1 /* 2 * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package sun.java2d.marlin; 27 28 final class DCurve { 29 30 double ax, ay, bx, by, cx, cy, dx, dy; 31 double dax, day, dbx, dby; 32 33 DCurve() { 34 } 35 36 void set(double[] points, int type) { 37 switch(type) { 38 case 8: 39 set(points[0], points[1], 40 points[2], points[3], 41 points[4], points[5], 42 points[6], points[7]); 43 return; 44 case 6: 45 set(points[0], points[1], 46 points[2], points[3], 47 points[4], points[5]); 48 return; 49 default: 50 throw new InternalError("Curves can only be cubic or quadratic"); 51 } 52 } 53 54 void set(double x1, double y1, 55 double x2, double y2, 56 double x3, double y3, 57 double x4, double y4) 58 { 59 ax = 3.0d * (x2 - x3) + x4 - x1; 60 ay = 3.0d * (y2 - y3) + y4 - y1; 61 bx = 3.0d * (x1 - 2.0d * x2 + x3); 62 by = 3.0d * (y1 - 2.0d * y2 + y3); 63 cx = 3.0d * (x2 - x1); 64 cy = 3.0d * (y2 - y1); 65 dx = x1; 66 dy = y1; 67 dax = 3.0d * ax; day = 3.0d * ay; 68 dbx = 2.0d * bx; dby = 2.0d * by; 69 } 70 71 void set(double x1, double y1, 72 double x2, double y2, 73 double x3, double y3) 74 { 75 ax = 0.0d; ay = 0.0d; 76 bx = x1 - 2.0d * x2 + x3; 77 by = y1 - 2.0d * y2 + y3; 78 cx = 2.0d * (x2 - x1); 79 cy = 2.0d * (y2 - y1); 80 dx = x1; 81 dy = y1; 82 dax = 0.0d; day = 0.0d; 83 dbx = 2.0d * bx; dby = 2.0d * by; 84 } 85 86 double xat(double t) { 87 return t * (t * (t * ax + bx) + cx) + dx; 88 } 89 double yat(double t) { 90 return t * (t * (t * ay + by) + cy) + dy; 91 } 92 93 double dxat(double t) { 94 return t * (t * dax + dbx) + cx; 95 } 96 97 double dyat(double t) { 98 return t * (t * day + dby) + cy; 99 } 100 101 int dxRoots(double[] roots, int off) { 102 return DHelpers.quadraticRoots(dax, dbx, cx, roots, off); 103 } 104 105 int dyRoots(double[] roots, int off) { 106 return DHelpers.quadraticRoots(day, dby, cy, roots, off); 107 } 108 109 int infPoints(double[] pts, int off) { 110 // inflection point at t if -f'(t)x*f''(t)y + f'(t)y*f''(t)x == 0 111 // Fortunately, this turns out to be quadratic, so there are at 112 // most 2 inflection points. 113 final double a = dax * dby - dbx * day; 114 final double b = 2.0d * (cy * dax - day * cx); 115 final double c = cy * dbx - cx * dby; 116 117 return DHelpers.quadraticRoots(a, b, c, pts, off); 118 } 119 120 // finds points where the first and second derivative are 121 // perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where 122 // * is a dot product). Unfortunately, we have to solve a cubic. 123 private int perpendiculardfddf(double[] pts, int off) { 124 assert pts.length >= off + 4; 125 126 // these are the coefficients of some multiple of g(t) (not g(t), 127 // because the roots of a polynomial are not changed after multiplication 128 // by a constant, and this way we save a few multiplications). 129 final double a = 2.0d * (dax*dax + day*day); 130 final double b = 3.0d * (dax*dbx + day*dby); 131 final double c = 2.0d * (dax*cx + day*cy) + dbx*dbx + dby*dby; 132 final double d = dbx*cx + dby*cy; 133 return DHelpers.cubicRootsInAB(a, b, c, d, pts, off, 0.0d, 1.0d); 134 } 135 136 // Tries to find the roots of the function ROC(t)-w in [0, 1). It uses 137 // a variant of the false position algorithm to find the roots. False 138 // position requires that 2 initial values x0,x1 be given, and that the 139 // function must have opposite signs at those values. To find such 140 // values, we need the local extrema of the ROC function, for which we 141 // need the roots of its derivative; however, it's harder to find the 142 // roots of the derivative in this case than it is to find the roots 143 // of the original function. So, we find all points where this curve's 144 // first and second derivative are perpendicular, and we pretend these 145 // are our local extrema. There are at most 3 of these, so we will check 146 // at most 4 sub-intervals of (0,1). ROC has asymptotes at inflection 147 // points, so roc-w can have at least 6 roots. This shouldn't be a 148 // problem for what we're trying to do (draw a nice looking curve). 149 int rootsOfROCMinusW(double[] roots, int off, final double w, final double err) { 150 // no OOB exception, because by now off<=6, and roots.length >= 10 151 assert off <= 6 && roots.length >= 10; 152 int ret = off; 153 int numPerpdfddf = perpendiculardfddf(roots, off); 154 double t0 = 0.0d, ft0 = ROCsq(t0) - w*w; 155 roots[off + numPerpdfddf] = 1.0d; // always check interval end points 156 numPerpdfddf++; 157 for (int i = off; i < off + numPerpdfddf; i++) { 158 double t1 = roots[i], ft1 = ROCsq(t1) - w*w; 159 if (ft0 == 0.0d) { 160 roots[ret++] = t0; 161 } else if (ft1 * ft0 < 0.0d) { // have opposite signs 162 // (ROC(t)^2 == w^2) == (ROC(t) == w) is true because 163 // ROC(t) >= 0 for all t. 164 roots[ret++] = falsePositionROCsqMinusX(t0, t1, w*w, err); 165 } 166 t0 = t1; 167 ft0 = ft1; 168 } 169 170 return ret - off; 171 } 172 173 private static double eliminateInf(double x) { 174 return (x == Double.POSITIVE_INFINITY ? Double.MAX_VALUE : 175 (x == Double.NEGATIVE_INFINITY ? Double.MIN_VALUE : x)); 176 } 177 178 // A slight modification of the false position algorithm on wikipedia. 179 // This only works for the ROCsq-x functions. It might be nice to have 180 // the function as an argument, but that would be awkward in java6. 181 // TODO: It is something to consider for java8 (or whenever lambda 182 // expressions make it into the language), depending on how closures 183 // and turn out. Same goes for the newton's method 184 // algorithm in DHelpers.java 185 private double falsePositionROCsqMinusX(double x0, double x1, 186 final double x, final double err) 187 { 188 final int iterLimit = 100; 189 int side = 0; 190 double t = x1, ft = eliminateInf(ROCsq(t) - x); 191 double s = x0, fs = eliminateInf(ROCsq(s) - x); 192 double r = s, fr; 193 for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) { 194 r = (fs * t - ft * s) / (fs - ft); 195 fr = ROCsq(r) - x; 196 if (sameSign(fr, ft)) { 197 ft = fr; t = r; 198 if (side < 0) { 199 fs /= (1 << (-side)); 200 side--; 201 } else { 202 side = -1; 203 } 204 } else if (fr * fs > 0) { 205 fs = fr; s = r; 206 if (side > 0) { 207 ft /= (1 << side); 208 side++; 209 } else { 210 side = 1; 211 } 212 } else { 213 break; 214 } 215 } 216 return r; 217 } 218 219 private static boolean sameSign(double x, double y) { 220 // another way is to test if x*y > 0. This is bad for small x, y. 221 return (x < 0.0d && y < 0.0d) || (x > 0.0d && y > 0.0d); 222 } 223 224 // returns the radius of curvature squared at t of this curve 225 // see http://en.wikipedia.org/wiki/Radius_of_curvature_(applications) 226 private double ROCsq(final double t) { 227 // dx=xat(t) and dy=yat(t). These calls have been inlined for efficiency 228 final double dx = t * (t * dax + dbx) + cx; 229 final double dy = t * (t * day + dby) + cy; 230 final double ddx = 2.0d * dax * t + dbx; 231 final double ddy = 2.0d * day * t + dby; 232 final double dx2dy2 = dx*dx + dy*dy; 233 final double ddx2ddy2 = ddx*ddx + ddy*ddy; 234 final double ddxdxddydy = ddx*dx + ddy*dy; 235 return dx2dy2*((dx2dy2*dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy*ddxdxddydy)); 236 } 237 } --- EOF ---