1 /* 2 * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package sun.java2d.marlin; 27 28 import static sun.java2d.marlin.OffHeapArray.SIZE_INT; 29 import jdk.internal.misc.Unsafe; 30 31 final class DRenderer implements DPathConsumer2D, MarlinRenderer { 32 33 static final boolean DISABLE_RENDER = false; 34 35 static final boolean ENABLE_BLOCK_FLAGS = MarlinProperties.isUseTileFlags(); 36 static final boolean ENABLE_BLOCK_FLAGS_HEURISTICS = MarlinProperties.isUseTileFlagsWithHeuristics(); 37 38 private static final int ALL_BUT_LSB = 0xFFFFFFFE; 39 private static final int ERR_STEP_MAX = 0x7FFFFFFF; // = 2^31 - 1 40 41 private static final double POWER_2_TO_32 = 0x1.0p32d; 42 43 // use double to make tosubpix methods faster (no int to double conversion) 44 static final double SUBPIXEL_SCALE_X = SUBPIXEL_POSITIONS_X; 45 static final double SUBPIXEL_SCALE_Y = SUBPIXEL_POSITIONS_Y; 46 static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1; 47 static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1; 48 49 // number of subpixels corresponding to a tile line 50 private static final int SUBPIXEL_TILE 51 = TILE_H << SUBPIXEL_LG_POSITIONS_Y; 52 53 // 2048 (pixelSize) pixels (height) x 8 subpixels = 64K 54 static final int INITIAL_BUCKET_ARRAY 55 = INITIAL_PIXEL_DIM * SUBPIXEL_POSITIONS_Y; 56 57 // crossing capacity = edges count / 4 ~ 1024 58 static final int INITIAL_CROSSING_COUNT = INITIAL_EDGES_COUNT >> 2; 59 60 public static final int WIND_EVEN_ODD = 0; 61 public static final int WIND_NON_ZERO = 1; 62 63 // common to all types of input path segments. 64 // OFFSET as bytes 65 // only integer values: 66 public static final long OFF_CURX_OR = 0; 67 public static final long OFF_ERROR = OFF_CURX_OR + SIZE_INT; 68 public static final long OFF_BUMP_X = OFF_ERROR + SIZE_INT; 69 public static final long OFF_BUMP_ERR = OFF_BUMP_X + SIZE_INT; 70 public static final long OFF_NEXT = OFF_BUMP_ERR + SIZE_INT; 71 public static final long OFF_YMAX = OFF_NEXT + SIZE_INT; 72 73 // size of one edge in bytes 74 public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT); 75 76 // curve break into lines 77 // cubic error in subpixels to decrement step 78 private static final double CUB_DEC_ERR_SUBPIX 79 = MarlinProperties.getCubicDecD2() * (NORM_SUBPIXELS / 8.0d); // 1 pixel 80 // cubic error in subpixels to increment step 81 private static final double CUB_INC_ERR_SUBPIX 82 = MarlinProperties.getCubicIncD1() * (NORM_SUBPIXELS / 8.0d); // 0.4 pixel 83 84 // TestNonAARasterization (JDK-8170879): cubics 85 // bad paths (59294/100000 == 59,29%, 94335 bad pixels (avg = 1,59), 3966 warnings (avg = 0,07) 86 87 // cubic bind length to decrement step 88 public static final double CUB_DEC_BND 89 = 8.0d * CUB_DEC_ERR_SUBPIX; 90 // cubic bind length to increment step 91 public static final double CUB_INC_BND 92 = 8.0d * CUB_INC_ERR_SUBPIX; 93 94 // cubic countlg 95 public static final int CUB_COUNT_LG = 2; 96 // cubic count = 2^countlg 97 private static final int CUB_COUNT = 1 << CUB_COUNT_LG; 98 // cubic count^2 = 4^countlg 99 private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG); 100 // cubic count^3 = 8^countlg 101 private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG); 102 // cubic dt = 1 / count 103 private static final double CUB_INV_COUNT = 1.0d / CUB_COUNT; 104 // cubic dt^2 = 1 / count^2 = 1 / 4^countlg 105 private static final double CUB_INV_COUNT_2 = 1.0d / CUB_COUNT_2; 106 // cubic dt^3 = 1 / count^3 = 1 / 8^countlg 107 private static final double CUB_INV_COUNT_3 = 1.0d / CUB_COUNT_3; 108 109 // quad break into lines 110 // quadratic error in subpixels 111 private static final double QUAD_DEC_ERR_SUBPIX 112 = MarlinProperties.getQuadDecD2() * (NORM_SUBPIXELS / 8.0d); // 0.5 pixel 113 114 // TestNonAARasterization (JDK-8170879): quads 115 // bad paths (62916/100000 == 62,92%, 103818 bad pixels (avg = 1,65), 6514 warnings (avg = 0,10) 116 117 // quadratic bind length to decrement step 118 public static final double QUAD_DEC_BND 119 = 8.0d * QUAD_DEC_ERR_SUBPIX; 120 121 ////////////////////////////////////////////////////////////////////////////// 122 // SCAN LINE 123 ////////////////////////////////////////////////////////////////////////////// 124 // crossings ie subpixel edge x coordinates 125 private int[] crossings; 126 // auxiliary storage for crossings (merge sort) 127 private int[] aux_crossings; 128 129 // indices into the segment pointer lists. They indicate the "active" 130 // sublist in the segment lists (the portion of the list that contains 131 // all the segments that cross the next scan line). 132 private int edgeCount; 133 private int[] edgePtrs; 134 // auxiliary storage for edge pointers (merge sort) 135 private int[] aux_edgePtrs; 136 137 // max used for both edgePtrs and crossings (stats only) 138 private int activeEdgeMaxUsed; 139 140 // crossings ref (dirty) 141 private final IntArrayCache.Reference crossings_ref; 142 // edgePtrs ref (dirty) 143 private final IntArrayCache.Reference edgePtrs_ref; 144 // merge sort initial arrays (large enough to satisfy most usages) (1024) 145 // aux_crossings ref (dirty) 146 private final IntArrayCache.Reference aux_crossings_ref; 147 // aux_edgePtrs ref (dirty) 148 private final IntArrayCache.Reference aux_edgePtrs_ref; 149 150 ////////////////////////////////////////////////////////////////////////////// 151 // EDGE LIST 152 ////////////////////////////////////////////////////////////////////////////// 153 private int edgeMinY = Integer.MAX_VALUE; 154 private int edgeMaxY = Integer.MIN_VALUE; 155 private double edgeMinX = Double.POSITIVE_INFINITY; 156 private double edgeMaxX = Double.NEGATIVE_INFINITY; 157 158 // edges [ints] stored in off-heap memory 159 private final OffHeapArray edges; 160 161 private int[] edgeBuckets; 162 private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed) 163 // used range for edgeBuckets / edgeBucketCounts 164 private int buckets_minY; 165 private int buckets_maxY; 166 167 // edgeBuckets ref (clean) 168 private final IntArrayCache.Reference edgeBuckets_ref; 169 // edgeBucketCounts ref (clean) 170 private final IntArrayCache.Reference edgeBucketCounts_ref; 171 172 // Flattens using adaptive forward differencing. This only carries out 173 // one iteration of the AFD loop. All it does is update AFD variables (i.e. 174 // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings). 175 private void quadBreakIntoLinesAndAdd(double x0, double y0, 176 final DCurve c, 177 final double x2, final double y2) 178 { 179 int count = 1; // dt = 1 / count 180 181 // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1) 182 double maxDD = Math.abs(c.dbx) + Math.abs(c.dby); 183 184 final double _DEC_BND = QUAD_DEC_BND; 185 186 while (maxDD >= _DEC_BND) { 187 // divide step by half: 188 maxDD /= 4.0d; // error divided by 2^2 = 4 189 190 count <<= 1; 191 if (DO_STATS) { 192 rdrCtx.stats.stat_rdr_quadBreak_dec.add(count); 193 } 194 } 195 196 int nL = 0; // line count 197 if (count > 1) { 198 final double icount = 1.0d / count; // dt 199 final double icount2 = icount * icount; // dt^2 200 201 final double ddx = c.dbx * icount2; 202 final double ddy = c.dby * icount2; 203 double dx = c.bx * icount2 + c.cx * icount; 204 double dy = c.by * icount2 + c.cy * icount; 205 206 double x1, y1; 207 208 while (--count > 0) { 209 x1 = x0 + dx; 210 dx += ddx; 211 y1 = y0 + dy; 212 dy += ddy; 213 214 addLine(x0, y0, x1, y1); 215 216 if (DO_STATS) { nL++; } 217 x0 = x1; 218 y0 = y1; 219 } 220 } 221 addLine(x0, y0, x2, y2); 222 223 if (DO_STATS) { 224 rdrCtx.stats.stat_rdr_quadBreak.add(nL + 1); 225 } 226 } 227 228 // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these 229 // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce 230 // numerical errors, and our callers already have the exact values. 231 // Another alternative would be to pass all the control points, and call 232 // c.set here, but then too many numbers are passed around. 233 private void curveBreakIntoLinesAndAdd(double x0, double y0, 234 final DCurve c, 235 final double x3, final double y3) 236 { 237 int count = CUB_COUNT; 238 final double icount = CUB_INV_COUNT; // dt 239 final double icount2 = CUB_INV_COUNT_2; // dt^2 240 final double icount3 = CUB_INV_COUNT_3; // dt^3 241 242 // the dx and dy refer to forward differencing variables, not the last 243 // coefficients of the "points" polynomial 244 double dddx, dddy, ddx, ddy, dx, dy; 245 dddx = 2.0d * c.dax * icount3; 246 dddy = 2.0d * c.day * icount3; 247 ddx = dddx + c.dbx * icount2; 248 ddy = dddy + c.dby * icount2; 249 dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount; 250 dy = c.ay * icount3 + c.by * icount2 + c.cy * icount; 251 252 // we use x0, y0 to walk the line 253 double x1 = x0, y1 = y0; 254 int nL = 0; // line count 255 256 final double _DEC_BND = CUB_DEC_BND; 257 final double _INC_BND = CUB_INC_BND; 258 259 while (count > 0) { 260 // divide step by half: 261 while (Math.abs(ddx) + Math.abs(ddy) >= _DEC_BND) { 262 dddx /= 8.0d; 263 dddy /= 8.0d; 264 ddx = ddx / 4.0d - dddx; 265 ddy = ddy / 4.0d - dddy; 266 dx = (dx - ddx) / 2.0d; 267 dy = (dy - ddy) / 2.0d; 268 269 count <<= 1; 270 if (DO_STATS) { 271 rdrCtx.stats.stat_rdr_curveBreak_dec.add(count); 272 } 273 } 274 275 // double step: 276 // can only do this on even "count" values, because we must divide count by 2 277 while (count % 2 == 0 278 && Math.abs(dx) + Math.abs(dy) <= _INC_BND) 279 { 280 dx = 2.0d * dx + ddx; 281 dy = 2.0d * dy + ddy; 282 ddx = 4.0d * (ddx + dddx); 283 ddy = 4.0d * (ddy + dddy); 284 dddx *= 8.0d; 285 dddy *= 8.0d; 286 287 count >>= 1; 288 if (DO_STATS) { 289 rdrCtx.stats.stat_rdr_curveBreak_inc.add(count); 290 } 291 } 292 if (--count > 0) { 293 x1 += dx; 294 dx += ddx; 295 ddx += dddx; 296 y1 += dy; 297 dy += ddy; 298 ddy += dddy; 299 } else { 300 x1 = x3; 301 y1 = y3; 302 } 303 304 addLine(x0, y0, x1, y1); 305 306 if (DO_STATS) { nL++; } 307 x0 = x1; 308 y0 = y1; 309 } 310 if (DO_STATS) { 311 rdrCtx.stats.stat_rdr_curveBreak.add(nL); 312 } 313 } 314 315 private void addLine(double x1, double y1, double x2, double y2) { 316 if (DO_MONITORS) { 317 rdrCtx.stats.mon_rdr_addLine.start(); 318 } 319 if (DO_STATS) { 320 rdrCtx.stats.stat_rdr_addLine.add(1); 321 } 322 int or = 1; // orientation of the line. 1 if y increases, 0 otherwise. 323 if (y2 < y1) { 324 or = 0; 325 double tmp = y2; 326 y2 = y1; 327 y1 = tmp; 328 tmp = x2; 329 x2 = x1; 330 x1 = tmp; 331 } 332 333 // convert subpixel coordinates [double] into pixel positions [int] 334 335 // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5) 336 // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply 337 // ceil(y1) or ceil(y2) 338 // upper integer (inclusive) 339 final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY); 340 341 // note: use boundsMaxY (last Y exclusive) to compute correct coverage 342 // upper integer (exclusive) 343 final int lastCrossing = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY); 344 345 /* skip horizontal lines in pixel space and clip edges 346 out of y range [boundsMinY; boundsMaxY] */ 347 if (firstCrossing >= lastCrossing) { 348 if (DO_MONITORS) { 349 rdrCtx.stats.mon_rdr_addLine.stop(); 350 } 351 if (DO_STATS) { 352 rdrCtx.stats.stat_rdr_addLine_skip.add(1); 353 } 354 return; 355 } 356 357 // edge min/max X/Y are in subpixel space (half-open interval): 358 // note: Use integer crossings to ensure consistent range within 359 // edgeBuckets / edgeBucketCounts arrays in case of NaN values (int = 0) 360 if (firstCrossing < edgeMinY) { 361 edgeMinY = firstCrossing; 362 } 363 if (lastCrossing > edgeMaxY) { 364 edgeMaxY = lastCrossing; 365 } 366 367 final double slope = (x1 - x2) / (y1 - y2); 368 369 if (slope >= 0.0d) { // <==> x1 < x2 370 if (x1 < edgeMinX) { 371 edgeMinX = x1; 372 } 373 if (x2 > edgeMaxX) { 374 edgeMaxX = x2; 375 } 376 } else { 377 if (x2 < edgeMinX) { 378 edgeMinX = x2; 379 } 380 if (x1 > edgeMaxX) { 381 edgeMaxX = x1; 382 } 383 } 384 385 // local variables for performance: 386 final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES; 387 388 final OffHeapArray _edges = edges; 389 390 // get free pointer (ie length in bytes) 391 final int edgePtr = _edges.used; 392 393 // use substraction to avoid integer overflow: 394 if (_edges.length - edgePtr < _SIZEOF_EDGE_BYTES) { 395 // suppose _edges.length > _SIZEOF_EDGE_BYTES 396 // so doubling size is enough to add needed bytes 397 // note: throw IOOB if neededSize > 2Gb: 398 final long edgeNewSize = ArrayCacheConst.getNewLargeSize( 399 _edges.length, 400 edgePtr + _SIZEOF_EDGE_BYTES); 401 402 if (DO_STATS) { 403 rdrCtx.stats.stat_rdr_edges_resizes.add(edgeNewSize); 404 } 405 _edges.resize(edgeNewSize); 406 } 407 408 409 final Unsafe _unsafe = OffHeapArray.UNSAFE; 410 final long SIZE_INT = 4L; 411 long addr = _edges.address + edgePtr; 412 413 // The x value must be bumped up to its position at the next HPC we will evaluate. 414 // "firstcrossing" is the (sub)pixel number where the next crossing occurs 415 // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5" 416 // so the Y distance we cover is "firstcrossing + 0.5 - trueY". 417 // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have 418 // y1 = trueY - 0.5 419 // trueY = y1 + 0.5 420 // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5) 421 // = firstcrossing - y1 422 // The x coordinate at that HPC is then: 423 // x1_intercept = x1 + (firstcrossing - y1) * slope 424 // The next VPC is then given by: 425 // VPC index = ceil(x1_intercept - 0.5), or alternately 426 // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon) 427 // epsilon is hard to pin down in floating point, but easy in fixed point, so if 428 // we convert to fixed point then these operations get easier: 429 // long x1_fixed = x1_intercept * 2^32; (fixed point 32.32 format) 430 // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1) 431 // = fixed_floor(x1_fixed + 2^31 - 1) 432 // = fixed_floor(x1_fixed + 0x7FFFFFFF) 433 // and error = fixed_fract(x1_fixed + 0x7FFFFFFF) 434 final double x1_intercept = x1 + (firstCrossing - y1) * slope; 435 436 // inlined scalb(x1_intercept, 32): 437 final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept)) 438 + 0x7FFFFFFFL; 439 // curx: 440 // last bit corresponds to the orientation 441 _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or); 442 addr += SIZE_INT; 443 _unsafe.putInt(addr, ((int) x1_fixed_biased) >>> 1); 444 addr += SIZE_INT; 445 446 // inlined scalb(slope, 32): 447 final long slope_fixed = (long) (POWER_2_TO_32 * slope); 448 449 // last bit set to 0 to keep orientation: 450 _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB)); 451 addr += SIZE_INT; 452 _unsafe.putInt(addr, ((int) slope_fixed) >>> 1); 453 addr += SIZE_INT; 454 455 final int[] _edgeBuckets = edgeBuckets; 456 final int[] _edgeBucketCounts = edgeBucketCounts; 457 458 final int _boundsMinY = boundsMinY; 459 460 // each bucket is a linked list. this method adds ptr to the 461 // start of the "bucket"th linked list. 462 final int bucketIdx = firstCrossing - _boundsMinY; 463 464 // pointer from bucket 465 _unsafe.putInt(addr, _edgeBuckets[bucketIdx]); 466 addr += SIZE_INT; 467 // y max (exclusive) 468 _unsafe.putInt(addr, lastCrossing); 469 470 // Update buckets: 471 // directly the edge struct "pointer" 472 _edgeBuckets[bucketIdx] = edgePtr; 473 _edgeBucketCounts[bucketIdx] += 2; // 1 << 1 474 // last bit means edge end 475 _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1; 476 477 // update free pointer (ie length in bytes) 478 _edges.used += _SIZEOF_EDGE_BYTES; 479 480 if (DO_MONITORS) { 481 rdrCtx.stats.mon_rdr_addLine.stop(); 482 } 483 } 484 485 // END EDGE LIST 486 ////////////////////////////////////////////////////////////////////////////// 487 488 // Cache to store RLE-encoded coverage mask of the current primitive 489 final MarlinCache cache; 490 491 // Bounds of the drawing region, at subpixel precision. 492 private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY; 493 494 // Current winding rule 495 private int windingRule; 496 497 // Current drawing position, i.e., final point of last segment 498 private double x0, y0; 499 500 // Position of most recent 'moveTo' command 501 private double sx0, sy0; 502 503 // per-thread renderer context 504 final DRendererContext rdrCtx; 505 // dirty curve 506 private final DCurve curve; 507 508 // clean alpha array (zero filled) 509 private int[] alphaLine; 510 511 // alphaLine ref (clean) 512 private final IntArrayCache.Reference alphaLine_ref; 513 514 private boolean enableBlkFlags = false; 515 private boolean prevUseBlkFlags = false; 516 517 /* block flags (0|1) */ 518 private int[] blkFlags; 519 520 // blkFlags ref (clean) 521 private final IntArrayCache.Reference blkFlags_ref; 522 523 DRenderer(final DRendererContext rdrCtx) { 524 this.rdrCtx = rdrCtx; 525 526 this.edges = rdrCtx.newOffHeapArray(INITIAL_EDGES_CAPACITY); // 96K 527 528 this.curve = rdrCtx.curve; 529 530 edgeBuckets_ref = rdrCtx.newCleanIntArrayRef(INITIAL_BUCKET_ARRAY); // 64K 531 edgeBucketCounts_ref = rdrCtx.newCleanIntArrayRef(INITIAL_BUCKET_ARRAY); // 64K 532 533 edgeBuckets = edgeBuckets_ref.initial; 534 edgeBucketCounts = edgeBucketCounts_ref.initial; 535 536 // 2048 (pixelsize) pixel large 537 alphaLine_ref = rdrCtx.newCleanIntArrayRef(INITIAL_AA_ARRAY); // 8K 538 alphaLine = alphaLine_ref.initial; 539 540 this.cache = rdrCtx.cache; 541 542 crossings_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K 543 aux_crossings_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K 544 edgePtrs_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K 545 aux_edgePtrs_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K 546 547 crossings = crossings_ref.initial; 548 aux_crossings = aux_crossings_ref.initial; 549 edgePtrs = edgePtrs_ref.initial; 550 aux_edgePtrs = aux_edgePtrs_ref.initial; 551 552 blkFlags_ref = rdrCtx.newCleanIntArrayRef(INITIAL_ARRAY); // 1K = 1 tile line 553 blkFlags = blkFlags_ref.initial; 554 } 555 556 DRenderer init(final int pix_boundsX, final int pix_boundsY, 557 final int pix_boundsWidth, final int pix_boundsHeight, 558 final int windingRule) 559 { 560 this.windingRule = windingRule; 561 562 // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY 563 this.boundsMinX = pix_boundsX << SUBPIXEL_LG_POSITIONS_X; 564 this.boundsMaxX = 565 (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X; 566 this.boundsMinY = pix_boundsY << SUBPIXEL_LG_POSITIONS_Y; 567 this.boundsMaxY = 568 (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y; 569 570 if (DO_LOG_BOUNDS) { 571 MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... " 572 + boundsMaxX + "[ [" + boundsMinY + " ... " 573 + boundsMaxY + "["); 574 } 575 576 // see addLine: ceil(boundsMaxY) => boundsMaxY + 1 577 // +1 for edgeBucketCounts 578 final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1; 579 580 if (edgeBucketsLength > INITIAL_BUCKET_ARRAY) { 581 if (DO_STATS) { 582 rdrCtx.stats.stat_array_renderer_edgeBuckets 583 .add(edgeBucketsLength); 584 rdrCtx.stats.stat_array_renderer_edgeBucketCounts 585 .add(edgeBucketsLength); 586 } 587 edgeBuckets = edgeBuckets_ref.getArray(edgeBucketsLength); 588 edgeBucketCounts = edgeBucketCounts_ref.getArray(edgeBucketsLength); 589 } 590 591 edgeMinY = Integer.MAX_VALUE; 592 edgeMaxY = Integer.MIN_VALUE; 593 edgeMinX = Double.POSITIVE_INFINITY; 594 edgeMaxX = Double.NEGATIVE_INFINITY; 595 596 // reset used mark: 597 edgeCount = 0; 598 activeEdgeMaxUsed = 0; 599 edges.used = 0; 600 601 return this; // fluent API 602 } 603 604 /** 605 * Disposes this renderer and recycle it clean up before reusing this instance 606 */ 607 void dispose() { 608 if (DO_STATS) { 609 rdrCtx.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed); 610 rdrCtx.stats.stat_rdr_edges.add(edges.used); 611 rdrCtx.stats.stat_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES); 612 rdrCtx.stats.hist_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES); 613 rdrCtx.stats.totalOffHeap += edges.length; 614 } 615 // Return arrays: 616 crossings = crossings_ref.putArray(crossings); 617 aux_crossings = aux_crossings_ref.putArray(aux_crossings); 618 619 edgePtrs = edgePtrs_ref.putArray(edgePtrs); 620 aux_edgePtrs = aux_edgePtrs_ref.putArray(aux_edgePtrs); 621 622 alphaLine = alphaLine_ref.putArray(alphaLine, 0, 0); // already zero filled 623 blkFlags = blkFlags_ref.putArray(blkFlags, 0, 0); // already zero filled 624 625 if (edgeMinY != Integer.MAX_VALUE) { 626 // if context is maked as DIRTY: 627 if (rdrCtx.dirty) { 628 // may happen if an exception if thrown in the pipeline processing: 629 // clear completely buckets arrays: 630 buckets_minY = 0; 631 buckets_maxY = boundsMaxY - boundsMinY; 632 } 633 // clear only used part 634 edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, buckets_minY, 635 buckets_maxY); 636 edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, 637 buckets_minY, 638 buckets_maxY + 1); 639 } else { 640 // unused arrays 641 edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, 0, 0); 642 edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, 0, 0); 643 } 644 645 // At last: resize back off-heap edges to initial size 646 if (edges.length != INITIAL_EDGES_CAPACITY) { 647 // note: may throw OOME: 648 edges.resize(INITIAL_EDGES_CAPACITY); 649 } 650 if (DO_CLEAN_DIRTY) { 651 // Force zero-fill dirty arrays: 652 edges.fill(BYTE_0); 653 } 654 if (DO_MONITORS) { 655 rdrCtx.stats.mon_rdr_endRendering.stop(); 656 } 657 // recycle the RendererContext instance 658 DMarlinRenderingEngine.returnRendererContext(rdrCtx); 659 } 660 661 private static double tosubpixx(final double pix_x) { 662 return SUBPIXEL_SCALE_X * pix_x; 663 } 664 665 private static double tosubpixy(final double pix_y) { 666 // shift y by -0.5 for fast ceil(y - 0.5): 667 return SUBPIXEL_SCALE_Y * pix_y - 0.5d; 668 } 669 670 @Override 671 public void moveTo(double pix_x0, double pix_y0) { 672 closePath(); 673 final double sx = tosubpixx(pix_x0); 674 final double sy = tosubpixy(pix_y0); 675 this.sx0 = sx; 676 this.sy0 = sy; 677 this.x0 = sx; 678 this.y0 = sy; 679 } 680 681 @Override 682 public void lineTo(double pix_x1, double pix_y1) { 683 final double x1 = tosubpixx(pix_x1); 684 final double y1 = tosubpixy(pix_y1); 685 addLine(x0, y0, x1, y1); 686 x0 = x1; 687 y0 = y1; 688 } 689 690 @Override 691 public void curveTo(double x1, double y1, 692 double x2, double y2, 693 double x3, double y3) 694 { 695 final double xe = tosubpixx(x3); 696 final double ye = tosubpixy(y3); 697 curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1), 698 tosubpixx(x2), tosubpixy(y2), xe, ye); 699 curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye); 700 x0 = xe; 701 y0 = ye; 702 } 703 704 @Override 705 public void quadTo(double x1, double y1, double x2, double y2) { 706 final double xe = tosubpixx(x2); 707 final double ye = tosubpixy(y2); 708 curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1), xe, ye); 709 quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye); 710 x0 = xe; 711 y0 = ye; 712 } 713 714 @Override 715 public void closePath() { 716 addLine(x0, y0, sx0, sy0); 717 x0 = sx0; 718 y0 = sy0; 719 } 720 721 @Override 722 public void pathDone() { 723 closePath(); 724 } 725 726 @Override 727 public long getNativeConsumer() { 728 throw new InternalError("Renderer does not use a native consumer."); 729 } 730 731 private void _endRendering(final int ymin, final int ymax) { 732 if (DISABLE_RENDER) { 733 return; 734 } 735 736 // Get X bounds as true pixel boundaries to compute correct pixel coverage: 737 final int bboxx0 = bbox_spminX; 738 final int bboxx1 = bbox_spmaxX; 739 740 final boolean windingRuleEvenOdd = (windingRule == WIND_EVEN_ODD); 741 742 // Useful when processing tile line by tile line 743 final int[] _alpha = alphaLine; 744 745 // local vars (performance): 746 final MarlinCache _cache = cache; 747 final OffHeapArray _edges = edges; 748 final int[] _edgeBuckets = edgeBuckets; 749 final int[] _edgeBucketCounts = edgeBucketCounts; 750 751 int[] _crossings = this.crossings; 752 int[] _edgePtrs = this.edgePtrs; 753 754 // merge sort auxiliary storage: 755 int[] _aux_crossings = this.aux_crossings; 756 int[] _aux_edgePtrs = this.aux_edgePtrs; 757 758 // copy constants: 759 final long _OFF_ERROR = OFF_ERROR; 760 final long _OFF_BUMP_X = OFF_BUMP_X; 761 final long _OFF_BUMP_ERR = OFF_BUMP_ERR; 762 763 final long _OFF_NEXT = OFF_NEXT; 764 final long _OFF_YMAX = OFF_YMAX; 765 766 final int _ALL_BUT_LSB = ALL_BUT_LSB; 767 final int _ERR_STEP_MAX = ERR_STEP_MAX; 768 769 // unsafe I/O: 770 final Unsafe _unsafe = OffHeapArray.UNSAFE; 771 final long addr0 = _edges.address; 772 long addr; 773 final int _SUBPIXEL_LG_POSITIONS_X = SUBPIXEL_LG_POSITIONS_X; 774 final int _SUBPIXEL_LG_POSITIONS_Y = SUBPIXEL_LG_POSITIONS_Y; 775 final int _SUBPIXEL_MASK_X = SUBPIXEL_MASK_X; 776 final int _SUBPIXEL_MASK_Y = SUBPIXEL_MASK_Y; 777 final int _SUBPIXEL_POSITIONS_X = SUBPIXEL_POSITIONS_X; 778 779 final int _MIN_VALUE = Integer.MIN_VALUE; 780 final int _MAX_VALUE = Integer.MAX_VALUE; 781 782 // Now we iterate through the scanlines. We must tell emitRow the coord 783 // of the first non-transparent pixel, so we must keep accumulators for 784 // the first and last pixels of the section of the current pixel row 785 // that we will emit. 786 // We also need to accumulate pix_bbox, but the iterator does it 787 // for us. We will just get the values from it once this loop is done 788 int minX = _MAX_VALUE; 789 int maxX = _MIN_VALUE; 790 791 int y = ymin; 792 int bucket = y - boundsMinY; 793 794 int numCrossings = this.edgeCount; 795 int edgePtrsLen = _edgePtrs.length; 796 int crossingsLen = _crossings.length; 797 int _arrayMaxUsed = activeEdgeMaxUsed; 798 int ptrLen = 0, newCount, ptrEnd; 799 800 int bucketcount, i, j, ecur; 801 int cross, lastCross; 802 int x0, x1, tmp, sum, prev, curx, curxo, crorientation, err; 803 int pix_x, pix_xmaxm1, pix_xmax; 804 805 int low, high, mid, prevNumCrossings; 806 boolean useBinarySearch; 807 808 final int[] _blkFlags = blkFlags; 809 final int _BLK_SIZE_LG = BLOCK_SIZE_LG; 810 final int _BLK_SIZE = BLOCK_SIZE; 811 812 final boolean _enableBlkFlagsHeuristics = ENABLE_BLOCK_FLAGS_HEURISTICS && this.enableBlkFlags; 813 814 // Use block flags if large pixel span and few crossings: 815 // ie mean(distance between crossings) is high 816 boolean useBlkFlags = this.prevUseBlkFlags; 817 818 final int stroking = rdrCtx.stroking; 819 820 int lastY = -1; // last emited row 821 822 823 // Iteration on scanlines 824 for (; y < ymax; y++, bucket++) { 825 // --- from former ScanLineIterator.next() 826 bucketcount = _edgeBucketCounts[bucket]; 827 828 // marker on previously sorted edges: 829 prevNumCrossings = numCrossings; 830 831 // bucketCount indicates new edge / edge end: 832 if (bucketcount != 0) { 833 if (DO_STATS) { 834 rdrCtx.stats.stat_rdr_activeEdges_updates.add(numCrossings); 835 } 836 837 // last bit set to 1 means that edges ends 838 if ((bucketcount & 0x1) != 0) { 839 // eviction in active edge list 840 // cache edges[] address + offset 841 addr = addr0 + _OFF_YMAX; 842 843 for (i = 0, newCount = 0; i < numCrossings; i++) { 844 // get the pointer to the edge 845 ecur = _edgePtrs[i]; 846 // random access so use unsafe: 847 if (_unsafe.getInt(addr + ecur) > y) { 848 _edgePtrs[newCount++] = ecur; 849 } 850 } 851 // update marker on sorted edges minus removed edges: 852 prevNumCrossings = numCrossings = newCount; 853 } 854 855 ptrLen = bucketcount >> 1; // number of new edge 856 857 if (ptrLen != 0) { 858 if (DO_STATS) { 859 rdrCtx.stats.stat_rdr_activeEdges_adds.add(ptrLen); 860 if (ptrLen > 10) { 861 rdrCtx.stats.stat_rdr_activeEdges_adds_high.add(ptrLen); 862 } 863 } 864 ptrEnd = numCrossings + ptrLen; 865 866 if (edgePtrsLen < ptrEnd) { 867 if (DO_STATS) { 868 rdrCtx.stats.stat_array_renderer_edgePtrs.add(ptrEnd); 869 } 870 this.edgePtrs = _edgePtrs 871 = edgePtrs_ref.widenArray(_edgePtrs, numCrossings, 872 ptrEnd); 873 874 edgePtrsLen = _edgePtrs.length; 875 // Get larger auxiliary storage: 876 aux_edgePtrs_ref.putArray(_aux_edgePtrs); 877 878 // use ArrayCache.getNewSize() to use the same growing 879 // factor than widenArray(): 880 if (DO_STATS) { 881 rdrCtx.stats.stat_array_renderer_aux_edgePtrs.add(ptrEnd); 882 } 883 this.aux_edgePtrs = _aux_edgePtrs 884 = aux_edgePtrs_ref.getArray( 885 ArrayCacheConst.getNewSize(numCrossings, ptrEnd) 886 ); 887 } 888 889 // cache edges[] address + offset 890 addr = addr0 + _OFF_NEXT; 891 892 // add new edges to active edge list: 893 for (ecur = _edgeBuckets[bucket]; 894 numCrossings < ptrEnd; numCrossings++) 895 { 896 // store the pointer to the edge 897 _edgePtrs[numCrossings] = ecur; 898 // random access so use unsafe: 899 ecur = _unsafe.getInt(addr + ecur); 900 } 901 902 if (crossingsLen < numCrossings) { 903 // Get larger array: 904 crossings_ref.putArray(_crossings); 905 906 if (DO_STATS) { 907 rdrCtx.stats.stat_array_renderer_crossings 908 .add(numCrossings); 909 } 910 this.crossings = _crossings 911 = crossings_ref.getArray(numCrossings); 912 913 // Get larger auxiliary storage: 914 aux_crossings_ref.putArray(_aux_crossings); 915 916 if (DO_STATS) { 917 rdrCtx.stats.stat_array_renderer_aux_crossings 918 .add(numCrossings); 919 } 920 this.aux_crossings = _aux_crossings 921 = aux_crossings_ref.getArray(numCrossings); 922 923 crossingsLen = _crossings.length; 924 } 925 if (DO_STATS) { 926 // update max used mark 927 if (numCrossings > _arrayMaxUsed) { 928 _arrayMaxUsed = numCrossings; 929 } 930 } 931 } // ptrLen != 0 932 } // bucketCount != 0 933 934 935 if (numCrossings != 0) { 936 /* 937 * thresholds to switch to optimized merge sort 938 * for newly added edges + final merge pass. 939 */ 940 if ((ptrLen < 10) || (numCrossings < 40)) { 941 if (DO_STATS) { 942 rdrCtx.stats.hist_rdr_crossings.add(numCrossings); 943 rdrCtx.stats.hist_rdr_crossings_adds.add(ptrLen); 944 } 945 946 /* 947 * threshold to use binary insertion sort instead of 948 * straight insertion sort (to reduce minimize comparisons). 949 */ 950 useBinarySearch = (numCrossings >= 20); 951 952 // if small enough: 953 lastCross = _MIN_VALUE; 954 955 for (i = 0; i < numCrossings; i++) { 956 // get the pointer to the edge 957 ecur = _edgePtrs[i]; 958 959 /* convert subpixel coordinates into pixel 960 positions for coming scanline */ 961 /* note: it is faster to always update edges even 962 if it is removed from AEL for coming or last scanline */ 963 964 // random access so use unsafe: 965 addr = addr0 + ecur; // ecur + OFF_F_CURX 966 967 // get current crossing: 968 curx = _unsafe.getInt(addr); 969 970 // update crossing with orientation at last bit: 971 cross = curx; 972 973 // Increment x using DDA (fixed point): 974 curx += _unsafe.getInt(addr + _OFF_BUMP_X); 975 976 // Increment error: 977 err = _unsafe.getInt(addr + _OFF_ERROR) 978 + _unsafe.getInt(addr + _OFF_BUMP_ERR); 979 980 // Manual carry handling: 981 // keep sign and carry bit only and ignore last bit (preserve orientation): 982 _unsafe.putInt(addr, curx - ((err >> 30) & _ALL_BUT_LSB)); 983 _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX)); 984 985 if (DO_STATS) { 986 rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings); 987 } 988 989 // insertion sort of crossings: 990 if (cross < lastCross) { 991 if (DO_STATS) { 992 rdrCtx.stats.stat_rdr_crossings_sorts.add(i); 993 } 994 995 /* use binary search for newly added edges 996 in crossings if arrays are large enough */ 997 if (useBinarySearch && (i >= prevNumCrossings)) { 998 if (DO_STATS) { 999 rdrCtx.stats.stat_rdr_crossings_bsearch.add(i); 1000 } 1001 low = 0; 1002 high = i - 1; 1003 1004 do { 1005 // note: use signed shift (not >>>) for performance 1006 // as indices are small enough to exceed Integer.MAX_VALUE 1007 mid = (low + high) >> 1; 1008 1009 if (_crossings[mid] < cross) { 1010 low = mid + 1; 1011 } else { 1012 high = mid - 1; 1013 } 1014 } while (low <= high); 1015 1016 for (j = i - 1; j >= low; j--) { 1017 _crossings[j + 1] = _crossings[j]; 1018 _edgePtrs [j + 1] = _edgePtrs[j]; 1019 } 1020 _crossings[low] = cross; 1021 _edgePtrs [low] = ecur; 1022 1023 } else { 1024 j = i - 1; 1025 _crossings[i] = _crossings[j]; 1026 _edgePtrs[i] = _edgePtrs[j]; 1027 1028 while ((--j >= 0) && (_crossings[j] > cross)) { 1029 _crossings[j + 1] = _crossings[j]; 1030 _edgePtrs [j + 1] = _edgePtrs[j]; 1031 } 1032 _crossings[j + 1] = cross; 1033 _edgePtrs [j + 1] = ecur; 1034 } 1035 1036 } else { 1037 _crossings[i] = lastCross = cross; 1038 } 1039 } 1040 } else { 1041 if (DO_STATS) { 1042 rdrCtx.stats.stat_rdr_crossings_msorts.add(numCrossings); 1043 rdrCtx.stats.hist_rdr_crossings_ratio 1044 .add((1000 * ptrLen) / numCrossings); 1045 rdrCtx.stats.hist_rdr_crossings_msorts.add(numCrossings); 1046 rdrCtx.stats.hist_rdr_crossings_msorts_adds.add(ptrLen); 1047 } 1048 1049 // Copy sorted data in auxiliary arrays 1050 // and perform insertion sort on almost sorted data 1051 // (ie i < prevNumCrossings): 1052 1053 lastCross = _MIN_VALUE; 1054 1055 for (i = 0; i < numCrossings; i++) { 1056 // get the pointer to the edge 1057 ecur = _edgePtrs[i]; 1058 1059 /* convert subpixel coordinates into pixel 1060 positions for coming scanline */ 1061 /* note: it is faster to always update edges even 1062 if it is removed from AEL for coming or last scanline */ 1063 1064 // random access so use unsafe: 1065 addr = addr0 + ecur; // ecur + OFF_F_CURX 1066 1067 // get current crossing: 1068 curx = _unsafe.getInt(addr); 1069 1070 // update crossing with orientation at last bit: 1071 cross = curx; 1072 1073 // Increment x using DDA (fixed point): 1074 curx += _unsafe.getInt(addr + _OFF_BUMP_X); 1075 1076 // Increment error: 1077 err = _unsafe.getInt(addr + _OFF_ERROR) 1078 + _unsafe.getInt(addr + _OFF_BUMP_ERR); 1079 1080 // Manual carry handling: 1081 // keep sign and carry bit only and ignore last bit (preserve orientation): 1082 _unsafe.putInt(addr, curx - ((err >> 30) & _ALL_BUT_LSB)); 1083 _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX)); 1084 1085 if (DO_STATS) { 1086 rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings); 1087 } 1088 1089 if (i >= prevNumCrossings) { 1090 // simply store crossing as edgePtrs is in-place: 1091 // will be copied and sorted efficiently by mergesort later: 1092 _crossings[i] = cross; 1093 1094 } else if (cross < lastCross) { 1095 if (DO_STATS) { 1096 rdrCtx.stats.stat_rdr_crossings_sorts.add(i); 1097 } 1098 1099 // (straight) insertion sort of crossings: 1100 j = i - 1; 1101 _aux_crossings[i] = _aux_crossings[j]; 1102 _aux_edgePtrs[i] = _aux_edgePtrs[j]; 1103 1104 while ((--j >= 0) && (_aux_crossings[j] > cross)) { 1105 _aux_crossings[j + 1] = _aux_crossings[j]; 1106 _aux_edgePtrs [j + 1] = _aux_edgePtrs[j]; 1107 } 1108 _aux_crossings[j + 1] = cross; 1109 _aux_edgePtrs [j + 1] = ecur; 1110 1111 } else { 1112 // auxiliary storage: 1113 _aux_crossings[i] = lastCross = cross; 1114 _aux_edgePtrs [i] = ecur; 1115 } 1116 } 1117 1118 // use Mergesort using auxiliary arrays (sort only right part) 1119 MergeSort.mergeSortNoCopy(_crossings, _edgePtrs, 1120 _aux_crossings, _aux_edgePtrs, 1121 numCrossings, prevNumCrossings); 1122 } 1123 1124 // reset ptrLen 1125 ptrLen = 0; 1126 // --- from former ScanLineIterator.next() 1127 1128 1129 /* note: bboxx0 and bboxx1 must be pixel boundaries 1130 to have correct coverage computation */ 1131 1132 // right shift on crossings to get the x-coordinate: 1133 curxo = _crossings[0]; 1134 x0 = curxo >> 1; 1135 if (x0 < minX) { 1136 minX = x0; // subpixel coordinate 1137 } 1138 1139 x1 = _crossings[numCrossings - 1] >> 1; 1140 if (x1 > maxX) { 1141 maxX = x1; // subpixel coordinate 1142 } 1143 1144 1145 // compute pixel coverages 1146 prev = curx = x0; 1147 // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1. 1148 // last bit contains orientation (0 or 1) 1149 crorientation = ((curxo & 0x1) << 1) - 1; 1150 1151 if (windingRuleEvenOdd) { 1152 sum = crorientation; 1153 1154 // Even Odd winding rule: take care of mask ie sum(orientations) 1155 for (i = 1; i < numCrossings; i++) { 1156 curxo = _crossings[i]; 1157 curx = curxo >> 1; 1158 // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1. 1159 // last bit contains orientation (0 or 1) 1160 crorientation = ((curxo & 0x1) << 1) - 1; 1161 1162 if ((sum & 0x1) != 0) { 1163 // TODO: perform line clipping on left-right sides 1164 // to avoid such bound checks: 1165 x0 = (prev > bboxx0) ? prev : bboxx0; 1166 1167 if (curx < bboxx1) { 1168 x1 = curx; 1169 } else { 1170 x1 = bboxx1; 1171 // skip right side (fast exit loop): 1172 i = numCrossings; 1173 } 1174 1175 if (x0 < x1) { 1176 x0 -= bboxx0; // turn x0, x1 from coords to indices 1177 x1 -= bboxx0; // in the alpha array. 1178 1179 pix_x = x0 >> _SUBPIXEL_LG_POSITIONS_X; 1180 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X; 1181 1182 if (pix_x == pix_xmaxm1) { 1183 // Start and end in same pixel 1184 tmp = (x1 - x0); // number of subpixels 1185 _alpha[pix_x ] += tmp; 1186 _alpha[pix_x + 1] -= tmp; 1187 1188 if (useBlkFlags) { 1189 // flag used blocks: 1190 // note: block processing handles extra pixel: 1191 _blkFlags[pix_x >> _BLK_SIZE_LG] = 1; 1192 } 1193 } else { 1194 tmp = (x0 & _SUBPIXEL_MASK_X); 1195 _alpha[pix_x ] 1196 += (_SUBPIXEL_POSITIONS_X - tmp); 1197 _alpha[pix_x + 1] 1198 += tmp; 1199 1200 pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X; 1201 1202 tmp = (x1 & _SUBPIXEL_MASK_X); 1203 _alpha[pix_xmax ] 1204 -= (_SUBPIXEL_POSITIONS_X - tmp); 1205 _alpha[pix_xmax + 1] 1206 -= tmp; 1207 1208 if (useBlkFlags) { 1209 // flag used blocks: 1210 // note: block processing handles extra pixel: 1211 _blkFlags[pix_x >> _BLK_SIZE_LG] = 1; 1212 _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1; 1213 } 1214 } 1215 } 1216 } 1217 1218 sum += crorientation; 1219 prev = curx; 1220 } 1221 } else { 1222 // Non-zero winding rule: optimize that case (default) 1223 // and avoid processing intermediate crossings 1224 for (i = 1, sum = 0;; i++) { 1225 sum += crorientation; 1226 1227 if (sum != 0) { 1228 // prev = min(curx) 1229 if (prev > curx) { 1230 prev = curx; 1231 } 1232 } else { 1233 // TODO: perform line clipping on left-right sides 1234 // to avoid such bound checks: 1235 x0 = (prev > bboxx0) ? prev : bboxx0; 1236 1237 if (curx < bboxx1) { 1238 x1 = curx; 1239 } else { 1240 x1 = bboxx1; 1241 // skip right side (fast exit loop): 1242 i = numCrossings; 1243 } 1244 1245 if (x0 < x1) { 1246 x0 -= bboxx0; // turn x0, x1 from coords to indices 1247 x1 -= bboxx0; // in the alpha array. 1248 1249 pix_x = x0 >> _SUBPIXEL_LG_POSITIONS_X; 1250 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X; 1251 1252 if (pix_x == pix_xmaxm1) { 1253 // Start and end in same pixel 1254 tmp = (x1 - x0); // number of subpixels 1255 _alpha[pix_x ] += tmp; 1256 _alpha[pix_x + 1] -= tmp; 1257 1258 if (useBlkFlags) { 1259 // flag used blocks: 1260 // note: block processing handles extra pixel: 1261 _blkFlags[pix_x >> _BLK_SIZE_LG] = 1; 1262 } 1263 } else { 1264 tmp = (x0 & _SUBPIXEL_MASK_X); 1265 _alpha[pix_x ] 1266 += (_SUBPIXEL_POSITIONS_X - tmp); 1267 _alpha[pix_x + 1] 1268 += tmp; 1269 1270 pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X; 1271 1272 tmp = (x1 & _SUBPIXEL_MASK_X); 1273 _alpha[pix_xmax ] 1274 -= (_SUBPIXEL_POSITIONS_X - tmp); 1275 _alpha[pix_xmax + 1] 1276 -= tmp; 1277 1278 if (useBlkFlags) { 1279 // flag used blocks: 1280 // note: block processing handles extra pixel: 1281 _blkFlags[pix_x >> _BLK_SIZE_LG] = 1; 1282 _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1; 1283 } 1284 } 1285 } 1286 prev = _MAX_VALUE; 1287 } 1288 1289 if (i == numCrossings) { 1290 break; 1291 } 1292 1293 curxo = _crossings[i]; 1294 curx = curxo >> 1; 1295 // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1. 1296 // last bit contains orientation (0 or 1) 1297 crorientation = ((curxo & 0x1) << 1) - 1; 1298 } 1299 } 1300 } // numCrossings > 0 1301 1302 // even if this last row had no crossings, alpha will be zeroed 1303 // from the last emitRow call. But this doesn't matter because 1304 // maxX < minX, so no row will be emitted to the MarlinCache. 1305 if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) { 1306 lastY = y >> _SUBPIXEL_LG_POSITIONS_Y; 1307 1308 // convert subpixel to pixel coordinate within boundaries: 1309 minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X; 1310 maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X; 1311 1312 if (maxX >= minX) { 1313 // note: alpha array will be zeroed by copyAARow() 1314 // +1 because alpha [pix_minX; pix_maxX[ 1315 // fix range [x0; x1[ 1316 // note: if x1=bboxx1, then alpha is written up to bboxx1+1 1317 // inclusive: alpha[bboxx1] ignored, alpha[bboxx1+1] == 0 1318 // (normally so never cleared below) 1319 copyAARow(_alpha, lastY, minX, maxX + 1, useBlkFlags); 1320 1321 // speculative for next pixel row (scanline coherence): 1322 if (_enableBlkFlagsHeuristics) { 1323 // Use block flags if large pixel span and few crossings: 1324 // ie mean(distance between crossings) is larger than 1325 // 1 block size; 1326 1327 // fast check width: 1328 maxX -= minX; 1329 1330 // if stroking: numCrossings /= 2 1331 // => shift numCrossings by 1 1332 // condition = (width / (numCrossings - 1)) > blockSize 1333 useBlkFlags = (maxX > _BLK_SIZE) && (maxX > 1334 (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG)); 1335 1336 if (DO_STATS) { 1337 tmp = FloatMath.max(1, 1338 ((numCrossings >> stroking) - 1)); 1339 rdrCtx.stats.hist_tile_generator_encoding_dist 1340 .add(maxX / tmp); 1341 } 1342 } 1343 } else { 1344 _cache.clearAARow(lastY); 1345 } 1346 minX = _MAX_VALUE; 1347 maxX = _MIN_VALUE; 1348 } 1349 } // scan line iterator 1350 1351 // Emit final row 1352 y--; 1353 y >>= _SUBPIXEL_LG_POSITIONS_Y; 1354 1355 // convert subpixel to pixel coordinate within boundaries: 1356 minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X; 1357 maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X; 1358 1359 if (maxX >= minX) { 1360 // note: alpha array will be zeroed by copyAARow() 1361 // +1 because alpha [pix_minX; pix_maxX[ 1362 // fix range [x0; x1[ 1363 // note: if x1=bboxx1, then alpha is written up to bboxx1+1 1364 // inclusive: alpha[bboxx1] ignored then cleared and 1365 // alpha[bboxx1+1] == 0 (normally so never cleared after) 1366 copyAARow(_alpha, y, minX, maxX + 1, useBlkFlags); 1367 } else if (y != lastY) { 1368 _cache.clearAARow(y); 1369 } 1370 1371 // update member: 1372 edgeCount = numCrossings; 1373 prevUseBlkFlags = useBlkFlags; 1374 1375 if (DO_STATS) { 1376 // update max used mark 1377 activeEdgeMaxUsed = _arrayMaxUsed; 1378 } 1379 } 1380 1381 boolean endRendering() { 1382 if (DO_MONITORS) { 1383 rdrCtx.stats.mon_rdr_endRendering.start(); 1384 } 1385 if (edgeMinY == Integer.MAX_VALUE) { 1386 return false; // undefined edges bounds 1387 } 1388 1389 // bounds as half-open intervals 1390 final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5d), boundsMinX); 1391 final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5d), boundsMaxX); 1392 1393 // edge Min/Max Y are already rounded to subpixels within bounds: 1394 final int spminY = edgeMinY; 1395 final int spmaxY = edgeMaxY; 1396 1397 buckets_minY = spminY - boundsMinY; 1398 buckets_maxY = spmaxY - boundsMinY; 1399 1400 if (DO_LOG_BOUNDS) { 1401 MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX 1402 + "[ [" + edgeMinY + " ... " + edgeMaxY + "["); 1403 MarlinUtils.logInfo("spXY = [" + spminX + " ... " + spmaxX 1404 + "[ [" + spminY + " ... " + spmaxY + "["); 1405 } 1406 1407 // test clipping for shapes out of bounds 1408 if ((spminX >= spmaxX) || (spminY >= spmaxY)) { 1409 return false; 1410 } 1411 1412 // half open intervals 1413 // inclusive: 1414 final int pminX = spminX >> SUBPIXEL_LG_POSITIONS_X; 1415 // exclusive: 1416 final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X; 1417 // inclusive: 1418 final int pminY = spminY >> SUBPIXEL_LG_POSITIONS_Y; 1419 // exclusive: 1420 final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y; 1421 1422 // store BBox to answer ptg.getBBox(): 1423 this.cache.init(pminX, pminY, pmaxX, pmaxY); 1424 1425 // Heuristics for using block flags: 1426 if (ENABLE_BLOCK_FLAGS) { 1427 enableBlkFlags = this.cache.useRLE; 1428 prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS; 1429 1430 if (enableBlkFlags) { 1431 // ensure blockFlags array is large enough: 1432 // note: +2 to ensure enough space left at end 1433 final int blkLen = ((pmaxX - pminX) >> BLOCK_SIZE_LG) + 2; 1434 if (blkLen > INITIAL_ARRAY) { 1435 blkFlags = blkFlags_ref.getArray(blkLen); 1436 } 1437 } 1438 } 1439 1440 // memorize the rendering bounding box: 1441 /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries 1442 to have correct coverage computation */ 1443 // inclusive: 1444 bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X; 1445 // exclusive: 1446 bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X; 1447 // inclusive: 1448 bbox_spminY = spminY; 1449 // exclusive: 1450 bbox_spmaxY = spmaxY; 1451 1452 if (DO_LOG_BOUNDS) { 1453 MarlinUtils.logInfo("pXY = [" + pminX + " ... " + pmaxX 1454 + "[ [" + pminY + " ... " + pmaxY + "["); 1455 MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... " 1456 + bbox_spmaxX + "[ [" + bbox_spminY + " ... " 1457 + bbox_spmaxY + "["); 1458 } 1459 1460 // Prepare alpha line: 1461 // add 2 to better deal with the last pixel in a pixel row. 1462 final int width = (pmaxX - pminX) + 2; 1463 1464 // Useful when processing tile line by tile line 1465 if (width > INITIAL_AA_ARRAY) { 1466 if (DO_STATS) { 1467 rdrCtx.stats.stat_array_renderer_alphaline.add(width); 1468 } 1469 alphaLine = alphaLine_ref.getArray(width); 1470 } 1471 1472 // process first tile line: 1473 endRendering(pminY); 1474 1475 return true; 1476 } 1477 1478 private int bbox_spminX, bbox_spmaxX, bbox_spminY, bbox_spmaxY; 1479 1480 void endRendering(final int pminY) { 1481 if (DO_MONITORS) { 1482 rdrCtx.stats.mon_rdr_endRendering_Y.start(); 1483 } 1484 1485 final int spminY = pminY << SUBPIXEL_LG_POSITIONS_Y; 1486 final int fixed_spminY = FloatMath.max(bbox_spminY, spminY); 1487 1488 // avoid rendering for last call to nextTile() 1489 if (fixed_spminY < bbox_spmaxY) { 1490 // process a complete tile line ie scanlines for 32 rows 1491 final int spmaxY = FloatMath.min(bbox_spmaxY, spminY + SUBPIXEL_TILE); 1492 1493 // process tile line [0 - 32] 1494 cache.resetTileLine(pminY); 1495 1496 // Process only one tile line: 1497 _endRendering(fixed_spminY, spmaxY); 1498 } 1499 if (DO_MONITORS) { 1500 rdrCtx.stats.mon_rdr_endRendering_Y.stop(); 1501 } 1502 } 1503 1504 void copyAARow(final int[] alphaRow, 1505 final int pix_y, final int pix_from, final int pix_to, 1506 final boolean useBlockFlags) 1507 { 1508 if (DO_MONITORS) { 1509 rdrCtx.stats.mon_rdr_copyAARow.start(); 1510 } 1511 if (useBlockFlags) { 1512 if (DO_STATS) { 1513 rdrCtx.stats.hist_tile_generator_encoding.add(1); 1514 } 1515 cache.copyAARowRLE_WithBlockFlags(blkFlags, alphaRow, pix_y, pix_from, pix_to); 1516 } else { 1517 if (DO_STATS) { 1518 rdrCtx.stats.hist_tile_generator_encoding.add(0); 1519 } 1520 cache.copyAARowNoRLE(alphaRow, pix_y, pix_from, pix_to); 1521 } 1522 if (DO_MONITORS) { 1523 rdrCtx.stats.mon_rdr_copyAARow.stop(); 1524 } 1525 } 1526 }