1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/dirtyCardQueue.hpp"
  27 #include "gc/g1/g1BarrierSet.hpp"
  28 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  29 #include "gc/g1/g1CardTable.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1ConcurrentRefine.hpp"
  32 #include "gc/g1/g1FromCardCache.hpp"
  33 #include "gc/g1/g1GCPhaseTimes.hpp"
  34 #include "gc/g1/g1HotCardCache.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1RootClosures.hpp"
  37 #include "gc/g1/g1RemSet.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionManager.inline.hpp"
  40 #include "gc/g1/heapRegionRemSet.hpp"
  41 #include "gc/shared/gcTraceTime.inline.hpp"
  42 #include "gc/shared/suspendibleThreadSet.hpp"
  43 #include "memory/iterator.hpp"
  44 #include "memory/resourceArea.hpp"
  45 #include "oops/access.inline.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "runtime/os.hpp"
  48 #include "utilities/align.hpp"
  49 #include "utilities/globalDefinitions.hpp"
  50 #include "utilities/intHisto.hpp"
  51 #include "utilities/stack.inline.hpp"
  52 #include "utilities/ticks.hpp"
  53 
  54 // Collects information about the overall remembered set scan progress during an evacuation.
  55 class G1RemSetScanState : public CHeapObj<mtGC> {
  56 private:
  57   class G1ClearCardTableTask : public AbstractGangTask {
  58     G1CollectedHeap* _g1h;
  59     uint* _dirty_region_list;
  60     size_t _num_dirty_regions;
  61     size_t _chunk_length;
  62 
  63     size_t volatile _cur_dirty_regions;
  64   public:
  65     G1ClearCardTableTask(G1CollectedHeap* g1h,
  66                          uint* dirty_region_list,
  67                          size_t num_dirty_regions,
  68                          size_t chunk_length) :
  69       AbstractGangTask("G1 Clear Card Table Task"),
  70       _g1h(g1h),
  71       _dirty_region_list(dirty_region_list),
  72       _num_dirty_regions(num_dirty_regions),
  73       _chunk_length(chunk_length),
  74       _cur_dirty_regions(0) {
  75 
  76       assert(chunk_length > 0, "must be");
  77     }
  78 
  79     static size_t chunk_size() { return M; }
  80 
  81     void work(uint worker_id) {
  82       while (_cur_dirty_regions < _num_dirty_regions) {
  83         size_t next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length;
  84         size_t max = MIN2(next + _chunk_length, _num_dirty_regions);
  85 
  86         for (size_t i = next; i < max; i++) {
  87           HeapRegion* r = _g1h->region_at(_dirty_region_list[i]);
  88           if (!r->is_survivor()) {
  89             r->clear_cardtable();
  90           }
  91         }
  92       }
  93     }
  94   };
  95 
  96   size_t _max_regions;
  97 
  98   // Scan progress for the remembered set of a single region. Transitions from
  99   // Unclaimed -> Claimed -> Complete.
 100   // At each of the transitions the thread that does the transition needs to perform
 101   // some special action once. This is the reason for the extra "Claimed" state.
 102   typedef jint G1RemsetIterState;
 103 
 104   static const G1RemsetIterState Unclaimed = 0; // The remembered set has not been scanned yet.
 105   static const G1RemsetIterState Claimed = 1;   // The remembered set is currently being scanned.
 106   static const G1RemsetIterState Complete = 2;  // The remembered set has been completely scanned.
 107 
 108   G1RemsetIterState volatile* _iter_states;
 109   // The current location where the next thread should continue scanning in a region's
 110   // remembered set.
 111   size_t volatile* _iter_claims;
 112 
 113   // Temporary buffer holding the regions we used to store remembered set scan duplicate
 114   // information. These are also called "dirty". Valid entries are from [0.._cur_dirty_region)
 115   uint* _dirty_region_buffer;
 116 
 117   typedef jbyte IsDirtyRegionState;
 118   static const IsDirtyRegionState Clean = 0;
 119   static const IsDirtyRegionState Dirty = 1;
 120   // Holds a flag for every region whether it is in the _dirty_region_buffer already
 121   // to avoid duplicates. Uses jbyte since there are no atomic instructions for bools.
 122   IsDirtyRegionState* _in_dirty_region_buffer;
 123   size_t _cur_dirty_region;
 124 
 125   // Creates a snapshot of the current _top values at the start of collection to
 126   // filter out card marks that we do not want to scan.
 127   class G1ResetScanTopClosure : public HeapRegionClosure {
 128   private:
 129     HeapWord** _scan_top;
 130   public:
 131     G1ResetScanTopClosure(HeapWord** scan_top) : _scan_top(scan_top) { }
 132 
 133     virtual bool do_heap_region(HeapRegion* r) {
 134       uint hrm_index = r->hrm_index();
 135       if (!r->in_collection_set() && r->is_old_or_humongous_or_archive()) {
 136         _scan_top[hrm_index] = r->top();
 137       } else {
 138         _scan_top[hrm_index] = r->bottom();
 139       }
 140       return false;
 141     }
 142   };
 143 
 144   // For each region, contains the maximum top() value to be used during this garbage
 145   // collection. Subsumes common checks like filtering out everything but old and
 146   // humongous regions outside the collection set.
 147   // This is valid because we are not interested in scanning stray remembered set
 148   // entries from free or archive regions.
 149   HeapWord** _scan_top;
 150 public:
 151   G1RemSetScanState() :
 152     _max_regions(0),
 153     _iter_states(NULL),
 154     _iter_claims(NULL),
 155     _dirty_region_buffer(NULL),
 156     _in_dirty_region_buffer(NULL),
 157     _cur_dirty_region(0),
 158     _scan_top(NULL) {
 159   }
 160 
 161   ~G1RemSetScanState() {
 162     if (_iter_states != NULL) {
 163       FREE_C_HEAP_ARRAY(G1RemsetIterState, _iter_states);
 164     }
 165     if (_iter_claims != NULL) {
 166       FREE_C_HEAP_ARRAY(size_t, _iter_claims);
 167     }
 168     if (_dirty_region_buffer != NULL) {
 169       FREE_C_HEAP_ARRAY(uint, _dirty_region_buffer);
 170     }
 171     if (_in_dirty_region_buffer != NULL) {
 172       FREE_C_HEAP_ARRAY(IsDirtyRegionState, _in_dirty_region_buffer);
 173     }
 174     if (_scan_top != NULL) {
 175       FREE_C_HEAP_ARRAY(HeapWord*, _scan_top);
 176     }
 177   }
 178 
 179   void initialize(uint max_regions) {
 180     assert(_iter_states == NULL, "Must not be initialized twice");
 181     assert(_iter_claims == NULL, "Must not be initialized twice");
 182     _max_regions = max_regions;
 183     _iter_states = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC);
 184     _iter_claims = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 185     _dirty_region_buffer = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC);
 186     _in_dirty_region_buffer = NEW_C_HEAP_ARRAY(IsDirtyRegionState, max_regions, mtGC);
 187     _scan_top = NEW_C_HEAP_ARRAY(HeapWord*, max_regions, mtGC);
 188   }
 189 
 190   void reset() {
 191     for (uint i = 0; i < _max_regions; i++) {
 192       _iter_states[i] = Unclaimed;
 193     }
 194 
 195     G1ResetScanTopClosure cl(_scan_top);
 196     G1CollectedHeap::heap()->heap_region_iterate(&cl);
 197 
 198     memset((void*)_iter_claims, 0, _max_regions * sizeof(size_t));
 199     memset(_in_dirty_region_buffer, Clean, _max_regions * sizeof(IsDirtyRegionState));
 200     _cur_dirty_region = 0;
 201   }
 202 
 203   // Attempt to claim the remembered set of the region for iteration. Returns true
 204   // if this call caused the transition from Unclaimed to Claimed.
 205   inline bool claim_iter(uint region) {
 206     assert(region < _max_regions, "Tried to access invalid region %u", region);
 207     if (_iter_states[region] != Unclaimed) {
 208       return false;
 209     }
 210     G1RemsetIterState res = Atomic::cmpxchg(Claimed, &_iter_states[region], Unclaimed);
 211     return (res == Unclaimed);
 212   }
 213 
 214   // Try to atomically sets the iteration state to "complete". Returns true for the
 215   // thread that caused the transition.
 216   inline bool set_iter_complete(uint region) {
 217     if (iter_is_complete(region)) {
 218       return false;
 219     }
 220     G1RemsetIterState res = Atomic::cmpxchg(Complete, &_iter_states[region], Claimed);
 221     return (res == Claimed);
 222   }
 223 
 224   // Returns true if the region's iteration is complete.
 225   inline bool iter_is_complete(uint region) const {
 226     assert(region < _max_regions, "Tried to access invalid region %u", region);
 227     return _iter_states[region] == Complete;
 228   }
 229 
 230   // The current position within the remembered set of the given region.
 231   inline size_t iter_claimed(uint region) const {
 232     assert(region < _max_regions, "Tried to access invalid region %u", region);
 233     return _iter_claims[region];
 234   }
 235 
 236   // Claim the next block of cards within the remembered set of the region with
 237   // step size.
 238   inline size_t iter_claimed_next(uint region, size_t step) {
 239     return Atomic::add(step, &_iter_claims[region]) - step;
 240   }
 241 
 242   void add_dirty_region(uint region) {
 243     if (_in_dirty_region_buffer[region] == Dirty) {
 244       return;
 245     }
 246 
 247     bool marked_as_dirty = Atomic::cmpxchg(Dirty, &_in_dirty_region_buffer[region], Clean) == Clean;
 248     if (marked_as_dirty) {
 249       size_t allocated = Atomic::add(1u, &_cur_dirty_region) - 1;
 250       _dirty_region_buffer[allocated] = region;
 251     }
 252   }
 253 
 254   HeapWord* scan_top(uint region_idx) const {
 255     return _scan_top[region_idx];
 256   }
 257 
 258   // Clear the card table of "dirty" regions.
 259   void clear_card_table(WorkGang* workers) {
 260     if (_cur_dirty_region == 0) {
 261       return;
 262     }
 263 
 264     size_t const num_chunks = align_up(_cur_dirty_region * HeapRegion::CardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size();
 265     uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 266     size_t const chunk_length = G1ClearCardTableTask::chunk_size() / HeapRegion::CardsPerRegion;
 267 
 268     // Iterate over the dirty cards region list.
 269     G1ClearCardTableTask cl(G1CollectedHeap::heap(), _dirty_region_buffer, _cur_dirty_region, chunk_length);
 270 
 271     log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " "
 272                         "units of work for " SIZE_FORMAT " regions.",
 273                         cl.name(), num_workers, num_chunks, _cur_dirty_region);
 274     workers->run_task(&cl, num_workers);
 275 
 276 #ifndef PRODUCT
 277     G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup();
 278 #endif
 279   }
 280 };
 281 
 282 G1RemSet::G1RemSet(G1CollectedHeap* g1h,
 283                    G1CardTable* ct,
 284                    G1HotCardCache* hot_card_cache) :
 285   _scan_state(new G1RemSetScanState()),
 286   _prev_period_summary(),
 287   _g1h(g1h),
 288   _num_conc_refined_cards(0),
 289   _ct(ct),
 290   _g1p(_g1h->g1_policy()),
 291   _hot_card_cache(hot_card_cache) {
 292 }
 293 
 294 G1RemSet::~G1RemSet() {
 295   if (_scan_state != NULL) {
 296     delete _scan_state;
 297   }
 298 }
 299 
 300 uint G1RemSet::num_par_rem_sets() {
 301   return DirtyCardQueueSet::num_par_ids() + G1ConcurrentRefine::max_num_threads() + MAX2(ConcGCThreads, ParallelGCThreads);
 302 }
 303 
 304 void G1RemSet::initialize(size_t capacity, uint max_regions) {
 305   G1FromCardCache::initialize(num_par_rem_sets(), max_regions);
 306   _scan_state->initialize(max_regions);
 307 }
 308 
 309 G1ScanRSForRegionClosure::G1ScanRSForRegionClosure(G1RemSetScanState* scan_state,
 310                                                    G1ScanObjsDuringScanRSClosure* scan_obj_on_card,
 311                                                    G1ParScanThreadState* pss,
 312                                                    uint worker_i) :
 313   _g1h(G1CollectedHeap::heap()),
 314   _ct(_g1h->card_table()),
 315   _pss(pss),
 316   _scan_objs_on_card_cl(scan_obj_on_card),
 317   _scan_state(scan_state),
 318   _worker_i(worker_i),
 319   _cards_scanned(0),
 320   _cards_claimed(0),
 321   _cards_skipped(0),
 322   _rem_set_root_scan_time(),
 323   _rem_set_trim_partially_time(),
 324   _strong_code_root_scan_time(),
 325   _strong_code_trim_partially_time() {
 326 }
 327 
 328 void G1ScanRSForRegionClosure::claim_card(size_t card_index, const uint region_idx_for_card){
 329   _ct->set_card_claimed(card_index);
 330   _scan_state->add_dirty_region(region_idx_for_card);
 331 }
 332 
 333 void G1ScanRSForRegionClosure::scan_card(MemRegion mr, uint region_idx_for_card) {
 334   HeapRegion* const card_region = _g1h->region_at(region_idx_for_card);
 335   _scan_objs_on_card_cl->set_region(card_region);
 336   card_region->oops_on_card_seq_iterate_careful<true>(mr, _scan_objs_on_card_cl);
 337   _scan_objs_on_card_cl->trim_queue_partially();
 338   _cards_scanned++;
 339 }
 340 
 341 void G1ScanRSForRegionClosure::scan_rem_set_roots(HeapRegion* r) {
 342   uint const region_idx = r->hrm_index();
 343 
 344   if (_scan_state->claim_iter(region_idx)) {
 345     // If we ever free the collection set concurrently, we should also
 346     // clear the card table concurrently therefore we won't need to
 347     // add regions of the collection set to the dirty cards region.
 348     _scan_state->add_dirty_region(region_idx);
 349   }
 350 
 351   // We claim cards in blocks so as to reduce the contention.
 352   size_t const block_size = G1RSetScanBlockSize;
 353 
 354   HeapRegionRemSetIterator iter(r->rem_set());
 355   size_t card_index;
 356 
 357   size_t claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
 358   for (size_t current_card = 0; iter.has_next(card_index); current_card++) {
 359     if (current_card >= claimed_card_block + block_size) {
 360       claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
 361     }
 362     if (current_card < claimed_card_block) {
 363       _cards_skipped++;
 364       continue;
 365     }
 366     _cards_claimed++;
 367 
 368     // If the card is dirty, then G1 will scan it during Update RS.
 369     if (_ct->is_card_claimed(card_index) || _ct->is_card_dirty(card_index)) {
 370       continue;
 371     }
 372 
 373     HeapWord* const card_start = _g1h->bot()->address_for_index(card_index);
 374     uint const region_idx_for_card = _g1h->addr_to_region(card_start);
 375 
 376     assert(_g1h->region_at(region_idx_for_card)->is_in_reserved(card_start),
 377            "Card start " PTR_FORMAT " to scan outside of region %u", p2i(card_start), _g1h->region_at(region_idx_for_card)->hrm_index());
 378     HeapWord* const top = _scan_state->scan_top(region_idx_for_card);
 379     if (card_start >= top) {
 380       continue;
 381     }
 382 
 383     // We claim lazily (so races are possible but they're benign), which reduces the
 384     // number of duplicate scans (the rsets of the regions in the cset can intersect).
 385     // Claim the card after checking bounds above: the remembered set may contain
 386     // random cards into current survivor, and we would then have an incorrectly
 387     // claimed card in survivor space. Card table clear does not reset the card table
 388     // of survivor space regions.
 389     claim_card(card_index, region_idx_for_card);
 390 
 391     MemRegion const mr(card_start, MIN2(card_start + BOTConstants::N_words, top));
 392 
 393     scan_card(mr, region_idx_for_card);
 394   }
 395 }
 396 
 397 void G1ScanRSForRegionClosure::scan_strong_code_roots(HeapRegion* r) {
 398   r->strong_code_roots_do(_pss->closures()->weak_codeblobs());
 399 }
 400 
 401 bool G1ScanRSForRegionClosure::do_heap_region(HeapRegion* r) {
 402   assert(r->in_collection_set(),
 403          "Should only be called on elements of the collection set but region %u is not.",
 404          r->hrm_index());
 405   uint const region_idx = r->hrm_index();
 406 
 407   // Do an early out if we know we are complete.
 408   if (_scan_state->iter_is_complete(region_idx)) {
 409     return false;
 410   }
 411 
 412   {
 413     G1EvacPhaseWithTrimTimeTracker timer(_pss, _rem_set_root_scan_time, _rem_set_trim_partially_time);
 414     scan_rem_set_roots(r);
 415   }
 416 
 417   if (_scan_state->set_iter_complete(region_idx)) {
 418     G1EvacPhaseWithTrimTimeTracker timer(_pss, _strong_code_root_scan_time, _strong_code_trim_partially_time);
 419     // Scan the strong code root list attached to the current region
 420     scan_strong_code_roots(r);
 421   }
 422   return false;
 423 }
 424 
 425 void G1RemSet::scan_rem_set(G1ParScanThreadState* pss, uint worker_i) {
 426   G1ScanObjsDuringScanRSClosure scan_cl(_g1h, pss);
 427   G1ScanRSForRegionClosure cl(_scan_state, &scan_cl, pss, worker_i);
 428   _g1h->collection_set_iterate_from(&cl, worker_i);
 429 
 430   G1GCPhaseTimes* p = _g1p->phase_times();
 431 
 432   p->record_time_secs(G1GCPhaseTimes::ScanRS, worker_i, cl.rem_set_root_scan_time().seconds());
 433   p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_i, cl.rem_set_trim_partially_time().seconds());
 434 
 435   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_scanned(), G1GCPhaseTimes::ScanRSScannedCards);
 436   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_claimed(), G1GCPhaseTimes::ScanRSClaimedCards);
 437   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_skipped(), G1GCPhaseTimes::ScanRSSkippedCards);
 438 
 439   p->record_time_secs(G1GCPhaseTimes::CodeRoots, worker_i, cl.strong_code_root_scan_time().seconds());
 440   p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_i, cl.strong_code_root_trim_partially_time().seconds());
 441 }
 442 
 443 // Closure used for updating rem sets. Only called during an evacuation pause.
 444 class G1RefineCardClosure: public CardTableEntryClosure {
 445   G1RemSet* _g1rs;
 446   G1ScanObjsDuringUpdateRSClosure* _update_rs_cl;
 447 
 448   size_t _cards_scanned;
 449   size_t _cards_skipped;
 450 public:
 451   G1RefineCardClosure(G1CollectedHeap* g1h, G1ScanObjsDuringUpdateRSClosure* update_rs_cl) :
 452     _g1rs(g1h->g1_rem_set()), _update_rs_cl(update_rs_cl), _cards_scanned(0), _cards_skipped(0)
 453   {}
 454 
 455   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 456     // The only time we care about recording cards that
 457     // contain references that point into the collection set
 458     // is during RSet updating within an evacuation pause.
 459     // In this case worker_i should be the id of a GC worker thread.
 460     assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
 461 
 462     bool card_scanned = _g1rs->refine_card_during_gc(card_ptr, _update_rs_cl);
 463 
 464     if (card_scanned) {
 465       _update_rs_cl->trim_queue_partially();
 466       _cards_scanned++;
 467     } else {
 468       _cards_skipped++;
 469     }
 470     return true;
 471   }
 472 
 473   size_t cards_scanned() const { return _cards_scanned; }
 474   size_t cards_skipped() const { return _cards_skipped; }
 475 };
 476 
 477 void G1RemSet::update_rem_set(G1ParScanThreadState* pss, uint worker_i) {
 478   G1GCPhaseTimes* p = _g1p->phase_times();
 479 
 480   // Apply closure to log entries in the HCC.
 481   if (G1HotCardCache::default_use_cache()) {
 482     G1EvacPhaseTimesTracker x(p, pss, G1GCPhaseTimes::ScanHCC, worker_i);
 483 
 484     G1ScanObjsDuringUpdateRSClosure scan_hcc_cl(_g1h, pss, worker_i);
 485     G1RefineCardClosure refine_card_cl(_g1h, &scan_hcc_cl);
 486     _g1h->iterate_hcc_closure(&refine_card_cl, worker_i);
 487   }
 488 
 489   // Now apply the closure to all remaining log entries.
 490   {
 491     G1EvacPhaseTimesTracker x(p, pss, G1GCPhaseTimes::UpdateRS, worker_i);
 492 
 493     G1ScanObjsDuringUpdateRSClosure update_rs_cl(_g1h, pss, worker_i);
 494     G1RefineCardClosure refine_card_cl(_g1h, &update_rs_cl);
 495     _g1h->iterate_dirty_card_closure(&refine_card_cl, worker_i);
 496 
 497     p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_scanned(), G1GCPhaseTimes::UpdateRSScannedCards);
 498     p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_skipped(), G1GCPhaseTimes::UpdateRSSkippedCards);
 499   }
 500 }
 501 
 502 void G1RemSet::cleanupHRRS() {
 503   HeapRegionRemSet::cleanup();
 504 }
 505 
 506 void G1RemSet::oops_into_collection_set_do(G1ParScanThreadState* pss, uint worker_i) {
 507   update_rem_set(pss, worker_i);
 508   scan_rem_set(pss, worker_i);;
 509 }
 510 
 511 void G1RemSet::prepare_for_oops_into_collection_set_do() {
 512   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
 513   dcqs.concatenate_logs();
 514 
 515   _scan_state->reset();
 516 }
 517 
 518 void G1RemSet::cleanup_after_oops_into_collection_set_do() {
 519   G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
 520 
 521   // Set all cards back to clean.
 522   double start = os::elapsedTime();
 523   _scan_state->clear_card_table(_g1h->workers());
 524   phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0);
 525 }
 526 
 527 inline void check_card_ptr(jbyte* card_ptr, G1CardTable* ct) {
 528 #ifdef ASSERT
 529   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 530   assert(g1h->is_in_exact(ct->addr_for(card_ptr)),
 531          "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap",
 532          p2i(card_ptr),
 533          ct->index_for(ct->addr_for(card_ptr)),
 534          p2i(ct->addr_for(card_ptr)),
 535          g1h->addr_to_region(ct->addr_for(card_ptr)));
 536 #endif
 537 }
 538 
 539 void G1RemSet::refine_card_concurrently(jbyte* card_ptr,
 540                                         uint worker_i) {
 541   assert(!_g1h->is_gc_active(), "Only call concurrently");
 542 
 543   check_card_ptr(card_ptr, _ct);
 544 
 545   // If the card is no longer dirty, nothing to do.
 546   if (*card_ptr != G1CardTable::dirty_card_val()) {
 547     return;
 548   }
 549 
 550   // Construct the region representing the card.
 551   HeapWord* start = _ct->addr_for(card_ptr);
 552   // And find the region containing it.
 553   HeapRegion* r = _g1h->heap_region_containing(start);
 554 
 555   // This check is needed for some uncommon cases where we should
 556   // ignore the card.
 557   //
 558   // The region could be young.  Cards for young regions are
 559   // distinctly marked (set to g1_young_gen), so the post-barrier will
 560   // filter them out.  However, that marking is performed
 561   // concurrently.  A write to a young object could occur before the
 562   // card has been marked young, slipping past the filter.
 563   //
 564   // The card could be stale, because the region has been freed since
 565   // the card was recorded. In this case the region type could be
 566   // anything.  If (still) free or (reallocated) young, just ignore
 567   // it.  If (reallocated) old or humongous, the later card trimming
 568   // and additional checks in iteration may detect staleness.  At
 569   // worst, we end up processing a stale card unnecessarily.
 570   //
 571   // In the normal (non-stale) case, the synchronization between the
 572   // enqueueing of the card and processing it here will have ensured
 573   // we see the up-to-date region type here.
 574   if (!r->is_old_or_humongous_or_archive()) {
 575     return;
 576   }
 577 
 578   // The result from the hot card cache insert call is either:
 579   //   * pointer to the current card
 580   //     (implying that the current card is not 'hot'),
 581   //   * null
 582   //     (meaning we had inserted the card ptr into the "hot" card cache,
 583   //     which had some headroom),
 584   //   * a pointer to a "hot" card that was evicted from the "hot" cache.
 585   //
 586 
 587   if (_hot_card_cache->use_cache()) {
 588     assert(!SafepointSynchronize::is_at_safepoint(), "sanity");
 589 
 590     const jbyte* orig_card_ptr = card_ptr;
 591     card_ptr = _hot_card_cache->insert(card_ptr);
 592     if (card_ptr == NULL) {
 593       // There was no eviction. Nothing to do.
 594       return;
 595     } else if (card_ptr != orig_card_ptr) {
 596       // Original card was inserted and an old card was evicted.
 597       start = _ct->addr_for(card_ptr);
 598       r = _g1h->heap_region_containing(start);
 599 
 600       // Check whether the region formerly in the cache should be
 601       // ignored, as discussed earlier for the original card.  The
 602       // region could have been freed while in the cache.
 603       if (!r->is_old_or_humongous_or_archive()) {
 604         return;
 605       }
 606     } // Else we still have the original card.
 607   }
 608 
 609   // Trim the region designated by the card to what's been allocated
 610   // in the region.  The card could be stale, or the card could cover
 611   // (part of) an object at the end of the allocated space and extend
 612   // beyond the end of allocation.
 613 
 614   // Non-humongous objects are only allocated in the old-gen during
 615   // GC, so if region is old then top is stable.  Humongous object
 616   // allocation sets top last; if top has not yet been set, this is
 617   // a stale card and we'll end up with an empty intersection.  If
 618   // this is not a stale card, the synchronization between the
 619   // enqueuing of the card and processing it here will have ensured
 620   // we see the up-to-date top here.
 621   HeapWord* scan_limit = r->top();
 622 
 623   if (scan_limit <= start) {
 624     // If the trimmed region is empty, the card must be stale.
 625     return;
 626   }
 627 
 628   // Okay to clean and process the card now.  There are still some
 629   // stale card cases that may be detected by iteration and dealt with
 630   // as iteration failure.
 631   *const_cast<volatile jbyte*>(card_ptr) = G1CardTable::clean_card_val();
 632 
 633   // This fence serves two purposes.  First, the card must be cleaned
 634   // before processing the contents.  Second, we can't proceed with
 635   // processing until after the read of top, for synchronization with
 636   // possibly concurrent humongous object allocation.  It's okay that
 637   // reading top and reading type were racy wrto each other.  We need
 638   // both set, in any order, to proceed.
 639   OrderAccess::fence();
 640 
 641   // Don't use addr_for(card_ptr + 1) which can ask for
 642   // a card beyond the heap.
 643   HeapWord* end = start + G1CardTable::card_size_in_words;
 644   MemRegion dirty_region(start, MIN2(scan_limit, end));
 645   assert(!dirty_region.is_empty(), "sanity");
 646 
 647   G1ConcurrentRefineOopClosure conc_refine_cl(_g1h, worker_i);
 648 
 649   bool card_processed =
 650     r->oops_on_card_seq_iterate_careful<false>(dirty_region, &conc_refine_cl);
 651 
 652   // If unable to process the card then we encountered an unparsable
 653   // part of the heap (e.g. a partially allocated object) while
 654   // processing a stale card.  Despite the card being stale, redirty
 655   // and re-enqueue, because we've already cleaned the card.  Without
 656   // this we could incorrectly discard a non-stale card.
 657   if (!card_processed) {
 658     // The card might have gotten re-dirtied and re-enqueued while we
 659     // worked.  (In fact, it's pretty likely.)
 660     if (*card_ptr != G1CardTable::dirty_card_val()) {
 661       *card_ptr = G1CardTable::dirty_card_val();
 662       MutexLockerEx x(Shared_DirtyCardQ_lock,
 663                       Mutex::_no_safepoint_check_flag);
 664       DirtyCardQueue* sdcq =
 665         G1BarrierSet::dirty_card_queue_set().shared_dirty_card_queue();
 666       sdcq->enqueue(card_ptr);
 667     }
 668   } else {
 669     _num_conc_refined_cards++; // Unsynchronized update, only used for logging.
 670   }
 671 }
 672 
 673 bool G1RemSet::refine_card_during_gc(jbyte* card_ptr,
 674                                      G1ScanObjsDuringUpdateRSClosure* update_rs_cl) {
 675   assert(_g1h->is_gc_active(), "Only call during GC");
 676 
 677   check_card_ptr(card_ptr, _ct);
 678 
 679   // If the card is no longer dirty, nothing to do. This covers cards that were already
 680   // scanned as parts of the remembered sets.
 681   if (*card_ptr != G1CardTable::dirty_card_val()) {
 682     return false;
 683   }
 684 
 685   // We claim lazily (so races are possible but they're benign), which reduces the
 686   // number of potential duplicate scans (multiple threads may enqueue the same card twice).
 687   *card_ptr = G1CardTable::clean_card_val() | G1CardTable::claimed_card_val();
 688 
 689   // Construct the region representing the card.
 690   HeapWord* card_start = _ct->addr_for(card_ptr);
 691   // And find the region containing it.
 692   uint const card_region_idx = _g1h->addr_to_region(card_start);
 693 
 694   _scan_state->add_dirty_region(card_region_idx);
 695   HeapWord* scan_limit = _scan_state->scan_top(card_region_idx);
 696   if (scan_limit <= card_start) {
 697     // If the card starts above the area in the region containing objects to scan, skip it.
 698     return false;
 699   }
 700 
 701   // Don't use addr_for(card_ptr + 1) which can ask for
 702   // a card beyond the heap.
 703   HeapWord* card_end = card_start + G1CardTable::card_size_in_words;
 704   MemRegion dirty_region(card_start, MIN2(scan_limit, card_end));
 705   assert(!dirty_region.is_empty(), "sanity");
 706 
 707   HeapRegion* const card_region = _g1h->region_at(card_region_idx);
 708   update_rs_cl->set_region(card_region);
 709   bool card_processed = card_region->oops_on_card_seq_iterate_careful<true>(dirty_region, update_rs_cl);
 710   assert(card_processed, "must be");
 711   return true;
 712 }
 713 
 714 void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) {
 715   if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) &&
 716       (period_count % G1SummarizeRSetStatsPeriod == 0)) {
 717 
 718     G1RemSetSummary current(this);
 719     _prev_period_summary.subtract_from(&current);
 720 
 721     Log(gc, remset) log;
 722     log.trace("%s", header);
 723     ResourceMark rm;
 724     LogStream ls(log.trace());
 725     _prev_period_summary.print_on(&ls);
 726 
 727     _prev_period_summary.set(&current);
 728   }
 729 }
 730 
 731 void G1RemSet::print_summary_info() {
 732   Log(gc, remset, exit) log;
 733   if (log.is_trace()) {
 734     log.trace(" Cumulative RS summary");
 735     G1RemSetSummary current(this);
 736     ResourceMark rm;
 737     LogStream ls(log.trace());
 738     current.print_on(&ls);
 739   }
 740 }
 741 
 742 class G1RebuildRemSetTask: public AbstractGangTask {
 743   // Aggregate the counting data that was constructed concurrently
 744   // with marking.
 745   class G1RebuildRemSetHeapRegionClosure : public HeapRegionClosure {
 746     G1ConcurrentMark* _cm;
 747     G1RebuildRemSetClosure _update_cl;
 748 
 749     // Applies _update_cl to the references of the given object, limiting objArrays
 750     // to the given MemRegion. Returns the amount of words actually scanned.
 751     size_t scan_for_references(oop const obj, MemRegion mr) {
 752       size_t const obj_size = obj->size();
 753       // All non-objArrays and objArrays completely within the mr
 754       // can be scanned without passing the mr.
 755       if (!obj->is_objArray() || mr.contains(MemRegion((HeapWord*)obj, obj_size))) {
 756         obj->oop_iterate(&_update_cl);
 757         return obj_size;
 758       }
 759       // This path is for objArrays crossing the given MemRegion. Only scan the
 760       // area within the MemRegion.
 761       obj->oop_iterate(&_update_cl, mr);
 762       return mr.intersection(MemRegion((HeapWord*)obj, obj_size)).word_size();
 763     }
 764 
 765     // A humongous object is live (with respect to the scanning) either
 766     // a) it is marked on the bitmap as such
 767     // b) its TARS is larger than TAMS, i.e. has been allocated during marking.
 768     bool is_humongous_live(oop const humongous_obj, const G1CMBitMap* const bitmap, HeapWord* tams, HeapWord* tars) const {
 769       return bitmap->is_marked(humongous_obj) || (tars > tams);
 770     }
 771 
 772     // Iterator over the live objects within the given MemRegion.
 773     class LiveObjIterator : public StackObj {
 774       const G1CMBitMap* const _bitmap;
 775       const HeapWord* _tams;
 776       const MemRegion _mr;
 777       HeapWord* _current;
 778 
 779       bool is_below_tams() const {
 780         return _current < _tams;
 781       }
 782 
 783       bool is_live(HeapWord* obj) const {
 784         return !is_below_tams() || _bitmap->is_marked(obj);
 785       }
 786 
 787       HeapWord* bitmap_limit() const {
 788         return MIN2(const_cast<HeapWord*>(_tams), _mr.end());
 789       }
 790 
 791       void move_if_below_tams() {
 792         if (is_below_tams() && has_next()) {
 793           _current = _bitmap->get_next_marked_addr(_current, bitmap_limit());
 794         }
 795       }
 796     public:
 797       LiveObjIterator(const G1CMBitMap* const bitmap, const HeapWord* tams, const MemRegion mr, HeapWord* first_oop_into_mr) :
 798           _bitmap(bitmap),
 799           _tams(tams),
 800           _mr(mr),
 801           _current(first_oop_into_mr) {
 802 
 803         assert(_current <= _mr.start(),
 804                "First oop " PTR_FORMAT " should extend into mr [" PTR_FORMAT ", " PTR_FORMAT ")",
 805                p2i(first_oop_into_mr), p2i(mr.start()), p2i(mr.end()));
 806 
 807         // Step to the next live object within the MemRegion if needed.
 808         if (is_live(_current)) {
 809           // Non-objArrays were scanned by the previous part of that region.
 810           if (_current < mr.start() && !oop(_current)->is_objArray()) {
 811             _current += oop(_current)->size();
 812             // We might have positioned _current on a non-live object. Reposition to the next
 813             // live one if needed.
 814             move_if_below_tams();
 815           }
 816         } else {
 817           // The object at _current can only be dead if below TAMS, so we can use the bitmap.
 818           // immediately.
 819           _current = _bitmap->get_next_marked_addr(_current, bitmap_limit());
 820           assert(_current == _mr.end() || is_live(_current),
 821                  "Current " PTR_FORMAT " should be live (%s) or beyond the end of the MemRegion (" PTR_FORMAT ")",
 822                  p2i(_current), BOOL_TO_STR(is_live(_current)), p2i(_mr.end()));
 823         }
 824       }
 825 
 826       void move_to_next() {
 827         _current += next()->size();
 828         move_if_below_tams();
 829       }
 830 
 831       oop next() const {
 832         oop result = oop(_current);
 833         assert(is_live(_current),
 834                "Object " PTR_FORMAT " must be live TAMS " PTR_FORMAT " below %d mr " PTR_FORMAT " " PTR_FORMAT " outside %d",
 835                p2i(_current), p2i(_tams), _tams > _current, p2i(_mr.start()), p2i(_mr.end()), _mr.contains(result));
 836         return result;
 837       }
 838 
 839       bool has_next() const {
 840         return _current < _mr.end();
 841       }
 842     };
 843 
 844     // Rebuild remembered sets in the part of the region specified by mr and hr.
 845     // Objects between the bottom of the region and the TAMS are checked for liveness
 846     // using the given bitmap. Objects between TAMS and TARS are assumed to be live.
 847     // Returns the number of live words between bottom and TAMS.
 848     size_t rebuild_rem_set_in_region(const G1CMBitMap* const bitmap,
 849                                      HeapWord* const top_at_mark_start,
 850                                      HeapWord* const top_at_rebuild_start,
 851                                      HeapRegion* hr,
 852                                      MemRegion mr) {
 853       size_t marked_words = 0;
 854 
 855       if (hr->is_humongous()) {
 856         oop const humongous_obj = oop(hr->humongous_start_region()->bottom());
 857         if (is_humongous_live(humongous_obj, bitmap, top_at_mark_start, top_at_rebuild_start)) {
 858           // We need to scan both [bottom, TAMS) and [TAMS, top_at_rebuild_start);
 859           // however in case of humongous objects it is sufficient to scan the encompassing
 860           // area (top_at_rebuild_start is always larger or equal to TAMS) as one of the
 861           // two areas will be zero sized. I.e. TAMS is either
 862           // the same as bottom or top(_at_rebuild_start). There is no way TAMS has a different
 863           // value: this would mean that TAMS points somewhere into the object.
 864           assert(hr->top() == top_at_mark_start || hr->top() == top_at_rebuild_start,
 865                  "More than one object in the humongous region?");
 866           humongous_obj->oop_iterate(&_update_cl, mr);
 867           return top_at_mark_start != hr->bottom() ? mr.intersection(MemRegion((HeapWord*)humongous_obj, humongous_obj->size())).byte_size() : 0;
 868         } else {
 869           return 0;
 870         }
 871       }
 872 
 873       for (LiveObjIterator it(bitmap, top_at_mark_start, mr, hr->block_start(mr.start())); it.has_next(); it.move_to_next()) {
 874         oop obj = it.next();
 875         size_t scanned_size = scan_for_references(obj, mr);
 876         if ((HeapWord*)obj < top_at_mark_start) {
 877           marked_words += scanned_size;
 878         }
 879       }
 880 
 881       return marked_words * HeapWordSize;
 882     }
 883 public:
 884   G1RebuildRemSetHeapRegionClosure(G1CollectedHeap* g1h,
 885                                    G1ConcurrentMark* cm,
 886                                    uint worker_id) :
 887     HeapRegionClosure(),
 888     _cm(cm),
 889     _update_cl(g1h, worker_id) { }
 890 
 891     bool do_heap_region(HeapRegion* hr) {
 892       if (_cm->has_aborted()) {
 893         return true;
 894       }
 895 
 896       uint const region_idx = hr->hrm_index();
 897       DEBUG_ONLY(HeapWord* const top_at_rebuild_start_check = _cm->top_at_rebuild_start(region_idx);)
 898       assert(top_at_rebuild_start_check == NULL ||
 899              top_at_rebuild_start_check > hr->bottom(),
 900              "A TARS (" PTR_FORMAT ") == bottom() (" PTR_FORMAT ") indicates the old region %u is empty (%s)",
 901              p2i(top_at_rebuild_start_check), p2i(hr->bottom()),  region_idx, hr->get_type_str());
 902 
 903       size_t total_marked_bytes = 0;
 904       size_t const chunk_size_in_words = G1RebuildRemSetChunkSize / HeapWordSize;
 905 
 906       HeapWord* const top_at_mark_start = hr->prev_top_at_mark_start();
 907 
 908       HeapWord* cur = hr->bottom();
 909       while (cur < hr->end()) {
 910         // After every iteration (yield point) we need to check whether the region's
 911         // TARS changed due to e.g. eager reclaim.
 912         HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx);
 913         if (top_at_rebuild_start == NULL) {
 914           return false;
 915         }
 916 
 917         MemRegion next_chunk = MemRegion(hr->bottom(), top_at_rebuild_start).intersection(MemRegion(cur, chunk_size_in_words));
 918         if (next_chunk.is_empty()) {
 919           break;
 920         }
 921 
 922         const Ticks start = Ticks::now();
 923         size_t marked_bytes = rebuild_rem_set_in_region(_cm->prev_mark_bitmap(),
 924                                                         top_at_mark_start,
 925                                                         top_at_rebuild_start,
 926                                                         hr,
 927                                                         next_chunk);
 928         Tickspan time = Ticks::now() - start;
 929 
 930         log_trace(gc, remset, tracking)("Rebuilt region %u "
 931                                         "live " SIZE_FORMAT " "
 932                                         "time %.3fms "
 933                                         "marked bytes " SIZE_FORMAT " "
 934                                         "bot " PTR_FORMAT " "
 935                                         "TAMS " PTR_FORMAT " "
 936                                         "TARS " PTR_FORMAT,
 937                                         region_idx,
 938                                         _cm->liveness(region_idx) * HeapWordSize,
 939                                         time.seconds() * 1000.0,
 940                                         marked_bytes,
 941                                         p2i(hr->bottom()),
 942                                         p2i(top_at_mark_start),
 943                                         p2i(top_at_rebuild_start));
 944 
 945         if (marked_bytes > 0) {
 946           total_marked_bytes += marked_bytes;
 947         }
 948         cur += chunk_size_in_words;
 949 
 950         _cm->do_yield_check();
 951         if (_cm->has_aborted()) {
 952           return true;
 953         }
 954       }
 955       // In the final iteration of the loop the region might have been eagerly reclaimed.
 956       // Simply filter out those regions. We can not just use region type because there
 957       // might have already been new allocations into these regions.
 958       DEBUG_ONLY(HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx);)
 959       assert(top_at_rebuild_start == NULL ||
 960              total_marked_bytes == hr->marked_bytes(),
 961              "Marked bytes " SIZE_FORMAT " for region %u (%s) in [bottom, TAMS) do not match calculated marked bytes " SIZE_FORMAT " "
 962              "(" PTR_FORMAT " " PTR_FORMAT " " PTR_FORMAT ")",
 963              total_marked_bytes, hr->hrm_index(), hr->get_type_str(), hr->marked_bytes(),
 964              p2i(hr->bottom()), p2i(top_at_mark_start), p2i(top_at_rebuild_start));
 965        // Abort state may have changed after the yield check.
 966       return _cm->has_aborted();
 967     }
 968   };
 969 
 970   HeapRegionClaimer _hr_claimer;
 971   G1ConcurrentMark* _cm;
 972 
 973   uint _worker_id_offset;
 974 public:
 975   G1RebuildRemSetTask(G1ConcurrentMark* cm,
 976                       uint n_workers,
 977                       uint worker_id_offset) :
 978       AbstractGangTask("G1 Rebuild Remembered Set"),
 979       _hr_claimer(n_workers),
 980       _cm(cm),
 981       _worker_id_offset(worker_id_offset) {
 982   }
 983 
 984   void work(uint worker_id) {
 985     SuspendibleThreadSetJoiner sts_join;
 986 
 987     G1CollectedHeap* g1h = G1CollectedHeap::heap();
 988 
 989     G1RebuildRemSetHeapRegionClosure cl(g1h, _cm, _worker_id_offset + worker_id);
 990     g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hr_claimer, worker_id);
 991   }
 992 };
 993 
 994 void G1RemSet::rebuild_rem_set(G1ConcurrentMark* cm,
 995                                WorkGang* workers,
 996                                uint worker_id_offset) {
 997   uint num_workers = workers->active_workers();
 998 
 999   G1RebuildRemSetTask cl(cm,
1000                          num_workers,
1001                          worker_id_offset);
1002   workers->run_task(&cl, num_workers);
1003 }