1 /* 2 * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef OS_LINUX_OS_LINUX_HPP 26 #define OS_LINUX_OS_LINUX_HPP 27 28 struct CPUPerfTicks { 29 uint64_t used; 30 uint64_t usedKernel; 31 uint64_t total; 32 uint64_t steal; 33 bool has_steal_ticks; 34 }; 35 36 // Linux_OS defines the interface to Linux operating systems 37 38 // Information about the protection of the page at address '0' on this os. 39 static bool zero_page_read_protected() { return true; } 40 41 class Linux { 42 friend class os; 43 friend class OSContainer; 44 friend class TestReserveMemorySpecial; 45 46 static bool libjsig_is_loaded; // libjsig that interposes sigaction(), 47 // __sigaction(), signal() is loaded 48 static struct sigaction *(*get_signal_action)(int); 49 50 static void check_signal_handler(int sig); 51 52 static int (*_pthread_getcpuclockid)(pthread_t, clockid_t *); 53 static int (*_pthread_setname_np)(pthread_t, const char*); 54 55 static address _initial_thread_stack_bottom; 56 static uintptr_t _initial_thread_stack_size; 57 58 static const char *_glibc_version; 59 static const char *_libpthread_version; 60 61 static bool _supports_fast_thread_cpu_time; 62 63 static GrowableArray<int>* _cpu_to_node; 64 static GrowableArray<int>* _nindex_to_node; 65 66 // 0x00000000 = uninitialized, 67 // 0x01000000 = kernel version unknown, 68 // otherwise a 32-bit number: 69 // Ox00AABBCC 70 // AA, Major Version 71 // BB, Minor Version 72 // CC, Fix Version 73 static uint32_t _os_version; 74 75 protected: 76 77 static julong _physical_memory; 78 static pthread_t _main_thread; 79 static Mutex* _createThread_lock; 80 static int _page_size; 81 82 static julong available_memory(); 83 static julong physical_memory() { return _physical_memory; } 84 static void set_physical_memory(julong phys_mem) { _physical_memory = phys_mem; } 85 static int active_processor_count(); 86 87 static void initialize_system_info(); 88 89 static int commit_memory_impl(char* addr, size_t bytes, bool exec); 90 static int commit_memory_impl(char* addr, size_t bytes, 91 size_t alignment_hint, bool exec); 92 93 static void set_glibc_version(const char *s) { _glibc_version = s; } 94 static void set_libpthread_version(const char *s) { _libpthread_version = s; } 95 96 static void rebuild_cpu_to_node_map(); 97 static void rebuild_nindex_to_node_map(); 98 static GrowableArray<int>* cpu_to_node() { return _cpu_to_node; } 99 static GrowableArray<int>* nindex_to_node() { return _nindex_to_node; } 100 101 static size_t find_large_page_size(); 102 static size_t setup_large_page_size(); 103 104 static bool setup_large_page_type(size_t page_size); 105 static bool transparent_huge_pages_sanity_check(bool warn, size_t pages_size); 106 static bool hugetlbfs_sanity_check(bool warn, size_t page_size); 107 108 static char* reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec); 109 static char* reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec); 110 static char* reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec); 111 static char* reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec); 112 113 static bool release_memory_special_impl(char* base, size_t bytes); 114 static bool release_memory_special_shm(char* base, size_t bytes); 115 static bool release_memory_special_huge_tlbfs(char* base, size_t bytes); 116 117 static void print_full_memory_info(outputStream* st); 118 static void print_container_info(outputStream* st); 119 static void print_virtualization_info(outputStream* st); 120 static void print_steal_info(outputStream* st); 121 static void print_distro_info(outputStream* st); 122 static void print_libversion_info(outputStream* st); 123 static void print_proc_sys_info(outputStream* st); 124 static void print_ld_preload_file(outputStream* st); 125 126 public: 127 static OSReturn get_tick_information(int which_logical_cpu, CPUPerfTicks* pticks); 128 static bool _stack_is_executable; 129 static void *dlopen_helper(const char *name, char *ebuf, int ebuflen); 130 static void *dll_load_in_vmthread(const char *name, char *ebuf, int ebuflen); 131 132 static void init_thread_fpu_state(); 133 static int get_fpu_control_word(); 134 static void set_fpu_control_word(int fpu_control); 135 static pthread_t main_thread(void) { return _main_thread; } 136 // returns kernel thread id (similar to LWP id on Solaris), which can be 137 // used to access /proc 138 static pid_t gettid(); 139 static void set_createThread_lock(Mutex* lk) { _createThread_lock = lk; } 140 static Mutex* createThread_lock(void) { return _createThread_lock; } 141 static void hotspot_sigmask(Thread* thread); 142 143 static address initial_thread_stack_bottom(void) { return _initial_thread_stack_bottom; } 144 static uintptr_t initial_thread_stack_size(void) { return _initial_thread_stack_size; } 145 146 static int page_size(void) { return _page_size; } 147 static void set_page_size(int val) { _page_size = val; } 148 149 static address ucontext_get_pc(const ucontext_t* uc); 150 static void ucontext_set_pc(ucontext_t* uc, address pc); 151 static intptr_t* ucontext_get_sp(const ucontext_t* uc); 152 static intptr_t* ucontext_get_fp(const ucontext_t* uc); 153 154 // For Analyzer Forte AsyncGetCallTrace profiling support: 155 // 156 // This interface should be declared in os_linux_i486.hpp, but 157 // that file provides extensions to the os class and not the 158 // Linux class. 159 static ExtendedPC fetch_frame_from_ucontext(Thread* thread, const ucontext_t* uc, 160 intptr_t** ret_sp, intptr_t** ret_fp); 161 162 static bool get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr); 163 164 // This boolean allows users to forward their own non-matching signals 165 // to JVM_handle_linux_signal, harmlessly. 166 static bool signal_handlers_are_installed; 167 168 static int get_our_sigflags(int); 169 static void set_our_sigflags(int, int); 170 static void signal_sets_init(); 171 static void install_signal_handlers(); 172 static void set_signal_handler(int, bool); 173 174 static sigset_t* unblocked_signals(); 175 static sigset_t* vm_signals(); 176 177 // For signal-chaining 178 static struct sigaction *get_chained_signal_action(int sig); 179 static bool chained_handler(int sig, siginfo_t* siginfo, void* context); 180 181 // GNU libc and libpthread version strings 182 static const char *glibc_version() { return _glibc_version; } 183 static const char *libpthread_version() { return _libpthread_version; } 184 185 static void libpthread_init(); 186 static void sched_getcpu_init(); 187 static bool libnuma_init(); 188 static void* libnuma_dlsym(void* handle, const char* name); 189 // libnuma v2 (libnuma_1.2) symbols 190 static void* libnuma_v2_dlsym(void* handle, const char* name); 191 192 // Return default guard size for the specified thread type 193 static size_t default_guard_size(os::ThreadType thr_type); 194 195 static void capture_initial_stack(size_t max_size); 196 197 // Stack overflow handling 198 static bool manually_expand_stack(JavaThread * t, address addr); 199 static int max_register_window_saves_before_flushing(); 200 201 // fast POSIX clocks support 202 static void fast_thread_clock_init(void); 203 204 static int pthread_getcpuclockid(pthread_t tid, clockid_t *clock_id) { 205 return _pthread_getcpuclockid ? _pthread_getcpuclockid(tid, clock_id) : -1; 206 } 207 208 static bool supports_fast_thread_cpu_time() { 209 return _supports_fast_thread_cpu_time; 210 } 211 212 static jlong fast_thread_cpu_time(clockid_t clockid); 213 214 static void initialize_os_info(); 215 static bool os_version_is_known(); 216 static uint32_t os_version(); 217 218 // Stack repair handling 219 220 // none present 221 222 private: 223 static void numa_init(); 224 static void expand_stack_to(address bottom); 225 226 typedef int (*sched_getcpu_func_t)(void); 227 typedef int (*numa_node_to_cpus_func_t)(int node, unsigned long *buffer, int bufferlen); 228 typedef int (*numa_max_node_func_t)(void); 229 typedef int (*numa_num_configured_nodes_func_t)(void); 230 typedef int (*numa_available_func_t)(void); 231 typedef int (*numa_tonode_memory_func_t)(void *start, size_t size, int node); 232 typedef void (*numa_interleave_memory_func_t)(void *start, size_t size, unsigned long *nodemask); 233 typedef void (*numa_interleave_memory_v2_func_t)(void *start, size_t size, struct bitmask* mask); 234 typedef struct bitmask* (*numa_get_membind_func_t)(void); 235 typedef struct bitmask* (*numa_get_interleave_mask_func_t)(void); 236 237 typedef void (*numa_set_bind_policy_func_t)(int policy); 238 typedef int (*numa_bitmask_isbitset_func_t)(struct bitmask *bmp, unsigned int n); 239 typedef int (*numa_distance_func_t)(int node1, int node2); 240 241 static sched_getcpu_func_t _sched_getcpu; 242 static numa_node_to_cpus_func_t _numa_node_to_cpus; 243 static numa_max_node_func_t _numa_max_node; 244 static numa_num_configured_nodes_func_t _numa_num_configured_nodes; 245 static numa_available_func_t _numa_available; 246 static numa_tonode_memory_func_t _numa_tonode_memory; 247 static numa_interleave_memory_func_t _numa_interleave_memory; 248 static numa_interleave_memory_v2_func_t _numa_interleave_memory_v2; 249 static numa_set_bind_policy_func_t _numa_set_bind_policy; 250 static numa_bitmask_isbitset_func_t _numa_bitmask_isbitset; 251 static numa_distance_func_t _numa_distance; 252 static numa_get_membind_func_t _numa_get_membind; 253 static numa_get_interleave_mask_func_t _numa_get_interleave_mask; 254 static unsigned long* _numa_all_nodes; 255 static struct bitmask* _numa_all_nodes_ptr; 256 static struct bitmask* _numa_nodes_ptr; 257 static struct bitmask* _numa_interleave_bitmask; 258 static struct bitmask* _numa_membind_bitmask; 259 260 static void set_sched_getcpu(sched_getcpu_func_t func) { _sched_getcpu = func; } 261 static void set_numa_node_to_cpus(numa_node_to_cpus_func_t func) { _numa_node_to_cpus = func; } 262 static void set_numa_max_node(numa_max_node_func_t func) { _numa_max_node = func; } 263 static void set_numa_num_configured_nodes(numa_num_configured_nodes_func_t func) { _numa_num_configured_nodes = func; } 264 static void set_numa_available(numa_available_func_t func) { _numa_available = func; } 265 static void set_numa_tonode_memory(numa_tonode_memory_func_t func) { _numa_tonode_memory = func; } 266 static void set_numa_interleave_memory(numa_interleave_memory_func_t func) { _numa_interleave_memory = func; } 267 static void set_numa_interleave_memory_v2(numa_interleave_memory_v2_func_t func) { _numa_interleave_memory_v2 = func; } 268 static void set_numa_set_bind_policy(numa_set_bind_policy_func_t func) { _numa_set_bind_policy = func; } 269 static void set_numa_bitmask_isbitset(numa_bitmask_isbitset_func_t func) { _numa_bitmask_isbitset = func; } 270 static void set_numa_distance(numa_distance_func_t func) { _numa_distance = func; } 271 static void set_numa_get_membind(numa_get_membind_func_t func) { _numa_get_membind = func; } 272 static void set_numa_get_interleave_mask(numa_get_interleave_mask_func_t func) { _numa_get_interleave_mask = func; } 273 static void set_numa_all_nodes(unsigned long* ptr) { _numa_all_nodes = ptr; } 274 static void set_numa_all_nodes_ptr(struct bitmask **ptr) { _numa_all_nodes_ptr = (ptr == NULL ? NULL : *ptr); } 275 static void set_numa_nodes_ptr(struct bitmask **ptr) { _numa_nodes_ptr = (ptr == NULL ? NULL : *ptr); } 276 static void set_numa_interleave_bitmask(struct bitmask* ptr) { _numa_interleave_bitmask = ptr ; } 277 static void set_numa_membind_bitmask(struct bitmask* ptr) { _numa_membind_bitmask = ptr ; } 278 static int sched_getcpu_syscall(void); 279 280 enum NumaAllocationPolicy{ 281 NotInitialized, 282 Membind, 283 Interleave 284 }; 285 static NumaAllocationPolicy _current_numa_policy; 286 287 public: 288 static int sched_getcpu() { return _sched_getcpu != NULL ? _sched_getcpu() : -1; } 289 static int numa_node_to_cpus(int node, unsigned long *buffer, int bufferlen) { 290 return _numa_node_to_cpus != NULL ? _numa_node_to_cpus(node, buffer, bufferlen) : -1; 291 } 292 static int numa_max_node() { return _numa_max_node != NULL ? _numa_max_node() : -1; } 293 static int numa_num_configured_nodes() { 294 return _numa_num_configured_nodes != NULL ? _numa_num_configured_nodes() : -1; 295 } 296 static int numa_available() { return _numa_available != NULL ? _numa_available() : -1; } 297 static int numa_tonode_memory(void *start, size_t size, int node) { 298 return _numa_tonode_memory != NULL ? _numa_tonode_memory(start, size, node) : -1; 299 } 300 301 static bool is_running_in_interleave_mode() { 302 return _current_numa_policy == Interleave; 303 } 304 305 static void set_configured_numa_policy(NumaAllocationPolicy numa_policy) { 306 _current_numa_policy = numa_policy; 307 } 308 309 static NumaAllocationPolicy identify_numa_policy() { 310 for (int node = 0; node <= Linux::numa_max_node(); node++) { 311 if (Linux::_numa_bitmask_isbitset(Linux::_numa_interleave_bitmask, node)) { 312 return Interleave; 313 } 314 } 315 return Membind; 316 } 317 318 static void numa_interleave_memory(void *start, size_t size) { 319 // Prefer v2 API 320 if (_numa_interleave_memory_v2 != NULL) { 321 if (is_running_in_interleave_mode()) { 322 _numa_interleave_memory_v2(start, size, _numa_interleave_bitmask); 323 } else if (_numa_membind_bitmask != NULL) { 324 _numa_interleave_memory_v2(start, size, _numa_membind_bitmask); 325 } 326 } else if (_numa_interleave_memory != NULL) { 327 _numa_interleave_memory(start, size, _numa_all_nodes); 328 } 329 } 330 static void numa_set_bind_policy(int policy) { 331 if (_numa_set_bind_policy != NULL) { 332 _numa_set_bind_policy(policy); 333 } 334 } 335 static int numa_distance(int node1, int node2) { 336 return _numa_distance != NULL ? _numa_distance(node1, node2) : -1; 337 } 338 static int get_node_by_cpu(int cpu_id); 339 static int get_existing_num_nodes(); 340 // Check if numa node is configured (non-zero memory node). 341 static bool is_node_in_configured_nodes(unsigned int n) { 342 if (_numa_bitmask_isbitset != NULL && _numa_all_nodes_ptr != NULL) { 343 return _numa_bitmask_isbitset(_numa_all_nodes_ptr, n); 344 } else 345 return false; 346 } 347 // Check if numa node exists in the system (including zero memory nodes). 348 static bool is_node_in_existing_nodes(unsigned int n) { 349 if (_numa_bitmask_isbitset != NULL && _numa_nodes_ptr != NULL) { 350 return _numa_bitmask_isbitset(_numa_nodes_ptr, n); 351 } else if (_numa_bitmask_isbitset != NULL && _numa_all_nodes_ptr != NULL) { 352 // Not all libnuma API v2 implement numa_nodes_ptr, so it's not possible 353 // to trust the API version for checking its absence. On the other hand, 354 // numa_nodes_ptr found in libnuma 2.0.9 and above is the only way to get 355 // a complete view of all numa nodes in the system, hence numa_nodes_ptr 356 // is used to handle CPU and nodes on architectures (like PowerPC) where 357 // there can exist nodes with CPUs but no memory or vice-versa and the 358 // nodes may be non-contiguous. For most of the architectures, like 359 // x86_64, numa_node_ptr presents the same node set as found in 360 // numa_all_nodes_ptr so it's possible to use numa_all_nodes_ptr as a 361 // substitute. 362 return _numa_bitmask_isbitset(_numa_all_nodes_ptr, n); 363 } else 364 return false; 365 } 366 // Check if node is in bound node set. 367 static bool is_node_in_bound_nodes(int node) { 368 if (_numa_bitmask_isbitset != NULL) { 369 if (is_running_in_interleave_mode()) { 370 return _numa_bitmask_isbitset(_numa_interleave_bitmask, node); 371 } else { 372 return _numa_membind_bitmask != NULL ? _numa_bitmask_isbitset(_numa_membind_bitmask, node) : false; 373 } 374 } 375 return false; 376 } 377 // Check if bound to only one numa node. 378 // Returns true if bound to a single numa node, otherwise returns false. 379 static bool is_bound_to_single_node() { 380 int nodes = 0; 381 struct bitmask* bmp = NULL; 382 unsigned int node = 0; 383 unsigned int highest_node_number = 0; 384 385 if (_numa_get_membind != NULL && _numa_max_node != NULL && _numa_bitmask_isbitset != NULL) { 386 bmp = _numa_get_membind(); 387 highest_node_number = _numa_max_node(); 388 } else { 389 return false; 390 } 391 392 for (node = 0; node <= highest_node_number; node++) { 393 if (_numa_bitmask_isbitset(bmp, node)) { 394 nodes++; 395 } 396 } 397 398 if (nodes == 1) { 399 return true; 400 } else { 401 return false; 402 } 403 } 404 }; 405 406 #endif // OS_LINUX_OS_LINUX_HPP