1 /* 2 * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package sun.java2d.marlin; 27 28 import static java.lang.Math.PI; 29 import static java.lang.Math.cos; 30 import static java.lang.Math.sqrt; 31 import static java.lang.Math.cbrt; 32 import static java.lang.Math.acos; 33 import java.util.Arrays; 34 import static sun.java2d.marlin.MarlinConst.INITIAL_EDGES_COUNT; 35 import sun.java2d.marlin.stats.Histogram; 36 import sun.java2d.marlin.stats.StatLong; 37 38 final class DHelpers implements MarlinConst { 39 40 private DHelpers() { 41 throw new Error("This is a non instantiable class"); 42 } 43 44 static boolean within(final double x, final double y, final double err) { 45 final double d = y - x; 46 return (d <= err && d >= -err); 47 } 48 49 static int quadraticRoots(final double a, final double b, 50 final double c, double[] zeroes, final int off) 51 { 52 int ret = off; 53 double t; 54 if (a != 0.0d) { 55 final double dis = b*b - 4*a*c; 56 if (dis > 0.0d) { 57 final double sqrtDis = Math.sqrt(dis); 58 // depending on the sign of b we use a slightly different 59 // algorithm than the traditional one to find one of the roots 60 // so we can avoid adding numbers of different signs (which 61 // might result in loss of precision). 62 if (b >= 0.0d) { 63 zeroes[ret++] = (2.0d * c) / (-b - sqrtDis); 64 zeroes[ret++] = (-b - sqrtDis) / (2.0d * a); 65 } else { 66 zeroes[ret++] = (-b + sqrtDis) / (2.0d * a); 67 zeroes[ret++] = (2.0d * c) / (-b + sqrtDis); 68 } 69 } else if (dis == 0.0d) { 70 t = (-b) / (2.0d * a); 71 zeroes[ret++] = t; 72 } 73 } else { 74 if (b != 0.0d) { 75 t = (-c) / b; 76 zeroes[ret++] = t; 77 } 78 } 79 return ret - off; 80 } 81 82 // find the roots of g(t) = d*t^3 + a*t^2 + b*t + c in [A,B) 83 static int cubicRootsInAB(double d, double a, double b, double c, 84 double[] pts, final int off, 85 final double A, final double B) 86 { 87 if (d == 0.0d) { 88 int num = quadraticRoots(a, b, c, pts, off); 89 return filterOutNotInAB(pts, off, num, A, B) - off; 90 } 91 // From Graphics Gems: 92 // http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c 93 // (also from awt.geom.CubicCurve2D. But here we don't need as 94 // much accuracy and we don't want to create arrays so we use 95 // our own customized version). 96 97 // normal form: x^3 + ax^2 + bx + c = 0 98 a /= d; 99 b /= d; 100 c /= d; 101 102 // substitute x = y - A/3 to eliminate quadratic term: 103 // x^3 +Px + Q = 0 104 // 105 // Since we actually need P/3 and Q/2 for all of the 106 // calculations that follow, we will calculate 107 // p = P/3 108 // q = Q/2 109 // instead and use those values for simplicity of the code. 110 double sq_A = a * a; 111 double p = (1.0d/3.0d) * ((-1.0d/3.0d) * sq_A + b); 112 double q = (1.0d/2.0d) * ((2.0d/27.0d) * a * sq_A - (1.0d/3.0d) * a * b + c); 113 114 // use Cardano's formula 115 116 double cb_p = p * p * p; 117 double D = q * q + cb_p; 118 119 int num; 120 if (D < 0.0d) { 121 // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method 122 final double phi = (1.0d/3.0d) * acos(-q / sqrt(-cb_p)); 123 final double t = 2.0d * sqrt(-p); 124 125 pts[ off+0 ] = ( t * cos(phi)); 126 pts[ off+1 ] = (-t * cos(phi + (PI / 3.0d))); 127 pts[ off+2 ] = (-t * cos(phi - (PI / 3.0d))); 128 num = 3; 129 } else { 130 final double sqrt_D = sqrt(D); 131 final double u = cbrt(sqrt_D - q); 132 final double v = - cbrt(sqrt_D + q); 133 134 pts[ off ] = (u + v); 135 num = 1; 136 137 if (within(D, 0.0d, 1e-8d)) { 138 pts[off+1] = -(pts[off] / 2.0d); 139 num = 2; 140 } 141 } 142 143 final double sub = (1.0d/3.0d) * a; 144 145 for (int i = 0; i < num; ++i) { 146 pts[ off+i ] -= sub; 147 } 148 149 return filterOutNotInAB(pts, off, num, A, B) - off; 150 } 151 152 static double evalCubic(final double a, final double b, 153 final double c, final double d, 154 final double t) 155 { 156 return t * (t * (t * a + b) + c) + d; 157 } 158 159 static double evalQuad(final double a, final double b, 160 final double c, final double t) 161 { 162 return t * (t * a + b) + c; 163 } 164 165 // returns the index 1 past the last valid element remaining after filtering 166 static int filterOutNotInAB(double[] nums, final int off, final int len, 167 final double a, final double b) 168 { 169 int ret = off; 170 for (int i = off, end = off + len; i < end; i++) { 171 if (nums[i] >= a && nums[i] < b) { 172 nums[ret++] = nums[i]; 173 } 174 } 175 return ret; 176 } 177 178 static double linelen(double x1, double y1, double x2, double y2) { 179 final double dx = x2 - x1; 180 final double dy = y2 - y1; 181 return Math.sqrt(dx*dx + dy*dy); 182 } 183 184 static void subdivide(double[] src, int srcoff, double[] left, int leftoff, 185 double[] right, int rightoff, int type) 186 { 187 switch(type) { 188 case 6: 189 DHelpers.subdivideQuad(src, srcoff, left, leftoff, right, rightoff); 190 return; 191 case 8: 192 DHelpers.subdivideCubic(src, srcoff, left, leftoff, right, rightoff); 193 return; 194 default: 195 throw new InternalError("Unsupported curve type"); 196 } 197 } 198 199 static void isort(double[] a, int off, int len) { 200 for (int i = off + 1, end = off + len; i < end; i++) { 201 double ai = a[i]; 202 int j = i - 1; 203 for (; j >= off && a[j] > ai; j--) { 204 a[j+1] = a[j]; 205 } 206 a[j+1] = ai; 207 } 208 } 209 210 // Most of these are copied from classes in java.awt.geom because we need 211 // both single and double precision variants of these functions, and Line2D, 212 // CubicCurve2D, QuadCurve2D don't provide them. 213 /** 214 * Subdivides the cubic curve specified by the coordinates 215 * stored in the <code>src</code> array at indices <code>srcoff</code> 216 * through (<code>srcoff</code> + 7) and stores the 217 * resulting two subdivided curves into the two result arrays at the 218 * corresponding indices. 219 * Either or both of the <code>left</code> and <code>right</code> 220 * arrays may be <code>null</code> or a reference to the same array 221 * as the <code>src</code> array. 222 * Note that the last point in the first subdivided curve is the 223 * same as the first point in the second subdivided curve. Thus, 224 * it is possible to pass the same array for <code>left</code> 225 * and <code>right</code> and to use offsets, such as <code>rightoff</code> 226 * equals (<code>leftoff</code> + 6), in order 227 * to avoid allocating extra storage for this common point. 228 * @param src the array holding the coordinates for the source curve 229 * @param srcoff the offset into the array of the beginning of the 230 * the 6 source coordinates 231 * @param left the array for storing the coordinates for the first 232 * half of the subdivided curve 233 * @param leftoff the offset into the array of the beginning of the 234 * the 6 left coordinates 235 * @param right the array for storing the coordinates for the second 236 * half of the subdivided curve 237 * @param rightoff the offset into the array of the beginning of the 238 * the 6 right coordinates 239 * @since 1.7 240 */ 241 static void subdivideCubic(double[] src, int srcoff, 242 double[] left, int leftoff, 243 double[] right, int rightoff) 244 { 245 double x1 = src[srcoff + 0]; 246 double y1 = src[srcoff + 1]; 247 double ctrlx1 = src[srcoff + 2]; 248 double ctrly1 = src[srcoff + 3]; 249 double ctrlx2 = src[srcoff + 4]; 250 double ctrly2 = src[srcoff + 5]; 251 double x2 = src[srcoff + 6]; 252 double y2 = src[srcoff + 7]; 253 if (left != null) { 254 left[leftoff + 0] = x1; 255 left[leftoff + 1] = y1; 256 } 257 if (right != null) { 258 right[rightoff + 6] = x2; 259 right[rightoff + 7] = y2; 260 } 261 x1 = (x1 + ctrlx1) / 2.0d; 262 y1 = (y1 + ctrly1) / 2.0d; 263 x2 = (x2 + ctrlx2) / 2.0d; 264 y2 = (y2 + ctrly2) / 2.0d; 265 double centerx = (ctrlx1 + ctrlx2) / 2.0d; 266 double centery = (ctrly1 + ctrly2) / 2.0d; 267 ctrlx1 = (x1 + centerx) / 2.0d; 268 ctrly1 = (y1 + centery) / 2.0d; 269 ctrlx2 = (x2 + centerx) / 2.0d; 270 ctrly2 = (y2 + centery) / 2.0d; 271 centerx = (ctrlx1 + ctrlx2) / 2.0d; 272 centery = (ctrly1 + ctrly2) / 2.0d; 273 if (left != null) { 274 left[leftoff + 2] = x1; 275 left[leftoff + 3] = y1; 276 left[leftoff + 4] = ctrlx1; 277 left[leftoff + 5] = ctrly1; 278 left[leftoff + 6] = centerx; 279 left[leftoff + 7] = centery; 280 } 281 if (right != null) { 282 right[rightoff + 0] = centerx; 283 right[rightoff + 1] = centery; 284 right[rightoff + 2] = ctrlx2; 285 right[rightoff + 3] = ctrly2; 286 right[rightoff + 4] = x2; 287 right[rightoff + 5] = y2; 288 } 289 } 290 291 292 static void subdivideCubicAt(double t, double[] src, int srcoff, 293 double[] left, int leftoff, 294 double[] right, int rightoff) 295 { 296 double x1 = src[srcoff + 0]; 297 double y1 = src[srcoff + 1]; 298 double ctrlx1 = src[srcoff + 2]; 299 double ctrly1 = src[srcoff + 3]; 300 double ctrlx2 = src[srcoff + 4]; 301 double ctrly2 = src[srcoff + 5]; 302 double x2 = src[srcoff + 6]; 303 double y2 = src[srcoff + 7]; 304 if (left != null) { 305 left[leftoff + 0] = x1; 306 left[leftoff + 1] = y1; 307 } 308 if (right != null) { 309 right[rightoff + 6] = x2; 310 right[rightoff + 7] = y2; 311 } 312 x1 = x1 + t * (ctrlx1 - x1); 313 y1 = y1 + t * (ctrly1 - y1); 314 x2 = ctrlx2 + t * (x2 - ctrlx2); 315 y2 = ctrly2 + t * (y2 - ctrly2); 316 double centerx = ctrlx1 + t * (ctrlx2 - ctrlx1); 317 double centery = ctrly1 + t * (ctrly2 - ctrly1); 318 ctrlx1 = x1 + t * (centerx - x1); 319 ctrly1 = y1 + t * (centery - y1); 320 ctrlx2 = centerx + t * (x2 - centerx); 321 ctrly2 = centery + t * (y2 - centery); 322 centerx = ctrlx1 + t * (ctrlx2 - ctrlx1); 323 centery = ctrly1 + t * (ctrly2 - ctrly1); 324 if (left != null) { 325 left[leftoff + 2] = x1; 326 left[leftoff + 3] = y1; 327 left[leftoff + 4] = ctrlx1; 328 left[leftoff + 5] = ctrly1; 329 left[leftoff + 6] = centerx; 330 left[leftoff + 7] = centery; 331 } 332 if (right != null) { 333 right[rightoff + 0] = centerx; 334 right[rightoff + 1] = centery; 335 right[rightoff + 2] = ctrlx2; 336 right[rightoff + 3] = ctrly2; 337 right[rightoff + 4] = x2; 338 right[rightoff + 5] = y2; 339 } 340 } 341 342 static void subdivideQuad(double[] src, int srcoff, 343 double[] left, int leftoff, 344 double[] right, int rightoff) 345 { 346 double x1 = src[srcoff + 0]; 347 double y1 = src[srcoff + 1]; 348 double ctrlx = src[srcoff + 2]; 349 double ctrly = src[srcoff + 3]; 350 double x2 = src[srcoff + 4]; 351 double y2 = src[srcoff + 5]; 352 if (left != null) { 353 left[leftoff + 0] = x1; 354 left[leftoff + 1] = y1; 355 } 356 if (right != null) { 357 right[rightoff + 4] = x2; 358 right[rightoff + 5] = y2; 359 } 360 x1 = (x1 + ctrlx) / 2.0d; 361 y1 = (y1 + ctrly) / 2.0d; 362 x2 = (x2 + ctrlx) / 2.0d; 363 y2 = (y2 + ctrly) / 2.0d; 364 ctrlx = (x1 + x2) / 2.0d; 365 ctrly = (y1 + y2) / 2.0d; 366 if (left != null) { 367 left[leftoff + 2] = x1; 368 left[leftoff + 3] = y1; 369 left[leftoff + 4] = ctrlx; 370 left[leftoff + 5] = ctrly; 371 } 372 if (right != null) { 373 right[rightoff + 0] = ctrlx; 374 right[rightoff + 1] = ctrly; 375 right[rightoff + 2] = x2; 376 right[rightoff + 3] = y2; 377 } 378 } 379 380 static void subdivideQuadAt(double t, double[] src, int srcoff, 381 double[] left, int leftoff, 382 double[] right, int rightoff) 383 { 384 double x1 = src[srcoff + 0]; 385 double y1 = src[srcoff + 1]; 386 double ctrlx = src[srcoff + 2]; 387 double ctrly = src[srcoff + 3]; 388 double x2 = src[srcoff + 4]; 389 double y2 = src[srcoff + 5]; 390 if (left != null) { 391 left[leftoff + 0] = x1; 392 left[leftoff + 1] = y1; 393 } 394 if (right != null) { 395 right[rightoff + 4] = x2; 396 right[rightoff + 5] = y2; 397 } 398 x1 = x1 + t * (ctrlx - x1); 399 y1 = y1 + t * (ctrly - y1); 400 x2 = ctrlx + t * (x2 - ctrlx); 401 y2 = ctrly + t * (y2 - ctrly); 402 ctrlx = x1 + t * (x2 - x1); 403 ctrly = y1 + t * (y2 - y1); 404 if (left != null) { 405 left[leftoff + 2] = x1; 406 left[leftoff + 3] = y1; 407 left[leftoff + 4] = ctrlx; 408 left[leftoff + 5] = ctrly; 409 } 410 if (right != null) { 411 right[rightoff + 0] = ctrlx; 412 right[rightoff + 1] = ctrly; 413 right[rightoff + 2] = x2; 414 right[rightoff + 3] = y2; 415 } 416 } 417 418 static void subdivideAt(double t, double[] src, int srcoff, 419 double[] left, int leftoff, 420 double[] right, int rightoff, int size) 421 { 422 switch(size) { 423 case 8: 424 subdivideCubicAt(t, src, srcoff, left, leftoff, right, rightoff); 425 return; 426 case 6: 427 subdivideQuadAt(t, src, srcoff, left, leftoff, right, rightoff); 428 return; 429 } 430 } 431 432 // From sun.java2d.loops.GeneralRenderer: 433 434 static final int OUTCODE_TOP = 1; 435 static final int OUTCODE_BOTTOM = 2; 436 static final int OUTCODE_LEFT = 4; 437 static final int OUTCODE_RIGHT = 8; 438 439 static int outcode(final double x, final double y, 440 final double[] clipRect) 441 { 442 int code; 443 if (y < clipRect[0]) { 444 code = OUTCODE_TOP; 445 } else if (y >= clipRect[1]) { 446 code = OUTCODE_BOTTOM; 447 } else { 448 code = 0; 449 } 450 if (x < clipRect[2]) { 451 code |= OUTCODE_LEFT; 452 } else if (x >= clipRect[3]) { 453 code |= OUTCODE_RIGHT; 454 } 455 return code; 456 } 457 458 // a stack of polynomial curves where each curve shares endpoints with 459 // adjacent ones. 460 static final class PolyStack { 461 private static final byte TYPE_LINETO = (byte) 0; 462 private static final byte TYPE_QUADTO = (byte) 1; 463 private static final byte TYPE_CUBICTO = (byte) 2; 464 465 // curves capacity = edges count (8192) = edges x 2 (coords) 466 private static final int INITIAL_CURVES_COUNT = INITIAL_EDGES_COUNT << 1; 467 468 // types capacity = edges count (4096) 469 private static final int INITIAL_TYPES_COUNT = INITIAL_EDGES_COUNT; 470 471 double[] curves; 472 int end; 473 byte[] curveTypes; 474 int numCurves; 475 476 // curves ref (dirty) 477 final DoubleArrayCache.Reference curves_ref; 478 // curveTypes ref (dirty) 479 final ByteArrayCache.Reference curveTypes_ref; 480 481 // used marks (stats only) 482 int curveTypesUseMark; 483 int curvesUseMark; 484 485 private final StatLong stat_polystack_types; 486 private final StatLong stat_polystack_curves; 487 private final Histogram hist_polystack_curves; 488 private final StatLong stat_array_polystack_curves; 489 private final StatLong stat_array_polystack_curveTypes; 490 491 PolyStack(final DRendererContext rdrCtx) { 492 this(rdrCtx, null, null, null, null, null); 493 } 494 495 PolyStack(final DRendererContext rdrCtx, 496 final StatLong stat_polystack_types, 497 final StatLong stat_polystack_curves, 498 final Histogram hist_polystack_curves, 499 final StatLong stat_array_polystack_curves, 500 final StatLong stat_array_polystack_curveTypes) 501 { 502 curves_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_CURVES_COUNT); // 32K 503 curves = curves_ref.initial; 504 505 curveTypes_ref = rdrCtx.newDirtyByteArrayRef(INITIAL_TYPES_COUNT); // 4K 506 curveTypes = curveTypes_ref.initial; 507 numCurves = 0; 508 end = 0; 509 510 if (DO_STATS) { 511 curveTypesUseMark = 0; 512 curvesUseMark = 0; 513 } 514 this.stat_polystack_types = stat_polystack_types; 515 this.stat_polystack_curves = stat_polystack_curves; 516 this.hist_polystack_curves = hist_polystack_curves; 517 this.stat_array_polystack_curves = stat_array_polystack_curves; 518 this.stat_array_polystack_curveTypes = stat_array_polystack_curveTypes; 519 } 520 521 /** 522 * Disposes this PolyStack: 523 * clean up before reusing this instance 524 */ 525 void dispose() { 526 end = 0; 527 numCurves = 0; 528 529 if (DO_STATS) { 530 stat_polystack_types.add(curveTypesUseMark); 531 stat_polystack_curves.add(curvesUseMark); 532 hist_polystack_curves.add(curvesUseMark); 533 534 // reset marks 535 curveTypesUseMark = 0; 536 curvesUseMark = 0; 537 } 538 539 // Return arrays: 540 // curves and curveTypes are kept dirty 541 curves = curves_ref.putArray(curves); 542 curveTypes = curveTypes_ref.putArray(curveTypes); 543 } 544 545 private void ensureSpace(final int n) { 546 // use substraction to avoid integer overflow: 547 if (curves.length - end < n) { 548 if (DO_STATS) { 549 stat_array_polystack_curves.add(end + n); 550 } 551 curves = curves_ref.widenArray(curves, end, end + n); 552 } 553 if (curveTypes.length <= numCurves) { 554 if (DO_STATS) { 555 stat_array_polystack_curveTypes.add(numCurves + 1); 556 } 557 curveTypes = curveTypes_ref.widenArray(curveTypes, 558 numCurves, 559 numCurves + 1); 560 } 561 } 562 563 void pushCubic(double x0, double y0, 564 double x1, double y1, 565 double x2, double y2) 566 { 567 ensureSpace(6); 568 curveTypes[numCurves++] = TYPE_CUBICTO; 569 // we reverse the coordinate order to make popping easier 570 final double[] _curves = curves; 571 int e = end; 572 _curves[e++] = x2; _curves[e++] = y2; 573 _curves[e++] = x1; _curves[e++] = y1; 574 _curves[e++] = x0; _curves[e++] = y0; 575 end = e; 576 } 577 578 void pushQuad(double x0, double y0, 579 double x1, double y1) 580 { 581 ensureSpace(4); 582 curveTypes[numCurves++] = TYPE_QUADTO; 583 final double[] _curves = curves; 584 int e = end; 585 _curves[e++] = x1; _curves[e++] = y1; 586 _curves[e++] = x0; _curves[e++] = y0; 587 end = e; 588 } 589 590 void pushLine(double x, double y) { 591 ensureSpace(2); 592 curveTypes[numCurves++] = TYPE_LINETO; 593 curves[end++] = x; curves[end++] = y; 594 } 595 596 void pullAll(final DPathConsumer2D io) { 597 final int nc = numCurves; 598 if (nc == 0) { 599 return; 600 } 601 if (DO_STATS) { 602 // update used marks: 603 if (numCurves > curveTypesUseMark) { 604 curveTypesUseMark = numCurves; 605 } 606 if (end > curvesUseMark) { 607 curvesUseMark = end; 608 } 609 } 610 final byte[] _curveTypes = curveTypes; 611 final double[] _curves = curves; 612 int e = 0; 613 614 for (int i = 0; i < nc; i++) { 615 switch(_curveTypes[i]) { 616 case TYPE_LINETO: 617 io.lineTo(_curves[e], _curves[e+1]); 618 e += 2; 619 continue; 620 case TYPE_QUADTO: 621 io.quadTo(_curves[e+0], _curves[e+1], 622 _curves[e+2], _curves[e+3]); 623 e += 4; 624 continue; 625 case TYPE_CUBICTO: 626 io.curveTo(_curves[e+0], _curves[e+1], 627 _curves[e+2], _curves[e+3], 628 _curves[e+4], _curves[e+5]); 629 e += 6; 630 continue; 631 default: 632 } 633 } 634 numCurves = 0; 635 end = 0; 636 } 637 638 void popAll(final DPathConsumer2D io) { 639 int nc = numCurves; 640 if (nc == 0) { 641 return; 642 } 643 if (DO_STATS) { 644 // update used marks: 645 if (numCurves > curveTypesUseMark) { 646 curveTypesUseMark = numCurves; 647 } 648 if (end > curvesUseMark) { 649 curvesUseMark = end; 650 } 651 } 652 final byte[] _curveTypes = curveTypes; 653 final double[] _curves = curves; 654 int e = end; 655 656 while (nc != 0) { 657 switch(_curveTypes[--nc]) { 658 case TYPE_LINETO: 659 e -= 2; 660 io.lineTo(_curves[e], _curves[e+1]); 661 continue; 662 case TYPE_QUADTO: 663 e -= 4; 664 io.quadTo(_curves[e+0], _curves[e+1], 665 _curves[e+2], _curves[e+3]); 666 continue; 667 case TYPE_CUBICTO: 668 e -= 6; 669 io.curveTo(_curves[e+0], _curves[e+1], 670 _curves[e+2], _curves[e+3], 671 _curves[e+4], _curves[e+5]); 672 continue; 673 default: 674 } 675 } 676 numCurves = 0; 677 end = 0; 678 } 679 680 @Override 681 public String toString() { 682 String ret = ""; 683 int nc = numCurves; 684 int last = end; 685 int len; 686 while (nc != 0) { 687 switch(curveTypes[--nc]) { 688 case TYPE_LINETO: 689 len = 2; 690 ret += "line: "; 691 break; 692 case TYPE_QUADTO: 693 len = 4; 694 ret += "quad: "; 695 break; 696 case TYPE_CUBICTO: 697 len = 6; 698 ret += "cubic: "; 699 break; 700 default: 701 len = 0; 702 } 703 last -= len; 704 ret += Arrays.toString(Arrays.copyOfRange(curves, last, last+len)) 705 + "\n"; 706 } 707 return ret; 708 } 709 } 710 } --- EOF ---