * <p> If none of the parameter types and return type is a {@linkplain Class#isHidden()
1171      * hidden} class or interface, then the result is a method type descriptor string
1172      * (JVMS {@jvms 4.3.3}). {@link MethodTypeDesc MethodTypeDesc} can be created from
1173      * the result method type descriptor via
1174      * {@link MethodTypeDesc#ofDescriptor(String) MethodTypeDesc::ofDescriptor}.
1175      *
1176      * <p> If any of the parameter types and return type is a {@linkplain Class#isHidden()
1177      * hidden} class or interface, then the result is a string of the form:
1178      *    {@code "(<parameter-descriptors>)<return-descriptor>"}
1179      * where {@code <parameter-descriptors>} is the concatenation of the
1180      * {@linkplain Class#descriptorString() descriptor string} of all parameter types
1181      * and the {@linkplain Class#descriptorString() descriptor string} of the return type.
1182      * This method type cannot be described nominally and no
1183      * {@link java.lang.constant.MethodTypeDesc MethodTypeDesc} can be produced from
1184      * the result string.
1185      *
1186      * @return the descriptor string for this method type
1187      * @since 12
1188      * @jvms 4.3.3 Method Descriptors
1189      */
1190     @Override
1191     public String descriptorString() {
1192         return toMethodDescriptorString();
1193     }
1194 
1195     /*non-public*/
1196     static String toFieldDescriptorString(Class<?> cls) {
1197         return BytecodeDescriptor.unparse(cls);
1198     }
1199 
1200     /**
1201      * Returns a nominal descriptor for this instance, if one can be
1202      * constructed, or an empty {@link Optional} if one cannot be.
1203      *
1204      * <p> If any of the parameter types and return type is {@linkplain Class#isHidden()
1205      * hidden}, then this method returns an empty {@link Optional} because
1206      * this method type cannot be described in nominal form.
1207      *
1208      * @return An {@link Optional} containing the resulting nominal descriptor,
1209      * or an empty {@link Optional} if one cannot be constructed.
1210      * @since 12
1211      */
1212     @Override
1213     public Optional<MethodTypeDesc> describeConstable() {
1214         try {
1215             return Optional.of(MethodTypeDesc.of(returnType().describeConstable().orElseThrow(),
1216                                                  Stream.of(parameterArray())
1217                                                       .map(p -> p.describeConstable().orElseThrow())
1218                                                       .toArray(ClassDesc[]::new)));
1219         }
1220         catch (NoSuchElementException e) {
1221             return Optional.empty();
1222         }
1223     }
1224 
1225     /// Serialization.
1226 
1227     /**
1228      * There are no serializable fields for {@code MethodType}.
1229      */
1230     @java.io.Serial
1231     private static final java.io.ObjectStreamField[] serialPersistentFields = { };
1232 
1233     /**
1234      * Save the {@code MethodType} instance to a stream.
1235      *
1236      * @serialData
1237      * For portability, the serialized format does not refer to named fields.
1238      * Instead, the return type and parameter type arrays are written directly
1239      * from the {@code writeObject} method, using two calls to {@code s.writeObject}
1240      * as follows:
1241      * <blockquote><pre>{@code
1242 s.writeObject(this.returnType());
1243 s.writeObject(this.parameterArray());
1244      * }</pre></blockquote>
1245      * <p>
1246      * The deserialized field values are checked as if they were
1247      * provided to the factory method {@link #methodType(Class,Class[]) methodType}.
1248      * For example, null values, or {@code void} parameter types,
1249      * will lead to exceptions during deserialization.
1250      * @param s the stream to write the object to
1251      * @throws java.io.IOException if there is a problem writing the object
1252      */
1253     @java.io.Serial
1254     private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
1255         s.defaultWriteObject();  // requires serialPersistentFields to be an empty array
1256         s.writeObject(returnType());
1257         s.writeObject(parameterArray());
1258     }
1259 
1260     /**
1261      * Reconstitute the {@code MethodType} instance from a stream (that is,
1262      * deserialize it).
1263      * This instance is a scratch object with bogus final fields.
1264      * It provides the parameters to the factory method called by
1265      * {@link #readResolve readResolve}.
1266      * After that call it is discarded.
1267      * @param s the stream to read the object from
1268      * @throws java.io.IOException if there is a problem reading the object
1269      * @throws ClassNotFoundException if one of the component classes cannot be resolved
1270      * @see #readResolve
1271      * @see #writeObject
1272      */
1273     @java.io.Serial
1274     private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
1275         // Assign temporary defaults in case this object escapes
1276         MethodType_init(void.class, NO_PTYPES);
1277 
1278         s.defaultReadObject();  // requires serialPersistentFields to be an empty array
1279 
1280         Class<?>   returnType     = (Class<?>)   s.readObject();
1281         Class<?>[] parameterArray = (Class<?>[]) s.readObject();
1282         parameterArray = parameterArray.clone();  // make sure it is unshared
1283 
1284         // Assign deserialized values
1285         MethodType_init(returnType, parameterArray);
1286     }
1287 
1288     // Initialization of state for deserialization only
1289     private void MethodType_init(Class<?> rtype, Class<?>[] ptypes) {
1290         // In order to communicate these values to readResolve, we must
1291         // store them into the implementation-specific final fields.
1292         checkRtype(rtype);
1293         checkPtypes(ptypes);
1294         UNSAFE.putReference(this, OffsetHolder.rtypeOffset, rtype);
1295         UNSAFE.putReference(this, OffsetHolder.ptypesOffset, ptypes);
1296     }
1297 
1298     // Support for resetting final fields while deserializing. Implement Holder
1299     // pattern to make the rarely needed offset calculation lazy.
1300     private static class OffsetHolder {
1301         static final long rtypeOffset
1302                 = UNSAFE.objectFieldOffset(MethodType.class, "rtype");
1303 
1304         static final long ptypesOffset
1305                 = UNSAFE.objectFieldOffset(MethodType.class, "ptypes");
1306     }
1307 
1308     /**
1309      * Resolves and initializes a {@code MethodType} object
1310      * after serialization.
1311      * @return the fully initialized {@code MethodType} object
1312      */
1313     @java.io.Serial
1314     private Object readResolve() {
1315         // Do not use a trusted path for deserialization:
1316         //    return makeImpl(rtype, ptypes, true);
1317         // Verify all operands, and make sure ptypes is unshared:
1318         try {
1319             return methodType(rtype, ptypes);
1320         } finally {
1321             // Re-assign defaults in case this object escapes
1322             MethodType_init(void.class, NO_PTYPES);
1323         }
1324     }
1325 
1326     /**
1327      * Simple implementation of weak concurrent intern set.
1328      *
1329      * @param <T> interned type
1330      */
1331     private static class ConcurrentWeakInternSet<T> {
1332 
1333         private final ConcurrentMap<WeakEntry<T>, WeakEntry<T>> map;
1334         private final ReferenceQueue<T> stale;
1335 
1336         public ConcurrentWeakInternSet() {
1337             this.map = new ConcurrentHashMap<>(512);
1338             this.stale = new ReferenceQueue<>();
1339         }
1340 
1341         /**
1342          * Get the existing interned element.
1343          * This method returns null if no element is interned.
1344          *
1345          * @param elem element to look up
1346          * @return the interned element
1347          */
1348         public T get(T elem) {
1349             if (elem == null) throw new NullPointerException();
1350             expungeStaleElements();
1351 
1352             WeakEntry<T> value = map.get(elem);
1353             if (value != null) {
1354                 T res = value.get();
1355                 if (res != null) {
1356                     return res;
1357                 }
1358             }
1359             return null;
1360         }
1361 
1362         /**
1363          * Interns the element.
1364          * Always returns non-null element, matching the one in the intern set.
1365          * Under the race against another add(), it can return <i>different</i>
1366          * element, if another thread beats us to interning it.
1367          *
1368          * @param elem element to add
1369          * @return element that was actually added
1370          */
1371         public T add(T elem) {
1372             if (elem == null) throw new NullPointerException();
1373 
1374             // Playing double race here, and so spinloop is required.
1375             // First race is with two concurrent updaters.
1376             // Second race is with GC purging weak ref under our feet.
1377             // Hopefully, we almost always end up with a single pass.
1378             T interned;
1379             WeakEntry<T> e = new WeakEntry<>(elem, stale);
1380             do {
1381                 expungeStaleElements();
1382                 WeakEntry<T> exist = map.putIfAbsent(e, e);
1383                 interned = (exist == null) ? elem : exist.get();
1384             } while (interned == null);
1385             return interned;
1386         }
1387 
1388         private void expungeStaleElements() {
1389             Reference<? extends T> reference;
1390             while ((reference = stale.poll()) != null) {
1391                 map.remove(reference);
1392             }
1393         }
1394 
1395         private static class WeakEntry<T> extends WeakReference<T> {
1396 
1397             public final int hashcode;
1398 
1399             public WeakEntry(T key, ReferenceQueue<T> queue) {
1400                 super(key, queue);
1401                 hashcode = key.hashCode();
1402             }
1403 
1404             /**
1405              * This implementation returns {@code true} if {@code obj} is another
1406              * {@code WeakEntry} whose referent is equal to this referent, or
1407              * if {@code obj} is equal to the referent of this. This allows
1408              * lookups to be made without wrapping in a {@code WeakEntry}.
1409              *
1410              * @param obj the object to compare
1411              * @return true if {@code obj} is equal to this or the referent of this
1412              * @see MethodType#equals(Object)
1413              * @see Object#equals(Object)
1414              */
1415             @Override
1416             public boolean equals(Object obj) {
1417                 Object mine = get();
1418                 if (obj instanceof WeakEntry) {
1419                     Object that = ((WeakEntry) obj).get();
1420                     return (that == null || mine == null) ? (this == obj) : mine.equals(that);
1421                 }
1422                 return (mine == null) ? (obj == null) : mine.equals(obj);
1423             }
1424 
1425             @Override
1426             public int hashCode() {
1427                 return hashcode;
1428             }
1429 
1430         }
1431     }
1432 
1433 }