1 /* 2 * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package sun.java2d.marlin; 27 28 import java.util.Arrays; 29 30 /** 31 * The <code>DDasher</code> class takes a series of linear commands 32 * (<code>moveTo</code>, <code>lineTo</code>, <code>close</code> and 33 * <code>end</code>) and breaks them into smaller segments according to a 34 * dash pattern array and a starting dash phase. 35 * 36 * <p> Issues: in J2Se, a zero length dash segment as drawn as a very 37 * short dash, whereas Pisces does not draw anything. The PostScript 38 * semantics are unclear. 39 * 40 */ 41 final class DDasher implements DPathConsumer2D, MarlinConst { 42 43 static final int REC_LIMIT = 4; 44 static final double ERR = 0.01d; 45 static final double MIN_T_INC = 1.0d / (1 << REC_LIMIT); 46 47 // More than 24 bits of mantissa means we can no longer accurately 48 // measure the number of times cycled through the dash array so we 49 // punt and override the phase to just be 0 past that point. 50 static final double MAX_CYCLES = 16000000.0d; 51 52 private DPathConsumer2D out; 53 private double[] dash; 54 private int dashLen; 55 private double startPhase; 56 private boolean startDashOn; 57 private int startIdx; 58 59 private boolean starting; 60 private boolean needsMoveTo; 61 62 private int idx; 63 private boolean dashOn; 64 private double phase; 65 66 private double sx, sy; 67 private double x0, y0; 68 69 // temporary storage for the current curve 70 private final double[] curCurvepts; 71 72 // per-thread renderer context 73 final DRendererContext rdrCtx; 74 75 // flag to recycle dash array copy 76 boolean recycleDashes; 77 78 // dashes ref (dirty) 79 final DoubleArrayCache.Reference dashes_ref; 80 // firstSegmentsBuffer ref (dirty) 81 final DoubleArrayCache.Reference firstSegmentsBuffer_ref; 82 83 /** 84 * Constructs a <code>DDasher</code>. 85 * @param rdrCtx per-thread renderer context 86 */ 87 DDasher(final DRendererContext rdrCtx) { 88 this.rdrCtx = rdrCtx; 89 90 dashes_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_ARRAY); // 1K 91 92 firstSegmentsBuffer_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_ARRAY); // 1K 93 firstSegmentsBuffer = firstSegmentsBuffer_ref.initial; 94 95 // we need curCurvepts to be able to contain 2 curves because when 96 // dashing curves, we need to subdivide it 97 curCurvepts = new double[8 * 2]; 98 } 99 100 /** 101 * Initialize the <code>DDasher</code>. 102 * 103 * @param out an output <code>DPathConsumer2D</code>. 104 * @param dash an array of <code>double</code>s containing the dash pattern 105 * @param dashLen length of the given dash array 106 * @param phase a <code>double</code> containing the dash phase 107 * @param recycleDashes true to indicate to recycle the given dash array 108 * @return this instance 109 */ 110 DDasher init(final DPathConsumer2D out, double[] dash, int dashLen, 111 double phase, boolean recycleDashes) 112 { 113 this.out = out; 114 115 // Normalize so 0 <= phase < dash[0] 116 int sidx = 0; 117 dashOn = true; 118 double sum = 0.0d; 119 for (double d : dash) { 120 sum += d; 121 } 122 double cycles = phase / sum; 123 if (phase < 0.0d) { 124 if (-cycles >= MAX_CYCLES) { 125 phase = 0.0d; 126 } else { 127 int fullcycles = FloatMath.floor_int(-cycles); 128 if ((fullcycles & dash.length & 1) != 0) { 129 dashOn = !dashOn; 130 } 131 phase += fullcycles * sum; 132 while (phase < 0.0d) { 133 if (--sidx < 0) { 134 sidx = dash.length - 1; 135 } 136 phase += dash[sidx]; 137 dashOn = !dashOn; 138 } 139 } 140 } else if (phase > 0) { 141 if (cycles >= MAX_CYCLES) { 142 phase = 0.0d; 143 } else { 144 int fullcycles = FloatMath.floor_int(cycles); 145 if ((fullcycles & dash.length & 1) != 0) { 146 dashOn = !dashOn; 147 } 148 phase -= fullcycles * sum; 149 double d; 150 while (phase >= (d = dash[sidx])) { 151 phase -= d; 152 sidx = (sidx + 1) % dash.length; 153 dashOn = !dashOn; 154 } 155 } 156 } 157 158 this.dash = dash; 159 this.dashLen = dashLen; 160 this.startPhase = this.phase = phase; 161 this.startDashOn = dashOn; 162 this.startIdx = sidx; 163 this.starting = true; 164 needsMoveTo = false; 165 firstSegidx = 0; 166 167 this.recycleDashes = recycleDashes; 168 169 return this; // fluent API 170 } 171 172 /** 173 * Disposes this dasher: 174 * clean up before reusing this instance 175 */ 176 void dispose() { 177 if (DO_CLEAN_DIRTY) { 178 // Force zero-fill dirty arrays: 179 Arrays.fill(curCurvepts, 0.0d); 180 } 181 // Return arrays: 182 if (recycleDashes) { 183 dash = dashes_ref.putArray(dash); 184 } 185 firstSegmentsBuffer = firstSegmentsBuffer_ref.putArray(firstSegmentsBuffer); 186 } 187 188 double[] copyDashArray(final float[] dashes) { 189 final int len = dashes.length; 190 final double[] newDashes; 191 if (len <= MarlinConst.INITIAL_ARRAY) { 192 newDashes = dashes_ref.initial; 193 } else { 194 if (DO_STATS) { 195 rdrCtx.stats.stat_array_dasher_dasher.add(len); 196 } 197 newDashes = dashes_ref.getArray(len); 198 } 199 for (int i = 0; i < len; i++) { newDashes[i] = dashes[i]; } 200 return newDashes; 201 } 202 203 @Override 204 public void moveTo(double x0, double y0) { 205 if (firstSegidx > 0) { 206 out.moveTo(sx, sy); 207 emitFirstSegments(); 208 } 209 needsMoveTo = true; 210 this.idx = startIdx; 211 this.dashOn = this.startDashOn; 212 this.phase = this.startPhase; 213 this.sx = this.x0 = x0; 214 this.sy = this.y0 = y0; 215 this.starting = true; 216 } 217 218 private void emitSeg(double[] buf, int off, int type) { 219 switch (type) { 220 case 8: 221 out.curveTo(buf[off+0], buf[off+1], 222 buf[off+2], buf[off+3], 223 buf[off+4], buf[off+5]); 224 return; 225 case 6: 226 out.quadTo(buf[off+0], buf[off+1], 227 buf[off+2], buf[off+3]); 228 return; 229 case 4: 230 out.lineTo(buf[off], buf[off+1]); 231 return; 232 default: 233 } 234 } 235 236 private void emitFirstSegments() { 237 final double[] fSegBuf = firstSegmentsBuffer; 238 239 for (int i = 0; i < firstSegidx; ) { 240 int type = (int)fSegBuf[i]; 241 emitSeg(fSegBuf, i + 1, type); 242 i += (type - 1); 243 } 244 firstSegidx = 0; 245 } 246 // We don't emit the first dash right away. If we did, caps would be 247 // drawn on it, but we need joins to be drawn if there's a closePath() 248 // So, we store the path elements that make up the first dash in the 249 // buffer below. 250 private double[] firstSegmentsBuffer; // dynamic array 251 private int firstSegidx; 252 253 // precondition: pts must be in relative coordinates (relative to x0,y0) 254 private void goTo(double[] pts, int off, final int type) { 255 double x = pts[off + type - 4]; 256 double y = pts[off + type - 3]; 257 if (dashOn) { 258 if (starting) { 259 int len = type - 1; // - 2 + 1 260 int segIdx = firstSegidx; 261 double[] buf = firstSegmentsBuffer; 262 if (segIdx + len > buf.length) { 263 if (DO_STATS) { 264 rdrCtx.stats.stat_array_dasher_firstSegmentsBuffer 265 .add(segIdx + len); 266 } 267 firstSegmentsBuffer = buf 268 = firstSegmentsBuffer_ref.widenArray(buf, segIdx, 269 segIdx + len); 270 } 271 buf[segIdx++] = type; 272 len--; 273 // small arraycopy (2, 4 or 6) but with offset: 274 System.arraycopy(pts, off, buf, segIdx, len); 275 segIdx += len; 276 firstSegidx = segIdx; 277 } else { 278 if (needsMoveTo) { 279 out.moveTo(x0, y0); 280 needsMoveTo = false; 281 } 282 emitSeg(pts, off, type); 283 } 284 } else { 285 starting = false; 286 needsMoveTo = true; 287 } 288 this.x0 = x; 289 this.y0 = y; 290 } 291 292 @Override 293 public void lineTo(double x1, double y1) { 294 double dx = x1 - x0; 295 double dy = y1 - y0; 296 297 double len = dx*dx + dy*dy; 298 if (len == 0.0d) { 299 return; 300 } 301 len = Math.sqrt(len); 302 303 // The scaling factors needed to get the dx and dy of the 304 // transformed dash segments. 305 final double cx = dx / len; 306 final double cy = dy / len; 307 308 final double[] _curCurvepts = curCurvepts; 309 final double[] _dash = dash; 310 311 double leftInThisDashSegment; 312 double dashdx, dashdy, p; 313 314 while (true) { 315 leftInThisDashSegment = _dash[idx] - phase; 316 317 if (len <= leftInThisDashSegment) { 318 _curCurvepts[0] = x1; 319 _curCurvepts[1] = y1; 320 goTo(_curCurvepts, 0, 4); 321 322 // Advance phase within current dash segment 323 phase += len; 324 // TODO: compare double values using epsilon: 325 if (len == leftInThisDashSegment) { 326 phase = 0.0d; 327 idx = (idx + 1) % dashLen; 328 dashOn = !dashOn; 329 } 330 return; 331 } 332 333 dashdx = _dash[idx] * cx; 334 dashdy = _dash[idx] * cy; 335 336 if (phase == 0.0d) { 337 _curCurvepts[0] = x0 + dashdx; 338 _curCurvepts[1] = y0 + dashdy; 339 } else { 340 p = leftInThisDashSegment / _dash[idx]; 341 _curCurvepts[0] = x0 + p * dashdx; 342 _curCurvepts[1] = y0 + p * dashdy; 343 } 344 345 goTo(_curCurvepts, 0, 4); 346 347 len -= leftInThisDashSegment; 348 // Advance to next dash segment 349 idx = (idx + 1) % dashLen; 350 dashOn = !dashOn; 351 phase = 0.0d; 352 } 353 } 354 355 // shared instance in DDasher 356 private final LengthIterator li = new LengthIterator(); 357 358 // preconditions: curCurvepts must be an array of length at least 2 * type, 359 // that contains the curve we want to dash in the first type elements 360 private void somethingTo(int type) { 361 if (pointCurve(curCurvepts, type)) { 362 return; 363 } 364 li.initializeIterationOnCurve(curCurvepts, type); 365 366 // initially the current curve is at curCurvepts[0...type] 367 int curCurveoff = 0; 368 double lastSplitT = 0.0d; 369 double t; 370 double leftInThisDashSegment = dash[idx] - phase; 371 372 while ((t = li.next(leftInThisDashSegment)) < 1.0d) { 373 if (t != 0.0d) { 374 DHelpers.subdivideAt((t - lastSplitT) / (1.0d - lastSplitT), 375 curCurvepts, curCurveoff, 376 curCurvepts, 0, 377 curCurvepts, type, type); 378 lastSplitT = t; 379 goTo(curCurvepts, 2, type); 380 curCurveoff = type; 381 } 382 // Advance to next dash segment 383 idx = (idx + 1) % dashLen; 384 dashOn = !dashOn; 385 phase = 0.0d; 386 leftInThisDashSegment = dash[idx]; 387 } 388 goTo(curCurvepts, curCurveoff+2, type); 389 phase += li.lastSegLen(); 390 if (phase >= dash[idx]) { 391 phase = 0.0d; 392 idx = (idx + 1) % dashLen; 393 dashOn = !dashOn; 394 } 395 // reset LengthIterator: 396 li.reset(); 397 } 398 399 private static boolean pointCurve(double[] curve, int type) { 400 for (int i = 2; i < type; i++) { 401 if (curve[i] != curve[i-2]) { 402 return false; 403 } 404 } 405 return true; 406 } 407 408 // Objects of this class are used to iterate through curves. They return 409 // t values where the left side of the curve has a specified length. 410 // It does this by subdividing the input curve until a certain error 411 // condition has been met. A recursive subdivision procedure would 412 // return as many as 1<<limit curves, but this is an iterator and we 413 // don't need all the curves all at once, so what we carry out a 414 // lazy inorder traversal of the recursion tree (meaning we only move 415 // through the tree when we need the next subdivided curve). This saves 416 // us a lot of memory because at any one time we only need to store 417 // limit+1 curves - one for each level of the tree + 1. 418 // NOTE: the way we do things here is not enough to traverse a general 419 // tree; however, the trees we are interested in have the property that 420 // every non leaf node has exactly 2 children 421 static final class LengthIterator { 422 private enum Side {LEFT, RIGHT}; 423 // Holds the curves at various levels of the recursion. The root 424 // (i.e. the original curve) is at recCurveStack[0] (but then it 425 // gets subdivided, the left half is put at 1, so most of the time 426 // only the right half of the original curve is at 0) 427 private final double[][] recCurveStack; // dirty 428 // sides[i] indicates whether the node at level i+1 in the path from 429 // the root to the current leaf is a left or right child of its parent. 430 private final Side[] sides; // dirty 431 private int curveType; 432 // lastT and nextT delimit the current leaf. 433 private double nextT; 434 private double lenAtNextT; 435 private double lastT; 436 private double lenAtLastT; 437 private double lenAtLastSplit; 438 private double lastSegLen; 439 // the current level in the recursion tree. 0 is the root. limit 440 // is the deepest possible leaf. 441 private int recLevel; 442 private boolean done; 443 444 // the lengths of the lines of the control polygon. Only its first 445 // curveType/2 - 1 elements are valid. This is an optimization. See 446 // next() for more detail. 447 private final double[] curLeafCtrlPolyLengths = new double[3]; 448 449 LengthIterator() { 450 this.recCurveStack = new double[REC_LIMIT + 1][8]; 451 this.sides = new Side[REC_LIMIT]; 452 // if any methods are called without first initializing this object 453 // on a curve, we want it to fail ASAP. 454 this.nextT = Double.MAX_VALUE; 455 this.lenAtNextT = Double.MAX_VALUE; 456 this.lenAtLastSplit = Double.MIN_VALUE; 457 this.recLevel = Integer.MIN_VALUE; 458 this.lastSegLen = Double.MAX_VALUE; 459 this.done = true; 460 } 461 462 /** 463 * Reset this LengthIterator. 464 */ 465 void reset() { 466 // keep data dirty 467 // as it appears not useful to reset data: 468 if (DO_CLEAN_DIRTY) { 469 final int recLimit = recCurveStack.length - 1; 470 for (int i = recLimit; i >= 0; i--) { 471 Arrays.fill(recCurveStack[i], 0.0d); 472 } 473 Arrays.fill(sides, Side.LEFT); 474 Arrays.fill(curLeafCtrlPolyLengths, 0.0d); 475 Arrays.fill(nextRoots, 0.0d); 476 Arrays.fill(flatLeafCoefCache, 0.0d); 477 flatLeafCoefCache[2] = -1.0d; 478 } 479 } 480 481 void initializeIterationOnCurve(double[] pts, int type) { 482 // optimize arraycopy (8 values faster than 6 = type): 483 System.arraycopy(pts, 0, recCurveStack[0], 0, 8); 484 this.curveType = type; 485 this.recLevel = 0; 486 this.lastT = 0.0d; 487 this.lenAtLastT = 0.0d; 488 this.nextT = 0.0d; 489 this.lenAtNextT = 0.0d; 490 goLeft(); // initializes nextT and lenAtNextT properly 491 this.lenAtLastSplit = 0.0d; 492 if (recLevel > 0) { 493 this.sides[0] = Side.LEFT; 494 this.done = false; 495 } else { 496 // the root of the tree is a leaf so we're done. 497 this.sides[0] = Side.RIGHT; 498 this.done = true; 499 } 500 this.lastSegLen = 0.0d; 501 } 502 503 // 0 == false, 1 == true, -1 == invalid cached value. 504 private int cachedHaveLowAcceleration = -1; 505 506 private boolean haveLowAcceleration(double err) { 507 if (cachedHaveLowAcceleration == -1) { 508 final double len1 = curLeafCtrlPolyLengths[0]; 509 final double len2 = curLeafCtrlPolyLengths[1]; 510 // the test below is equivalent to !within(len1/len2, 1, err). 511 // It is using a multiplication instead of a division, so it 512 // should be a bit faster. 513 if (!DHelpers.within(len1, len2, err * len2)) { 514 cachedHaveLowAcceleration = 0; 515 return false; 516 } 517 if (curveType == 8) { 518 final double len3 = curLeafCtrlPolyLengths[2]; 519 // if len1 is close to 2 and 2 is close to 3, that probably 520 // means 1 is close to 3 so the second part of this test might 521 // not be needed, but it doesn't hurt to include it. 522 final double errLen3 = err * len3; 523 if (!(DHelpers.within(len2, len3, errLen3) && 524 DHelpers.within(len1, len3, errLen3))) { 525 cachedHaveLowAcceleration = 0; 526 return false; 527 } 528 } 529 cachedHaveLowAcceleration = 1; 530 return true; 531 } 532 533 return (cachedHaveLowAcceleration == 1); 534 } 535 536 // we want to avoid allocations/gc so we keep this array so we 537 // can put roots in it, 538 private final double[] nextRoots = new double[4]; 539 540 // caches the coefficients of the current leaf in its flattened 541 // form (see inside next() for what that means). The cache is 542 // invalid when it's third element is negative, since in any 543 // valid flattened curve, this would be >= 0. 544 private final double[] flatLeafCoefCache = new double[]{0.0d, 0.0d, -1.0d, 0.0d}; 545 546 // returns the t value where the remaining curve should be split in 547 // order for the left subdivided curve to have length len. If len 548 // is >= than the length of the uniterated curve, it returns 1. 549 double next(final double len) { 550 final double targetLength = lenAtLastSplit + len; 551 while (lenAtNextT < targetLength) { 552 if (done) { 553 lastSegLen = lenAtNextT - lenAtLastSplit; 554 return 1.0d; 555 } 556 goToNextLeaf(); 557 } 558 lenAtLastSplit = targetLength; 559 final double leaflen = lenAtNextT - lenAtLastT; 560 double t = (targetLength - lenAtLastT) / leaflen; 561 562 // cubicRootsInAB is a fairly expensive call, so we just don't do it 563 // if the acceleration in this section of the curve is small enough. 564 if (!haveLowAcceleration(0.05d)) { 565 // We flatten the current leaf along the x axis, so that we're 566 // left with a, b, c which define a 1D Bezier curve. We then 567 // solve this to get the parameter of the original leaf that 568 // gives us the desired length. 569 final double[] _flatLeafCoefCache = flatLeafCoefCache; 570 571 if (_flatLeafCoefCache[2] < 0.0d) { 572 double x = curLeafCtrlPolyLengths[0], 573 y = x + curLeafCtrlPolyLengths[1]; 574 if (curveType == 8) { 575 double z = y + curLeafCtrlPolyLengths[2]; 576 _flatLeafCoefCache[0] = 3.0d * (x - y) + z; 577 _flatLeafCoefCache[1] = 3.0d * (y - 2.0d * x); 578 _flatLeafCoefCache[2] = 3.0d * x; 579 _flatLeafCoefCache[3] = -z; 580 } else if (curveType == 6) { 581 _flatLeafCoefCache[0] = 0.0d; 582 _flatLeafCoefCache[1] = y - 2.0d * x; 583 _flatLeafCoefCache[2] = 2.0d * x; 584 _flatLeafCoefCache[3] = -y; 585 } 586 } 587 double a = _flatLeafCoefCache[0]; 588 double b = _flatLeafCoefCache[1]; 589 double c = _flatLeafCoefCache[2]; 590 double d = t * _flatLeafCoefCache[3]; 591 592 // we use cubicRootsInAB here, because we want only roots in 0, 1, 593 // and our quadratic root finder doesn't filter, so it's just a 594 // matter of convenience. 595 int n = DHelpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0.0d, 1.0d); 596 if (n == 1 && !Double.isNaN(nextRoots[0])) { 597 t = nextRoots[0]; 598 } 599 } 600 // t is relative to the current leaf, so we must make it a valid parameter 601 // of the original curve. 602 t = t * (nextT - lastT) + lastT; 603 if (t >= 1.0d) { 604 t = 1.0d; 605 done = true; 606 } 607 // even if done = true, if we're here, that means targetLength 608 // is equal to, or very, very close to the total length of the 609 // curve, so lastSegLen won't be too high. In cases where len 610 // overshoots the curve, this method will exit in the while 611 // loop, and lastSegLen will still be set to the right value. 612 lastSegLen = len; 613 return t; 614 } 615 616 double lastSegLen() { 617 return lastSegLen; 618 } 619 620 // go to the next leaf (in an inorder traversal) in the recursion tree 621 // preconditions: must be on a leaf, and that leaf must not be the root. 622 private void goToNextLeaf() { 623 // We must go to the first ancestor node that has an unvisited 624 // right child. 625 int _recLevel = recLevel; 626 final Side[] _sides = sides; 627 628 _recLevel--; 629 while(_sides[_recLevel] == Side.RIGHT) { 630 if (_recLevel == 0) { 631 recLevel = 0; 632 done = true; 633 return; 634 } 635 _recLevel--; 636 } 637 638 _sides[_recLevel] = Side.RIGHT; 639 // optimize arraycopy (8 values faster than 6 = type): 640 System.arraycopy(recCurveStack[_recLevel], 0, 641 recCurveStack[_recLevel+1], 0, 8); 642 _recLevel++; 643 644 recLevel = _recLevel; 645 goLeft(); 646 } 647 648 // go to the leftmost node from the current node. Return its length. 649 private void goLeft() { 650 double len = onLeaf(); 651 if (len >= 0.0d) { 652 lastT = nextT; 653 lenAtLastT = lenAtNextT; 654 nextT += (1 << (REC_LIMIT - recLevel)) * MIN_T_INC; 655 lenAtNextT += len; 656 // invalidate caches 657 flatLeafCoefCache[2] = -1.0d; 658 cachedHaveLowAcceleration = -1; 659 } else { 660 DHelpers.subdivide(recCurveStack[recLevel], 0, 661 recCurveStack[recLevel+1], 0, 662 recCurveStack[recLevel], 0, curveType); 663 sides[recLevel] = Side.LEFT; 664 recLevel++; 665 goLeft(); 666 } 667 } 668 669 // this is a bit of a hack. It returns -1 if we're not on a leaf, and 670 // the length of the leaf if we are on a leaf. 671 private double onLeaf() { 672 double[] curve = recCurveStack[recLevel]; 673 double polyLen = 0.0d; 674 675 double x0 = curve[0], y0 = curve[1]; 676 for (int i = 2; i < curveType; i += 2) { 677 final double x1 = curve[i], y1 = curve[i+1]; 678 final double len = DHelpers.linelen(x0, y0, x1, y1); 679 polyLen += len; 680 curLeafCtrlPolyLengths[i/2 - 1] = len; 681 x0 = x1; 682 y0 = y1; 683 } 684 685 final double lineLen = DHelpers.linelen(curve[0], curve[1], 686 curve[curveType-2], 687 curve[curveType-1]); 688 if ((polyLen - lineLen) < ERR || recLevel == REC_LIMIT) { 689 return (polyLen + lineLen) / 2.0d; 690 } 691 return -1.0d; 692 } 693 } 694 695 @Override 696 public void curveTo(double x1, double y1, 697 double x2, double y2, 698 double x3, double y3) 699 { 700 final double[] _curCurvepts = curCurvepts; 701 _curCurvepts[0] = x0; _curCurvepts[1] = y0; 702 _curCurvepts[2] = x1; _curCurvepts[3] = y1; 703 _curCurvepts[4] = x2; _curCurvepts[5] = y2; 704 _curCurvepts[6] = x3; _curCurvepts[7] = y3; 705 somethingTo(8); 706 } 707 708 @Override 709 public void quadTo(double x1, double y1, double x2, double y2) { 710 final double[] _curCurvepts = curCurvepts; 711 _curCurvepts[0] = x0; _curCurvepts[1] = y0; 712 _curCurvepts[2] = x1; _curCurvepts[3] = y1; 713 _curCurvepts[4] = x2; _curCurvepts[5] = y2; 714 somethingTo(6); 715 } 716 717 @Override 718 public void closePath() { 719 lineTo(sx, sy); 720 if (firstSegidx > 0) { 721 if (!dashOn || needsMoveTo) { 722 out.moveTo(sx, sy); 723 } 724 emitFirstSegments(); 725 } 726 moveTo(sx, sy); 727 } 728 729 @Override 730 public void pathDone() { 731 if (firstSegidx > 0) { 732 out.moveTo(sx, sy); 733 emitFirstSegments(); 734 } 735 out.pathDone(); 736 737 // Dispose this instance: 738 dispose(); 739 } 740 741 @Override 742 public long getNativeConsumer() { 743 throw new InternalError("DDasher does not use a native consumer"); 744 } 745 } 746