1 /* 2 * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/bcEscapeAnalyzer.hpp" 27 #include "compiler/compileLog.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/c2/barrierSetC2.hpp" 30 #include "libadt/vectset.hpp" 31 #include "memory/allocation.hpp" 32 #include "memory/resourceArea.hpp" 33 #include "opto/c2compiler.hpp" 34 #include "opto/arraycopynode.hpp" 35 #include "opto/callnode.hpp" 36 #include "opto/cfgnode.hpp" 37 #include "opto/compile.hpp" 38 #include "opto/escape.hpp" 39 #include "opto/phaseX.hpp" 40 #include "opto/movenode.hpp" 41 #include "opto/rootnode.hpp" 42 #include "utilities/macros.hpp" 43 44 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) : 45 _nodes(C->comp_arena(), C->unique(), C->unique(), NULL), 46 _in_worklist(C->comp_arena()), 47 _next_pidx(0), 48 _collecting(true), 49 _verify(false), 50 _compile(C), 51 _igvn(igvn), 52 _node_map(C->comp_arena()) { 53 // Add unknown java object. 54 add_java_object(C->top(), PointsToNode::GlobalEscape); 55 phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject(); 56 // Add ConP(#NULL) and ConN(#NULL) nodes. 57 Node* oop_null = igvn->zerocon(T_OBJECT); 58 assert(oop_null->_idx < nodes_size(), "should be created already"); 59 add_java_object(oop_null, PointsToNode::NoEscape); 60 null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject(); 61 if (UseCompressedOops) { 62 Node* noop_null = igvn->zerocon(T_NARROWOOP); 63 assert(noop_null->_idx < nodes_size(), "should be created already"); 64 map_ideal_node(noop_null, null_obj); 65 } 66 _pcmp_neq = NULL; // Should be initialized 67 _pcmp_eq = NULL; 68 } 69 70 bool ConnectionGraph::has_candidates(Compile *C) { 71 // EA brings benefits only when the code has allocations and/or locks which 72 // are represented by ideal Macro nodes. 73 int cnt = C->macro_count(); 74 for (int i = 0; i < cnt; i++) { 75 Node *n = C->macro_node(i); 76 if (n->is_Allocate()) 77 return true; 78 if (n->is_Lock()) { 79 Node* obj = n->as_Lock()->obj_node()->uncast(); 80 if (!(obj->is_Parm() || obj->is_Con())) 81 return true; 82 } 83 if (n->is_CallStaticJava() && 84 n->as_CallStaticJava()->is_boxing_method()) { 85 return true; 86 } 87 } 88 return false; 89 } 90 91 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) { 92 Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]); 93 ResourceMark rm; 94 95 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction 96 // to create space for them in ConnectionGraph::_nodes[]. 97 Node* oop_null = igvn->zerocon(T_OBJECT); 98 Node* noop_null = igvn->zerocon(T_NARROWOOP); 99 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn); 100 // Perform escape analysis 101 if (congraph->compute_escape()) { 102 // There are non escaping objects. 103 C->set_congraph(congraph); 104 } 105 // Cleanup. 106 if (oop_null->outcnt() == 0) 107 igvn->hash_delete(oop_null); 108 if (noop_null->outcnt() == 0) 109 igvn->hash_delete(noop_null); 110 } 111 112 bool ConnectionGraph::compute_escape() { 113 Compile* C = _compile; 114 PhaseGVN* igvn = _igvn; 115 116 // Worklists used by EA. 117 Unique_Node_List delayed_worklist; 118 GrowableArray<Node*> alloc_worklist; 119 GrowableArray<Node*> ptr_cmp_worklist; 120 GrowableArray<Node*> storestore_worklist; 121 GrowableArray<ArrayCopyNode*> arraycopy_worklist; 122 GrowableArray<PointsToNode*> ptnodes_worklist; 123 GrowableArray<JavaObjectNode*> java_objects_worklist; 124 GrowableArray<JavaObjectNode*> non_escaped_worklist; 125 GrowableArray<FieldNode*> oop_fields_worklist; 126 DEBUG_ONLY( GrowableArray<Node*> addp_worklist; ) 127 128 { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]); 129 130 // 1. Populate Connection Graph (CG) with PointsTo nodes. 131 ideal_nodes.map(C->live_nodes(), NULL); // preallocate space 132 // Initialize worklist 133 if (C->root() != NULL) { 134 ideal_nodes.push(C->root()); 135 } 136 // Processed ideal nodes are unique on ideal_nodes list 137 // but several ideal nodes are mapped to the phantom_obj. 138 // To avoid duplicated entries on the following worklists 139 // add the phantom_obj only once to them. 140 ptnodes_worklist.append(phantom_obj); 141 java_objects_worklist.append(phantom_obj); 142 for( uint next = 0; next < ideal_nodes.size(); ++next ) { 143 Node* n = ideal_nodes.at(next); 144 // Create PointsTo nodes and add them to Connection Graph. Called 145 // only once per ideal node since ideal_nodes is Unique_Node list. 146 add_node_to_connection_graph(n, &delayed_worklist); 147 PointsToNode* ptn = ptnode_adr(n->_idx); 148 if (ptn != NULL && ptn != phantom_obj) { 149 ptnodes_worklist.append(ptn); 150 if (ptn->is_JavaObject()) { 151 java_objects_worklist.append(ptn->as_JavaObject()); 152 if ((n->is_Allocate() || n->is_CallStaticJava()) && 153 (ptn->escape_state() < PointsToNode::GlobalEscape)) { 154 // Only allocations and java static calls results are interesting. 155 non_escaped_worklist.append(ptn->as_JavaObject()); 156 } 157 } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) { 158 oop_fields_worklist.append(ptn->as_Field()); 159 } 160 } 161 if (n->is_MergeMem()) { 162 // Collect all MergeMem nodes to add memory slices for 163 // scalar replaceable objects in split_unique_types(). 164 _mergemem_worklist.append(n->as_MergeMem()); 165 } else if (OptimizePtrCompare && n->is_Cmp() && 166 (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) { 167 // Collect compare pointers nodes. 168 ptr_cmp_worklist.append(n); 169 } else if (n->is_MemBarStoreStore()) { 170 // Collect all MemBarStoreStore nodes so that depending on the 171 // escape status of the associated Allocate node some of them 172 // may be eliminated. 173 storestore_worklist.append(n); 174 } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) && 175 (n->req() > MemBarNode::Precedent)) { 176 record_for_optimizer(n); 177 #ifdef ASSERT 178 } else if (n->is_AddP()) { 179 // Collect address nodes for graph verification. 180 addp_worklist.append(n); 181 #endif 182 } else if (n->is_ArrayCopy()) { 183 // Keep a list of ArrayCopy nodes so if one of its input is non 184 // escaping, we can record a unique type 185 arraycopy_worklist.append(n->as_ArrayCopy()); 186 } 187 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 188 Node* m = n->fast_out(i); // Get user 189 ideal_nodes.push(m); 190 } 191 } 192 if (non_escaped_worklist.length() == 0) { 193 _collecting = false; 194 return false; // Nothing to do. 195 } 196 // Add final simple edges to graph. 197 while(delayed_worklist.size() > 0) { 198 Node* n = delayed_worklist.pop(); 199 add_final_edges(n); 200 } 201 int ptnodes_length = ptnodes_worklist.length(); 202 203 #ifdef ASSERT 204 if (VerifyConnectionGraph) { 205 // Verify that no new simple edges could be created and all 206 // local vars has edges. 207 _verify = true; 208 for (int next = 0; next < ptnodes_length; ++next) { 209 PointsToNode* ptn = ptnodes_worklist.at(next); 210 add_final_edges(ptn->ideal_node()); 211 if (ptn->is_LocalVar() && ptn->edge_count() == 0) { 212 ptn->dump(); 213 assert(ptn->as_LocalVar()->edge_count() > 0, "sanity"); 214 } 215 } 216 _verify = false; 217 } 218 #endif 219 // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes 220 // processing, calls to CI to resolve symbols (types, fields, methods) 221 // referenced in bytecode. During symbol resolution VM may throw 222 // an exception which CI cleans and converts to compilation failure. 223 if (C->failing()) return false; 224 225 // 2. Finish Graph construction by propagating references to all 226 // java objects through graph. 227 if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist, 228 java_objects_worklist, oop_fields_worklist)) { 229 // All objects escaped or hit time or iterations limits. 230 _collecting = false; 231 return false; 232 } 233 234 // 3. Adjust scalar_replaceable state of nonescaping objects and push 235 // scalar replaceable allocations on alloc_worklist for processing 236 // in split_unique_types(). 237 int non_escaped_length = non_escaped_worklist.length(); 238 for (int next = 0; next < non_escaped_length; next++) { 239 JavaObjectNode* ptn = non_escaped_worklist.at(next); 240 bool noescape = (ptn->escape_state() == PointsToNode::NoEscape); 241 Node* n = ptn->ideal_node(); 242 if (n->is_Allocate()) { 243 n->as_Allocate()->_is_non_escaping = noescape; 244 } 245 if (n->is_CallStaticJava()) { 246 n->as_CallStaticJava()->_is_non_escaping = noescape; 247 } 248 if (noescape && ptn->scalar_replaceable()) { 249 adjust_scalar_replaceable_state(ptn); 250 if (ptn->scalar_replaceable()) { 251 alloc_worklist.append(ptn->ideal_node()); 252 } 253 } 254 } 255 256 #ifdef ASSERT 257 if (VerifyConnectionGraph) { 258 // Verify that graph is complete - no new edges could be added or needed. 259 verify_connection_graph(ptnodes_worklist, non_escaped_worklist, 260 java_objects_worklist, addp_worklist); 261 } 262 assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build"); 263 assert(null_obj->escape_state() == PointsToNode::NoEscape && 264 null_obj->edge_count() == 0 && 265 !null_obj->arraycopy_src() && 266 !null_obj->arraycopy_dst(), "sanity"); 267 #endif 268 269 _collecting = false; 270 271 } // TracePhase t3("connectionGraph") 272 273 // 4. Optimize ideal graph based on EA information. 274 bool has_non_escaping_obj = (non_escaped_worklist.length() > 0); 275 if (has_non_escaping_obj) { 276 optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist); 277 } 278 279 #ifndef PRODUCT 280 if (PrintEscapeAnalysis) { 281 dump(ptnodes_worklist); // Dump ConnectionGraph 282 } 283 #endif 284 285 bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0); 286 #ifdef ASSERT 287 if (VerifyConnectionGraph) { 288 int alloc_length = alloc_worklist.length(); 289 for (int next = 0; next < alloc_length; ++next) { 290 Node* n = alloc_worklist.at(next); 291 PointsToNode* ptn = ptnode_adr(n->_idx); 292 assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity"); 293 } 294 } 295 #endif 296 297 // 5. Separate memory graph for scalar replaceable allcations. 298 if (has_scalar_replaceable_candidates && 299 C->AliasLevel() >= 3 && EliminateAllocations) { 300 // Now use the escape information to create unique types for 301 // scalar replaceable objects. 302 split_unique_types(alloc_worklist, arraycopy_worklist); 303 if (C->failing()) return false; 304 C->print_method(PHASE_AFTER_EA, 2); 305 306 #ifdef ASSERT 307 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) { 308 tty->print("=== No allocations eliminated for "); 309 C->method()->print_short_name(); 310 if(!EliminateAllocations) { 311 tty->print(" since EliminateAllocations is off ==="); 312 } else if(!has_scalar_replaceable_candidates) { 313 tty->print(" since there are no scalar replaceable candidates ==="); 314 } else if(C->AliasLevel() < 3) { 315 tty->print(" since AliasLevel < 3 ==="); 316 } 317 tty->cr(); 318 #endif 319 } 320 return has_non_escaping_obj; 321 } 322 323 // Utility function for nodes that load an object 324 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) { 325 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 326 // ThreadLocal has RawPtr type. 327 const Type* t = _igvn->type(n); 328 if (t->make_ptr() != NULL) { 329 Node* adr = n->in(MemNode::Address); 330 #ifdef ASSERT 331 if (!adr->is_AddP()) { 332 assert(_igvn->type(adr)->isa_rawptr(), "sanity"); 333 } else { 334 assert((ptnode_adr(adr->_idx) == NULL || 335 ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity"); 336 } 337 #endif 338 add_local_var_and_edge(n, PointsToNode::NoEscape, 339 adr, delayed_worklist); 340 } 341 } 342 343 // Populate Connection Graph with PointsTo nodes and create simple 344 // connection graph edges. 345 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) { 346 assert(!_verify, "this method should not be called for verification"); 347 PhaseGVN* igvn = _igvn; 348 uint n_idx = n->_idx; 349 PointsToNode* n_ptn = ptnode_adr(n_idx); 350 if (n_ptn != NULL) 351 return; // No need to redefine PointsTo node during first iteration. 352 353 int opcode = n->Opcode(); 354 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode); 355 if (gc_handled) { 356 return; // Ignore node if already handled by GC. 357 } 358 359 if (n->is_Call()) { 360 // Arguments to allocation and locking don't escape. 361 if (n->is_AbstractLock()) { 362 // Put Lock and Unlock nodes on IGVN worklist to process them during 363 // first IGVN optimization when escape information is still available. 364 record_for_optimizer(n); 365 } else if (n->is_Allocate()) { 366 add_call_node(n->as_Call()); 367 record_for_optimizer(n); 368 } else { 369 if (n->is_CallStaticJava()) { 370 const char* name = n->as_CallStaticJava()->_name; 371 if (name != NULL && strcmp(name, "uncommon_trap") == 0) 372 return; // Skip uncommon traps 373 } 374 // Don't mark as processed since call's arguments have to be processed. 375 delayed_worklist->push(n); 376 // Check if a call returns an object. 377 if ((n->as_Call()->returns_pointer() && 378 n->as_Call()->proj_out_or_null(TypeFunc::Parms) != NULL) || 379 (n->is_CallStaticJava() && 380 n->as_CallStaticJava()->is_boxing_method())) { 381 add_call_node(n->as_Call()); 382 } 383 } 384 return; 385 } 386 // Put this check here to process call arguments since some call nodes 387 // point to phantom_obj. 388 if (n_ptn == phantom_obj || n_ptn == null_obj) 389 return; // Skip predefined nodes. 390 391 switch (opcode) { 392 case Op_AddP: { 393 Node* base = get_addp_base(n); 394 PointsToNode* ptn_base = ptnode_adr(base->_idx); 395 // Field nodes are created for all field types. They are used in 396 // adjust_scalar_replaceable_state() and split_unique_types(). 397 // Note, non-oop fields will have only base edges in Connection 398 // Graph because such fields are not used for oop loads and stores. 399 int offset = address_offset(n, igvn); 400 add_field(n, PointsToNode::NoEscape, offset); 401 if (ptn_base == NULL) { 402 delayed_worklist->push(n); // Process it later. 403 } else { 404 n_ptn = ptnode_adr(n_idx); 405 add_base(n_ptn->as_Field(), ptn_base); 406 } 407 break; 408 } 409 case Op_CastX2P: { 410 map_ideal_node(n, phantom_obj); 411 break; 412 } 413 case Op_CastPP: 414 case Op_CheckCastPP: 415 case Op_EncodeP: 416 case Op_DecodeN: 417 case Op_EncodePKlass: 418 case Op_DecodeNKlass: { 419 add_local_var_and_edge(n, PointsToNode::NoEscape, 420 n->in(1), delayed_worklist); 421 break; 422 } 423 case Op_CMoveP: { 424 add_local_var(n, PointsToNode::NoEscape); 425 // Do not add edges during first iteration because some could be 426 // not defined yet. 427 delayed_worklist->push(n); 428 break; 429 } 430 case Op_ConP: 431 case Op_ConN: 432 case Op_ConNKlass: { 433 // assume all oop constants globally escape except for null 434 PointsToNode::EscapeState es; 435 const Type* t = igvn->type(n); 436 if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) { 437 es = PointsToNode::NoEscape; 438 } else { 439 es = PointsToNode::GlobalEscape; 440 } 441 add_java_object(n, es); 442 break; 443 } 444 case Op_CreateEx: { 445 // assume that all exception objects globally escape 446 map_ideal_node(n, phantom_obj); 447 break; 448 } 449 case Op_LoadKlass: 450 case Op_LoadNKlass: { 451 // Unknown class is loaded 452 map_ideal_node(n, phantom_obj); 453 break; 454 } 455 case Op_LoadP: 456 case Op_LoadN: 457 case Op_LoadPLocked: { 458 add_objload_to_connection_graph(n, delayed_worklist); 459 break; 460 } 461 case Op_Parm: { 462 map_ideal_node(n, phantom_obj); 463 break; 464 } 465 case Op_PartialSubtypeCheck: { 466 // Produces Null or notNull and is used in only in CmpP so 467 // phantom_obj could be used. 468 map_ideal_node(n, phantom_obj); // Result is unknown 469 break; 470 } 471 case Op_Phi: { 472 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 473 // ThreadLocal has RawPtr type. 474 const Type* t = n->as_Phi()->type(); 475 if (t->make_ptr() != NULL) { 476 add_local_var(n, PointsToNode::NoEscape); 477 // Do not add edges during first iteration because some could be 478 // not defined yet. 479 delayed_worklist->push(n); 480 } 481 break; 482 } 483 case Op_Proj: { 484 // we are only interested in the oop result projection from a call 485 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() && 486 n->in(0)->as_Call()->returns_pointer()) { 487 add_local_var_and_edge(n, PointsToNode::NoEscape, 488 n->in(0), delayed_worklist); 489 } 490 break; 491 } 492 case Op_Rethrow: // Exception object escapes 493 case Op_Return: { 494 if (n->req() > TypeFunc::Parms && 495 igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) { 496 // Treat Return value as LocalVar with GlobalEscape escape state. 497 add_local_var_and_edge(n, PointsToNode::GlobalEscape, 498 n->in(TypeFunc::Parms), delayed_worklist); 499 } 500 break; 501 } 502 case Op_CompareAndExchangeP: 503 case Op_CompareAndExchangeN: 504 case Op_GetAndSetP: 505 case Op_GetAndSetN: { 506 add_objload_to_connection_graph(n, delayed_worklist); 507 // fallthrough 508 } 509 case Op_StoreP: 510 case Op_StoreN: 511 case Op_StoreNKlass: 512 case Op_StorePConditional: 513 case Op_WeakCompareAndSwapP: 514 case Op_WeakCompareAndSwapN: 515 case Op_CompareAndSwapP: 516 case Op_CompareAndSwapN: { 517 add_to_congraph_unsafe_access(n, opcode, delayed_worklist); 518 break; 519 } 520 case Op_AryEq: 521 case Op_HasNegatives: 522 case Op_StrComp: 523 case Op_StrEquals: 524 case Op_StrIndexOf: 525 case Op_StrIndexOfChar: 526 case Op_StrInflatedCopy: 527 case Op_StrCompressedCopy: 528 case Op_EncodeISOArray: { 529 add_local_var(n, PointsToNode::ArgEscape); 530 delayed_worklist->push(n); // Process it later. 531 break; 532 } 533 case Op_ThreadLocal: { 534 add_java_object(n, PointsToNode::ArgEscape); 535 break; 536 } 537 default: 538 ; // Do nothing for nodes not related to EA. 539 } 540 return; 541 } 542 543 #ifdef ASSERT 544 #define ELSE_FAIL(name) \ 545 /* Should not be called for not pointer type. */ \ 546 n->dump(1); \ 547 assert(false, name); \ 548 break; 549 #else 550 #define ELSE_FAIL(name) \ 551 break; 552 #endif 553 554 // Add final simple edges to graph. 555 void ConnectionGraph::add_final_edges(Node *n) { 556 PointsToNode* n_ptn = ptnode_adr(n->_idx); 557 #ifdef ASSERT 558 if (_verify && n_ptn->is_JavaObject()) 559 return; // This method does not change graph for JavaObject. 560 #endif 561 562 if (n->is_Call()) { 563 process_call_arguments(n->as_Call()); 564 return; 565 } 566 assert(n->is_Store() || n->is_LoadStore() || 567 (n_ptn != NULL) && (n_ptn->ideal_node() != NULL), 568 "node should be registered already"); 569 int opcode = n->Opcode(); 570 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode); 571 if (gc_handled) { 572 return; // Ignore node if already handled by GC. 573 } 574 switch (opcode) { 575 case Op_AddP: { 576 Node* base = get_addp_base(n); 577 PointsToNode* ptn_base = ptnode_adr(base->_idx); 578 assert(ptn_base != NULL, "field's base should be registered"); 579 add_base(n_ptn->as_Field(), ptn_base); 580 break; 581 } 582 case Op_CastPP: 583 case Op_CheckCastPP: 584 case Op_EncodeP: 585 case Op_DecodeN: 586 case Op_EncodePKlass: 587 case Op_DecodeNKlass: { 588 add_local_var_and_edge(n, PointsToNode::NoEscape, 589 n->in(1), NULL); 590 break; 591 } 592 case Op_CMoveP: { 593 for (uint i = CMoveNode::IfFalse; i < n->req(); i++) { 594 Node* in = n->in(i); 595 if (in == NULL) 596 continue; // ignore NULL 597 Node* uncast_in = in->uncast(); 598 if (uncast_in->is_top() || uncast_in == n) 599 continue; // ignore top or inputs which go back this node 600 PointsToNode* ptn = ptnode_adr(in->_idx); 601 assert(ptn != NULL, "node should be registered"); 602 add_edge(n_ptn, ptn); 603 } 604 break; 605 } 606 case Op_LoadP: 607 case Op_LoadN: 608 case Op_LoadPLocked: { 609 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 610 // ThreadLocal has RawPtr type. 611 const Type* t = _igvn->type(n); 612 if (t->make_ptr() != NULL) { 613 Node* adr = n->in(MemNode::Address); 614 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL); 615 break; 616 } 617 ELSE_FAIL("Op_LoadP"); 618 } 619 case Op_Phi: { 620 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 621 // ThreadLocal has RawPtr type. 622 const Type* t = n->as_Phi()->type(); 623 if (t->make_ptr() != NULL) { 624 for (uint i = 1; i < n->req(); i++) { 625 Node* in = n->in(i); 626 if (in == NULL) 627 continue; // ignore NULL 628 Node* uncast_in = in->uncast(); 629 if (uncast_in->is_top() || uncast_in == n) 630 continue; // ignore top or inputs which go back this node 631 PointsToNode* ptn = ptnode_adr(in->_idx); 632 assert(ptn != NULL, "node should be registered"); 633 add_edge(n_ptn, ptn); 634 } 635 break; 636 } 637 ELSE_FAIL("Op_Phi"); 638 } 639 case Op_Proj: { 640 // we are only interested in the oop result projection from a call 641 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() && 642 n->in(0)->as_Call()->returns_pointer()) { 643 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL); 644 break; 645 } 646 ELSE_FAIL("Op_Proj"); 647 } 648 case Op_Rethrow: // Exception object escapes 649 case Op_Return: { 650 if (n->req() > TypeFunc::Parms && 651 _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) { 652 // Treat Return value as LocalVar with GlobalEscape escape state. 653 add_local_var_and_edge(n, PointsToNode::GlobalEscape, 654 n->in(TypeFunc::Parms), NULL); 655 break; 656 } 657 ELSE_FAIL("Op_Return"); 658 } 659 case Op_StoreP: 660 case Op_StoreN: 661 case Op_StoreNKlass: 662 case Op_StorePConditional: 663 case Op_CompareAndExchangeP: 664 case Op_CompareAndExchangeN: 665 case Op_CompareAndSwapP: 666 case Op_CompareAndSwapN: 667 case Op_WeakCompareAndSwapP: 668 case Op_WeakCompareAndSwapN: 669 case Op_GetAndSetP: 670 case Op_GetAndSetN: { 671 if (add_final_edges_unsafe_access(n, opcode)) { 672 break; 673 } 674 ELSE_FAIL("Op_StoreP"); 675 } 676 case Op_AryEq: 677 case Op_HasNegatives: 678 case Op_StrComp: 679 case Op_StrEquals: 680 case Op_StrIndexOf: 681 case Op_StrIndexOfChar: 682 case Op_StrInflatedCopy: 683 case Op_StrCompressedCopy: 684 case Op_EncodeISOArray: { 685 // char[]/byte[] arrays passed to string intrinsic do not escape but 686 // they are not scalar replaceable. Adjust escape state for them. 687 // Start from in(2) edge since in(1) is memory edge. 688 for (uint i = 2; i < n->req(); i++) { 689 Node* adr = n->in(i); 690 const Type* at = _igvn->type(adr); 691 if (!adr->is_top() && at->isa_ptr()) { 692 assert(at == Type::TOP || at == TypePtr::NULL_PTR || 693 at->isa_ptr() != NULL, "expecting a pointer"); 694 if (adr->is_AddP()) { 695 adr = get_addp_base(adr); 696 } 697 PointsToNode* ptn = ptnode_adr(adr->_idx); 698 assert(ptn != NULL, "node should be registered"); 699 add_edge(n_ptn, ptn); 700 } 701 } 702 break; 703 } 704 default: { 705 // This method should be called only for EA specific nodes which may 706 // miss some edges when they were created. 707 #ifdef ASSERT 708 n->dump(1); 709 #endif 710 guarantee(false, "unknown node"); 711 } 712 } 713 return; 714 } 715 716 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) { 717 Node* adr = n->in(MemNode::Address); 718 const Type* adr_type = _igvn->type(adr); 719 adr_type = adr_type->make_ptr(); 720 if (adr_type == NULL) { 721 return; // skip dead nodes 722 } 723 if (adr_type->isa_oopptr() 724 || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) 725 && adr_type == TypeRawPtr::NOTNULL 726 && adr->in(AddPNode::Address)->is_Proj() 727 && adr->in(AddPNode::Address)->in(0)->is_Allocate())) { 728 delayed_worklist->push(n); // Process it later. 729 #ifdef ASSERT 730 assert (adr->is_AddP(), "expecting an AddP"); 731 if (adr_type == TypeRawPtr::NOTNULL) { 732 // Verify a raw address for a store captured by Initialize node. 733 int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 734 assert(offs != Type::OffsetBot, "offset must be a constant"); 735 } 736 #endif 737 } else { 738 // Ignore copy the displaced header to the BoxNode (OSR compilation). 739 if (adr->is_BoxLock()) { 740 return; 741 } 742 // Stored value escapes in unsafe access. 743 if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) { 744 delayed_worklist->push(n); // Process unsafe access later. 745 return; 746 } 747 #ifdef ASSERT 748 n->dump(1); 749 assert(false, "not unsafe"); 750 #endif 751 } 752 } 753 754 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) { 755 Node* adr = n->in(MemNode::Address); 756 const Type *adr_type = _igvn->type(adr); 757 adr_type = adr_type->make_ptr(); 758 #ifdef ASSERT 759 if (adr_type == NULL) { 760 n->dump(1); 761 assert(adr_type != NULL, "dead node should not be on list"); 762 return true; 763 } 764 #endif 765 766 if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN || 767 opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) { 768 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL); 769 } 770 771 if (adr_type->isa_oopptr() 772 || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) 773 && adr_type == TypeRawPtr::NOTNULL 774 && adr->in(AddPNode::Address)->is_Proj() 775 && adr->in(AddPNode::Address)->in(0)->is_Allocate())) { 776 // Point Address to Value 777 PointsToNode* adr_ptn = ptnode_adr(adr->_idx); 778 assert(adr_ptn != NULL && 779 adr_ptn->as_Field()->is_oop(), "node should be registered"); 780 Node* val = n->in(MemNode::ValueIn); 781 PointsToNode* ptn = ptnode_adr(val->_idx); 782 assert(ptn != NULL, "node should be registered"); 783 add_edge(adr_ptn, ptn); 784 return true; 785 } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) { 786 // Stored value escapes in unsafe access. 787 Node* val = n->in(MemNode::ValueIn); 788 PointsToNode* ptn = ptnode_adr(val->_idx); 789 assert(ptn != NULL, "node should be registered"); 790 set_escape_state(ptn, PointsToNode::GlobalEscape); 791 // Add edge to object for unsafe access with offset. 792 PointsToNode* adr_ptn = ptnode_adr(adr->_idx); 793 assert(adr_ptn != NULL, "node should be registered"); 794 if (adr_ptn->is_Field()) { 795 assert(adr_ptn->as_Field()->is_oop(), "should be oop field"); 796 add_edge(adr_ptn, ptn); 797 } 798 return true; 799 } 800 return false; 801 } 802 803 void ConnectionGraph::add_call_node(CallNode* call) { 804 assert(call->returns_pointer(), "only for call which returns pointer"); 805 uint call_idx = call->_idx; 806 if (call->is_Allocate()) { 807 Node* k = call->in(AllocateNode::KlassNode); 808 const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr(); 809 assert(kt != NULL, "TypeKlassPtr required."); 810 ciKlass* cik = kt->klass(); 811 PointsToNode::EscapeState es = PointsToNode::NoEscape; 812 bool scalar_replaceable = true; 813 if (call->is_AllocateArray()) { 814 if (!cik->is_array_klass()) { // StressReflectiveCode 815 es = PointsToNode::GlobalEscape; 816 } else { 817 int length = call->in(AllocateNode::ALength)->find_int_con(-1); 818 if (length < 0 || length > EliminateAllocationArraySizeLimit) { 819 // Not scalar replaceable if the length is not constant or too big. 820 scalar_replaceable = false; 821 } 822 } 823 } else { // Allocate instance 824 if (cik->is_subclass_of(_compile->env()->Thread_klass()) || 825 cik->is_subclass_of(_compile->env()->Reference_klass()) || 826 !cik->is_instance_klass() || // StressReflectiveCode 827 !cik->as_instance_klass()->can_be_instantiated() || 828 cik->as_instance_klass()->has_finalizer()) { 829 es = PointsToNode::GlobalEscape; 830 } 831 } 832 add_java_object(call, es); 833 PointsToNode* ptn = ptnode_adr(call_idx); 834 if (!scalar_replaceable && ptn->scalar_replaceable()) { 835 ptn->set_scalar_replaceable(false); 836 } 837 } else if (call->is_CallStaticJava()) { 838 // Call nodes could be different types: 839 // 840 // 1. CallDynamicJavaNode (what happened during call is unknown): 841 // 842 // - mapped to GlobalEscape JavaObject node if oop is returned; 843 // 844 // - all oop arguments are escaping globally; 845 // 846 // 2. CallStaticJavaNode (execute bytecode analysis if possible): 847 // 848 // - the same as CallDynamicJavaNode if can't do bytecode analysis; 849 // 850 // - mapped to GlobalEscape JavaObject node if unknown oop is returned; 851 // - mapped to NoEscape JavaObject node if non-escaping object allocated 852 // during call is returned; 853 // - mapped to ArgEscape LocalVar node pointed to object arguments 854 // which are returned and does not escape during call; 855 // 856 // - oop arguments escaping status is defined by bytecode analysis; 857 // 858 // For a static call, we know exactly what method is being called. 859 // Use bytecode estimator to record whether the call's return value escapes. 860 ciMethod* meth = call->as_CallJava()->method(); 861 if (meth == NULL) { 862 const char* name = call->as_CallStaticJava()->_name; 863 assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check"); 864 // Returns a newly allocated unescaped object. 865 add_java_object(call, PointsToNode::NoEscape); 866 ptnode_adr(call_idx)->set_scalar_replaceable(false); 867 } else if (meth->is_boxing_method()) { 868 // Returns boxing object 869 PointsToNode::EscapeState es; 870 vmIntrinsics::ID intr = meth->intrinsic_id(); 871 if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) { 872 // It does not escape if object is always allocated. 873 es = PointsToNode::NoEscape; 874 } else { 875 // It escapes globally if object could be loaded from cache. 876 es = PointsToNode::GlobalEscape; 877 } 878 add_java_object(call, es); 879 } else { 880 BCEscapeAnalyzer* call_analyzer = meth->get_bcea(); 881 call_analyzer->copy_dependencies(_compile->dependencies()); 882 if (call_analyzer->is_return_allocated()) { 883 // Returns a newly allocated unescaped object, simply 884 // update dependency information. 885 // Mark it as NoEscape so that objects referenced by 886 // it's fields will be marked as NoEscape at least. 887 add_java_object(call, PointsToNode::NoEscape); 888 ptnode_adr(call_idx)->set_scalar_replaceable(false); 889 } else { 890 // Determine whether any arguments are returned. 891 const TypeTuple* d = call->tf()->domain(); 892 bool ret_arg = false; 893 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 894 if (d->field_at(i)->isa_ptr() != NULL && 895 call_analyzer->is_arg_returned(i - TypeFunc::Parms)) { 896 ret_arg = true; 897 break; 898 } 899 } 900 if (ret_arg) { 901 add_local_var(call, PointsToNode::ArgEscape); 902 } else { 903 // Returns unknown object. 904 map_ideal_node(call, phantom_obj); 905 } 906 } 907 } 908 } else { 909 // An other type of call, assume the worst case: 910 // returned value is unknown and globally escapes. 911 assert(call->Opcode() == Op_CallDynamicJava, "add failed case check"); 912 map_ideal_node(call, phantom_obj); 913 } 914 } 915 916 void ConnectionGraph::process_call_arguments(CallNode *call) { 917 bool is_arraycopy = false; 918 switch (call->Opcode()) { 919 #ifdef ASSERT 920 case Op_Allocate: 921 case Op_AllocateArray: 922 case Op_Lock: 923 case Op_Unlock: 924 assert(false, "should be done already"); 925 break; 926 #endif 927 case Op_ArrayCopy: 928 case Op_CallLeafNoFP: 929 // Most array copies are ArrayCopy nodes at this point but there 930 // are still a few direct calls to the copy subroutines (See 931 // PhaseStringOpts::copy_string()) 932 is_arraycopy = (call->Opcode() == Op_ArrayCopy) || 933 call->as_CallLeaf()->is_call_to_arraycopystub(); 934 // fall through 935 case Op_CallLeaf: { 936 // Stub calls, objects do not escape but they are not scale replaceable. 937 // Adjust escape state for outgoing arguments. 938 const TypeTuple * d = call->tf()->domain(); 939 bool src_has_oops = false; 940 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 941 const Type* at = d->field_at(i); 942 Node *arg = call->in(i); 943 if (arg == NULL) { 944 continue; 945 } 946 const Type *aat = _igvn->type(arg); 947 if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) 948 continue; 949 if (arg->is_AddP()) { 950 // 951 // The inline_native_clone() case when the arraycopy stub is called 952 // after the allocation before Initialize and CheckCastPP nodes. 953 // Or normal arraycopy for object arrays case. 954 // 955 // Set AddP's base (Allocate) as not scalar replaceable since 956 // pointer to the base (with offset) is passed as argument. 957 // 958 arg = get_addp_base(arg); 959 } 960 PointsToNode* arg_ptn = ptnode_adr(arg->_idx); 961 assert(arg_ptn != NULL, "should be registered"); 962 PointsToNode::EscapeState arg_esc = arg_ptn->escape_state(); 963 if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) { 964 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR || 965 aat->isa_ptr() != NULL, "expecting an Ptr"); 966 bool arg_has_oops = aat->isa_oopptr() && 967 (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() || 968 (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass())); 969 if (i == TypeFunc::Parms) { 970 src_has_oops = arg_has_oops; 971 } 972 // 973 // src or dst could be j.l.Object when other is basic type array: 974 // 975 // arraycopy(char[],0,Object*,0,size); 976 // arraycopy(Object*,0,char[],0,size); 977 // 978 // Don't add edges in such cases. 979 // 980 bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy && 981 arg_has_oops && (i > TypeFunc::Parms); 982 #ifdef ASSERT 983 if (!(is_arraycopy || 984 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) || 985 (call->as_CallLeaf()->_name != NULL && 986 (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 || 987 strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 || 988 strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 || 989 strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 || 990 strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 || 991 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 || 992 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 || 993 strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_encryptAESCrypt") == 0 || 994 strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_decryptAESCrypt") == 0 || 995 strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 || 996 strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 || 997 strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 || 998 strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 || 999 strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 || 1000 strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 || 1001 strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 || 1002 strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 || 1003 strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 || 1004 strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 || 1005 strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 || 1006 strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 || 1007 strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 || 1008 strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 || 1009 strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0) 1010 ))) { 1011 call->dump(); 1012 fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name); 1013 } 1014 #endif 1015 // Always process arraycopy's destination object since 1016 // we need to add all possible edges to references in 1017 // source object. 1018 if (arg_esc >= PointsToNode::ArgEscape && 1019 !arg_is_arraycopy_dest) { 1020 continue; 1021 } 1022 PointsToNode::EscapeState es = PointsToNode::ArgEscape; 1023 if (call->is_ArrayCopy()) { 1024 ArrayCopyNode* ac = call->as_ArrayCopy(); 1025 if (ac->is_clonebasic() || 1026 ac->is_arraycopy_validated() || 1027 ac->is_copyof_validated() || 1028 ac->is_copyofrange_validated()) { 1029 es = PointsToNode::NoEscape; 1030 } 1031 } 1032 set_escape_state(arg_ptn, es); 1033 if (arg_is_arraycopy_dest) { 1034 Node* src = call->in(TypeFunc::Parms); 1035 if (src->is_AddP()) { 1036 src = get_addp_base(src); 1037 } 1038 PointsToNode* src_ptn = ptnode_adr(src->_idx); 1039 assert(src_ptn != NULL, "should be registered"); 1040 if (arg_ptn != src_ptn) { 1041 // Special arraycopy edge: 1042 // A destination object's field can't have the source object 1043 // as base since objects escape states are not related. 1044 // Only escape state of destination object's fields affects 1045 // escape state of fields in source object. 1046 add_arraycopy(call, es, src_ptn, arg_ptn); 1047 } 1048 } 1049 } 1050 } 1051 break; 1052 } 1053 case Op_CallStaticJava: { 1054 // For a static call, we know exactly what method is being called. 1055 // Use bytecode estimator to record the call's escape affects 1056 #ifdef ASSERT 1057 const char* name = call->as_CallStaticJava()->_name; 1058 assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only"); 1059 #endif 1060 ciMethod* meth = call->as_CallJava()->method(); 1061 if ((meth != NULL) && meth->is_boxing_method()) { 1062 break; // Boxing methods do not modify any oops. 1063 } 1064 BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL; 1065 // fall-through if not a Java method or no analyzer information 1066 if (call_analyzer != NULL) { 1067 PointsToNode* call_ptn = ptnode_adr(call->_idx); 1068 const TypeTuple* d = call->tf()->domain(); 1069 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 1070 const Type* at = d->field_at(i); 1071 int k = i - TypeFunc::Parms; 1072 Node* arg = call->in(i); 1073 PointsToNode* arg_ptn = ptnode_adr(arg->_idx); 1074 if (at->isa_ptr() != NULL && 1075 call_analyzer->is_arg_returned(k)) { 1076 // The call returns arguments. 1077 if (call_ptn != NULL) { // Is call's result used? 1078 assert(call_ptn->is_LocalVar(), "node should be registered"); 1079 assert(arg_ptn != NULL, "node should be registered"); 1080 add_edge(call_ptn, arg_ptn); 1081 } 1082 } 1083 if (at->isa_oopptr() != NULL && 1084 arg_ptn->escape_state() < PointsToNode::GlobalEscape) { 1085 if (!call_analyzer->is_arg_stack(k)) { 1086 // The argument global escapes 1087 set_escape_state(arg_ptn, PointsToNode::GlobalEscape); 1088 } else { 1089 set_escape_state(arg_ptn, PointsToNode::ArgEscape); 1090 if (!call_analyzer->is_arg_local(k)) { 1091 // The argument itself doesn't escape, but any fields might 1092 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape); 1093 } 1094 } 1095 } 1096 } 1097 if (call_ptn != NULL && call_ptn->is_LocalVar()) { 1098 // The call returns arguments. 1099 assert(call_ptn->edge_count() > 0, "sanity"); 1100 if (!call_analyzer->is_return_local()) { 1101 // Returns also unknown object. 1102 add_edge(call_ptn, phantom_obj); 1103 } 1104 } 1105 break; 1106 } 1107 } 1108 default: { 1109 // Fall-through here if not a Java method or no analyzer information 1110 // or some other type of call, assume the worst case: all arguments 1111 // globally escape. 1112 const TypeTuple* d = call->tf()->domain(); 1113 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 1114 const Type* at = d->field_at(i); 1115 if (at->isa_oopptr() != NULL) { 1116 Node* arg = call->in(i); 1117 if (arg->is_AddP()) { 1118 arg = get_addp_base(arg); 1119 } 1120 assert(ptnode_adr(arg->_idx) != NULL, "should be defined already"); 1121 set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape); 1122 } 1123 } 1124 } 1125 } 1126 } 1127 1128 1129 // Finish Graph construction. 1130 bool ConnectionGraph::complete_connection_graph( 1131 GrowableArray<PointsToNode*>& ptnodes_worklist, 1132 GrowableArray<JavaObjectNode*>& non_escaped_worklist, 1133 GrowableArray<JavaObjectNode*>& java_objects_worklist, 1134 GrowableArray<FieldNode*>& oop_fields_worklist) { 1135 // Normally only 1-3 passes needed to build Connection Graph depending 1136 // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler. 1137 // Set limit to 20 to catch situation when something did go wrong and 1138 // bailout Escape Analysis. 1139 // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag. 1140 #define CG_BUILD_ITER_LIMIT 20 1141 1142 // Propagate GlobalEscape and ArgEscape escape states and check that 1143 // we still have non-escaping objects. The method pushs on _worklist 1144 // Field nodes which reference phantom_object. 1145 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) { 1146 return false; // Nothing to do. 1147 } 1148 // Now propagate references to all JavaObject nodes. 1149 int java_objects_length = java_objects_worklist.length(); 1150 elapsedTimer time; 1151 bool timeout = false; 1152 int new_edges = 1; 1153 int iterations = 0; 1154 do { 1155 while ((new_edges > 0) && 1156 (iterations++ < CG_BUILD_ITER_LIMIT)) { 1157 double start_time = time.seconds(); 1158 time.start(); 1159 new_edges = 0; 1160 // Propagate references to phantom_object for nodes pushed on _worklist 1161 // by find_non_escaped_objects() and find_field_value(). 1162 new_edges += add_java_object_edges(phantom_obj, false); 1163 for (int next = 0; next < java_objects_length; ++next) { 1164 JavaObjectNode* ptn = java_objects_worklist.at(next); 1165 new_edges += add_java_object_edges(ptn, true); 1166 1167 #define SAMPLE_SIZE 4 1168 if ((next % SAMPLE_SIZE) == 0) { 1169 // Each 4 iterations calculate how much time it will take 1170 // to complete graph construction. 1171 time.stop(); 1172 // Poll for requests from shutdown mechanism to quiesce compiler 1173 // because Connection graph construction may take long time. 1174 CompileBroker::maybe_block(); 1175 double stop_time = time.seconds(); 1176 double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE; 1177 double time_until_end = time_per_iter * (double)(java_objects_length - next); 1178 if ((start_time + time_until_end) >= EscapeAnalysisTimeout) { 1179 timeout = true; 1180 break; // Timeout 1181 } 1182 start_time = stop_time; 1183 time.start(); 1184 } 1185 #undef SAMPLE_SIZE 1186 1187 } 1188 if (timeout) break; 1189 if (new_edges > 0) { 1190 // Update escape states on each iteration if graph was updated. 1191 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) { 1192 return false; // Nothing to do. 1193 } 1194 } 1195 time.stop(); 1196 if (time.seconds() >= EscapeAnalysisTimeout) { 1197 timeout = true; 1198 break; 1199 } 1200 } 1201 if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) { 1202 time.start(); 1203 // Find fields which have unknown value. 1204 int fields_length = oop_fields_worklist.length(); 1205 for (int next = 0; next < fields_length; next++) { 1206 FieldNode* field = oop_fields_worklist.at(next); 1207 if (field->edge_count() == 0) { 1208 new_edges += find_field_value(field); 1209 // This code may added new edges to phantom_object. 1210 // Need an other cycle to propagate references to phantom_object. 1211 } 1212 } 1213 time.stop(); 1214 if (time.seconds() >= EscapeAnalysisTimeout) { 1215 timeout = true; 1216 break; 1217 } 1218 } else { 1219 new_edges = 0; // Bailout 1220 } 1221 } while (new_edges > 0); 1222 1223 // Bailout if passed limits. 1224 if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) { 1225 Compile* C = _compile; 1226 if (C->log() != NULL) { 1227 C->log()->begin_elem("connectionGraph_bailout reason='reached "); 1228 C->log()->text("%s", timeout ? "time" : "iterations"); 1229 C->log()->end_elem(" limit'"); 1230 } 1231 assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d", 1232 time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()); 1233 // Possible infinite build_connection_graph loop, 1234 // bailout (no changes to ideal graph were made). 1235 return false; 1236 } 1237 #ifdef ASSERT 1238 if (Verbose && PrintEscapeAnalysis) { 1239 tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d", 1240 iterations, nodes_size(), ptnodes_worklist.length()); 1241 } 1242 #endif 1243 1244 #undef CG_BUILD_ITER_LIMIT 1245 1246 // Find fields initialized by NULL for non-escaping Allocations. 1247 int non_escaped_length = non_escaped_worklist.length(); 1248 for (int next = 0; next < non_escaped_length; next++) { 1249 JavaObjectNode* ptn = non_escaped_worklist.at(next); 1250 PointsToNode::EscapeState es = ptn->escape_state(); 1251 assert(es <= PointsToNode::ArgEscape, "sanity"); 1252 if (es == PointsToNode::NoEscape) { 1253 if (find_init_values(ptn, null_obj, _igvn) > 0) { 1254 // Adding references to NULL object does not change escape states 1255 // since it does not escape. Also no fields are added to NULL object. 1256 add_java_object_edges(null_obj, false); 1257 } 1258 } 1259 Node* n = ptn->ideal_node(); 1260 if (n->is_Allocate()) { 1261 // The object allocated by this Allocate node will never be 1262 // seen by an other thread. Mark it so that when it is 1263 // expanded no MemBarStoreStore is added. 1264 InitializeNode* ini = n->as_Allocate()->initialization(); 1265 if (ini != NULL) 1266 ini->set_does_not_escape(); 1267 } 1268 } 1269 return true; // Finished graph construction. 1270 } 1271 1272 // Propagate GlobalEscape and ArgEscape escape states to all nodes 1273 // and check that we still have non-escaping java objects. 1274 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist, 1275 GrowableArray<JavaObjectNode*>& non_escaped_worklist) { 1276 GrowableArray<PointsToNode*> escape_worklist; 1277 // First, put all nodes with GlobalEscape and ArgEscape states on worklist. 1278 int ptnodes_length = ptnodes_worklist.length(); 1279 for (int next = 0; next < ptnodes_length; ++next) { 1280 PointsToNode* ptn = ptnodes_worklist.at(next); 1281 if (ptn->escape_state() >= PointsToNode::ArgEscape || 1282 ptn->fields_escape_state() >= PointsToNode::ArgEscape) { 1283 escape_worklist.push(ptn); 1284 } 1285 } 1286 // Set escape states to referenced nodes (edges list). 1287 while (escape_worklist.length() > 0) { 1288 PointsToNode* ptn = escape_worklist.pop(); 1289 PointsToNode::EscapeState es = ptn->escape_state(); 1290 PointsToNode::EscapeState field_es = ptn->fields_escape_state(); 1291 if (ptn->is_Field() && ptn->as_Field()->is_oop() && 1292 es >= PointsToNode::ArgEscape) { 1293 // GlobalEscape or ArgEscape state of field means it has unknown value. 1294 if (add_edge(ptn, phantom_obj)) { 1295 // New edge was added 1296 add_field_uses_to_worklist(ptn->as_Field()); 1297 } 1298 } 1299 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 1300 PointsToNode* e = i.get(); 1301 if (e->is_Arraycopy()) { 1302 assert(ptn->arraycopy_dst(), "sanity"); 1303 // Propagate only fields escape state through arraycopy edge. 1304 if (e->fields_escape_state() < field_es) { 1305 set_fields_escape_state(e, field_es); 1306 escape_worklist.push(e); 1307 } 1308 } else if (es >= field_es) { 1309 // fields_escape_state is also set to 'es' if it is less than 'es'. 1310 if (e->escape_state() < es) { 1311 set_escape_state(e, es); 1312 escape_worklist.push(e); 1313 } 1314 } else { 1315 // Propagate field escape state. 1316 bool es_changed = false; 1317 if (e->fields_escape_state() < field_es) { 1318 set_fields_escape_state(e, field_es); 1319 es_changed = true; 1320 } 1321 if ((e->escape_state() < field_es) && 1322 e->is_Field() && ptn->is_JavaObject() && 1323 e->as_Field()->is_oop()) { 1324 // Change escape state of referenced fields. 1325 set_escape_state(e, field_es); 1326 es_changed = true; 1327 } else if (e->escape_state() < es) { 1328 set_escape_state(e, es); 1329 es_changed = true; 1330 } 1331 if (es_changed) { 1332 escape_worklist.push(e); 1333 } 1334 } 1335 } 1336 } 1337 // Remove escaped objects from non_escaped list. 1338 for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) { 1339 JavaObjectNode* ptn = non_escaped_worklist.at(next); 1340 if (ptn->escape_state() >= PointsToNode::GlobalEscape) { 1341 non_escaped_worklist.delete_at(next); 1342 } 1343 if (ptn->escape_state() == PointsToNode::NoEscape) { 1344 // Find fields in non-escaped allocations which have unknown value. 1345 find_init_values(ptn, phantom_obj, NULL); 1346 } 1347 } 1348 return (non_escaped_worklist.length() > 0); 1349 } 1350 1351 // Add all references to JavaObject node by walking over all uses. 1352 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) { 1353 int new_edges = 0; 1354 if (populate_worklist) { 1355 // Populate _worklist by uses of jobj's uses. 1356 for (UseIterator i(jobj); i.has_next(); i.next()) { 1357 PointsToNode* use = i.get(); 1358 if (use->is_Arraycopy()) 1359 continue; 1360 add_uses_to_worklist(use); 1361 if (use->is_Field() && use->as_Field()->is_oop()) { 1362 // Put on worklist all field's uses (loads) and 1363 // related field nodes (same base and offset). 1364 add_field_uses_to_worklist(use->as_Field()); 1365 } 1366 } 1367 } 1368 for (int l = 0; l < _worklist.length(); l++) { 1369 PointsToNode* use = _worklist.at(l); 1370 if (PointsToNode::is_base_use(use)) { 1371 // Add reference from jobj to field and from field to jobj (field's base). 1372 use = PointsToNode::get_use_node(use)->as_Field(); 1373 if (add_base(use->as_Field(), jobj)) { 1374 new_edges++; 1375 } 1376 continue; 1377 } 1378 assert(!use->is_JavaObject(), "sanity"); 1379 if (use->is_Arraycopy()) { 1380 if (jobj == null_obj) // NULL object does not have field edges 1381 continue; 1382 // Added edge from Arraycopy node to arraycopy's source java object 1383 if (add_edge(use, jobj)) { 1384 jobj->set_arraycopy_src(); 1385 new_edges++; 1386 } 1387 // and stop here. 1388 continue; 1389 } 1390 if (!add_edge(use, jobj)) 1391 continue; // No new edge added, there was such edge already. 1392 new_edges++; 1393 if (use->is_LocalVar()) { 1394 add_uses_to_worklist(use); 1395 if (use->arraycopy_dst()) { 1396 for (EdgeIterator i(use); i.has_next(); i.next()) { 1397 PointsToNode* e = i.get(); 1398 if (e->is_Arraycopy()) { 1399 if (jobj == null_obj) // NULL object does not have field edges 1400 continue; 1401 // Add edge from arraycopy's destination java object to Arraycopy node. 1402 if (add_edge(jobj, e)) { 1403 new_edges++; 1404 jobj->set_arraycopy_dst(); 1405 } 1406 } 1407 } 1408 } 1409 } else { 1410 // Added new edge to stored in field values. 1411 // Put on worklist all field's uses (loads) and 1412 // related field nodes (same base and offset). 1413 add_field_uses_to_worklist(use->as_Field()); 1414 } 1415 } 1416 _worklist.clear(); 1417 _in_worklist.Reset(); 1418 return new_edges; 1419 } 1420 1421 // Put on worklist all related field nodes. 1422 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) { 1423 assert(field->is_oop(), "sanity"); 1424 int offset = field->offset(); 1425 add_uses_to_worklist(field); 1426 // Loop over all bases of this field and push on worklist Field nodes 1427 // with the same offset and base (since they may reference the same field). 1428 for (BaseIterator i(field); i.has_next(); i.next()) { 1429 PointsToNode* base = i.get(); 1430 add_fields_to_worklist(field, base); 1431 // Check if the base was source object of arraycopy and go over arraycopy's 1432 // destination objects since values stored to a field of source object are 1433 // accessable by uses (loads) of fields of destination objects. 1434 if (base->arraycopy_src()) { 1435 for (UseIterator j(base); j.has_next(); j.next()) { 1436 PointsToNode* arycp = j.get(); 1437 if (arycp->is_Arraycopy()) { 1438 for (UseIterator k(arycp); k.has_next(); k.next()) { 1439 PointsToNode* abase = k.get(); 1440 if (abase->arraycopy_dst() && abase != base) { 1441 // Look for the same arraycopy reference. 1442 add_fields_to_worklist(field, abase); 1443 } 1444 } 1445 } 1446 } 1447 } 1448 } 1449 } 1450 1451 // Put on worklist all related field nodes. 1452 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) { 1453 int offset = field->offset(); 1454 if (base->is_LocalVar()) { 1455 for (UseIterator j(base); j.has_next(); j.next()) { 1456 PointsToNode* f = j.get(); 1457 if (PointsToNode::is_base_use(f)) { // Field 1458 f = PointsToNode::get_use_node(f); 1459 if (f == field || !f->as_Field()->is_oop()) 1460 continue; 1461 int offs = f->as_Field()->offset(); 1462 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) { 1463 add_to_worklist(f); 1464 } 1465 } 1466 } 1467 } else { 1468 assert(base->is_JavaObject(), "sanity"); 1469 if (// Skip phantom_object since it is only used to indicate that 1470 // this field's content globally escapes. 1471 (base != phantom_obj) && 1472 // NULL object node does not have fields. 1473 (base != null_obj)) { 1474 for (EdgeIterator i(base); i.has_next(); i.next()) { 1475 PointsToNode* f = i.get(); 1476 // Skip arraycopy edge since store to destination object field 1477 // does not update value in source object field. 1478 if (f->is_Arraycopy()) { 1479 assert(base->arraycopy_dst(), "sanity"); 1480 continue; 1481 } 1482 if (f == field || !f->as_Field()->is_oop()) 1483 continue; 1484 int offs = f->as_Field()->offset(); 1485 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) { 1486 add_to_worklist(f); 1487 } 1488 } 1489 } 1490 } 1491 } 1492 1493 // Find fields which have unknown value. 1494 int ConnectionGraph::find_field_value(FieldNode* field) { 1495 // Escaped fields should have init value already. 1496 assert(field->escape_state() == PointsToNode::NoEscape, "sanity"); 1497 int new_edges = 0; 1498 for (BaseIterator i(field); i.has_next(); i.next()) { 1499 PointsToNode* base = i.get(); 1500 if (base->is_JavaObject()) { 1501 // Skip Allocate's fields which will be processed later. 1502 if (base->ideal_node()->is_Allocate()) 1503 return 0; 1504 assert(base == null_obj, "only NULL ptr base expected here"); 1505 } 1506 } 1507 if (add_edge(field, phantom_obj)) { 1508 // New edge was added 1509 new_edges++; 1510 add_field_uses_to_worklist(field); 1511 } 1512 return new_edges; 1513 } 1514 1515 // Find fields initializing values for allocations. 1516 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) { 1517 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only"); 1518 int new_edges = 0; 1519 Node* alloc = pta->ideal_node(); 1520 if (init_val == phantom_obj) { 1521 // Do nothing for Allocate nodes since its fields values are 1522 // "known" unless they are initialized by arraycopy/clone. 1523 if (alloc->is_Allocate() && !pta->arraycopy_dst()) 1524 return 0; 1525 assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity"); 1526 #ifdef ASSERT 1527 if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) { 1528 const char* name = alloc->as_CallStaticJava()->_name; 1529 assert(strncmp(name, "_multianewarray", 15) == 0, "sanity"); 1530 } 1531 #endif 1532 // Non-escaped allocation returned from Java or runtime call have 1533 // unknown values in fields. 1534 for (EdgeIterator i(pta); i.has_next(); i.next()) { 1535 PointsToNode* field = i.get(); 1536 if (field->is_Field() && field->as_Field()->is_oop()) { 1537 if (add_edge(field, phantom_obj)) { 1538 // New edge was added 1539 new_edges++; 1540 add_field_uses_to_worklist(field->as_Field()); 1541 } 1542 } 1543 } 1544 return new_edges; 1545 } 1546 assert(init_val == null_obj, "sanity"); 1547 // Do nothing for Call nodes since its fields values are unknown. 1548 if (!alloc->is_Allocate()) 1549 return 0; 1550 1551 InitializeNode* ini = alloc->as_Allocate()->initialization(); 1552 bool visited_bottom_offset = false; 1553 GrowableArray<int> offsets_worklist; 1554 1555 // Check if an oop field's initializing value is recorded and add 1556 // a corresponding NULL if field's value if it is not recorded. 1557 // Connection Graph does not record a default initialization by NULL 1558 // captured by Initialize node. 1559 // 1560 for (EdgeIterator i(pta); i.has_next(); i.next()) { 1561 PointsToNode* field = i.get(); // Field (AddP) 1562 if (!field->is_Field() || !field->as_Field()->is_oop()) 1563 continue; // Not oop field 1564 int offset = field->as_Field()->offset(); 1565 if (offset == Type::OffsetBot) { 1566 if (!visited_bottom_offset) { 1567 // OffsetBot is used to reference array's element, 1568 // always add reference to NULL to all Field nodes since we don't 1569 // known which element is referenced. 1570 if (add_edge(field, null_obj)) { 1571 // New edge was added 1572 new_edges++; 1573 add_field_uses_to_worklist(field->as_Field()); 1574 visited_bottom_offset = true; 1575 } 1576 } 1577 } else { 1578 // Check only oop fields. 1579 const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type(); 1580 if (adr_type->isa_rawptr()) { 1581 #ifdef ASSERT 1582 // Raw pointers are used for initializing stores so skip it 1583 // since it should be recorded already 1584 Node* base = get_addp_base(field->ideal_node()); 1585 assert(adr_type->isa_rawptr() && base->is_Proj() && 1586 (base->in(0) == alloc),"unexpected pointer type"); 1587 #endif 1588 continue; 1589 } 1590 if (!offsets_worklist.contains(offset)) { 1591 offsets_worklist.append(offset); 1592 Node* value = NULL; 1593 if (ini != NULL) { 1594 // StoreP::memory_type() == T_ADDRESS 1595 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS; 1596 Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase); 1597 // Make sure initializing store has the same type as this AddP. 1598 // This AddP may reference non existing field because it is on a 1599 // dead branch of bimorphic call which is not eliminated yet. 1600 if (store != NULL && store->is_Store() && 1601 store->as_Store()->memory_type() == ft) { 1602 value = store->in(MemNode::ValueIn); 1603 #ifdef ASSERT 1604 if (VerifyConnectionGraph) { 1605 // Verify that AddP already points to all objects the value points to. 1606 PointsToNode* val = ptnode_adr(value->_idx); 1607 assert((val != NULL), "should be processed already"); 1608 PointsToNode* missed_obj = NULL; 1609 if (val->is_JavaObject()) { 1610 if (!field->points_to(val->as_JavaObject())) { 1611 missed_obj = val; 1612 } 1613 } else { 1614 if (!val->is_LocalVar() || (val->edge_count() == 0)) { 1615 tty->print_cr("----------init store has invalid value -----"); 1616 store->dump(); 1617 val->dump(); 1618 assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already"); 1619 } 1620 for (EdgeIterator j(val); j.has_next(); j.next()) { 1621 PointsToNode* obj = j.get(); 1622 if (obj->is_JavaObject()) { 1623 if (!field->points_to(obj->as_JavaObject())) { 1624 missed_obj = obj; 1625 break; 1626 } 1627 } 1628 } 1629 } 1630 if (missed_obj != NULL) { 1631 tty->print_cr("----------field---------------------------------"); 1632 field->dump(); 1633 tty->print_cr("----------missed referernce to object-----------"); 1634 missed_obj->dump(); 1635 tty->print_cr("----------object referernced by init store -----"); 1636 store->dump(); 1637 val->dump(); 1638 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference"); 1639 } 1640 } 1641 #endif 1642 } else { 1643 // There could be initializing stores which follow allocation. 1644 // For example, a volatile field store is not collected 1645 // by Initialize node. 1646 // 1647 // Need to check for dependent loads to separate such stores from 1648 // stores which follow loads. For now, add initial value NULL so 1649 // that compare pointers optimization works correctly. 1650 } 1651 } 1652 if (value == NULL) { 1653 // A field's initializing value was not recorded. Add NULL. 1654 if (add_edge(field, null_obj)) { 1655 // New edge was added 1656 new_edges++; 1657 add_field_uses_to_worklist(field->as_Field()); 1658 } 1659 } 1660 } 1661 } 1662 } 1663 return new_edges; 1664 } 1665 1666 // Adjust scalar_replaceable state after Connection Graph is built. 1667 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) { 1668 // Search for non-escaping objects which are not scalar replaceable 1669 // and mark them to propagate the state to referenced objects. 1670 1671 // 1. An object is not scalar replaceable if the field into which it is 1672 // stored has unknown offset (stored into unknown element of an array). 1673 // 1674 for (UseIterator i(jobj); i.has_next(); i.next()) { 1675 PointsToNode* use = i.get(); 1676 if (use->is_Arraycopy()) { 1677 continue; 1678 } 1679 if (use->is_Field()) { 1680 FieldNode* field = use->as_Field(); 1681 assert(field->is_oop() && field->scalar_replaceable(), "sanity"); 1682 if (field->offset() == Type::OffsetBot) { 1683 jobj->set_scalar_replaceable(false); 1684 return; 1685 } 1686 // 2. An object is not scalar replaceable if the field into which it is 1687 // stored has multiple bases one of which is null. 1688 if (field->base_count() > 1) { 1689 for (BaseIterator i(field); i.has_next(); i.next()) { 1690 PointsToNode* base = i.get(); 1691 if (base == null_obj) { 1692 jobj->set_scalar_replaceable(false); 1693 return; 1694 } 1695 } 1696 } 1697 } 1698 assert(use->is_Field() || use->is_LocalVar(), "sanity"); 1699 // 3. An object is not scalar replaceable if it is merged with other objects. 1700 for (EdgeIterator j(use); j.has_next(); j.next()) { 1701 PointsToNode* ptn = j.get(); 1702 if (ptn->is_JavaObject() && ptn != jobj) { 1703 // Mark all objects. 1704 jobj->set_scalar_replaceable(false); 1705 ptn->set_scalar_replaceable(false); 1706 } 1707 } 1708 if (!jobj->scalar_replaceable()) { 1709 return; 1710 } 1711 } 1712 1713 for (EdgeIterator j(jobj); j.has_next(); j.next()) { 1714 if (j.get()->is_Arraycopy()) { 1715 continue; 1716 } 1717 1718 // Non-escaping object node should point only to field nodes. 1719 FieldNode* field = j.get()->as_Field(); 1720 int offset = field->as_Field()->offset(); 1721 1722 // 4. An object is not scalar replaceable if it has a field with unknown 1723 // offset (array's element is accessed in loop). 1724 if (offset == Type::OffsetBot) { 1725 jobj->set_scalar_replaceable(false); 1726 return; 1727 } 1728 // 5. Currently an object is not scalar replaceable if a LoadStore node 1729 // access its field since the field value is unknown after it. 1730 // 1731 Node* n = field->ideal_node(); 1732 1733 // Test for an unsafe access that was parsed as maybe off heap 1734 // (with a CheckCastPP to raw memory). 1735 assert(n->is_AddP(), "expect an address computation"); 1736 if (n->in(AddPNode::Base)->is_top() && 1737 n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) { 1738 assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected"); 1739 assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected"); 1740 jobj->set_scalar_replaceable(false); 1741 return; 1742 } 1743 1744 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1745 Node* u = n->fast_out(i); 1746 if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) { 1747 jobj->set_scalar_replaceable(false); 1748 return; 1749 } 1750 } 1751 1752 // 6. Or the address may point to more then one object. This may produce 1753 // the false positive result (set not scalar replaceable) 1754 // since the flow-insensitive escape analysis can't separate 1755 // the case when stores overwrite the field's value from the case 1756 // when stores happened on different control branches. 1757 // 1758 // Note: it will disable scalar replacement in some cases: 1759 // 1760 // Point p[] = new Point[1]; 1761 // p[0] = new Point(); // Will be not scalar replaced 1762 // 1763 // but it will save us from incorrect optimizations in next cases: 1764 // 1765 // Point p[] = new Point[1]; 1766 // if ( x ) p[0] = new Point(); // Will be not scalar replaced 1767 // 1768 if (field->base_count() > 1) { 1769 for (BaseIterator i(field); i.has_next(); i.next()) { 1770 PointsToNode* base = i.get(); 1771 // Don't take into account LocalVar nodes which 1772 // may point to only one object which should be also 1773 // this field's base by now. 1774 if (base->is_JavaObject() && base != jobj) { 1775 // Mark all bases. 1776 jobj->set_scalar_replaceable(false); 1777 base->set_scalar_replaceable(false); 1778 } 1779 } 1780 } 1781 } 1782 } 1783 1784 #ifdef ASSERT 1785 void ConnectionGraph::verify_connection_graph( 1786 GrowableArray<PointsToNode*>& ptnodes_worklist, 1787 GrowableArray<JavaObjectNode*>& non_escaped_worklist, 1788 GrowableArray<JavaObjectNode*>& java_objects_worklist, 1789 GrowableArray<Node*>& addp_worklist) { 1790 // Verify that graph is complete - no new edges could be added. 1791 int java_objects_length = java_objects_worklist.length(); 1792 int non_escaped_length = non_escaped_worklist.length(); 1793 int new_edges = 0; 1794 for (int next = 0; next < java_objects_length; ++next) { 1795 JavaObjectNode* ptn = java_objects_worklist.at(next); 1796 new_edges += add_java_object_edges(ptn, true); 1797 } 1798 assert(new_edges == 0, "graph was not complete"); 1799 // Verify that escape state is final. 1800 int length = non_escaped_worklist.length(); 1801 find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist); 1802 assert((non_escaped_length == non_escaped_worklist.length()) && 1803 (non_escaped_length == length) && 1804 (_worklist.length() == 0), "escape state was not final"); 1805 1806 // Verify fields information. 1807 int addp_length = addp_worklist.length(); 1808 for (int next = 0; next < addp_length; ++next ) { 1809 Node* n = addp_worklist.at(next); 1810 FieldNode* field = ptnode_adr(n->_idx)->as_Field(); 1811 if (field->is_oop()) { 1812 // Verify that field has all bases 1813 Node* base = get_addp_base(n); 1814 PointsToNode* ptn = ptnode_adr(base->_idx); 1815 if (ptn->is_JavaObject()) { 1816 assert(field->has_base(ptn->as_JavaObject()), "sanity"); 1817 } else { 1818 assert(ptn->is_LocalVar(), "sanity"); 1819 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 1820 PointsToNode* e = i.get(); 1821 if (e->is_JavaObject()) { 1822 assert(field->has_base(e->as_JavaObject()), "sanity"); 1823 } 1824 } 1825 } 1826 // Verify that all fields have initializing values. 1827 if (field->edge_count() == 0) { 1828 tty->print_cr("----------field does not have references----------"); 1829 field->dump(); 1830 for (BaseIterator i(field); i.has_next(); i.next()) { 1831 PointsToNode* base = i.get(); 1832 tty->print_cr("----------field has next base---------------------"); 1833 base->dump(); 1834 if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) { 1835 tty->print_cr("----------base has fields-------------------------"); 1836 for (EdgeIterator j(base); j.has_next(); j.next()) { 1837 j.get()->dump(); 1838 } 1839 tty->print_cr("----------base has references---------------------"); 1840 for (UseIterator j(base); j.has_next(); j.next()) { 1841 j.get()->dump(); 1842 } 1843 } 1844 } 1845 for (UseIterator i(field); i.has_next(); i.next()) { 1846 i.get()->dump(); 1847 } 1848 assert(field->edge_count() > 0, "sanity"); 1849 } 1850 } 1851 } 1852 } 1853 #endif 1854 1855 // Optimize ideal graph. 1856 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist, 1857 GrowableArray<Node*>& storestore_worklist) { 1858 Compile* C = _compile; 1859 PhaseIterGVN* igvn = _igvn; 1860 if (EliminateLocks) { 1861 // Mark locks before changing ideal graph. 1862 int cnt = C->macro_count(); 1863 for( int i=0; i < cnt; i++ ) { 1864 Node *n = C->macro_node(i); 1865 if (n->is_AbstractLock()) { // Lock and Unlock nodes 1866 AbstractLockNode* alock = n->as_AbstractLock(); 1867 if (!alock->is_non_esc_obj()) { 1868 if (not_global_escape(alock->obj_node())) { 1869 assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity"); 1870 // The lock could be marked eliminated by lock coarsening 1871 // code during first IGVN before EA. Replace coarsened flag 1872 // to eliminate all associated locks/unlocks. 1873 #ifdef ASSERT 1874 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3"); 1875 #endif 1876 alock->set_non_esc_obj(); 1877 } 1878 } 1879 } 1880 } 1881 } 1882 1883 if (OptimizePtrCompare) { 1884 // Add ConI(#CC_GT) and ConI(#CC_EQ). 1885 _pcmp_neq = igvn->makecon(TypeInt::CC_GT); 1886 _pcmp_eq = igvn->makecon(TypeInt::CC_EQ); 1887 // Optimize objects compare. 1888 while (ptr_cmp_worklist.length() != 0) { 1889 Node *n = ptr_cmp_worklist.pop(); 1890 Node *res = optimize_ptr_compare(n); 1891 if (res != NULL) { 1892 #ifndef PRODUCT 1893 if (PrintOptimizePtrCompare) { 1894 tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ")); 1895 if (Verbose) { 1896 n->dump(1); 1897 } 1898 } 1899 #endif 1900 igvn->replace_node(n, res); 1901 } 1902 } 1903 // cleanup 1904 if (_pcmp_neq->outcnt() == 0) 1905 igvn->hash_delete(_pcmp_neq); 1906 if (_pcmp_eq->outcnt() == 0) 1907 igvn->hash_delete(_pcmp_eq); 1908 } 1909 1910 // For MemBarStoreStore nodes added in library_call.cpp, check 1911 // escape status of associated AllocateNode and optimize out 1912 // MemBarStoreStore node if the allocated object never escapes. 1913 while (storestore_worklist.length() != 0) { 1914 Node *n = storestore_worklist.pop(); 1915 MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore(); 1916 Node *alloc = storestore->in(MemBarNode::Precedent)->in(0); 1917 assert (alloc->is_Allocate(), "storestore should point to AllocateNode"); 1918 if (not_global_escape(alloc)) { 1919 MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot); 1920 mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory)); 1921 mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control)); 1922 igvn->register_new_node_with_optimizer(mb); 1923 igvn->replace_node(storestore, mb); 1924 } 1925 } 1926 } 1927 1928 // Optimize objects compare. 1929 Node* ConnectionGraph::optimize_ptr_compare(Node* n) { 1930 assert(OptimizePtrCompare, "sanity"); 1931 PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx); 1932 PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx); 1933 JavaObjectNode* jobj1 = unique_java_object(n->in(1)); 1934 JavaObjectNode* jobj2 = unique_java_object(n->in(2)); 1935 assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity"); 1936 assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity"); 1937 1938 // Check simple cases first. 1939 if (jobj1 != NULL) { 1940 if (jobj1->escape_state() == PointsToNode::NoEscape) { 1941 if (jobj1 == jobj2) { 1942 // Comparing the same not escaping object. 1943 return _pcmp_eq; 1944 } 1945 Node* obj = jobj1->ideal_node(); 1946 // Comparing not escaping allocation. 1947 if ((obj->is_Allocate() || obj->is_CallStaticJava()) && 1948 !ptn2->points_to(jobj1)) { 1949 return _pcmp_neq; // This includes nullness check. 1950 } 1951 } 1952 } 1953 if (jobj2 != NULL) { 1954 if (jobj2->escape_state() == PointsToNode::NoEscape) { 1955 Node* obj = jobj2->ideal_node(); 1956 // Comparing not escaping allocation. 1957 if ((obj->is_Allocate() || obj->is_CallStaticJava()) && 1958 !ptn1->points_to(jobj2)) { 1959 return _pcmp_neq; // This includes nullness check. 1960 } 1961 } 1962 } 1963 if (jobj1 != NULL && jobj1 != phantom_obj && 1964 jobj2 != NULL && jobj2 != phantom_obj && 1965 jobj1->ideal_node()->is_Con() && 1966 jobj2->ideal_node()->is_Con()) { 1967 // Klass or String constants compare. Need to be careful with 1968 // compressed pointers - compare types of ConN and ConP instead of nodes. 1969 const Type* t1 = jobj1->ideal_node()->get_ptr_type(); 1970 const Type* t2 = jobj2->ideal_node()->get_ptr_type(); 1971 if (t1->make_ptr() == t2->make_ptr()) { 1972 return _pcmp_eq; 1973 } else { 1974 return _pcmp_neq; 1975 } 1976 } 1977 if (ptn1->meet(ptn2)) { 1978 return NULL; // Sets are not disjoint 1979 } 1980 1981 // Sets are disjoint. 1982 bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj); 1983 bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj); 1984 bool set1_has_null_ptr = ptn1->points_to(null_obj); 1985 bool set2_has_null_ptr = ptn2->points_to(null_obj); 1986 if ((set1_has_unknown_ptr && set2_has_null_ptr) || 1987 (set2_has_unknown_ptr && set1_has_null_ptr)) { 1988 // Check nullness of unknown object. 1989 return NULL; 1990 } 1991 1992 // Disjointness by itself is not sufficient since 1993 // alias analysis is not complete for escaped objects. 1994 // Disjoint sets are definitely unrelated only when 1995 // at least one set has only not escaping allocations. 1996 if (!set1_has_unknown_ptr && !set1_has_null_ptr) { 1997 if (ptn1->non_escaping_allocation()) { 1998 return _pcmp_neq; 1999 } 2000 } 2001 if (!set2_has_unknown_ptr && !set2_has_null_ptr) { 2002 if (ptn2->non_escaping_allocation()) { 2003 return _pcmp_neq; 2004 } 2005 } 2006 return NULL; 2007 } 2008 2009 // Connection Graph constuction functions. 2010 2011 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) { 2012 PointsToNode* ptadr = _nodes.at(n->_idx); 2013 if (ptadr != NULL) { 2014 assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity"); 2015 return; 2016 } 2017 Compile* C = _compile; 2018 ptadr = new (C->comp_arena()) LocalVarNode(this, n, es); 2019 _nodes.at_put(n->_idx, ptadr); 2020 } 2021 2022 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) { 2023 PointsToNode* ptadr = _nodes.at(n->_idx); 2024 if (ptadr != NULL) { 2025 assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity"); 2026 return; 2027 } 2028 Compile* C = _compile; 2029 ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es); 2030 _nodes.at_put(n->_idx, ptadr); 2031 } 2032 2033 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) { 2034 PointsToNode* ptadr = _nodes.at(n->_idx); 2035 if (ptadr != NULL) { 2036 assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity"); 2037 return; 2038 } 2039 bool unsafe = false; 2040 bool is_oop = is_oop_field(n, offset, &unsafe); 2041 if (unsafe) { 2042 es = PointsToNode::GlobalEscape; 2043 } 2044 Compile* C = _compile; 2045 FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop); 2046 _nodes.at_put(n->_idx, field); 2047 } 2048 2049 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es, 2050 PointsToNode* src, PointsToNode* dst) { 2051 assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar"); 2052 assert((src != null_obj) && (dst != null_obj), "not for ConP NULL"); 2053 PointsToNode* ptadr = _nodes.at(n->_idx); 2054 if (ptadr != NULL) { 2055 assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity"); 2056 return; 2057 } 2058 Compile* C = _compile; 2059 ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es); 2060 _nodes.at_put(n->_idx, ptadr); 2061 // Add edge from arraycopy node to source object. 2062 (void)add_edge(ptadr, src); 2063 src->set_arraycopy_src(); 2064 // Add edge from destination object to arraycopy node. 2065 (void)add_edge(dst, ptadr); 2066 dst->set_arraycopy_dst(); 2067 } 2068 2069 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) { 2070 const Type* adr_type = n->as_AddP()->bottom_type(); 2071 BasicType bt = T_INT; 2072 if (offset == Type::OffsetBot) { 2073 // Check only oop fields. 2074 if (!adr_type->isa_aryptr() || 2075 (adr_type->isa_aryptr()->klass() == NULL) || 2076 adr_type->isa_aryptr()->klass()->is_obj_array_klass()) { 2077 // OffsetBot is used to reference array's element. Ignore first AddP. 2078 if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) { 2079 bt = T_OBJECT; 2080 } 2081 } 2082 } else if (offset != oopDesc::klass_offset_in_bytes()) { 2083 if (adr_type->isa_instptr()) { 2084 ciField* field = _compile->alias_type(adr_type->isa_instptr())->field(); 2085 if (field != NULL) { 2086 bt = field->layout_type(); 2087 } else { 2088 // Check for unsafe oop field access 2089 if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) || 2090 n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) || 2091 n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) || 2092 BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) { 2093 bt = T_OBJECT; 2094 (*unsafe) = true; 2095 } 2096 } 2097 } else if (adr_type->isa_aryptr()) { 2098 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2099 // Ignore array length load. 2100 } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) { 2101 // Ignore first AddP. 2102 } else { 2103 const Type* elemtype = adr_type->isa_aryptr()->elem(); 2104 bt = elemtype->array_element_basic_type(); 2105 } 2106 } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) { 2107 // Allocation initialization, ThreadLocal field access, unsafe access 2108 if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) || 2109 n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) || 2110 n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) || 2111 BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) { 2112 bt = T_OBJECT; 2113 } 2114 } 2115 } 2116 // Note: T_NARROWOOP is not classed as a real reference type 2117 return (is_reference_type(bt) || bt == T_NARROWOOP); 2118 } 2119 2120 // Returns unique pointed java object or NULL. 2121 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) { 2122 assert(!_collecting, "should not call when contructed graph"); 2123 // If the node was created after the escape computation we can't answer. 2124 uint idx = n->_idx; 2125 if (idx >= nodes_size()) { 2126 return NULL; 2127 } 2128 PointsToNode* ptn = ptnode_adr(idx); 2129 if (ptn == NULL) { 2130 return NULL; 2131 } 2132 if (ptn->is_JavaObject()) { 2133 return ptn->as_JavaObject(); 2134 } 2135 assert(ptn->is_LocalVar(), "sanity"); 2136 // Check all java objects it points to. 2137 JavaObjectNode* jobj = NULL; 2138 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 2139 PointsToNode* e = i.get(); 2140 if (e->is_JavaObject()) { 2141 if (jobj == NULL) { 2142 jobj = e->as_JavaObject(); 2143 } else if (jobj != e) { 2144 return NULL; 2145 } 2146 } 2147 } 2148 return jobj; 2149 } 2150 2151 // Return true if this node points only to non-escaping allocations. 2152 bool PointsToNode::non_escaping_allocation() { 2153 if (is_JavaObject()) { 2154 Node* n = ideal_node(); 2155 if (n->is_Allocate() || n->is_CallStaticJava()) { 2156 return (escape_state() == PointsToNode::NoEscape); 2157 } else { 2158 return false; 2159 } 2160 } 2161 assert(is_LocalVar(), "sanity"); 2162 // Check all java objects it points to. 2163 for (EdgeIterator i(this); i.has_next(); i.next()) { 2164 PointsToNode* e = i.get(); 2165 if (e->is_JavaObject()) { 2166 Node* n = e->ideal_node(); 2167 if ((e->escape_state() != PointsToNode::NoEscape) || 2168 !(n->is_Allocate() || n->is_CallStaticJava())) { 2169 return false; 2170 } 2171 } 2172 } 2173 return true; 2174 } 2175 2176 // Return true if we know the node does not escape globally. 2177 bool ConnectionGraph::not_global_escape(Node *n) { 2178 assert(!_collecting, "should not call during graph construction"); 2179 // If the node was created after the escape computation we can't answer. 2180 uint idx = n->_idx; 2181 if (idx >= nodes_size()) { 2182 return false; 2183 } 2184 PointsToNode* ptn = ptnode_adr(idx); 2185 if (ptn == NULL) { 2186 return false; // not in congraph (e.g. ConI) 2187 } 2188 PointsToNode::EscapeState es = ptn->escape_state(); 2189 // If we have already computed a value, return it. 2190 if (es >= PointsToNode::GlobalEscape) 2191 return false; 2192 if (ptn->is_JavaObject()) { 2193 return true; // (es < PointsToNode::GlobalEscape); 2194 } 2195 assert(ptn->is_LocalVar(), "sanity"); 2196 // Check all java objects it points to. 2197 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 2198 if (i.get()->escape_state() >= PointsToNode::GlobalEscape) 2199 return false; 2200 } 2201 return true; 2202 } 2203 2204 2205 // Helper functions 2206 2207 // Return true if this node points to specified node or nodes it points to. 2208 bool PointsToNode::points_to(JavaObjectNode* ptn) const { 2209 if (is_JavaObject()) { 2210 return (this == ptn); 2211 } 2212 assert(is_LocalVar() || is_Field(), "sanity"); 2213 for (EdgeIterator i(this); i.has_next(); i.next()) { 2214 if (i.get() == ptn) 2215 return true; 2216 } 2217 return false; 2218 } 2219 2220 // Return true if one node points to an other. 2221 bool PointsToNode::meet(PointsToNode* ptn) { 2222 if (this == ptn) { 2223 return true; 2224 } else if (ptn->is_JavaObject()) { 2225 return this->points_to(ptn->as_JavaObject()); 2226 } else if (this->is_JavaObject()) { 2227 return ptn->points_to(this->as_JavaObject()); 2228 } 2229 assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity"); 2230 int ptn_count = ptn->edge_count(); 2231 for (EdgeIterator i(this); i.has_next(); i.next()) { 2232 PointsToNode* this_e = i.get(); 2233 for (int j = 0; j < ptn_count; j++) { 2234 if (this_e == ptn->edge(j)) 2235 return true; 2236 } 2237 } 2238 return false; 2239 } 2240 2241 #ifdef ASSERT 2242 // Return true if bases point to this java object. 2243 bool FieldNode::has_base(JavaObjectNode* jobj) const { 2244 for (BaseIterator i(this); i.has_next(); i.next()) { 2245 if (i.get() == jobj) 2246 return true; 2247 } 2248 return false; 2249 } 2250 #endif 2251 2252 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) { 2253 const Type *adr_type = phase->type(adr); 2254 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL && 2255 adr->in(AddPNode::Address)->is_Proj() && 2256 adr->in(AddPNode::Address)->in(0)->is_Allocate()) { 2257 // We are computing a raw address for a store captured by an Initialize 2258 // compute an appropriate address type. AddP cases #3 and #5 (see below). 2259 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 2260 assert(offs != Type::OffsetBot || 2261 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(), 2262 "offset must be a constant or it is initialization of array"); 2263 return offs; 2264 } 2265 const TypePtr *t_ptr = adr_type->isa_ptr(); 2266 assert(t_ptr != NULL, "must be a pointer type"); 2267 return t_ptr->offset(); 2268 } 2269 2270 Node* ConnectionGraph::get_addp_base(Node *addp) { 2271 assert(addp->is_AddP(), "must be AddP"); 2272 // 2273 // AddP cases for Base and Address inputs: 2274 // case #1. Direct object's field reference: 2275 // Allocate 2276 // | 2277 // Proj #5 ( oop result ) 2278 // | 2279 // CheckCastPP (cast to instance type) 2280 // | | 2281 // AddP ( base == address ) 2282 // 2283 // case #2. Indirect object's field reference: 2284 // Phi 2285 // | 2286 // CastPP (cast to instance type) 2287 // | | 2288 // AddP ( base == address ) 2289 // 2290 // case #3. Raw object's field reference for Initialize node: 2291 // Allocate 2292 // | 2293 // Proj #5 ( oop result ) 2294 // top | 2295 // \ | 2296 // AddP ( base == top ) 2297 // 2298 // case #4. Array's element reference: 2299 // {CheckCastPP | CastPP} 2300 // | | | 2301 // | AddP ( array's element offset ) 2302 // | | 2303 // AddP ( array's offset ) 2304 // 2305 // case #5. Raw object's field reference for arraycopy stub call: 2306 // The inline_native_clone() case when the arraycopy stub is called 2307 // after the allocation before Initialize and CheckCastPP nodes. 2308 // Allocate 2309 // | 2310 // Proj #5 ( oop result ) 2311 // | | 2312 // AddP ( base == address ) 2313 // 2314 // case #6. Constant Pool, ThreadLocal, CastX2P or 2315 // Raw object's field reference: 2316 // {ConP, ThreadLocal, CastX2P, raw Load} 2317 // top | 2318 // \ | 2319 // AddP ( base == top ) 2320 // 2321 // case #7. Klass's field reference. 2322 // LoadKlass 2323 // | | 2324 // AddP ( base == address ) 2325 // 2326 // case #8. narrow Klass's field reference. 2327 // LoadNKlass 2328 // | 2329 // DecodeN 2330 // | | 2331 // AddP ( base == address ) 2332 // 2333 // case #9. Mixed unsafe access 2334 // {instance} 2335 // | 2336 // CheckCastPP (raw) 2337 // top | 2338 // \ | 2339 // AddP ( base == top ) 2340 // 2341 Node *base = addp->in(AddPNode::Base); 2342 if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9. 2343 base = addp->in(AddPNode::Address); 2344 while (base->is_AddP()) { 2345 // Case #6 (unsafe access) may have several chained AddP nodes. 2346 assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only"); 2347 base = base->in(AddPNode::Address); 2348 } 2349 if (base->Opcode() == Op_CheckCastPP && 2350 base->bottom_type()->isa_rawptr() && 2351 _igvn->type(base->in(1))->isa_oopptr()) { 2352 base = base->in(1); // Case #9 2353 } else { 2354 Node* uncast_base = base->uncast(); 2355 int opcode = uncast_base->Opcode(); 2356 assert(opcode == Op_ConP || opcode == Op_ThreadLocal || 2357 opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() || 2358 (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) || 2359 (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity"); 2360 } 2361 } 2362 return base; 2363 } 2364 2365 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) { 2366 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes"); 2367 Node* addp2 = addp->raw_out(0); 2368 if (addp->outcnt() == 1 && addp2->is_AddP() && 2369 addp2->in(AddPNode::Base) == n && 2370 addp2->in(AddPNode::Address) == addp) { 2371 assert(addp->in(AddPNode::Base) == n, "expecting the same base"); 2372 // 2373 // Find array's offset to push it on worklist first and 2374 // as result process an array's element offset first (pushed second) 2375 // to avoid CastPP for the array's offset. 2376 // Otherwise the inserted CastPP (LocalVar) will point to what 2377 // the AddP (Field) points to. Which would be wrong since 2378 // the algorithm expects the CastPP has the same point as 2379 // as AddP's base CheckCastPP (LocalVar). 2380 // 2381 // ArrayAllocation 2382 // | 2383 // CheckCastPP 2384 // | 2385 // memProj (from ArrayAllocation CheckCastPP) 2386 // | || 2387 // | || Int (element index) 2388 // | || | ConI (log(element size)) 2389 // | || | / 2390 // | || LShift 2391 // | || / 2392 // | AddP (array's element offset) 2393 // | | 2394 // | | ConI (array's offset: #12(32-bits) or #24(64-bits)) 2395 // | / / 2396 // AddP (array's offset) 2397 // | 2398 // Load/Store (memory operation on array's element) 2399 // 2400 return addp2; 2401 } 2402 return NULL; 2403 } 2404 2405 // 2406 // Adjust the type and inputs of an AddP which computes the 2407 // address of a field of an instance 2408 // 2409 bool ConnectionGraph::split_AddP(Node *addp, Node *base) { 2410 PhaseGVN* igvn = _igvn; 2411 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr(); 2412 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr"); 2413 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr(); 2414 if (t == NULL) { 2415 // We are computing a raw address for a store captured by an Initialize 2416 // compute an appropriate address type (cases #3 and #5). 2417 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer"); 2418 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation"); 2419 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot); 2420 assert(offs != Type::OffsetBot, "offset must be a constant"); 2421 t = base_t->add_offset(offs)->is_oopptr(); 2422 } 2423 int inst_id = base_t->instance_id(); 2424 assert(!t->is_known_instance() || t->instance_id() == inst_id, 2425 "old type must be non-instance or match new type"); 2426 2427 // The type 't' could be subclass of 'base_t'. 2428 // As result t->offset() could be large then base_t's size and it will 2429 // cause the failure in add_offset() with narrow oops since TypeOopPtr() 2430 // constructor verifies correctness of the offset. 2431 // 2432 // It could happened on subclass's branch (from the type profiling 2433 // inlining) which was not eliminated during parsing since the exactness 2434 // of the allocation type was not propagated to the subclass type check. 2435 // 2436 // Or the type 't' could be not related to 'base_t' at all. 2437 // It could happened when CHA type is different from MDO type on a dead path 2438 // (for example, from instanceof check) which is not collapsed during parsing. 2439 // 2440 // Do nothing for such AddP node and don't process its users since 2441 // this code branch will go away. 2442 // 2443 if (!t->is_known_instance() && 2444 !base_t->klass()->is_subtype_of(t->klass())) { 2445 return false; // bail out 2446 } 2447 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr(); 2448 // Do NOT remove the next line: ensure a new alias index is allocated 2449 // for the instance type. Note: C++ will not remove it since the call 2450 // has side effect. 2451 int alias_idx = _compile->get_alias_index(tinst); 2452 igvn->set_type(addp, tinst); 2453 // record the allocation in the node map 2454 set_map(addp, get_map(base->_idx)); 2455 // Set addp's Base and Address to 'base'. 2456 Node *abase = addp->in(AddPNode::Base); 2457 Node *adr = addp->in(AddPNode::Address); 2458 if (adr->is_Proj() && adr->in(0)->is_Allocate() && 2459 adr->in(0)->_idx == (uint)inst_id) { 2460 // Skip AddP cases #3 and #5. 2461 } else { 2462 assert(!abase->is_top(), "sanity"); // AddP case #3 2463 if (abase != base) { 2464 igvn->hash_delete(addp); 2465 addp->set_req(AddPNode::Base, base); 2466 if (abase == adr) { 2467 addp->set_req(AddPNode::Address, base); 2468 } else { 2469 // AddP case #4 (adr is array's element offset AddP node) 2470 #ifdef ASSERT 2471 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr(); 2472 assert(adr->is_AddP() && atype != NULL && 2473 atype->instance_id() == inst_id, "array's element offset should be processed first"); 2474 #endif 2475 } 2476 igvn->hash_insert(addp); 2477 } 2478 } 2479 // Put on IGVN worklist since at least addp's type was changed above. 2480 record_for_optimizer(addp); 2481 return true; 2482 } 2483 2484 // 2485 // Create a new version of orig_phi if necessary. Returns either the newly 2486 // created phi or an existing phi. Sets create_new to indicate whether a new 2487 // phi was created. Cache the last newly created phi in the node map. 2488 // 2489 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, bool &new_created) { 2490 Compile *C = _compile; 2491 PhaseGVN* igvn = _igvn; 2492 new_created = false; 2493 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type()); 2494 // nothing to do if orig_phi is bottom memory or matches alias_idx 2495 if (phi_alias_idx == alias_idx) { 2496 return orig_phi; 2497 } 2498 // Have we recently created a Phi for this alias index? 2499 PhiNode *result = get_map_phi(orig_phi->_idx); 2500 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) { 2501 return result; 2502 } 2503 // Previous check may fail when the same wide memory Phi was split into Phis 2504 // for different memory slices. Search all Phis for this region. 2505 if (result != NULL) { 2506 Node* region = orig_phi->in(0); 2507 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 2508 Node* phi = region->fast_out(i); 2509 if (phi->is_Phi() && 2510 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) { 2511 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice"); 2512 return phi->as_Phi(); 2513 } 2514 } 2515 } 2516 if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) { 2517 if (C->do_escape_analysis() == true && !C->failing()) { 2518 // Retry compilation without escape analysis. 2519 // If this is the first failure, the sentinel string will "stick" 2520 // to the Compile object, and the C2Compiler will see it and retry. 2521 C->record_failure(C2Compiler::retry_no_escape_analysis()); 2522 } 2523 return NULL; 2524 } 2525 orig_phi_worklist.append_if_missing(orig_phi); 2526 const TypePtr *atype = C->get_adr_type(alias_idx); 2527 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype); 2528 C->copy_node_notes_to(result, orig_phi); 2529 igvn->set_type(result, result->bottom_type()); 2530 record_for_optimizer(result); 2531 set_map(orig_phi, result); 2532 new_created = true; 2533 return result; 2534 } 2535 2536 // 2537 // Return a new version of Memory Phi "orig_phi" with the inputs having the 2538 // specified alias index. 2539 // 2540 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist) { 2541 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory"); 2542 Compile *C = _compile; 2543 PhaseGVN* igvn = _igvn; 2544 bool new_phi_created; 2545 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created); 2546 if (!new_phi_created) { 2547 return result; 2548 } 2549 GrowableArray<PhiNode *> phi_list; 2550 GrowableArray<uint> cur_input; 2551 PhiNode *phi = orig_phi; 2552 uint idx = 1; 2553 bool finished = false; 2554 while(!finished) { 2555 while (idx < phi->req()) { 2556 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist); 2557 if (mem != NULL && mem->is_Phi()) { 2558 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created); 2559 if (new_phi_created) { 2560 // found an phi for which we created a new split, push current one on worklist and begin 2561 // processing new one 2562 phi_list.push(phi); 2563 cur_input.push(idx); 2564 phi = mem->as_Phi(); 2565 result = newphi; 2566 idx = 1; 2567 continue; 2568 } else { 2569 mem = newphi; 2570 } 2571 } 2572 if (C->failing()) { 2573 return NULL; 2574 } 2575 result->set_req(idx++, mem); 2576 } 2577 #ifdef ASSERT 2578 // verify that the new Phi has an input for each input of the original 2579 assert( phi->req() == result->req(), "must have same number of inputs."); 2580 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match"); 2581 #endif 2582 // Check if all new phi's inputs have specified alias index. 2583 // Otherwise use old phi. 2584 for (uint i = 1; i < phi->req(); i++) { 2585 Node* in = result->in(i); 2586 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond."); 2587 } 2588 // we have finished processing a Phi, see if there are any more to do 2589 finished = (phi_list.length() == 0 ); 2590 if (!finished) { 2591 phi = phi_list.pop(); 2592 idx = cur_input.pop(); 2593 PhiNode *prev_result = get_map_phi(phi->_idx); 2594 prev_result->set_req(idx++, result); 2595 result = prev_result; 2596 } 2597 } 2598 return result; 2599 } 2600 2601 // 2602 // The next methods are derived from methods in MemNode. 2603 // 2604 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) { 2605 Node *mem = mmem; 2606 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally 2607 // means an array I have not precisely typed yet. Do not do any 2608 // alias stuff with it any time soon. 2609 if (toop->base() != Type::AnyPtr && 2610 !(toop->klass() != NULL && 2611 toop->klass()->is_java_lang_Object() && 2612 toop->offset() == Type::OffsetBot)) { 2613 mem = mmem->memory_at(alias_idx); 2614 // Update input if it is progress over what we have now 2615 } 2616 return mem; 2617 } 2618 2619 // 2620 // Move memory users to their memory slices. 2621 // 2622 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis) { 2623 Compile* C = _compile; 2624 PhaseGVN* igvn = _igvn; 2625 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr(); 2626 assert(tp != NULL, "ptr type"); 2627 int alias_idx = C->get_alias_index(tp); 2628 int general_idx = C->get_general_index(alias_idx); 2629 2630 // Move users first 2631 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2632 Node* use = n->fast_out(i); 2633 if (use->is_MergeMem()) { 2634 MergeMemNode* mmem = use->as_MergeMem(); 2635 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice"); 2636 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) { 2637 continue; // Nothing to do 2638 } 2639 // Replace previous general reference to mem node. 2640 uint orig_uniq = C->unique(); 2641 Node* m = find_inst_mem(n, general_idx, orig_phis); 2642 assert(orig_uniq == C->unique(), "no new nodes"); 2643 mmem->set_memory_at(general_idx, m); 2644 --imax; 2645 --i; 2646 } else if (use->is_MemBar()) { 2647 assert(!use->is_Initialize(), "initializing stores should not be moved"); 2648 if (use->req() > MemBarNode::Precedent && 2649 use->in(MemBarNode::Precedent) == n) { 2650 // Don't move related membars. 2651 record_for_optimizer(use); 2652 continue; 2653 } 2654 tp = use->as_MemBar()->adr_type()->isa_ptr(); 2655 if ((tp != NULL && C->get_alias_index(tp) == alias_idx) || 2656 alias_idx == general_idx) { 2657 continue; // Nothing to do 2658 } 2659 // Move to general memory slice. 2660 uint orig_uniq = C->unique(); 2661 Node* m = find_inst_mem(n, general_idx, orig_phis); 2662 assert(orig_uniq == C->unique(), "no new nodes"); 2663 igvn->hash_delete(use); 2664 imax -= use->replace_edge(n, m); 2665 igvn->hash_insert(use); 2666 record_for_optimizer(use); 2667 --i; 2668 #ifdef ASSERT 2669 } else if (use->is_Mem()) { 2670 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) { 2671 // Don't move related cardmark. 2672 continue; 2673 } 2674 // Memory nodes should have new memory input. 2675 tp = igvn->type(use->in(MemNode::Address))->isa_ptr(); 2676 assert(tp != NULL, "ptr type"); 2677 int idx = C->get_alias_index(tp); 2678 assert(get_map(use->_idx) != NULL || idx == alias_idx, 2679 "Following memory nodes should have new memory input or be on the same memory slice"); 2680 } else if (use->is_Phi()) { 2681 // Phi nodes should be split and moved already. 2682 tp = use->as_Phi()->adr_type()->isa_ptr(); 2683 assert(tp != NULL, "ptr type"); 2684 int idx = C->get_alias_index(tp); 2685 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice"); 2686 } else { 2687 use->dump(); 2688 assert(false, "should not be here"); 2689 #endif 2690 } 2691 } 2692 } 2693 2694 // 2695 // Search memory chain of "mem" to find a MemNode whose address 2696 // is the specified alias index. 2697 // 2698 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis) { 2699 if (orig_mem == NULL) 2700 return orig_mem; 2701 Compile* C = _compile; 2702 PhaseGVN* igvn = _igvn; 2703 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr(); 2704 bool is_instance = (toop != NULL) && toop->is_known_instance(); 2705 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 2706 Node *prev = NULL; 2707 Node *result = orig_mem; 2708 while (prev != result) { 2709 prev = result; 2710 if (result == start_mem) 2711 break; // hit one of our sentinels 2712 if (result->is_Mem()) { 2713 const Type *at = igvn->type(result->in(MemNode::Address)); 2714 if (at == Type::TOP) 2715 break; // Dead 2716 assert (at->isa_ptr() != NULL, "pointer type required."); 2717 int idx = C->get_alias_index(at->is_ptr()); 2718 if (idx == alias_idx) 2719 break; // Found 2720 if (!is_instance && (at->isa_oopptr() == NULL || 2721 !at->is_oopptr()->is_known_instance())) { 2722 break; // Do not skip store to general memory slice. 2723 } 2724 result = result->in(MemNode::Memory); 2725 } 2726 if (!is_instance) 2727 continue; // don't search further for non-instance types 2728 // skip over a call which does not affect this memory slice 2729 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { 2730 Node *proj_in = result->in(0); 2731 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) { 2732 break; // hit one of our sentinels 2733 } else if (proj_in->is_Call()) { 2734 // ArrayCopy node processed here as well 2735 CallNode *call = proj_in->as_Call(); 2736 if (!call->may_modify(toop, igvn)) { 2737 result = call->in(TypeFunc::Memory); 2738 } 2739 } else if (proj_in->is_Initialize()) { 2740 AllocateNode* alloc = proj_in->as_Initialize()->allocation(); 2741 // Stop if this is the initialization for the object instance which 2742 // which contains this memory slice, otherwise skip over it. 2743 if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) { 2744 result = proj_in->in(TypeFunc::Memory); 2745 } 2746 } else if (proj_in->is_MemBar()) { 2747 if (proj_in->in(TypeFunc::Memory)->is_MergeMem() && 2748 proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() && 2749 proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) { 2750 // clone 2751 ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy(); 2752 if (ac->may_modify(toop, igvn)) { 2753 break; 2754 } 2755 } 2756 result = proj_in->in(TypeFunc::Memory); 2757 } 2758 } else if (result->is_MergeMem()) { 2759 MergeMemNode *mmem = result->as_MergeMem(); 2760 result = step_through_mergemem(mmem, alias_idx, toop); 2761 if (result == mmem->base_memory()) { 2762 // Didn't find instance memory, search through general slice recursively. 2763 result = mmem->memory_at(C->get_general_index(alias_idx)); 2764 result = find_inst_mem(result, alias_idx, orig_phis); 2765 if (C->failing()) { 2766 return NULL; 2767 } 2768 mmem->set_memory_at(alias_idx, result); 2769 } 2770 } else if (result->is_Phi() && 2771 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) { 2772 Node *un = result->as_Phi()->unique_input(igvn); 2773 if (un != NULL) { 2774 orig_phis.append_if_missing(result->as_Phi()); 2775 result = un; 2776 } else { 2777 break; 2778 } 2779 } else if (result->is_ClearArray()) { 2780 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) { 2781 // Can not bypass initialization of the instance 2782 // we are looking for. 2783 break; 2784 } 2785 // Otherwise skip it (the call updated 'result' value). 2786 } else if (result->Opcode() == Op_SCMemProj) { 2787 Node* mem = result->in(0); 2788 Node* adr = NULL; 2789 if (mem->is_LoadStore()) { 2790 adr = mem->in(MemNode::Address); 2791 } else { 2792 assert(mem->Opcode() == Op_EncodeISOArray || 2793 mem->Opcode() == Op_StrCompressedCopy, "sanity"); 2794 adr = mem->in(3); // Memory edge corresponds to destination array 2795 } 2796 const Type *at = igvn->type(adr); 2797 if (at != Type::TOP) { 2798 assert(at->isa_ptr() != NULL, "pointer type required."); 2799 int idx = C->get_alias_index(at->is_ptr()); 2800 if (idx == alias_idx) { 2801 // Assert in debug mode 2802 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 2803 break; // In product mode return SCMemProj node 2804 } 2805 } 2806 result = mem->in(MemNode::Memory); 2807 } else if (result->Opcode() == Op_StrInflatedCopy) { 2808 Node* adr = result->in(3); // Memory edge corresponds to destination array 2809 const Type *at = igvn->type(adr); 2810 if (at != Type::TOP) { 2811 assert(at->isa_ptr() != NULL, "pointer type required."); 2812 int idx = C->get_alias_index(at->is_ptr()); 2813 if (idx == alias_idx) { 2814 // Assert in debug mode 2815 assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field"); 2816 break; // In product mode return SCMemProj node 2817 } 2818 } 2819 result = result->in(MemNode::Memory); 2820 } 2821 } 2822 if (result->is_Phi()) { 2823 PhiNode *mphi = result->as_Phi(); 2824 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); 2825 const TypePtr *t = mphi->adr_type(); 2826 if (!is_instance) { 2827 // Push all non-instance Phis on the orig_phis worklist to update inputs 2828 // during Phase 4 if needed. 2829 orig_phis.append_if_missing(mphi); 2830 } else if (C->get_alias_index(t) != alias_idx) { 2831 // Create a new Phi with the specified alias index type. 2832 result = split_memory_phi(mphi, alias_idx, orig_phis); 2833 } 2834 } 2835 // the result is either MemNode, PhiNode, InitializeNode. 2836 return result; 2837 } 2838 2839 // 2840 // Convert the types of unescaped object to instance types where possible, 2841 // propagate the new type information through the graph, and update memory 2842 // edges and MergeMem inputs to reflect the new type. 2843 // 2844 // We start with allocations (and calls which may be allocations) on alloc_worklist. 2845 // The processing is done in 4 phases: 2846 // 2847 // Phase 1: Process possible allocations from alloc_worklist. Create instance 2848 // types for the CheckCastPP for allocations where possible. 2849 // Propagate the new types through users as follows: 2850 // casts and Phi: push users on alloc_worklist 2851 // AddP: cast Base and Address inputs to the instance type 2852 // push any AddP users on alloc_worklist and push any memnode 2853 // users onto memnode_worklist. 2854 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and 2855 // search the Memory chain for a store with the appropriate type 2856 // address type. If a Phi is found, create a new version with 2857 // the appropriate memory slices from each of the Phi inputs. 2858 // For stores, process the users as follows: 2859 // MemNode: push on memnode_worklist 2860 // MergeMem: push on mergemem_worklist 2861 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice 2862 // moving the first node encountered of each instance type to the 2863 // the input corresponding to its alias index. 2864 // appropriate memory slice. 2865 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes. 2866 // 2867 // In the following example, the CheckCastPP nodes are the cast of allocation 2868 // results and the allocation of node 29 is unescaped and eligible to be an 2869 // instance type. 2870 // 2871 // We start with: 2872 // 2873 // 7 Parm #memory 2874 // 10 ConI "12" 2875 // 19 CheckCastPP "Foo" 2876 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 2877 // 29 CheckCastPP "Foo" 2878 // 30 AddP _ 29 29 10 Foo+12 alias_index=4 2879 // 2880 // 40 StoreP 25 7 20 ... alias_index=4 2881 // 50 StoreP 35 40 30 ... alias_index=4 2882 // 60 StoreP 45 50 20 ... alias_index=4 2883 // 70 LoadP _ 60 30 ... alias_index=4 2884 // 80 Phi 75 50 60 Memory alias_index=4 2885 // 90 LoadP _ 80 30 ... alias_index=4 2886 // 100 LoadP _ 80 20 ... alias_index=4 2887 // 2888 // 2889 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24 2890 // and creating a new alias index for node 30. This gives: 2891 // 2892 // 7 Parm #memory 2893 // 10 ConI "12" 2894 // 19 CheckCastPP "Foo" 2895 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 2896 // 29 CheckCastPP "Foo" iid=24 2897 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 2898 // 2899 // 40 StoreP 25 7 20 ... alias_index=4 2900 // 50 StoreP 35 40 30 ... alias_index=6 2901 // 60 StoreP 45 50 20 ... alias_index=4 2902 // 70 LoadP _ 60 30 ... alias_index=6 2903 // 80 Phi 75 50 60 Memory alias_index=4 2904 // 90 LoadP _ 80 30 ... alias_index=6 2905 // 100 LoadP _ 80 20 ... alias_index=4 2906 // 2907 // In phase 2, new memory inputs are computed for the loads and stores, 2908 // And a new version of the phi is created. In phase 4, the inputs to 2909 // node 80 are updated and then the memory nodes are updated with the 2910 // values computed in phase 2. This results in: 2911 // 2912 // 7 Parm #memory 2913 // 10 ConI "12" 2914 // 19 CheckCastPP "Foo" 2915 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 2916 // 29 CheckCastPP "Foo" iid=24 2917 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 2918 // 2919 // 40 StoreP 25 7 20 ... alias_index=4 2920 // 50 StoreP 35 7 30 ... alias_index=6 2921 // 60 StoreP 45 40 20 ... alias_index=4 2922 // 70 LoadP _ 50 30 ... alias_index=6 2923 // 80 Phi 75 40 60 Memory alias_index=4 2924 // 120 Phi 75 50 50 Memory alias_index=6 2925 // 90 LoadP _ 120 30 ... alias_index=6 2926 // 100 LoadP _ 80 20 ... alias_index=4 2927 // 2928 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) { 2929 GrowableArray<Node *> memnode_worklist; 2930 GrowableArray<PhiNode *> orig_phis; 2931 PhaseIterGVN *igvn = _igvn; 2932 uint new_index_start = (uint) _compile->num_alias_types(); 2933 Arena* arena = Thread::current()->resource_area(); 2934 VectorSet visited(arena); 2935 ideal_nodes.clear(); // Reset for use with set_map/get_map. 2936 uint unique_old = _compile->unique(); 2937 2938 // Phase 1: Process possible allocations from alloc_worklist. 2939 // Create instance types for the CheckCastPP for allocations where possible. 2940 // 2941 // (Note: don't forget to change the order of the second AddP node on 2942 // the alloc_worklist if the order of the worklist processing is changed, 2943 // see the comment in find_second_addp().) 2944 // 2945 while (alloc_worklist.length() != 0) { 2946 Node *n = alloc_worklist.pop(); 2947 uint ni = n->_idx; 2948 if (n->is_Call()) { 2949 CallNode *alloc = n->as_Call(); 2950 // copy escape information to call node 2951 PointsToNode* ptn = ptnode_adr(alloc->_idx); 2952 PointsToNode::EscapeState es = ptn->escape_state(); 2953 // We have an allocation or call which returns a Java object, 2954 // see if it is unescaped. 2955 if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable()) 2956 continue; 2957 // Find CheckCastPP for the allocate or for the return value of a call 2958 n = alloc->result_cast(); 2959 if (n == NULL) { // No uses except Initialize node 2960 if (alloc->is_Allocate()) { 2961 // Set the scalar_replaceable flag for allocation 2962 // so it could be eliminated if it has no uses. 2963 alloc->as_Allocate()->_is_scalar_replaceable = true; 2964 } 2965 if (alloc->is_CallStaticJava()) { 2966 // Set the scalar_replaceable flag for boxing method 2967 // so it could be eliminated if it has no uses. 2968 alloc->as_CallStaticJava()->_is_scalar_replaceable = true; 2969 } 2970 continue; 2971 } 2972 if (!n->is_CheckCastPP()) { // not unique CheckCastPP. 2973 assert(!alloc->is_Allocate(), "allocation should have unique type"); 2974 continue; 2975 } 2976 2977 // The inline code for Object.clone() casts the allocation result to 2978 // java.lang.Object and then to the actual type of the allocated 2979 // object. Detect this case and use the second cast. 2980 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when 2981 // the allocation result is cast to java.lang.Object and then 2982 // to the actual Array type. 2983 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL 2984 && (alloc->is_AllocateArray() || 2985 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) { 2986 Node *cast2 = NULL; 2987 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2988 Node *use = n->fast_out(i); 2989 if (use->is_CheckCastPP()) { 2990 cast2 = use; 2991 break; 2992 } 2993 } 2994 if (cast2 != NULL) { 2995 n = cast2; 2996 } else { 2997 // Non-scalar replaceable if the allocation type is unknown statically 2998 // (reflection allocation), the object can't be restored during 2999 // deoptimization without precise type. 3000 continue; 3001 } 3002 } 3003 3004 const TypeOopPtr *t = igvn->type(n)->isa_oopptr(); 3005 if (t == NULL) 3006 continue; // not a TypeOopPtr 3007 if (!t->klass_is_exact()) 3008 continue; // not an unique type 3009 3010 if (alloc->is_Allocate()) { 3011 // Set the scalar_replaceable flag for allocation 3012 // so it could be eliminated. 3013 alloc->as_Allocate()->_is_scalar_replaceable = true; 3014 } 3015 if (alloc->is_CallStaticJava()) { 3016 // Set the scalar_replaceable flag for boxing method 3017 // so it could be eliminated. 3018 alloc->as_CallStaticJava()->_is_scalar_replaceable = true; 3019 } 3020 set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state 3021 // in order for an object to be scalar-replaceable, it must be: 3022 // - a direct allocation (not a call returning an object) 3023 // - non-escaping 3024 // - eligible to be a unique type 3025 // - not determined to be ineligible by escape analysis 3026 set_map(alloc, n); 3027 set_map(n, alloc); 3028 const TypeOopPtr* tinst = t->cast_to_instance_id(ni); 3029 igvn->hash_delete(n); 3030 igvn->set_type(n, tinst); 3031 n->raise_bottom_type(tinst); 3032 igvn->hash_insert(n); 3033 record_for_optimizer(n); 3034 // Allocate an alias index for the header fields. Accesses to 3035 // the header emitted during macro expansion wouldn't have 3036 // correct memory state otherwise. 3037 _compile->get_alias_index(tinst->add_offset(oopDesc::mark_offset_in_bytes())); 3038 _compile->get_alias_index(tinst->add_offset(oopDesc::klass_offset_in_bytes())); 3039 if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) { 3040 3041 // First, put on the worklist all Field edges from Connection Graph 3042 // which is more accurate than putting immediate users from Ideal Graph. 3043 for (EdgeIterator e(ptn); e.has_next(); e.next()) { 3044 PointsToNode* tgt = e.get(); 3045 if (tgt->is_Arraycopy()) { 3046 continue; 3047 } 3048 Node* use = tgt->ideal_node(); 3049 assert(tgt->is_Field() && use->is_AddP(), 3050 "only AddP nodes are Field edges in CG"); 3051 if (use->outcnt() > 0) { // Don't process dead nodes 3052 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base)); 3053 if (addp2 != NULL) { 3054 assert(alloc->is_AllocateArray(),"array allocation was expected"); 3055 alloc_worklist.append_if_missing(addp2); 3056 } 3057 alloc_worklist.append_if_missing(use); 3058 } 3059 } 3060 3061 // An allocation may have an Initialize which has raw stores. Scan 3062 // the users of the raw allocation result and push AddP users 3063 // on alloc_worklist. 3064 Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms); 3065 assert (raw_result != NULL, "must have an allocation result"); 3066 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) { 3067 Node *use = raw_result->fast_out(i); 3068 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes 3069 Node* addp2 = find_second_addp(use, raw_result); 3070 if (addp2 != NULL) { 3071 assert(alloc->is_AllocateArray(),"array allocation was expected"); 3072 alloc_worklist.append_if_missing(addp2); 3073 } 3074 alloc_worklist.append_if_missing(use); 3075 } else if (use->is_MemBar()) { 3076 memnode_worklist.append_if_missing(use); 3077 } 3078 } 3079 } 3080 } else if (n->is_AddP()) { 3081 JavaObjectNode* jobj = unique_java_object(get_addp_base(n)); 3082 if (jobj == NULL || jobj == phantom_obj) { 3083 #ifdef ASSERT 3084 ptnode_adr(get_addp_base(n)->_idx)->dump(); 3085 ptnode_adr(n->_idx)->dump(); 3086 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation"); 3087 #endif 3088 _compile->record_failure(C2Compiler::retry_no_escape_analysis()); 3089 return; 3090 } 3091 Node *base = get_map(jobj->idx()); // CheckCastPP node 3092 if (!split_AddP(n, base)) continue; // wrong type from dead path 3093 } else if (n->is_Phi() || 3094 n->is_CheckCastPP() || 3095 n->is_EncodeP() || 3096 n->is_DecodeN() || 3097 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) { 3098 if (visited.test_set(n->_idx)) { 3099 assert(n->is_Phi(), "loops only through Phi's"); 3100 continue; // already processed 3101 } 3102 JavaObjectNode* jobj = unique_java_object(n); 3103 if (jobj == NULL || jobj == phantom_obj) { 3104 #ifdef ASSERT 3105 ptnode_adr(n->_idx)->dump(); 3106 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation"); 3107 #endif 3108 _compile->record_failure(C2Compiler::retry_no_escape_analysis()); 3109 return; 3110 } else { 3111 Node *val = get_map(jobj->idx()); // CheckCastPP node 3112 TypeNode *tn = n->as_Type(); 3113 const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr(); 3114 assert(tinst != NULL && tinst->is_known_instance() && 3115 tinst->instance_id() == jobj->idx() , "instance type expected."); 3116 3117 const Type *tn_type = igvn->type(tn); 3118 const TypeOopPtr *tn_t; 3119 if (tn_type->isa_narrowoop()) { 3120 tn_t = tn_type->make_ptr()->isa_oopptr(); 3121 } else { 3122 tn_t = tn_type->isa_oopptr(); 3123 } 3124 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) { 3125 if (tn_type->isa_narrowoop()) { 3126 tn_type = tinst->make_narrowoop(); 3127 } else { 3128 tn_type = tinst; 3129 } 3130 igvn->hash_delete(tn); 3131 igvn->set_type(tn, tn_type); 3132 tn->set_type(tn_type); 3133 igvn->hash_insert(tn); 3134 record_for_optimizer(n); 3135 } else { 3136 assert(tn_type == TypePtr::NULL_PTR || 3137 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()), 3138 "unexpected type"); 3139 continue; // Skip dead path with different type 3140 } 3141 } 3142 } else { 3143 debug_only(n->dump();) 3144 assert(false, "EA: unexpected node"); 3145 continue; 3146 } 3147 // push allocation's users on appropriate worklist 3148 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3149 Node *use = n->fast_out(i); 3150 if(use->is_Mem() && use->in(MemNode::Address) == n) { 3151 // Load/store to instance's field 3152 memnode_worklist.append_if_missing(use); 3153 } else if (use->is_MemBar()) { 3154 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge 3155 memnode_worklist.append_if_missing(use); 3156 } 3157 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes 3158 Node* addp2 = find_second_addp(use, n); 3159 if (addp2 != NULL) { 3160 alloc_worklist.append_if_missing(addp2); 3161 } 3162 alloc_worklist.append_if_missing(use); 3163 } else if (use->is_Phi() || 3164 use->is_CheckCastPP() || 3165 use->is_EncodeNarrowPtr() || 3166 use->is_DecodeNarrowPtr() || 3167 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) { 3168 alloc_worklist.append_if_missing(use); 3169 #ifdef ASSERT 3170 } else if (use->is_Mem()) { 3171 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path"); 3172 } else if (use->is_MergeMem()) { 3173 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 3174 } else if (use->is_SafePoint()) { 3175 // Look for MergeMem nodes for calls which reference unique allocation 3176 // (through CheckCastPP nodes) even for debug info. 3177 Node* m = use->in(TypeFunc::Memory); 3178 if (m->is_MergeMem()) { 3179 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 3180 } 3181 } else if (use->Opcode() == Op_EncodeISOArray) { 3182 if (use->in(MemNode::Memory) == n || use->in(3) == n) { 3183 // EncodeISOArray overwrites destination array 3184 memnode_worklist.append_if_missing(use); 3185 } 3186 } else { 3187 uint op = use->Opcode(); 3188 if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) && 3189 (use->in(MemNode::Memory) == n)) { 3190 // They overwrite memory edge corresponding to destination array, 3191 memnode_worklist.append_if_missing(use); 3192 } else if (!(op == Op_CmpP || op == Op_Conv2B || 3193 op == Op_CastP2X || op == Op_StoreCM || 3194 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives || 3195 op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || 3196 op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar || 3197 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) { 3198 n->dump(); 3199 use->dump(); 3200 assert(false, "EA: missing allocation reference path"); 3201 } 3202 #endif 3203 } 3204 } 3205 3206 } 3207 3208 // Go over all ArrayCopy nodes and if one of the inputs has a unique 3209 // type, record it in the ArrayCopy node so we know what memory this 3210 // node uses/modified. 3211 for (int next = 0; next < arraycopy_worklist.length(); next++) { 3212 ArrayCopyNode* ac = arraycopy_worklist.at(next); 3213 Node* dest = ac->in(ArrayCopyNode::Dest); 3214 if (dest->is_AddP()) { 3215 dest = get_addp_base(dest); 3216 } 3217 JavaObjectNode* jobj = unique_java_object(dest); 3218 if (jobj != NULL) { 3219 Node *base = get_map(jobj->idx()); 3220 if (base != NULL) { 3221 const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr(); 3222 ac->_dest_type = base_t; 3223 } 3224 } 3225 Node* src = ac->in(ArrayCopyNode::Src); 3226 if (src->is_AddP()) { 3227 src = get_addp_base(src); 3228 } 3229 jobj = unique_java_object(src); 3230 if (jobj != NULL) { 3231 Node* base = get_map(jobj->idx()); 3232 if (base != NULL) { 3233 const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr(); 3234 ac->_src_type = base_t; 3235 } 3236 } 3237 } 3238 3239 // New alias types were created in split_AddP(). 3240 uint new_index_end = (uint) _compile->num_alias_types(); 3241 assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1"); 3242 3243 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and 3244 // compute new values for Memory inputs (the Memory inputs are not 3245 // actually updated until phase 4.) 3246 if (memnode_worklist.length() == 0) 3247 return; // nothing to do 3248 while (memnode_worklist.length() != 0) { 3249 Node *n = memnode_worklist.pop(); 3250 if (visited.test_set(n->_idx)) 3251 continue; 3252 if (n->is_Phi() || n->is_ClearArray()) { 3253 // we don't need to do anything, but the users must be pushed 3254 } else if (n->is_MemBar()) { // Initialize, MemBar nodes 3255 // we don't need to do anything, but the users must be pushed 3256 n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory); 3257 if (n == NULL) 3258 continue; 3259 } else if (n->Opcode() == Op_StrCompressedCopy || 3260 n->Opcode() == Op_EncodeISOArray) { 3261 // get the memory projection 3262 n = n->find_out_with(Op_SCMemProj); 3263 assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required"); 3264 } else { 3265 assert(n->is_Mem(), "memory node required."); 3266 Node *addr = n->in(MemNode::Address); 3267 const Type *addr_t = igvn->type(addr); 3268 if (addr_t == Type::TOP) 3269 continue; 3270 assert (addr_t->isa_ptr() != NULL, "pointer type required."); 3271 int alias_idx = _compile->get_alias_index(addr_t->is_ptr()); 3272 assert ((uint)alias_idx < new_index_end, "wrong alias index"); 3273 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis); 3274 if (_compile->failing()) { 3275 return; 3276 } 3277 if (mem != n->in(MemNode::Memory)) { 3278 // We delay the memory edge update since we need old one in 3279 // MergeMem code below when instances memory slices are separated. 3280 set_map(n, mem); 3281 } 3282 if (n->is_Load()) { 3283 continue; // don't push users 3284 } else if (n->is_LoadStore()) { 3285 // get the memory projection 3286 n = n->find_out_with(Op_SCMemProj); 3287 assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required"); 3288 } 3289 } 3290 // push user on appropriate worklist 3291 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3292 Node *use = n->fast_out(i); 3293 if (use->is_Phi() || use->is_ClearArray()) { 3294 memnode_worklist.append_if_missing(use); 3295 } else if (use->is_Mem() && use->in(MemNode::Memory) == n) { 3296 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores 3297 continue; 3298 memnode_worklist.append_if_missing(use); 3299 } else if (use->is_MemBar()) { 3300 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge 3301 memnode_worklist.append_if_missing(use); 3302 } 3303 #ifdef ASSERT 3304 } else if(use->is_Mem()) { 3305 assert(use->in(MemNode::Memory) != n, "EA: missing memory path"); 3306 } else if (use->is_MergeMem()) { 3307 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 3308 } else if (use->Opcode() == Op_EncodeISOArray) { 3309 if (use->in(MemNode::Memory) == n || use->in(3) == n) { 3310 // EncodeISOArray overwrites destination array 3311 memnode_worklist.append_if_missing(use); 3312 } 3313 } else { 3314 uint op = use->Opcode(); 3315 if ((use->in(MemNode::Memory) == n) && 3316 (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) { 3317 // They overwrite memory edge corresponding to destination array, 3318 memnode_worklist.append_if_missing(use); 3319 } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) || 3320 op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives || 3321 op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || 3322 op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) { 3323 n->dump(); 3324 use->dump(); 3325 assert(false, "EA: missing memory path"); 3326 } 3327 #endif 3328 } 3329 } 3330 } 3331 3332 // Phase 3: Process MergeMem nodes from mergemem_worklist. 3333 // Walk each memory slice moving the first node encountered of each 3334 // instance type to the the input corresponding to its alias index. 3335 uint length = _mergemem_worklist.length(); 3336 for( uint next = 0; next < length; ++next ) { 3337 MergeMemNode* nmm = _mergemem_worklist.at(next); 3338 assert(!visited.test_set(nmm->_idx), "should not be visited before"); 3339 // Note: we don't want to use MergeMemStream here because we only want to 3340 // scan inputs which exist at the start, not ones we add during processing. 3341 // Note 2: MergeMem may already contains instance memory slices added 3342 // during find_inst_mem() call when memory nodes were processed above. 3343 igvn->hash_delete(nmm); 3344 uint nslices = MIN2(nmm->req(), new_index_start); 3345 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) { 3346 Node* mem = nmm->in(i); 3347 Node* cur = NULL; 3348 if (mem == NULL || mem->is_top()) 3349 continue; 3350 // First, update mergemem by moving memory nodes to corresponding slices 3351 // if their type became more precise since this mergemem was created. 3352 while (mem->is_Mem()) { 3353 const Type *at = igvn->type(mem->in(MemNode::Address)); 3354 if (at != Type::TOP) { 3355 assert (at->isa_ptr() != NULL, "pointer type required."); 3356 uint idx = (uint)_compile->get_alias_index(at->is_ptr()); 3357 if (idx == i) { 3358 if (cur == NULL) 3359 cur = mem; 3360 } else { 3361 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) { 3362 nmm->set_memory_at(idx, mem); 3363 } 3364 } 3365 } 3366 mem = mem->in(MemNode::Memory); 3367 } 3368 nmm->set_memory_at(i, (cur != NULL) ? cur : mem); 3369 // Find any instance of the current type if we haven't encountered 3370 // already a memory slice of the instance along the memory chain. 3371 for (uint ni = new_index_start; ni < new_index_end; ni++) { 3372 if((uint)_compile->get_general_index(ni) == i) { 3373 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni); 3374 if (nmm->is_empty_memory(m)) { 3375 Node* result = find_inst_mem(mem, ni, orig_phis); 3376 if (_compile->failing()) { 3377 return; 3378 } 3379 nmm->set_memory_at(ni, result); 3380 } 3381 } 3382 } 3383 } 3384 // Find the rest of instances values 3385 for (uint ni = new_index_start; ni < new_index_end; ni++) { 3386 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr(); 3387 Node* result = step_through_mergemem(nmm, ni, tinst); 3388 if (result == nmm->base_memory()) { 3389 // Didn't find instance memory, search through general slice recursively. 3390 result = nmm->memory_at(_compile->get_general_index(ni)); 3391 result = find_inst_mem(result, ni, orig_phis); 3392 if (_compile->failing()) { 3393 return; 3394 } 3395 nmm->set_memory_at(ni, result); 3396 } 3397 } 3398 igvn->hash_insert(nmm); 3399 record_for_optimizer(nmm); 3400 } 3401 3402 // Phase 4: Update the inputs of non-instance memory Phis and 3403 // the Memory input of memnodes 3404 // First update the inputs of any non-instance Phi's from 3405 // which we split out an instance Phi. Note we don't have 3406 // to recursively process Phi's encounted on the input memory 3407 // chains as is done in split_memory_phi() since they will 3408 // also be processed here. 3409 for (int j = 0; j < orig_phis.length(); j++) { 3410 PhiNode *phi = orig_phis.at(j); 3411 int alias_idx = _compile->get_alias_index(phi->adr_type()); 3412 igvn->hash_delete(phi); 3413 for (uint i = 1; i < phi->req(); i++) { 3414 Node *mem = phi->in(i); 3415 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis); 3416 if (_compile->failing()) { 3417 return; 3418 } 3419 if (mem != new_mem) { 3420 phi->set_req(i, new_mem); 3421 } 3422 } 3423 igvn->hash_insert(phi); 3424 record_for_optimizer(phi); 3425 } 3426 3427 // Update the memory inputs of MemNodes with the value we computed 3428 // in Phase 2 and move stores memory users to corresponding memory slices. 3429 // Disable memory split verification code until the fix for 6984348. 3430 // Currently it produces false negative results since it does not cover all cases. 3431 #if 0 // ifdef ASSERT 3432 visited.Reset(); 3433 Node_Stack old_mems(arena, _compile->unique() >> 2); 3434 #endif 3435 for (uint i = 0; i < ideal_nodes.size(); i++) { 3436 Node* n = ideal_nodes.at(i); 3437 Node* nmem = get_map(n->_idx); 3438 assert(nmem != NULL, "sanity"); 3439 if (n->is_Mem()) { 3440 #if 0 // ifdef ASSERT 3441 Node* old_mem = n->in(MemNode::Memory); 3442 if (!visited.test_set(old_mem->_idx)) { 3443 old_mems.push(old_mem, old_mem->outcnt()); 3444 } 3445 #endif 3446 assert(n->in(MemNode::Memory) != nmem, "sanity"); 3447 if (!n->is_Load()) { 3448 // Move memory users of a store first. 3449 move_inst_mem(n, orig_phis); 3450 } 3451 // Now update memory input 3452 igvn->hash_delete(n); 3453 n->set_req(MemNode::Memory, nmem); 3454 igvn->hash_insert(n); 3455 record_for_optimizer(n); 3456 } else { 3457 assert(n->is_Allocate() || n->is_CheckCastPP() || 3458 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()"); 3459 } 3460 } 3461 #if 0 // ifdef ASSERT 3462 // Verify that memory was split correctly 3463 while (old_mems.is_nonempty()) { 3464 Node* old_mem = old_mems.node(); 3465 uint old_cnt = old_mems.index(); 3466 old_mems.pop(); 3467 assert(old_cnt == old_mem->outcnt(), "old mem could be lost"); 3468 } 3469 #endif 3470 } 3471 3472 #ifndef PRODUCT 3473 static const char *node_type_names[] = { 3474 "UnknownType", 3475 "JavaObject", 3476 "LocalVar", 3477 "Field", 3478 "Arraycopy" 3479 }; 3480 3481 static const char *esc_names[] = { 3482 "UnknownEscape", 3483 "NoEscape", 3484 "ArgEscape", 3485 "GlobalEscape" 3486 }; 3487 3488 void PointsToNode::dump(bool print_state) const { 3489 NodeType nt = node_type(); 3490 tty->print("%s ", node_type_names[(int) nt]); 3491 if (print_state) { 3492 EscapeState es = escape_state(); 3493 EscapeState fields_es = fields_escape_state(); 3494 tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]); 3495 if (nt == PointsToNode::JavaObject && !this->scalar_replaceable()) 3496 tty->print("NSR "); 3497 } 3498 if (is_Field()) { 3499 FieldNode* f = (FieldNode*)this; 3500 if (f->is_oop()) 3501 tty->print("oop "); 3502 if (f->offset() > 0) 3503 tty->print("+%d ", f->offset()); 3504 tty->print("("); 3505 for (BaseIterator i(f); i.has_next(); i.next()) { 3506 PointsToNode* b = i.get(); 3507 tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : "")); 3508 } 3509 tty->print(" )"); 3510 } 3511 tty->print("["); 3512 for (EdgeIterator i(this); i.has_next(); i.next()) { 3513 PointsToNode* e = i.get(); 3514 tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : ""); 3515 } 3516 tty->print(" ["); 3517 for (UseIterator i(this); i.has_next(); i.next()) { 3518 PointsToNode* u = i.get(); 3519 bool is_base = false; 3520 if (PointsToNode::is_base_use(u)) { 3521 is_base = true; 3522 u = PointsToNode::get_use_node(u)->as_Field(); 3523 } 3524 tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : ""); 3525 } 3526 tty->print(" ]] "); 3527 if (_node == NULL) 3528 tty->print_cr("<null>"); 3529 else 3530 _node->dump(); 3531 } 3532 3533 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) { 3534 bool first = true; 3535 int ptnodes_length = ptnodes_worklist.length(); 3536 for (int i = 0; i < ptnodes_length; i++) { 3537 PointsToNode *ptn = ptnodes_worklist.at(i); 3538 if (ptn == NULL || !ptn->is_JavaObject()) 3539 continue; 3540 PointsToNode::EscapeState es = ptn->escape_state(); 3541 if ((es != PointsToNode::NoEscape) && !Verbose) { 3542 continue; 3543 } 3544 Node* n = ptn->ideal_node(); 3545 if (n->is_Allocate() || (n->is_CallStaticJava() && 3546 n->as_CallStaticJava()->is_boxing_method())) { 3547 if (first) { 3548 tty->cr(); 3549 tty->print("======== Connection graph for "); 3550 _compile->method()->print_short_name(); 3551 tty->cr(); 3552 first = false; 3553 } 3554 ptn->dump(); 3555 // Print all locals and fields which reference this allocation 3556 for (UseIterator j(ptn); j.has_next(); j.next()) { 3557 PointsToNode* use = j.get(); 3558 if (use->is_LocalVar()) { 3559 use->dump(Verbose); 3560 } else if (Verbose) { 3561 use->dump(); 3562 } 3563 } 3564 tty->cr(); 3565 } 3566 } 3567 } 3568 #endif 3569 3570 void ConnectionGraph::record_for_optimizer(Node *n) { 3571 _igvn->_worklist.push(n); 3572 _igvn->add_users_to_worklist(n); 3573 }