1 /* 2 * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package sun.java2d.marlin; 27 28 import sun.awt.geom.PathConsumer2D; 29 import static sun.java2d.marlin.OffHeapArray.SIZE_INT; 30 import jdk.internal.misc.Unsafe; 31 32 final class Renderer implements PathConsumer2D, MarlinRenderer { 33 34 static final boolean DISABLE_RENDER = false; 35 36 static final boolean ENABLE_BLOCK_FLAGS = MarlinProperties.isUseTileFlags(); 37 static final boolean ENABLE_BLOCK_FLAGS_HEURISTICS = MarlinProperties.isUseTileFlagsWithHeuristics(); 38 39 private static final int ALL_BUT_LSB = 0xFFFFFFFE; 40 private static final int ERR_STEP_MAX = 0x7FFFFFFF; // = 2^31 - 1 41 42 private static final double POWER_2_TO_32 = 0x1.0p32d; 43 44 // use float to make tosubpix methods faster (no int to float conversion) 45 static final float SUBPIXEL_SCALE_X = (float) SUBPIXEL_POSITIONS_X; 46 static final float SUBPIXEL_SCALE_Y = (float) SUBPIXEL_POSITIONS_Y; 47 static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1; 48 static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1; 49 50 // number of subpixels corresponding to a tile line 51 private static final int SUBPIXEL_TILE 52 = TILE_H << SUBPIXEL_LG_POSITIONS_Y; 53 54 // 2048 (pixelSize) pixels (height) x 8 subpixels = 64K 55 static final int INITIAL_BUCKET_ARRAY 56 = INITIAL_PIXEL_DIM * SUBPIXEL_POSITIONS_Y; 57 58 // crossing capacity = edges count / 4 ~ 1024 59 static final int INITIAL_CROSSING_COUNT = INITIAL_EDGES_COUNT >> 2; 60 61 public static final int WIND_EVEN_ODD = 0; 62 public static final int WIND_NON_ZERO = 1; 63 64 // common to all types of input path segments. 65 // OFFSET as bytes 66 // only integer values: 67 public static final long OFF_CURX_OR = 0; 68 public static final long OFF_ERROR = OFF_CURX_OR + SIZE_INT; 69 public static final long OFF_BUMP_X = OFF_ERROR + SIZE_INT; 70 public static final long OFF_BUMP_ERR = OFF_BUMP_X + SIZE_INT; 71 public static final long OFF_NEXT = OFF_BUMP_ERR + SIZE_INT; 72 public static final long OFF_YMAX = OFF_NEXT + SIZE_INT; 73 74 // size of one edge in bytes 75 public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT); 76 77 // curve break into lines 78 // cubic error in subpixels to decrement step 79 private static final float CUB_DEC_ERR_SUBPIX 80 = MarlinProperties.getCubicDecD2() * (NORM_SUBPIXELS / 8.0f); // 1 pixel 81 // cubic error in subpixels to increment step 82 private static final float CUB_INC_ERR_SUBPIX 83 = MarlinProperties.getCubicIncD1() * (NORM_SUBPIXELS / 8.0f); // 0.4 pixel 84 85 // TestNonAARasterization (JDK-8170879): cubics 86 // bad paths (59294/100000 == 59,29%, 94335 bad pixels (avg = 1,59), 3966 warnings (avg = 0,07) 87 88 // cubic bind length to decrement step 89 public static final float CUB_DEC_BND 90 = 8.0f * CUB_DEC_ERR_SUBPIX; 91 // cubic bind length to increment step 92 public static final float CUB_INC_BND 93 = 8.0f * CUB_INC_ERR_SUBPIX; 94 95 // cubic countlg 96 public static final int CUB_COUNT_LG = 2; 97 // cubic count = 2^countlg 98 private static final int CUB_COUNT = 1 << CUB_COUNT_LG; 99 // cubic count^2 = 4^countlg 100 private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG); 101 // cubic count^3 = 8^countlg 102 private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG); 103 // cubic dt = 1 / count 104 private static final float CUB_INV_COUNT = 1.0f / CUB_COUNT; 105 // cubic dt^2 = 1 / count^2 = 1 / 4^countlg 106 private static final float CUB_INV_COUNT_2 = 1.0f / CUB_COUNT_2; 107 // cubic dt^3 = 1 / count^3 = 1 / 8^countlg 108 private static final float CUB_INV_COUNT_3 = 1.0f / CUB_COUNT_3; 109 110 // quad break into lines 111 // quadratic error in subpixels 112 private static final float QUAD_DEC_ERR_SUBPIX 113 = MarlinProperties.getQuadDecD2() * (NORM_SUBPIXELS / 8.0f); // 0.5 pixel 114 115 // TestNonAARasterization (JDK-8170879): quads 116 // bad paths (62916/100000 == 62,92%, 103818 bad pixels (avg = 1,65), 6514 warnings (avg = 0,10) 117 118 // quadratic bind length to decrement step 119 public static final float QUAD_DEC_BND 120 = 8.0f * QUAD_DEC_ERR_SUBPIX; 121 122 ////////////////////////////////////////////////////////////////////////////// 123 // SCAN LINE 124 ////////////////////////////////////////////////////////////////////////////// 125 // crossings ie subpixel edge x coordinates 126 private int[] crossings; 127 // auxiliary storage for crossings (merge sort) 128 private int[] aux_crossings; 129 130 // indices into the segment pointer lists. They indicate the "active" 131 // sublist in the segment lists (the portion of the list that contains 132 // all the segments that cross the next scan line). 133 private int edgeCount; 134 private int[] edgePtrs; 135 // auxiliary storage for edge pointers (merge sort) 136 private int[] aux_edgePtrs; 137 138 // max used for both edgePtrs and crossings (stats only) 139 private int activeEdgeMaxUsed; 140 141 // crossings ref (dirty) 142 private final IntArrayCache.Reference crossings_ref; 143 // edgePtrs ref (dirty) 144 private final IntArrayCache.Reference edgePtrs_ref; 145 // merge sort initial arrays (large enough to satisfy most usages) (1024) 146 // aux_crossings ref (dirty) 147 private final IntArrayCache.Reference aux_crossings_ref; 148 // aux_edgePtrs ref (dirty) 149 private final IntArrayCache.Reference aux_edgePtrs_ref; 150 151 ////////////////////////////////////////////////////////////////////////////// 152 // EDGE LIST 153 ////////////////////////////////////////////////////////////////////////////// 154 private int edgeMinY = Integer.MAX_VALUE; 155 private int edgeMaxY = Integer.MIN_VALUE; 156 private float edgeMinX = Float.POSITIVE_INFINITY; 157 private float edgeMaxX = Float.NEGATIVE_INFINITY; 158 159 // edges [ints] stored in off-heap memory 160 private final OffHeapArray edges; 161 162 private int[] edgeBuckets; 163 private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed) 164 // used range for edgeBuckets / edgeBucketCounts 165 private int buckets_minY; 166 private int buckets_maxY; 167 168 // edgeBuckets ref (clean) 169 private final IntArrayCache.Reference edgeBuckets_ref; 170 // edgeBucketCounts ref (clean) 171 private final IntArrayCache.Reference edgeBucketCounts_ref; 172 173 // Flattens using adaptive forward differencing. This only carries out 174 // one iteration of the AFD loop. All it does is update AFD variables (i.e. 175 // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings). 176 private void quadBreakIntoLinesAndAdd(float x0, float y0, 177 final Curve c, 178 final float x2, final float y2) 179 { 180 int count = 1; // dt = 1 / count 181 182 // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1) 183 float maxDD = Math.abs(c.dbx) + Math.abs(c.dby); 184 185 final float _DEC_BND = QUAD_DEC_BND; 186 187 while (maxDD >= _DEC_BND) { 188 // divide step by half: 189 maxDD /= 4.0f; // error divided by 2^2 = 4 190 191 count <<= 1; 192 if (DO_STATS) { 193 rdrCtx.stats.stat_rdr_quadBreak_dec.add(count); 194 } 195 } 196 197 int nL = 0; // line count 198 if (count > 1) { 199 final float icount = 1.0f / count; // dt 200 final float icount2 = icount * icount; // dt^2 201 202 final float ddx = c.dbx * icount2; 203 final float ddy = c.dby * icount2; 204 float dx = c.bx * icount2 + c.cx * icount; 205 float dy = c.by * icount2 + c.cy * icount; 206 207 float x1, y1; 208 209 while (--count > 0) { 210 x1 = x0 + dx; 211 dx += ddx; 212 y1 = y0 + dy; 213 dy += ddy; 214 215 addLine(x0, y0, x1, y1); 216 217 if (DO_STATS) { nL++; } 218 x0 = x1; 219 y0 = y1; 220 } 221 } 222 addLine(x0, y0, x2, y2); 223 224 if (DO_STATS) { 225 rdrCtx.stats.stat_rdr_quadBreak.add(nL + 1); 226 } 227 } 228 229 // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these 230 // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce 231 // numerical errors, and our callers already have the exact values. 232 // Another alternative would be to pass all the control points, and call 233 // c.set here, but then too many numbers are passed around. 234 private void curveBreakIntoLinesAndAdd(float x0, float y0, 235 final Curve c, 236 final float x3, final float y3) 237 { 238 int count = CUB_COUNT; 239 final float icount = CUB_INV_COUNT; // dt 240 final float icount2 = CUB_INV_COUNT_2; // dt^2 241 final float icount3 = CUB_INV_COUNT_3; // dt^3 242 243 // the dx and dy refer to forward differencing variables, not the last 244 // coefficients of the "points" polynomial 245 float dddx, dddy, ddx, ddy, dx, dy; 246 dddx = 2.0f * c.dax * icount3; 247 dddy = 2.0f * c.day * icount3; 248 ddx = dddx + c.dbx * icount2; 249 ddy = dddy + c.dby * icount2; 250 dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount; 251 dy = c.ay * icount3 + c.by * icount2 + c.cy * icount; 252 253 // we use x0, y0 to walk the line 254 float x1 = x0, y1 = y0; 255 int nL = 0; // line count 256 257 final float _DEC_BND = CUB_DEC_BND; 258 final float _INC_BND = CUB_INC_BND; 259 260 while (count > 0) { 261 // divide step by half: 262 while (Math.abs(ddx) + Math.abs(ddy) >= _DEC_BND) { 263 dddx /= 8.0f; 264 dddy /= 8.0f; 265 ddx = ddx / 4.0f - dddx; 266 ddy = ddy / 4.0f - dddy; 267 dx = (dx - ddx) / 2.0f; 268 dy = (dy - ddy) / 2.0f; 269 270 count <<= 1; 271 if (DO_STATS) { 272 rdrCtx.stats.stat_rdr_curveBreak_dec.add(count); 273 } 274 } 275 276 // double step: 277 // can only do this on even "count" values, because we must divide count by 2 278 while (count % 2 == 0 279 && Math.abs(dx) + Math.abs(dy) <= _INC_BND) 280 { 281 dx = 2.0f * dx + ddx; 282 dy = 2.0f * dy + ddy; 283 ddx = 4.0f * (ddx + dddx); 284 ddy = 4.0f * (ddy + dddy); 285 dddx *= 8.0f; 286 dddy *= 8.0f; 287 288 count >>= 1; 289 if (DO_STATS) { 290 rdrCtx.stats.stat_rdr_curveBreak_inc.add(count); 291 } 292 } 293 if (--count > 0) { 294 x1 += dx; 295 dx += ddx; 296 ddx += dddx; 297 y1 += dy; 298 dy += ddy; 299 ddy += dddy; 300 } else { 301 x1 = x3; 302 y1 = y3; 303 } 304 305 addLine(x0, y0, x1, y1); 306 307 if (DO_STATS) { nL++; } 308 x0 = x1; 309 y0 = y1; 310 } 311 if (DO_STATS) { 312 rdrCtx.stats.stat_rdr_curveBreak.add(nL); 313 } 314 } 315 316 private void addLine(float x1, float y1, float x2, float y2) { 317 if (DO_MONITORS) { 318 rdrCtx.stats.mon_rdr_addLine.start(); 319 } 320 if (DO_STATS) { 321 rdrCtx.stats.stat_rdr_addLine.add(1); 322 } 323 int or = 1; // orientation of the line. 1 if y increases, 0 otherwise. 324 if (y2 < y1) { 325 or = 0; 326 float tmp = y2; 327 y2 = y1; 328 y1 = tmp; 329 tmp = x2; 330 x2 = x1; 331 x1 = tmp; 332 } 333 334 // convert subpixel coordinates [float] into pixel positions [int] 335 336 // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5) 337 // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply 338 // ceil(y1) or ceil(y2) 339 // upper integer (inclusive) 340 final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY); 341 342 // note: use boundsMaxY (last Y exclusive) to compute correct coverage 343 // upper integer (exclusive) 344 final int lastCrossing = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY); 345 346 /* skip horizontal lines in pixel space and clip edges 347 out of y range [boundsMinY; boundsMaxY] */ 348 if (firstCrossing >= lastCrossing) { 349 if (DO_MONITORS) { 350 rdrCtx.stats.mon_rdr_addLine.stop(); 351 } 352 if (DO_STATS) { 353 rdrCtx.stats.stat_rdr_addLine_skip.add(1); 354 } 355 return; 356 } 357 358 // edge min/max X/Y are in subpixel space (half-open interval): 359 // note: Use integer crossings to ensure consistent range within 360 // edgeBuckets / edgeBucketCounts arrays in case of NaN values (int = 0) 361 if (firstCrossing < edgeMinY) { 362 edgeMinY = firstCrossing; 363 } 364 if (lastCrossing > edgeMaxY) { 365 edgeMaxY = lastCrossing; 366 } 367 368 // Use double-precision for improved accuracy: 369 final double x1d = x1; 370 final double y1d = y1; 371 final double slope = (x1d - x2) / (y1d - y2); 372 373 if (slope >= 0.0d) { // <==> x1 < x2 374 if (x1 < edgeMinX) { 375 edgeMinX = x1; 376 } 377 if (x2 > edgeMaxX) { 378 edgeMaxX = x2; 379 } 380 } else { 381 if (x2 < edgeMinX) { 382 edgeMinX = x2; 383 } 384 if (x1 > edgeMaxX) { 385 edgeMaxX = x1; 386 } 387 } 388 389 // local variables for performance: 390 final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES; 391 392 final OffHeapArray _edges = edges; 393 394 // get free pointer (ie length in bytes) 395 final int edgePtr = _edges.used; 396 397 // use substraction to avoid integer overflow: 398 if (_edges.length - edgePtr < _SIZEOF_EDGE_BYTES) { 399 // suppose _edges.length > _SIZEOF_EDGE_BYTES 400 // so doubling size is enough to add needed bytes 401 // note: throw IOOB if neededSize > 2Gb: 402 final long edgeNewSize = ArrayCacheConst.getNewLargeSize( 403 _edges.length, 404 edgePtr + _SIZEOF_EDGE_BYTES); 405 406 if (DO_STATS) { 407 rdrCtx.stats.stat_rdr_edges_resizes.add(edgeNewSize); 408 } 409 _edges.resize(edgeNewSize); 410 } 411 412 413 final Unsafe _unsafe = OffHeapArray.UNSAFE; 414 final long SIZE_INT = 4L; 415 long addr = _edges.address + edgePtr; 416 417 // The x value must be bumped up to its position at the next HPC we will evaluate. 418 // "firstcrossing" is the (sub)pixel number where the next crossing occurs 419 // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5" 420 // so the Y distance we cover is "firstcrossing + 0.5 - trueY". 421 // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have 422 // y1 = trueY - 0.5 423 // trueY = y1 + 0.5 424 // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5) 425 // = firstcrossing - y1 426 // The x coordinate at that HPC is then: 427 // x1_intercept = x1 + (firstcrossing - y1) * slope 428 // The next VPC is then given by: 429 // VPC index = ceil(x1_intercept - 0.5), or alternately 430 // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon) 431 // epsilon is hard to pin down in floating point, but easy in fixed point, so if 432 // we convert to fixed point then these operations get easier: 433 // long x1_fixed = x1_intercept * 2^32; (fixed point 32.32 format) 434 // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1) 435 // = fixed_floor(x1_fixed + 2^31 - 1) 436 // = fixed_floor(x1_fixed + 0x7FFFFFFF) 437 // and error = fixed_fract(x1_fixed + 0x7FFFFFFF) 438 final double x1_intercept = x1d + (firstCrossing - y1d) * slope; 439 440 // inlined scalb(x1_intercept, 32): 441 final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept)) 442 + 0x7FFFFFFFL; 443 // curx: 444 // last bit corresponds to the orientation 445 _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or); 446 addr += SIZE_INT; 447 _unsafe.putInt(addr, ((int) x1_fixed_biased) >>> 1); 448 addr += SIZE_INT; 449 450 // inlined scalb(slope, 32): 451 final long slope_fixed = (long) (POWER_2_TO_32 * slope); 452 453 // last bit set to 0 to keep orientation: 454 _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB)); 455 addr += SIZE_INT; 456 _unsafe.putInt(addr, ((int) slope_fixed) >>> 1); 457 addr += SIZE_INT; 458 459 final int[] _edgeBuckets = edgeBuckets; 460 final int[] _edgeBucketCounts = edgeBucketCounts; 461 462 final int _boundsMinY = boundsMinY; 463 464 // each bucket is a linked list. this method adds ptr to the 465 // start of the "bucket"th linked list. 466 final int bucketIdx = firstCrossing - _boundsMinY; 467 468 // pointer from bucket 469 _unsafe.putInt(addr, _edgeBuckets[bucketIdx]); 470 addr += SIZE_INT; 471 // y max (exclusive) 472 _unsafe.putInt(addr, lastCrossing); 473 474 // Update buckets: 475 // directly the edge struct "pointer" 476 _edgeBuckets[bucketIdx] = edgePtr; 477 _edgeBucketCounts[bucketIdx] += 2; // 1 << 1 478 // last bit means edge end 479 _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1; 480 481 // update free pointer (ie length in bytes) 482 _edges.used += _SIZEOF_EDGE_BYTES; 483 484 if (DO_MONITORS) { 485 rdrCtx.stats.mon_rdr_addLine.stop(); 486 } 487 } 488 489 // END EDGE LIST 490 ////////////////////////////////////////////////////////////////////////////// 491 492 // Cache to store RLE-encoded coverage mask of the current primitive 493 final MarlinCache cache; 494 495 // Bounds of the drawing region, at subpixel precision. 496 private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY; 497 498 // Current winding rule 499 private int windingRule; 500 501 // Current drawing position, i.e., final point of last segment 502 private float x0, y0; 503 504 // Position of most recent 'moveTo' command 505 private float sx0, sy0; 506 507 // per-thread renderer context 508 final RendererContext rdrCtx; 509 // dirty curve 510 private final Curve curve; 511 512 // clean alpha array (zero filled) 513 private int[] alphaLine; 514 515 // alphaLine ref (clean) 516 private final IntArrayCache.Reference alphaLine_ref; 517 518 private boolean enableBlkFlags = false; 519 private boolean prevUseBlkFlags = false; 520 521 /* block flags (0|1) */ 522 private int[] blkFlags; 523 524 // blkFlags ref (clean) 525 private final IntArrayCache.Reference blkFlags_ref; 526 527 Renderer(final RendererContext rdrCtx) { 528 this.rdrCtx = rdrCtx; 529 530 this.edges = rdrCtx.newOffHeapArray(INITIAL_EDGES_CAPACITY); // 96K 531 532 this.curve = rdrCtx.curve; 533 534 edgeBuckets_ref = rdrCtx.newCleanIntArrayRef(INITIAL_BUCKET_ARRAY); // 64K 535 edgeBucketCounts_ref = rdrCtx.newCleanIntArrayRef(INITIAL_BUCKET_ARRAY); // 64K 536 537 edgeBuckets = edgeBuckets_ref.initial; 538 edgeBucketCounts = edgeBucketCounts_ref.initial; 539 540 // 2048 (pixelsize) pixel large 541 alphaLine_ref = rdrCtx.newCleanIntArrayRef(INITIAL_AA_ARRAY); // 8K 542 alphaLine = alphaLine_ref.initial; 543 544 this.cache = rdrCtx.cache; 545 546 crossings_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K 547 aux_crossings_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K 548 edgePtrs_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K 549 aux_edgePtrs_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K 550 551 crossings = crossings_ref.initial; 552 aux_crossings = aux_crossings_ref.initial; 553 edgePtrs = edgePtrs_ref.initial; 554 aux_edgePtrs = aux_edgePtrs_ref.initial; 555 556 blkFlags_ref = rdrCtx.newCleanIntArrayRef(INITIAL_ARRAY); // 1K = 1 tile line 557 blkFlags = blkFlags_ref.initial; 558 } 559 560 Renderer init(final int pix_boundsX, final int pix_boundsY, 561 final int pix_boundsWidth, final int pix_boundsHeight, 562 final int windingRule) 563 { 564 this.windingRule = windingRule; 565 566 // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY 567 this.boundsMinX = pix_boundsX << SUBPIXEL_LG_POSITIONS_X; 568 this.boundsMaxX = 569 (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X; 570 this.boundsMinY = pix_boundsY << SUBPIXEL_LG_POSITIONS_Y; 571 this.boundsMaxY = 572 (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y; 573 574 if (DO_LOG_BOUNDS) { 575 MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... " 576 + boundsMaxX + "[ [" + boundsMinY + " ... " 577 + boundsMaxY + "["); 578 } 579 580 // see addLine: ceil(boundsMaxY) => boundsMaxY + 1 581 // +1 for edgeBucketCounts 582 final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1; 583 584 if (edgeBucketsLength > INITIAL_BUCKET_ARRAY) { 585 if (DO_STATS) { 586 rdrCtx.stats.stat_array_renderer_edgeBuckets 587 .add(edgeBucketsLength); 588 rdrCtx.stats.stat_array_renderer_edgeBucketCounts 589 .add(edgeBucketsLength); 590 } 591 edgeBuckets = edgeBuckets_ref.getArray(edgeBucketsLength); 592 edgeBucketCounts = edgeBucketCounts_ref.getArray(edgeBucketsLength); 593 } 594 595 edgeMinY = Integer.MAX_VALUE; 596 edgeMaxY = Integer.MIN_VALUE; 597 edgeMinX = Float.POSITIVE_INFINITY; 598 edgeMaxX = Float.NEGATIVE_INFINITY; 599 600 // reset used mark: 601 edgeCount = 0; 602 activeEdgeMaxUsed = 0; 603 edges.used = 0; 604 605 return this; // fluent API 606 } 607 608 /** 609 * Disposes this renderer and recycle it clean up before reusing this instance 610 */ 611 void dispose() { 612 if (DO_STATS) { 613 rdrCtx.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed); 614 rdrCtx.stats.stat_rdr_edges.add(edges.used); 615 rdrCtx.stats.stat_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES); 616 rdrCtx.stats.hist_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES); 617 rdrCtx.stats.totalOffHeap += edges.length; 618 } 619 // Return arrays: 620 crossings = crossings_ref.putArray(crossings); 621 aux_crossings = aux_crossings_ref.putArray(aux_crossings); 622 623 edgePtrs = edgePtrs_ref.putArray(edgePtrs); 624 aux_edgePtrs = aux_edgePtrs_ref.putArray(aux_edgePtrs); 625 626 alphaLine = alphaLine_ref.putArray(alphaLine, 0, 0); // already zero filled 627 blkFlags = blkFlags_ref.putArray(blkFlags, 0, 0); // already zero filled 628 629 if (edgeMinY != Integer.MAX_VALUE) { 630 // if context is maked as DIRTY: 631 if (rdrCtx.dirty) { 632 // may happen if an exception if thrown in the pipeline processing: 633 // clear completely buckets arrays: 634 buckets_minY = 0; 635 buckets_maxY = boundsMaxY - boundsMinY; 636 } 637 // clear only used part 638 edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, buckets_minY, 639 buckets_maxY); 640 edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, 641 buckets_minY, 642 buckets_maxY + 1); 643 } else { 644 // unused arrays 645 edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, 0, 0); 646 edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, 0, 0); 647 } 648 649 // At last: resize back off-heap edges to initial size 650 if (edges.length != INITIAL_EDGES_CAPACITY) { 651 // note: may throw OOME: 652 edges.resize(INITIAL_EDGES_CAPACITY); 653 } 654 if (DO_CLEAN_DIRTY) { 655 // Force zero-fill dirty arrays: 656 edges.fill(BYTE_0); 657 } 658 if (DO_MONITORS) { 659 rdrCtx.stats.mon_rdr_endRendering.stop(); 660 } 661 // recycle the RendererContext instance 662 MarlinRenderingEngine.returnRendererContext(rdrCtx); 663 } 664 665 private static float tosubpixx(final float pix_x) { 666 return SUBPIXEL_SCALE_X * pix_x; 667 } 668 669 private static float tosubpixy(final float pix_y) { 670 // shift y by -0.5 for fast ceil(y - 0.5): 671 return SUBPIXEL_SCALE_Y * pix_y - 0.5f; 672 } 673 674 @Override 675 public void moveTo(float pix_x0, float pix_y0) { 676 closePath(); 677 final float sx = tosubpixx(pix_x0); 678 final float sy = tosubpixy(pix_y0); 679 this.sx0 = sx; 680 this.sy0 = sy; 681 this.x0 = sx; 682 this.y0 = sy; 683 } 684 685 @Override 686 public void lineTo(float pix_x1, float pix_y1) { 687 final float x1 = tosubpixx(pix_x1); 688 final float y1 = tosubpixy(pix_y1); 689 addLine(x0, y0, x1, y1); 690 x0 = x1; 691 y0 = y1; 692 } 693 694 @Override 695 public void curveTo(float x1, float y1, 696 float x2, float y2, 697 float x3, float y3) 698 { 699 final float xe = tosubpixx(x3); 700 final float ye = tosubpixy(y3); 701 curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1), 702 tosubpixx(x2), tosubpixy(y2), xe, ye); 703 curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye); 704 x0 = xe; 705 y0 = ye; 706 } 707 708 @Override 709 public void quadTo(float x1, float y1, float x2, float y2) { 710 final float xe = tosubpixx(x2); 711 final float ye = tosubpixy(y2); 712 curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1), xe, ye); 713 quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye); 714 x0 = xe; 715 y0 = ye; 716 } 717 718 @Override 719 public void closePath() { 720 addLine(x0, y0, sx0, sy0); 721 x0 = sx0; 722 y0 = sy0; 723 } 724 725 @Override 726 public void pathDone() { 727 closePath(); 728 } 729 730 @Override 731 public long getNativeConsumer() { 732 throw new InternalError("Renderer does not use a native consumer."); 733 } 734 735 private void _endRendering(final int ymin, final int ymax) { 736 if (DISABLE_RENDER) { 737 return; 738 } 739 740 // Get X bounds as true pixel boundaries to compute correct pixel coverage: 741 final int bboxx0 = bbox_spminX; 742 final int bboxx1 = bbox_spmaxX; 743 744 final boolean windingRuleEvenOdd = (windingRule == WIND_EVEN_ODD); 745 746 // Useful when processing tile line by tile line 747 final int[] _alpha = alphaLine; 748 749 // local vars (performance): 750 final MarlinCache _cache = cache; 751 final OffHeapArray _edges = edges; 752 final int[] _edgeBuckets = edgeBuckets; 753 final int[] _edgeBucketCounts = edgeBucketCounts; 754 755 int[] _crossings = this.crossings; 756 int[] _edgePtrs = this.edgePtrs; 757 758 // merge sort auxiliary storage: 759 int[] _aux_crossings = this.aux_crossings; 760 int[] _aux_edgePtrs = this.aux_edgePtrs; 761 762 // copy constants: 763 final long _OFF_ERROR = OFF_ERROR; 764 final long _OFF_BUMP_X = OFF_BUMP_X; 765 final long _OFF_BUMP_ERR = OFF_BUMP_ERR; 766 767 final long _OFF_NEXT = OFF_NEXT; 768 final long _OFF_YMAX = OFF_YMAX; 769 770 final int _ALL_BUT_LSB = ALL_BUT_LSB; 771 final int _ERR_STEP_MAX = ERR_STEP_MAX; 772 773 // unsafe I/O: 774 final Unsafe _unsafe = OffHeapArray.UNSAFE; 775 final long addr0 = _edges.address; 776 long addr; 777 final int _SUBPIXEL_LG_POSITIONS_X = SUBPIXEL_LG_POSITIONS_X; 778 final int _SUBPIXEL_LG_POSITIONS_Y = SUBPIXEL_LG_POSITIONS_Y; 779 final int _SUBPIXEL_MASK_X = SUBPIXEL_MASK_X; 780 final int _SUBPIXEL_MASK_Y = SUBPIXEL_MASK_Y; 781 final int _SUBPIXEL_POSITIONS_X = SUBPIXEL_POSITIONS_X; 782 783 final int _MIN_VALUE = Integer.MIN_VALUE; 784 final int _MAX_VALUE = Integer.MAX_VALUE; 785 786 // Now we iterate through the scanlines. We must tell emitRow the coord 787 // of the first non-transparent pixel, so we must keep accumulators for 788 // the first and last pixels of the section of the current pixel row 789 // that we will emit. 790 // We also need to accumulate pix_bbox, but the iterator does it 791 // for us. We will just get the values from it once this loop is done 792 int minX = _MAX_VALUE; 793 int maxX = _MIN_VALUE; 794 795 int y = ymin; 796 int bucket = y - boundsMinY; 797 798 int numCrossings = this.edgeCount; 799 int edgePtrsLen = _edgePtrs.length; 800 int crossingsLen = _crossings.length; 801 int _arrayMaxUsed = activeEdgeMaxUsed; 802 int ptrLen = 0, newCount, ptrEnd; 803 804 int bucketcount, i, j, ecur; 805 int cross, lastCross; 806 int x0, x1, tmp, sum, prev, curx, curxo, crorientation, err; 807 int pix_x, pix_xmaxm1, pix_xmax; 808 809 int low, high, mid, prevNumCrossings; 810 boolean useBinarySearch; 811 812 final int[] _blkFlags = blkFlags; 813 final int _BLK_SIZE_LG = BLOCK_SIZE_LG; 814 final int _BLK_SIZE = BLOCK_SIZE; 815 816 final boolean _enableBlkFlagsHeuristics = ENABLE_BLOCK_FLAGS_HEURISTICS && this.enableBlkFlags; 817 818 // Use block flags if large pixel span and few crossings: 819 // ie mean(distance between crossings) is high 820 boolean useBlkFlags = this.prevUseBlkFlags; 821 822 final int stroking = rdrCtx.stroking; 823 824 int lastY = -1; // last emited row 825 826 827 // Iteration on scanlines 828 for (; y < ymax; y++, bucket++) { 829 // --- from former ScanLineIterator.next() 830 bucketcount = _edgeBucketCounts[bucket]; 831 832 // marker on previously sorted edges: 833 prevNumCrossings = numCrossings; 834 835 // bucketCount indicates new edge / edge end: 836 if (bucketcount != 0) { 837 if (DO_STATS) { 838 rdrCtx.stats.stat_rdr_activeEdges_updates.add(numCrossings); 839 } 840 841 // last bit set to 1 means that edges ends 842 if ((bucketcount & 0x1) != 0) { 843 // eviction in active edge list 844 // cache edges[] address + offset 845 addr = addr0 + _OFF_YMAX; 846 847 for (i = 0, newCount = 0; i < numCrossings; i++) { 848 // get the pointer to the edge 849 ecur = _edgePtrs[i]; 850 // random access so use unsafe: 851 if (_unsafe.getInt(addr + ecur) > y) { 852 _edgePtrs[newCount++] = ecur; 853 } 854 } 855 // update marker on sorted edges minus removed edges: 856 prevNumCrossings = numCrossings = newCount; 857 } 858 859 ptrLen = bucketcount >> 1; // number of new edge 860 861 if (ptrLen != 0) { 862 if (DO_STATS) { 863 rdrCtx.stats.stat_rdr_activeEdges_adds.add(ptrLen); 864 if (ptrLen > 10) { 865 rdrCtx.stats.stat_rdr_activeEdges_adds_high.add(ptrLen); 866 } 867 } 868 ptrEnd = numCrossings + ptrLen; 869 870 if (edgePtrsLen < ptrEnd) { 871 if (DO_STATS) { 872 rdrCtx.stats.stat_array_renderer_edgePtrs.add(ptrEnd); 873 } 874 this.edgePtrs = _edgePtrs 875 = edgePtrs_ref.widenArray(_edgePtrs, numCrossings, 876 ptrEnd); 877 878 edgePtrsLen = _edgePtrs.length; 879 // Get larger auxiliary storage: 880 aux_edgePtrs_ref.putArray(_aux_edgePtrs); 881 882 // use ArrayCache.getNewSize() to use the same growing 883 // factor than widenArray(): 884 if (DO_STATS) { 885 rdrCtx.stats.stat_array_renderer_aux_edgePtrs.add(ptrEnd); 886 } 887 this.aux_edgePtrs = _aux_edgePtrs 888 = aux_edgePtrs_ref.getArray( 889 ArrayCacheConst.getNewSize(numCrossings, ptrEnd) 890 ); 891 } 892 893 // cache edges[] address + offset 894 addr = addr0 + _OFF_NEXT; 895 896 // add new edges to active edge list: 897 for (ecur = _edgeBuckets[bucket]; 898 numCrossings < ptrEnd; numCrossings++) 899 { 900 // store the pointer to the edge 901 _edgePtrs[numCrossings] = ecur; 902 // random access so use unsafe: 903 ecur = _unsafe.getInt(addr + ecur); 904 } 905 906 if (crossingsLen < numCrossings) { 907 // Get larger array: 908 crossings_ref.putArray(_crossings); 909 910 if (DO_STATS) { 911 rdrCtx.stats.stat_array_renderer_crossings 912 .add(numCrossings); 913 } 914 this.crossings = _crossings 915 = crossings_ref.getArray(numCrossings); 916 917 // Get larger auxiliary storage: 918 aux_crossings_ref.putArray(_aux_crossings); 919 920 if (DO_STATS) { 921 rdrCtx.stats.stat_array_renderer_aux_crossings 922 .add(numCrossings); 923 } 924 this.aux_crossings = _aux_crossings 925 = aux_crossings_ref.getArray(numCrossings); 926 927 crossingsLen = _crossings.length; 928 } 929 if (DO_STATS) { 930 // update max used mark 931 if (numCrossings > _arrayMaxUsed) { 932 _arrayMaxUsed = numCrossings; 933 } 934 } 935 } // ptrLen != 0 936 } // bucketCount != 0 937 938 939 if (numCrossings != 0) { 940 /* 941 * thresholds to switch to optimized merge sort 942 * for newly added edges + final merge pass. 943 */ 944 if ((ptrLen < 10) || (numCrossings < 40)) { 945 if (DO_STATS) { 946 rdrCtx.stats.hist_rdr_crossings.add(numCrossings); 947 rdrCtx.stats.hist_rdr_crossings_adds.add(ptrLen); 948 } 949 950 /* 951 * threshold to use binary insertion sort instead of 952 * straight insertion sort (to reduce minimize comparisons). 953 */ 954 useBinarySearch = (numCrossings >= 20); 955 956 // if small enough: 957 lastCross = _MIN_VALUE; 958 959 for (i = 0; i < numCrossings; i++) { 960 // get the pointer to the edge 961 ecur = _edgePtrs[i]; 962 963 /* convert subpixel coordinates into pixel 964 positions for coming scanline */ 965 /* note: it is faster to always update edges even 966 if it is removed from AEL for coming or last scanline */ 967 968 // random access so use unsafe: 969 addr = addr0 + ecur; // ecur + OFF_F_CURX 970 971 // get current crossing: 972 curx = _unsafe.getInt(addr); 973 974 // update crossing with orientation at last bit: 975 cross = curx; 976 977 // Increment x using DDA (fixed point): 978 curx += _unsafe.getInt(addr + _OFF_BUMP_X); 979 980 // Increment error: 981 err = _unsafe.getInt(addr + _OFF_ERROR) 982 + _unsafe.getInt(addr + _OFF_BUMP_ERR); 983 984 // Manual carry handling: 985 // keep sign and carry bit only and ignore last bit (preserve orientation): 986 _unsafe.putInt(addr, curx - ((err >> 30) & _ALL_BUT_LSB)); 987 _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX)); 988 989 if (DO_STATS) { 990 rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings); 991 } 992 993 // insertion sort of crossings: 994 if (cross < lastCross) { 995 if (DO_STATS) { 996 rdrCtx.stats.stat_rdr_crossings_sorts.add(i); 997 } 998 999 /* use binary search for newly added edges 1000 in crossings if arrays are large enough */ 1001 if (useBinarySearch && (i >= prevNumCrossings)) { 1002 if (DO_STATS) { 1003 rdrCtx.stats.stat_rdr_crossings_bsearch.add(i); 1004 } 1005 low = 0; 1006 high = i - 1; 1007 1008 do { 1009 // note: use signed shift (not >>>) for performance 1010 // as indices are small enough to exceed Integer.MAX_VALUE 1011 mid = (low + high) >> 1; 1012 1013 if (_crossings[mid] < cross) { 1014 low = mid + 1; 1015 } else { 1016 high = mid - 1; 1017 } 1018 } while (low <= high); 1019 1020 for (j = i - 1; j >= low; j--) { 1021 _crossings[j + 1] = _crossings[j]; 1022 _edgePtrs [j + 1] = _edgePtrs[j]; 1023 } 1024 _crossings[low] = cross; 1025 _edgePtrs [low] = ecur; 1026 1027 } else { 1028 j = i - 1; 1029 _crossings[i] = _crossings[j]; 1030 _edgePtrs[i] = _edgePtrs[j]; 1031 1032 while ((--j >= 0) && (_crossings[j] > cross)) { 1033 _crossings[j + 1] = _crossings[j]; 1034 _edgePtrs [j + 1] = _edgePtrs[j]; 1035 } 1036 _crossings[j + 1] = cross; 1037 _edgePtrs [j + 1] = ecur; 1038 } 1039 1040 } else { 1041 _crossings[i] = lastCross = cross; 1042 } 1043 } 1044 } else { 1045 if (DO_STATS) { 1046 rdrCtx.stats.stat_rdr_crossings_msorts.add(numCrossings); 1047 rdrCtx.stats.hist_rdr_crossings_ratio 1048 .add((1000 * ptrLen) / numCrossings); 1049 rdrCtx.stats.hist_rdr_crossings_msorts.add(numCrossings); 1050 rdrCtx.stats.hist_rdr_crossings_msorts_adds.add(ptrLen); 1051 } 1052 1053 // Copy sorted data in auxiliary arrays 1054 // and perform insertion sort on almost sorted data 1055 // (ie i < prevNumCrossings): 1056 1057 lastCross = _MIN_VALUE; 1058 1059 for (i = 0; i < numCrossings; i++) { 1060 // get the pointer to the edge 1061 ecur = _edgePtrs[i]; 1062 1063 /* convert subpixel coordinates into pixel 1064 positions for coming scanline */ 1065 /* note: it is faster to always update edges even 1066 if it is removed from AEL for coming or last scanline */ 1067 1068 // random access so use unsafe: 1069 addr = addr0 + ecur; // ecur + OFF_F_CURX 1070 1071 // get current crossing: 1072 curx = _unsafe.getInt(addr); 1073 1074 // update crossing with orientation at last bit: 1075 cross = curx; 1076 1077 // Increment x using DDA (fixed point): 1078 curx += _unsafe.getInt(addr + _OFF_BUMP_X); 1079 1080 // Increment error: 1081 err = _unsafe.getInt(addr + _OFF_ERROR) 1082 + _unsafe.getInt(addr + _OFF_BUMP_ERR); 1083 1084 // Manual carry handling: 1085 // keep sign and carry bit only and ignore last bit (preserve orientation): 1086 _unsafe.putInt(addr, curx - ((err >> 30) & _ALL_BUT_LSB)); 1087 _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX)); 1088 1089 if (DO_STATS) { 1090 rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings); 1091 } 1092 1093 if (i >= prevNumCrossings) { 1094 // simply store crossing as edgePtrs is in-place: 1095 // will be copied and sorted efficiently by mergesort later: 1096 _crossings[i] = cross; 1097 1098 } else if (cross < lastCross) { 1099 if (DO_STATS) { 1100 rdrCtx.stats.stat_rdr_crossings_sorts.add(i); 1101 } 1102 1103 // (straight) insertion sort of crossings: 1104 j = i - 1; 1105 _aux_crossings[i] = _aux_crossings[j]; 1106 _aux_edgePtrs[i] = _aux_edgePtrs[j]; 1107 1108 while ((--j >= 0) && (_aux_crossings[j] > cross)) { 1109 _aux_crossings[j + 1] = _aux_crossings[j]; 1110 _aux_edgePtrs [j + 1] = _aux_edgePtrs[j]; 1111 } 1112 _aux_crossings[j + 1] = cross; 1113 _aux_edgePtrs [j + 1] = ecur; 1114 1115 } else { 1116 // auxiliary storage: 1117 _aux_crossings[i] = lastCross = cross; 1118 _aux_edgePtrs [i] = ecur; 1119 } 1120 } 1121 1122 // use Mergesort using auxiliary arrays (sort only right part) 1123 MergeSort.mergeSortNoCopy(_crossings, _edgePtrs, 1124 _aux_crossings, _aux_edgePtrs, 1125 numCrossings, prevNumCrossings); 1126 } 1127 1128 // reset ptrLen 1129 ptrLen = 0; 1130 // --- from former ScanLineIterator.next() 1131 1132 1133 /* note: bboxx0 and bboxx1 must be pixel boundaries 1134 to have correct coverage computation */ 1135 1136 // right shift on crossings to get the x-coordinate: 1137 curxo = _crossings[0]; 1138 x0 = curxo >> 1; 1139 if (x0 < minX) { 1140 minX = x0; // subpixel coordinate 1141 } 1142 1143 x1 = _crossings[numCrossings - 1] >> 1; 1144 if (x1 > maxX) { 1145 maxX = x1; // subpixel coordinate 1146 } 1147 1148 1149 // compute pixel coverages 1150 prev = curx = x0; 1151 // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1. 1152 // last bit contains orientation (0 or 1) 1153 crorientation = ((curxo & 0x1) << 1) - 1; 1154 1155 if (windingRuleEvenOdd) { 1156 sum = crorientation; 1157 1158 // Even Odd winding rule: take care of mask ie sum(orientations) 1159 for (i = 1; i < numCrossings; i++) { 1160 curxo = _crossings[i]; 1161 curx = curxo >> 1; 1162 // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1. 1163 // last bit contains orientation (0 or 1) 1164 crorientation = ((curxo & 0x1) << 1) - 1; 1165 1166 if ((sum & 0x1) != 0) { 1167 // TODO: perform line clipping on left-right sides 1168 // to avoid such bound checks: 1169 x0 = (prev > bboxx0) ? prev : bboxx0; 1170 1171 if (curx < bboxx1) { 1172 x1 = curx; 1173 } else { 1174 x1 = bboxx1; 1175 // skip right side (fast exit loop): 1176 i = numCrossings; 1177 } 1178 1179 if (x0 < x1) { 1180 x0 -= bboxx0; // turn x0, x1 from coords to indices 1181 x1 -= bboxx0; // in the alpha array. 1182 1183 pix_x = x0 >> _SUBPIXEL_LG_POSITIONS_X; 1184 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X; 1185 1186 if (pix_x == pix_xmaxm1) { 1187 // Start and end in same pixel 1188 tmp = (x1 - x0); // number of subpixels 1189 _alpha[pix_x ] += tmp; 1190 _alpha[pix_x + 1] -= tmp; 1191 1192 if (useBlkFlags) { 1193 // flag used blocks: 1194 // note: block processing handles extra pixel: 1195 _blkFlags[pix_x >> _BLK_SIZE_LG] = 1; 1196 } 1197 } else { 1198 tmp = (x0 & _SUBPIXEL_MASK_X); 1199 _alpha[pix_x ] 1200 += (_SUBPIXEL_POSITIONS_X - tmp); 1201 _alpha[pix_x + 1] 1202 += tmp; 1203 1204 pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X; 1205 1206 tmp = (x1 & _SUBPIXEL_MASK_X); 1207 _alpha[pix_xmax ] 1208 -= (_SUBPIXEL_POSITIONS_X - tmp); 1209 _alpha[pix_xmax + 1] 1210 -= tmp; 1211 1212 if (useBlkFlags) { 1213 // flag used blocks: 1214 // note: block processing handles extra pixel: 1215 _blkFlags[pix_x >> _BLK_SIZE_LG] = 1; 1216 _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1; 1217 } 1218 } 1219 } 1220 } 1221 1222 sum += crorientation; 1223 prev = curx; 1224 } 1225 } else { 1226 // Non-zero winding rule: optimize that case (default) 1227 // and avoid processing intermediate crossings 1228 for (i = 1, sum = 0;; i++) { 1229 sum += crorientation; 1230 1231 if (sum != 0) { 1232 // prev = min(curx) 1233 if (prev > curx) { 1234 prev = curx; 1235 } 1236 } else { 1237 // TODO: perform line clipping on left-right sides 1238 // to avoid such bound checks: 1239 x0 = (prev > bboxx0) ? prev : bboxx0; 1240 1241 if (curx < bboxx1) { 1242 x1 = curx; 1243 } else { 1244 x1 = bboxx1; 1245 // skip right side (fast exit loop): 1246 i = numCrossings; 1247 } 1248 1249 if (x0 < x1) { 1250 x0 -= bboxx0; // turn x0, x1 from coords to indices 1251 x1 -= bboxx0; // in the alpha array. 1252 1253 pix_x = x0 >> _SUBPIXEL_LG_POSITIONS_X; 1254 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X; 1255 1256 if (pix_x == pix_xmaxm1) { 1257 // Start and end in same pixel 1258 tmp = (x1 - x0); // number of subpixels 1259 _alpha[pix_x ] += tmp; 1260 _alpha[pix_x + 1] -= tmp; 1261 1262 if (useBlkFlags) { 1263 // flag used blocks: 1264 // note: block processing handles extra pixel: 1265 _blkFlags[pix_x >> _BLK_SIZE_LG] = 1; 1266 } 1267 } else { 1268 tmp = (x0 & _SUBPIXEL_MASK_X); 1269 _alpha[pix_x ] 1270 += (_SUBPIXEL_POSITIONS_X - tmp); 1271 _alpha[pix_x + 1] 1272 += tmp; 1273 1274 pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X; 1275 1276 tmp = (x1 & _SUBPIXEL_MASK_X); 1277 _alpha[pix_xmax ] 1278 -= (_SUBPIXEL_POSITIONS_X - tmp); 1279 _alpha[pix_xmax + 1] 1280 -= tmp; 1281 1282 if (useBlkFlags) { 1283 // flag used blocks: 1284 // note: block processing handles extra pixel: 1285 _blkFlags[pix_x >> _BLK_SIZE_LG] = 1; 1286 _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1; 1287 } 1288 } 1289 } 1290 prev = _MAX_VALUE; 1291 } 1292 1293 if (i == numCrossings) { 1294 break; 1295 } 1296 1297 curxo = _crossings[i]; 1298 curx = curxo >> 1; 1299 // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1. 1300 // last bit contains orientation (0 or 1) 1301 crorientation = ((curxo & 0x1) << 1) - 1; 1302 } 1303 } 1304 } // numCrossings > 0 1305 1306 // even if this last row had no crossings, alpha will be zeroed 1307 // from the last emitRow call. But this doesn't matter because 1308 // maxX < minX, so no row will be emitted to the MarlinCache. 1309 if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) { 1310 lastY = y >> _SUBPIXEL_LG_POSITIONS_Y; 1311 1312 // convert subpixel to pixel coordinate within boundaries: 1313 minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X; 1314 maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X; 1315 1316 if (maxX >= minX) { 1317 // note: alpha array will be zeroed by copyAARow() 1318 // +1 because alpha [pix_minX; pix_maxX[ 1319 // fix range [x0; x1[ 1320 // note: if x1=bboxx1, then alpha is written up to bboxx1+1 1321 // inclusive: alpha[bboxx1] ignored, alpha[bboxx1+1] == 0 1322 // (normally so never cleared below) 1323 copyAARow(_alpha, lastY, minX, maxX + 1, useBlkFlags); 1324 1325 // speculative for next pixel row (scanline coherence): 1326 if (_enableBlkFlagsHeuristics) { 1327 // Use block flags if large pixel span and few crossings: 1328 // ie mean(distance between crossings) is larger than 1329 // 1 block size; 1330 1331 // fast check width: 1332 maxX -= minX; 1333 1334 // if stroking: numCrossings /= 2 1335 // => shift numCrossings by 1 1336 // condition = (width / (numCrossings - 1)) > blockSize 1337 useBlkFlags = (maxX > _BLK_SIZE) && (maxX > 1338 (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG)); 1339 1340 if (DO_STATS) { 1341 tmp = FloatMath.max(1, 1342 ((numCrossings >> stroking) - 1)); 1343 rdrCtx.stats.hist_tile_generator_encoding_dist 1344 .add(maxX / tmp); 1345 } 1346 } 1347 } else { 1348 _cache.clearAARow(lastY); 1349 } 1350 minX = _MAX_VALUE; 1351 maxX = _MIN_VALUE; 1352 } 1353 } // scan line iterator 1354 1355 // Emit final row 1356 y--; 1357 y >>= _SUBPIXEL_LG_POSITIONS_Y; 1358 1359 // convert subpixel to pixel coordinate within boundaries: 1360 minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X; 1361 maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X; 1362 1363 if (maxX >= minX) { 1364 // note: alpha array will be zeroed by copyAARow() 1365 // +1 because alpha [pix_minX; pix_maxX[ 1366 // fix range [x0; x1[ 1367 // note: if x1=bboxx1, then alpha is written up to bboxx1+1 1368 // inclusive: alpha[bboxx1] ignored then cleared and 1369 // alpha[bboxx1+1] == 0 (normally so never cleared after) 1370 copyAARow(_alpha, y, minX, maxX + 1, useBlkFlags); 1371 } else if (y != lastY) { 1372 _cache.clearAARow(y); 1373 } 1374 1375 // update member: 1376 edgeCount = numCrossings; 1377 prevUseBlkFlags = useBlkFlags; 1378 1379 if (DO_STATS) { 1380 // update max used mark 1381 activeEdgeMaxUsed = _arrayMaxUsed; 1382 } 1383 } 1384 1385 boolean endRendering() { 1386 if (DO_MONITORS) { 1387 rdrCtx.stats.mon_rdr_endRendering.start(); 1388 } 1389 if (edgeMinY == Integer.MAX_VALUE) { 1390 return false; // undefined edges bounds 1391 } 1392 1393 // bounds as half-open intervals 1394 final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5f), boundsMinX); 1395 final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5f), boundsMaxX); 1396 1397 // edge Min/Max Y are already rounded to subpixels within bounds: 1398 final int spminY = edgeMinY; 1399 final int spmaxY = edgeMaxY; 1400 1401 buckets_minY = spminY - boundsMinY; 1402 buckets_maxY = spmaxY - boundsMinY; 1403 1404 if (DO_LOG_BOUNDS) { 1405 MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX 1406 + "[ [" + edgeMinY + " ... " + edgeMaxY + "["); 1407 MarlinUtils.logInfo("spXY = [" + spminX + " ... " + spmaxX 1408 + "[ [" + spminY + " ... " + spmaxY + "["); 1409 } 1410 1411 // test clipping for shapes out of bounds 1412 if ((spminX >= spmaxX) || (spminY >= spmaxY)) { 1413 return false; 1414 } 1415 1416 // half open intervals 1417 // inclusive: 1418 final int pminX = spminX >> SUBPIXEL_LG_POSITIONS_X; 1419 // exclusive: 1420 final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X; 1421 // inclusive: 1422 final int pminY = spminY >> SUBPIXEL_LG_POSITIONS_Y; 1423 // exclusive: 1424 final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y; 1425 1426 // store BBox to answer ptg.getBBox(): 1427 this.cache.init(pminX, pminY, pmaxX, pmaxY); 1428 1429 // Heuristics for using block flags: 1430 if (ENABLE_BLOCK_FLAGS) { 1431 enableBlkFlags = this.cache.useRLE; 1432 prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS; 1433 1434 if (enableBlkFlags) { 1435 // ensure blockFlags array is large enough: 1436 // note: +2 to ensure enough space left at end 1437 final int blkLen = ((pmaxX - pminX) >> BLOCK_SIZE_LG) + 2; 1438 if (blkLen > INITIAL_ARRAY) { 1439 blkFlags = blkFlags_ref.getArray(blkLen); 1440 } 1441 } 1442 } 1443 1444 // memorize the rendering bounding box: 1445 /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries 1446 to have correct coverage computation */ 1447 // inclusive: 1448 bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X; 1449 // exclusive: 1450 bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X; 1451 // inclusive: 1452 bbox_spminY = spminY; 1453 // exclusive: 1454 bbox_spmaxY = spmaxY; 1455 1456 if (DO_LOG_BOUNDS) { 1457 MarlinUtils.logInfo("pXY = [" + pminX + " ... " + pmaxX 1458 + "[ [" + pminY + " ... " + pmaxY + "["); 1459 MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... " 1460 + bbox_spmaxX + "[ [" + bbox_spminY + " ... " 1461 + bbox_spmaxY + "["); 1462 } 1463 1464 // Prepare alpha line: 1465 // add 2 to better deal with the last pixel in a pixel row. 1466 final int width = (pmaxX - pminX) + 2; 1467 1468 // Useful when processing tile line by tile line 1469 if (width > INITIAL_AA_ARRAY) { 1470 if (DO_STATS) { 1471 rdrCtx.stats.stat_array_renderer_alphaline.add(width); 1472 } 1473 alphaLine = alphaLine_ref.getArray(width); 1474 } 1475 1476 // process first tile line: 1477 endRendering(pminY); 1478 1479 return true; 1480 } 1481 1482 private int bbox_spminX, bbox_spmaxX, bbox_spminY, bbox_spmaxY; 1483 1484 void endRendering(final int pminY) { 1485 if (DO_MONITORS) { 1486 rdrCtx.stats.mon_rdr_endRendering_Y.start(); 1487 } 1488 1489 final int spminY = pminY << SUBPIXEL_LG_POSITIONS_Y; 1490 final int fixed_spminY = FloatMath.max(bbox_spminY, spminY); 1491 1492 // avoid rendering for last call to nextTile() 1493 if (fixed_spminY < bbox_spmaxY) { 1494 // process a complete tile line ie scanlines for 32 rows 1495 final int spmaxY = FloatMath.min(bbox_spmaxY, spminY + SUBPIXEL_TILE); 1496 1497 // process tile line [0 - 32] 1498 cache.resetTileLine(pminY); 1499 1500 // Process only one tile line: 1501 _endRendering(fixed_spminY, spmaxY); 1502 } 1503 if (DO_MONITORS) { 1504 rdrCtx.stats.mon_rdr_endRendering_Y.stop(); 1505 } 1506 } 1507 1508 void copyAARow(final int[] alphaRow, 1509 final int pix_y, final int pix_from, final int pix_to, 1510 final boolean useBlockFlags) 1511 { 1512 if (DO_MONITORS) { 1513 rdrCtx.stats.mon_rdr_copyAARow.start(); 1514 } 1515 if (useBlockFlags) { 1516 if (DO_STATS) { 1517 rdrCtx.stats.hist_tile_generator_encoding.add(1); 1518 } 1519 cache.copyAARowRLE_WithBlockFlags(blkFlags, alphaRow, pix_y, pix_from, pix_to); 1520 } else { 1521 if (DO_STATS) { 1522 rdrCtx.stats.hist_tile_generator_encoding.add(0); 1523 } 1524 cache.copyAARowNoRLE(alphaRow, pix_y, pix_from, pix_to); 1525 } 1526 if (DO_MONITORS) { 1527 rdrCtx.stats.mon_rdr_copyAARow.stop(); 1528 } 1529 } 1530 }