1 /* 2 * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package sun.java2d.marlin; 27 28 import java.util.Arrays; 29 30 /** 31 * The <code>DDasher</code> class takes a series of linear commands 32 * (<code>moveTo</code>, <code>lineTo</code>, <code>close</code> and 33 * <code>end</code>) and breaks them into smaller segments according to a 34 * dash pattern array and a starting dash phase. 35 * 36 * <p> Issues: in J2Se, a zero length dash segment as drawn as a very 37 * short dash, whereas Pisces does not draw anything. The PostScript 38 * semantics are unclear. 39 * 40 */ 41 final class DDasher implements DPathConsumer2D, MarlinConst { 42 43 static final int REC_LIMIT = 4; 44 static final double ERR = 0.01d; 45 static final double MIN_T_INC = 1.0d / (1 << REC_LIMIT); 46 47 // More than 24 bits of mantissa means we can no longer accurately 48 // measure the number of times cycled through the dash array so we 49 // punt and override the phase to just be 0 past that point. 50 static final double MAX_CYCLES = 16000000.0d; 51 52 private DPathConsumer2D out; 53 private double[] dash; 54 private int dashLen; 55 private double startPhase; 56 private boolean startDashOn; 57 private int startIdx; 58 59 private boolean starting; 60 private boolean needsMoveTo; 61 62 private int idx; 63 private boolean dashOn; 64 private double phase; 65 66 private double sx, sy; 67 private double x0, y0; 68 69 // temporary storage for the current curve 70 private final double[] curCurvepts; 71 72 // per-thread renderer context 73 final DRendererContext rdrCtx; 74 75 // flag to recycle dash array copy 76 boolean recycleDashes; 77 78 // dashes ref (dirty) 79 final DoubleArrayCache.Reference dashes_ref; 80 // firstSegmentsBuffer ref (dirty) 81 final DoubleArrayCache.Reference firstSegmentsBuffer_ref; 82 83 /** 84 * Constructs a <code>DDasher</code>. 85 * @param rdrCtx per-thread renderer context 86 */ 87 DDasher(final DRendererContext rdrCtx) { 88 this.rdrCtx = rdrCtx; 89 90 dashes_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_ARRAY); // 1K 91 92 firstSegmentsBuffer_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_ARRAY); // 1K 93 firstSegmentsBuffer = firstSegmentsBuffer_ref.initial; 94 95 // we need curCurvepts to be able to contain 2 curves because when 96 // dashing curves, we need to subdivide it 97 curCurvepts = new double[8 * 2]; 98 } 99 100 /** 101 * Initialize the <code>DDasher</code>. 102 * 103 * @param out an output <code>DPathConsumer2D</code>. 104 * @param dash an array of <code>double</code>s containing the dash pattern 105 * @param dashLen length of the given dash array 106 * @param phase a <code>double</code> containing the dash phase 107 * @param recycleDashes true to indicate to recycle the given dash array 108 * @return this instance 109 */ 110 DDasher init(final DPathConsumer2D out, double[] dash, int dashLen, 111 double phase, boolean recycleDashes) 112 { 113 this.out = out; 114 115 // Normalize so 0 <= phase < dash[0] 116 int sidx = 0; 117 dashOn = true; 118 double sum = 0.0d; 119 for (double d : dash) { 120 sum += d; 121 } 122 double cycles = phase / sum; 123 if (phase < 0.0d) { 124 if (-cycles >= MAX_CYCLES) { 125 phase = 0.0d; 126 } else { 127 int fullcycles = FloatMath.floor_int(-cycles); 128 if ((fullcycles & dash.length & 1) != 0) { 129 dashOn = !dashOn; 130 } 131 phase += fullcycles * sum; 132 while (phase < 0.0d) { 133 if (--sidx < 0) { 134 sidx = dash.length - 1; 135 } 136 phase += dash[sidx]; 137 dashOn = !dashOn; 138 } 139 } 140 } else if (phase > 0.0d) { 141 if (cycles >= MAX_CYCLES) { 142 phase = 0.0d; 143 } else { 144 int fullcycles = FloatMath.floor_int(cycles); 145 if ((fullcycles & dash.length & 1) != 0) { 146 dashOn = !dashOn; 147 } 148 phase -= fullcycles * sum; 149 double d; 150 while (phase >= (d = dash[sidx])) { 151 phase -= d; 152 sidx = (sidx + 1) % dash.length; 153 dashOn = !dashOn; 154 } 155 } 156 } 157 158 this.dash = dash; 159 this.dashLen = dashLen; 160 this.phase = phase; 161 this.startPhase = phase; 162 this.startDashOn = dashOn; 163 this.startIdx = sidx; 164 this.starting = true; 165 this.needsMoveTo = false; 166 this.firstSegidx = 0; 167 168 this.recycleDashes = recycleDashes; 169 170 return this; // fluent API 171 } 172 173 /** 174 * Disposes this dasher: 175 * clean up before reusing this instance 176 */ 177 void dispose() { 178 if (DO_CLEAN_DIRTY) { 179 // Force zero-fill dirty arrays: 180 Arrays.fill(curCurvepts, 0.0d); 181 } 182 // Return arrays: 183 if (recycleDashes) { 184 dash = dashes_ref.putArray(dash); 185 } 186 firstSegmentsBuffer = firstSegmentsBuffer_ref.putArray(firstSegmentsBuffer); 187 } 188 189 double[] copyDashArray(final float[] dashes) { 190 final int len = dashes.length; 191 final double[] newDashes; 192 if (len <= MarlinConst.INITIAL_ARRAY) { 193 newDashes = dashes_ref.initial; 194 } else { 195 if (DO_STATS) { 196 rdrCtx.stats.stat_array_dasher_dasher.add(len); 197 } 198 newDashes = dashes_ref.getArray(len); 199 } 200 for (int i = 0; i < len; i++) { newDashes[i] = dashes[i]; } 201 return newDashes; 202 } 203 204 @Override 205 public void moveTo(final double x0, final double y0) { 206 if (firstSegidx != 0) { 207 out.moveTo(sx, sy); 208 emitFirstSegments(); 209 } 210 needsMoveTo = true; 211 this.idx = startIdx; 212 this.dashOn = this.startDashOn; 213 this.phase = this.startPhase; 214 this.sx = x0; 215 this.sy = y0; 216 this.x0 = x0; 217 this.y0 = y0; 218 this.starting = true; 219 } 220 221 private void emitSeg(double[] buf, int off, int type) { 222 switch (type) { 223 case 8: 224 out.curveTo(buf[off+0], buf[off+1], 225 buf[off+2], buf[off+3], 226 buf[off+4], buf[off+5]); 227 return; 228 case 6: 229 out.quadTo(buf[off+0], buf[off+1], 230 buf[off+2], buf[off+3]); 231 return; 232 case 4: 233 out.lineTo(buf[off], buf[off+1]); 234 return; 235 default: 236 } 237 } 238 239 private void emitFirstSegments() { 240 final double[] fSegBuf = firstSegmentsBuffer; 241 242 for (int i = 0, len = firstSegidx; i < len; ) { 243 int type = (int)fSegBuf[i]; 244 emitSeg(fSegBuf, i + 1, type); 245 i += (type - 1); 246 } 247 firstSegidx = 0; 248 } 249 // We don't emit the first dash right away. If we did, caps would be 250 // drawn on it, but we need joins to be drawn if there's a closePath() 251 // So, we store the path elements that make up the first dash in the 252 // buffer below. 253 private double[] firstSegmentsBuffer; // dynamic array 254 private int firstSegidx; 255 256 // precondition: pts must be in relative coordinates (relative to x0,y0) 257 private void goTo(final double[] pts, final int off, final int type, 258 final boolean on) 259 { 260 final int index = off + type; 261 final double x = pts[index - 4]; 262 final double y = pts[index - 3]; 263 264 if (on) { 265 if (starting) { 266 goTo_starting(pts, off, type); 267 } else { 268 if (needsMoveTo) { 269 needsMoveTo = false; 270 out.moveTo(x0, y0); 271 } 272 emitSeg(pts, off, type); 273 } 274 } else { 275 if (starting) { 276 // low probability test (hotspot) 277 starting = false; 278 } 279 needsMoveTo = true; 280 } 281 this.x0 = x; 282 this.y0 = y; 283 } 284 285 private void goTo_starting(final double[] pts, final int off, final int type) { 286 int len = type - 1; // - 2 + 1 287 int segIdx = firstSegidx; 288 double[] buf = firstSegmentsBuffer; 289 290 if (segIdx + len > buf.length) { 291 if (DO_STATS) { 292 rdrCtx.stats.stat_array_dasher_firstSegmentsBuffer 293 .add(segIdx + len); 294 } 295 firstSegmentsBuffer = buf 296 = firstSegmentsBuffer_ref.widenArray(buf, segIdx, 297 segIdx + len); 298 } 299 buf[segIdx++] = type; 300 len--; 301 // small arraycopy (2, 4 or 6) but with offset: 302 System.arraycopy(pts, off, buf, segIdx, len); 303 firstSegidx = segIdx + len; 304 } 305 306 @Override 307 public void lineTo(final double x1, final double y1) { 308 final double dx = x1 - x0; 309 final double dy = y1 - y0; 310 311 double len = dx*dx + dy*dy; 312 if (len == 0.0d) { 313 return; 314 } 315 len = Math.sqrt(len); 316 317 // The scaling factors needed to get the dx and dy of the 318 // transformed dash segments. 319 final double cx = dx / len; 320 final double cy = dy / len; 321 322 final double[] _curCurvepts = curCurvepts; 323 final double[] _dash = dash; 324 final int _dashLen = this.dashLen; 325 326 int _idx = idx; 327 boolean _dashOn = dashOn; 328 double _phase = phase; 329 330 double leftInThisDashSegment; 331 double d, dashdx, dashdy, p; 332 333 while (true) { 334 d = _dash[_idx]; 335 leftInThisDashSegment = d - _phase; 336 337 if (len <= leftInThisDashSegment) { 338 _curCurvepts[0] = x1; 339 _curCurvepts[1] = y1; 340 341 goTo(_curCurvepts, 0, 4, _dashOn); 342 343 // Advance phase within current dash segment 344 _phase += len; 345 346 // TODO: compare double values using epsilon: 347 if (len == leftInThisDashSegment) { 348 _phase = 0.0d; 349 _idx = (_idx + 1) % _dashLen; 350 _dashOn = !_dashOn; 351 } 352 353 // Save local state: 354 idx = _idx; 355 dashOn = _dashOn; 356 phase = _phase; 357 return; 358 } 359 360 dashdx = d * cx; 361 dashdy = d * cy; 362 363 if (_phase == 0.0d) { 364 _curCurvepts[0] = x0 + dashdx; 365 _curCurvepts[1] = y0 + dashdy; 366 } else { 367 p = leftInThisDashSegment / d; 368 _curCurvepts[0] = x0 + p * dashdx; 369 _curCurvepts[1] = y0 + p * dashdy; 370 } 371 372 goTo(_curCurvepts, 0, 4, _dashOn); 373 374 len -= leftInThisDashSegment; 375 // Advance to next dash segment 376 _idx = (_idx + 1) % _dashLen; 377 _dashOn = !_dashOn; 378 _phase = 0.0d; 379 } 380 } 381 382 // shared instance in DDasher 383 private final LengthIterator li = new LengthIterator(); 384 385 // preconditions: curCurvepts must be an array of length at least 2 * type, 386 // that contains the curve we want to dash in the first type elements 387 private void somethingTo(int type) { 388 if (pointCurve(curCurvepts, type)) { 389 return; 390 } 391 final LengthIterator _li = li; 392 final double[] _curCurvepts = curCurvepts; 393 final double[] _dash = dash; 394 final int _dashLen = this.dashLen; 395 396 _li.initializeIterationOnCurve(_curCurvepts, type); 397 398 int _idx = idx; 399 boolean _dashOn = dashOn; 400 double _phase = phase; 401 402 // initially the current curve is at curCurvepts[0...type] 403 int curCurveoff = 0; 404 double lastSplitT = 0.0d; 405 double t; 406 double leftInThisDashSegment = _dash[_idx] - _phase; 407 408 while ((t = _li.next(leftInThisDashSegment)) < 1.0d) { 409 if (t != 0.0d) { 410 DHelpers.subdivideAt((t - lastSplitT) / (1.0d - lastSplitT), 411 _curCurvepts, curCurveoff, 412 _curCurvepts, 0, 413 _curCurvepts, type, type); 414 lastSplitT = t; 415 goTo(_curCurvepts, 2, type, _dashOn); 416 curCurveoff = type; 417 } 418 // Advance to next dash segment 419 _idx = (_idx + 1) % _dashLen; 420 _dashOn = !_dashOn; 421 _phase = 0.0d; 422 leftInThisDashSegment = _dash[_idx]; 423 } 424 425 goTo(_curCurvepts, curCurveoff + 2, type, _dashOn); 426 427 _phase += _li.lastSegLen(); 428 if (_phase >= _dash[_idx]) { 429 _phase = 0.0d; 430 _idx = (_idx + 1) % _dashLen; 431 _dashOn = !_dashOn; 432 } 433 // Save local state: 434 idx = _idx; 435 dashOn = _dashOn; 436 phase = _phase; 437 438 // reset LengthIterator: 439 _li.reset(); 440 } 441 442 private static boolean pointCurve(double[] curve, int type) { 443 for (int i = 2; i < type; i++) { 444 if (curve[i] != curve[i-2]) { 445 return false; 446 } 447 } 448 return true; 449 } 450 451 // Objects of this class are used to iterate through curves. They return 452 // t values where the left side of the curve has a specified length. 453 // It does this by subdividing the input curve until a certain error 454 // condition has been met. A recursive subdivision procedure would 455 // return as many as 1<<limit curves, but this is an iterator and we 456 // don't need all the curves all at once, so what we carry out a 457 // lazy inorder traversal of the recursion tree (meaning we only move 458 // through the tree when we need the next subdivided curve). This saves 459 // us a lot of memory because at any one time we only need to store 460 // limit+1 curves - one for each level of the tree + 1. 461 // NOTE: the way we do things here is not enough to traverse a general 462 // tree; however, the trees we are interested in have the property that 463 // every non leaf node has exactly 2 children 464 static final class LengthIterator { 465 private enum Side {LEFT, RIGHT} 466 // Holds the curves at various levels of the recursion. The root 467 // (i.e. the original curve) is at recCurveStack[0] (but then it 468 // gets subdivided, the left half is put at 1, so most of the time 469 // only the right half of the original curve is at 0) 470 private final double[][] recCurveStack; // dirty 471 // sides[i] indicates whether the node at level i+1 in the path from 472 // the root to the current leaf is a left or right child of its parent. 473 private final Side[] sides; // dirty 474 private int curveType; 475 // lastT and nextT delimit the current leaf. 476 private double nextT; 477 private double lenAtNextT; 478 private double lastT; 479 private double lenAtLastT; 480 private double lenAtLastSplit; 481 private double lastSegLen; 482 // the current level in the recursion tree. 0 is the root. limit 483 // is the deepest possible leaf. 484 private int recLevel; 485 private boolean done; 486 487 // the lengths of the lines of the control polygon. Only its first 488 // curveType/2 - 1 elements are valid. This is an optimization. See 489 // next() for more detail. 490 private final double[] curLeafCtrlPolyLengths = new double[3]; 491 492 LengthIterator() { 493 this.recCurveStack = new double[REC_LIMIT + 1][8]; 494 this.sides = new Side[REC_LIMIT]; 495 // if any methods are called without first initializing this object 496 // on a curve, we want it to fail ASAP. 497 this.nextT = Double.MAX_VALUE; 498 this.lenAtNextT = Double.MAX_VALUE; 499 this.lenAtLastSplit = Double.MIN_VALUE; 500 this.recLevel = Integer.MIN_VALUE; 501 this.lastSegLen = Double.MAX_VALUE; 502 this.done = true; 503 } 504 505 /** 506 * Reset this LengthIterator. 507 */ 508 void reset() { 509 // keep data dirty 510 // as it appears not useful to reset data: 511 if (DO_CLEAN_DIRTY) { 512 final int recLimit = recCurveStack.length - 1; 513 for (int i = recLimit; i >= 0; i--) { 514 Arrays.fill(recCurveStack[i], 0.0d); 515 } 516 Arrays.fill(sides, Side.LEFT); 517 Arrays.fill(curLeafCtrlPolyLengths, 0.0d); 518 Arrays.fill(nextRoots, 0.0d); 519 Arrays.fill(flatLeafCoefCache, 0.0d); 520 flatLeafCoefCache[2] = -1.0d; 521 } 522 } 523 524 void initializeIterationOnCurve(double[] pts, int type) { 525 // optimize arraycopy (8 values faster than 6 = type): 526 System.arraycopy(pts, 0, recCurveStack[0], 0, 8); 527 this.curveType = type; 528 this.recLevel = 0; 529 this.lastT = 0.0d; 530 this.lenAtLastT = 0.0d; 531 this.nextT = 0.0d; 532 this.lenAtNextT = 0.0d; 533 goLeft(); // initializes nextT and lenAtNextT properly 534 this.lenAtLastSplit = 0.0d; 535 if (recLevel > 0) { 536 this.sides[0] = Side.LEFT; 537 this.done = false; 538 } else { 539 // the root of the tree is a leaf so we're done. 540 this.sides[0] = Side.RIGHT; 541 this.done = true; 542 } 543 this.lastSegLen = 0.0d; 544 } 545 546 // 0 == false, 1 == true, -1 == invalid cached value. 547 private int cachedHaveLowAcceleration = -1; 548 549 private boolean haveLowAcceleration(double err) { 550 if (cachedHaveLowAcceleration == -1) { 551 final double len1 = curLeafCtrlPolyLengths[0]; 552 final double len2 = curLeafCtrlPolyLengths[1]; 553 // the test below is equivalent to !within(len1/len2, 1, err). 554 // It is using a multiplication instead of a division, so it 555 // should be a bit faster. 556 if (!DHelpers.within(len1, len2, err * len2)) { 557 cachedHaveLowAcceleration = 0; 558 return false; 559 } 560 if (curveType == 8) { 561 final double len3 = curLeafCtrlPolyLengths[2]; 562 // if len1 is close to 2 and 2 is close to 3, that probably 563 // means 1 is close to 3 so the second part of this test might 564 // not be needed, but it doesn't hurt to include it. 565 final double errLen3 = err * len3; 566 if (!(DHelpers.within(len2, len3, errLen3) && 567 DHelpers.within(len1, len3, errLen3))) { 568 cachedHaveLowAcceleration = 0; 569 return false; 570 } 571 } 572 cachedHaveLowAcceleration = 1; 573 return true; 574 } 575 576 return (cachedHaveLowAcceleration == 1); 577 } 578 579 // we want to avoid allocations/gc so we keep this array so we 580 // can put roots in it, 581 private final double[] nextRoots = new double[4]; 582 583 // caches the coefficients of the current leaf in its flattened 584 // form (see inside next() for what that means). The cache is 585 // invalid when it's third element is negative, since in any 586 // valid flattened curve, this would be >= 0. 587 private final double[] flatLeafCoefCache = new double[]{0.0d, 0.0d, -1.0d, 0.0d}; 588 589 // returns the t value where the remaining curve should be split in 590 // order for the left subdivided curve to have length len. If len 591 // is >= than the length of the uniterated curve, it returns 1. 592 double next(final double len) { 593 final double targetLength = lenAtLastSplit + len; 594 while (lenAtNextT < targetLength) { 595 if (done) { 596 lastSegLen = lenAtNextT - lenAtLastSplit; 597 return 1.0d; 598 } 599 goToNextLeaf(); 600 } 601 lenAtLastSplit = targetLength; 602 final double leaflen = lenAtNextT - lenAtLastT; 603 double t = (targetLength - lenAtLastT) / leaflen; 604 605 // cubicRootsInAB is a fairly expensive call, so we just don't do it 606 // if the acceleration in this section of the curve is small enough. 607 if (!haveLowAcceleration(0.05d)) { 608 // We flatten the current leaf along the x axis, so that we're 609 // left with a, b, c which define a 1D Bezier curve. We then 610 // solve this to get the parameter of the original leaf that 611 // gives us the desired length. 612 final double[] _flatLeafCoefCache = flatLeafCoefCache; 613 614 if (_flatLeafCoefCache[2] < 0.0d) { 615 double x = curLeafCtrlPolyLengths[0], 616 y = x + curLeafCtrlPolyLengths[1]; 617 if (curveType == 8) { 618 double z = y + curLeafCtrlPolyLengths[2]; 619 _flatLeafCoefCache[0] = 3.0d * (x - y) + z; 620 _flatLeafCoefCache[1] = 3.0d * (y - 2.0d * x); 621 _flatLeafCoefCache[2] = 3.0d * x; 622 _flatLeafCoefCache[3] = -z; 623 } else if (curveType == 6) { 624 _flatLeafCoefCache[0] = 0.0d; 625 _flatLeafCoefCache[1] = y - 2.0d * x; 626 _flatLeafCoefCache[2] = 2.0d * x; 627 _flatLeafCoefCache[3] = -y; 628 } 629 } 630 double a = _flatLeafCoefCache[0]; 631 double b = _flatLeafCoefCache[1]; 632 double c = _flatLeafCoefCache[2]; 633 double d = t * _flatLeafCoefCache[3]; 634 635 // we use cubicRootsInAB here, because we want only roots in 0, 1, 636 // and our quadratic root finder doesn't filter, so it's just a 637 // matter of convenience. 638 int n = DHelpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0.0d, 1.0d); 639 if (n == 1 && !Double.isNaN(nextRoots[0])) { 640 t = nextRoots[0]; 641 } 642 } 643 // t is relative to the current leaf, so we must make it a valid parameter 644 // of the original curve. 645 t = t * (nextT - lastT) + lastT; 646 if (t >= 1.0d) { 647 t = 1.0d; 648 done = true; 649 } 650 // even if done = true, if we're here, that means targetLength 651 // is equal to, or very, very close to the total length of the 652 // curve, so lastSegLen won't be too high. In cases where len 653 // overshoots the curve, this method will exit in the while 654 // loop, and lastSegLen will still be set to the right value. 655 lastSegLen = len; 656 return t; 657 } 658 659 double lastSegLen() { 660 return lastSegLen; 661 } 662 663 // go to the next leaf (in an inorder traversal) in the recursion tree 664 // preconditions: must be on a leaf, and that leaf must not be the root. 665 private void goToNextLeaf() { 666 // We must go to the first ancestor node that has an unvisited 667 // right child. 668 int _recLevel = recLevel; 669 final Side[] _sides = sides; 670 671 _recLevel--; 672 while(_sides[_recLevel] == Side.RIGHT) { 673 if (_recLevel == 0) { 674 recLevel = 0; 675 done = true; 676 return; 677 } 678 _recLevel--; 679 } 680 681 _sides[_recLevel] = Side.RIGHT; 682 // optimize arraycopy (8 values faster than 6 = type): 683 System.arraycopy(recCurveStack[_recLevel], 0, 684 recCurveStack[_recLevel+1], 0, 8); 685 _recLevel++; 686 687 recLevel = _recLevel; 688 goLeft(); 689 } 690 691 // go to the leftmost node from the current node. Return its length. 692 private void goLeft() { 693 double len = onLeaf(); 694 if (len >= 0.0d) { 695 lastT = nextT; 696 lenAtLastT = lenAtNextT; 697 nextT += (1 << (REC_LIMIT - recLevel)) * MIN_T_INC; 698 lenAtNextT += len; 699 // invalidate caches 700 flatLeafCoefCache[2] = -1.0d; 701 cachedHaveLowAcceleration = -1; 702 } else { 703 DHelpers.subdivide(recCurveStack[recLevel], 0, 704 recCurveStack[recLevel+1], 0, 705 recCurveStack[recLevel], 0, curveType); 706 sides[recLevel] = Side.LEFT; 707 recLevel++; 708 goLeft(); 709 } 710 } 711 712 // this is a bit of a hack. It returns -1 if we're not on a leaf, and 713 // the length of the leaf if we are on a leaf. 714 private double onLeaf() { 715 final double[] curve = recCurveStack[recLevel]; 716 final int _curveType = curveType; 717 double polyLen = 0.0d; 718 719 double x0 = curve[0], y0 = curve[1]; 720 for (int i = 2; i < _curveType; i += 2) { 721 final double x1 = curve[i], y1 = curve[i+1]; 722 final double len = DHelpers.linelen(x0, y0, x1, y1); 723 polyLen += len; 724 curLeafCtrlPolyLengths[i/2 - 1] = len; 725 x0 = x1; 726 y0 = y1; 727 } 728 729 final double lineLen = DHelpers.linelen(curve[0], curve[1], 730 curve[_curveType-2], 731 curve[_curveType-1]); 732 if ((polyLen - lineLen) < ERR || recLevel == REC_LIMIT) { 733 return (polyLen + lineLen) / 2.0d; 734 } 735 return -1.0d; 736 } 737 } 738 739 @Override 740 public void curveTo(final double x1, final double y1, 741 final double x2, final double y2, 742 final double x3, final double y3) 743 { 744 final double[] _curCurvepts = curCurvepts; 745 _curCurvepts[0] = x0; _curCurvepts[1] = y0; 746 _curCurvepts[2] = x1; _curCurvepts[3] = y1; 747 _curCurvepts[4] = x2; _curCurvepts[5] = y2; 748 _curCurvepts[6] = x3; _curCurvepts[7] = y3; 749 somethingTo(8); 750 } 751 752 @Override 753 public void quadTo(final double x1, final double y1, 754 final double x2, final double y2) 755 { 756 final double[] _curCurvepts = curCurvepts; 757 _curCurvepts[0] = x0; _curCurvepts[1] = y0; 758 _curCurvepts[2] = x1; _curCurvepts[3] = y1; 759 _curCurvepts[4] = x2; _curCurvepts[5] = y2; 760 somethingTo(6); 761 } 762 763 @Override 764 public void closePath() { 765 lineTo(sx, sy); 766 if (firstSegidx != 0) { 767 if (!dashOn || needsMoveTo) { 768 out.moveTo(sx, sy); 769 } 770 emitFirstSegments(); 771 } 772 moveTo(sx, sy); 773 } 774 775 @Override 776 public void pathDone() { 777 if (firstSegidx != 0) { 778 out.moveTo(sx, sy); 779 emitFirstSegments(); 780 } 781 out.pathDone(); 782 783 // Dispose this instance: 784 dispose(); 785 } 786 787 @Override 788 public long getNativeConsumer() { 789 throw new InternalError("DDasher does not use a native consumer"); 790 } 791 } 792