1 /*
   2  * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.java2d.marlin;
  27 
  28 import java.awt.BasicStroke;
  29 import java.awt.Shape;
  30 import java.awt.geom.AffineTransform;
  31 import java.awt.geom.Path2D;
  32 import java.awt.geom.PathIterator;
  33 import java.security.AccessController;
  34 import static sun.java2d.marlin.MarlinUtils.logInfo;
  35 import sun.awt.geom.PathConsumer2D;
  36 import sun.java2d.ReentrantContextProvider;
  37 import sun.java2d.ReentrantContextProviderCLQ;
  38 import sun.java2d.ReentrantContextProviderTL;
  39 import sun.java2d.pipe.AATileGenerator;
  40 import sun.java2d.pipe.Region;
  41 import sun.java2d.pipe.RenderingEngine;
  42 import sun.security.action.GetPropertyAction;
  43 
  44 /**
  45  * Marlin RendererEngine implementation (derived from Pisces)
  46  */
  47 public final class MarlinRenderingEngine extends RenderingEngine
  48                                          implements MarlinConst
  49 {
  50     private static enum NormMode {
  51         ON_WITH_AA {
  52             @Override
  53             PathIterator getNormalizingPathIterator(final RendererContext rdrCtx,
  54                                                     final PathIterator src)
  55             {
  56                 // NormalizingPathIterator NearestPixelCenter:
  57                 return rdrCtx.nPCPathIterator.init(src);
  58             }
  59         },
  60         ON_NO_AA{
  61             @Override
  62             PathIterator getNormalizingPathIterator(final RendererContext rdrCtx,
  63                                                     final PathIterator src)
  64             {
  65                 // NearestPixel NormalizingPathIterator:
  66                 return rdrCtx.nPQPathIterator.init(src);
  67             }
  68         },
  69         OFF{
  70             @Override
  71             PathIterator getNormalizingPathIterator(final RendererContext rdrCtx,
  72                                                     final PathIterator src)
  73             {
  74                 // return original path iterator if normalization is disabled:
  75                 return src;
  76             }
  77         };
  78 
  79         abstract PathIterator getNormalizingPathIterator(RendererContext rdrCtx,
  80                                                          PathIterator src);
  81     }
  82 
  83     private static final float MIN_PEN_SIZE = 1.0f / NORM_SUBPIXELS;
  84 
  85     static final float UPPER_BND = Float.MAX_VALUE / 2.0f;
  86     static final float LOWER_BND = -UPPER_BND;
  87 
  88     static final boolean DO_CLIP = MarlinProperties.isDoClip();
  89     static final boolean DO_CLIP_FILL = true;
  90 
  91     static final boolean DO_TRACE_PATH = false;
  92 
  93     static final boolean DO_CLIP_RUNTIME_ENABLE = MarlinProperties.isDoClipRuntimeFlag();
  94 
  95     /**
  96      * Public constructor
  97      */
  98     public MarlinRenderingEngine() {
  99         super();
 100         logSettings(MarlinRenderingEngine.class.getName());
 101     }
 102 
 103     /**
 104      * Create a widened path as specified by the parameters.
 105      * <p>
 106      * The specified {@code src} {@link Shape} is widened according
 107      * to the specified attribute parameters as per the
 108      * {@link BasicStroke} specification.
 109      *
 110      * @param src the source path to be widened
 111      * @param width the width of the widened path as per {@code BasicStroke}
 112      * @param caps the end cap decorations as per {@code BasicStroke}
 113      * @param join the segment join decorations as per {@code BasicStroke}
 114      * @param miterlimit the miter limit as per {@code BasicStroke}
 115      * @param dashes the dash length array as per {@code BasicStroke}
 116      * @param dashphase the initial dash phase as per {@code BasicStroke}
 117      * @return the widened path stored in a new {@code Shape} object
 118      * @since 1.7
 119      */
 120     @Override
 121     public Shape createStrokedShape(Shape src,
 122                                     float width,
 123                                     int caps,
 124                                     int join,
 125                                     float miterlimit,
 126                                     float[] dashes,
 127                                     float dashphase)
 128     {
 129         final RendererContext rdrCtx = getRendererContext();
 130         try {
 131             // initialize a large copyable Path2D to avoid a lot of array growing:
 132             final Path2D.Float p2d = rdrCtx.getPath2D();
 133 
 134             strokeTo(rdrCtx,
 135                      src,
 136                      null,
 137                      width,
 138                      NormMode.OFF,
 139                      caps,
 140                      join,
 141                      miterlimit,
 142                      dashes,
 143                      dashphase,
 144                      rdrCtx.transformerPC2D.wrapPath2D(p2d)
 145                     );
 146 
 147             // Use Path2D copy constructor (trim)
 148             return new Path2D.Float(p2d);
 149 
 150         } finally {
 151             // recycle the RendererContext instance
 152             returnRendererContext(rdrCtx);
 153         }
 154     }
 155 
 156     /**
 157      * Sends the geometry for a widened path as specified by the parameters
 158      * to the specified consumer.
 159      * <p>
 160      * The specified {@code src} {@link Shape} is widened according
 161      * to the parameters specified by the {@link BasicStroke} object.
 162      * Adjustments are made to the path as appropriate for the
 163      * {@link java.awt.RenderingHints#VALUE_STROKE_NORMALIZE} hint if the
 164      * {@code normalize} boolean parameter is true.
 165      * Adjustments are made to the path as appropriate for the
 166      * {@link java.awt.RenderingHints#VALUE_ANTIALIAS_ON} hint if the
 167      * {@code antialias} boolean parameter is true.
 168      * <p>
 169      * The geometry of the widened path is forwarded to the indicated
 170      * {@link PathConsumer2D} object as it is calculated.
 171      *
 172      * @param src the source path to be widened
 173      * @param bs the {@code BasicSroke} object specifying the
 174      *           decorations to be applied to the widened path
 175      * @param normalize indicates whether stroke normalization should
 176      *                  be applied
 177      * @param antialias indicates whether or not adjustments appropriate
 178      *                  to antialiased rendering should be applied
 179      * @param consumer the {@code PathConsumer2D} instance to forward
 180      *                 the widened geometry to
 181      * @since 1.7
 182      */
 183     @Override
 184     public void strokeTo(Shape src,
 185                          AffineTransform at,
 186                          BasicStroke bs,
 187                          boolean thin,
 188                          boolean normalize,
 189                          boolean antialias,
 190                          final PathConsumer2D consumer)
 191     {
 192         final NormMode norm = (normalize) ?
 193                 ((antialias) ? NormMode.ON_WITH_AA : NormMode.ON_NO_AA)
 194                 : NormMode.OFF;
 195 
 196         final RendererContext rdrCtx = getRendererContext();
 197         try {
 198             strokeTo(rdrCtx, src, at, bs, thin, norm, antialias, consumer);
 199         } finally {
 200             // recycle the RendererContext instance
 201             returnRendererContext(rdrCtx);
 202         }
 203     }
 204 
 205     void strokeTo(final RendererContext rdrCtx,
 206                   Shape src,
 207                   AffineTransform at,
 208                   BasicStroke bs,
 209                   boolean thin,
 210                   NormMode normalize,
 211                   boolean antialias,
 212                   PathConsumer2D pc2d)
 213     {
 214         float lw;
 215         if (thin) {
 216             if (antialias) {
 217                 lw = userSpaceLineWidth(at, MIN_PEN_SIZE);
 218             } else {
 219                 lw = userSpaceLineWidth(at, 1.0f);
 220             }
 221         } else {
 222             lw = bs.getLineWidth();
 223         }
 224         strokeTo(rdrCtx,
 225                  src,
 226                  at,
 227                  lw,
 228                  normalize,
 229                  bs.getEndCap(),
 230                  bs.getLineJoin(),
 231                  bs.getMiterLimit(),
 232                  bs.getDashArray(),
 233                  bs.getDashPhase(),
 234                  pc2d);
 235     }
 236 
 237     private float userSpaceLineWidth(AffineTransform at, float lw) {
 238 
 239         float widthScale;
 240 
 241         if (at == null) {
 242             widthScale = 1.0f;
 243         } else if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM  |
 244                                     AffineTransform.TYPE_GENERAL_SCALE)) != 0) {
 245             widthScale = (float)Math.sqrt(at.getDeterminant());
 246         } else {
 247             // First calculate the "maximum scale" of this transform.
 248             double A = at.getScaleX();       // m00
 249             double C = at.getShearX();       // m01
 250             double B = at.getShearY();       // m10
 251             double D = at.getScaleY();       // m11
 252 
 253             /*
 254              * Given a 2 x 2 affine matrix [ A B ] such that
 255              *                             [ C D ]
 256              * v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
 257              * find the maximum magnitude (norm) of the vector v'
 258              * with the constraint (x^2 + y^2 = 1).
 259              * The equation to maximize is
 260              *     |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
 261              * or  |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
 262              * Since sqrt is monotonic we can maximize |v'|^2
 263              * instead and plug in the substitution y = sqrt(1 - x^2).
 264              * Trigonometric equalities can then be used to get
 265              * rid of most of the sqrt terms.
 266              */
 267 
 268             double EA = A*A + B*B;          // x^2 coefficient
 269             double EB = 2.0d * (A*C + B*D); // xy coefficient
 270             double EC = C*C + D*D;          // y^2 coefficient
 271 
 272             /*
 273              * There is a lot of calculus omitted here.
 274              *
 275              * Conceptually, in the interests of understanding the
 276              * terms that the calculus produced we can consider
 277              * that EA and EC end up providing the lengths along
 278              * the major axes and the hypot term ends up being an
 279              * adjustment for the additional length along the off-axis
 280              * angle of rotated or sheared ellipses as well as an
 281              * adjustment for the fact that the equation below
 282              * averages the two major axis lengths.  (Notice that
 283              * the hypot term contains a part which resolves to the
 284              * difference of these two axis lengths in the absence
 285              * of rotation.)
 286              *
 287              * In the calculus, the ratio of the EB and (EA-EC) terms
 288              * ends up being the tangent of 2*theta where theta is
 289              * the angle that the long axis of the ellipse makes
 290              * with the horizontal axis.  Thus, this equation is
 291              * calculating the length of the hypotenuse of a triangle
 292              * along that axis.
 293              */
 294 
 295             double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
 296             // sqrt omitted, compare to squared limits below.
 297             double widthsquared = ((EA + EC + hypot) / 2.0d);
 298 
 299             widthScale = (float)Math.sqrt(widthsquared);
 300         }
 301 
 302         return (lw / widthScale);
 303     }
 304 
 305     void strokeTo(final RendererContext rdrCtx,
 306                   Shape src,
 307                   AffineTransform at,
 308                   float width,
 309                   NormMode norm,
 310                   int caps,
 311                   int join,
 312                   float miterlimit,
 313                   float[] dashes,
 314                   float dashphase,
 315                   PathConsumer2D pc2d)
 316     {
 317         // We use strokerat so that in Stroker and Dasher we can work only
 318         // with the pre-transformation coordinates. This will repeat a lot of
 319         // computations done in the path iterator, but the alternative is to
 320         // work with transformed paths and compute untransformed coordinates
 321         // as needed. This would be faster but I do not think the complexity
 322         // of working with both untransformed and transformed coordinates in
 323         // the same code is worth it.
 324         // However, if a path's width is constant after a transformation,
 325         // we can skip all this untransforming.
 326 
 327         // As pathTo() will check transformed coordinates for invalid values
 328         // (NaN / Infinity) to ignore such points, it is necessary to apply the
 329         // transformation before the path processing.
 330         AffineTransform strokerat = null;
 331 
 332         int dashLen = -1;
 333         boolean recycleDashes = false;
 334         float scale = 1.0f;
 335 
 336         if (at != null && !at.isIdentity()) {
 337             final double a = at.getScaleX();
 338             final double b = at.getShearX();
 339             final double c = at.getShearY();
 340             final double d = at.getScaleY();
 341             final double det = a * d - c * b;
 342 
 343             if (Math.abs(det) <= (2.0f * Float.MIN_VALUE)) {
 344                 // this rendering engine takes one dimensional curves and turns
 345                 // them into 2D shapes by giving them width.
 346                 // However, if everything is to be passed through a singular
 347                 // transformation, these 2D shapes will be squashed down to 1D
 348                 // again so, nothing can be drawn.
 349 
 350                 // Every path needs an initial moveTo and a pathDone. If these
 351                 // are not there this causes a SIGSEGV in libawt.so (at the time
 352                 // of writing of this comment (September 16, 2010)). Actually,
 353                 // I am not sure if the moveTo is necessary to avoid the SIGSEGV
 354                 // but the pathDone is definitely needed.
 355                 pc2d.moveTo(0.0f, 0.0f);
 356                 pc2d.pathDone();
 357                 return;
 358             }
 359 
 360             // If the transform is a constant multiple of an orthogonal transformation
 361             // then every length is just multiplied by a constant, so we just
 362             // need to transform input paths to stroker and tell stroker
 363             // the scaled width. This condition is satisfied if
 364             // a*b == -c*d && a*a+c*c == b*b+d*d. In the actual check below, we
 365             // leave a bit of room for error.
 366             if (nearZero(a*b + c*d) && nearZero(a*a + c*c - (b*b + d*d))) {
 367                 scale = (float) Math.sqrt(a*a + c*c);
 368 
 369                 if (dashes != null) {
 370                     recycleDashes = true;
 371                     dashLen = dashes.length;
 372                     dashes = rdrCtx.dasher.copyDashArray(dashes);
 373                     for (int i = 0; i < dashLen; i++) {
 374                         dashes[i] *= scale;
 375                     }
 376                     dashphase *= scale;
 377                 }
 378                 width *= scale;
 379 
 380                 // by now strokerat == null. Input paths to
 381                 // stroker (and maybe dasher) will have the full transform at
 382                 // applied to them and nothing will happen to the output paths.
 383             } else {
 384                 strokerat = at;
 385 
 386                 // by now strokerat == at. Input paths to
 387                 // stroker (and maybe dasher) will have the full transform at
 388                 // applied to them, then they will be normalized, and then
 389                 // the inverse of *only the non translation part of at* will
 390                 // be applied to the normalized paths. This won't cause problems
 391                 // in stroker, because, suppose at = T*A, where T is just the
 392                 // translation part of at, and A is the rest. T*A has already
 393                 // been applied to Stroker/Dasher's input. Then Ainv will be
 394                 // applied. Ainv*T*A is not equal to T, but it is a translation,
 395                 // which means that none of stroker's assumptions about its
 396                 // input will be violated. After all this, A will be applied
 397                 // to stroker's output.
 398             }
 399         } else {
 400             // either at is null or it's the identity. In either case
 401             // we don't transform the path.
 402             at = null;
 403         }
 404 
 405         final TransformingPathConsumer2D transformerPC2D = rdrCtx.transformerPC2D;
 406 
 407         if (DO_TRACE_PATH) {
 408             // trace Stroker:
 409             pc2d = transformerPC2D.traceStroker(pc2d);
 410         }
 411 
 412         if (USE_SIMPLIFIER) {
 413             // Use simplifier after stroker before Renderer
 414             // to remove collinear segments (notably due to cap square)
 415             pc2d = rdrCtx.simplifier.init(pc2d);
 416         }
 417 
 418         // deltaTransformConsumer may adjust the clip rectangle:
 419         pc2d = transformerPC2D.deltaTransformConsumer(pc2d, strokerat);
 420 
 421         // stroker will adjust the clip rectangle (width / miter limit):
 422         pc2d = rdrCtx.stroker.init(pc2d, width, caps, join, miterlimit, scale);
 423 
 424         if (dashes != null) {
 425             if (!recycleDashes) {
 426                 dashLen = dashes.length;
 427             }
 428             pc2d = rdrCtx.dasher.init(pc2d, dashes, dashLen, dashphase,
 429                                       recycleDashes);
 430         } else if (rdrCtx.doClip && (caps != Stroker.CAP_BUTT)) {
 431             if (DO_TRACE_PATH) {
 432                 pc2d = transformerPC2D.traceClosedPathDetector(pc2d);
 433             }
 434 
 435             // If no dash and clip is enabled:
 436             // detect closedPaths (polygons) for caps
 437             pc2d = transformerPC2D.detectClosedPath(pc2d);
 438         }
 439         pc2d = transformerPC2D.inverseDeltaTransformConsumer(pc2d, strokerat);
 440 
 441         if (DO_TRACE_PATH) {
 442             // trace Input:
 443             pc2d = transformerPC2D.traceInput(pc2d);
 444         }
 445 
 446         final PathIterator pi = norm.getNormalizingPathIterator(rdrCtx,
 447                                          src.getPathIterator(at));
 448 
 449         pathTo(rdrCtx, pi, pc2d);
 450 
 451         /*
 452          * Pipeline seems to be:
 453          * shape.getPathIterator(at)
 454          * -> (NormalizingPathIterator)
 455          * -> (inverseDeltaTransformConsumer)
 456          * -> (Dasher)
 457          * -> Stroker
 458          * -> (deltaTransformConsumer)
 459          *
 460          * -> (CollinearSimplifier) to remove redundant segments
 461          *
 462          * -> pc2d = Renderer (bounding box)
 463          */
 464     }
 465 
 466     private static boolean nearZero(final double num) {
 467         return Math.abs(num) < 2.0d * Math.ulp(num);
 468     }
 469 
 470     abstract static class NormalizingPathIterator implements PathIterator {
 471 
 472         private PathIterator src;
 473 
 474         // the adjustment applied to the current position.
 475         private float curx_adjust, cury_adjust;
 476         // the adjustment applied to the last moveTo position.
 477         private float movx_adjust, movy_adjust;
 478 
 479         private final float[] tmp;
 480 
 481         NormalizingPathIterator(final float[] tmp) {
 482             this.tmp = tmp;
 483         }
 484 
 485         final NormalizingPathIterator init(final PathIterator src) {
 486             this.src = src;
 487             return this; // fluent API
 488         }
 489 
 490         /**
 491          * Disposes this path iterator:
 492          * clean up before reusing this instance
 493          */
 494         final void dispose() {
 495             // free source PathIterator:
 496             this.src = null;
 497         }
 498 
 499         @Override
 500         public final int currentSegment(final float[] coords) {
 501             int lastCoord;
 502             final int type = src.currentSegment(coords);
 503 
 504             switch(type) {
 505                 case PathIterator.SEG_MOVETO:
 506                 case PathIterator.SEG_LINETO:
 507                     lastCoord = 0;
 508                     break;
 509                 case PathIterator.SEG_QUADTO:
 510                     lastCoord = 2;
 511                     break;
 512                 case PathIterator.SEG_CUBICTO:
 513                     lastCoord = 4;
 514                     break;
 515                 case PathIterator.SEG_CLOSE:
 516                     // we don't want to deal with this case later. We just exit now
 517                     curx_adjust = movx_adjust;
 518                     cury_adjust = movy_adjust;
 519                     return type;
 520                 default:
 521                     throw new InternalError("Unrecognized curve type");
 522             }
 523 
 524             // normalize endpoint
 525             float coord, x_adjust, y_adjust;
 526 
 527             coord = coords[lastCoord];
 528             x_adjust = normCoord(coord); // new coord
 529             coords[lastCoord] = x_adjust;
 530             x_adjust -= coord;
 531 
 532             coord = coords[lastCoord + 1];
 533             y_adjust = normCoord(coord); // new coord
 534             coords[lastCoord + 1] = y_adjust;
 535             y_adjust -= coord;
 536 
 537             // now that the end points are done, normalize the control points
 538             switch(type) {
 539                 case PathIterator.SEG_MOVETO:
 540                     movx_adjust = x_adjust;
 541                     movy_adjust = y_adjust;
 542                     break;
 543                 case PathIterator.SEG_LINETO:
 544                     break;
 545                 case PathIterator.SEG_QUADTO:
 546                     coords[0] += (curx_adjust + x_adjust) / 2.0f;
 547                     coords[1] += (cury_adjust + y_adjust) / 2.0f;
 548                     break;
 549                 case PathIterator.SEG_CUBICTO:
 550                     coords[0] += curx_adjust;
 551                     coords[1] += cury_adjust;
 552                     coords[2] += x_adjust;
 553                     coords[3] += y_adjust;
 554                     break;
 555                 case PathIterator.SEG_CLOSE:
 556                     // handled earlier
 557                 default:
 558             }
 559             curx_adjust = x_adjust;
 560             cury_adjust = y_adjust;
 561             return type;
 562         }
 563 
 564         abstract float normCoord(final float coord);
 565 
 566         @Override
 567         public final int currentSegment(final double[] coords) {
 568             final float[] _tmp = tmp; // dirty
 569             int type = this.currentSegment(_tmp);
 570             for (int i = 0; i < 6; i++) {
 571                 coords[i] = _tmp[i];
 572             }
 573             return type;
 574         }
 575 
 576         @Override
 577         public final int getWindingRule() {
 578             return src.getWindingRule();
 579         }
 580 
 581         @Override
 582         public final boolean isDone() {
 583             if (src.isDone()) {
 584                 // Dispose this instance:
 585                 dispose();
 586                 return true;
 587             }
 588             return false;
 589         }
 590 
 591         @Override
 592         public final void next() {
 593             src.next();
 594         }
 595 
 596         static final class NearestPixelCenter
 597                                 extends NormalizingPathIterator
 598         {
 599             NearestPixelCenter(final float[] tmp) {
 600                 super(tmp);
 601             }
 602 
 603             @Override
 604             float normCoord(final float coord) {
 605                 // round to nearest pixel center
 606                 return FloatMath.floor_f(coord) + 0.5f;
 607             }
 608         }
 609 
 610         static final class NearestPixelQuarter
 611                                 extends NormalizingPathIterator
 612         {
 613             NearestPixelQuarter(final float[] tmp) {
 614                 super(tmp);
 615             }
 616 
 617             @Override
 618             float normCoord(final float coord) {
 619                 // round to nearest (0.25, 0.25) pixel quarter
 620                 return FloatMath.floor_f(coord + 0.25f) + 0.25f;
 621             }
 622         }
 623     }
 624 
 625     private static void pathTo(final RendererContext rdrCtx, final PathIterator pi,
 626                                final PathConsumer2D pc2d)
 627     {
 628         // mark context as DIRTY:
 629         rdrCtx.dirty = true;
 630 
 631         final float[] coords = rdrCtx.float6;
 632 
 633         pathToLoop(coords, pi, pc2d);
 634 
 635         // mark context as CLEAN:
 636         rdrCtx.dirty = false;
 637     }
 638 
 639     private static void pathToLoop(final float[] coords, final PathIterator pi,
 640                                    final PathConsumer2D pc2d)
 641     {
 642         // ported from DuctusRenderingEngine.feedConsumer() but simplified:
 643         // - removed skip flag = !subpathStarted
 644         // - removed pathClosed (ie subpathStarted not set to false)
 645         boolean subpathStarted = false;
 646 
 647         for (; !pi.isDone(); pi.next()) {
 648             switch (pi.currentSegment(coords)) {
 649             case PathIterator.SEG_MOVETO:
 650                 /* Checking SEG_MOVETO coordinates if they are out of the
 651                  * [LOWER_BND, UPPER_BND] range. This check also handles NaN
 652                  * and Infinity values. Skipping next path segment in case of
 653                  * invalid data.
 654                  */
 655                 if (coords[0] < UPPER_BND && coords[0] > LOWER_BND &&
 656                     coords[1] < UPPER_BND && coords[1] > LOWER_BND)
 657                 {
 658                     pc2d.moveTo(coords[0], coords[1]);
 659                     subpathStarted = true;
 660                 }
 661                 break;
 662             case PathIterator.SEG_LINETO:
 663                 /* Checking SEG_LINETO coordinates if they are out of the
 664                  * [LOWER_BND, UPPER_BND] range. This check also handles NaN
 665                  * and Infinity values. Ignoring current path segment in case
 666                  * of invalid data. If segment is skipped its endpoint
 667                  * (if valid) is used to begin new subpath.
 668                  */
 669                 if (coords[0] < UPPER_BND && coords[0] > LOWER_BND &&
 670                     coords[1] < UPPER_BND && coords[1] > LOWER_BND)
 671                 {
 672                     if (subpathStarted) {
 673                         pc2d.lineTo(coords[0], coords[1]);
 674                     } else {
 675                         pc2d.moveTo(coords[0], coords[1]);
 676                         subpathStarted = true;
 677                     }
 678                 }
 679                 break;
 680             case PathIterator.SEG_QUADTO:
 681                 // Quadratic curves take two points
 682                 /* Checking SEG_QUADTO coordinates if they are out of the
 683                  * [LOWER_BND, UPPER_BND] range. This check also handles NaN
 684                  * and Infinity values. Ignoring current path segment in case
 685                  * of invalid endpoints's data. Equivalent to the SEG_LINETO
 686                  * if endpoint coordinates are valid but there are invalid data
 687                  * among other coordinates
 688                  */
 689                 if (coords[2] < UPPER_BND && coords[2] > LOWER_BND &&
 690                     coords[3] < UPPER_BND && coords[3] > LOWER_BND)
 691                 {
 692                     if (subpathStarted) {
 693                         if (coords[0] < UPPER_BND && coords[0] > LOWER_BND &&
 694                             coords[1] < UPPER_BND && coords[1] > LOWER_BND)
 695                         {
 696                             pc2d.quadTo(coords[0], coords[1],
 697                                         coords[2], coords[3]);
 698                         } else {
 699                             pc2d.lineTo(coords[2], coords[3]);
 700                         }
 701                     } else {
 702                         pc2d.moveTo(coords[2], coords[3]);
 703                         subpathStarted = true;
 704                     }
 705                 }
 706                 break;
 707             case PathIterator.SEG_CUBICTO:
 708                 // Cubic curves take three points
 709                 /* Checking SEG_CUBICTO coordinates if they are out of the
 710                  * [LOWER_BND, UPPER_BND] range. This check also handles NaN
 711                  * and Infinity values. Ignoring current path segment in case
 712                  * of invalid endpoints's data. Equivalent to the SEG_LINETO
 713                  * if endpoint coordinates are valid but there are invalid data
 714                  * among other coordinates
 715                  */
 716                 if (coords[4] < UPPER_BND && coords[4] > LOWER_BND &&
 717                     coords[5] < UPPER_BND && coords[5] > LOWER_BND)
 718                 {
 719                     if (subpathStarted) {
 720                         if (coords[0] < UPPER_BND && coords[0] > LOWER_BND &&
 721                             coords[1] < UPPER_BND && coords[1] > LOWER_BND &&
 722                             coords[2] < UPPER_BND && coords[2] > LOWER_BND &&
 723                             coords[3] < UPPER_BND && coords[3] > LOWER_BND)
 724                         {
 725                             pc2d.curveTo(coords[0], coords[1],
 726                                          coords[2], coords[3],
 727                                          coords[4], coords[5]);
 728                         } else {
 729                             pc2d.lineTo(coords[4], coords[5]);
 730                         }
 731                     } else {
 732                         pc2d.moveTo(coords[4], coords[5]);
 733                         subpathStarted = true;
 734                     }
 735                 }
 736                 break;
 737             case PathIterator.SEG_CLOSE:
 738                 if (subpathStarted) {
 739                     pc2d.closePath();
 740                     // do not set subpathStarted to false
 741                     // in case of missing moveTo() after close()
 742                 }
 743                 break;
 744             default:
 745             }
 746         }
 747         pc2d.pathDone();
 748     }
 749 
 750     /**
 751      * Construct an antialiased tile generator for the given shape with
 752      * the given rendering attributes and store the bounds of the tile
 753      * iteration in the bbox parameter.
 754      * The {@code at} parameter specifies a transform that should affect
 755      * both the shape and the {@code BasicStroke} attributes.
 756      * The {@code clip} parameter specifies the current clip in effect
 757      * in device coordinates and can be used to prune the data for the
 758      * operation, but the renderer is not required to perform any
 759      * clipping.
 760      * If the {@code BasicStroke} parameter is null then the shape
 761      * should be filled as is, otherwise the attributes of the
 762      * {@code BasicStroke} should be used to specify a draw operation.
 763      * The {@code thin} parameter indicates whether or not the
 764      * transformed {@code BasicStroke} represents coordinates smaller
 765      * than the minimum resolution of the antialiasing rasterizer as
 766      * specified by the {@code getMinimumAAPenWidth()} method.
 767      * <p>
 768      * Upon returning, this method will fill the {@code bbox} parameter
 769      * with 4 values indicating the bounds of the iteration of the
 770      * tile generator.
 771      * The iteration order of the tiles will be as specified by the
 772      * pseudo-code:
 773      * <pre>
 774      *     for (y = bbox[1]; y < bbox[3]; y += tileheight) {
 775      *         for (x = bbox[0]; x < bbox[2]; x += tilewidth) {
 776      *         }
 777      *     }
 778      * </pre>
 779      * If there is no output to be rendered, this method may return
 780      * null.
 781      *
 782      * @param s the shape to be rendered (fill or draw)
 783      * @param at the transform to be applied to the shape and the
 784      *           stroke attributes
 785      * @param clip the current clip in effect in device coordinates
 786      * @param bs if non-null, a {@code BasicStroke} whose attributes
 787      *           should be applied to this operation
 788      * @param thin true if the transformed stroke attributes are smaller
 789      *             than the minimum dropout pen width
 790      * @param normalize true if the {@code VALUE_STROKE_NORMALIZE}
 791      *                  {@code RenderingHint} is in effect
 792      * @param bbox returns the bounds of the iteration
 793      * @return the {@code AATileGenerator} instance to be consulted
 794      *         for tile coverages, or null if there is no output to render
 795      * @since 1.7
 796      */
 797     @Override
 798     public AATileGenerator getAATileGenerator(Shape s,
 799                                               AffineTransform at,
 800                                               Region clip,
 801                                               BasicStroke bs,
 802                                               boolean thin,
 803                                               boolean normalize,
 804                                               int[] bbox)
 805     {
 806         MarlinTileGenerator ptg = null;
 807         Renderer r = null;
 808 
 809         final RendererContext rdrCtx = getRendererContext();
 810         try {
 811             if (DO_CLIP || (DO_CLIP_RUNTIME_ENABLE && MarlinProperties.isDoClipAtRuntime())) {
 812                 // Define the initial clip bounds:
 813                 final float[] clipRect = rdrCtx.clipRect;
 814 
 815                 clipRect[0] = clip.getLoY();
 816                 clipRect[1] = clip.getLoY() + clip.getHeight();
 817                 clipRect[2] = clip.getLoX();
 818                 clipRect[3] = clip.getLoX() + clip.getWidth();
 819 
 820                 // Enable clipping:
 821                 rdrCtx.doClip = true;
 822             }
 823 
 824             // Test if at is identity:
 825             final AffineTransform _at = (at != null && !at.isIdentity()) ? at
 826                                         : null;
 827 
 828             final NormMode norm = (normalize) ? NormMode.ON_WITH_AA : NormMode.OFF;
 829 
 830             if (bs == null) {
 831                 // fill shape:
 832                 final PathIterator pi = norm.getNormalizingPathIterator(rdrCtx,
 833                                                  s.getPathIterator(_at));
 834 
 835                 final int windingRule = pi.getWindingRule();
 836 
 837                 // note: Winding rule may be EvenOdd ONLY for fill operations !
 838                 r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(),
 839                                          clip.getWidth(), clip.getHeight(),
 840                                          windingRule);
 841 
 842                 PathConsumer2D pc2d = r;
 843 
 844                 if (DO_CLIP_FILL && rdrCtx.doClip) {
 845                     if (DO_TRACE_PATH) {
 846                         // trace Filler:
 847                         pc2d = rdrCtx.transformerPC2D.traceFiller(pc2d);
 848                     }
 849                     pc2d = rdrCtx.transformerPC2D.pathClipper(pc2d);
 850                 }
 851 
 852                 if (DO_TRACE_PATH) {
 853                     // trace Input:
 854                     pc2d = rdrCtx.transformerPC2D.traceInput(pc2d);
 855                 }
 856 
 857                 // TODO: subdivide quad/cubic curves into monotonic curves ?
 858                 pathTo(rdrCtx, pi, pc2d);
 859 
 860             } else {
 861                 // draw shape with given stroke:
 862                 r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(),
 863                                          clip.getWidth(), clip.getHeight(),
 864                                          WIND_NON_ZERO);
 865 
 866                 strokeTo(rdrCtx, s, _at, bs, thin, norm, true, r);
 867             }
 868             if (r.endRendering()) {
 869                 ptg = rdrCtx.ptg.init();
 870                 ptg.getBbox(bbox);
 871                 // note: do not returnRendererContext(rdrCtx)
 872                 // as it will be called later by MarlinTileGenerator.dispose()
 873                 r = null;
 874             }
 875         } finally {
 876             if (r != null) {
 877                 // dispose renderer and recycle the RendererContext instance:
 878                 r.dispose();
 879             }
 880         }
 881 
 882         // Return null to cancel AA tile generation (nothing to render)
 883         return ptg;
 884     }
 885 
 886     @Override
 887     public AATileGenerator getAATileGenerator(double x, double y,
 888                                               double dx1, double dy1,
 889                                               double dx2, double dy2,
 890                                               double lw1, double lw2,
 891                                               Region clip,
 892                                               int[] bbox)
 893     {
 894         // REMIND: Deal with large coordinates!
 895         double ldx1, ldy1, ldx2, ldy2;
 896         boolean innerpgram = (lw1 > 0.0d && lw2 > 0.0d);
 897 
 898         if (innerpgram) {
 899             ldx1 = dx1 * lw1;
 900             ldy1 = dy1 * lw1;
 901             ldx2 = dx2 * lw2;
 902             ldy2 = dy2 * lw2;
 903             x -= (ldx1 + ldx2) / 2.0d;
 904             y -= (ldy1 + ldy2) / 2.0d;
 905             dx1 += ldx1;
 906             dy1 += ldy1;
 907             dx2 += ldx2;
 908             dy2 += ldy2;
 909             if (lw1 > 1.0d && lw2 > 1.0d) {
 910                 // Inner parallelogram was entirely consumed by stroke...
 911                 innerpgram = false;
 912             }
 913         } else {
 914             ldx1 = ldy1 = ldx2 = ldy2 = 0.0d;
 915         }
 916 
 917         MarlinTileGenerator ptg = null;
 918         Renderer r = null;
 919 
 920         final RendererContext rdrCtx = getRendererContext();
 921         try {
 922             r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(),
 923                                      clip.getWidth(), clip.getHeight(),
 924                                      WIND_EVEN_ODD);
 925 
 926             r.moveTo((float) x, (float) y);
 927             r.lineTo((float) (x+dx1), (float) (y+dy1));
 928             r.lineTo((float) (x+dx1+dx2), (float) (y+dy1+dy2));
 929             r.lineTo((float) (x+dx2), (float) (y+dy2));
 930             r.closePath();
 931 
 932             if (innerpgram) {
 933                 x += ldx1 + ldx2;
 934                 y += ldy1 + ldy2;
 935                 dx1 -= 2.0d * ldx1;
 936                 dy1 -= 2.0d * ldy1;
 937                 dx2 -= 2.0d * ldx2;
 938                 dy2 -= 2.0d * ldy2;
 939                 r.moveTo((float) x, (float) y);
 940                 r.lineTo((float) (x+dx1), (float) (y+dy1));
 941                 r.lineTo((float) (x+dx1+dx2), (float) (y+dy1+dy2));
 942                 r.lineTo((float) (x+dx2), (float) (y+dy2));
 943                 r.closePath();
 944             }
 945             r.pathDone();
 946 
 947             if (r.endRendering()) {
 948                 ptg = rdrCtx.ptg.init();
 949                 ptg.getBbox(bbox);
 950                 // note: do not returnRendererContext(rdrCtx)
 951                 // as it will be called later by MarlinTileGenerator.dispose()
 952                 r = null;
 953             }
 954         } finally {
 955             if (r != null) {
 956                 // dispose renderer and recycle the RendererContext instance:
 957                 r.dispose();
 958             }
 959         }
 960 
 961         // Return null to cancel AA tile generation (nothing to render)
 962         return ptg;
 963     }
 964 
 965     /**
 966      * Returns the minimum pen width that the antialiasing rasterizer
 967      * can represent without dropouts occuring.
 968      * @since 1.7
 969      */
 970     @Override
 971     public float getMinimumAAPenSize() {
 972         return MIN_PEN_SIZE;
 973     }
 974 
 975     static {
 976         if (PathIterator.WIND_NON_ZERO != WIND_NON_ZERO ||
 977             PathIterator.WIND_EVEN_ODD != WIND_EVEN_ODD ||
 978             BasicStroke.JOIN_MITER != JOIN_MITER ||
 979             BasicStroke.JOIN_ROUND != JOIN_ROUND ||
 980             BasicStroke.JOIN_BEVEL != JOIN_BEVEL ||
 981             BasicStroke.CAP_BUTT != CAP_BUTT ||
 982             BasicStroke.CAP_ROUND != CAP_ROUND ||
 983             BasicStroke.CAP_SQUARE != CAP_SQUARE)
 984         {
 985             throw new InternalError("mismatched renderer constants");
 986         }
 987     }
 988 
 989     // --- RendererContext handling ---
 990     // use ThreadLocal or ConcurrentLinkedQueue to get one RendererContext
 991     private static final boolean USE_THREAD_LOCAL;
 992 
 993     // reference type stored in either TL or CLQ
 994     static final int REF_TYPE;
 995 
 996     // Per-thread RendererContext
 997     private static final ReentrantContextProvider<RendererContext> RDR_CTX_PROVIDER;
 998 
 999     // Static initializer to use TL or CLQ mode
1000     static {
1001         USE_THREAD_LOCAL = MarlinProperties.isUseThreadLocal();
1002 
1003         // Soft reference by default:
1004         final String refType = AccessController.doPrivileged(
1005                             new GetPropertyAction("sun.java2d.renderer.useRef",
1006                             "soft"));
1007         switch (refType) {
1008             default:
1009             case "soft":
1010                 REF_TYPE = ReentrantContextProvider.REF_SOFT;
1011                 break;
1012             case "weak":
1013                 REF_TYPE = ReentrantContextProvider.REF_WEAK;
1014                 break;
1015             case "hard":
1016                 REF_TYPE = ReentrantContextProvider.REF_HARD;
1017                 break;
1018         }
1019 
1020         if (USE_THREAD_LOCAL) {
1021             RDR_CTX_PROVIDER = new ReentrantContextProviderTL<RendererContext>(REF_TYPE)
1022                 {
1023                     @Override
1024                     protected RendererContext newContext() {
1025                         return RendererContext.createContext();
1026                     }
1027                 };
1028         } else {
1029             RDR_CTX_PROVIDER = new ReentrantContextProviderCLQ<RendererContext>(REF_TYPE)
1030                 {
1031                     @Override
1032                     protected RendererContext newContext() {
1033                         return RendererContext.createContext();
1034                     }
1035                 };
1036         }
1037     }
1038 
1039     private static boolean SETTINGS_LOGGED = !ENABLE_LOGS;
1040 
1041     private static void logSettings(final String reClass) {
1042         // log information at startup
1043         if (SETTINGS_LOGGED) {
1044             return;
1045         }
1046         SETTINGS_LOGGED = true;
1047 
1048         String refType;
1049         switch (REF_TYPE) {
1050             default:
1051             case ReentrantContextProvider.REF_HARD:
1052                 refType = "hard";
1053                 break;
1054             case ReentrantContextProvider.REF_SOFT:
1055                 refType = "soft";
1056                 break;
1057             case ReentrantContextProvider.REF_WEAK:
1058                 refType = "weak";
1059                 break;
1060         }
1061 
1062         logInfo("=========================================================="
1063                 + "=====================");
1064 
1065         logInfo("Marlin software rasterizer           = ENABLED");
1066         logInfo("Version                              = ["
1067                 + Version.getVersion() + "]");
1068         logInfo("sun.java2d.renderer                  = "
1069                 + reClass);
1070         logInfo("sun.java2d.renderer.useThreadLocal   = "
1071                 + USE_THREAD_LOCAL);
1072         logInfo("sun.java2d.renderer.useRef           = "
1073                 + refType);
1074 
1075         logInfo("sun.java2d.renderer.edges            = "
1076                 + MarlinConst.INITIAL_EDGES_COUNT);
1077         logInfo("sun.java2d.renderer.pixelsize        = "
1078                 + MarlinConst.INITIAL_PIXEL_DIM);
1079 
1080         logInfo("sun.java2d.renderer.subPixel_log2_X  = "
1081                 + MarlinConst.SUBPIXEL_LG_POSITIONS_X);
1082         logInfo("sun.java2d.renderer.subPixel_log2_Y  = "
1083                 + MarlinConst.SUBPIXEL_LG_POSITIONS_Y);
1084 
1085         logInfo("sun.java2d.renderer.tileSize_log2    = "
1086                 + MarlinConst.TILE_H_LG);
1087         logInfo("sun.java2d.renderer.tileWidth_log2   = "
1088                 + MarlinConst.TILE_W_LG);
1089         logInfo("sun.java2d.renderer.blockSize_log2   = "
1090                 + MarlinConst.BLOCK_SIZE_LG);
1091 
1092         // RLE / blockFlags settings
1093 
1094         logInfo("sun.java2d.renderer.forceRLE         = "
1095                 + MarlinProperties.isForceRLE());
1096         logInfo("sun.java2d.renderer.forceNoRLE       = "
1097                 + MarlinProperties.isForceNoRLE());
1098         logInfo("sun.java2d.renderer.useTileFlags     = "
1099                 + MarlinProperties.isUseTileFlags());
1100         logInfo("sun.java2d.renderer.useTileFlags.useHeuristics = "
1101                 + MarlinProperties.isUseTileFlagsWithHeuristics());
1102         logInfo("sun.java2d.renderer.rleMinWidth      = "
1103                 + MarlinCache.RLE_MIN_WIDTH);
1104 
1105         // optimisation parameters
1106         logInfo("sun.java2d.renderer.useSimplifier    = "
1107                 + MarlinConst.USE_SIMPLIFIER);
1108         logInfo("sun.java2d.renderer.clip             = "
1109                 + MarlinProperties.isDoClip());
1110 
1111         // debugging parameters
1112         logInfo("sun.java2d.renderer.doStats          = "
1113                 + MarlinConst.DO_STATS);
1114         logInfo("sun.java2d.renderer.doMonitors       = "
1115                 + MarlinConst.DO_MONITORS);
1116         logInfo("sun.java2d.renderer.doChecks         = "
1117                 + MarlinConst.DO_CHECKS);
1118 
1119         // logging parameters
1120         logInfo("sun.java2d.renderer.useLogger        = "
1121                 + MarlinConst.USE_LOGGER);
1122         logInfo("sun.java2d.renderer.logCreateContext = "
1123                 + MarlinConst.LOG_CREATE_CONTEXT);
1124         logInfo("sun.java2d.renderer.logUnsafeMalloc  = "
1125                 + MarlinConst.LOG_UNSAFE_MALLOC);
1126 
1127         // quality settings
1128         logInfo("sun.java2d.renderer.cubic_dec_d2     = "
1129                 + MarlinProperties.getCubicDecD2());
1130         logInfo("sun.java2d.renderer.cubic_inc_d1     = "
1131                 + MarlinProperties.getCubicIncD1());
1132         logInfo("sun.java2d.renderer.quad_dec_d2      = "
1133                 + MarlinProperties.getQuadDecD2());
1134 
1135         logInfo("Renderer settings:");
1136         logInfo("CUB_DEC_BND  = " + Renderer.CUB_DEC_BND);
1137         logInfo("CUB_INC_BND  = " + Renderer.CUB_INC_BND);
1138         logInfo("QUAD_DEC_BND = " + Renderer.QUAD_DEC_BND);
1139 
1140         logInfo("INITIAL_EDGES_CAPACITY               = "
1141                 + MarlinConst.INITIAL_EDGES_CAPACITY);
1142         logInfo("INITIAL_CROSSING_COUNT               = "
1143                 + Renderer.INITIAL_CROSSING_COUNT);
1144 
1145         logInfo("=========================================================="
1146                 + "=====================");
1147     }
1148 
1149     /**
1150      * Get the RendererContext instance dedicated to the current thread
1151      * @return RendererContext instance
1152      */
1153     @SuppressWarnings({"unchecked"})
1154     static RendererContext getRendererContext() {
1155         final RendererContext rdrCtx = RDR_CTX_PROVIDER.acquire();
1156         if (DO_MONITORS) {
1157             rdrCtx.stats.mon_pre_getAATileGenerator.start();
1158         }
1159         return rdrCtx;
1160     }
1161 
1162     /**
1163      * Reset and return the given RendererContext instance for reuse
1164      * @param rdrCtx RendererContext instance
1165      */
1166     static void returnRendererContext(final RendererContext rdrCtx) {
1167         rdrCtx.dispose();
1168 
1169         if (DO_MONITORS) {
1170             rdrCtx.stats.mon_pre_getAATileGenerator.stop();
1171         }
1172         RDR_CTX_PROVIDER.release(rdrCtx);
1173     }
1174 }